PHYSICAL REVIEW D, VOLUME 61, 085021

QED effective action at finite temperature: Two-loop dominance
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We calculate the two-loop effective action of QED for arbitrary constant electromagnetic fields at finite
temperaturd in the limit of T much smaller than the electron mass. It is shown that in this regime the two-loop
contribution always exceeds the influence of the one-loop part due to the thermal excitation of the internal
photon. As an application, we study light propagation and photon splitting in the presence of a magnetic
background field at low temperature. We furthermore discover a thermally induced contribution to pair pro-
duction in electric fields.

PACS numbes): 12.20.Ds, 11.10.Wx

[. INTRODUCTION loop effective action in the low-temperature limit is propor-
tional to T%m*. This power-law behavior always wins out

In the low-energy sector of the theory, the effects of quan-over the exponential damping of the one-loop case, leading
tum electrodynamics can be summarized in an effective ado a two-loop dominancen the low-temperature domain.
tion, the Heisenberg-Euler action, which enlarges the classione might ask whether this inversion of the loop hierarchy
cal theory of electrodynamics by non-linear self-interactionssignals the failure of perturbation theory for finite-
of the electromagnetic field. Technically speaking, this effectemperature QED. But, of course, this is not the case, since
tive action arises from integrating out the massihigh-  the inclusion of a virtual photon does not “amplify” the
energy degrees of freedom of electrons and positrons. Thigwo-loop graph and higher ones. Rather, calculating the one-
program has successfully been carried out to two-loop orddpop graph should only be rated as an inconsistent truncation
[1-3]. of the theory, since the one-loop approximation does not

The inclusion of finite-temperature effects at the one-loopnclude all species of particles as virtual ones. Besides, ef-
level has also been considered in various papés®], and fective field theory techniques indicate that the three-loop
the real-timg[7] as well as the imaginary-time formalisi@] ~ contribution is of the order off®mé [11] for T/m<1,
finally arrived at congruent results. thereby obeying the usual loop hierarchy.

This paper is devoted to an investigation of the thermal The present paper is organized as follows: In Sec. I, we
QED effective action at the two-loop level. But contrary to present the calculation of the two-loop effective QED action
the zero-temperature case, where the two-loop contributioat finite temperature employing the imaginary-time formal-
only represents a 1%-correction to the one-loop effective adsm and concentrating on the low-temperature limit. The out-
tion, we demonstrate that the thermal two-loop contributioncome will be valid for slowly varying external fields of ar-
is of a qualitatively different kind than the thermal one-loop bitrary strength.
part and exceeds the latter by far in the low-temperature Section Il is devoted to an investigation of light propa-
domain. gation at finite temperature. While, on the one hand, the

The simple physical reason for this is the following: atwell-known result for the velocity shifsv ~T4/m* is redis-
one loop, one takes only the massive electrons and positromovered12—15, we are also able to determine further con-
as virtual loop particles into accouftf. Fig. 1(a)]. Because tributions to the velocity shift arising from a non-trivial in-
of the mass gap in the fermion spectrum, a heat bath derplay between temperature and an additional magnetic
temperatures much below the electron massan hardly — background field.
excite higher fermion states. Hence, one expects thermal In Sec. IV, we study aspects of thermally induced photon
one-loop effects to be suppressed by the electron mass. Bplitting. Therein, we point out that the thermal two-loop
fact, in a low-temperature expansion of the thermal one-loogontribution to the splitting process exceeds the zero-
effective actior{ 10], one finds that each term is accompaniedtemperature and one-loop contributions in the low-
by a factor of exp{-mV/T), exhibiting an exponential damping
for T—0.

On the other hand, the two-loop contribution to the ther-
mal effective action involves a virtual photon within the fer-
mion loop[cf. Fig. 1(b)]. Since the photon is massless, a heat
bath of arbitrarily low temperature can easily excite higher (2) (b)
photon states, implying a comparably strong influence of
thermal effects on the effective action. In Sec. I, we are able
to show that the dominant contribution to the thermal two-  FiG. 1. Diagrammatic representation of the one-lgap and

two-loop (b) contribution to the effective QED action. The fermi-
onic double line represents the coupling to all orders to the external
*Email address: holger.gies@uni-tuebingen.de electromagnetic field.
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temperature and weak-field limit, but is negligible in com- 1 1

parison to other thermally induced scattering processes. F=2 F,WZE(BZ— EZ)EE (a?—b?),
Sections Il and IV are mainly concerned with the limit of

a weak magnetic background field and low-frequency pho-

tons (w<<m), and therefore represent only a first glance at

these extensive subjects. In fact, the quantitative results for

this energy regime describe only tiny effects; a relevance for

astrophysical topics such as pulsar physics has not been idewhere, for reasons of convenience, we also introduced the

tified up to now. However, the intention of the present workSecularinvariants

is @ more categoric one, namely, to elucidate the mechanism

for a violation of the usual loop hierarchy of perturbative - T= . - (T=. 3
thermal field theories involving virtual massless particles. a=NNFHG+ T, b=NNF+G = F, @
In Sec. V, we calculate the thermal contribution to . :
. , . . and we assumed without loss of generality that a Lorentz
Schwinger's famous pair-production formula6] for con-

stant electric background fields in the low-temperature limit system exists in which the electric and magnetic field are
9 S mp 'famti-parallel. In this particular frame, the secular invariants
Here, a thermal one-loop contribution surprisingly does no

exist [7,9], since the thermal one-loop effective action is :?E'be identified with the field strengtfe:-B=[B|, b=E

purely real by construction. Hence, the findings of Sec. V When the phvsical svstem involves another vector. sav. a
prove the existence of thermally induced pair production — phy y , S,

an effect which has been sought for 15 yd&$,17—19. In momentum 4-_vgct0k“=(k°,k), we can form another field
the low-temperature limit, we find that the situation of alnvarlant[metrlc.g=(—,+,+,+)].
strong electric field is dominated by the zero-temperature
part(Schwinger formulg while the thermal contribution can ~ zc:=(k,,F**)(k,F",) =|k|*Bsin? 6+ |k| *E*sir? 6 — k*E?
become dominant for a weak electric field. Unfortunately,
the experimentally more interesting high-temperature limit +2k°E- (kxB), (3
cannot be covered by our approach.
One last word of caution: the inclusion of electric back- Wheredg (6g) denotes the angle between the magntiec-
ground fields in finite-temperature QED is always plaguedic) field and the 3-space vectlr
with the question of how violently this collides with assump-  In relativistic equilibrium thermodynamics, temperature
tions on thermal equilibrium. In fact, electric fields and ther-can be associated with the invariant norm of a 4-venttr
mal equilibrium exclude each other, thus questioning the“n,=—T?. On the other handn* is related to the
physical meaning of the results of Sec. V at least quantita4-velocity vectoru” of the heat bath by*=T u*. E.g., in
tively. However, it is reasonable to assume the existence dhe heat-bath rest frame/ takes the formu*=(1,0,0,0).
an at least small window of parameters in the low-Hence, we can introduce one further invaridbeside the
temperature and weak-field domain for which the thermaltemperature itself
equilibrium calculation represents a good approximation.
Moreover, the knowledge of the effective Lagrangian includ- E=(u,FEo)(U,F7,). (4)
ing a full dependence on all possible field configurations is
mandatory to derive equations of motion for the fields, everE.g., in the heat-bath rest fram@simply reduces t&€=E?.
in the limit of vanishing electric fields. Since the effective Lagrangian is a Lorentz covariant and
gauge-invariant quantity, it can only be a function of the
complete set of invariants of the system under consideration.
Il. TWO-LOOP EFFECTIVE ACTION OF QED Hence, we expect a finite-temperature effective QED La-
AT LOW TEMPERATURE grangian of the form

1
G=7 F*"*F,,=—E-B=ab, (1)

In the following, we will outline the calculation of the
two-loop effective action, concentrating on the low- L=L(EFG,T). ®)
temperature limit where awo-loop dominancés expected.
The calculation is necessarily very technical, wherefore som
details are left for the Appendixés.

But before we get down to business, it is useful to clarify
our notation. From the field strength ten$st” and its dual
*FKP=%5KPWF“V, we can cor?struct the following standard space(2];
gauge and Lorentz invariants:

Fquipped with these conventions, we now turn to the calcu-
ation.

The two-loop contribution to the effective ac-
tion/LagrangianC 2 is generally given by the diagram in Fig.
1(b). This translates into the following formula in coordinate

2
e
o . . . LP=— f d*x" tr[y* G(x,x'|A) v G(x' X|A)]
The primarily phenomenologically interested reader may just 2
take notice of the following conventiori$)—(5), then directly con-
sult Eqs.(29)—(36), and skip the remainder of the section. X DW(X—X’), (6)
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whereG(x,x’|A) represents the fermionic Green’s function factor of the coupling constant and can therefore be ne-
for the Dirac operator in the presence of an external electroglected compared to the one-loop terms. At low temperature,
magnetic field A. D,, denotes the photon propagator. it is therefore sufficient to thermalize the internal photon
Throughout the paper, we assume the background field to benly in order to obtain the leading-dependence of 2.
constant or at least slowly varying compared to the scale of Since, in Feynman gauge, the photon propagator reads
the Compton wavelength; therefore, the fermionic Green’s

function can be written as

1
Dﬂv(k):guvm1 k?= _(k0)2+k21 (10)

4

d P xrg(p), (1)

(27) the introduction of bosonic Matsubara frequenci&8){—
—w2=—(27Tn)?, neZ, leads us td

G(x,x’|A)=CI>(x,x’)f

whereg(p) denotes the Fourier transform &f(x,x’|A) de-
pending only on the field strength, adei(x,x") is the ho-
lonomy carrying the complete gauge dependence of the oy 1 d3k
Green'’s function. Inserting Ed7) into Eq. (6) leads us to L ) |T§ (2m)3 K2—ie
the object®(x,x")®(x’',x)=P(O), where the right-hand "

side represents the holonomy evaluated for a closed path. F?‘?om now on. we writeZ 2
a simply connected manifold such as the Minkowski spaceroop Lagrangiz;mﬁ 2T for the purely thermal part, an@?+27
$(O)=1; hence, it does not contribute to the Z€r0- ¢4 their sum. In Eq(12), '

L an. ol d we need the trace of the polariza-
temperature Lagrangian. For a non-simply connected manfj,, tensor in constant but otherwise arbitrary electromag-
fold such as the finite-temperature coordinate spac

(R3x SY). ®(O) can pick up a winding numbde]. How- fetic fields. In the literature, there are various equivalent rep-

) ) . X resentations fofl ,,. For the present purpose, it is useful to
ever, in the present case, we restrict our considerations to

. . - . Lo . derive our own one which is based on a calculation of Urru-
situation with zero density, which implies the existence of aig [21]. Details are presented in Appendix A

gauge in whichAo=0. Then,®(O) =1 and the influence of o rting representatiofA19) of the Appendix forll#,

the h(_)lonomy can be discarded. . into Eq. (11), we obtain for the Lagrangian
This leads us to the representation

3 o
, i d4k o £2+2T:_Iiz J’ d’k f d—SJl %
£ :i j (277)4 D/Lv(k) I#*(k) (8) 2 2m wp (277)3 0SJ-12

k). (11

for the zero-temperature two-

for the two-loop Lagrangian, whei,,,(k) denotes the pho- e ™’  easebs

X - -
ton propagator in momentum space, and we introduced the a2+ b2 sineassinhebs
one-loop polarization tensor in an arbitrary constant external
background field:

Zy

k?—ie

X

(N,—Ny)

L[ d'p
M+ (k) = —ie f<2w)4 [y 9(p) ¥ 9(p—K)1. (9)

+(2Ng(a%+b?) +b?N,+aN;)

0y2— _ 2
So we have finally arrived at the well-known fact that the (7=
two-loop effective action can be obtained from the polariza- (12
tion tensor in an external field by glueing the external lines _
together. where thedy, Ng, N; are functions of the integration vari-

The transition to finite-temperature field theory can nowabless and v and of the invarianta andb; only ¢, depends
be made within the imaginary-time formalism by replacingadditionally onz, as defined in Eq(3). Their explicit form
the momentum integration over the zeroth component in Eqsan be looked up in Eq$A16), (A20) and(A22). In order to
(8) and(9) by a summation over bosonic and fermionic Mat-
subara frequencies, respectively. E.g., performing this proce=
dure in Eq.(9) corresponds to thermalizing the fermions in
the loop. Now we come to an important point: confiningp
ourselves to the Iow-temperature_ domain wherem, we (10), we could as well work with the real-time representation of the
know from the one-loop calculations0,20 that thermal  thermal photon propagator. We could even use the one-component
fermionic effects are suppressed by factors o€, indicat-  formalism only, since we merely consider the photon to be thermal-
ing that the mass of the fermions suppresses thermal excitgred. However, from our viewpoint, the calculations in the
tions. Hence, thermalizing the polarization tensor Contribute&naginary-time formalism appear a bit simpler since the momentum
at most terms of order €T to the two-loop Lagrangian for integrals will remain Gaussian. Of course, this might be just a mat-
T<m; these are furthermore accompanied by an additionater of taste.

20f course, the present calculation does not necessarily have to be
erformed in the imaginary-time formalism. E.g., instead of Eq.
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ensure convergence of the proper-time integrals, the causal

prescriptionm?—m?—ie for the mass term irp, is under-
stood; this agrees with deforming tlsecontour slightly be-
low the real axis.

Now, the aim is to perform th&momentum integration

and/or summation; note that tkedependence is contained in

PHYSICAL REVIEW D 61 085021

d*k  z
(2m)° kK’>—ie

- imzsef Az e Akk2

l2= TE

02-_ 2
(K0)2= - 2

=—(9T dAkll, (15

&0, z (andk?, of cours@. Concentrating on this step, we

encounter the integrals

3
,=T> T eisen
o J(2m) ’
" (K)2= - w?
(13

3

E KA isi ,
277)3 k2_|€ (k0)2:—w2

which allow us to write the Lagrangiaii2) in terms of

ds
242T_
L 4n J J

X[(Na=Ny) I

+(2Ng(a%+b?) +b?N,+a?Ny)I4 ].

1dv
12 (a+b?)sineassinhebs

easebs

(14

Employing Eq.(A20) for ¢,, we can put down the evalua-
tion of I, to the one ofl ;:

whereA, and A, again are functions of the integration vari-
abless andv and of the invarianta andb, and are defined in
Eq. (A22). In view of Eq.(15), it is sufficient to consider the
momentum integration-summation fby only:

A2)

= Te —im 52

Az @ Ak?

(277)3

(k92=- o}

(16)

At this stage, thdinite-temperature coordinate franmses in-
troduced in9] becomes extremely useful, since it enables us
to perform the calculation in terms of the invariants. This
coordinate system is adapted to the situation of electromag-
netic fields at finite temperature in a way that the compo-
nents of any tensor-valued function of the field strength can
be expressed in terms of the invariagisF, andg. Again,
details are presented in the appendippendix B, from
where we take the final formula for the exponent of Eldf)

[cf. Eq.(B7)]:

Ad 2 (AFa?A)(A—Db2A,)
Az +AKE=(A+(a’— b2+ E)A (kz—z— o - : = (k)2
A A= ik MK R eFr oA, A (@021 A,
A Vdg
a’b? z g Ata?A,) (A—Db2A
+| A, £ + Ay K3+ g2 S A a2zz)(2 . Z)(kl)za (17)
AZ?'FAK AKT+AK
|
wherek® k! k2 k3 represent the components of the rotated Ua:=Act+a%A,, qp=A—b?A,,
momentum vectok”=e* k*, ande*, denotes the vierbein
which mediates between the given coordinate system and the pi=A+(a2—b2+ A, . (19

finite-temperature coordinate frarhef. Eq. (B1)]. Since the

transformation into the new reference frame is only a rigid
rotation in Minkowski space, no Jacobian arises for the me
Hence, only integrals o

sure of the momentum integral.
Gaussian type are present in E@6), which can easily be
performed to give

e—imzs 1 )
=T ——— —— g (Gaap/Poy (18)
C (4m¥ P aadp o

where it was convenient to introduce the short forms:

The sum in Eq(18) can be rewritten with the aid of a Pois-
Son resummation of the form

oo

> exp(—o(n—2)?)

n=—ow

” T A )
=> \ﬁexp(——nz—bﬂzn). (20)
n=—o g g

With z=0 ando=(27T)?(q.q,/p), We obtain for Eq(18)
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Ly=1]7%+1] the important contributionsHence, let us turn to the evalu-
- - ation of 13, i.e., the thermal part of Eq15); for this, we
ce'mE 1l e 1 have to interpret] as a function ofA, and A, (remember:
1672 9.0 + 872 Qadp da, O, andp are functions ofA, andA,):
o0 2 a o
p n 17=- dATI(ALLA,Y)
X > exp — — 1, 21 2 k1A
& p( daClo 4T2) (0 9Bz I

where we separated tha£ 0)-term from the remaining sum =—
in order to find the T=0)-contribution. The first term in Eq.

(21 [(n=0)-term], namely, is independent dfand&, while

the second term vanishes in the lirfit-0 exponentially. It g im
is straightforward to check explicitly that the first term of Eq. == Z T (A, (22)
(21) indeed leads to theinrenormalizedtwo-loop Lagrang- 87" n=1 9%

ian for arbitrary constant electromagnetic fields at zero tem;

O ._where we defined the auxiliary integral:
perature. E.g., for purely magnetic fields, the representation

i de "1 A LA
&AZ 0 S 1(s ko Z)

2500

2

of Dittrich and Reutef?2] is rediscovered. s +
- . . . P n
For our finite-temperature considerations, we will only exp( - -
keep the second term of E(R1), which we denote by] in A= j‘”d ) (s'+0u) (s’ +aqp) 4T? 23
the following. Concerning the formula fof 2T in Eq. (14), (Ar)= 0 8 (' +02)(S' +qp) :

|1 is already in its final formit will turn out later that this
term is subdominant in the low-limit and onlylg contains  Upon a substitution of the integration variaBle,

a0 s'+p ds' du
U:= = = —
P (s'+0u)(s' +0ap) (S +0a)(S +0p) \/qgag 20,05

_|._
p? p

(2p—Qa—Qp) U+ (da—qp)u?

the auxiliary integral becomes

n> p
duexp —— u
1 4T2 Qb
J(A; :f
0 \/qiaﬁ 20,0

+
p? p

(29

(2p—0a—gp)u+(ga—Qp)u?

Now we come to an important point: since we only thermal-square root for small values af and then extend the inte-

ized the photons, our effective Lagrangiér' is only valid  gration interval to infinity[in fact, maintaining 1 as the upper

for T<m anyway. Nevertheless, our formulas also containbound only creates terms of the order exg2nm)/T),

information about the high-temperature domain which weWwhich are subdominant in the low-temperature limithe

should discard, since it is incomplete. Regarding E2%), remaining u-integration can then eg\sny be p_erformed for

the exponential function causes the integrand to be extremef2Ch Order in the-expansion; up ta”, we obtain

small for small values off, except whereu is also small.

Hence, the auxiliary integral is mainly determined by the 3Resolving fors’=s'(u) leads to a quadratic equation from

lower end of the integration interval. which the positive root has to be taken in order to take care of the
Taking these considerations into account, we expand thiategral boundaries.
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T2 T4 (13)] and not inII. Therefore,II will always contain expo-
J(A)=4——16—,(2p—0a—0p) nential damping factors in the limit— 0. Even the remain-
n n

ing proper-time integrations do not provide for a mechanism
6 similar to theu-integration, since for largs, the mass factor
_im?2 ; it ym2 2_
—64—6((%— Ub)2—3(2p—a—0p)?) exp(_ im<s) with the cfausal prescriptiom”—m<—ie causes
n the integrand to vanish, and for small the combination

+O(To®). 26 p/gad, in the exponent becomes

Upon differentiation, thél?-dependence drops out, and we
get[cf. Eq.(19)]

E +0O(s). (28
d 5T4 9T6 2 2 2
(?TJ(AZ)=—2 S (FHE =22 (FH G =3(F+E)A,
z n n Obviously, inserting Eq(28) into the exponent leads to an
+O(T8/n8). 2 exponential fall off(bearing in mind that the-contour will
run slightly below the real axjs Similar conclusions can be
In this equation, we indeed discover a power-law dependrawn for thev-integration. To summarize these technical
dence on the temperature, which will directly translate into aconsiderations, we conclude that only the term contaih}ng
power-law dependence of the two-loop effective action aftethermal part ofl,) in Eqg. (14) contributes dominantly to
insertion into Eqs(22) and (14). Technically speaking, this £2T in the low-temperature limit.
arises from the fact that the omnipresent exponential factor Inserting the first and second term @f ¢A,)J(A,) in Eq.
exp(— (n%/4T2)(p/g.9,) u), which finally causes exponential (27) successively into Eq(22) and then into Eq(14), we
damping for T/m—0, becomes equal to 1 after the obtain the dominant terms of ord@f and T® of the two-
u-integration at the lower bound at=0. loop effective QED Lagrangian at low temperature; particu-
At this stage, it is important to observe that the larly for the T-term, different useful representations can be
u-integration appears only iI@ [via theAj-integration in Eq.  given:

T e T e fxds fl dv ., easebs (N,—Ny
== 5o T ) 05 )12 sineassinhebs 24 p?

aT T4(]-‘+£)J°Cds 1 e R 1—eascoteas+ ) 1—ebscothebs 29
=—— — e ebscothebs————— +eascoteas————————

45 0 S a’+b? sirfeas sinffebs
——2T4(]-'+S) ;(azwz) 1 fxd—s e mSeascoteas ebsothebs (30)
45 a2+b2 ¢ P gx? Jo '

The term proportional td® reads
£2T) o= G TO (F21 G2 3( Tt £)2 jmds fl dv e '™ easebs N,—N,) A 31

o= = —gz5 T FHGT3(F+E)) 0S J 12 a2+4p? sineassinhebs 12~ NU Az, 3D

whereN; and A, are functions of the integration variables linearly in the T*-term and quadratic in th&°-term. The
and the invariants andb (not of £), and are defined in Eqs. small-T expansion thus corresponds to a sngaéxpansion.
(A16) and (A22). The v-integration can be performed ana-  (3) The fact that only the integrdl} with the prefactor
lytically, but the extensive result does not provide for new(N,—N;) contributes to the low-temperature Lagrangian in
insights; hence we do not bother to write it down. Eq. (14) implies that only the spatially transversal modés
These equations represent the central result of the preseandI1, of the polarization tensofA15) play a role in this
work; therefore, a few of their properties should be stressedhermalized virtual two-loop process. The time-like or longi-
(1) While we worked explicitly in the low-temperature tudinal modell, (depending on the character lof) might
approximationT<m, we put no restrictions on the strength become important at higher values of temperature.
of the electromagnetic fields. (4) The fact that the invarianf always appears in the
(2) The low-temperature Lagrangians contain arbitrarycombinationF+ £ ensures a kind of dual invariance of the
powers of the invarianta andb (equivalently7 andg), but  Lagrangian. Under the replaceméit-B and B— —E, the
the additional invariant at finite temperatufeonly appears invariants change int-— — F, G——G and£—&+2F, so
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that £+ £ remains invariant. where O(3) signals that we omitted terms of third order in
(5) The T4-term of £27 as exhibited in Eq(30) possesses the field invariantg(sixth order in the field strengthNote
the peculiarity of being derivable from the one-loop zero-that no linear term in the field invariants to ordEt exists.
temperature Lagrangian which we marked by square brackFor the terms of quadratic order, tfié-term is subdominant
ets in Eq.(30) after the derivative terms. This will be eluci- for T/m=0.05, and amounts up to a 10%-correction to the
dated a bit further in the following section. T4-term for T/m~0.1. For even larger values of tempera-
(6) The entire thermal contribution to the effective action ture, we expect the failure of the low-temperature approxi-
is finite. This reflects the well-known fact that the counter-mation.
terms which are necessary and sufficient in order to renor- Finally, we considerC 2|14 in the limit of purely mag-
malize the zero-temperature effective action are also necegetic background fieldsb—0, a—B, F+ £—1B% The
sary and sufficient for the finite-temperature action. EvenT*-term in Eq.(29) then reduces to
more conveniently, we were able to separate the zero-
temperature from the thermal parts, implicitly assuming that
the renormalization of the zero-temperature parts is per-
formed without any reference to the finite-temperature sys-
tem. As a consequence, we are dealing with the same renor-
malization point as at zero temperature which is naturally
given by the zero-temperature electron mass. At finite-
temperature, this does not have to be and indeed is not iden-

tical to the physical electron mass which undergoes furthe\‘vhere we have performed the sqbs_tltutﬂmsz —lz1n con-
cordance with the causal prescriptiof—m?2—ie. Inciden-

renormalization by finite-temperature effects. E.g., from atally, the limit of purely electric fields can simply be ob-

one-loop calculation of the mass operator one fingfg : ) - o
=m?+ (2/3)anT? for T<m [22]. Therefore, the above- 'Ea_lnle)d by replacings— —iE and multiplying Eq.(34) by

given thermal effective action must be viewed as “off-shell Introducing the critical field strengtB,:=m?/e, we can

renormalized. Nevertheless, since the physics is independent : : . 5 -
of the renormalization point, we can work with the zero- evaluate the integral in E¢34) analytically| 15" and obtain:

temperature as well as the physical electron Magse “off- B2 1 B
cr cr
287 5) ‘”( o)

2T _am 4fwd_z —(m%/eB)z
LTB)i=gy T*| e

l1-zcothz 1

+ —zcothz

TR R

shell,” i.e., zero-temperature renormalization is, of course, CZT(B)ITF C”'r-|-4

more transparent, since all temperature dependence is explic- 90
itly displayed, which would otherwise be partly hidden in the
physical electron mass. 2B, B 3B§r B

For the remainder of this section, we will discuss certain B (ﬁ) g2 2B
limiting cases of the two-loop low-temperature Lagrangian.
First, let us concentrate on a weak-field expansion which B 1 B B
corresponds to a smadl-expansion of the proper-time inte- + = In2m+ —+47'| - 1,—”) + ==,
gral due to the exponential mass factor. Expanding the inte- B 6 2B/ 3B
grands for small values of (except the mass factoand (35)
integrating overv ands, leads us to the dominant terms in
the weak-field limit: where #(x) denotes the logarithmic derivative of the

I'-function, and{’ (s,q) is the first derivative of the Hurwitz
Z-function with respect to its first argument.
L2 4= —(F+8) For strong magnetic field8>B,, the last term in square
2025 m? brackets in Eq(35) dominates the whole expression, and we
find a linear increase of the effective Lagrangian:

2% 3723w T4 A(F+€)

+0(3), (32

©3*x52x7 m* m* 2T Rs _om_,¢B
L7 (B>Bo)lri= 570 T —. (36)
o 2%atw T , 1 This contribution remains subdominant compared to the one
£ |T6_36><5><72 ﬁ(z}- +BEFH3ET-G )ﬁ arising from pure vacuum polarizatienB2In(eB/n?), which

is not astonishing, since the magnetizatior(ref) thermal-
+0(3), (33 ized plasma particles is bounded: the spins can maximally be
completely aligned. In contrast, the non-linearities of

“In the case of an “on-shell” renormalization, firsh has to be
replaced bymg,,s, and, secondly, we obtain an additional term SWe take the opportunity to remark that there is a misprint in the
—(2/3)anT3(9L£ Y om?) from the mass renormalization at one- corresponding integration result [i5]; the term ¢ 1/3) has to be
loop order. replaced by ¢ 1/6) [cf. Eq. (35)].
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vacuum polarization set no such upper bound. QuantitaNote that there is n@®-term, sincel 2"|;s is at least qua-
tively, the same result was found for the thermal one-loopdratic in the field invariants. In E¢38), we rediscovered the
contribution[23]. well-known velocity shifts for light propagation in a thermal
background as found il2,14] via the two-loop polarization
Il. LIGHT PROPAGATION operator and 113,15 via considering vacuum expectation
values of field bilinears in a thermal background. The here-
As a first application, we study the propagation of planepresented rederivation within the effective action approach
light waves at finite temperature and in a magnetic backfrom first principles thus can be viewed as an independent
ground. The subject of light propagation has recently gaineéheck of our calculations and of the light cone condition as
renewed interest due to its accessibility to current experimergerived in[20].
tal facilities [24]. But we can go one step further and additionally take a
In the limit of light of low-frequencyw<m, the effective  weak external magnetic field into account; the light cone
action for slowly varying fields has proved useful for obtain- condition in this case readg0]
ing velocity shifts, i.e., refractive indices of QED vacua
which are modified by various external perturbations such as ) 5 )
fields and temperatur@5,15. In this limit of low frequen- = (9pL— dpL— FAGLIK*+ 5 5 (IFT I L2+ 29:L (Ku)7,
cies and smooth external perturbations, the terms involving (39)
derivatives of the fields in a derivative expansion of the ef-
fective action can be neglected, and the constant-field apyhereu” denotes the 4-velocity vector of the heat bath and
proximation is appropriate. z, is defined in Eq(3). The Lagrangian describing a thermal
The case of light propagation at finite temperature hafQED vacuum with weak magnetic background fields at finite
been investigated i[20] from a general viewpoint for a class temperature is given bf=—F+ £+ £2T, where£?! de-
of Lagrangians depending on the invariaéts,G,T in an  notes the one-loop effective Lagrangian at zero temperature.
arbitrary way. Therein, a light cone condition representing éUp to the second order in the invariants, this famous
sum-rule for the polarization modes of the propagating lightHeisenberg-Euler Lagrangiaf?® is given by
has been derived; this has been exploited for a detailed in-
vestigation of light propagation at finite temperature to one- 8 a? 14 o?
loop order by an insertion of the thermal one-loop effective £l=4—5— F2+ BT G2 (40)
Lagrangian of QED. It has been emphasized that these one- m m
loop studies apply to a domain of intermediate values ofI
temperature~0.1<=T/m=<~1, where two-loop as well as
plasma effects remain subdominant.
The famous results for the low-temperature velocity shift

nserting all the relevant contributions t0 into the light
cone condition Eq(39), the light velocity to lowest order in
the parameterd andB finally yields

Sv~T4m* [12—14 could not have been rediscovered by 2 4

I S I 2a 44 T
this first-principle investigation, because the thermal two- _1———82 ifog—2-—— 772_
loop effective action was not at hand. In the present work, 45m 2025"
we intend to fill this last gap. 5 .

Let us first consider the situation of a thermalized QED L 22 22 o? 2°X 37 0”73T_ B2(1+ Sir?dy)
vacuum without an additional background field. In the low- 454\ 325X 7x 11 m? B
temperature domain, this vacuum is then characterized by the

LagrangianC= — F+ £ 27, where— F represents the classi- (41
cal Maxwell term. Following the lines 420], the phase and

group velocitys of a propagating plane wave is then given where g denotes the angle between the propagation direc-

tion and the magnetic fieletf. Eq.(3)]. The second and third

by term are the well-known velocity shifts for purely magnetic
1 [26,27] and purely thermal vacyaf. Eq.(38)], respectively.
02: , (370  The last term describes a non-trivial interplay between these
29¢L two vacuum modifications. The latter can best be elucidated
( L+ deL) in the various limits of the anglég; for orthogonal propa-

) gation to the magnetic fieldg= 7/2, we get
wherev =k%|k| is constructed from the wave vector of the

propagating light, and it is understood that the partial deriva- 44 T4 2242 4
tives of £ are evaluated in the zero-field limit. Inserting Egs. v?=1 Zﬁa’zﬂz - 4—5—482 1-(0.15..)—|.
(32) and(33) into Eq.(37), leads us to m m

4
2_ 1 —~1— 44 w22 T—+(’)(T8/m8) For parallel propagation to the magnetic fiélg= 0, we find

44 T4 25025"

1+ 2———a’m’— 44 T4 2
2025% 7 @ 2. 2 2, eB
39 vo=1 22025a T m4(1 (0.96.. .)( 2] | (43
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Since T/m and eB/m? are considered to be small in each gation of the intermediate-temperature domain to two-loop
case, the corrections to the pure effects in the mixed situatiohas been correctly modeled with the heuristic approach in
are comparably small. Note that the mixed thermal and mag-15], cannot be judged within the present work. Note, how-
netic corrections always diminish the values for the velocityever, that the intermediate-temperature domain is controlled
shift of the pure magnetic or thermal situations. Let us finallyby one-loop effects, leading to a maximum velocity shift of
remind the reader that the here-given velocities hold for low— 6vZ,.,= a/37 [20]. As has been shown therein, theo-
frequency light p<m) only, and represent averages overloop dominances lost for T/m=0.058.
the two possible polarization modes. While for the purely
therm.al case t.he po_larization modes cannpt bg distinguished, IV. PHOTON SPLITTING
the situation involving an electromagnetic field generally
leads to birefringence due to the existence of a preferred Photon splitting in magnetic fields at zero temperature has
direction of the field lines. been discussed comprehensively by Ad@8], stressing its
Let us finally comment on the earlier work&3,15 re-  relevance for the photon physics of compact astrophysical
lated to the issue of light propagation in a thermal back-objects(see alsd28]). For the description of the splitting
ground. The philosophy therein was to calculate the velocityprocess for low-frequency photons with<m at weak mag-
shifts in a purely(weak electromagnetic background first, netic fieldseB/m?<1, the use of the one-loop effective La-
and then take thermal vacuum expectation values of the fielgrangian for weak fields is sufficient for obtaining a good
bilinears. Expressing this in formulas, we first recall the ex-estimate of the absorption coefficient for photon splitting. To
pression for the propagation-direction-averaged light veloche precise, the lowest order contribution to the splitting pro-
ity in a weak electromagnetic background frob]: cess comes from the terms of third order in the invariants
(sixth order in the field strengthof £1, i.e., the hexagon
graph with one incoming, two outgoing photons and three
couplings to the external magnetic field. Neglecting disper-
sion effects, the box graph vanishes becausg btiepend-
where T%=3(E*+B?) denotes the 00-component of the ing on F and¢ only, and because of the Lorentz kinematics
energy-momentum tensor, i.e., energy density of the electrayf the photon$.
magnetic field. In the weak-field limit,é¢+J7) £ is field The question of thermally induced photon splitting has
independent: 2(a?m?*) [cf. Eq. (40)]; therefore, taking recently been investigated by Elmfors and Skagerdthdh
thermal vacuum expectation values of the field quantities invith the aid of the thermal one-loop effective QED Lagrang-
Eq. (44) is simply equivalent to replacing® by (T%)T  ian; their studies were motivated by the fact that a vacuum

= (7?/15)T*. This then leads to the correct result as given inmay be a bad approximation for the surroundings of some
Eq. (39). astrophysical compact objects, while a thermalized environ-
From the viewpoint of the present work, the correctnesgnent at zero or finite density might be more appropriate. It
of the approach wlsila arises from the Specia' form of the turned out that, at temperatures and magneFiC fleldS at the
low-temperature two-loop Lagrangiai?T|4 as given in Eq.  Scale of the electron mass, the thermal contribution can ex-
(30). Since ceed the zero-temperature one, but these effects then are su-
perimposed by Compton scattering of the photons with the
1 plasma. In realistic situations, the thermally induced process
———(05+ dp) =05+ 35, (45)  will thus be of subdominant importance.
a‘+b In the following, we intend to complete these results
about thermally induced photon splitting with the dominant
low-temperature contributions stemming from the two-loop
2 1 process. Hereby, we also concentrate on the splitting process
9L ?T|a= §<T°°)T§(a§r+ aB Lt (46)  (L—]l1+]l»), where a photon, with its electric field vector
orthogonal () to the plane spanned by the external mag-
netic field and the propagation direction, splits into two pho-
tons with their electric field vectors within|) that plane’
This is the only allowed process when dispersion effects are
taken into account.
As pointed out in10], the box-graph no longer vanishes
) 2, ot at finite temperature, since the Lagrangian now involves an
vi=1-2dL=1=Z(dF+ IGL(TOT, (47)  additional invariant. Hence, the lowest-order contribution to

2
v2=1- §(a§+ 93 L T, (44

Eq. (30) can also be written as

Incidentally, Eq.(46) holds for arbitrary field strength, but,
in this line of argument, it is required for weak fields only.
Inserting Eq.(46) into the correct light cone condition at
finite temperature, i.e., E¢37), we obtain to lowest order

which is equal to the heuristically deduced light cone condi-

tion for a thermal QED vacuurfi3,15. ®Taking dispersion effects into account, the box graph still is only
Note that the combined low-temperature—weak-field ef-an ordera correction to the hexagon graph.

fects as given in Eq$41)—(43) could not have been found in  "Note that Adler’s definition for thd, L -mode rely on the direc-

[15], since the invariant structure is not completely takention of the magnetic field vector of the photon and thus are opposite

into account in the heuristic approach. Whether the investito ours.
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the photon-splitting matrix element is already produced by 265370373 [ T\ 4
the terms of quadratic order in the invariants in H@2) and il ?T=| - ————— —)
(33). 3*x52x7 \m
Without going into details, we recall that the splitting am- 14 3.5 6
i ; i ; 2% 7 [T 1
plitude is obtained by attaching the external photon legs to L 2" _) - (53)
the fermion loop, i.e., differentiating the effective action 35x5x72\m) |m?’

(which is represented by the lopfhrice with respect to the

fields and then contracting the result with the field strengthsvhere we made use of the results [df0] for the low-

of the involved photons. Hereby, one has to take into accourtemperature—weak-field approximation of the one-loop La-
that the effective Lagrangian now depends on three field ingrangianZ '™, and employed Eq$32) and(33) for the two-
variants:£, F, andG. The thermal amplitude arising from loop one. Obviously, inserting the two-loop terms from Eq.

the box-graph finally yields (593 into Eg. (50) leads to a power-law dependence of the
absorption coefficient~T8/mé, while the one-loop terms
M(L =1 +]2) =2ww 0, B sin g dexL, (48) from Eg. (52) imply an exponential mass damping

exp(—2m/T) for T—0.

As mentioned above, photons of frequencies below the
pair-production threshold are not only exposed to splitting at
finite temperature, but can also scatter directly with the

asma of electrons and positrons. Followifid], the ab-
sorption coefficient for the Compton process is given by

wherew,w,,w, denote the frequencies of the incoming and
the two outgoing photons, respectively, afigl again repre-
sents the angle between the propagation direction and t
magnetic field. From the splitting amplitude, we obtain the
absorption coefficienk via the formula
K oc 2 (- 2
. S i pp— (54)

! ¢ 2 el T ’
f dwlf dw, S(w—w;—wy) M2 (49) m mgz2Jo evelT+1
0 0

K:

327 w?
wherew,, denotes the fermion energy,= \/p>+m?, and the
cross sectionr for unpolarized photons ab/m=1 is ap-

Inserting Eq(498) for the thermal splitting amplitude into Eq. proximately given by

(49) leads us to

4o’
5 -

(59

3 1 eB oc=
m2

K 2 w 5

—=———"— | —| sirfg (—) derL)2mB. (50 3m
M 2% 3x5n2 ) B| | (derL) (50)

Although w/m=1 formally represents the maximal limit of
validity of our constant-field approximation for the effective

action, we will continue to consider photons of that fre-

photon-splitting absorption coefficient for low-frequency . . . e
o ency in the following, since, on the one hand, this circum-
photons. The appearance of the magnetic field to the secon . : .
vents a suppression of the absorption coefficients by the

power is directly related to the fact that the box-graph exhib- 5 .
its only one coupling to the external field. In contrast, common factor &/m)°, and on the other hand, it has been

Adler’s result for the absorption coefficient at zero tempera-ShOWn for the hexagon graph 6] that the difference be-

ture arising from the hexagon graph re4gs| ;[/\\,/\:ee;knr(r‘w)g;n:eftlié gg%g;/mva—calculatlons is negligible for

5 Finally, we have to consider another scattering process
eB)” (o ° which arises from the presence of a heat bath: photon-photon
—| sinfs| (3D scattering between the propagating photon and the black-

body radiation of the thermal background. We estimate the

) o absorption coefficient for this process by
Here, the three couplings to the external magnetic field pro-

duce aB®-dependence of the absorption coefficient. There- K
fore, any finite-temperature contribution will exceed the " m (56)
zero-temperature one for small enough magnetic fields; but,
?f course, the absorption coefficients may then become veryheren,, denotes the density of photons and is given by
iny.
In order to obtain the one-loop and two-loop absorption d3p 1 2((3)
n,=2 f ( =

Here, we encounter the typicalo(m)°-dependence of the

K10 13 o’

m  35%53%72 72

m

coefficients for thermally induced photon splitting at low
temperature, the derivatives of the corresponding Lagrangian
are required in Eq(50):

= T3, (57)
2m)3 e\/F/T_ 1 ?

Here we encounter the Riemannignfunction with (3)
T =1.202. The total polarization-averaged cross section for
(52) photon-photon scattering at low frequencies, as one obtains,
e.g., from the Heisenberg-Euler Lagrang[@9], reads

8a2/m\2 4ma?/m\3e
T 45
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(a): £ =02 %=1=sinfp (b): £=10"% £=1=sin0s
" FIG. 2. Absorption coefficienk in units of
107 10 7 the electron mass versus temperafliie units of
Ke ] A the electron mass. I(a), the various contribu-
ot e 10 ,,J’—’ 1 ti | d f | f lis-
,,,,,,,,,,,,, 7 ions are plotted for parameter values of a realis
e e K wm | S / tic astrophysical system. Ifb), the parameters
Km e 10° [ e / are chosen in such a way that the two-loop domi-
107 777 K K / nance over the one-loop and the Compton pro-
o k" & 10 ,,’ | cess is revealed; the photon-photon scattering
/, T J T contribution cannot be overtaken in the low-
_ I . .
10 "005 . Ke/ temperature limit.
' X 0.1
Tim 0.001 0.01 Tim
6 In order to find a domain in which the two-loop splitting

, (58 wins out over the zero-temperature process, we have to look
at smaller values of the magnetic field strength; e.g., at val-
ues of temperaturd/m=0.025, the two-loop process ex-

973 o? o? (wCM
m

T 10125 7 m2

where wcy denotes the frequency of both photons in the 5 4
center-of-mass frame. In order to determing,,, we first ceeds the zero-temperafure gne feB/m"<2.1x10°"

have to find the mean frequency at temperalurAveraging Since these are more moderate field strengths, the absorption
over the thermal probability distribution for the photons, wecoeff";'f”t n%turally becomes very  small:x/m

find the mean valuer=[ 7*/30{(3)]T=2.701. According ~ ~10 ™"...10 ™ Hence, in order to be able to measure the
to relativistic kinematics, the average value for the CM-SPplitting rate, the extension of the magnetic field in which the
frequency wey IS given by wey= Vow2=1.16\Two, photon propagates must be comparable to galactic scales.
where we averaged over the propagation direction of the Finally, we have plotted the Compton and photon-photon
thermal photons. Putting everything together, we obtain fo@bsorption coefficientssc and «,,,, and the two-loop coef-

the absorption coefficient for photon-photon scattering withficient «*T for a weak magnetic fielé B/m?=10"* at T/m

the thermal background =0.00L...0.1 inFig. 2(b). Obviously, the Compton process
loses its dominant role foF/m=0.03; below, the absorption
Kyy — 1X139 d 4< T)G( w)3 coefficient is ruled by the photon-photon scattering as long
m  25%37x56 g(3)20‘ m/ \'m as the temperature does not become so small that only the
zero-temperature amplitude remains. As is also made visible
TV @) in Fig. 2(b), the two-loop contribution does not exceed the
=5.21x10 m/ \m/ - (59) photon-photon process, due to the weaker temperature de-

pendence of the latter. Hence, we may summarize that the

Since the average frequency of the heat-bath photons is prghoton absorption coefficient in the low-temperature domain
portional to the temperature, this formula becomes invalids either dominated by the zero-temperature contribution for
for T~m and above, because we employed the low-strong magnetic fields or by the photon-photon scattering
frequency cross section in E(p6). with the thermal background for weak fields. So the two-

It is already clear from a qualitative viewpoint that there loop contribution always belongs to the top flight but is
must be a domain where the two-loop splitting process ahever ranked first.
least exceeds the one-loop and the Compton contributions In order to account for realistic astrophysical systems, it is
due to the power-law dependence on the temperature. Biabmpulsory to include a finite chemical potential. First esti-
since k*T~(T/m)® and «.,,~(T/m)®, the two-loop contri- mates can be found ifL0] to one-loop order, where signals
bution will eventually be surpassed by the photon-photorhave been found that a finite chemical potentialgofm
scattering forT—0. may induce an increase of the thermal splitting amplitude at

However, quantitative results can only be revealed by nulow temperatures. In order to settle this question properly,
merical studies. In fact, as shown in FigaR the two-loop the present paper shows that an investigation of these sys-
contribution is completely irrelevant for parameter valuestems should take the two-loop contributions into account.
which may be appropriate for a neutron star system andfirst progress in this direction has been achievef30j in
which are close to the upper bound of validity of our ap-which a two-loop calculation with an external magnetic field
proximation: eB/m?=0.2, w/m=1, sindy=1, and T/m at finite density has been performed.
=0.05..0.1. Even the one-loop contribution is small com-  Let us conclude this section with the remark that in order
pared to the zero-temperature result; but all are negligibléo obtain the sum of the zero-temperature and the thermal
compared to the Compton process. contributions to the photon splitting absorption coefficient,

Concentrating on the relative strengths of the thermathe amplitudes must be summed up coherently, since the
splitting processes, the one-loop contribution loses its majofinal states of the processes coincide, and the thermal
role for T/m=0.041, where its exponential decrease is survacuum with a constant background field does not provide
passed by the two-loop power law. for a mechanism of decoherence. While the zero-temperature
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amplitude as well as the thermal one-loop amplitude aresionless ratio between the electric field and the critical field
strictly positive, theT*-term in Eq.(53) contributes with a  strengthE:=m?/e. Integrating the 1/sirflz-term by parts
negative sign. Hence, an exceptional curve in the parametéeads us to

space ofeB/m? and T/m exists where the thermal two-loop

amplitude interferes with the thermal one-loop and zero- 1 1
temperature amplitudes destructively so that photon splittingZ 2T(E)| 4= — —T4I|m {—2 tot+—
vanishes. 90 ol2¢? 2 49
V. PAIR PRODUCTION +[Cazeien| 2o L2 coms
: € 3 nz 22 27]
Thermally induced pair production in electric fields has (61)

been searched for at the one-loop level for a long time
[5,6,17—19 with extremely contrary results. In our opinion,
the final concordant judgement in the real-time formalism
[7], the functional Schidinger approachl7], as well as the
imaginary-time formalisnj9] is that there is no imaginary
part in the thermal contribution to the effective action to one
loop, implying the absence of thermally induced pair produc-
tion to this order of calculation. As already mentioned in the
Introduction, draw'lng cor.1clu5|ons.from an imaginary part Ofcothz—term on the imaginary axis at=+inm, n=1.2, .. .
the thermal effective action to pair production is not as im- Decomposing the exponential function into edsin, it
mediate and straightforward as at zero-temperature, since the
presence of an electric pair-producing field and the thermalfecomes obvious that the imaginary parts of the integrand
are even functions i, while the real parts are odd. Thus,

equilibrium assumption which is inherent to our approachextendln the intearation interval fromes o « exactly can-
contradict each other. g g y

In the following, we simply assume that on the one handcels the real parts and simply doubles the imaginary parts.

Here, it should be pointed out that the isolated pole in the
first term of the curly brackets does not signal a divergence,
but simply cancels the pole at the lower bound of the inte-
gral; the whole expression is still finite. Our aim is to evalu-
ate the imaginary part of Eq61); for this, the behavior of
the integral at the lower bound is of no interest. An imagi-
nary part ImC2T(E)|;s arises from the poles of the

the time scale of pair production is much shorter than the We finally get

time scale of the depletion of the electric field so that dy- 4

namical back-reactions can be neglectids assumption is Im £2T(E)|qa=— ﬂT_ dze i(2/ )
familiar from the zero-temperature Schwinger formulan T 90 2i

the other hand, we also assume that the state of the plasma is

appropriately approximated by a thermal equilibrium al- 1 i 1 1

though it is exposed to an electric field. Whether the assump- X 3 E - ; + F cothz. (62)

tion on thermal equilibrium is justified in concrete experi- g

mental situations such as, e.g., heavy ion collisions, is still

under discussion. Now we can close the contour in the lower complex half
Recently, pair production has been studied with the aid Oplane Wh'Ch Is in agreement with the causal prescription

a quantum kinetic equatiotiincluding non-homogeneous m?—m?—ie. The value of the integral is then simply given

electric field configurations, back-reactions, and collisipns PY the sum of the residues of the catholes atz=—imn,

revealing the non-Markovian character of the creation pron=1.2,... .Hence, we arrive at
cesq31]. In these works, the Schwinger formula is rediscov-
ered in the low-density limit for constant fields. We expect
that our results hold in the same limit at finite temperature. Im L2T(E)|ye= 90 T4E e "
Let us now turn to the computation of the imaginary part
of the two-loop thermal effective action for external electric 1 1 1 1
fields. For this, we concentrate on tié-contribution as X|gt—"+ S+ —|
given in Eq.(29). For purely electric fieldsa—0, b—E, 8 nmn n’m? 2y
E+ F—1E?, this reads
eE 63
*dz . , =2
£2T(E)|T4—_%T4 ?efl(m leE)z m
which represents our final result for the imaginary part of the
% Ezcothz+ 1-zcothz (60) thermal effective QED action at low temperature, and should
3 sinktz | be read side by side with Schwinger’s one-loop result:
i . . m4 *° e—r‘I7T/77
where we substituted=eEs For reasons of convenience, it ImLYE)= — 2>, ) (64)
is useful to abbreviatey:=e E/m?, which denotes the dimen- 873 " n=1 n?
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The sum in Eqs(63) and (64) can be carried out analyti- Nevertheless, in the limit of weak electric fields, thermal
cally; but here, it should be sufficient to consider the limiting effects can increase the pair-production probabifty: 1
cases of weak and strong electric fields. —exp(—2 Im L(E)) significantly, as was shown in E(6).

In the weak-field limit, i.e., for small values of, the sum  Of course, for these values of, the total imaginary part is
overn in Eq. (63) is dominated by the first term=1. Fur-  yery small due to the inverse power gfin the exponential.
thermore, it is the last term which is the most important one  gjnce we did not consider thermalized fermions, our ap-
in parentheses. These considerations then lead us to proach is not capable of describing high-temperature pair
production, which would be desirable for forthcoming
heavy-ion collision experiments. However, as can be read off
from our results for light propagation and photon splitting,
extrapolating the power-law behavior to higher temperature
Combining this with the weak-field approximation of Eq. scales ofT~m or evenT/m>1 overestimates a possible
(64), we get roughly for the total imaginary part of the ef- two-loop contribution by far, since, for these values of tem-
fective Lagrangian perature, the one-loop contribution can be expected to be the
dominant one. The latter increases at most logarithmically
with T.

Therefore, it is reasonable to assume that the pair-
production probability also increases at most logarithmically

2 e w7y

TaEem?)w 27 4
ImL< (eE<m?)= 180T 2 . (65)

Im £(eE 9 4wy 772 am® 1 T4
m L(eE<m?®)=m"¢e ﬁ—’—ﬁ?ﬁ

T4 mé with T. In view of these considerations, a power-law growth

~mte ™7 4x10 352+ 4x 104 ) as suggested i116,18,19 does not appear plausible. Of
7? course, in order to decide this question, the two-loop calcu-
66) lation has to be carried out for arbitrary values of tempera-

ture.

E.g., for T/m=0.1, where the present low-temperature ap-
proximation should still be appropriate, the thermal contribu-
tion can be neglected fay=0.1; both contributions become VI. DISCUSSION
roughly equal for»=0.056 (and T/m=0.1). For weaker
fields andT/m=0.1, the thermal contribution even becomes
the dominant one.

In the opposite limit, wherg;>1, i.e., for strong electric
fields beyond the critical field strength, the 1/3 in parenthese
dominates the expression in E§3), which then gives

In the present work, we calculated the thermal two-loop
contribution to the effective QED action for arbitrary con-
stant electromagnetic fields in the low-temperature limit,
T/m<1. Contrary to the usual loop hierarchy in a perturba-
tion theory with small coupling, the thermal two-loop part is
found to be dominating over the thermal one-loop part in the
low-temperature limit, since the former exhibits a power-law

2 oo
am o . . .
Im £2T (e E>m?) = T4 e mlmn behavior inT/m, while the latter is _exponenually sgppre_ssc_ed
( ) 270 ngl ( ) by factors of exp{-nV/T). The physical reason behind this is
that the one-loop approximation does not involve virtual
am? T4 e ™ XM 4 +O(50) photons, which, due to their being massless, can be more
= =591 7t 0(77).

easily excited at low temperatures than massive fermions;
thus, the one-loop approximation should be rated as an in-
(67) consistent truncation of finite-temperature QED Tomuch
) i . below the electron mass.
Together with the strong-field approximation of the e power-law dependence of the thermal effective action

270 1—g @7 270

Schwinger formula, this gives to two loop starting withT#/m* implies atwo-loop domi-
. nancein the low-energy domain of thermal QED, which
o2y | M am T holds roughly up téT/m=0.05.
Im L(eE>m")=m" 7 48 +270 m# For the subject of light propagation at finite temperature,

this two-loop dominance has been known for some time
T4 from studies of the polarization tengdr2,14]. Moreover, for
=m’ 7| 6.6<10 °»+8.5x10°—|. the subject of QED in a Casimir vacuum like the parallel-
m plate configuration, the two-loop dominance is very natural
(68)  and well known, since the fermions are not considered to be
subject to the periodic boundary conditions anyway. This
Since Eq.(68) is valid for »>1 and T/m<1, the low- gives rise to a non-trivial check of our results, since Casimir
temperature contribution to I®(E) can be neglected for and finite-temperature calculations highly resemble each
strong electric fields. Similarly to the case of strong magnetiother. Replacing, as usudl, by 1/(2a) in Eq. (65) for the
fields, we find that the non-linearities of pufgeroT) weak-field limit of the imaginary part of the effective La-
vacuum polarization exceed the polarizability of the ther-grangian, wherea denotes the separation of the Casimir
mally induced real plasma by far in the strong field limit.  plates, we obtain

085021-13



HOLGER GIES PHYSICAL REVIEW D 61 085021

me? 1 2

285 45 a4

m
eE

2
Im L2(E)|y-4= ) e ""1°E,  (69)

k#

which agrees precisely with the findings [&2] for the Ca-
simir corrections to the Schwinger formifia.
In order to illustrate the two-loop dominance, we studied . . , i
. - P ! . FIG. 3. Diagrammatic representation of the one-loop polariza-
light propagation and photon Sp“tt.mg in a weak magnEt_ICtion tensor. The fermionic double line represents the coupling to all
background at low temperature. Since we are dealing W'ﬂ%rders to the external electromagnetic field
the two-loop level, the here-considered effects are naturally '
very tiny and aIS|gn|f|cant |anue_nce on, e.g., photon phys'c%ﬁroach is based on the findings of Urrud], who solved
near astrophysical compact objects appears not very Probe problem for the special case of parallel electric and mag-
able. One should rather take a closer look at photon phy5|c|§etic fields
on large galactic scales. : . Assume that the { E)-field and theB field point along
Furthermore, we calculated the imaginary part of the thery, o 3 ayis 4.vectors like the external moment(oh Fig. 3
mal two-loop effective action for electric background fields can then be decomposed into
at low temperature. Under mild assumptions, this result can
be related to a thermally induced production probability of ki =K+ k& er:(ko 0,0k%), KkE=(0k%K20).
electron-positron pairs. Especially in the weak-field limit, the ! r R T e (A1)
thermal contribution has a significant influence on the pro-
duction rate. Since no thermal one-loop imaginary part exin the same manner, tensors can be decomposed,gélg.,

ists, any finite two-loop result automatically dominates at— gf"+g#". With respect to each subspace, we easily find

any temperature scale. the unique orthogonal vector to a given one:
For the subjects of light propagation and photon splitting,
the loop hierarchy is restored aboVém=0.05. Already at Pf=(k3,0,0k°), K4=(0k?,—Kk,0). (A2)

this comparably low value of temperature, the thermal exci-
tation of the fermions begins to compete with that of theFollowing Urrutia[21], the polarization tensor for the special
virtual photon. Hence, a calculation of the two-loop thermalfield configuration can be written as
Lagrangian at intermediate or high temperatures would ap-

pear as an imposition, were it not for the high-temperature a (=ds (1 dv _ z7
pair-production probability which is beyond the range of thell*"(k|A) = 7 Jo Y j 17‘ e 's% <

one-loop approximation and of great interest for, e.g., heavy- zsinte’

ion collisions. X[(g“”kz—k”kV)NovL(gﬁ’“”kf—kn’“k"")Nl
ACKNOWLEDGMENTS +(gh"K2 =ik} )N, — (kik+ K] N3]
| would like to thank Professor W. Dittrich for helpful
discussions and for carefully reading the manuscript. | am +c.t.]. (A3)
also grateful to Dr. R. Shaisultanov for valuable comments
and especially for drawing my attention to photon-photon ) o )
scattering. The electric and magnetic field strengthsB are contained
in the variablesz:=eBsandz’':=eEs The exponenip, is
APPENDIX A: ONE-LOOP POLARIZATION TENSOR given by
While the polarization tensor in an external magnetic field 5 kf coshz’' —coshvz’  k? cosvz—cosz
has been considered by many authdas comprehensive $o:=m > "sinhg’ +7 Zsinz
study can, e.g., be found if84]), a generalization to arbi- Z sinhz (Ad)

trary constant electromagnetic fields in a straightforward

manner is associated with a substantial increase in calculat-he functionsN: read?®

tional difficulties. The problem was first solved by Batalin '

and Shabai35]; their extensive result was later brought into No=coshwz’ cosvz—sinhvz’ sinvz cotz cotrz’,
a practical form by Artimovich[36]. In the following, we

will briefly sketch a simpler derivation of the polarization coshz’ — coshyz’

tensor in arbitrary constant electromagnetic fields; our ap-  N,=2 cosz = ~No =:N;—Ng,
sinhrz’

8Actually, Eq.(69) agrees with the findings dB2] except for a
global sign; however, as was pointed out by one of the authors in a°This formula has been misprinted in Rg21].
footnote of[33], the expression if32] is wrong by a minus sign, 10N, differs from Urrutia’s findings by a minus sign, since he
which saves the day. considergarallel E- and B-fields.
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2k2

COSVzZ— COSz - ) a’k?—z,
N,=2 COSI’E’T_NO =:Ny,—Np, UH:Ur\JlU”M:_W’
(A5)
2 _b2k2+zk B
1—cosz cosvz coshvz’ coshz’ —1 P IT vfe,=0- (AL

N3: -

sinz sinhz’
Finally introducing the projectors

1

2
Z Lo | &
aCa (k‘) ]

+sinvzsinhvz’,

_ PAY.=
where we have incidentally defined the functiadNg, for 0 )
later use. The determination of the contact term corresponds k
to a charge and field strength renormalization and yields

C.t=—e IMS(1— p2)(gh k23— kHK?). (AB) x

Z, Z
F2K+ —kk“> ( sz”+—"k“>,
K2 2

Now, one can shoW37] that the Lorentz invariant form

of the polarization tensor for arbitrary constant electromag- vfvf vho?l
netic fields can be completely reconstructed from the special P =5, PLM=—5—, (A12)
form given above for anti-parallel electric and magnetic o U1

fields. This is achieved by, first, a one-to-one mapping be- . ) ) T
tween Urrutia’s scalar variable{(,k? ,E,B) and a set of Wh'ChM Sit'Sfy the usual projector identitieBy , =Py, ,
invariants which reduce to Urrutia’s variables in the specialPol..” »=1, we can establish the one-to-one mapping:

system: , o )
—vf o= (gf ki k),
a—B, b ——E,
vl vl — (9K —Kik]),
z——E%Kf+BK?,  kP—kf+k? . (A7) o
Q*"=vi v +uf v] — (KK +Kfk]), (A13)
The inverse map is obtained by a simple calculation; the
non-trivial relations are K[ P&+ P+ P#"]— (g*"k?®—k#K").
, ak’-z , btz In the third line, we have defined the obje@t”, which is
Ki— 22 T e (A8)  neither a projector nor orthogonal to tRé¢"’s but orthogo-
nal to P5”.

Secondly, the reconstruction requires a one-to-one mapping e are finally in a position to transform the polarization
between Urrutia’s tensor structures in B43) and Lorentz tensor for the parallel field configuration into its generalized
covariant tensors which reduce to Urrutia’s in the speciaf®m for arbitrary constant electromagnetic fields:
system. For this, we need to introduce the following defini- v v ) v v
tions. First, we employ a set of four linearly independent ~ 11*"(K|A)=1I1o Pg"+ 11 Pf"+I1, P+ 6 Q**,

4-vectors: (A14)
ki, FkU=FAok,,  FAKA=FAR kP, wherelly ; and® are functions of the invariants and read
*FkH="Frak, . (A9) I,
From these, we construct the 4-vectors: I, a (=ds Jl dv —is eas ebs
=~ - — e O+
~ I, 27 Jo S J-12 sineassinhebs
vf:= a*Fk#—b Fk*) — kf*,
i a2+b2( ) i (G}
~ k?No
vi= b*Fk*+aFk*) — ki, -
- a.2+ bZ( ) Novi_ N]_Uﬁ (A15)
(A10) Xq +c.t.|.
szf - Novﬁ
where the subscriptsand.L are to remind us of the meaning —Ns

of vj andv, in the special Lorentz systeftongitudinal and

transversal part ok). Incidentally, they obey the relations Substituting the invariants into EqgA4) and(A5), the func-
[cf. Eqg. (A8)] tions N; and ¢, yield
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, vf coshebs— coshvebs tion ¢ in terms of the \_/aria_blei{2 and z,. For this, we
$o=m"— > ebssinhebs insert Eq.(A10) into the first line of Eq.(A16); a reorgani-
zation yields

v? cosveas—coseas
2 eassineas

, e iShg — efimzs e A, zy e Ay kz, (AZO)

where we implicitly defined
No=coshvebscosveas

—sinhvebssinveascoteascothebs =3 ! COSVeaS.—COS€aS
22 a24p2 eassineas
~ coshebs—coshvebs
N;,=2coseas . , coshvebs—coshebs
sinifebs : ,
ebssinhebs
(A21)
~ cosveas—coseas
N,=2coshebs - , .
sirfeas A is 1 ,Cosveas—coseas
KT 2424 p2 eassineas
N 1—coseascosveas
8 sineas 2coshuebs—coshebs)
—a -
coshvebscoshebs—1 ebssinhebs
i (A22)
sinhebs
. . This provi with the required n ities for the two-
+sinveassinhvebs (A16) s provides us e required necessities for the two

loop calculation in Sec. II.

The scalarsvﬁl are given by certain combinations of the

invariants and can be found in EGA10). The contact term APPENDIX B: FINITE-TEMPERATURE COORDINATE

given in Eq.(A6) contributes equally to thél;'s, FRAME
im2si2 ) In order to make the paper self-contained, we briefly re-
c.t=—e M%K(1-v9), (A17)  view the construction of the finite-temperature coordinate
. . L - fram intr i nd then ly it to the presen

but does not modify the functio®, which is already finite. pi)bleer?ws oduced if9], and then apply it to the present

Note that Eq.(A14) almost appeari in a diagonalized First, we define theierbein €* which mediates between

e : - . ,
form exce.pt for the tern(fy) Q_ : V_Vh'le Po '”deef’ prOJects the given system labeled by, v, ...=0,1,2,3 and the de-
onto an eigenspace &f*” with eigenvaluelly, this is gen- o4 system labeled by thé orentz indices A,B, . ..
erally not the case for the projectoR¥’;, due to® Q. =0,1,2,3 by
Although a further diagonalization is straightforward, we
will not bother to write it down, since we only need the trace et =u*,
of IT#¥, which is simply given by
I, =T+ +11,, Q*,=0. (A18) L
1 = 1]
. &

In the actual two-loop calculation, the contact terms can be Ve
omitted for two reasons: first, it does not contribute to the 1
thermal part, since the latter is finite; secondly, for the zero- e, =—=(UF ,sFPL—Eegh),
temperature Lagrangian, a renormalization procedure is re- Jd
quired anyway and, in particular, the mass renormalization
would not be covered by an inclusion of the contact terms. es* =P eg, €150, (BY)

Inserting Eq.(A15) into Eq. (A18) brings us to the ex-

plicit representation of the trace: where the quantity abbreviates the combination of invari-

ants:

) —iS¢
N :if d_sfl dve ™  easebs di=2FE— G2+ £2. (B2)
“ 2w Jo s J-12 z24p2sineassinhebs

The vierbein satisfies the identity
X [2,(N,—N;) +k?(2Ng(a%+b?) + b?N, +a?N,)].

enu s =0gag=diag —1,1,1,, (B3)
(A19)

wheregag~g”® denotes the metric which raises and lowers
This is the desired expression which is required in @4).  capital indices. By a direct computation, we can transform
For reasons of convenience, it is useful to rewrite the functhe field strength tensors and the heat-bath vector:
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n*:=g"®eg# n,=(T,0,0,0,

0
— V¢
0
0

Fagi=€p,F""€g,=

PHYSICAL REVIEW D 61 085021

JE 0 0
0 Jdige 0

_@E o —aiE| (B4)
0 glJe 0O

Obviously, the new system corresponds to the heat-bath rest frame with the spatial axes oriented along the electromagnetic
field in some sense. The components of the field strength tensor are now given by combinations of the invariants.
In order to determine the form @ .=k F*“k,F",= —KAF ocFCgkB, we need the square of the field strength tensor:

) Jd 0
d
o ¢4 o N9
& &
Fae=FacF = 24d B5
Ae=FacFe=| & o _9 , 0 (B5)
2
0 _@ 0 _g_
& &
This allows us to writez, in the form
d dg G?
2= & (k%?—2\d K%K+ (2F+¢) (k?) %+ 5—5)(k1)2+2—€ ki + = (k%)% (B6)

wherek®,k*,k? k® represent the components of the rotated momentum vittee” k.
Now we can finally determine the desired form for the exponent in(Eg).in terms of finite-temperature coordinates:

Ad 2 (Acta®A)(A—Db?A,)
Az + Ak?=(A+(a2—b2+ A (kz— : 0) - : ~ (k)2
22t A= (At ( )A7) AL 2F+E)+A, A+ (a?—b?+E)A, 1
LY
a2b? g A+a?A,) (A—b2A
HAarg rad| e —gr—K o azzi,(z 2P ey, B7)
Az?‘FAk Ak g +Ak

where agairk® k*,k? k® represent the components Idf.
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