
PHYSICAL REVIEW D, VOLUME 61, 085021
QED effective action at finite temperature: Two-loop dominance

Holger Gies*
Institut für Theoretische Physik, Universita¨t Tübingen, 72076 Tu¨bingen, Germany

~Received 29 September 1999; published 27 March 2000!

We calculate the two-loop effective action of QED for arbitrary constant electromagnetic fields at finite
temperatureT in the limit of T much smaller than the electron mass. It is shown that in this regime the two-loop
contribution always exceeds the influence of the one-loop part due to the thermal excitation of the internal
photon. As an application, we study light propagation and photon splitting in the presence of a magnetic
background field at low temperature. We furthermore discover a thermally induced contribution to pair pro-
duction in electric fields.

PACS number~s!: 12.20.Ds, 11.10.Wx
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I. INTRODUCTION

In the low-energy sector of the theory, the effects of qu
tum electrodynamics can be summarized in an effective
tion, the Heisenberg-Euler action, which enlarges the cla
cal theory of electrodynamics by non-linear self-interactio
of the electromagnetic field. Technically speaking, this eff
tive action arises from integrating out the massive~high-
energy! degrees of freedom of electrons and positrons. T
program has successfully been carried out to two-loop o
@1–3#.

The inclusion of finite-temperature effects at the one-lo
level has also been considered in various papers@4–9#, and
the real-time@7# as well as the imaginary-time formalism@9#
finally arrived at congruent results.

This paper is devoted to an investigation of the therm
QED effective action at the two-loop level. But contrary
the zero-temperature case, where the two-loop contribu
only represents a 1%-correction to the one-loop effective
tion, we demonstrate that the thermal two-loop contribut
is of a qualitatively different kind than the thermal one-lo
part and exceeds the latter by far in the low-temperat
domain.

The simple physical reason for this is the following:
one loop, one takes only the massive electrons and posit
as virtual loop particles into account@cf. Fig. 1~a!#. Because
of the mass gap in the fermion spectrum, a heat bath
temperatures much below the electron massm can hardly
excite higher fermion states. Hence, one expects ther
one-loop effects to be suppressed by the electron mas
fact, in a low-temperature expansion of the thermal one-lo
effective action@10#, one finds that each term is accompani
by a factor of exp(2m/T), exhibiting an exponential dampin
for T→0.

On the other hand, the two-loop contribution to the th
mal effective action involves a virtual photon within the fe
mion loop@cf. Fig. 1~b!#. Since the photon is massless, a h
bath of arbitrarily low temperature can easily excite high
photon states, implying a comparably strong influence
thermal effects on the effective action. In Sec. II, we are a
to show that the dominant contribution to the thermal tw
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loop effective action in the low-temperature limit is propo
tional to T4/m4. This power-law behavior always wins ou
over the exponential damping of the one-loop case, lead
to a two-loop dominancein the low-temperature domain
One might ask whether this inversion of the loop hierarc
signals the failure of perturbation theory for finite
temperature QED. But, of course, this is not the case, s
the inclusion of a virtual photon does not ‘‘amplify’’ the
two-loop graph and higher ones. Rather, calculating the o
loop graph should only be rated as an inconsistent trunca
of the theory, since the one-loop approximation does
include all species of particles as virtual ones. Besides,
fective field theory techniques indicate that the three-lo
contribution is of the order ofT8/m8 @11# for T/m!1,
thereby obeying the usual loop hierarchy.

The present paper is organized as follows: In Sec. II,
present the calculation of the two-loop effective QED acti
at finite temperature employing the imaginary-time form
ism and concentrating on the low-temperature limit. The o
come will be valid for slowly varying external fields of ar
bitrary strength.

Section III is devoted to an investigation of light prop
gation at finite temperature. While, on the one hand,
well-known result for the velocity shiftdv;T4/m4 is redis-
covered@12–15#, we are also able to determine further co
tributions to the velocity shift arising from a non-trivial in
terplay between temperature and an additional magn
background field.

In Sec. IV, we study aspects of thermally induced pho
splitting. Therein, we point out that the thermal two-loo
contribution to the splitting process exceeds the ze
temperature and one-loop contributions in the lo

FIG. 1. Diagrammatic representation of the one-loop~a! and
two-loop ~b! contribution to the effective QED action. The ferm
onic double line represents the coupling to all orders to the exte
electromagnetic field.
©2000 The American Physical Society21-1
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HOLGER GIES PHYSICAL REVIEW D 61 085021
temperature and weak-field limit, but is negligible in com
parison to other thermally induced scattering processes.

Sections III and IV are mainly concerned with the limit
a weak magnetic background field and low-frequency p
tons (v!m), and therefore represent only a first glance
these extensive subjects. In fact, the quantitative results
this energy regime describe only tiny effects; a relevance
astrophysical topics such as pulsar physics has not been
tified up to now. However, the intention of the present wo
is a more categoric one, namely, to elucidate the mechan
for a violation of the usual loop hierarchy of perturbati
thermal field theories involving virtual massless particles

In Sec. V, we calculate the thermal contribution
Schwinger’s famous pair-production formula@16# for con-
stant electric background fields in the low-temperature lim
Here, a thermal one-loop contribution surprisingly does
exist @7,9#, since the thermal one-loop effective action
purely real by construction. Hence, the findings of Sec
prove the existence of thermally induced pair production
an effect which has been sought for 15 years@5,6,17–19#. In
the low-temperature limit, we find that the situation of
strong electric field is dominated by the zero-temperat
part ~Schwinger formula!, while the thermal contribution can
become dominant for a weak electric field. Unfortunate
the experimentally more interesting high-temperature li
cannot be covered by our approach.

One last word of caution: the inclusion of electric bac
ground fields in finite-temperature QED is always plagu
with the question of how violently this collides with assum
tions on thermal equilibrium. In fact, electric fields and the
mal equilibrium exclude each other, thus questioning
physical meaning of the results of Sec. V at least quant
tively. However, it is reasonable to assume the existenc
an at least small window of parameters in the lo
temperature and weak-field domain for which the therm
equilibrium calculation represents a good approximati
Moreover, the knowledge of the effective Lagrangian inclu
ing a full dependence on all possible field configurations
mandatory to derive equations of motion for the fields, ev
in the limit of vanishing electric fields.

II. TWO-LOOP EFFECTIVE ACTION OF QED
AT LOW TEMPERATURE

In the following, we will outline the calculation of the
two-loop effective action, concentrating on the low
temperature limit where atwo-loop dominanceis expected.
The calculation is necessarily very technical, wherefore so
details are left for the Appendixes.1

But before we get down to business, it is useful to clar
our notation. From the field strength tensorFmn and its dual
!Fkr5 1

2 ekrmnFmn, we can construct the following standa
gauge and Lorentz invariants:

1The primarily phenomenologically interested reader may j
take notice of the following conventions~1!–~5!, then directly con-
sult Eqs.~29!–~36!, and skip the remainder of the section.
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F5
1

4
FmnFmn5

1

2
~B22E2![

1

2
~a22b2!,

G5
1

4
Fmn !Fmn52E•B[ab, ~1!

where, for reasons of convenience, we also introduced
secularinvariants

a5AAF 21G 21F, b5AAF 21G 22F, ~2!

and we assumed without loss of generality that a Lore
system exists in which the electric and magnetic field
anti-parallel. In this particular frame, the secular invaria
can be identified with the field strengths:a5B[uBu, b5E
[uEu.

When the physical system involves another vector, sa
momentum 4-vectorkm5(k0,k), we can form another field
invariant @metric: g5(2,1,1,1)]:

zkª~kmFma!~knFn
a!5uku2B2sin2uB1uku2E2sin2uE2k2E2

12k0 E•~k3B!, ~3!

whereuB (uE) denotes the angle between the magnetic~elec-
tric! field and the 3-space vectork.

In relativistic equilibrium thermodynamics, temperatu
can be associated with the invariant norm of a 4-vectornm:
nmnm52T2. On the other hand,nm is related to the
4-velocity vectorum of the heat bath bynm5T um. E.g., in
the heat-bath rest frame,um takes the form:um5(1,0,0,0).
Hence, we can introduce one further invariant~beside the
temperature itself!:

E5~umFma!~unFn
a!. ~4!

E.g., in the heat-bath rest frame,E simply reduces toE5E2.
Since the effective Lagrangian is a Lorentz covariant a
gauge-invariant quantity, it can only be a function of t
complete set of invariants of the system under considerat
Hence, we expect a finite-temperature effective QED L
grangian of the form

L5L~E,F,G,T!. ~5!

Equipped with these conventions, we now turn to the cal
lation.

The two-loop contribution to the effective ac
tion/LagrangianL 2 is generally given by the diagram in Fig
1~b!. This translates into the following formula in coordina
space@2#:

L 25
e2

2 E d4x8 tr @gm G~x,x8uA! gn G~x8,xuA!#

3Dmn~x2x8!, ~6!

t
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QED EFFECTIVE ACTION AT FINITE . . . PHYSICAL REVIEW D 61 085021
whereG(x,x8uA) represents the fermionic Green’s functio
for the Dirac operator in the presence of an external elec
magnetic field A. Dmn denotes the photon propagato
Throughout the paper, we assume the background field t
constant or at least slowly varying compared to the scale
the Compton wavelength; therefore, the fermionic Gree
function can be written as

G~x,x8uA!5F~x,x8!E d4p

~2p!4
eip(x2x8) g~p!, ~7!

whereg(p) denotes the Fourier transform ofG(x,x8uA) de-
pending only on the field strength, andF(x,x8) is the ho-
lonomy carrying the complete gauge dependence of
Green’s function. Inserting Eq.~7! into Eq. ~6! leads us to
the objectF(x,x8)F(x8,x)[F(s), where the right-hand
side represents the holonomy evaluated for a closed path
a simply connected manifold such as the Minkowski spa
F(s)51; hence, it does not contribute to the zer
temperature Lagrangian. For a non-simply connected m
fold such as the finite-temperature coordinate sp
(R33S1), F(s) can pick up a winding number@9#. How-
ever, in the present case, we restrict our considerations
situation with zero density, which implies the existence o
gauge in whichA050. Then,F(s)51 and the influence o
the holonomy can be discarded.

This leads us to the representation

L 25
i

2 E d4k

~2p!4
Dmn~k! Pmn~k! ~8!

for the two-loop Lagrangian, whereDmn(k) denotes the pho
ton propagator in momentum space, and we introduced
one-loop polarization tensor in an arbitrary constant exte
background field:

Pmn~k!52 ie2E d4p

~2p!4
tr @gm g~p! gn g~p2k!#. ~9!

So we have finally arrived at the well-known fact that t
two-loop effective action can be obtained from the polari
tion tensor in an external field by glueing the external lin
together.

The transition to finite-temperature field theory can n
be made within the imaginary-time formalism by replaci
the momentum integration over the zeroth component in E
~8! and~9! by a summation over bosonic and fermionic Ma
subara frequencies, respectively. E.g., performing this pro
dure in Eq.~9! corresponds to thermalizing the fermions
the loop. Now we come to an important point: confinin
ourselves to the low-temperature domain whereT!m, we
know from the one-loop calculations@10,20# that thermal
fermionic effects are suppressed by factors of e2m/T, indicat-
ing that the mass of the fermions suppresses thermal ex
tions. Hence, thermalizing the polarization tensor contribu
at most terms of order e2m/T to the two-loop Lagrangian fo
T!m; these are furthermore accompanied by an additio
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factor of the coupling constanta and can therefore be ne
glected compared to the one-loop terms. At low temperat
it is therefore sufficient to thermalize the internal phot
only in order to obtain the leadingT-dependence ofL 2.

Since, in Feynman gauge, the photon propagator read

Dmn~k!5gmn

1

k22 ie
, k252~k0!21k2, ~10!

the introduction of bosonic Matsubara frequencies (k0)2→
2vn

252(2pTn)2, nPZ, leads us to2

L 212T5
i

2
iT(

vn

E d3k

~2p!3

1

k22 ie
Pm

m~k!. ~11!

From now on, we writeL 2 for the zero-temperature two
loop Lagrangian,L 2T for the purely thermal part, andL 212T

for their sum. In Eq.~11!, we need the trace of the polariza
tion tensor in constant but otherwise arbitrary electrom
netic fields. In the literature, there are various equivalent r
resentations forPmn . For the present purpose, it is useful
derive our own one which is based on a calculation of Ur
tia @21#. Details are presented in Appendix A.

Inserting representation~A19! of the Appendix forPm
m

into Eq. ~11!, we obtain for the Lagrangian

L 212T52
T

2

a

2p (
vn

E d3k

~2p!3 E0

`ds

s E21

1 dn

2

3
e2 isf0

a21b2

eas ebs

sineassinhebs

3F zk

k22 ie
~Ñ22Ñ1!

1„2N0~a21b2!1b2Ñ21a2Ñ1…GU
(k0)252v

n
2

,

~12!

where thef0 , N0 , Ñi are functions of the integration vari
abless andn and of the invariantsa andb; only f0 depends
additionally onzk as defined in Eq.~3!. Their explicit form
can be looked up in Eqs.~A16!, ~A20! and~A22!. In order to

2Of course, the present calculation does not necessarily have
performed in the imaginary-time formalism. E.g., instead of E
~10!, we could as well work with the real-time representation of t
thermal photon propagator. We could even use the one-compo
formalism only, since we merely consider the photon to be therm
ized. However, from our viewpoint, the calculations in th
imaginary-time formalism appear a bit simpler since the momen
integrals will remain Gaussian. Of course, this might be just a m
ter of taste.
1-3
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ensure convergence of the proper-time integrals, the ca
prescriptionm2→m22 ie for the mass term inf0 is under-
stood; this agrees with deforming thes-contour slightly be-
low the real axis.

Now, the aim is to perform thek-momentum integration
and/or summation; note that thek-dependence is contained
f0 , zk ~and k2, of course!. Concentrating on this step, w
encounter the integrals

I 15T (
vn

E d3k

~2p!3
e2 isf0U

(k0)252v
n
2

,

~13!

I 25T (
vn

E d3k

~2p!3

zk

k22 ie
e2 isf0U

(k0)252v
n
2

,

which allow us to write the Lagrangian~12! in terms of

L 212T52
a

4p E
0

`ds

s E
21

1 dn

2

eas ebs

~a21b2!sineassinhebs

3@~Ñ22Ñ1! I 2

1„2N0~a21b2!1b2Ñ21a2Ñ1…I 1 #. ~14!

Employing Eq.~A20! for f0, we can put down the evalua
tion of I 2 to the one ofI 1:
ed

t

gid
e
o

08502
sal
I 25T (

vn

E d3k

~2p!3

zk

k22 ie
e2 im2se2Azzk e2Akk2U

(k0)252v
n
2

52
]

]Az
E

Ak

`

dAk8 I 1 , ~15!

whereAz andAk again are functions of the integration var
abless andn and of the invariantsa andb, and are defined in
Eq. ~A22!. In view of Eq.~15!, it is sufficient to consider the
momentum integration-summation forI 1 only:

I 1 5
~A20!

T e2 im2s(
vn

E d3k

~2p!3
e2Azzk e2Akk2U

(k0)252v
n
2

.

~16!

At this stage, thefinite-temperature coordinate frameas in-
troduced in@9# becomes extremely useful, since it enables
to perform the calculation in terms of the invariants. Th
coordinate system is adapted to the situation of electrom
netic fields at finite temperature in a way that the comp
nents of any tensor-valued function of the field strength c
be expressed in terms of the invariantsE, F, andG. Again,
details are presented in the appendix~Appendix B!, from
where we take the final formula for the exponent of Eq.~16!
@cf. Eq. ~B7!#:
Azzk1Akk
25„Ak1~a22b21E!Az…S k22

AzAd

Az~2F1E!1Ak
k0D 2

2
~Ak1a2Az!~Ak2b2Az!

Ak1~a22b21E!Az

~k0!2

1S Az

a2b2

E 1AkD S k31

Az

AdG
E

Az

G 2

E 1Ak

k1D 1
~Ak1a2Az!~Ak2b2Az!

Ak

a2b2

E 1Ak

~k1!2, ~17!
-

wherek0,k1,k2,k3 represent the components of the rotat
momentum vectorkA5eA

mkm, andeA
m denotes the vierbein

which mediates between the given coordinate system and
finite-temperature coordinate frame@cf. Eq. ~B1!#. Since the
transformation into the new reference frame is only a ri
rotation in Minkowski space, no Jacobian arises for the m
sure of the momentum integral. Hence, only integrals
Gaussian type are present in Eq.~16!, which can easily be
performed to give

I 15T
e2 im2s

~4p!3/2

1

Ap qa qb
(
vn

e2(qa ab /p)vn
2
, ~18!

where it was convenient to introduce the short forms:
he

a-
f

qaªAk1a2Az , qbªAk2b2Az ,

pªAk1~a22b21E!Az . ~19!

The sum in Eq.~18! can be rewritten with the aid of a Pois
son resummation of the form

(
n52`

`

exp„2s~n2z!2
…

5 (
n52`

` Ap

s
expS 2

p2

s
n222p iznD . ~20!

With z50 ands5(2pT)2(qaqb /p), we obtain for Eq.~18!
1-4
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I 1[I 1
T501I 1

T

5
e2 im2s

16p2

1

qaqb
1

e2 im2s

8p2

1

qaqb

3 (
n51

`

expS 2
p

qaqb

n2

4T2D , ~21!

where we separated the (n50)-term from the remaining sum
in order to find the (T50)-contribution. The first term in Eq
~21! @(n50)-term#, namely, is independent ofT andE, while
the second term vanishes in the limitT→0 exponentially. It
is straightforward to check explicitly that the first term of E
~21! indeed leads to the~unrenormalized! two-loop Lagrang-
ian for arbitrary constant electromagnetic fields at zero te
perature. E.g., for purely magnetic fields, the representa
of Dittrich and Reuter@2# is rediscovered.

For our finite-temperature considerations, we will on
keep the second term of Eq.~21!, which we denote byI 1

T in
the following. Concerning the formula forL 2T in Eq. ~14!,
I 1

T is already in its final form~it will turn out later that this
term is subdominant in the low-T limit and only I 2

T contains
al

ai
w

e

he

th

08502
-
n

the important contributions!. Hence, let us turn to the evalu
ation of I 2

T , i.e., the thermal part of Eq.~15!; for this, we
have to interpretI 1

T as a function ofAz and Ak ~remember:
qa , qb andp are functions ofAz andAk):

I 2
T52

]

]Az
E

Ak

`

dAk8 I 1
T~Ak8 ,Az!

52
]

]Az
E

0

`

ds8 I 1
T~s81Ak ,Az!

5:2
e2 im2s

8p2 (
n51

`
]

]Az
J~Az!, ~22!

where we defined the auxiliary integral:

J~Az!5E
0

`

ds8

expS 2
s81p

~s81qa!~s81qb!

n2

4T2D
~s81qa!~s81qb!

. ~23!

Upon a substitution of the integration variable,3
uª
qaqb

p

s81p

~s81qa!~s81qb!
⇒ ds8

~s81qa!~s81qb!
52

du

Aqa
2ab

2

p2
1

2qaqb

p
~2p2qa2qb!u1~qa2qb!2u2

,

the auxiliary integral becomes

J~Az!5E
0

1
du expS 2

n2

4T2

p

qaqb
uD

Aqa
2ab

2

p2
1

2qaqb

p
~2p2qa2qb!u1~qa2qb!2u2

. ~25!
-
r

or

the
Now we come to an important point: since we only therm
ized the photons, our effective LagrangianL 2T is only valid
for T!m anyway. Nevertheless, our formulas also cont
information about the high-temperature domain which
should discard, since it is incomplete. Regarding Eq.~25!,
the exponential function causes the integrand to be extrem
small for small values ofT, except whereu is also small.
Hence, the auxiliary integral is mainly determined by t
lower end of the integration interval.

Taking these considerations into account, we expand
-

n
e

ly

e

square root for small values ofu and then extend the inte
gration interval to infinity@in fact, maintaining 1 as the uppe
bound only creates terms of the order exp„2(2nm)/T…,
which are subdominant in the low-temperature limit#. The
remaining u-integration can then easily be performed f
each order in theu-expansion; up tou2, we obtain

3Resolving for s85s8(u) leads to a quadratic equation from
which the positive root has to be taken in order to take care of
integral boundaries.
1-5
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J~Az!54
T2

n2
216

T4

n4
~2p2qa2qb!

264
T6

n6
„~qa2qb!223~2p2qa2qb!2

…

1O~T8/n8!. ~26!

Upon differentiation, theT2-dependence drops out, and w
get @cf. Eq. ~19!#

]

]Az
J~Az!5225

T4

n4
~F1E!229

T6

n6
„F 21G 223~F1E!2

…Az

1O~T8/n8!. ~27!

In this equation, we indeed discover a power-law dep
dence on the temperature, which will directly translate int
power-law dependence of the two-loop effective action a
insertion into Eqs.~22! and ~14!. Technically speaking, this
arises from the fact that the omnipresent exponential fa
exp„2(n2/4T2)(p/qaqb)u…, which finally causes exponentia
damping for T/m→0, becomes equal to 1 after th
u-integration at the lower bound atu50.

At this stage, it is important to observe that th
u-integration appears only inI 2

T @via theAk8-integration in Eq.
s
.
a-
w

s
e
e
th

r

08502
-
a
r
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~13!# and not inI 1
T . Therefore,I 1

T will always contain expo-
nential damping factors in the limitT→0. Even the remain-
ing proper-time integrations do not provide for a mechani
similar to theu-integration, since for larges, the mass factor
exp(2im2s) with the causal prescriptionm2→m22 ie causes
the integrand to vanish, and for smalls, the combination
p/qaqb in the exponent becomes

p

qaqb
52

4i

12n2

1

s
1O~s!. ~28!

Obviously, inserting Eq.~28! into the exponent leads to a
exponential fall off~bearing in mind that thes-contour will
run slightly below the real axis!. Similar conclusions can be
drawn for then-integration. To summarize these technic
considerations, we conclude that only the term containingI 2

T

~thermal part ofI 2) in Eq. ~14! contributes dominantly to
L 2T in the low-temperature limit.

Inserting the first and second term of (]/]Az)J(Az) in Eq.
~27! successively into Eq.~22! and then into Eq.~14!, we
obtain the dominant terms of orderT4 and T6 of the two-
loop effective QED Lagrangian at low temperature; partic
larly for the T4-term, different useful representations can
given:
L 2TuT452
ap

90
T4 ~F1E!E

0

`ds

s E
21

1 dn

2
e2 im2s

eas ebs

sineassinhebs

~Ñ22Ñ1!

a21b2

52
ap

45
T4 ~F1E!E

0

`ds

s

1

a21b2
e2 im2sFebscothebs

12eascoteas

sin2eas
1eascoteas

12ebscothebs

sinh2ebs
G ~29!

5
p2

45
T4 ~F1E!S 1

a21b2
~]a

21]b
2!D F 1

8p2 E0

`ds

s3
e2 im2seascoteas ebscothebsG . ~30!

The term proportional toT6 reads

L 2TuT652
16ap3

945
T6

„F 21G 223~F1E!2
…E

0

`ds

s E
21

1 dn

2

e2 im2s

a21b2

eas ebs

sineassinhebs
~Ñ22Ñ1! Az , ~31!
in

i-

e

where Ñi and Az are functions of the integration variable
and the invariantsa andb ~not of E), and are defined in Eqs
~A16! and ~A22!. The n-integration can be performed an
lytically, but the extensive result does not provide for ne
insights; hence we do not bother to write it down.

These equations represent the central result of the pre
work; therefore, a few of their properties should be stress

~1! While we worked explicitly in the low-temperatur
approximationT!m, we put no restrictions on the streng
of the electromagnetic fields.

~2! The low-temperature Lagrangians contain arbitra
powers of the invariantsa andb ~equivalentlyF andG), but
the additional invariant at finite temperatureE only appears
ent
d:

y

linearly in the T4-term and quadratic in theT6-term. The
small-T expansion thus corresponds to a small-E expansion.

~3! The fact that only the integralI 2
T with the prefactor

(Ñ22Ñ1) contributes to the low-temperature Lagrangian
Eq. ~14! implies that only the spatially transversal modesP i
and P' of the polarization tensor~A15! play a role in this
thermalized virtual two-loop process. The time-like or long
tudinal modeP0 ~depending on the character ofkm) might
become important at higher values of temperature.

~4! The fact that the invariantE always appears in the
combinationF1E ensures a kind of dual invariance of th
Lagrangian. Under the replacementE→B andB→2E, the
invariants change intoF→2F, G→2G andE→E12F, so
1-6
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that F1E remains invariant.
~5! TheT4-term ofL 2T as exhibited in Eq.~30! possesses

the peculiarity of being derivable from the one-loop ze
temperature Lagrangian which we marked by square bra
ets in Eq.~30! after the derivative terms. This will be eluc
dated a bit further in the following section.

~6! The entire thermal contribution to the effective acti
is finite. This reflects the well-known fact that the counte
terms which are necessary and sufficient in order to ren
malize the zero-temperature effective action are also ne
sary and sufficient for the finite-temperature action. Ev
more conveniently, we were able to separate the ze
temperature from the thermal parts, implicitly assuming t
the renormalization of the zero-temperature parts is p
formed without any reference to the finite-temperature s
tem. As a consequence, we are dealing with the same re
malization point as at zero temperature which is natura
given by the zero-temperature electron mass. At fin
temperature, this does not have to be and indeed is not i
tical to the physical electron mass which undergoes furt
renormalization by finite-temperature effects. E.g., from
one-loop calculation of the mass operator one findsmphys

2

5m21(2/3)apT2 for T!m @22#. Therefore, the above
given thermal effective action must be viewed as ‘‘off-she
renormalized. Nevertheless, since the physics is indepen
of the renormalization point, we can work with the zer
temperature as well as the physical electron mass.4 The ‘‘off-
shell,’’ i.e., zero-temperature renormalization is, of cour
more transparent, since all temperature dependence is ex
itly displayed, which would otherwise be partly hidden in t
physical electron mass.

For the remainder of this section, we will discuss cert
limiting cases of the two-loop low-temperature Lagrangia
First, let us concentrate on a weak-field expansion wh
corresponds to a small-s expansion of the proper-time inte
gral due to the exponential mass factor. Expanding the i
grands for small values ofs ~except the mass factor! and
integrating overn and s, leads us to the dominant terms
the weak-field limit:

L 2TuT45
44a2p2

2025

T4

m4
~F1E!

2
26337a3p3

3435237

T4

m4

F~F1E!

m4
1O~3!, ~32!

L 2TuT65
213a3p5

3635372

T6

m6
~2F 216EF13E 22G 2!

1

m4

1O~3!, ~33!

4In the case of an ‘‘on-shell’’ renormalization, first,m has to be
replaced bymphys, and, secondly, we obtain an additional term
2(2/3)apT2(]L 1/]m2) from the mass renormalization at on
loop order.
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whereO(3) signals that we omitted terms of third order
the field invariants~sixth order in the field strength!. Note
that no linear term in the field invariants to orderT6 exists.
For the terms of quadratic order, theT6-term is subdominant
for T/m<0.05, and amounts up to a 10%-correction to t
T4-term for T/m;0.1. For even larger values of temper
ture, we expect the failure of the low-temperature appro
mation.

Finally, we considerL 2TuT4 in the limit of purely mag-
netic background fields:b→0, a→B, F1E→ 1

2 B2. The
T4-term in Eq.~29! then reduces to

L 2T~B!uT45
ap

90
T4E

0

`dz

z
e2(m2/eB)z

3F12z cothz

sinh2z
1

1

3
z cothzG , ~34!

where we have performed the substitutioneas→2 iz in con-
cordance with the causal prescriptionm2→m22 ie. Inciden-
tally, the limit of purely electric fields can simply be ob
tained by replacingB→2 iE and multiplying Eq.~34! by
(21).

Introducing the critical field strengthBcrªm2/e, we can
evaluate the integral in Eq.~34! analytically@15#5 and obtain:

L 2T~B!uT45
ap

90
T4F S Bcr

2

2B2
2

1

3D cS 11
Bcr

2BD
2

2Bcr

B
lnGS Bcr

2BD2
3Bcr

2

4B2
2

Bcr

2B

1
Bcr

B
ln2p1

1

6
14z8S 21,

Bcr

2BD1
B

3Bcr
G ,

~35!

where c(x) denotes the logarithmic derivative of th
G-function, andz8(s,q) is the first derivative of the Hurwitz
z-function with respect to its first argument.

For strong magnetic fields,B@Bcr , the last term in square
brackets in Eq.~35! dominates the whole expression, and w
find a linear increase of the effective Lagrangian:

L 2T~B@Bcr!uT45
ap

270
T4

eB

m2
. ~36!

This contribution remains subdominant compared to the
arising from pure vacuum polarization;B2ln(eB/m2), which
is not astonishing, since the magnetization of~real! thermal-
ized plasma particles is bounded: the spins can maximally
completely aligned. In contrast, the non-linearities

5We take the opportunity to remark that there is a misprint in
corresponding integration result in@15#; the term (11/3) has to be
replaced by (11/6) @cf. Eq. ~35!#.
1-7
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HOLGER GIES PHYSICAL REVIEW D 61 085021
vacuum polarization set no such upper bound. Quan
tively, the same result was found for the thermal one-lo
contribution@23#.

III. LIGHT PROPAGATION

As a first application, we study the propagation of pla
light waves at finite temperature and in a magnetic ba
ground. The subject of light propagation has recently gai
renewed interest due to its accessibility to current experim
tal facilities @24#.

In the limit of light of low-frequencyv!m, the effective
action for slowly varying fields has proved useful for obta
ing velocity shifts, i.e., refractive indices of QED vacu
which are modified by various external perturbations such
fields and temperature@25,15#. In this limit of low frequen-
cies and smooth external perturbations, the terms involv
derivatives of the fields in a derivative expansion of the
fective action can be neglected, and the constant-field
proximation is appropriate.

The case of light propagation at finite temperature
been investigated in@20# from a general viewpoint for a clas
of Lagrangians depending on the invariantsE,F,G,T in an
arbitrary way. Therein, a light cone condition representin
sum-rule for the polarization modes of the propagating li
has been derived; this has been exploited for a detailed
vestigation of light propagation at finite temperature to o
loop order by an insertion of the thermal one-loop effect
Lagrangian of QED. It has been emphasized that these
loop studies apply to a domain of intermediate values
temperature;0.1<T/m<;1, where two-loop as well as
plasma effects remain subdominant.

The famous results for the low-temperature velocity sh
dv;T4/m4 @12–14# could not have been rediscovered
this first-principle investigation, because the thermal tw
loop effective action was not at hand. In the present wo
we intend to fill this last gap.

Let us first consider the situation of a thermalized QE
vacuum without an additional background field. In the lo
temperature domain, this vacuum is then characterized by
LagrangianL52F1L 2T, where2F represents the class
cal Maxwell term. Following the lines of@20#, the phase and
group velocityv of a propagating plane wave is then give
by

v25
1

11
2 ]EL

~2]FL1]EL!

, ~37!

wherev5k0/uku is constructed from the wave vector of th
propagating light, and it is understood that the partial deri
tives ofL are evaluated in the zero-field limit. Inserting Eq
~32! and ~33! into Eq. ~37!, leads us to

v25
1

112
44

2025
a2p2

T4

m4

.122
44

2025
a2p2

T4

m4
1O~T8/m8!.

~38!
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Note that there is noT6-term, sinceL 2TuT6 is at least qua-
dratic in the field invariants. In Eq.~38!, we rediscovered the
well-known velocity shifts for light propagation in a therm
background as found in@12,14# via the two-loop polarization
operator and in@13,15# via considering vacuum expectatio
values of field bilinears in a thermal background. The he
presented rederivation within the effective action approa
from first principles thus can be viewed as an independ
check of our calculations and of the light cone condition
derived in@20#.

But we can go one step further and additionally take
weak external magnetic field into account; the light co
condition in this case reads@20#

05~]FL2]EL2F]G
2L!k21

1

2
~]F

2 1]G
2!L zk12]EL ~ku!2,

~39!

whereum denotes the 4-velocity vector of the heat bath a
zk is defined in Eq.~3!. The Lagrangian describing a therm
QED vacuum with weak magnetic background fields at fin
temperature is given byL52F1L 11L 2T, whereL 1 de-
notes the one-loop effective Lagrangian at zero temperat
Up to the second order in the invariants, this famo
Heisenberg-Euler LagrangianL 1 is given by

L 15
8

45

a2

m4
F 21

14

45

a2

m4
G 2. ~40!

Inserting all the relevant contributions toL into the light
cone condition Eq.~39!, the light velocity to lowest order in
the parametersT andB finally yields

v2512
22

45

a2

m4
B2sin2uB22

44

2025
a2p2

T4

m4

1
22

45

a2

m4 S 25337

323537311
ap3

T4

m4D B2~11sin2uB!,

~41!

whereuB denotes the angle between the propagation dir
tion and the magnetic field@cf. Eq.~3!#. The second and third
term are the well-known velocity shifts for purely magne
@26,27# and purely thermal vacua@cf. Eq. ~38!#, respectively.
The last term describes a non-trivial interplay between th
two vacuum modifications. The latter can best be elucida
in the various limits of the angleuB ; for orthogonal propa-
gation to the magnetic fielduB5p/2, we get

v25122
44

2025
a2p2

T4

m4
2

22

45

a2

m4
B2S 12~0.15 . . .!

T4

m4D .

~42!

For parallel propagation to the magnetic fielduB50, we find

v25122
44

2025
a2p2

T4

m4 S 12~0.96 . . .!S eB

m2D 2D . ~43!
1-8
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Since T/m and eB/m2 are considered to be small in eac
case, the corrections to the pure effects in the mixed situa
are comparably small. Note that the mixed thermal and m
netic corrections always diminish the values for the veloc
shift of the pure magnetic or thermal situations. Let us fina
remind the reader that the here-given velocities hold for lo
frequency light (v!m) only, and represent averages ov
the two possible polarization modes. While for the pure
thermal case the polarization modes cannot be distinguis
the situation involving an electromagnetic field genera
leads to birefringence due to the existence of a prefe
direction of the field lines.

Let us finally comment on the earlier works@13,15# re-
lated to the issue of light propagation in a thermal ba
ground. The philosophy therein was to calculate the velo
shifts in a purely~weak! electromagnetic background firs
and then take thermal vacuum expectation values of the
bilinears. Expressing this in formulas, we first recall the e
pression for the propagation-direction-averaged light vel
ity in a weak electromagnetic background from@15#:

v2512
2

3
~]F

2 1]G
2!L T00, ~44!

where T005 1
2 (E21B2) denotes the 00-component of th

energy-momentum tensor, i.e., energy density of the elec
magnetic field. In the weak-field limit, (]F

2 1]G
2)L is field

independent: 222
45 (a2/m4) @cf. Eq. ~40!#; therefore, taking

thermal vacuum expectation values of the field quantities
Eq. ~44! is simply equivalent to replacingT00 by ^T00&T

5(p2/15)T4. This then leads to the correct result as given
Eq. ~38!.

From the viewpoint of the present work, the correctne
of the approach of@13,15# arises from the special form of th
low-temperature two-loop LagrangianL 2TuT4 as given in Eq.
~30!. Since

1

a21b2
~]a

21]b
2!5]F

2 1]G
2 , ~45!

Eq. ~30! can also be written as

]EL 2TuT45
2

3
^T00&T

1

2
~]F

2 1]G
2!L 1. ~46!

Incidentally, Eq.~46! holds for arbitrary field strength, bu
in this line of argument, it is required for weak fields onl
Inserting Eq.~46! into the correct light cone condition a
finite temperature, i.e., Eq.~37!, we obtain to lowest order

v2.122]EL512
2

3
~]F

2 1]G
2!L ^T00&T, ~47!

which is equal to the heuristically deduced light cone con
tion for a thermal QED vacuum@13,15#.

Note that the combined low-temperature–weak-field
fects as given in Eqs.~41!–~43! could not have been found i
@15#, since the invariant structure is not completely tak
into account in the heuristic approach. Whether the inve
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gation of the intermediate-temperature domain to two-lo
has been correctly modeled with the heuristic approach
@15#, cannot be judged within the present work. Note, ho
ever, that the intermediate-temperature domain is contro
by one-loop effects, leading to a maximum velocity shift
2dvmax

2 5a/3p @20#. As has been shown therein, thetwo-
loop dominanceis lost for T/m>0.058.

IV. PHOTON SPLITTING

Photon splitting in magnetic fields at zero temperature
been discussed comprehensively by Adler@26#, stressing its
relevance for the photon physics of compact astrophys
objects~see also@28#!. For the description of the splitting
process for low-frequency photons withv!m at weak mag-
netic fieldseB/m2!1, the use of the one-loop effective La
grangian for weak fields is sufficient for obtaining a go
estimate of the absorption coefficient for photon splitting.
be precise, the lowest order contribution to the splitting p
cess comes from the terms of third order in the invaria
~sixth order in the field strength! of L 1, i.e., the hexagon
graph with one incoming, two outgoing photons and thr
couplings to the external magnetic field. Neglecting disp
sion effects, the box graph vanishes because ofL 1 depend-
ing onF andG only, and because of the Lorentz kinemati
of the photons.6

The question of thermally induced photon splitting h
recently been investigated by Elmfors and Skagerstam@10#
with the aid of the thermal one-loop effective QED Lagran
ian; their studies were motivated by the fact that a vacu
may be a bad approximation for the surroundings of so
astrophysical compact objects, while a thermalized envir
ment at zero or finite density might be more appropriate
turned out that, at temperatures and magnetic fields at
scale of the electron mass, the thermal contribution can
ceed the zero-temperature one, but these effects then ar
perimposed by Compton scattering of the photons with
plasma. In realistic situations, the thermally induced proc
will thus be of subdominant importance.

In the following, we intend to complete these resu
about thermally induced photon splitting with the domina
low-temperature contributions stemming from the two-lo
process. Hereby, we also concentrate on the splitting pro
('→i11i2), where a photon, with its electric field vecto
orthogonal (') to the plane spanned by the external ma
netic field and the propagation direction, splits into two ph
tons with their electric field vectors within (i) that plane.7

This is the only allowed process when dispersion effects
taken into account.

As pointed out in@10#, the box-graph no longer vanishe
at finite temperature, since the Lagrangian now involves
additional invariant. Hence, the lowest-order contribution

6Taking dispersion effects into account, the box graph still is o
an ordera correction to the hexagon graph.

7Note that Adler’s definition for thei ,'-mode rely on the direc-
tion of the magnetic field vector of the photon and thus are oppo
to ours.
1-9
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HOLGER GIES PHYSICAL REVIEW D 61 085021
the photon-splitting matrix element is already produced
the terms of quadratic order in the invariants in Eqs.~32! and
~33!.

Without going into details, we recall that the splitting am
plitude is obtained by attaching the external photon legs
the fermion loop, i.e., differentiating the effective actio
~which is represented by the loop! thrice with respect to the
fields and then contracting the result with the field streng
of the involved photons. Hereby, one has to take into acco
that the effective Lagrangian now depends on three field
variants:E, F, andG. The thermal amplitude arising from
the box-graph finally yields

M~'→i11i2!52vv1v2 B sinuB ]EFL, ~48!

wherev,v1 ,v2 denote the frequencies of the incoming a
the two outgoing photons, respectively, anduB again repre-
sents the angle between the propagation direction and
magnetic field. From the splitting amplitude, we obtain t
absorption coefficientk via the formula

k5
1

32pv2 E0

v

dv1E
0

v

dv2 d~v2v12v2! M 2. ~49!

Inserting Eq.~48! for the thermal splitting amplitude into Eq
~49! leads us to

k

m
5

1

263335p2 S eB

m2D 2

sin2uBS v

mD 5

~]EFL!2 m8. ~50!

Here, we encounter the typical (v/m)5-dependence of the
photon-splitting absorption coefficient for low-frequen
photons. The appearance of the magnetic field to the sec
power is directly related to the fact that the box-graph exh
its only one coupling to the external field. In contra
Adler’s result for the absorption coefficient at zero tempe
ture arising from the hexagon graph reads@26#

kT50

m
5

132

35353372

a3

p2 S eB

m2D 6

sin6uBS v

mD 5

. ~51!

Here, the three couplings to the external magnetic field p
duce aB6-dependence of the absorption coefficient. The
fore, any finite-temperature contribution will exceed t
zero-temperature one for small enough magnetic fields;
of course, the absorption coefficients may then become v
tiny.

In order to obtain the one-loop and two-loop absorpt
coefficients for thermally induced photon splitting at lo
temperature, the derivatives of the corresponding Lagran
are required in Eq.~50!:

]EFL 1T5F8a2

45 S m

T D 2

1
4pa2

45 S m

T D 3Ge2m/T

m4
, ~52!
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]EFL 2T5F2
26337a3p3

3435237
S T

mD 4

1
214a3p5

3535372 S T

mD 6G 1

m4
, ~53!

where we made use of the results of@10# for the low-
temperature–weak-field approximation of the one-loop L
grangianL 1T, and employed Eqs.~32! and~33! for the two-
loop one. Obviously, inserting the two-loop terms from E
~53! into Eq. ~50! leads to a power-law dependence of t
absorption coefficient;T8/m8, while the one-loop terms
from Eq. ~52! imply an exponential mass dampin
exp(22m/T) for T→0.

As mentioned above, photons of frequencies below
pair-production threshold are not only exposed to splitting
finite temperature, but can also scatter directly with t
plasma of electrons and positrons. Following@10#, the ab-
sorption coefficient for the Compton process is given by

kC

m
5

sC

m

2

p2 E0

`

dp
p2

eve /T11
, ~54!

whereve denotes the fermion energyve5Ap21m2, and the
cross sectionsC for unpolarized photons atv/m.1 is ap-
proximately given by

sC.
4pa2

3m2
. ~55!

Although v/m.1 formally represents the maximal limit o
validity of our constant-field approximation for the effectiv
action, we will continue to consider photons of that fr
quency in the following, since, on the one hand, this circu
vents a suppression of the absorption coefficients by
common factor (v/m)5, and on the other hand, it has bee
shown for the hexagon graph in@26# that the difference be-
tween v/m51- and v/m;0-calculations is negligible for
weak magnetic fields.

Finally, we have to consider another scattering proc
which arises from the presence of a heat bath: photon-ph
scattering between the propagating photon and the bla
body radiation of the thermal background. We estimate
absorption coefficient for this process by

kgg

m
5

sggng

m
, ~56!

whereng denotes the density of photons and is given by

ng52E d3p

~2p!3

1

e
Ap2/T21

5
2z~3!

p2
T3. ~57!

Here we encounter the Riemannianz-function with z(3)
.1.202. The total polarization-averaged cross section
photon-photon scattering at low frequencies, as one obta
e.g., from the Heisenberg-Euler Lagrangian@29#, reads
1-10
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FIG. 2. Absorption coefficientk in units of
the electron mass versus temperatureT in units of
the electron mass. In~a!, the various contribu-
tions are plotted for parameter values of a real
tic astrophysical system. In~b!, the parameters
are chosen in such a way that the two-loop dom
nance over the one-loop and the Compton p
cess is revealed; the photon-photon scatter
contribution cannot be overtaken in the low
temperature limit.
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sgg5
973

10125

a2

p

a2

m2 S vCM

m D 6

, ~58!

where vCM denotes the frequency of both photons in t
center-of-mass frame. In order to determinevCM , we first
have to find the mean frequency at temperatureT. Averaging
over the thermal probability distribution for the photons, w
find the mean valuevT5@p4/30z(3)#T.2.701T. According
to relativistic kinematics, the average value for the C
frequency vCM is given by vCM5AvvT/2.1.16ATv,
where we averaged over the propagation direction of
thermal photons. Putting everything together, we obtain
the absorption coefficient for photon-photon scattering w
the thermal background

kgg

m
5

73139

25337356

p9

z~3!2
a4S T

mD 6S v

mD 3

.5.21310211S T

mD 6S v

mD 3

. ~59!

Since the average frequency of the heat-bath photons is
portional to the temperature, this formula becomes inva
for T;m and above, because we employed the lo
frequency cross section in Eq.~56!.

It is already clear from a qualitative viewpoint that the
must be a domain where the two-loop splitting process
least exceeds the one-loop and the Compton contribut
due to the power-law dependence on the temperature.
sincek2T;(T/m)8 and kgg;(T/m)6, the two-loop contri-
bution will eventually be surpassed by the photon-pho
scattering forT→0.

However, quantitative results can only be revealed by
merical studies. In fact, as shown in Fig. 2~a!, the two-loop
contribution is completely irrelevant for parameter valu
which may be appropriate for a neutron star system
which are close to the upper bound of validity of our a
proximation: eB/m250.2, v/m51, sinuB51, and T/m
50.05 . . .0.1. Even the one-loop contribution is small com
pared to the zero-temperature result; but all are neglig
compared to the Compton process.

Concentrating on the relative strengths of the therm
splitting processes, the one-loop contribution loses its m
role for T/m<0.041, where its exponential decrease is s
passed by the two-loop power law.
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In order to find a domain in which the two-loop splittin
wins out over the zero-temperature process, we have to
at smaller values of the magnetic field strength; e.g., at v
ues of temperatureT/m50.025, the two-loop process ex
ceeds the zero-temperature one foreB/m2<2.131024.
Since these are more moderate field strengths, the absor
coefficient naturally becomes very small:k/m
;10234. . . 10233. Hence, in order to be able to measure t
splitting rate, the extension of the magnetic field in which t
photon propagates must be comparable to galactic scale

Finally, we have plotted the Compton and photon-pho
absorption coefficients,kC andkgg , and the two-loop coef-
ficient k2T for a weak magnetic fieldeB/m251024 at T/m
50.001 . . . 0.1 inFig. 2~b!. Obviously, the Compton proces
loses its dominant role forT/m<0.03; below, the absorption
coefficient is ruled by the photon-photon scattering as lo
as the temperature does not become so small that only
zero-temperature amplitude remains. As is also made vis
in Fig. 2~b!, the two-loop contribution does not exceed t
photon-photon process, due to the weaker temperature
pendence of the latter. Hence, we may summarize that
photon absorption coefficient in the low-temperature dom
is either dominated by the zero-temperature contribution
strong magnetic fields or by the photon-photon scatter
with the thermal background for weak fields. So the tw
loop contribution always belongs to the top flight but
never ranked first.

In order to account for realistic astrophysical systems, i
compulsory to include a finite chemical potential. First es
mates can be found in@10# to one-loop order, where signal
have been found that a finite chemical potential ofm.m
may induce an increase of the thermal splitting amplitude
low temperatures. In order to settle this question prope
the present paper shows that an investigation of these
tems should take the two-loop contributions into accou
First progress in this direction has been achieved in@30# in
which a two-loop calculation with an external magnetic fie
at finite density has been performed.

Let us conclude this section with the remark that in ord
to obtain the sum of the zero-temperature and the ther
contributions to the photon splitting absorption coefficie
the amplitudes must be summed up coherently, since
final states of the processes coincide, and the ther
vacuum with a constant background field does not prov
for a mechanism of decoherence. While the zero-tempera
1-11



ar

e
p
ro
tin

as
m
,

sm

ne
uc
he
o
m

m
c

nd
th
y

al
m
ri-
st

o
s
s
ro
v
c

re
ar
ric

it
-

eld

the
ce,
te-
u-

gi-

and
s,

rts.

alf
ion
n

the
uld

HOLGER GIES PHYSICAL REVIEW D 61 085021
amplitude as well as the thermal one-loop amplitude
strictly positive, theT4-term in Eq.~53! contributes with a
negative sign. Hence, an exceptional curve in the param
space ofeB/m2 andT/m exists where the thermal two-loo
amplitude interferes with the thermal one-loop and ze
temperature amplitudes destructively so that photon split
vanishes.

V. PAIR PRODUCTION

Thermally induced pair production in electric fields h
been searched for at the one-loop level for a long ti
@5,6,17–19# with extremely contrary results. In our opinion
the final concordant judgement in the real-time formali
@7#, the functional Schro¨dinger approach@17#, as well as the
imaginary-time formalism@9# is that there is no imaginary
part in the thermal contribution to the effective action to o
loop, implying the absence of thermally induced pair prod
tion to this order of calculation. As already mentioned in t
Introduction, drawing conclusions from an imaginary part
the thermal effective action to pair production is not as i
mediate and straightforward as at zero-temperature, since
presence of an electric pair-producing field and the ther
equilibrium assumption which is inherent to our approa
contradict each other.

In the following, we simply assume that on the one ha
the time scale of pair production is much shorter than
time scale of the depletion of the electric field so that d
namical back-reactions can be neglected~this assumption is
familiar from the zero-temperature Schwinger formula!. On
the other hand, we also assume that the state of the plasm
appropriately approximated by a thermal equilibrium
though it is exposed to an electric field. Whether the assu
tion on thermal equilibrium is justified in concrete expe
mental situations such as, e.g., heavy ion collisions, is
under discussion.

Recently, pair production has been studied with the aid
a quantum kinetic equation~including non-homogeneou
electric field configurations, back-reactions, and collision!,
revealing the non-Markovian character of the creation p
cess@31#. In these works, the Schwinger formula is redisco
ered in the low-density limit for constant fields. We expe
that our results hold in the same limit at finite temperatu

Let us now turn to the computation of the imaginary p
of the two-loop thermal effective action for external elect
fields. For this, we concentrate on theT4-contribution as
given in Eq. ~29!. For purely electric fields,a→0, b→E,
E1F→ 1

2 E2, this reads

L 2T~E!uT452
ap

90
T4E

0

`dz

z
e2 i(m2/eE)z

3F1

3
z cothz1

12z cothz

sinh2z
G , ~60!

where we substitutedz5eEs. For reasons of convenience,
is useful to abbreviatehªeE/m2, which denotes the dimen
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sionless ratio between the electric field and the critical fi
strengthEcrªm2/e. Integrating the 1/sinh2z-term by parts
leads us to

L 2T~E!uT452
ap

90
T4 lim

e→0
H 1

2e2
1

1

2
1

1

4h2

1E
e

`

dze2 i(z/h)S 1

3
2

i

hz
2

1

z2
1

1

2h2D cothzJ .

~61!

Here, it should be pointed out that the isolated pole in
first term of the curly brackets does not signal a divergen
but simply cancels the pole at the lower bound of the in
gral; the whole expression is still finite. Our aim is to eval
ate the imaginary part of Eq.~61!; for this, the behavior of
the integral at the lower bound is of no interest. An ima
nary part ImL 2T(E)uT4 arises from the poles of the
cothz-term on the imaginary axis atz56 inp, n51,2, . . . .

Decomposing the exponential function into cos1i sin, it
becomes obvious that the imaginary parts of the integr
are even functions inz, while the real parts are odd. Thu
extending the integration interval from2` to ` exactly can-
cels the real parts and simply doubles the imaginary pa
We finally get

Im L 2T~E!uT452
ap

90

T4

2i E2`

`

dze2 i(z/h)

3S 1

3
2

i

hz
2

1

z2
1

1

2h2D cothz. ~62!

Now we can close the contour in the lower complex h
plane, which is in agreement with the causal prescript
m2→m22 ie. The value of the integral is then simply give
by the sum of the residues of the cothz-poles atz52 ipn,
n51,2, . . . .Hence, we arrive at

Im L 2T~E!uT45
ap2

90
T4(

n51

`

e2np/h

3S 1

3
1

1

nph
1

1

n2p2
1

1

2h2D ,

h5
eE

m2
, ~63!

which represents our final result for the imaginary part of
thermal effective QED action at low temperature, and sho
be read side by side with Schwinger’s one-loop result:

Im L 1~E!5
m4

8p3
h2(

n51

`
e2np/h

n2
. ~64!
1-12
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The sum in Eqs.~63! and ~64! can be carried out analyti
cally; but here, it should be sufficient to consider the limiti
cases of weak and strong electric fields.

In the weak-field limit, i.e., for small values ofh, the sum
over n in Eq. ~63! is dominated by the first termn51. Fur-
thermore, it is the last term which is the most important o
in parentheses. These considerations then lead us to

Im L 2T~eE!m2!.
ap2

180
T4

e2p/h

h2
. ~65!

Combining this with the weak-field approximation of E
~64!, we get roughly for the total imaginary part of the e
fective Lagrangian

Im L~eE!m2!5m4e2p/hS h2

8p3
1

ap2

180

1

h2

T4

m4D
.m4e2p/hS 431023h21431024

T4/m4

h2 D .

~66!

E.g., for T/m.0.1, where the present low-temperature a
proximation should still be appropriate, the thermal contrib
tion can be neglected forh>0.1; both contributions becom
roughly equal forh.0.056 ~and T/m50.1). For weaker
fields andT/m.0.1, the thermal contribution even becom
the dominant one.

In the opposite limit, whereh@1, i.e., for strong electric
fields beyond the critical field strength, the 1/3 in parenthe
dominates the expression in Eq.~63!, which then gives

Im L 2T~eE@m2!5
ap2

270
T4 (

n51

`

~e2p/h!n

5
ap2

270
T4

e2p/h

12e2p/h
5

ap

270
T4 h1O~h0!.

~67!

Together with the strong-field approximation of th
Schwinger formula, this gives

Im L~eE@m2!5m4 hS h

48p
1

ap

270

T4

m4D
.m4 hS 6.631023h18.531025

T4

m4D .

~68!

Since Eq. ~68! is valid for h@1 and T/m!1, the low-
temperature contribution to ImL(E) can be neglected fo
strong electric fields. Similarly to the case of strong magne
fields, we find that the non-linearities of pure~zero-T)
vacuum polarization exceed the polarizability of the th
mally induced real plasma by far in the strong field limit.
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Nevertheless, in the limit of weak electric fields, therm
effects can increase the pair-production probabilityP51
2exp„22 ImL(E)… significantly, as was shown in Eq.~66!.
Of course, for these values ofh, the total imaginary part is
very small due to the inverse power ofh in the exponential.

Since we did not consider thermalized fermions, our a
proach is not capable of describing high-temperature p
production, which would be desirable for forthcomin
heavy-ion collision experiments. However, as can be read
from our results for light propagation and photon splittin
extrapolating the power-law behavior to higher temperat
scales ofT;m or evenT/m@1 overestimates a possibl
two-loop contribution by far, since, for these values of te
perature, the one-loop contribution can be expected to be
dominant one. The latter increases at most logarithmic
with T.

Therefore, it is reasonable to assume that the p
production probability also increases at most logarithmica
with T. In view of these considerations, a power-law grow
as suggested in@6,18,19# does not appear plausible. O
course, in order to decide this question, the two-loop cal
lation has to be carried out for arbitrary values of tempe
ture.

VI. DISCUSSION

In the present work, we calculated the thermal two-lo
contribution to the effective QED action for arbitrary co
stant electromagnetic fields in the low-temperature lim
T/m!1. Contrary to the usual loop hierarchy in a perturb
tion theory with small coupling, the thermal two-loop part
found to be dominating over the thermal one-loop part in
low-temperature limit, since the former exhibits a power-la
behavior inT/m, while the latter is exponentially suppresse
by factors of exp(2m/T). The physical reason behind this
that the one-loop approximation does not involve virtu
photons, which, due to their being massless, can be m
easily excited at low temperatures than massive fermio
thus, the one-loop approximation should be rated as an
consistent truncation of finite-temperature QED forT much
below the electron mass.

The power-law dependence of the thermal effective act
to two loop starting withT4/m4 implies a two-loop domi-
nance in the low-energy domain of thermal QED, whic
holds roughly up toT/m.0.05.

For the subject of light propagation at finite temperatu
this two-loop dominance has been known for some ti
from studies of the polarization tensor@12,14#. Moreover, for
the subject of QED in a Casimir vacuum like the parall
plate configuration, the two-loop dominance is very natu
and well known, since the fermions are not considered to
subject to the periodic boundary conditions anyway. T
gives rise to a non-trivial check of our results, since Casim
and finite-temperature calculations highly resemble e
other. Replacing, as usual,T by 1/(2a) in Eq. ~65! for the
weak-field limit of the imaginary part of the effective La
grangian, wherea denotes the separation of the Casim
plates, we obtain
1-13
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Im L 2a~E!ua245
pe2

28345

1

a4 S m2

eED 2

e2pm2/eE, ~69!

which agrees precisely with the findings of@32# for the Ca-
simir corrections to the Schwinger formula.8

In order to illustrate the two-loop dominance, we studi
light propagation and photon splitting in a weak magne
background at low temperature. Since we are dealing w
the two-loop level, the here-considered effects are natur
very tiny and a significant influence on, e.g., photon phys
near astrophysical compact objects appears not very p
able. One should rather take a closer look at photon phy
on large galactic scales.

Furthermore, we calculated the imaginary part of the th
mal two-loop effective action for electric background fiel
at low temperature. Under mild assumptions, this result
be related to a thermally induced production probability
electron-positron pairs. Especially in the weak-field limit, t
thermal contribution has a significant influence on the p
duction rate. Since no thermal one-loop imaginary part
ists, any finite two-loop result automatically dominates
any temperature scale.

For the subjects of light propagation and photon splittin
the loop hierarchy is restored aboveT/m.0.05. Already at
this comparably low value of temperature, the thermal ex
tation of the fermions begins to compete with that of t
virtual photon. Hence, a calculation of the two-loop therm
Lagrangian at intermediate or high temperatures would
pear as an imposition, were it not for the high-temperat
pair-production probability which is beyond the range of t
one-loop approximation and of great interest for, e.g., hea
ion collisions.

ACKNOWLEDGMENTS

I would like to thank Professor W. Dittrich for helpfu
discussions and for carefully reading the manuscript. I
also grateful to Dr. R. Shaisultanov for valuable comme
and especially for drawing my attention to photon-phot
scattering.

APPENDIX A: ONE-LOOP POLARIZATION TENSOR

While the polarization tensor in an external magnetic fi
has been considered by many authors~a comprehensive
study can, e.g., be found in@34#!, a generalization to arbi
trary constant electromagnetic fields in a straightforw
manner is associated with a substantial increase in calc
tional difficulties. The problem was first solved by Batal
and Shabad@35#; their extensive result was later brought in
a practical form by Artimovich@36#. In the following, we
will briefly sketch a simpler derivation of the polarizatio
tensor in arbitrary constant electromagnetic fields; our

8Actually, Eq. ~69! agrees with the findings of@32# except for a
global sign; however, as was pointed out by one of the authors
footnote of@33#, the expression in@32# is wrong by a minus sign,
which saves the day.
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proach is based on the findings of Urrutia@21#, who solved
the problem for the special case of parallel electric and m
netic fields.

Assume that the (2E)-field and theB field point along
the 3-axis. 4-vectors like the external momentum~cf. Fig. 3!
can then be decomposed into

km5ki
m1k'

m , ki
m5~k0,0,0,k3!, k'

m5~0,k1,k2,0!.
~A1!

In the same manner, tensors can be decomposed, e.g.gmn

5gi
mn1g'

mn . With respect to each subspace, we easily fi
the unique orthogonal vector to a given one:

k̃i
m5~k3,0,0,k0!, k̃'

m5~0,k2,2k1,0!. ~A2!

Following Urrutia@21#, the polarization tensor for the speci
field configuration can be written as

Pmn~kuA!5
a

2p E
0

`ds

s E
21

1 dn

2 H e2 isf0
zz8

sinz sinhz8

3@~gmnk22kmkn!N01~gi
mnki

22ki
mki

n!N1

1~g'
mnk'

2 2k'
mk'

n !N22~ k̃'
mk̃i

n1 k̃i
mk̃'

n !N3#

1c.t.J . ~A3!

The electric and magnetic field strengthsE,B are contained
in the variableszªeBs and z8ªeEs. The exponentf0 is
given by9

f0ªm21
ki

2

2

coshz82coshnz8

z8sinhz8
1

k'
2

2

cosnz2cosz

z sinz
.

~A4!

The functionsNi read10

N05coshnz8 cosnz2sinhnz8 sinnz cotz cothz8,

N152 cosz
coshz82coshnz8

sinh2z8
2N0 5:Ñ12N0 ,

a 9This formula has been misprinted in Ref.@21#.
10N3 differs from Urrutia’s findings by a minus sign, since h

considersparallel E- andB-fields.

FIG. 3. Diagrammatic representation of the one-loop polari
tion tensor. The fermionic double line represents the coupling to
orders to the external electromagnetic field.
1-14
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N252 coshz8
cosnz2cosz

sin2z
2N0 5:Ñ22N0 ,

~A5!

N352
12cosz cosnz

sinz

coshnz8 coshz821

sinhz8

1sinnz sinhnz8,

where we have incidentally defined the functionsÑ1,2 for
later use. The determination of the contact term correspo
to a charge and field strength renormalization and yields

c.t.52e2 im2s~12n2!~gmnk22kmkn!. ~A6!

Now, one can show@37# that the Lorentz invariant form
of the polarization tensor for arbitrary constant electrom
netic fields can be completely reconstructed from the spe
form given above for anti-parallel electric and magne
fields. This is achieved by, first, a one-to-one mapping
tween Urrutia’s scalar variables (ki

2 ,k'
2 ,E,B) and a set of

invariants which reduce to Urrutia’s variables in the spec
system:

a→B, b →2E,

zk→2E2ki
21B2k'

2 , k2→ki
21k'

2 . ~A7!

The inverse map is obtained by a simple calculation;
non-trivial relations are

ki
2→ a2k22zk

a21b2
, k'

2 →b2k21zk

a21b2
. ~A8!

Secondly, the reconstruction requires a one-to-one map
between Urrutia’s tensor structures in Eq.~A3! and Lorentz
covariant tensors which reduce to Urrutia’s in the spec
system. For this, we need to introduce the following defi
tions. First, we employ a set of four linearly independe
4-vectors:

km, Fkm[Fmaka , F2km[FmaFabkb,

!Fkm[!Fmaka . ~A9!

From these, we construct the 4-vectors:

v i
m
ª

1

a21b2
~a !Fkm2b Fkm! → k̃i

m ,

v'
m
ª

1

a21b2
~b !Fkm1a Fkm! → k̃'

m ,

~A10!

where the subscriptsi and' are to remind us of the meanin
of v i andv' in the special Lorentz system~longitudinal and
transversal part ofk̃). Incidentally, they obey the relation
@cf. Eq. ~A8!#
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v i
25v i

mv im52
a2k22zk

a21b2
,

v'
2 5v'

mv'm5
b2k21zk

a21b2
, v i

m v'm50. ~A11!

Finally introducing the projectors

P0
mn
ª

1

k2F2Fzk

k2
1G 22S zk

k2D 2G
3S F2km1

zk

k2
kmD S F2kn1

zk

k2
knD ,

Pi
mn
ª

v i
mv i

n

v i
2

, P'
mn
ª

v'
mv'

n

v'
2

, ~A12!

which satisfy the usual projector identities,P0,i ,'
2 5P0,i ,' ,

P0,i ,'
m

m51, we can establish the one-to-one mapping:

2v i
m v i

n→~gi
mnki

22ki
mki

n!,

v'
m v'

n →~g'
mnk'

2 2k'
mk'

n !,

Qmn
ªv'

m v i
n1v i

m v'
n →~ k̃'

mk̃i
n1 k̃i

mk̃'
n !, ~A13!

k2@P0
mn1Pi

mn1P'
mn#→~gmnk22kmkn!.

In the third line, we have defined the objectQmn, which is
neither a projector nor orthogonal to thePi ,'

mn ’s but orthogo-
nal to P0

mn.
We are finally in a position to transform the polarizatio

tensor for the parallel field configuration into its generaliz
form for arbitrary constant electromagnetic fields:

Pmn~kuA!5P0 P0
mn1P i Pi

mn1P' P'
mn1Q Qmn,

~A14!

whereP0,i ,' andQ are functions of the invariants and rea

5
P0

P i

P'

Q
6 5

a

2p E
0

`ds

s E
21

1 dn

2 F e2 isf0
eas ebs

sineassinhebs

35
k2N0

N0v'
2 2Ñ1v i

2

Ñ2v'
2 2N0v i

2

2N3

6 1c.t.G . ~A15!

Substituting the invariants into Eqs.~A4! and~A5!, the func-
tions Ni andf0 yield
1-15
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f05m22
v i

2

2

coshebs2coshnebs

ebssinhebs

1
v'

2

2

cosneas2coseas

eassineas
,

N05coshnebscosneas

2sinhnebssinneascoteascothebs,

Ñ152coseas
coshebs2coshnebs

sinh2ebs
,

Ñ252coshebs
cosneas2coseas

sin2eas
,

N352
12coseascosneas

sineas

3
coshnebscoshebs21

sinhebs

1sinneassinhnebs. ~A16!

The scalarsv i ,'
2 are given by certain combinations of th

invariants and can be found in Eq.~A10!. The contact term
given in Eq.~A6! contributes equally to theP i ’s,

c.t.52e2 im2sk2~12n2!, ~A17!

but does not modify the functionQ, which is already finite.
Note that Eq.~A14! almost appears in a diagonalize

form except for the termQ Qmn. While P0
mn indeed projects

onto an eigenspace ofPmn with eigenvalueP0, this is gen-
erally not the case for the projectorsPi ,'

mn , due toQ Qmn.
Although a further diagonalization is straightforward, w
will not bother to write it down, since we only need the tra
of Pmn, which is simply given by

Pm
m5P01P i1P' , Qm

m50. ~A18!

In the actual two-loop calculation, the contact terms can
omitted for two reasons: first, it does not contribute to t
thermal part, since the latter is finite; secondly, for the ze
temperature Lagrangian, a renormalization procedure is
quired anyway and, in particular, the mass renormaliza
would not be covered by an inclusion of the contact term

Inserting Eq.~A15! into Eq. ~A18! brings us to the ex-
plicit representation of the trace:

Pm
m5

a

2p E
0

`ds

s E
21

1 dn

2

e2 isf0

a21b2

eas ebs

sineassinhebs

3@zk~Ñ22Ñ1!1k2
„2N0~a21b2!1b2Ñ21a2Ñ1…#.

~A19!

This is the desired expression which is required in Eq.~11!.
For reasons of convenience, it is useful to rewrite the fu
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e
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tion f0 in terms of the variablesk2 and zk . For this, we
insert Eq.~A10! into the first line of Eq.~A16!; a reorgani-
zation yields

e2 isf05e2 im2s e2Az zk e2Ak k2
, ~A20!

where we implicitly defined

Azª
is

2

1

a21b2 S cosneas2coseas

eassineas

1
coshnebs2coshebs

ebssinhebs D ,

~A21!

Akª
is

2

1

a21b2 S b2
cosneas2coseas

eassineas

2a2
coshnebs2coshebs

ebssinhebs D .

~A22!

This provides us with the required necessities for the tw
loop calculation in Sec. II.

APPENDIX B: FINITE-TEMPERATURE COORDINATE
FRAME

In order to make the paper self-contained, we briefly
view the construction of the finite-temperature coordin
frame as introduced in@9#, and then apply it to the presen
problem.

First, we define thevierbein eAm which mediates between
the given system labeled bym,n, . . .50,1,2,3 and the de-
sired system labeled by the~Lorentz! indices A,B, . . .
50,1,2,3 by

e0
m
ªum,

e1
m
ª

uaFam

AE ,

e2
m
ª

1

Ad
~uaFabFbm2E e0

m!,

e3
m
ªeabgm e0a e1b e2g , ~B1!

where the quantityd abbreviates the combination of invar
ants:

dª2FE2G 21E 2. ~B2!

The vierbein satisfies the identity

eAm eB
m5gAB[diag~21,1,1,1!, ~B3!

wheregAB;gAB denotes the metric which raises and lowe
capital indices. By a direct computation, we can transfo
the field strength tensors and the heat-bath vector:
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nA
ªgABeB

m nm5~T,0,0,0!,

FABªeAmFmneBn5S 0 AE 0 0

2AE 0 Ad/E 0

0 2Ad/E 0 2G/AE
0 0 G/AE 0

D . ~B4!

Obviously, the new system corresponds to the heat-bath rest frame with the spatial axes oriented along the electro
field in some sense. The components of the field strength tensor are now given by combinations of the invariants.

In order to determine the form ofzk5kmFmaknFn
a[2kAFACFC

BkB, we need the square of the field strength tensor:

FAB
2 [FACFC

B5S 2E 0 Ad 0

0 E2
d

E 0 2
AdG
E

Ad 0 2
G 21d

E 0

0 2
AdG
E 0 2

G 2

E

D . ~B5!

This allows us to writezk in the form

zk5E ~k0!222Ad k0k21~2F1E! ~k2!21S d

E 2ED ~k1!212
AdG
E k1k31

G 2

E ~k3!2, ~B6!

wherek0,k1,k2,k3 represent the components of the rotated momentum vectorkA5eA
mkm.

Now we can finally determine the desired form for the exponent in Eq.~16! in terms of finite-temperature coordinates:

Azzk1Akk
25„Ak1~a22b21E!Az…S k22

AzAd

Az~2F1E!1Ak
k0D 2

2
~Ak1a2Az!~Ak2b2Az!

Ak1~a22b21E!Az

~k0!2

1S Az

a2b2

E 1AkD S k31

Az

AdG
E

Az

G 2

E 1Ak

k1D 1
~Ak1a2Az!~Ak2b2Az!

Ak

a2b2

E 1Ak

~k1!2, ~B7!

where againk0,k1,k2,k3 represent the components ofkA.
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