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Casimir energy of massive MIT fermions in an Aharonov-Bohm background
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We study the effect of a background flux string on the vacuum energy of massive Dirac fermiong in 2
dimensions confined to a finite spatial region by MIT boundary conditions. We treat two admissible self-
adjoint extensions of the Hamiltonian and compare the results. In particular, for one of these extensions, the
Casimir energy turns out to be discontinuous at integer values of the flux.

PACS numbgs): 03.65.Bz, 02.30-f, 12.39.Ba

[. INTRODUCTION continuity of the Casimir energy as a function of the flux
depend on the mass underlining its crucial importance.
In a by now classic paper, Aharonov and BoHti Moreover, we will analyze two possible self-adjoint ex-

pointed out that even a locally trivial vector potential cantensions, both known to be compatible with the presence of a

give rise to observable effects in a nontrivial topology. SincePirac delta magnetic field at the origii28]. Treating the

then, the relevance of Aharonov-Bohm scenarios both in par2/'9'n as ,?n expludedfpg_lr;t, d|ffere;]nt ;elf-aq1§|nt (ra]xtensmns

ticle physics and condensed matter has been recognized. 3¢ man! estations of dif erent_ physics within the vortex
phy 9 (considered as a black bpp8]. It is well understood that the

More recently, much attention has been paid to the inclu- o . .
sion of spin, mainly in connection with the interaction of parameter characterizing the self-adjoint extension together

cosmic strings with mattdi2—6]. In this context, the need to with the flux determine the Hamiltonian outside the vortex
consider self-adjoint extensions of the radiai Dirac Hamil-[8]' As a result, the Casimir energies obtained for different
tonian was realize7.g] self-adjoint extensions are quite different emphasizing again

Thereafter, the vacuum properties of Dirac fields in thethat they describaontrivial physics in the core, see also Ref.

. 8].
background of a singuld®—14] as well as extendeld 5,16 [ L .
magnetic flux string have been extensively studied. The sca- The organization of the paper is as follows. In Sec. Il we

lar field and the electromagnetic field have also been consice-mmarize _the g_enerallt|es Of. the model._ In Sec. Ill, we
ered, some pertinent references being Refé—20. present a discussion of self-adjoint extensions distinguished

As is well known, the presence of background 1Eieldsby the behavior of the wave function at the origin. We de-

modifies the energy spectrum giving rise to a nontriviaI;E(:"rm'?e the enﬂ%y elgerltfunqtlons _clfﬁrref'sptondmg to tWQ .d'f'l
vacuum, or Casimir, energj21,22. Furthermore, the Ca- erent cases of these extensions. The first one is a minima

simir energy is altered by the presence of boundaries, and trfgxerggnce e_xterj:;_on.hés tsr&(_)vsv_n In Rtf%'(zﬂ’ It arlze_ts
consequent imposition of boundary conditions on the quan\—N en imposing Allyah-Fatodi-singér boundary conaiions

tum fields. For Dirac fields, many examples of both situa- 2934 at a finite radius, which is then shrunk to zdem
tions have been studied in the literatusee, for instance, idea first suggested if85]). The second one follows from

Refs.[16,23—25) the zero radius limit of a cylindrical flux shd2,5,6]. In Sec.

In par'éicular the combined effect of a classical magnetic'v' the implicit equations for th_e energy spectrum are four_ld
fluxon and MI'I: boundary conditions on the vacuum energ))n both cases, once the theory is confined to a circle of radius
of a massless Dirac field in42L dimensions was treated in Rand MIJ] conqmons(s(;ae,tf;)r: mst?nge, Eeﬁ?’g]’ anq_rr]ef—
Ref.[26]. There, just one of the possible self-adjoint exten-Erences ere)mmpqsg at tne exterior boundary. 'ne ex-
sions of the radial Hamiltonian was considered. pression OT the_ Cas_|m|r energy for both types_, of behavior at

In this paper, we will consider the more realistic case of.th‘f’t.or'g:')’n7 |s4g|v|ensln trl/e frameV\iorIi Q{r—]functmn regular-_
massive fermions. In this context, it is important to mention'& ion[37-40. In Sec. V, we evaluate the vacuum energies,

that, despite general belief, in the presence of curved bouncist—)IIOWIng the methOd.S devgloped [26,41-43,27. Finally,
aries the effect of a mass is not exponentially sid] as it ec. VI contains a discussion of the results.

is for parallel plate$22]. On the contrary, in some situations Il. SETTING OF THE PROBLEM

it might even lead to a sign change in the Casimir force and

is by no means negligiblg27]. In the present context, we We study the Dirac equation for a massive particle in (2
will see that properties such as existence of a minimum or-1)-dimensional Minkowski space:
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(i—A—m)Ww=0 (1) H. 0
(0 H_)‘I’E:E‘I’E: (6)

in the presence of a flux string located at the origin, i.e.,

where the two-by-two blocks are given by

Tm L'
where k=®/27 is the reduced flux. H.= L +m)/’ @)

We assume the flux string to be radially symmetric; so, a
gauge can be chosen such that tbevarian} vector poten- and we have introduced L=—ie'?(—4,+B), LT
tial is given by =ie %(9,+B), B=—(ilr)d,— «/r. (Notice that these two
“polarizations” correspond to the two inequivalent two by
for r>0. (3)  two irreducible representations of the gamma matri€¢s
The general solution to E@6) can be written as a com-

bination of
el w2 o

A=YAA= a8, @

K
A()( r ) = F ’
We will consider the chiral representation for the Dirac ma-
trices

Y=ps®o3, Y'=ips®o,, Y=—ips@oy, (4
with
which, together with
Yi=ip,® g, (5) H.yg=Eyg . ©)

give a closed Clifford algebra. After separating variables, and for noninteger=|+a
Then, the eigenvalue equation for the Dirac Hamiltonian(wherel is the integer part of the reduced flux, aadts
takes the form fractionary pary, the eigenfunctions in Eq6) turn out to be

> fr(ren’ > (A (k4B I, (kr))en?
n=—o n=—owo
- . N A
2 ga (e Y i e (AdIn (KN =B d (k) el
\PE(raa)z 0 = 0 3 (10)
> fa(ren’ > (A7 J (kr)+B, 3, n(kr))en?
n=-—oo n=—o

n;w On (I’)el(n+1)0 n;w —1 ﬁ(An Jn+1-«(kr)—B, J,(fnfl(kr))e'(r'*l)”

=+

7T+®
4 2

wherek= + [(EZ—m?). (Of course, for integek, a linear o o
combination of Bessel and Neumann functions must be iHlim (mr)=~ g (r)sin|
taken) r—0

. T 0F
lll. BEHAVIOR AT THE ORIGIN = r"mo(mr)afl_(r)cos(z + 7) (12)
As is well known[2,7,8], the radial Dirac Hamiltonian in

the background of an Aharonov-Bohm gauge field requires a
self-adjoint extension for the critical subspatel. In fact, Here, ®* parameterize the admissible self-adjoint exten-
imposing regularity of all components of the Dirac field at sions of H. respectively. Which of these extensions to
the origin is too strong a requirement, except for integer fluxchoose depends on the physical situation under study.
Rather, one has to apply the theory of Von Neumann defi- Throughout this paper we will, for noninteger consider
ciency indiceg44], which leads to a one-parameter family of two different behaviors at the origin. The first one, from now
allowed boundary conditions], characterized by on called behavior I, is characterized by
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77 1 A J_a(kr)e'?
~5 for a= X

. k .
0~ = - 1 (12 —i ﬂArJl_a(kr)eN'“)"
— for a<sz. vlir g)= .
2 2 e(r-6) A (kr)e'?
As shown in Refs[23,24], this is the extension arising ok i1+1)0
when boundary conditions of the Atiyah-Patodi-Singer —IEr A di-alkne
(APS) type[29—34 are imposed at a finite radius, which is
then taken to zero. The second self-adjoint extension we will f <£ 1
consider, from now on called behavior Il, corresponds to or a 2° 17

It is easy to see that this extension satisfies the condition

- = > o . : : . )
. for x>0, of minimal irregularity (the radial functions diverge as
07=3 _ (13) 0 at most as P, with p<2%). Moreover, it is compatible
) for «<O. with periodicity in «, a natural requirement when the origin

is an excluded point.
When behavior Il is imposed at the origin, the eigenfunc-

As shown in Ref.[5], this extension arises when a finite . . . .
[5] fions in the critical subspace are given by Ej6) for «

radius flux tube is considered, thus asking for continuity o db ; ) h ooint h
the components of the spinor, and then shrinking the radiu 0_' and by Eq(17) for x<0. It is wort ppmtmg out t at.
to zero. or integerx=1, both APS boundary conditions and the fi-

Outside the critical subspace, the eigenfunctions in Eqnite radius flux tube lead, when taking the singular limit, to

(10) are determined by the requirement of square integrabilzhe r_equirement of regularity of all components at the origin.
ity at the origin, and are thus identical for the behaviors I and" this case

[l. They are given by

BrT‘]Ha—n(kr)eine

imB:JHa—n—l(kr)ei(m—l)g
wE="Y(r,0)= . 14
= (RO Bou, (kne ey

imBEJHa—n—l(kf)ei(””)H
and

A;Jn—l—a(kr)eing

Kk .

—i e Addna g i—a(kn)el DY
\I,n>|+l r,0: )
e ROT1 ALu, (ke

Kk - i(n+1)6

_ImAan+l—l—a(kr)e

(19

In the critical subspacen=1), the eigenfunction for be-
havior | is given by

B, Ja(kr)e'?

B Jay(kr)elt D’

! =om f !
r.o)=| _- i or a=,
e(r.6) B, Ja(kr)e'? 2
|meJa_1(kr)ei('“)"
(16)
and

Ay Jn_ o(kr)en?

k .
—i e A dna g (ke DY

We(r,0)= >

n=—o

An Jn- (kr)en?

k .
i E+ mAr:‘]nJrl*K(kr)el(rH—l)a

(18

IV. THE THEORY IN A BOUNDED REGION: ENERGY
SPECTRUM AND CASIMIR ENERGY

From now on, we will confine the Dirac fields to a
bounded region, by introducing a boundaryratR, and
imposing MIT bag boundary conditions. The Casimir energy
is formally given by

1
EC:_E

2 B~ 2 Bl

E>m <-m

(19

where p represents all indices appearing in the eigenvalue
equation that arises after local MIT conditions are imposed.
In doing so, one must consider a boundary operBtahich,
with the representation of the Dirac matrices given in Eq.
(4), is also block diagonal, and can be written as

O2x2
B_

B.

02><2

B=1—im:1+i(yln1+y2n2)=< ) (20)

wheren is the exterior normal and

S

1

1

Tie'? @D
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Consider, in the first place, behaviofll) for a=1/2 («
>0). Then, the eigenvalue equations for the upper po-
larization are

PHYSICAL REVIEW D61 085019

) 2m
(kR =301 a(kR)+ == Jn-a(kR)Jy41-a(kR) =0

for n=1,... >, (31b)
k
IniakR)= g -In-1+a(kR)  for n=1,...2, (220  when a=1/2 (x>0) while, for a<1/2 (k<0), the first
equation in Eq(31) holds forn=1, ... »~ and the second
_ one applies fon=0, ...
Jo_a(kR) = Joi1—a(kR) for n=1,..., (23 Of course, a regularization method must be introduced in
E-m . . ;
order to give sense to the divergent sum in B). In the
. " framework of the{ regularization 37,38 (for several appli-
coming from noncritical subspaces, and cations see Ref§39,40).
_k 1
s——1/2
from the critical one. 1 K2+m32\ ~°
The eigenvalue equations corresponding to the lower =——M lim 22 5 , (32
(—) polarization are 2 o ip X M
_ where the parametay! is introduced for dimensional rea-
Jnra(kR)= m\]n,lm(kR) for n=1,...0°, (25  sons.
Here, it is useful to define the so-called partial zeta func-
K tion
Jn,a(kR)Z mJnJrl,a(kR) for n=1,... 0, (26)
£,(9)= 22 (K2, +m?)~s, (33
from noncritical subspaces, and
_ wherek,, | are the roots of
Ja(kR) = =~ Ja-1(kR), 27
J2(kR) =32 _1(kR)— J L(KRJ,_1(kR)=0. (34

from the critical one.
For a<1/2 (xk<0), the contributions from noncritical
subspaces are the same, while those due=tb are

J-a(kR)= = J1-a(kR), (28
for the upper polarization, and
(kR =g J1-a(kR), (29

for the lower one.

It is easy to verify that positive energies coming from one

So, after introducingg=n+3% and a=a—3, the Casimir
energy for the behavior | at the origin can be written, for any
a, as

Ec=—sM lim M2
2 s——1/2

XU > [ a9+ a9 Luoal(S) |

v=15302, ...
(35

while for the behavior Il at the origin, it is given by

polarization correspond to negative energies coming from

the other. Thus, both polarizations give identical contribu-E'é= -=M

tions to the Casimir energy in EL9).
Then, the formal expression for the Casimir ene(@®) is

1
Ec=- 522 (K+m*)™ (30
k
wherek denotes the solutions of
2 2 m
Jhsa(kR) =J7_ 1 a(kKR) — TJn+a(kR)Jnfl+a(kR):0

(31a

lim m?2s
s——1/2

2

S

[{vra(S)+ 80— alS)]= 12 sgne)alS) | -
v=1/2312, ...

(36)

From Eq.(35) it is clear that, as mentioned before, the
Casimir energy for a behavior of type | at the origin is inde-
pendent of the integer pdrobf the reduced flux. Moreover, it
is invariant undeowr— — « (a—1—a). Thus, it is enough to
study it for 0<a<3, where the absolute value in the last
term can be ignored, and to uBg(«)=Eg(— a).
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Similarly, from Eq.(36), the Casimir energy for behavior
Il is seen to be invariant undar— — k. Thus we only study
the casex>0, where the last term is agaifi,,_,(s) and
—i<a<} is considered.

V. EVALUATION OF THE CASIMIR ENERGY

The Casimir energies in Eq§35) and (36) contain two
contributions: the term inside the square brackets, which i
summed overv, and the last term, which is a partial zeta
function. In both cases, it is useful to introduce, as in Refs
[26,41,42, an integral representation for the partial zeta
function

sinws
{u(s)=2 -

o d
2s 2__527-s
R Jz dx[x“—z7] dxln

X[x 2 DF (0], (37

where

T(u,x,2)= dixln[x‘z(“‘l)F#(x)]

1+z—

z+2d,(x)+ —

PHYSICAL REVIEW D61 085019

) 5 2z
FM(X):IM(X)+|M71(X)+YIM(X)I#,]_(X), (38)
which have to be summed according to E(5) and (36).
Here, the dimensionless variable=mR has been intro-
duced.

In order to identify the divergences and evaluate the finite
parts of the terms in Eq$35) and(36) an analytical continu-

gtion of the zeta functiorf(s) to s=—3 has to be con-

Structed. A method of doing this has been developed in Ref.
[43] and for details of the procedure we refer to this refer-
ence. For the part of the zeta functions involving the angular
momentum sum the method consists of adding and subtract-
ing several orders of the uniform Debye expansion of Eq.
(38) so as to make the sum as well as the integral in Egs.
(35), (36), and(37) well defined in an increasing strip of the
complex s-plane. For the partial zeta function, subtracting
and adding the asymptotic terms for large arguments of the
Bessel functions will be sufficient.

Let us first study the terms summed ouer By making
use of the recurrence relations for Bessel functions, it is im-
mediate to obtain

1/u

2
;) zd(x)

M

Cplx 2 9

)

_|_

2
2
ﬁ) r+
X

whered ,(x) =x(d/dx)In1,(x). This expression can be de-
veloped in powers of 1/, through the Debye expansion of quent sum overv, absolutely convergent =

Bessel functions, after takingu(x) = /\/1— 72, with 7 the
variable of the recursive polynomialg(7) [45].

"

2 2
ol o+ 2|

5 : (39
) zd, (X) + Lp?( /%) %d2 ()

x| =

)%

In order to make the integral in E€41), and the subse-
1 . .
—3, Itis
necessary to takbl=2 [43]. We will chooseN=4 to im-
prove the convergence of the sum of the analytic tétd),

If DN (u,x,7,2) is such an expansion up to the order thus decreasing the computational time needed to get accu-

1/uN, the partial zeta function can be written as

£,(8)=L3(9)+L5(s), (40)
where
sinws o
{z(s)=2—7_r stf dx[x?—z%]"
X[T(w,x,2) =DM (u,x,7,2)] (41)

is the analytic part of the partial zeta function fo= — 3,
while

sinms ®
- stf dx[x>— 221 SDMN(w,x,7,2)
z

(42

{(s)=2

is the asymptotic contribution.

rate numerical results.

Now, the term in square brackets in Eq435) and (36)
involves the combinatiod, , ,(s) +¢,_,(S). In order to use
previous results of Ref25] we further expand in powers of
1/v. We introduce the corresponding combination of
asymptotic expansions

14

o o
AN, x,t,2)=DMN| »| 1+—|,x,t| 1+ —
14 14

zatZ o —-1/2
” (l‘l‘z) ,Z)
o (64
NI
14 14

-5 )

X1+

+D(N)(v

2at?

X[l— (43)
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expanded up to the orderidy. In the above expression
= vl VP +X2.
The asymptotic expansion can be written as

N

AN xt,2)=A_1+Ag+ 2, A, (44)
i=1
where
C4x t A 2x 2
T T AT T
1 2i "
i=——2 bt 1, (45)
V

and the coefficienty; ;) are listed in Appendix A.
Then, the term inside the square brackets in E8f.and
(36) can be written as

lim M?SE [£0salS)+ 0 u(S)]
s——1/2 n=
N—1
=z(—— + lim MZS(A_l(s)+Ao(s)+Z Ai(s) |,
2] i =1
(46)
where
z(-%)— wl\z/anf J dX[x2— (2?14 T(v+ a,x,z)
+T(v—a,x,z)— AN (v,x,t,2)}, (47)
A_y(s)= -2
2_
X—Vl”LXXl, (48)
Ao(s)=2£7:rsR25220 Zmdx[(vx)z—zz]’s
1 J1+x°-1
xm < : (49

. 2i o0
SINTsS [
A= 2R by S v [, a2
™ i=o “n=o0 z

dl 1 'Y
X i N (50

Equations(48), (49), and(50) can be expressed in a system-
atic way by introducing the functior25]

PHYSICAL REVIEW D61 085019

0

f(s;a,b;x)= 2

, (51

Z}Sb

studied further in Appendix B, which allow one to write the
asymptotic parts as

I's—=

2R25 2) 1dy 1

1(s)= —z 23*1f —f(s;o,——;z )
(52)

I's+z
2R% 2 1dy 1
- _ 7 5-2s-1 7 .
Aq(S) \/; (s Z fo ySIZf(s,l,Z,z\/?),
(53
2i
Ai(S):JZO b j)Ai.p(S), (54)
where
F( i+]
S+ —— -
2 B R
Agi jy(s)=—2R*z" ('ﬂ)r ] ; z 2Sf(s;1,7;z
2 )1
(595
The complete expressions for these asymptotic parts
arounds= —  are derived in Appendix C. Here, we list their

residues, which will be relevant to the discussion of the
renormalization in the next section:

Regs- 1A 1=0, (568
122 1
Regs- _ 1/2Ao=§ P + om | (56b)
Regs—_ 1/2A1=0, (560
5 A S1f1 1 a® z . z 7
-1 RlEa T2n w4t m 2]
(560
Next, we study the partial-zeta contribution
1 H 25|
e=—5M Iim M=[—{y_,(9)] (57)

2 s——1/2
to the Casimir energy in Eq$35) and(36), and for reasons
already given we omit the absolute value in the index.

In order to isolate the singularities, it is enough to con-
sider the three leading terms in the asymptotic expansion of
Bessel functions for large arguments, which will be denoted

by L(3— a,x,2); thus, the partial zeta function can be writ-
ten as

Cuo- o) = G o)+ L o(S), (58)
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where

a sinws
{1-a(8)=2 -

RZSJ dx[x?—z%]"*
z

X|T , (59

1 L 1
E—a,X,Z - E—a,X,Z

q sinms (= s o oig |1
§1,2_a(s)=ZTR Sf dx[x“—z°] 5L 5 aXz].
z

(60)
Now, the subtracted terms can be written as
1
L E_a,X,Z):50+61+52, (61)
where
1 1
50:2, 512—2a, 52:_(61’2_2). (62)
X X2
Then
lim M2, .(S)=2| —=|+ lim M2
s——1/2 2] s
X[ag(s)+ai(s)+ay(s)], (63
with

1 2 (= 1
) 2_ 27112 -
z( 2) ~MRJ, dx[xc—2z7] [T(2 a,X,Z

—L

1
E—a,x,z)], (64)

which will be evaluated numerically, and

(21 22l 0 tod 2
W=R! 77 1) w1210 5R
s+=
2
1
+O(S+§ , (65)
1 1
al(s)=§ 2az+0 s+§ , (66)
1, 1 1 1
az(s)zﬁ(a —-2) - ot
(S+§
X|2+21 2 0] ! 6
+2log 55| [+O|st 5] (67)

So, the residues &= — 3 are given by

PHYSICAL REVIEW D61 085019

-0.02
-0.04
-0.06

Ed

-0.08

-0.1
-0.12
-0.14

0 02 04 0.6 0.8 1
a

FIG. 1. DifferenceEy of Casimir energies. Behavior | at the
origin. Top to bottomz=133,5,%.5,3.

2

1|z
Regs- 11280= 5| | (683
Regs-— 1/,8,=0, (68b)
1 a® z
Regs- - 128255/ T~ + it (680

VI. DISCUSSION OF THE RESULTS

Clearly the Casimir energy is divergent and using Egs.
(56) and Eqgs(68) in Egs.(35) and(36), the total residue is
given by

1 z 7
Reéfs:flIZEC:_ﬁ 2 1 2| (69)

which is independent of the flux. Thus, the difference be-
tween Casimir energies with arbitrary and with integer flux is
finite and contains the relevant information about the effect
of the flux.

In Fig. 1, we plot the dimensionless differende,
=RE(a)—Ec(0)] for a behavior of type | at the origin, as a
function of a (the fractionary part of the reduced flxor
different values ofz. Since the finite part of the Casimir
energy is continuous ig, the difference goes to zero both at
a=0 anda=1. It shows a minimum aa=3 as well as a
jump in the derivative. This jump can be traced back to
a,(s), Eq. (66), which effectively contains the absolute
value|a| [see comment below E¢36)]. It is interesting to
note, that aroun@=0, the vacuum energy decreases when
the flux grows and that this effect is enhanced with increas-
ing mass.

For a type Il behavior at the origin, the same difference is
plotted in Fig. 2. With decreasing mass our curves tend to the
m=0 result of Ref.[26] and alreadyz= 135 Shows quite
good agreement with the corresponding figure in that refer-
ence(except for a factor of 2, due to the fact that only one
polarization was considered in R¢R6]).

Whereas for small values of the mass the energy exhibits
a minimum ata# 0, for larger values om this minimum is
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0Ff arises by imposing APS boundary conditions at a finite ra-
dius which is sent to zero afterwards. Equatidd) results
-0.1 } when a finite radius flux tube is considered with no physics
(e.g., potentiglinside the flux and the finite radius taken to
02 | zero. Given the fact that different extensions arise from dif-
3 ferent physical setups, the dependence of the Casimir energy
03 | on ® seems very reasonable. This dependence has already
been observed when considering the scattering cross section
-04 | [2,8].
As a consequence of the mass, in the case of the self-
05 | adjoint extensiorni13), a discontinuity of the energy is found.
T 02 0.4 06 08 7 It would be interesting to see how this effect comes about,

a starting with the finite radius fluk5] and shrinking the ra-
dius to zero. Does the effect persist or is it only a result of
the singular vortex? The same question arises for the jump in
the derivative of the Casimir energy which appears for all
massesn in case | and fom=0 in case Il. We think that in
shifted towardsa=0. Furthermore, form#0 a nonzero all cases the idealized situation of a singular flux is the origin
value is seen to arise f@—0". This is due to the discon- of this behavior. This conjecture is supported by the fact that
tinuous behavior of the finite part of the vacuum energy,no such features were observed in the nonsingular cases
more precisely of the contribution of the critical subspace, af16,20, where, however, no boundary was present. Further-
integer values of the flux. more, one should try to understand better the physical mean-
The origin of this discontinuity can be traced back to theing of the different self-adjoint extensions by considering
appearance, fon—0", of a root of the combination of how the Casimir energy depends on the param@tef the
Bessel functions involved in the partial zetg. Such a root one-parameter family of self-adjoint extensions. Finally,
is absent whem=0. Fora—0", this root goes to zero and, more realistic (3+ 1)-dimensional calculations should be en-
thus, gives rise to a gap, which equals The quantity visaged.
J2(kR)—J2_,(kR) — (2m/k) J,(kR)J,_1(kR) is shown in
Fig. 3 as a function okR, for various values oé in order to ACKNOWLEDGMENTS

clarify this discontinuous behavior. For=0 the discontinu- _ )
ous behavior turns into a jump in the derivative at integer We would like to thank Stuart Dowker and Horacio Falo-

values ofa [26]. mir for interesting discussions on the subject. K.K. has been
In summary, we have seen that the presence of the massipported by the EPSRC under Grant No. GR/M45726.
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a function of the parameters, namely, flux and mass.
We have clearly shown that the Casimir energy depends APPENDIX A: COEFFICIENTS
strongly on the self-adjoint extension chosen. Although this . i ) o i
might seem surprising, one has to remember that different !N this appendix we list the coefficienty; ;, defined by
values of® describe different physics. For example, ELp) Eq.

FIG. 2. DifferenceEy of Casimir energies. Behavior Il at the

1 2
b(l,O): - E_Za’ +22,
2+
b(1'1)=0,
1t
b 1
1,275
0 ~— &2 6
b(2.0= —(Z),
-1l
1 2
b(2,1): — Z_ a“+2z,
0 0.5 1 15 2 2.5 3

FIG. 3. J2(kR)—J2_,(kR)— (2m/k)J,(kR)J,_1(kR). Top to

1
be2y=7—2
bottom:a=0, 0.001, 0.01, 0.02. (2274
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1 37 392 ) )
b(z,a)zz, b(4,4)=—3—2+—4 —(—4+12a%)z— 277,
.. 327 35a% 49
S o= "6s "8 TE
2 4 3
16 16 1 27z
b =—+5—+——(—+a2 7+ —, o7 21z
G0796 V12 6 |4 3 b(4’6)_E_6a2_T’
bey=—7+2-2% 179
Pan=gs
at 1
b(3yz)zﬁ)—2a2—7—(§—3a2) Z+ZZ, 71
b(4,8):_3_2-
b(gy3):l_22,
23 542 7z APPENDIX B: FUNCTIONS f(s;a,b;x)
bey= "5 7 T Here we are going to provide all analytical properties of
the functionsf (s;a,b;x) defined in Eq(51). As in Ref.[25],
3 we will make use of
bas=— 7.
179 - oo = h(ivte)—h(—iv+e)
b36=5aa: hzfdh —ifd
(36 288 nZO ) 0 vhv) 0 g 1+e2™
1 a® (1 1 z* (B1)
TS I T 2|2 2
b(4y0) 16+ 4 (4+a Z+ 4+a z 5
5 4 5 in the limit e—0.
17 152" 3a 7 9a When applied to
=t —t—— | =+ —|2-2%+2°
bun="g"g T2 ( 8" 2 )z Zre
1 1 1 v\2]t
bag=— 5 —4a*~ ———10a2) +|=—4 2) 2-23, =13 1+| =
) 165 25a° 5a* 15a2 +5z2
“3~64 " "4 a4 |\°T 2 |2 the previous equation gives
a+1l
S a 7 at+1 1 ' - 2 | 7a ! : 2\ —t
f(t,a,O,x)—ngov 14| = =X > 0 +25m(7 fodu1+e2wux( —u?)
[ ma w0 u? ) "
+2si 7—77'[ 1dUm(U -1) . (B2)

Now, we are interested if(s;a,b;x), for arbitraryb. From the definition, it is clear thaft(s;a,b;x)="f(s+b,a,0;x).
However, ad grows, the integrals in EqB2) eventually diverge at=1. In order to avoid such divergences, we will perform
an adequate number of integrations by parts, thus obtaining
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r a+1l a+1l rlt a
f(ta.0:x)= a+1 2 j 2 eiﬂ-a—i_l (_1)812 H t _E jw d a 1 2 1 —t+a/2
(t;a,0:x)=x 5 (0 > Z(a_z)lzoln(’ﬂ) 0 | udug 5.a-1iux (u>-—1)
rlt a—1
em™-1| 1 2 1 a—1
— D I _ 2y —t+(a—1)2
( 5 )2(a_3)/2 (0 joudug( 5 ,a 1,u,x)(1 uc)
w a-1
+(—1)(a*1)’2cos(7-rt)f udug(T,a—l;u,x)(uz—l)”(al)’z} , (B3)
1
|
where
11 1) 1 1
y) — y2n+1 _ S [ —
i f(2n,n;x)=x 5 1 n 2) 5 n+2
b: (1d)® wu B4 s+§
g(a,b;u,x)= Udu Trezex (B4)
1
+ n—z)[lﬁ(l)—lﬂ n+§
However, the number of integrations by parts is bounded
by the requirement that the integrated terms are well behaved
at u=0. In what follows, we will thus keep the number of 1
integrations admissible, by making use of the following re- - n—s
currence relationship:
N e P
2/ "2
1
f(s;a,b;x)zf(s;a,b—l;x)——zf(s;a+2,b;x). (B5) o 1
X XJ’ udugin,2n—1;u,x)(u?—1)2
1
In this way, all the required functions can be reduced to four
different cases 10 s+% ' (B6)
1
f(s;2n,n;x), f(s;Zn,n+§;x), n=0,1,2,3,4,5,6,7,
r +1 r !
1 f| 2n n+£'x =x2nt1 —nﬁ
f(s;2n+1,n;x), f(s;2n+1,n+§;x), 2 I'(n+1)
1 T * )
N=0,1,2,34,56. NI TE D) 1)L udugn,2n—1u.x)
i ing i 1 1
Finally, after expanding in powers &ft+ 5, we get 10l s+ S| [ (B7)
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f(2n+1,n;x)

:X2(n+1)

:
st=| ¢,

1
Xf udugn,2n;u,x)(1-u??+0 5
0

(B8)

1
2n+1n+ =X

f >

1

1

25+ E

1 1

—2(n+1) _
on—2T(n+1)

n 1

X fmudngn,Zn;u,x) — %{1+n+n[z,/;(1)
0

{1+n[y(1)

1 1
—(n+ 1)]}+F T(n+1)
—(n+ 1)]}fwudug(n,2n;u,x)
0

1
s+=| |,

—nf udug(n,Zn;u,x)In|u2—1|]+O 3

0

(B9)

where (x) is the Euler psi function.

These expressions generate all fHfeinctions necessary
for the evaluation of the required(s), fori=1,2,.... No-
tice that, forj=0 andi=1, the prefactol’[s+ (i +j)/2] in
Eq. (55) has a pole as=— 3. Thus, the ordes+ 3 in the
expansion off (s;0,1;x) must be retained,

1 1 o
f| s;0;z;x|=—mX| s+ = 1+2f udug0,—1;u,x)
2 2 1
1 2
+0 s+§ } (B10)

APPENDIX C: EVALUATION OF A_; AND A,

PHYSICAL REVIEW D61 085019

=—1. We will, in the first place, obtain an expression for
A_;in Eq. (52

1
I'lis—%
2R?s ( 2) erq (1Y 1
A9 T+ [0 )

(CD

By using equatioriB2) in the previous appendix, this can be
put in the form

3

325 E —2s+1 lﬂ
G,
1

F(E)F(s—l)

L
572

F(s—
A_q(s)=

1

X E\/?Z

+24yzsin

Xl

1 %
—_ 2_q1y1/2-s
5 s) L du(u“—1) 14 o2

(C2

After interchanging the integrals, one gets

R23272S+2
Aalo=——
4RZSZ*ZS+1 s (UZ_ 1)1/2*8
f du
1 u

* 3
\/;F(S)F(E—s)

X In(1+e 2747

ZRZSZ—ZS
- 3 3
\/;F(S)F(E—s) 24r(§)
. (u2_1)1/2—s
+f du————Liy(—e 2™4% » = (C3)
1 u?

Finally, in this appendix we are going to describe somewhere Li(X)=E;°:1(X”/nj).

details of the calculation of th&;(s), Egs.(52)—(55), ats

Finally, expanding around= — %, one has
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3 w 2_ 1 ®
PSRRRL-< I I N +2coga| st duuue-ny e
R| 3 1222 27?2211 u? 1
«Liy(—e~2min_ - fmd w1 xfld ! Ccé
Io(—e ) 7z, U=y 0 yyl/z(l_{_ezwuz&) ' (C6)
1
Xlog(1+e 2™?)|+0 st5), (C4

o . _ . Now, after analytically extending, and developing around
which is a useful representation for numerical calculations. s= —1 one has

Let us now go to the evaluation &, in Eq. (53),

1
I s+ 22 1 1 z2 1
2R?® 2) o, (tdy 1 Ag(S)= — 1+ “l1+—
Ay(S) NFRRE 4 fo y3/2f(5,1,2 z&) 7R . 1 1222] @R 622
() 2
_ As before, using Eq(B2), and interchanging the integra- 4ol 14 i) Iog(i N ij du
tion order, one gets 1272 2R} wz)o
oR2s,-2s-1 1| ST E) xlog|1—u?|log(1+e 2™ |+ 0| s+ %)
Ao(9) = —— =g
(C7)
2 1 1
X z—lf dT)//z+222f duu(1—u?)~(s+12)
2 s— _) oy 0 where a simple pole appearsst — 3.
2 Clearly, in both cases the finite parts must be evaluated
numerically. We will not go into the detailed calculation of
1 1 . . e .
f y _ the A; for i>0, since it is a direct consequence of the prop-
0o “yYA1+4e?muzy) erties off(s;a,b;x) described in the previous appendix.
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