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Casimir energy of massive MIT fermions in an Aharonov-Bohm background
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We study the effect of a background flux string on the vacuum energy of massive Dirac fermions in 211
dimensions confined to a finite spatial region by MIT boundary conditions. We treat two admissible self-
adjoint extensions of the Hamiltonian and compare the results. In particular, for one of these extensions, the
Casimir energy turns out to be discontinuous at integer values of the flux.

PACS number~s!: 03.65.Bz, 02.30.2f, 12.39.Ba
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I. INTRODUCTION

In a by now classic paper, Aharonov and Bohm@1#
pointed out that even a locally trivial vector potential c
give rise to observable effects in a nontrivial topology. Sin
then, the relevance of Aharonov-Bohm scenarios both in p
ticle physics and condensed matter has been recognized

More recently, much attention has been paid to the inc
sion of spin, mainly in connection with the interaction
cosmic strings with matter@2–6#. In this context, the need to
consider self-adjoint extensions of the radial Dirac Ham
tonian was realized@7,8#.

Thereafter, the vacuum properties of Dirac fields in t
background of a singular@9–14# as well as extended@15,16#
magnetic flux string have been extensively studied. The s
lar field and the electromagnetic field have also been con
ered, some pertinent references being Refs.@17–20#.

As is well known, the presence of background fiel
modifies the energy spectrum giving rise to a nontriv
vacuum, or Casimir, energy@21,22#. Furthermore, the Ca
simir energy is altered by the presence of boundaries, and
consequent imposition of boundary conditions on the qu
tum fields. For Dirac fields, many examples of both situ
tions have been studied in the literature~see, for instance
Refs.@16,23–25#!.

In particular, the combined effect of a classical magne
fluxon and MIT boundary conditions on the vacuum ene
of a massless Dirac field in 211 dimensions was treated i
Ref. @26#. There, just one of the possible self-adjoint exte
sions of the radial Hamiltonian was considered.

In this paper, we will consider the more realistic case
massive fermions. In this context, it is important to menti
that, despite general belief, in the presence of curved bou
aries the effect of a mass is not exponentially small@27# as it
is for parallel plates@22#. On the contrary, in some situation
it might even lead to a sign change in the Casimir force a
is by no means negligible@27#. In the present context, w
will see that properties such as existence of a minimum
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continuity of the Casimir energy as a function of the flu
depend on the mass underlining its crucial importance.

Moreover, we will analyze two possible self-adjoint e
tensions, both known to be compatible with the presence
Dirac delta magnetic field at the origin@28#. Treating the
origin as an excluded point, different self-adjoint extensio
are manifestations of different physics within the vort
~considered as a black box! @8#. It is well understood that the
parameter characterizing the self-adjoint extension toge
with the flux determine the Hamiltonian outside the vort
@8#. As a result, the Casimir energies obtained for differe
self-adjoint extensions are quite different emphasizing ag
that they describenontrivial physics in the core, see also Re
@8#.

The organization of the paper is as follows. In Sec. II w
summarize the generalities of the model. In Sec. III,
present a discussion of self-adjoint extensions distinguis
by the behavior of the wave function at the origin. We d
termine the energy eigenfunctions corresponding to two
ferent cases of these extensions. The first one is a min
divergence extension. As shown in Ref.@23,24#, it arises
when imposing Atiyah-Patodi-Singer boundary conditio
@29–34# at a finite radius, which is then shrunk to zero~an
idea first suggested in@35#!. The second one follows from
the zero radius limit of a cylindrical flux shell@2,5,6#. In Sec.
IV, the implicit equations for the energy spectrum are fou
in both cases, once the theory is confined to a circle of rad
R and MIT conditions~see, for instance, Ref.@36#, and ref-
erences therein! imposed at the exterior boundary. The e
pression of the Casimir energy for both types of behavio
the origin is given in the framework ofz-function regular-
ization@37–40#. In Sec. V, we evaluate the vacuum energi
following the methods developed in@26,41–43,27#. Finally,
Sec. VI contains a discussion of the results.

II. SETTING OF THE PROBLEM

We study the Dirac equation for a massive particle in
11)-dimensional Minkowski space:
©2000 The American Physical Society19-1
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~ i ]”2A” 2m!C50 ~1!

in the presence of a flux string located at the origin, i.e.,

HW 5¹W `AW 5
k

r
d~r !ěz , ~2!

wherek5F/2p is the reduced flux.
We assume the flux string to be radially symmetric; so

gauge can be chosen such that the~covariant! vector poten-
tial is given by

Au~r !52
k

r
, for r .0. ~3!

We will consider the chiral representation for the Dirac m
trices

g05r3^ s3 , g15 ir3^ s2 , g252 ir3^ s1 , ~4!

which, together with

g35 ir2^ s0 , ~5!

give a closed Clifford algebra.
Then, the eigenvalue equation for the Dirac Hamilton

takes the form
b

s

at
ux
efi
of

08501
a

-

n

S H1 0

0 H2
DCE5ECE , ~6!

where the two-by-two blocks are given by

H65S 7m L†

L 6mD , ~7!

and we have introduced L52 ieiu(2] r1B), L†

5 ie2 iu(] r1B), B52( i /r )]u2k/r . ~Notice that these two
‘‘polarizations’’ correspond to the two inequivalent two b
two irreducible representations of the gamma matrices@6#.!

The general solution to Eq.~6! can be written as a com
bination of

CE
(I )5S cE

1

0
D , CE

(II )5S 0

cE
2D , ~8!

with

H6cE
65EcE

6 . ~9!

After separating variables, and for nonintegerk5 l 1a
~where l is the integer part of the reduced flux, anda its
fractionary part!, the eigenfunctions in Eq.~6! turn out to be
CE~r ,u!51
(

n52`

`

f n
1~r !einu

(
n52`

`

gn
1~r !ei (n11)u

(
n52`

`

f n
2~r !einu

(
n52`

`

gn
2~r !ei (n11)u

2 51
(

n52`

`

~An
1Jn2k~kr !1Bn

1Jk2n~kr !!einu

(
n52`

`

2 i
k

E2m
~An

1Jn112k~kr !2Bn
1Jk2n21~kr !!ei (n11)u

(
n52`

`

~An
2Jn2k~kr !1Bn

2Jk2n~kr !!einu

(
n52`

`

2 i
k

E1m
~An

2Jn112k~kr !2Bn
2Jk2n21~kr !!ei (n11)u

2 , ~10!
n-
to

w

wherek51A(E22m2). ~Of course, for integerk, a linear
combination of Bessel and Neumann functions must
taken.!

III. BEHAVIOR AT THE ORIGIN

As is well known@2,7,8#, the radial Dirac Hamiltonian in
the background of an Aharonov-Bohm gauge field require
self-adjoint extension for the critical subspacen5 l . In fact,
imposing regularity of all components of the Dirac field
the origin is too strong a requirement, except for integer fl
Rather, one has to apply the theory of Von Neumann d
ciency indices@44#, which leads to a one-parameter family
allowed boundary conditions@8#, characterized by
e

a

.
-

i lim
r→0

~mr!12agl
6~r !sinS p

4
1

Q6

2 D
5 lim

r→0
~mr!af l

6~r !cosS p

4
1

Q6

2 D . ~11!

Here, Q6 parameterize the admissible self-adjoint exte
sions of H6 respectively. Which of these extensions
choose depends on the physical situation under study.

Throughout this paper we will, for nonintegerk, consider
two different behaviors at the origin. The first one, from no
on called behavior I, is characterized by
9-2
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Q65H 2
p

2
for a>

1

2
,

p

2
for a,

1

2
.

~12!

As shown in Refs.@23,24#, this is the extension arising
when boundary conditions of the Atiyah-Patodi-Sing
~APS! type @29–34# are imposed at a finite radius, which
then taken to zero. The second self-adjoint extension we
consider, from now on called behavior II, corresponds to

Q65H 2
p

2
for k.0,

p

2
for k,0.

~13!

As shown in Ref.@5#, this extension arises when a fini
radius flux tube is considered, thus asking for continuity
the components of the spinor, and then shrinking the rad
to zero.

Outside the critical subspace, the eigenfunctions in
~10! are determined by the requirement of square integra
ity at the origin, and are thus identical for the behaviors I a
II. They are given by

CE
n< l 21~r ,u!5S Bn

1Jl 1a2n~kr !einu

i
k

E2m
Bn

1Jl 1a2n21~kr !ei (n11)u

Bn
2Jl 1a2n~kr !einu

i
k

E1m
Bn

2Jl 1a2n21~kr !ei (n11)u

D ~14!

and

CE
n> l 11~r ,u!5S An

1Jn2 l 2a~kr !einu

2 i
k

E2m
An

1Jn112 l 2a~kr !ei (n11)u

An
2Jn2 l 2a~kr !einu

2 i
k

E1m
An

2Jn112 l 2a~kr !ei (n11)u

D .

~15!

In the critical subspace (n5 l ), the eigenfunction for be-
havior I is given by

CE
l ~r ,u!5S Bl

1Ja~kr !eil u

i
k

E2m
Bl

1Ja21~kr !ei ( l 11)u

Bl
2Ja~kr !eil u

i
k

E1m
Bl

2Ja21~kr !ei ( l 11)u

D for a>
1

2
,

~16!

and
08501
r

ill

f
s

.
il-
d

CE
l ~r ,u!5S Al

1J2a~kr !eil u

2 i
k

E2m
Al

1J12a~kr !ei ( l 11)u

Al
2J2a~kr !eil u

2 i
k

E1m
Al

2J12a~kr !ei ( l 11)u

D
for a,

1

2
. ~17!

It is easy to see that this extension satisfies the condi
of minimal irregularity ~the radial functions diverge asr
→0 at most asr 2p, with p< 1

2 ). Moreover, it is compatible
with periodicity in k, a natural requirement when the orig
is an excluded point.

When behavior II is imposed at the origin, the eigenfun
tions in the critical subspace are given by Eq.~16! for k
.0, and by Eq.~17! for k,0. It is worth pointing out that
for integerk5 l , both APS boundary conditions and the
nite radius flux tube lead, when taking the singular limit,
the requirement of regularity of all components at the orig
In this case

CE~r ,u!5 (
n52`

` S An
1Jn2k~kr !einu

2 i
k

E2m
An

1Jn112k~kr !ei (n11)u

An
2Jn2k~kr !einu

2 i
k

E1m
An

2Jn112k~kr !ei (n11)u

D .

~18!

IV. THE THEORY IN A BOUNDED REGION: ENERGY
SPECTRUM AND CASIMIR ENERGY

From now on, we will confine the Dirac fields to
bounded region, by introducing a boundary atr 5R, and
imposing MIT bag boundary conditions. The Casimir ener
is formally given by

EC52
1

2 S (
E.m

Er2 (
E,2m

ErD , ~19!

where r represents all indices appearing in the eigenva
equation that arises after local MIT conditions are impos
In doing so, one must consider a boundary operatorB which,
with the representation of the Dirac matrices given in E
~4!, is also block diagonal, and can be written as

B512 in”511 i ~g1n11g2n2!5S B1 0232

0232 B2
D , ~20!

wheren is the exterior normal and

B65S 1 6 ie2 iu

7 ieiu 1 D . ~21!
9-3
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Consider, in the first place, behavior I~II ! for a>1/2 (k
.0). Then, the eigenvalue equations for the upper~1! po-
larization are

Jn1a~kR!5
k

E2m
Jn211a~kR! for n51, . . . ,̀ , ~22!

Jn2a~kR!5
2k

E2m
Jn112a~kR! for n51, . . . ,̀ , ~23!

coming from noncritical subspaces, and

Ja~kR!5
k

E2m
Ja21~kR!, ~24!

from the critical one.
The eigenvalue equations corresponding to the lo

(2) polarization are

Jn1a~kR!5
2k

E1m
Jn211a~kR! for n51, . . . ,̀ , ~25!

Jn2a~kR!5
k

E1m
Jn112a~kR! for n51, . . . ,̀ , ~26!

from noncritical subspaces, and

Ja~kR!5
2k

E1m
Ja21~kR!, ~27!

from the critical one.
For a,1/2 (k,0), the contributions from noncritica

subspaces are the same, while those due ton5 l are

J2a~kR!5
2k

E2m
J12a~kR!, ~28!

for the upper polarization, and

J2a~kR!5
k

E1m
J12a~kR!, ~29!

for the lower one.
It is easy to verify that positive energies coming from o

polarization correspond to negative energies coming fr
the other. Thus, both polarizations give identical contrib
tions to the Casimir energy in Eq.~19!.

Then, the formal expression for the Casimir energy~19! is

EC52
1

2
2(

k
~k21m2!1/2, ~30!

wherek denotes the solutions of

Jn1a
2 ~kR!2Jn211a

2 ~kR!2
2m

k
Jn1a~kR!Jn211a~kR!50

for n50, . . . ,̀ , ~31a!
08501
r

-

Jn2a
2 ~kR!2Jn112a

2 ~kR!1
2m

k
Jn2a~kR!Jn112a~kR!50

for n51, . . . ,̀ , ~31b!

when a>1/2 (k.0) while, for a,1/2 (k,0), the first
equation in Eq.~31! holds for n51, . . . ,̀ and the second
one applies forn50, . . . ,̀ .

Of course, a regularization method must be introduced
order to give sense to the divergent sum in Eq.~30!. In the
framework of thez regularization@37,38# ~for several appli-
cations see Refs.@39,40#!,

EC52
1

2
M lim

s→2 1/2
M2sz~s!

52
1

2
M lim

s→2 1/2
2(

k
S k21m2

M2 D 2s

, ~32!

where the parameterM is introduced for dimensional rea
sons.

Here, it is useful to define the so-called partial zeta fun
tion

zm~s!52(
l 51

`

~km,l
2 1m2!2s, ~33!

wherekm,l are the roots of

Jm
2 ~kR!2Jm21

2 ~kR!2
2m

k
Jm~kR!Jm21~kR!50. ~34!

So, after introducingn5n1 1
2 and a5a2 1

2 , the Casimir
energy for the behavior I at the origin can be written, for a
a, as

EC
I 52

1

2
M lim

s→21/2
M2s

3H (
n51/2,3/2, . . .

@zn1a~s!1zn2a~s!#2z1/22uau~s!J ,

~35!

while for the behavior II at the origin, it is given by

EC
II 52

1

2
M lim

s→21/2
M2s

3H (
n51/2,3/2, . . .

@zn1a~s!1zn2a~s!#2z1/22sgn(k)a~s!J .

~36!

From Eq. ~35! it is clear that, as mentioned before, th
Casimir energy for a behavior of type I at the origin is ind
pendent of the integer partl of the reduced flux. Moreover, i
is invariant undera→2a (a→12a). Thus, it is enough to
study it for 0,a, 1

2 , where the absolute value in the la
term can be ignored, and to useEC

I (a)5EC
I (2a).
9-4
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Similarly, from Eq.~36!, the Casimir energy for behavio
II is seen to be invariant underk→2k. Thus we only study
the casek.0, where the last term is againz1/22a(s) and
2 1

2 ,a, 1
2 is considered.

V. EVALUATION OF THE CASIMIR ENERGY

The Casimir energies in Eqs.~35! and ~36! contain two
contributions: the term inside the square brackets, whic
summed overn, and the last term, which is a partial ze
function. In both cases, it is useful to introduce, as in Re
@26,41,42#, an integral representation for the partial ze
function

zm~s!52
sinps

p
R2sE

z

`

dx@x22z2#2s
d

dx
ln

3@x22(m21)Fm~x!#, ~37!

where
-
f

er

08501
is

.

Fm~x!5I m
2 ~x!1I m21

2 ~x!1
2z

x
I m~x!I m21~x!, ~38!

which have to be summed according to Eqs.~35! and ~36!.
Here, the dimensionless variablez5mR has been intro-
duced.

In order to identify the divergences and evaluate the fin
parts of the terms in Eqs.~35! and~36! an analytical continu-
ation of the zeta functionz(s) to s52 1

2 has to be con-
structed. A method of doing this has been developed in R
@43# and for details of the procedure we refer to this ref
ence. For the part of the zeta functions involving the angu
momentum sum the method consists of adding and subtr
ing several orders of the uniform Debye expansion of E
~38! so as to make the sum as well as the integral in E
~35!, ~36!, and~37! well defined in an increasing strip of th
complex s-plane. For the partial zeta function, subtracti
and adding the asymptotic terms for large arguments of
Bessel functions will be sufficient.

Let us first study the terms summed overn. By making
use of the recurrence relations for Bessel functions, it is
mediate to obtain
T~m,x,z!5
d

dx
ln@x22(m21)Fm~x!#

5
2

m S m

x D 11z2S m

x D 2

z12dm~x!1
1

m2 S m

x D 2

zdm
2 ~x!

11S m

x D 2

1
2

m S m

x D 2

z1
2

m S m

x D 2

dm~x!1
2

m2 S m

x D 2

zdm~x!11/m2~m/x!2dm
2 ~x!

, ~39!
ccu-

f
of
where dm(x)5x(d/dx)ln Im(x). This expression can be de
veloped in powers of 1/m, through the Debye expansion o
Bessel functions, after taking (m/x)5t/A12t2, with t the
variable of the recursive polynomialsuk(t) @45#.

If D (N)(m,x,t,z) is such an expansion up to the ord
1/mN, the partial zeta function can be written as

zm~s!5zm
a ~s!1zm

d ~s!, ~40!

where

zm
a ~s!52

sinps

p
R2sE

z

`

dx@x22z2#2s

3@T~m,x,z!2D (N)~m,x,t,z!# ~41!

is the analytic part of the partial zeta function fors52 1
2 ,

while

zm
d ~s!52

sinps

p
R2sE

z

`

dx@x22z2#2sD (N)~m,x,t,z!

~42!

is the asymptotic contribution.
In order to make the integral in Eq.~41!, and the subse-
quent sum overn, absolutely convergent ats52 1

2 , it is
necessary to takeN>2 @43#. We will chooseN54 to im-
prove the convergence of the sum of the analytic term~41!,
thus decreasing the computational time needed to get a
rate numerical results.

Now, the term in square brackets in Eqs.~35! and ~36!
involves the combinationzn1a(s)1zn2a(s). In order to use
previous results of Ref.@25# we further expand in powers o
1/n. We introduce the corresponding combination
asymptotic expansions

D (N)~n,x,t,z!5D (N)S nS 11
a

n D ,x,tS 11
a

n D
3F11

2at2

n S 11
a

2n D G21/2

,zD
1D (N)S nS 12

a

n D ,x,tS 12
a

n D
3F12

2at2

n S 12
a

2n D G21/2

,zD , ~43!
9-5
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expanded up to the order 1/nN. In the above expressiont
5n/An21x2.

The asymptotic expansion can be written as

D (N)~n,x,t,z!5D211D01(
i 51

N

D i , ~44!

where

D215
4x

n

t

11t
, D05

2x

n2

t2

11t
,

D i5
1

n i

d

dx (
j 50

2i

b( i , j )t
i 1 j , ~45!

and the coefficientsb( i , j ) are listed in Appendix A.
Then, the term inside the square brackets in Eqs.~35! and

~36! can be written as

lim
s→21/2

M2s(
n50

`

@zn1a~s!1zn2a~s!#

5ZS 2
1

2D1 lim
s→21/2

M2sS A21~s!1A0~s!1 (
i 51

N21

Ai~s!D ,

~46!

where

ZS 2
1

2D52
2

pMR (
n50

` E
z

`

dx@x22~z!2#1/2$T~n1a,x,z!

1T~n2a,x,z!2D (N)~n,x,t,z!%, ~47!

A21~s!52
sinps

p
R2s4(

n50

`

nEz
n

`

dx@~nx!22z2#2s

3
A11x221

x
, ~48!

A0~s!52
sinps

p
R2s2(

n50

` Ez
n

`

dx@~nx!22z2#2s

3
1

A11x2

A11x221

x
, ~49!

Ai~s!52
sinps

p
R2s(

j 50

2i

b( i , j ) (
n50

`

n2 iEz
n

`

dx@~nx!22z2#2s

3
d

dx S 1

A11x2D i 1 j

. ~50!

Equations~48!, ~49!, and~50! can be expressed in a system
atic way by introducing the functions@25#
08501
f ~s;a,b;x!5 (
n50

`

naF11S n

xD 2G2s2b

, ~51!

studied further in Appendix B, which allow one to write th
asymptotic parts as

A21~s!5
2R2s

Ap

GS s2
1

2D
G~s!

z22s11E
0

1dy

Ay
f S s;0,2

1

2
;zAyD ,

~52!

A0~s!5
2R2s

Ap

GS s1
1

2D
G~s!

z22s21E
0

1 dy

y3/2
f S s;1,

1

2
;zAyD ,

~53!

Ai~s!5(
j 50

2i

b( i , j )A( i , j )~s!, ~54!

where

A( i , j )~s!522R2sz2( i 1 j )

GS s1
i 1 j

2 D
GS i 1 j

2 DG~s!

z22sf S s; j ,
i 1 j

2
;zD .

~55!

The complete expressions for these asymptotic p
arounds52 1

2 are derived in Appendix C. Here, we list the
residues, which will be relevant to the discussion of t
renormalization in the next section:

Resus52 1/2A2150, ~56a!

Resus52 1/2A05
1

R Fz2

p
1

1

12pG , ~56b!

Resus52 1/2A150, ~56c!

Resus521/2A25
1

R F 1

64
2

1

12p
2

a2

p
2

z

4
1

z

p
2

z2

2 G .
~56d!

Next, we study the partial-zeta contribution

ec52
1

2
M lim

s→21/2
M2s@2z1/22a~s!# ~57!

to the Casimir energy in Eqs.~35! and~36!, and for reasons
already given we omit the absolute value in the index.

In order to isolate the singularities, it is enough to co
sider the three leading terms in the asymptotic expansio
Bessel functions for large arguments, which will be deno

by L( 1
2 2a,x,z); thus, the partial zeta function can be wri

ten as

z1/22a~s!5z1/22a
a ~s!1z1/22a

d ~s!, ~58!
9-6
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where

z1/22a
a ~s!52

sinps

p
R2sE

z

`

dx@x22z2#2s

3FTS 1

2
2a,x,zD2LS 1

2
2a,x,zD G , ~59!

z1/22a
d ~s!52

sinps

p
R2sE

z

`

dx@x22z2#2sLS 1

2
2a,x,zD .

~60!

Now, the subtracted terms can be written as

LS 1

2
2a,x,zD5d01d11d2 , ~61!

where

d052, d15
1

x
2a, d25

1

x2
~a22z!. ~62!

Then

lim
s→21/2

M2sz1/22a~s!5zS 2
1

2D1 lim
s→21/2

M2s

3@a0~s!1a1~s!1a2~s!#, ~63!

with

zS 2
1

2D52
2

pMREz

`

dx @x22z2#1/2H TS 1

2
2a,x,zD

2LS 1

2
2a,x,zD J , ~64!

which will be evaluated numerically, and

a0~s!5
1

RH z2

p

1

S s1
1

2D 2
z2

p F112 logS z

2RD G

1OS s1
1

2D J , ~65!

a1~s!5
1

R F2az1OS s1
1

2D G , ~66!

a2~s!5
1

R
~a22z!H 2

1

p

1

S s1
1

2D 1
1

p

3F212 logS z

2RD G1OS s1
1

2D J . ~67!

So, the residues ats52 1
2 are given by
08501
Resus52 1/2a05
1

R Fz2

p G , ~68a!

Resus52 1/2a150, ~68b!

Resus52 1/2a25
1

R F2
a2

p
1

z

pG . ~68c!

VI. DISCUSSION OF THE RESULTS

Clearly the Casimir energy is divergent and using E
~56! and Eqs.~68! in Eqs.~35! and ~36!, the total residue is
given by

Resus521/2EC52
1

2R H 1

64
2

z

4
2

z2

2 J , ~69!

which is independent of the flux. Thus, the difference b
tween Casimir energies with arbitrary and with integer flux
finite and contains the relevant information about the eff
of the flux.

In Fig. 1, we plot the dimensionless differenceEd
5R@EC(a)2EC(0)# for a behavior of type I at the origin, as
function of a ~the fractionary part of the reduced flux!, for
different values ofz. Since the finite part of the Casimi
energy is continuous ina, the difference goes to zero both
a50 anda51. It shows a minimum ata5 1

2 as well as a
jump in the derivative. This jump can be traced back
a1(s), Eq. ~66!, which effectively contains the absolut
value uau @see comment below Eq.~36!#. It is interesting to
note, that arounda50, the vacuum energy decreases wh
the flux grows and that this effect is enhanced with incre
ing mass.

For a type II behavior at the origin, the same difference
plotted in Fig. 2. With decreasing mass our curves tend to
m50 result of Ref.@26# and alreadyz5 1

128 shows quite
good agreement with the corresponding figure in that re
ence~except for a factor of 2, due to the fact that only o
polarization was considered in Ref.@26#!.

Whereas for small values of the mass the energy exhi
a minimum ataÞ0, for larger values ofm this minimum is

FIG. 1. DifferenceEd of Casimir energies. Behavior I at th
origin. Top to bottom:z5

1
128, 1

8 , 1
4 , 3

8 , 1
2 .
9-7
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shifted towardsa50. Furthermore, formÞ0 a nonzero
value is seen to arise fora→01. This is due to the discon
tinuous behavior of the finite part of the vacuum ener
more precisely of the contribution of the critical subspace
integer values of the flux.

The origin of this discontinuity can be traced back to t
appearance, fora→01, of a root of the combination o
Bessel functions involved in the partial zetaza . Such a root
is absent whena50. Fora→01, this root goes to zero and
thus, gives rise to a gap, which equalsm. The quantity
Ja

2(kR)2Ja21
2 (kR)2(2m/k)Ja(kR)Ja21(kR) is shown in

Fig. 3 as a function ofkR, for various values ofa in order to
clarify this discontinuous behavior. Form50 the discontinu-
ous behavior turns into a jump in the derivative at integ
values ofa @26#.

In summary, we have seen that the presence of the m
as well as the choice of the self-adjoint extension of
Hamiltonian have a considerable influence on the dep
dence of the Casimir energy on the flux. We have analy
and discussed in detail the behavior of the Casimir energ
a function of the parameters, namely, flux and mass.

We have clearly shown that the Casimir energy depe
strongly on the self-adjoint extension chosen. Although t
might seem surprising, one has to remember that diffe
values ofQ describe different physics. For example, Eq.~12!

FIG. 2. DifferenceEd of Casimir energies. Behavior II at th
origin. Top to bottom:z5

1
128, 1

8 , 1
4 , 3

8 , 1
2 .

FIG. 3. Ja
2(kR)2Ja21

2 (kR)2(2m/k)Ja(kR)Ja21(kR). Top to
bottom:a50, 0.001, 0.01, 0.02.
08501
,
t

r

ss
e
n-
d
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s
s
nt

arises by imposing APS boundary conditions at a finite
dius which is sent to zero afterwards. Equation~13! results
when a finite radius flux tube is considered with no phys
~e.g., potential! inside the flux and the finite radius taken
zero. Given the fact that different extensions arise from d
ferent physical setups, the dependence of the Casimir en
on Q seems very reasonable. This dependence has alr
been observed when considering the scattering cross se
@2,8#.

As a consequence of the mass, in the case of the s
adjoint extension~13!, a discontinuity of the energy is found
It would be interesting to see how this effect comes abo
starting with the finite radius flux@5# and shrinking the ra-
dius to zero. Does the effect persist or is it only a result
the singular vortex? The same question arises for the jum
the derivative of the Casimir energy which appears for
massesm in case I and form50 in case II. We think that in
all cases the idealized situation of a singular flux is the ori
of this behavior. This conjecture is supported by the fact t
no such features were observed in the nonsingular c
@16,20#, where, however, no boundary was present. Furth
more, one should try to understand better the physical me
ing of the different self-adjoint extensions by consideri
how the Casimir energy depends on the parameterQ of the
one-parameter family of self-adjoint extensions. Final
more realistic (311)-dimensional calculations should be e
visaged.
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APPENDIX A: COEFFICIENTS

In this appendix we list the coefficientsb( i , j ) defined by
Eq. ~45!

b(1,0)52
1

2
22a212z,

b(1,1)50,

b(1,2)5
1

6
,

b(2,0)52~z2!,

b(2,1)52
1

4
2a21z,

b(2,2)5
1

4
2z,
9-8
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b(2,3)5
1

4
,

b(2,4)52
1

4
,

b(3,0)5
5

96
15

a2

12
1

a4

6
2S 1

4
1a2D z1

2 z3

3
,

b(3,1)52
1

4
1z2z2,

b(3,2)5
9

160
22a22

a4

2
2S 1

2
23a2D z1z2,

b(3,3)5122z,

b(3,4)52
23

32
1

5 a2

4
1

7 z

4
,

b(3,5)52
3

4
,

b(3,6)5
179

288
,

b(4,0)5
1

16
1

a2

4
2S 1

4
1a2D z1S 1

4
1a2D z22

z4

2
,

b(4,1)52
17

64
1

15a2

8
1

3a4

4
2S 2

7

8
1

9a2

2 D z2z21z3,

b(4,2)52
1

4
24 a22S 2

1

2
210a2D z1S 1

4
24a2D z22z3,

b(4,3)5
165

64
2

25a2

4
2

5a4

4
2S 62

15a2

2 D z1
5z2

2
,

08501
b(4,4)52
37

32
1

39a2

4
2~24112a2!z22z2,

x(4,5)52
327

64
1

35a2

8
1

49z

8
,

b(4,6)5
57

16
26a22

21z

4
,

b(4,7)5
179

64
,

b(4,8)52
71

32
.

APPENDIX B: FUNCTIONS f „s;a,b;x…

Here we are going to provide all analytical properties
the functionsf (s;a,b;x) defined in Eq.~51!. As in Ref.@25#,
we will make use of

(
n50

`

h~n!5E
0

`

dnh~n!2 i E
0

`

dn
h~ in1e!2h~2 in1e!

11e2pn

~B1!

in the limit e→0.
When applied to

h~n!5naF11S n

xD 2G2t

,

the previous equation gives
m

f ~ t;a,0;x!5 (
n50

`

naF11S n

xD 2G2t

5xa11H 1

2

GS a11

2 DGS t2
a11

2 D
G~ t !

12 sinS pa

2 D E
0

1

du
ua

11e2pux
~12u2!2t

12 sinS pa

2
2pt D E

1

`

du
ua

11e2pux
~u221!2tJ . ~B2!

Now, we are interested inf (s;a,b;x), for arbitrary b. From the definition, it is clear thatf (s;a,b;x)5 f (s1b,a,0;x).
However, asb grows, the integrals in Eq.~B2! eventually diverge atu51. In order to avoid such divergences, we will perfor
an adequate number of integrations by parts, thus obtaining
9-9
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f ~ t;a,0;x!5xa11H 1

2

GS a11

2 DGS t2
a11

2 D
G~ t !

2S eipa11

2 D ~21!a/2

2(a22)/2
sin~pt !

GS t2
a

2D
G~ t ! E

1

`

udugS a

2
,a21;u,xD ~u221!2t1a/2

2S eipa21

2 D 1

2(a23)/2

GS t2
a21

2 D
G~ t ! F E

0

1

udugS a21

2
,a21;u,xD ~12u2!2t1(a21)/2

1~21!(a21)/2cos~pt !E
1

`

udugS a21

2
,a21;u,xD ~u221!2t1(a21)/2G J , ~B3!
e
v
f

re

ou
where

g~a,b;u,x!5S 1

u

d

duD a ub

11e2pux
. ~B4!

However, the number of integrations by parts is bound
by the requirement that the integrated terms are well beha
at u50. In what follows, we will thus keep the number o
integrations admissible, by making use of the following
currence relationship:

f ~s;a,b;x!5 f ~s;a,b21;x!2
1

x2
f ~s;a12,b;x!. ~B5!

In this way, all the required functions can be reduced to f
different cases

f ~s;2n,n;x!, f S s;2n,n1
1

2
;xD , n50,1,2,3,4,5,6,7,

f ~s;2n11,n;x!, f S s;2n11,n1
1

2
;xD ,

n50,1,2,3,4,5,6.

Finally, after expanding in powers ofs1 1
2 , we get
08501
d
ed

-

r

f ~2n,n;x!5x2n11S 2
1

2

1

s1
1

2

S n2
1

2D2
1

2 H S n1
1

2D

1S n2
1

2D Fc~1!2cS n1
1

2D G J

2
p

2n22

S n2
1

2D
GS 1

2DGS n1
1

2D
3E

1

`

udug~n,2n21;u,x!~u221!
1
2

1OS s1
1

2D D , ~B6!

f S 2n,n1
1

2
;xD5x2n11H 2n

GS n1
1

2DGS 1

2D
G~n11!

2n
1

2n21

p

G~n11!
E

1

`

udug~n,2n21;u,x!

1OS s1
1

2D J , ~B7!
9-10
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f ~2n11,n;x!

5x2(n11)H 2

3

G~n11!GS 1

2D
GS n1

1

2D S n2
1

2D

2
1

2n22

GS 1

2D
GS n1

1

2D S n2
1

2D

3E
0

1

u du g~n,2n;u,x!~12u2!1/21OS s1
1

2D J ,

~B8!

f S 2n11,n1
1

2
;xD

5x2(n11)S 2
1

2s1
1

2

nF12
1

2n22

1

G~n11!

3E
0

`

udug~n,2n;u,x!G2
1

2
$11n1n@c~1!

2c~n11!#%1
1

2n21

1

G~n11! H $11n@c~1!

2c~n11!#%E
0

`

udug~n,2n;u,x!

2nE
0

`

udug~n,2n;u,x!lnuu221uJ 1OS s1
1

2D D ,

~B9!

wherec(x) is the Euler psi function.
These expressions generate all thef-functions necessary

for the evaluation of the requiredAi(s), for i 51,2, . . . . No-
tice that, for j 50 andi 51, the prefactorG@s1( i 1 j )/2# in
Eq. ~55! has a pole ats52 1

2 . Thus, the orders1 1
2 in the

expansion off (s;0,1
2 ;x) must be retained,

f S s;0,
1

2
;xD52pxS s1

1

2D F112E
1

`

udug~0,21;u,x!G
1OF S s1

1

2D 2G . ~B10!

APPENDIX C: EVALUATION OF AÀ1 AND A0

Finally, in this appendix we are going to describe so
details of the calculation of theAi(s), Eqs.~52!–~55!, at s
08501
e

521
2. We will, in the first place, obtain an expression f

A21 in Eq. ~52!

A21~s!5
2R2s

Ap

GS s2
1

2D
G~s!

z22s11E
0

1dy

Ay
f S s;0,2

1

2
;zAyD .

~C1!

By using equation~B2! in the previous appendix, this can b
put in the form

A21~s!5
2R2s

Ap

GS s2
1

2D
G~s!

z22s11E
0

1dy

Ay

3H 1

2
Ayz

GS 1

2DG~s21!

GS s2
1

2D 12Ayzsin

3FpS 1

2
2sD G E

1

`

du~u221!1/2 2s
1

11e2puAyzJ .

~C2!

After interchanging the integrals, one gets

A21~s!5
R2sz22s12

s21

1
4R2sz22s11

ApG~s!GS 3

2
2sD E1

`

du
~u221!1/22s

u

3 ln~11e22puz!

2
2R2sz22s

ApG~s!GS 3

2
2sD H p2G~s!GS 3

2
2sD

24GS 3

2D

1E
1

`

du
~u221!1/22s

u2
Li 2~2e22pzu!J , ~C3!

where Lij (x)5(n51
` (xn/nj ).

Finally, expanding arounds52 1
2 , one has
9-11
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A21~s!5
2z3

R F2
1

3
2

1

12z2
1

1

2p2z2E1

`

du
u221

u2

3Li2~2e22puz!2
1

pzE1

`

du
u221

u

3 log~11e22puz!G1OS s1
1

2D , ~C4!

which is a useful representation for numerical calculation
Let us now go to the evaluation ofA0 in Eq. ~53!,

A0~s!5
2R2s

Ap

GS s1
1

2D
G~s!

z22s21E
0

1 dy

y3/2
f S s;1,

1

2
;zAyD .

~C5!

As before, using Eq.~B2!, and interchanging the integra
tion order, one gets

A0~s!5
2R2sz22s21

Ap

GS s1
1

2D
G~s!

3H z2

2S s2
1

2D E0

1 dy

y1/2
12z2E

0

1

duu~12u2!2(s11/2)

3E
0

1

dy
1

y1/2~11e2puzAy!
s.

hy

nc

r-
r-
,

08501
.

12 cosFpS s1
1

2D Gz2E
1

`

du u~u221!2(s11/2)

3E
0

1

dy
1

y1/2~11e2puzAy!J . ~C6!

Now, after analytically extending, and developing arou
s52 1

2 , one has

A0~s!5
z2

pR

1

S s1
1

2D S 11
1

12z2D 2
z2

pRF11
1

6z2

12S 11
1

12z2D logS z

2RD1
2

pzE0

`

du

3 logu12u2u log~11e22puz!G1OS s1
1

2D ,

~C7!

where a simple pole appears ats52 1
2 .

Clearly, in both cases the finite parts must be evalua
numerically. We will not go into the detailed calculation o
the Ai for i .0, since it is a direct consequence of the pro
erties of f (s;a,b;x) described in the previous appendix.
Int.

, in

of

ys.
@1# Y. Aharonov and D. Bohm, Phys. Rev.115, 485 ~1959!.
@2# M. G. Alford, J. March-Russell, and F. Wilczek, Nucl. Phy

B328, 140 ~1989!.
@3# J. March-Russell and F. Wilczek, Phys. Rev. Lett.61, 2066

~1988!.
@4# M. G. Alford and F. Wilczek, Phys. Rev. Lett.62, 1071

~1989!.
@5# C. R. Hagen, Phys. Rev. Lett.64, 503 ~1990!.
@6# E. G. Flekko”y and J. M. Leinaas, Int. J. Mod. Phys. A6, 5327

~1991!.
@7# P. de Sousa Gerbert and R. Jackiw, Commun. Math. P

124, 229 ~1989!.
@8# P. de Sousa Gerbert, Phys. Rev. D40, 1346~1989!.
@9# A. J. Niemi and G. W. Semenoff, Phys. Rev. D30, 809~1984!.

@10# Y. A. Sitenko, presented at the 10th International Confere
on Problems of Quantum Field Theory~Alushta 96!, Alushta,
Ukraine, 1996, hep-th/9702148.

@11# Y. A. Sitenko and D. G. Rakityanskii, Yad. Fiz.60, 1643
~1997! @Phys. At. Nucl.60, 1497~1997!#.

@12# Y. A. Sitenko, Phys. Lett. B387, 334 ~1996!.
@13# Y. A. Sitenko and D. G. Rakityanskii, talk given at the Inte

national Workshop on Mathematical Physics—‘‘Today, Prio
ity Technologies—for Tomorrow,’’ Kiew, Ucraine, 1997
hep-th/9710130.
s.

e

@14# A. Moroz, Phys. Lett. B358, 305 ~1995!.
@15# M. P. Fry, Phys. Rev. D51, 810 ~1995!.
@16# M. Bordag and K. Kirsten, Phys. Rev. D60, 105019~1999!.
@17# I. Bretvik and T. Toverud, Class. Quantum Grav.12, 1229

~1995!.
@18# L. Parker, Phys. Rev. Lett.59, 1369~1987!.
@19# M. Bordag, Ann. Phys.~N.Y.! 206, 257 ~1991!.
@20# M. Scandurra, J. Phys. A32, 5679~1999!.
@21# H. B. G. Casimir, Proc. K. Ned. Akad. Wet.51, 793 ~1948!.
@22# G. Plunien, B. Mu¨ller, and W. Greiner, Phys. Rep.134, 87

~1986!.
@23# C. G. Beneventano, M. D. Francia, and E. M. Santangelo,

J. Mod. Phys. A14, 4749~1999!.
@24# C. G. Beneventano, M. D. Francia, and E. M. Santangelo

Casimir Energy—50 Years Later, Proceedings of the Fourth
Workshop on Quantum Field Theory under the Influence
External Conditions, edited by M. Bordag~World Scientific,
Leipzig, Germany, 1999!, pp. 240–246.

@25# E. Elizalde, M. Bordag, and K. Kirsten, J. Phys. A31, 1743
~1998!.

@26# S. Leseduarte and A. Romeo, Commun. Math. Phys.193, 317
~1998!.

@27# M. Bordag, E. Elizalde, K. Kirsten, and S. Leseduarte, Ph
Rev. D56, 4896~1997!.
9-12



.

.

.

.

li-

c-

s

l

CASIMIR ENERGY OF MASSIVE MIT FERMIONS IN . . . PHYSICAL REVIEW D61 085019
@28# C. Manuel and R. Tarrach, Phys. Lett. B301, 72 ~1993!.
@29# M. F. Atiyah, V. K. Patodi, and I. M. Singer, Math. Proc

Cambridge Philos. Soc.77, 43 ~1975!.
@30# M. F. Atiyah, V. K. Patodi, and I. M. Singer, Math. Proc

Cambridge Philos. Soc.78, 43 ~1975!.
@31# M. F. Atiyah, V. K. Patodi, and I. M. Singer, Math. Proc

Cambridge Philos. Soc.79, 71 ~1976!.
@32# H. Falomir, R. E. G. Saravı´, and E. M. Santangelo, J. Math

Phys.39, 532 ~1998!.
@33# Z.-Q. Ma, J. Phys. A19, L317 ~1986!.
@34# M. Ninomiya and C.-I. Tan, Nucl. Phys.B257, 199 ~1985!.
@35# A. P. Polychronakos, Nucl. Phys.B283, 268 ~1987!.
@36# P. Hasenfratz and J. Kuti, Phys. Rep.40, 76 ~1978!.
@37# S. W. Hawking, Commun. Math. Phys.55, 133 ~1977!.
08501
@38# J. S. Dowker and R. Critchley, Phys. Rev. D13, 3224~1976!.
@39# E. Elizaldeet al., Zeta Regularization Techniques with App

cations~World Scientific, Singapore, 1994!.
@40# E. Elizalde,Ten Physical Applications of Spectral Zeta Fun

tions ~Springer-Verlag, Berlin, 1995!.
@41# E. Elizalde, S. Leseduarte, and A. Romeo, J. Phys. A26, 2409

~1993!.
@42# S. Leseduarte and A. Romeo, J. Phys. A27, 2483~1994!.
@43# M. Bordag, E. Elizalde, and K. Kirsten, J. Math. Phys.37, 895

~1996!.
@44# M. Reed and B. Simon,Fourier Analysis and Self-Adjointnes

~Academic, New York, 1975!.
@45# M. Abramowitz and I. Stegun,Handbook of Mathematica

Functions~Dover, New York, 1970!.
9-13


