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We consider scalar field theories in dimensions lower than four in the context of the Wegner-Houghton
renormalization group equations~WHRG!. The renormalized trajectory makes a non-perturbative interpolation
between the ultraviolet and the infrared scaling regimes. Strong indication is found that in two dimensions and
below the models with polynomial interaction are always non-perturbative in the infrared scaling regime.
Finally we check that these results do not depend on the regularization and we develop a lattice version of the
WHRG in two dimensions.

PACS number~s!: 11.10.Hi, 11.10.Jj, 11.10.Kk, 11.15.Bt
in
bv
n
n

to
. I
id
b
a

io
sh
th

lw
p
d
p
g

r
e
u
ce
on
th
va
t

th

ng
wer
nd
er.
er-
col-

ate
ell,
am-
e

lly
ger-

g
d to
ou-
di-
he
the

the

sion
hen

The

e
as
I. INTRODUCTION

Asymptotically free models gained importance both
high energy and in condensed matter physics. This is o
ous for the latter, where the low dimensional phenome
invoke effective theories below the upper critical dimensio
d54, which are super-renormalizable and their Hamil
nians contain asymptotically free coupling constants only
the former case the asymptotically free models can prov
structureless high energy physics where the cutoff can
pushed away at will. What kind of non-perturbative mech
nisms do we encounter as we follow the renormalizat
group flow of an asymptotically free model? To distingui
different finite energy mechanisms we recall that unless
model possesses unbroken scale invariance there are a
two scaling regimes, an ultraviolet and an infrared one se
rated by a crossover at the characteristic scale of the mo
If there is a dimensional coupling constant, say a mass
rameterm, in the Lagrangian then the UV and IR scalin
regimes are separated by a crossover atp5pcr'm because
m2/p2 or p2/m2 is treated as a small quantity in the UV o
the IR side, respectively. The IR scaling laws are trivial b
cause the radiative corrections to the evolution are s
pressed byp2/m2 and what is left is the scale dependen
governed by the canonical dimensions of the coupling c
stants. If there are no dimensional coupling constants in
Lagrangian, i.e. the model possesses classical scale in
ance, then a crossover can be identified where one of
coupling constants reach the value 1,g(pcr)51. The expres-
sion for the dimensionless running coupling constantg(p)
must contain a dimensional parameter, usually called
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L-parameter andpcr'Lf4.1

Non-perturbative effects may originate in the IR scali
regimes. The classically scale invariant models at the lo
critical dimension, such as the two-dimensional sigma a
the Gross-Neveu model do not support long range ord
Thus the IR scaling laws must contain a dynamically gen
ated mass scale, an effect generated by the infrared or
linear divergences.

The asymptotically free coupling constants may gener
non-perturbative effects in the UV scaling regime, as w
due to their growth. The question is whether the scale par
eter Lf4 or the massm is reached first as we lower th
cutoff. The system remains perturbative form.Lf4 because
the IR scaling laws cut off the growth of the asymptotica
free coupling constants before they would reach a dan
ously large value. The dynamics of the modesp,Lf4 be-
comes non-perturbative whenLf4.m. The four-
dimensional Yang-Mills models develop linearly risin
potential between static external charges. This is believe
happen due to the large value of the asymptotically free c
pling constant at the ultraviolet side of the crossover, in
cated by the infrared Landau pole in perturbative QCD. T
quark masses are supposed to play no important role in
vacuum structure and the chiral limitm→0 is assumed to be
safe and convergent, though non-perturbative.

The infrared singularities are easier to isolate than

1It is worthwhile noting that one can introduce theL-parameter
even in the presence of any parameter with positive mass dimen
in the Lagrangian so long as the IR dynamics remains stable w
this latter is removed. In fact, let us write this parameter asml

wherem defined in this manner is the mass scale of the model.
running coupling constant depends on the ratiom/p, g(p)
5 f (m/p) where the limitm→0 is convergent. In other words, th
evolution of the classically scale invariant system is recovered
p→`.
©2000 The American Physical Society18-1
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non-perturbative effects arising at the IR end of the UV sc
ing regime. It has already been achieved for no
asymptotically free models@1# and superrenormalizabl
theories @2#. The more complex non-perturbative featur
should arise at the ultraviolet side of the crossover where
asymptotic analysis is available.

The goal of the present paper is the study of the sca
laws and their consequences at the IR end of the UV sca
regime. According to our best knowledge this source of
non-perturbative effects in asymptotically free theories
not been studied before in a systematic manner. The prob
is rather involved and demanding, we restrict ourselves
outline only the way the more detailed analysis should
done. In order to defuse the infrared problem we turn to
scalar model with polynomial interaction in the phase wh
no spontaneous symmetry breaking occurs. The termfn in
the Lagrangian of thed-dimensional scalar model is asym
totically free forn,2d/(d22), so we have to trace the evo
lution of a large number of coupling constants at low dime
sions. We present numerical evidences that the polynom
interactions at the lower critical dimension or below whe
infinitely many operators are relevant in the UV scaling
gime always become strong, non-perturbative.

The study of the asymptotically free three-dimensionalf6

model can bring some light into the IR Landau pole probl
of four-dimensional gauge theories by considering the role
the non-renormalizable couplings in the IR extrapolation
the UV scaling regime. We will show that they affect co
siderably the evolution of the relevant couplings. This poi
to the possibility that the non-renormalizable couplings co
suppress the Landau pole. The full solution of the the
where all possible coupling constants are followed by
renormalization group equation should necessarily yiel
non-singular renormalization group flow so long as t
theory possesses local interactions. This suggests tha
introduction of the hadronic composite operators in QC
could defuse its Landau pole problem@3#.

Another issue addressed in this paper is the manne
which the influence of the non-renormalizable operators
the dynamics is suppressed and the universal physic
reached as the cutoff is lowered. The usual argument ba
on the linearization of the blocking relation is not obvious
applicable due to the presence of infinitely many relev
operators. This question is discussed in the framework
lattice regulation by tailoring the Wegner-Houghton equat
for lattice regulated models. As a result, the approach to
low energy physics can be compared for the momen
space cutoff regularization in the continuum and for the
tice regularization, and the universality, the regulator in
pendence, can be established well beyond the linearized
proximation of the blocking relations.

The organization of this paper is the following. The i
finitesimal renormalization group step, the Wegn
Houghton equation, is described in Sec. II. The running c
pling constants are introduced and their evolution equati
are given in Sec. III for scalar models. The asymptotic U
evolution is discussed in Sec. IV ford52, 3, and 4. Section
V is devoted to the demonstration of the difficulties in fin
ing a perturbative model ind52. The Wegner-Houghton
08501
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equation is derived in the lattice regularization and its so
tion is presented in Sec. VI. Section VII is for the concl
sions.

II. THE WEGNER-HOUGHTON EQUATION

There are different ways the mixing of a large number
operators can be traced down. The Wegner-Houghton e
tion @4#, which we use in the local potential approximation
this work, is the simplest implementation of the Kadano
Wilson blocking @5# in the momentum space and produc
the cutoff dependence of the bare action along the renorm
ized trajectory. Other methods work with the effective acti
where the infrared cutoff dependence is sought@6#. Different
schemes should agree in the infrared limit where few lo
wavelength modes are left only in the system. We shall m
two approximations in computing the blocked action, t
truncation of the gradient expansion at the leading order,
local potential approximation@7#, and the truncation of the
Taylor expansion of the local potential in the field variab
@8#. The higher order terms of the gradient expansion
non-renormalizable according to the power counting. We
lieve that these coupling constants which are irrelevant in
ultraviolet scaling regime do not modify our qualitative co
clusion.

The Wegner-Houghton~WH! equation@4# describes the
evolution of the effective action as the cutoff is lowered. A
mentioned in the Introduction we shall consider a sca
model with an intrinsic mass scale which allows to clea
distinguish the UV and IR scaling regimes. We derive t
WH equation for a scalar field theory by using a sharp m
mentum space cutoff@3,9#: we will call this regularization
procedure thecontinuum regularization.In Sec. VI we con-
sider an alternative, thelattice regularization.

Denote the bare action bySk@f#, wherek is the UV cut-
off. Then, according to the usual Wilson-Kadanoff proc
dure,

e2(1/\)Sk8[f]5E Df8 e2(1/\)Sk[f1f8] ~1!

wherek8,k in the Euclidean space-time. The Fourier tran
form of the fieldsf(x) andf8(x) is non-vanishing only for
p,k8 and k8,p,k, respectively. The right hand side
evaluated by means of the loop expansion, so that Eq.~1!
gives

Sk8@f#5Sk@f1f08#1
\

2
tr logd2S1O~\2!, ~2!

where

d2S~x,y!5
d2Sk@f1f08#

df8~x!df8~y!
, ~3!

and the saddle point,f08 , is defined by the extremum cond
tion
8-2
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WEGNER-HOUGHTON EQUATION IN LOW DIMENSIONS PHYSICAL REVIEW D61 085018
dSk@f1f08#

df8
50, ~4!

in which the infrared background field,f(x), is held fixed. It
can be proved that the saddle point is trivial,f0850, as long
as the matrixd2S(x,y) is invertible and the IR backgroun
field is homogeneous,f(x)5F.

Now, each successive loop integral in then-loop contri-
butions which are not explicitly written in Eq.~2! brings a
suppression factor

kd2k8d

k8d
5OS k2k8

k8
D ~5!

due to the integration volume in the momentum space. T
dk/k5(k2k8)/k appears as a new small parameter wh
suppresses the higher loop contributions in the blocking
lation and the ‘‘exact’’ functional differential equation ob
tained in the limitdk→0 includes the one-loop contributio
only. But we should bear in mind that the loop expans
had to be used at the initial stage of the derivation so
resulting ‘‘exact’’ equation might be unreliable in the stron
coupling situation. All we know is that the loop correction
to the evolution equation obtained in the one loop level
vanishing.

We will use the gradient expansion for the action,

S@f#5 (
n50

` E ddx Un„f~x!,]2n
…, ~6!

where Un is an homogeneous function of order 2n in the
derivative. In the leading order of this expansion, the
called local potential approximation, we have

S@f#5E ddxFZ~f!

2
~]mf!21U~f!G , ~7!

and furthermore the simplificationZ(f)51 will be used to
derive a simple differential equation for the potentialU. This
local potential will be then the only function characterizin
the action. If we use now a homogeneous infrared ba
ground field,f(x)5F, we obtain from Eqs.~2! and ~7! an
equation for the local potentialUk(f5F):

Uk2dk~F!5Uk~F!1
1

2
trlog@h1Uk9~F!#1O~dk2!,

~8!

where we have introduced the notation

Uk9~F!5
]2Uk~F!

]F2
, h52]m]m ~9!

and the trace is taken in the subspace of the elimina
modes. We can explicitly write the trace in momentum sp
and get
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Uk2dk~F!5Uk~F!1
1

2E ddp

~2p!d
log@p21Uk9~F!#

1O~dk2!, ~10!

where the integration extends over the shellk2dk,p,k. In
the limit dk→0 one then finds the differential equation

k
]

]k
Uk~F!52

Vdkd

2~2p!d
log@k21Uk9~F!#, ~11!

whereVd denotes thed-dimensional solid angle

Vd5
2pd/2

GS d

2D . ~12!

The Wegner-Houghton equation~11! represents the one
loop resummed mixing of the coupling constants of the p
tentialUk5(n(gn /n!)Fn. In fact, an expansion of the loga
rithm in the second derivative of the potential gives

k
]

]k
Uk~F!52

Vdkd

2~2p!d (
n51

`
1

n S 2Uk9~F!

k21Uk9~F!
D n

, ~13!

up to a field independent constant. This is the usual one l
resummation of the effective potential@10# except that the
loop momentum is now restricted to the subspace of
modes to be eliminated. Actually, the fact that the right-ha
side~RHS! includes the running potentialUk(F) rather than
the bare one,UL(F), indicates that the contributions of th
successive eliminations of the degrees of freedom are p
up during the integration of the differential equation and t
solution of the renormalization group equation resums
perturbation series. The solution of the differential equat
interpolates between the bare and the effective potentialk
is lowered from the original cutoffL to zero.

Finally, let us note that the derivation of Eq.~11! shows
that the restoring force for the fluctuations into the equil
rium is proportional to the argument of the logarithm fun
tion. Thus a nontrivial saddle point should be used when

k21Uk9~F!<0. ~14!

III. EVOLUTION OF THE COUPLING CONSTANTS

Our effective action is

Sk5E ddxF1

2
„]mf~x!…21Uk„f~x!…G , ~15!

and the initial condition for the evolution equation is given
k5L. The potentialUk(F) is assumed to be polynomial s
it is expanded as

Uk~F!5 (
n50

N
1

n!
gn~F0!~F2F0!n. ~16!
8-3
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We study the model in the symmetric phase, where
saddle point is trivial,F050. The polynomial structure o
the potential is consistent because we avoid the singularit
Eq. ~11! at kcr

2 52Ukcr
9 (F) @recall Eq.~14!# which occurs in

a region aroundF50 in the symmetry broken phase@9#.
Taking then-th derivative of Eq.~16! at F50 we obtain

the coupling constantgn(k), and define the correspondin
beta function by

gn~k!5
]n

]Fn
Uk~F! uF50 ,

~17!

bn5k
d

dk
gn~k!5

]n

]Fn
k

]

]k
Uk~F!.

By taking the successive derivatives of Eq.~11!, we obtain

bn52
Vdkd

2~2p!d
Pn~G2 , . . . ,Gn12!, ~18!

where

Gn5
gn

k21g2

~19!

and

Pn5
]n

]Fn
log@k21Uk9~F!# ~20!

is a polynom of ordern in the variablesGj , j 52, . . . ,n
12,

P15G3 ,

P25G42G3
2 ,

P35G523G3G412G3
3 ,

~21!
P45G624G5G323G4

2112G3
2G426G3

4 ,

P55G725G6G3210G5G4120G5G3
2

130G4
2G3260G4G3

3124G3
5 ,

P65G826G7G3215G6G4210G5
2130G6G3

2

1120G5G4G3130G4
32120G5G3

32270G4
2G3

2

1360G4G3
42120G3

6 .

The coupling constants defined through Eq.~16! are di-
mensional parameters@the field variablef has dimension
(d22)/2]. However, the corresponding dimensionless
rameters have more physical sense. We obtain them in
following way:
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g̃n~k!5k2n(12d/2)2dgn~k!5~L k̃!2n(12d/2)2dgn~k!,
~22!

where nowk̃ runs from 1 to 0. Their beta functions are

b̃n52FnS 12
d

2D1dG g̃n1k2n(12d/2)2dbn , ~23!

where the first and the second term stands for the tree-l
and the loop corrections, respectively. One can see that
super-renormalizable coupling constants follow asympt
cally free scaling law at the tree level.

IV. UV SCALING LAWS AND THEIR EXTENSIONS

One can distinguish an ultraviolet and an infrared scal
regime, fork2@um2(k)u and for k2!um2(k)u, respectively.
In the UV regime the scale dependence comes domina
from the k2 term of the propagator, see the denominator
Eq. ~19!; the k-dependence is generated by the phase fa
kd in the IR regime wherek2 could be neglected in the in
verse propagator. We will begin at the UV scale with t
usualf4 potential (g2[m2)

VL~f!5
1

2
m2f21

1

4!
g4f41

1

6!
g6f6, ~24!

and see how the different couplings are generated when
move towards the IR regime.

One ignores theg2 term in the denominator of Eq.~19! in
the asymptotic UV regime and finds

dg2

dk
52

Vd

2~2p!d
kd23g4 ,

dg4

dk
5

Vd

2~2p!d
kd23S 3

k2
g4

22g6D , ~25!

dg6

dk
52

Vd

2~2p!d
3g4kd25S 10

k2
g4

225g6D ,

where in the last equation we omitted the contribution ofg8.
Consider the usual strategy in which the coupling consta
gn are neglected forn.4 and the resulting equation is eas
to integrate,

1

g4~k!
5

1

g4~L!
1

3VdX12S k

L D 42dC
~42d!2~2p!dk42d

. ~26!

This expression agrees with the result of the minimal s
traction ~MS!, a scheme which proved to be specially co
venient in the ultraviolet scaling regime. It is based on t
analytical continuation of the loop integrals in the ultravio
domain so the resulting beta functions are mass independ
i.e. the termsO(g2 /k2) are neglected. When extrapolating
the infrared regime we find erroneously the mass indep
dent resultg4;k42d (g4; logk in d54), g4 tends to zero as
8-4
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WEGNER-HOUGHTON EQUATION IN LOW DIMENSIONS PHYSICAL REVIEW D61 085018
k→0. This can be understood by inspecting Eq.~25! where
we find large positive values in the infrared forg4Þ0 ~this
conclusion remains valid for finiteg6, as well!. When the
mass term is retained the beta function assumes the co
behavior and becomesO(kd) in the infrared. Note that the
term with g6 acts in the opposite manner thang4, cf. the
different signs in the right-hand side of Eq.~25!, so that it
can change the evolution considerably.

It is instructive to look into the evolution of the dimen
sionless coupling constant:

1

g̃4~k!
5

Xk

L
C42d

g̃4~L!
1

3VdS 12S k

L D 42dD
~42d!2~2p!d

. ~27!

For 42d.0 the one-loopv542d universal critical expo-
nent is reached fork values sufficiently below the cutof
wherek/L'0. The latter condition is needed to get rid
the non-universal cutoff effects. The scaling changes qu
tatively asd→4 because the non-universalk'L behavior is
spread over the wholek range due to the smallness of
2d. This is what happens in the expansion

12S k

L D 42d

→~d24!ln
k

L
, ~28!

employed in the dimensional regularization scheme. T
generalizes to any dimension: the marginal coupling cons
follows the scaling law extended from the non-universal c
off regime.

The evolution forg2 is of the form

dg2

dk
52

Vd

2~2p!d
g4kd23. ~29!

It predicts

dg2

dk
;k, g2;k21const ~30!

in lack of any dimensional constant.
In the IR scaling regime we neglect thek2 term in the

denominator of Eq.~19! and using Eqs.~18! and ~21!, we
get, forg4 ~assuming againg650),

dg4

dk
5

3Vd

2~2p!d
kd21

g4
2

g2
2

. ~31!

This evolution is much slower comparing with Eq.~26!. In
fact, for d.1 we have now a suppression factorkd21 which
makes the coupling to stabilize at the attractive IR fix
point. In the same way, we obtain, forg2,

dg2

dk
52

Vd

2~2p!d
kd21

g4

g2
, ~32!

with a variation which is slower than that predicted by t
UV scaling and a suppression factor fork→0.
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We see that the extraction of the scaling in the limitk
→0 from the UV scaling laws, which is the commonly a
cepted practice in perturbation theory is incorrect when
MS scheme is used. One has to come back to the comp
scaling laws in order to describe correctly the IR scaling.

Four-dimensional asymptotically free gauge mod
present an infrared Landau pole in perturbation theory.
this behavior results from the extrapolation from the U
scaling laws. As we have just remarked, the IR limit of t
UV regime is not correct in general, and the mass term
change considerably the actual behavior in the IR. Moreo
at the IR side of the UV regime, there are nonlinear effe
that make important the contribution of the irrelevant~non-
renormalizable! couplings@see Fig. 3~b!, commented on in
the next section#, therefore even the IR limit of the UV scal
ing can be influenced by these couplings. These ideas h
been considered qualitatively in the previous paragraphs
ter inspection of Eq.~25!. Let us now examine them mor
quantitatively.

We take as an example of asymptotically free model
scalar theory in three dimensions. We know from t
epsilon-expansion result@11# that below four dimensions, the
lf4 theory does not present an infrared Landau pole, bu
fixed point located at

l̃* 5
16p2

3
e, ~33!

at ordere542d. This is the Wilson-Fisher fixed point. Fo
finite e, for example in two and three dimensions, we can
this one-loop result from our beta functions of the dime
sionless coupling constants obtained from Eqs.~23! and~18!
in the asymptotic UV regime~that is, ignoringg2), which for
the g̃4 coupling give

b̃452~42d!g̃413g̃4
2 Vd

2~2p!d
, ~34!

giving the IR fixed point

g̃4* 5
~42d!2~2p!d

3Vd
. ~35!

Restricting ourselves to thed53 case, we find

g̃4* 5
4p2

3
.13.15947. ~36!

However, in three dimensionsg6 is a marginal coupling, and
it can be generated by the RG flow, modifying the positi
of the fixed point~36!. If we include g̃6 in our analysis, we
get the beta functions

b̃452g̃41
3

4p2
g̃4

22
1

4p2
g̃6 ,

b̃65
23

4p2
g̃4 ~10g̃4

225g̃6!. ~37!
8-5
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It is immediate to see that the zeros of these beta funct
are at the point

g̃4* 54p2.39.4784,
~38!

g̃6* 532p4.3117.091.

But now let us consider the inclusion of a no
renormalizable coupling,g8. The beta functions for the
(g4 ,g6 ,g8) model are

b̃452g̃41
3

4p2
g̃4

22
1

4p2
g̃6 ,

b̃65
23

4p2
g̃4 ~10g̃4

225g̃6!2
1

4p2
g̃8 , ~39!

b̃85g̃82
7

4p2
~290g̃4

4160g̃4
2g̃625g̃6

224g̃4g̃8!.

From them, one obtains the fixed point

g̃4* 5
4p2

210
~1951A29625!.69.01,

g̃6* 524p2g̃4* 13g̃4*
2.11563, ~40!

g̃8* 515g̃4*
3260pg̃4*

2.2.113106.

These values are also obtained in the numerical integra
of Eqs. ~39!, independently of the initial values for the di
ferent couplings~if they are different from zero, which cor
responds to the Gaussian fixed point!.

To assess the importance of this result, the difference
tween the physics around the fixed points~38! and ~40!, re-
call that the modification of the irrelevant operator set at
cutoff influences the overall scale of the model. Thus one
to consider dimensionless quantities in comparing the
coupling constant regions. The most obvious candidate,
dimensionless ratio between the mass and the four point
tex, g2 /g4

2, is trivially vanishing in our approximation. Bu
g6 is dimensionless and its variation at the fixed points in
cates that no adjustment of the overall scale could bring
physics of these two fixed points together.

As we have expected, the non-renormalizable couplingg8
modifies the position of the fixed point without changing t
blocking procedure, turning to a situation of strong coupli
dynamics in the IR. This is because the linearity which o
assumes to ignore the irrelevant coupling constants is
longer valid in the strong coupling regime. Asg4 and g6
approach their large IR fixed point the linearization fails a
new scaling laws are found which in turn generate new
evant operators@9#, overlapping withf8. Thus the strong
coupling dynamics may induce a new~and artificial! IR scal-
ing regime even if the UV scaling laws are extrapolat
down to low energies.
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Nothing unusual happens for infinitesimale when one
stays in the vicinity of the Gaussian fixed point. In that ca
linearity applies all along the renormalization group~RG!
flow from the Gaussian fixed point to the Wilson-Fish
fixed point given by Eq.~33!. However, as we have seen, i
location is changed for finitee by nonlinear effects produce
in the flow from one fixed point to the other. In the vicinit
of this infrared fixed point~which, we stress again, is artifi
cial in the sense that it neglects the influence of the m
term! we of course have again the classification of relev
and irrelevant terms, which, in the case of three and t
dimensions, is different from the one obtained from pow
counting. For example, this IR fixed point has in two dime
sions just the mass and the fourth order coupling as rele
parameters, while higher order couplings are irrelevant.

It is well known that the poles of the fixed point action
complex values of the field variable make the Taylor exp
sion in the field unreliable@8#. We do not see any reason t
reject a blocked action only because the potential is dive
ing beyond a given field strength. This kind of internal spa
singularity might only indicate a maximal particle density
the system. We should stay only sufficiently far from th
limiting value of the field variable when the evolution equ
tion is truncated. We interpret the difference of the two fix
points as an indication of the breakdown of the simple u
versality which is based on the linearized flow equati
around the UV fixed point.

So far we considered the extrapolation of the UV scal
laws to the IR regime. Does the conclusion concerning
importance of the non-renormalizable coupling constantg8
remains valid when the true evolution equation, withg2Þ0,
is considered? The mass slows down the evolution but
may happen ‘‘too late’’ and the strong coupling effects c
be found on the true renormalization group trajectory
small enough renormalized mass, close enough to the cri
point. When the mass is large then crossover freezes
evolution of the coupling constants ‘‘earlier’’ and the linea
ization remains valid. To demonstrate this case recall that
IR limit of the UV regime means a fixed point for the dime
sionless couplings. For a super-renormalizable coupling c
stant such asg4, which has positive dimension, this woul
mean that the dimensional coupling goes to zero whek
→0. However, we know that for a relevant coupling, th
dimensionless quantity diverges whenk→0, so that the di-
mensional coupling will take a finite value at the IR. Th
reasoning can be explicitly checked in Fig. 1, in which w
consider thed53 scalar theory with just one coupling,g4.
The white points follow the evolution of the UV regime an
its extrapolation tok50. We observe that indeed the dime
sionless coupling reaches the fixed point given by Eq.~36!,
while the dimensional coupling goes to zero. However,
one considers the complete beta function, i.e. retainingg2
~black points!, the behavior is the same in the UV regim
but then the true trajectory separates from the IR limit of t
regime and enters into the actual IR regime, which implie
divergent dimensionless coupling atk50, and a certain finite
value of the dimensional coupling, as explained above. O
can however see numerically that this finite value is sta
and almost does not change when one introduces more
8-6
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more non-renormalizable couplings in the RG evolutio
This is what one expects when the crossover captures
coupling constants and slows down their evolution in
regime of linearizability where the non-renormalizable co
plings are unimportant.

In the same way, it might well be that the IR Landau po
observed in four-dimensional gauge theories is just an a
fact of a wrong IR limit or the truncation of the renormalize
action. First, the nature of the singularity can change w
one adds non-renormalizable couplings, and then the IR L
dau pole would be the reflection of the insufficient function
form of the blocked action, and second, the true IR traject
can be quite different from the IR limit of the UV scaling.

V. ASYMPTOTIC FREEDOM AND THE PERTURBATION
EXPANSION

We examine in this section the scaling laws in dimensio
d52, 3 and 4 from the point of view of the applicability o
the perturbation expansion.

As we have seen in the previous section, in the RG e
lution of our model there are two asymptotic scaling
gimes,k→` andk→0. The latter one is trivial as mentione
above, because the beta functions~18! are suppressed by th
factorkd and the evolution of the dimensional coupling co
stants slows down ask→0. The asymptotic UV scaling is
however more involved. The super-renormalizable~relevant!
and the renormalizable~marginal! coupling constants,gn

with n,2d/(d22) and n52d/(d22) according to the
power counting, respectively, follow their autonomous ev

FIG. 1. Numerical RG evolution for the~a! dimensionlessg̃4

coupling and~b! dimensionalg4 coupling in thed53 g4f4 scalar
theory. Black points result from the integration of the complete b
function with g250.052, while white points show just the UV re
gime~see text!. In ~a!, the IR limit of the UV regime is given by the
fixed point ~36!.
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lution, the universal renormalized trajectory2. The non-
renormalizable ~irrelevant! coupling constants ‘‘forget
quickly’’ their initial value and take values which are gene
ated by the universal flow. This general trend is demo
strated by the renormalization group flow shown ford54
and 3 in Figs. 2 and 3, respectively. In those figures
dimensionless coupling constants are displayed as the f
tions of the cutoff which is measured in the units of t
initial cutoff value,k→kL.

In the case of theories with non-Gaussian asymptotic
free couplings~the case of our model ford,4), an excessive
growth of these couplings in the UV regime may produce
non-perturbative situation in the infrared. We want to stu
this by comparing the values of the couplings atk50. To do
so, we will adopt the convention that a model with positi
renormalized mass square is non-perturbative in the ve
gnfn if the radiative correctionO(gn) to the self energy is
stronger than the mass term, i.e.,

g̃n~k!

„~n22!/2…! 2(n22)/2m̃2~k!
@1 ~41!

wherem̃2(k)5g̃2(k). In case this inequality were satisfied
the infrared (k50), this would mean a non-perturbative sit
ation and the invalidity of renormalized perturbation expa
sion.

2Ignoring the triviality ind54 where the tree level marginal cou
pling constantg4 is actually irrelevant due to the radiative corre
tions.

a

FIG. 2. Renormalization group flow for the dimensionless co

pling constantg̃6(k) in d54. The initial conditions areg̃2(1)

5g̃4(1)50.01, together with the values ofg̃6(1)50.0,431028,

931028,1027 for the different lines in plot~a!, and g̃6(1)51023

for plot ~b!. In this last plot the points of the numerical renorma

ization group flow are joined by the linearized scalingg̃6'k2,
shown by a dashed line.
8-7
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FIG. 3. ~a! Renormalization group flow for the dimensionless coupling constantsg̃n(k), n52, 4, 6 and 8 ind53. The initial conditions

are g̃2(1)5g̃4(1)50.01,g̃n(1)50 for n>6. ~b! Evolution of g̃8(k) with the same initial conditions that before except forg̃8(1)56

31025, together with the linearized scaling lawg̃8(k)'k, indicated by the dashed line.
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We remark that we are asking here about the validity
the perturbative condition at the true,k50, infrared fixed
point, where the RG flow ends. We are not considering
example the situation at the Wilson-Fisher IR fixed point
d,4, which, as was explained in Sec. IV, is the IR limit
the UV scaling behavior~a fixed point which describes th
behavior of the system at the end of the UV regime!, and not
the real IR fixed point if we ask for the behavior of th
system at energy scales much lower than the massm(k) ~for
example, in dimension two, we will see that at the crossov
or the end of the UV regime, the high order couplings star
take large values, while they are irrelevant couplings for
Wilson-Fisher IR fixed point; this is because the true R
flow separates from the extrapolation of the UV flow, as w
explicitly shown in Fig. 1 in the case ofd53).

We now turn to a detailed analysis of the situation
dimensions four, three and two. Since the neglected hig
order vertices may influence the evolution while we low
the cutoff, we have to address the problem of the system
coupled equations numerically.

The evolution of a non-renormalizable coupling consta
g̃6 in four dimensions, is shown in Fig. 2. The irrelevance
expressed by the independence ofg̃6(k) on the initial value
g̃6(1) for k!1.3 The value given in the leading order of th
perturbation expansion,4 O(g̃4

3), is reached atk'0.3 for not

too large values ofg̃6(1). Since the model is in the wea
coupling regime the evolution is rather slow after arriving
this universal value if the cutoff is high enough to provide
long scaling regime. In our case the scale window 0.3,k
,1 was insufficient and the plateau is reduced into a pea
k'0.3 before the crossover. But the bringing ofg̃6(1) close
to the universal value creates a plateau even with this lim

3The different initial value for the non-renormalizable couplin
constants may induce a different overall scale factor. This effec
very weak in our case due to the smallness of the renormaliz
coupling constants.

4Which is not applicable for the strongly coupled case~38! or
~40!.
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range of the scales as it can be seen forg̃6(1)59•1028.
Such a scale independence is the ultimate goal of the
proved action program@12#. As the initial value increases
beyond the plateau level the coupling constant decreases
monotonous manner as the cutoff is lowered. In order
check the critical exponent coming from the lineariz

blocking we need ag̃6(k) larger than the universal valu

since the latter originates in the nonlinear level,O(g̃4
3). The

evolution follows the linear relationg̃6'k2 for k,1 indi-
cated by the dashed line in the last plot of Fig. 2. The inf

red scaling regime is 0,k,0.1 whereg̃6(k) tends to zero
with k along the universal trajectory. The theory remai
perturbative ind54 since it has no relevant non-Gaussi
coupling constant.

The three-dimensional renormalization group flow is d
picted in Fig. 3. The asymptotic infrared scaling laws a
rather simple, the super-renormalizable coupling consta
diverge, the renormalizable onen56 converges and the non
renormalizable ones tend to zero in the infrared,k→0. The
ultraviolet scaling law, abovek'0.1 indicates the weak, ra
diative correction generated relevance ofg̃6 for the given
initial conditions,g̃n(1). Theinsensitivity on the initial con-
dition g̃8(1) for k,0.3 seen in the last plot supports th
irrelevance ofg̃8. In fact, the evolution ofg̃8(k) follows the
linearized scaling law as long as its value is far form t
universalO(g̃4

4) value. It is worthwhile noting that the non

renormalizable coupling constantsg̃n(k) always develop a
peak of sign (21)11n/2 around the crossover,k'0.1. The
appearance of the peak can be understood as the result o
increase ofug̃n(k)u from zero as the cutoff is lowered in th
ultraviolet scaling regime and the decrease in the infra
side of the crossover.

Non-perturbative phenomena may arise at the low ene
edge of the UV scaling regime due to the increase of
asymptotically free coupling constants,g4 andg6 if the scal-
ing regime is long enough and the initial value of the co
pling constantsg̃4(1) andg̃6(1) are large enough. There i
however no problem in finding a perturbative, asymptotica

is
le
8-8



WEGNER-HOUGHTON EQUATION IN LOW DIMENSIONS PHYSICAL REVIEW D61 085018
FIG. 4. Renormalization group
flow for the dimensional coupling
constants ind52. The initial con-
ditions are g2(1)5g4(1)50.01,
gn(1)50 for n>6.
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free theory in the infrared. The parameter with the high
energy dimension in the Lagrangian isg25m2 for d.2.

Thus g̃2 is the largest among the dimensionless coupl
constants according to Eq.~23!, and it dominates the actio
and renders the theory perturbative in the IR limit. The co
parison of this conclusion with Eq.~40! reveals the necessit
of treating the IR scaling laws properly in establishing t
validity of the renormalized perturbation expansion.

As d approaches 2 more and more coupling constants
come super-renormalizable. The fastest increasing dim
sionless non-Gaussian coupling constant during the decr
of the cutoff isg̃4. The critical exponent, the measure of t
speed of the increase, becomes degenerate for infin
many coupling constants whend52. The specialty of the
lower critical dimension is the existence of infinitely man
super-renormalizable coupling constants,g̃n , with equal
critical dimension. This degeneracy of the dimensio
evolves the non-Gaussian pieces of the action with the s
rate as the mass term on the tree level and the theories
not obviously perturbative any more. In other words, it
mains for the radiative corrections, the last term in the ri
hand side of Eq.~23! to determine if the theory runs int
weak- or strong-coupling regime at the infrared.

The renormalization group equations were integrated
numerically in two dimensions with the initial condition
(g2

i 520.001,g4
i 50.01,gn

i 50,n.4) to find the evolution of
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the coupling constants. The result, depicted in Fig. 4, sho
a marked increase at the low energy end of the UV sca
regime. This increase originates from the asymptotically f
evolution. The relevant behavior of a coupling constant
defined on the linearized level of the blocking, i.e. in t
leading order of the perturbation expansion. This one-lo
result can be obtained by replacing the running coupling c
stants in the beta functions by their initial values at the c
off. The local potential obtained in the one-loop approxim
tion is

Uk~f!5VL~f!1
1

2Ek,p,L

d2p

~2p!2
log@p21VL9 ~f!#

5
1

8p
$@L21VL9 ~f!# log@L21VL9 ~f!#

2@k21VL9 ~f!# log@k21VL9 ~f!#2L21k2%,

~42!

with

VL9 ~f!5m2~L!1
g4~L!

2
f2. ~43!
8-9



-
-

J. M. CARMONA, J. POLONYI, AND A. TARANCÓN PHYSICAL REVIEW D 61 085018
FIG. 5. Evolution of the di-
mensional coupling constants ob
tained in the one-loop approxima
tion ~squares! and numerically
~circles! for d52.
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The comparison of the numerical solution with the one-lo
evolution is shown in Fig. 5. The one-loop formula~42!
cannot be extended down tok50, because there will be
value of k such thatk21m2(L)50, sincem2(L) is nega-
tive. But we only want to compare the results in the pert
bative regime. So we have stopped the evolution in Fig. 5
k;0.3. One can also see an increase in the one-loop solu
at small k which accumulates and drives the system n
perturbative at lower values ofk.

The numerical results of Fig. 4 show that the initial co
ditions (g2

i 520.001,g4
i 50.01,gn

i 50,n.4) correspond to a
non-perturbative system. Can we find initial conditio
which yield perturbative dynamics? In order to answer t
question the left-hand side of the inequality~41! is plotted
against the initial value forg2 on Fig. 6, for the different
couplings up toN520, at a value ofg4

i 50.001. The result
does not change qualitatively for different values of bareg4.
It supports the general trend of having the systems m
perturbative when the Gaussian part of the action is
creased. The higher order coupling constants tend to g
faster but it seems thatgn can be brought into the perturba
tive regime for sufficiently large initial mass square. Atg2

i

50.01, for example, all the couplings are perturbative, a
this perturbative character is more pronounced for the h
couplings. However, the separation between the values o
LHS ratio of Eq. ~41! at g2

i 50.01 is smaller as we go to
higher couplings, and one can ask whether it has got a
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iting value or the trend can be reversed for a sufficiently h
order coupling. Indeed, Fig. 7 reveals that this happens
the n524 coupling (N526), which suggests that one wi
have a non-perturbative situation also at this value of bareg2
going to a sufficiently high order coupling constant. The si
ation is the same, even stronger, below two dimensions:
existence of an infinite number of relevant couplings ma
that one cannot assure perturbativity by looking to a fin
number of couplings, no matter what the initial conditio

FIG. 6. The left-hand side of Eq.~41! as a function of the bare
mass square forn54, . . . ,20 ind52.
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WEGNER-HOUGHTON EQUATION IN LOW DIMENSIONS PHYSICAL REVIEW D61 085018
are. We take this and similar other failures in finding a p
turbative theory observed at different initial conditions as
strong numerical indication of the non-perturbative nature
any two and lower dimensional scalar field theory with pol
nomial interaction.

VI. LATTICE WEGNER-HOUGHTON EQUATION

The previous sections dealt with the renormalizat
group flow at finite scales. We address now a differe
asymptotic problem, the manner the sensitivity on the ini
values of the irrelevant coupling constants is suppressed
ing the renormalization. This question is usually rende
trivial by the universality argument. But there are two re
sons to suspect that such a reasoning which is based o
linearization of the blocking relation might be oversimp
fied; both are related to an infinite set of operators.

The reason motivating a more careful check of the u
versality, mentioned in the Introduction, is that the models
or below the lower critical dimension contain infinitely man
relevant operators. It is not obvious whether the sum over
interaction vertices is always convergent enough to make
linearization of the blocking relation a reliable approxim
tion.

Another potential problem shows up if one changes in
nitely many irrelevant terms in the action by choosing a
other regulator. Let us compare the momentum space cu
in the continuum with the lattice regularization. The prop
gator is a monotonic function of the momentum in the co
tinuum. This is not the case on the lattice. In fact, the f
mion doubling problem on the lattice@13# results from the
periodicity of the propagator in the first Brillouin zone, th
appearance of 2d21 new maxima in the propagators in th
UV, non-universal regime. The existence of a maximum
the propagator in the UV regime contradicts an assump
of the studies of the continuum models, namely that
propagator decreases monotonically asp→`, and renders
the perturbation expansion non-universal for lattice ferm
onic models@14#. There is no species doubling for boso
but their propagator remains periodic on the lattice and
find 2d21 lattice extrema in the UV regime. The existen

FIG. 7. The same as Fig. 6 but now including then524 cou-
pling.
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of these extrema is an evidence of the slowing down in
decrease of the propagator as the momentum approache
boundary of the first Brillouin zone. This in turn indicates th
weaker suppression of the high energy modes compare
the continuum regularization. Does this mean that the
scaling laws are different in the continuum than on the l
tice? We shall find an affirmative answer to this question
this result does not contradict the universality.

Some words of caution are in order at this point. O
would object the interpretation of the modification of th
cutoff as the introduction of new irrelevant coupling co
stants by recalling that the theory ceases to be renormaliz
in the presence of the non-renormalizable~irrelevant! cou-
plings. The resolution of the apparent paradox is based
the difference between the ways the renormalization grou
used in statistical and high energy physics. We are intere
in the dynamics close to the cutoff in statistical physics a
this is respected by the employment of the blocking wh
keeps thecompletedynamics unchanged below the actu
cutoff. The price of this precision is the appearance of
infinitely many irrelevant coupling constants in the actio
We seek the dynamics at finite, fixed scales in high ene
physics. Since the cutoff is sent to the infinity this bo
down the problem of keeping the physics cutoff independ
far from the cutoffonly. The obvious gain of such an ease
the conditions is the freedom from the adjustment of
non-renormalizable parameters. Thus one can remove
cutoff when the non-renormalizable parameters are pre
in the action without any problem5 as long as the renormal
ization conditions are imposed far from the cutoff.

The lattice regularization of the scalar model can be
scribed by using the momentum space as the introductio
the non-renormalizable higher order derivative terms:

~]mf!2→ 4

a2 S sin
a]m

2i
f D 2

5X(
l 50

`
1

~2l 11!! S a

2D 2l

]2l 11fC2

.

~44!

The cutoff dependence of the non-renormalizable coup
constants follows a tree-level relation arising from the Tay
expansion of the sine function. This is sufficient to establ
convergent physics at finite scales whena→0 @14#, a claim
to be verified in this section numerically by means of t
implementation of the Wegner-Houghton scheme on the
tice. But this convergence cannot rule out a modification
the scaling laws in the asymptotical UV regime. In fact, w
shall find a new scaling regime between the region where
usual universal UV scaling is observed and the UV fix
point. The only effect the different adjustments of the no
renormalized coupling constants may leave on the fin
scale physics can be comprised in an overall scale facto

It is rather straightforward to repeat the steps leading
Eq. ~11! on the lattice. It is shown in the Appendix that th
only change required is the modification of the ‘‘sol

5Ignoring again the possibility of the triviality, the appearance
an UV Landau pole.
8-11
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FIG. 8. Matching of lattice and
continuum regularizations; we
start with lattice field theory at the
UV, go down to the IR~circles!
and then we come back to the UV
with the continuum regularization
~squares!; see text.
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angle’’ factor,V(k): the lattice evolution equation~A25! is
obtained from Eq.~11! by replacing Eq.~12! by Eq. ~A22!.
One recovers the continuum solid angle ford52,V252p,
in Eq. ~A22! ask→0, thus the WH equations agree in the
limit. In fact, one sees numerically that the behavior of t
evolution of the different coupling constants in the lattice R
is qualitatively the same as in the continuum case. But
question we are interested in is the relation between the r
larizations in the UV, where the coupling constants are
troduced, when the physics is the same at finite scales.
shown in the Appendix that there is a natural relation
tween the cutoffs,L258/a2, which matches the finite scal
physics. We shall follow the renormalization group flow
terms of the coupling constants whose dimension is remo
by the initial value of the cutoff,

gn→gn /L2, ~45!

in order to avoid the singularities atk50.
Let us considerlf4 lattice theory which can be studie

either numerically or analytically and whose properties c
be matched to those of the continuum theory by the adj
ment ofg2 andg4. But the situation is more involved in two
dimensions. The reason is again that there are infini
many renormalizable coupling constants and one can
match the finite scale physics by adjustingg2 andg4. This is
demonstrated in Fig. 8 where the lattice model with the i
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tial conditions m2(8)5g2(8)520.001, g4(8)50.01, and
gn(8)50, n.4 @where we have already made the rescal
Eq. ~45!# was evolved in the infrared direction. As the sy
tem reachedk5kend the continuum WH equation was use
to increase the cutoff. The result is a ‘‘perfect matching’’
the models in the UV which gives the same low energy ph
ics in the IR. As we can see in Fig. 8, the latticelf4 model
in two dimensions isnot the continuumlf4 theory. It con-
tains contributions of infinitely many renormalizable oth
coupling constants. Of course, numerically we had to tr
cate the equations at a certain coupling@here, atO(F22)] but
we checked that these ‘‘truncation effects’’ hardly influen
the values of the low order coupling constants.

We have taken for the parameterkend
2 the valuek250.3 in

Fig. 8, while the crossover is atkcr
2 ;0.01. We had to use

kend
2 .kcr

2 , because the high order couplings have very la
values at the crossover which requires very fine discret
tion in the numerical resolution of our differential equatio
to ensure that the way back to the UV is done accurat
However,kend

2 should also be sufficiently small that the flo
be universal there, in other words to make sure that the
relevant lattice contributions are suppressed fork2,kcr

2 .
The choice kend

2 .0 introduces an uncertainty in th
matching. To assess it we repeated the ‘‘go-return’’ evo
tion described above and checked the discretization errors
kend

2 50.8, 0.5 and 0.3. After then we took the appropria
8-12
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WEGNER-HOUGHTON EQUATION IN LOW DIMENSIONS PHYSICAL REVIEW D61 085018
bare parameters at the UV end points in both regularizat
and followed the evolutions down tok50. The relative dif-
ference,

Dgn[
ugn

cont~0!2gn
latt~0!u

ugn
latt~0!u

~46!

is shown in Table I for the different coupling constants
k50. The smallness of the deviation assures that the IR
havior has practically been obtained withkend

2 50.3, and one
can trust the conclusions, the approach of the flow to a u
versal curve, extracted from Fig. 8.

The first two plots in Fig. 8 show that the mass and
quartic coupling constant run parallel in the SUV region
the lattice regularization~see Appendix! and in the con-
tinuum. There is no convergence between the two regu
izations in this unusual scaling regime, anticipated abo
The approach to the universal curve starts fork2,4, below
the SUV regime only. The fact that the renormalizati
group flow converges to the universal one in the 22d-th part
of the Brillouin zone only sets an unexpected high low
limit on the lattice size when the continuum limit is sought
numerical simulations. The higher order vertices seem
converge to the universal curve from the very beginning
the difference between the two regularizations is surprisin
large. The universal trajectory of thef4 model is reached
later by the higher order vertices. This effect appears to b
counterpart of the non-perturbative features seen in Figs
and introduces a large uncertainty in identifying tw
dimensional models in different regularizations.

VII. CONCLUSIONS

The renormalization group flow of scalar models w
polynomial interaction is considered in the first part of th
paper by solving the Wegner-Houghton equation num
cally in the local potential approximation ford52, 3 and 4.

The numerical results showed in this paper suggest
the length of the UV scaling regime which is needed to g
erate non-perturbative dynamics in the infrared shrinks
zero as the number of the asymptotically free coupling c

TABLE I. Relative differences between the continuum and l
tice coupling constants atk50, Eq. ~46!, after having matched the
couplings at the UV using the parameterkend

2 .

kend
2 50.8 kend

2 50.5 kend
2 50.3

Dg2 0.0166 0.0096 0.0052
Dg4 0.0028 0.0011 0.0002
Dg6 0.0188 0.0116 0.0069
Dg8 0.0199 0.0135 0.0092
Dg10 0.1793 0.0992 0.0494
Dg12 0.0680 0.0424 0.0259
Dg14 0.0522 0.0340 0.0221
Dg16 0.9300 0.5558 0.3226
Dg18 0.2116 0.1261 0.0731
Dg20 0.0584 0.0389 0.0259
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stants tends to infinity. In other words, theL-parameter tends
to the cutoff as the lower critical dimension is approach
d→2. Such a behavior limits considerably the values of
coupling constants for a perturbative system in dimensio
and rendersall two- and lower dimensional field theorie
with polynomial couplings non-perturbative. This makes t
understanding of the noncritical low dimensional conden
matter systems more involved. The one-dimensional mod
belong to first quantized quantum mechanics and our resu
a manifestation of the failure of the convergence of the p
turbation expansion for an anharmonic oscillator.

Such a conclusion does not invalidate the well kno
results for two-dimensional systems, such as the applicab
of the Bethe ansatz, bosonization and the availability of c
tain exact information for models with conformal invarianc
Instead, it makes the asymptotic state structure and the
tion between the the dressed particles and the states cre
by the application of the field operator from the vacuu
more involved.

We found an interesting analogy between the infra
Landau pole of the confining four-dimensional Yang-Mil
theories and the low dimensional scalar models which op
the possibility of an unexpected, nontrivial structure in t
asymptotic states in the low dimensional scalar mod
Viewed with interest in particle physics our conclusion su
gests that one can avoid the IR Landau pole by following
evolution of the non-renormalizable operators.

How to find the non-renormalizable operators who
presence stabilizes the theories at low energies?It is well
known that massive Lagrangians generate trivial infra
scaling laws, i.e. the Gaussian mass term is the only rele
operator in the infrared scaling regime. This is because
fluctuations are exponentially suppressed beyond the co
lation length so the evolution of the coupling constants slo
down at the infrared side of the crossover. The theories w
dimensional transmutation, i.e. dynamically generated sc
parameter or infrared instability only can support no
perturbative dynamics in the IR scaling regime. Thus
operators sought should be relevant in the IR regime, th
growth being fed by IR or collinear divergences. There a
few known cases only where the low modes are contro
by non-renormalizable operators. These include the four
mion contact term in solids inducing the BCS transition@15#,
the higher order derivative terms in the action which gen
ate inhomogeneous vacuua@16#, the common element bein
the onset of a Bose-Einstein condensation@9#.

In the second part of the paper the infinitesimal renorm
ization group scheme is generalized for lattice regularizati
The matching of the continuum and the lattice regulari
tions is carried out numerically and the approach of the u
versal renormalization group flow is demonstrated for
two-dimensionalf4 lattice model. This result suggests th
the naive argument for the universality, which is based
the linearization of the blocking relations remains valid
the presence of infinitely many relevant operators. Other
tential troublemakers, the infinitely many higher order d
rivatives contained in the lattice kinetic energy do genera
new, ‘‘super UV’’ scaling regime but universality is restore
at the IR end of the usual UV scaling regime. Another use

-
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the lattice regulated version of the Wegner-Haughton eq
tion is the estimate of the finite size effects in a no
perturbative manner. This provides a useful check of
thermodynamic limit of the numerical results obtained
general on small lattices.
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APPENDIX

The details of the derivation of the Wegner-Hought
equation in the lattice regularization are given in this Appe
dix. Let us consider the scalar field theory regularized o
lattice of lattice spacinga51. We want to derive a WH
equation similar to Eq.~11!. We integrate over spherica
shells in the momentum space for the continuum regular
tion, because the propagator has spherical symmetry. Th
no longer the case on the lattice, where we have

h5 (
m51

d

p̂m
2 , p̂m52sin

pm

2
. ~A1!

Let us see the surfaces of equal value of the lattice prop
tor in two dimensions by performing the following change
variables:

~px ,py!→~p,u!

4 sin2
px

2
14sin2

py

2
5p2 ~A2!

tanu5
sin~py/2!

sin~px/2!
.

We can see in Fig. 9 the form of the curves of const
propagator for several values ofp2. p can be identified as the
‘‘momentum scale’’ that runs from the cutoff atp25L2

58 to the IR p250. It is also clear in that figure that th
value p254 separates two regimes, still in the ultraviol
region, that we could call super-UV~SUV!, for 8.p2.4,
and normal-UV regimes. Forp2;0, the lines are spheres
and our change of variables~A2! reduces to the usual rela
tion between Cartesian and polar coordinates.

The absolute value of the Jacobian of the transforma
~A2! is found to be
08501
a-
-
e

,
-
h
e

-
h

-
a

a-
is

a-

t

n

J5
Jp

AS 12
p2

4
cos2 u D S 12

p2

4
sin2 u D

, ~A3!

whereJp is the usual Jacobian for the polar change of va
ables,Jp5p. The transformation~A2! can be easily general
ized to three and four dimensions; however, we can o
treat analytically the integral that appears in the derivation
the WH equation in thed52 case.

To derive the equivalent of the Wegner-Houghton eq
tion ~11! in the bidimensional lattice regularization we wi
start from Eq.~8!, and calculate the trace by integrating
momentum space over a shellk2dk,p,k, wherep is the
parameter we have introduced in Eq.~A2!,

1

2
tr log@h1Uk9#5

1

2E d2p

~2p!2
logF4sin2

px

2
14sin2

py

2
1Uk9G

5
1

2~2p!2E duE
k2dk

k

dp J log@p21Uk9#

'
dk

2~2p!2
klog@k21Uk9# V~k!, ~A4!

with

V~k!5E du
8

A64216k21k4 sin2 2u
. ~A5!

We have to distinguish two different regimes in making t
integration:~i! k2,4. In this region the range of values foru
is (0,2p),

FIG. 9. Lines of equal value of the lattice propagator. To t
inside, the lines drawn correspond top257.9,7,6,5,4,3,2,0.5,0.1.
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V~k!5E
0

2p

du
8

A64216k21k4 sin2 2u

5(
i 51

4

V i~k!, ~A6!

where we have split the interval (0,2p) into four intervals
(0,p/2), (p/2,p), etc. Let us considerV1(k). With the
change of variablex5tanu and the notation

k̄2542k2, ~A7!

this integral can be brought into the form

V1~ k̄!5
1

k̄
E

0

` 2 dx

A~x21b2!~x21b22!
, ~A8!

where b254/k̄2. The integral in Eq.~A8! is related to the
elliptic integral of the first kind@17# F(f,t):

V1~k!5FFp2 ,
k

4
A82k2G , F~w,t !5E

0

w da

A12t2 sin2 a
.

~A9!

The result is the same for the other integralsV i , i 52,3,4.
But F(p/2,t) is a complete elliptic integral, which can b
expressed in terms of the hypergeometric function@17,18#

F~a,b;g;z!5
G~g!

G~a!G~b! (
n50

`
G~a1n!G~b1n!

G~g1n!

zn

n!
~A10!

as

V~k!52pFS 1

2
,
1

2
;1;

~82k2!k2

16 D . ~A11!

~ii ! 4,k2,8. This is the SUV region. We split again th
integral into four integrations in the corresponding qua
rants. By using the same change of variables as above
have to calculate

V i~ k̄!5E 4 dx

Ax2~ k̄4116!24k̄2~11x4!
, ~A12!

where

k̄25k224. ~A13!

Special care is needed at the limits of integration~recall Fig.
9!. It can be seen that the four integrals can be put togethe
the form
08501
-
we

in

V~ k̄!54E
k̄/2

2/k̄ 4 dx

Ax2~ k̄4116!24k̄2~11x4!

5
8

k̄
E

k̄/2

2/k̄ dx

A~x2 k̄/2!~2/k̄2x!~x1 k̄/2!~x12/k̄!
.

~A14!

This integral is related again@17# to an elliptic integral and
an hypergeometric function:

V~k!5
32

k2
FFp

2
,

8

k2
21G5

16p

k2
FS 1

2
,
1

2
;1,

~82k2!2

k4 D .

~A15!

We would like to have a common expression forV(k) for
both cases~i! and ~ii !. From Eqs.~A11! and ~A15!, we find
in fact that the expressions differ in a factor 2 fork254. The
reason is that actually our integral is divergent at this po
From Eq.~A5! we see that the divergent integral is

V~k254!5E
0

2p

du
2

usin 2uu
~A16!

@in fact, the hypergeometric function~A10! converges in
general only in the unit circleuzu,1 @17##. We will see,
however, that this divergence is integrable during the R
evolution fromk258 to k250, and therefore it has no phys
cal significance. In order to have a consistent, single exp
sion for the cases 8,k2,4 and 4,k2,0, we will make use
of the following property of the hypergeometric function
@17#:

FS 1

2
,
1

2
;1,z2D5

1

11z
FS 1

2
,
1

2
;1,

4z

~11z2!2D , 0<z,1.

~A17!

Let us consider the expression~A11! which is valid for
k2,4. Using the property~A17! one finds

V~k!52pFS 1

2
,
1

2
;1,

4z

~11z2!2D
52p~11z!FS 1

2
,
1

2
;1;z2D , ~A18!

where we have set

4z

~11z2!2
5

~82k2!k2

16
. ~A19!

This equation has two solutions forz as a function ofk:

z5
k2

82k2
,

82k2

k2
, ~A20!
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but only the first one is admissible for Eq.~A18!, because it
givesz,1 for k2,4, while the second solution gives a valu
greater than 1 in this region. Now, if we definek̃582k2,
then we havez5(82 k̃2)/ k̃2, and Eq.~A18! becomes

V~ k̃!52p
8

k̃2
FS 1

2
,
1

2
;1;z2D . ~A21!

Comparing this last expression with the result~A15! for the
case 4,k2,8, we can finally write

V~k!5
16p

k̄2
FS 1

2
,
1

2
;1;z2D , with z5

82 k̄2

k̄2

and H k̄25k2 if k258 . . . 4,

k̄2582k2 if k254 . . . 0.
~A22!

The hypergeometric functionF( 1
2 , 1

2 ;1;z2) can be com-
puted directly from its definition~A10!. One can obtain a
high precision in the evaluation of the series with a reas
able number of terms~say, around 50! when z is not very
close to 1, say, for 0.7.z.0. For 1.z.0.7 we have used
the following alternative formula@18#:
e
9

v

I

08501
-

F~a,b;a1b;z!5
G~a1b!

„G~a!G~b!…2

3 (
n50

`
G~a1n!G~b1n!

~n! !2

3@2c~n11!2c~a1n!2c~b1n!

2 log~12z!#~12z!n,
~A23!

„uarg~12z!u,p,u12zu,1…,

where@18#

c~z!5
d logG~z!

dz
, ~A24!

which gives a better convergence for the functio
F( 1

2 , 1
2 ;1;z2) nearz51 because it is a series in the variab

(12z2).
In conclusion, our generalization of the WH equation~11!

for a lattice regularization in two dimensions is

k
]

]k
Uk~F!52

V~k!k2

2~2p!2
log@k21Uk9~F!#, ~A25!

wherek is the parameterp of Eq. ~A2!, andV(k) is given by
Eq. ~A22!.
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