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We consider scalar field theories in dimensions lower than four in the context of the Wegner-Houghton
renormalization group equatiof8/HRG). The renormalized trajectory makes a non-perturbative interpolation
between the ultraviolet and the infrared scaling regimes. Strong indication is found that in two dimensions and
below the models with polynomial interaction are always non-perturbative in the infrared scaling regime.
Finally we check that these results do not depend on the regularization and we develop a lattice version of the
WHRG in two dimensions.
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I. INTRODUCTION A-parameter an@cr~A¢4,l

Asymptotically free models gained importance both in  Non-perturbative effects may originate in the IR scaling
high energy and in condensed matter physics. This is obviregimes. The classically scale invariant models at the lower
ous for the latter, where the low dimensional phenomenaritical dimension, such as the two-dimensional sigma and
invoke effective theories below the upper critical dimension,the Gross-Neveu model do not support long range order.
d=4, which are super-renormalizable and their Hamilto-Thus the IR scaling laws must contain a dynamically gener-
nians contain asymptotically free coupling constants only. Irated mass scale, an effect generated by the infrared or col-
the former case the asymptotically free models can providénear divergences.
structureless high energy physics where the cutoff can be The asymptotically free coupling constants may generate
pushed away at will. What kind of non-perturbative mecha-non-perturbative effects in the UV scaling regime, as well,
nisms do we encounter as we follow the renormalizatiorue to their growth. The question is whether the scale param-
group flow of an asymptotically free model? To distinguish €€ A4+ or the massm is reached first as we lower the
different finite energy mechanisms we recall that unless th&Utoff. The system remains perturbative for- A 4« because
model possesses unbroken scale invariance there are alefg IR scaling laws cut off the growth of the asymptotically
two scaling regimes, an ultraviolet and an infrared one sep fee coupling constants befo“? they would reach a danger-
rated by a crossover at the characteristic scale of the mode(?.USIy large value. The.dynam|cs of the Moges A 4« be-
If there is a dimensional coupling constant, say a mass p comes non-perturbative whenAg>m. The four-

as. . . . -
rameterm, in the Lagrangian then the UV and IR scaling dlmenslonal Yang-M|!Is models develop I|'ne'arly nsing
: potential between static external charges. This is believed to
regimes are separated by a crossovepap.,~m because

5 2 oy o r happen due to the large value of the asymptotically free cou-
m?/p” or p%/m” is treated as a small quantity in the UV or ing constant at the ultraviolet side of the crossover, indi-
the IR side, respectively. The IR scaling laws are trivial be- 5t by the infrared Landau pole in perturbative QCD. The
cause the radiative corrections to the evolution are SUPquark masses are supposed to play no important role in the
pressed byp?/m* and what is left is the scale dependenceyacyum structure and the chiral linit—0 is assumed to be
governed by the canonical dimensions of the coupling consafe and convergent, though non-perturbative.

stants. If there are no dimensional coupling constants in the The infrared singularities are easier to isolate than the
Lagrangian, i.e. the model possesses classical scale invari-

ance, then a crossover can be identified where one of the———

C_OUplmg cons’Fants r_each the VaIL_JEg:]I.pcr) =_1' The expres- 1t is worthwhile noting that one can introduce theparameter

sion for the dimensionless running coupling cons®@(®) even in the presence of any parameter with positive mass dimension

must contain a dimensional parameter, usually called thg the Lagrangian so long as the IR dynamics remains stable when
this latter is removed. In fact, let us write this parametemés
wherem defined in this manner is the mass scale of the model. The
running coupling constant depends on the ratidp, g(p)

*Email address: carmona@mailbox.difi.unipi.it =f(m/p) where the limitm— 0 is convergent. In other words, the
"Email address: polonyi@fresnel.u-strasbg.fr evolution of the classically scale invariant system is recovered as
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non-perturbative effects arising at the IR end of the UV scal-equation is derived in the lattice regularization and its solu-
ing regime. It has already been achieved for non-tion is presented in Sec. VI. Section VIl is for the conclu-
asymptotically free model§1] and superrenormalizable sions.

theories[2]. The more complex non-perturbative features

should arise at the ultraviolet side of the crossover where no Il. THE WEGNER-HOUGHTON EQUATION

asymptotic analysis is available.

The goal of the present paper is the study of the scaling There are different ways the mixing of a large number of
laws and their consequences at the IR end of the UV scalin§Perators can be traced down. The Wegner-Houghton equa-
regime. According to our best knowledge this source of thdlon [4], which we use in the local potential approximation in
non-perturbative effects in asymptotically free theories hadhis work, is the simplest implementation of the Kadanoff-
not been studied before in a systematic manner. The probleiYilson blocking[5] in the momentum space and produces
is rather involved and demanding, we restrict ourselves téhe cutoff dependence of the bare action along the renormal-
outline only the way the more detailed analysis should bdzed trajectory. Other methods work with the effective action
done. In order to defuse the infrared problem we turn to thavhere the infrared cutoff dependence is sougtDifferent
scalar model with polynomial interaction in the phase whereschemes should agree in the infrared limit where few long
no spontaneous symmetry breaking occurs. The téPnin Wavelength_moo_les are left only_|n the system. We shall make
the Lagrangian of the-dimensional scalar model is asymp- WO approximations in computing the blocked action, the
totically free forn<2d/(d—2), so we have to trace the evo- fruncation of the grad|§nt expansion at the Ieadl_ng order, the
lution of a large number of coupling constants at low dimen-local potential approximatiofi7], and the truncation of the
sions. We present numerical evidences that the polynomiaiaylor expansion of the local potential in the field variable
interactions at the lower critical dimension or below wherel8]- The higher order terms of the gradient expansion are
infinitely many operators are relevant in the UV scaling re-non-renormalizable according to the power counting. We be-
gime always become strong, non-perturbative. lieve t_hat thesg coupll_ng constants wr_nch are wre]ev_ant in the

The study of the asymptotically free three-dimensiopl uItra_onet scaling regime do not modify our qualitative con-
model can bring some light into the IR Landau pole problemclusion. . _
of four-dimensional gauge theories by considering the role of The Wegner-HoughtoWH) equation[4] describes the
the non-renormalizable couplings in the IR extrapolation 0fevolu_tlon of_the effective action as the cutoff is lowered. As
the UV scaling regime. We will show that they affect con- ment|one_d in t_he .Int.roductlon we shqll consider a scalar
siderably the evolution of the relevant couplings. This pointsTiodel with an intrinsic mass scale which allows to clearly
to the possibility that the non-renormalizable couplings coulgdistinguish the UV and IR scaling regimes. We derive the
suppress the Landau pole. The full solution of the theoryVH equation for a scalar field theory by using a sharp mo-
where all possible coupling constants are followed by thenentum space cutoff3,9]: we will call this regularization
renormalization group equation should necessarily yield @rocedure theontinuum regularizationlin Sec. VI we con-
non-singular renormalization group flow so long as theSider an alternative, thiattice regularization.
theory possesses local interactions. This suggests that the Denote the bare action [ ¢#], wherek is the UV cut-
introduction of the hadronic composite operators in QCDOff. Then, according to the usual Wilson-Kadanoff proce-
could defuse its Landau pole problda]. dure,

Another issue addressed in this paper is the manner in
which the influence of the non-renormalizable operators on e*(l”")sk’[‘/’]:f D’ e~ (UMSIo+']
the dynamics is suppressed and the universal physics is
reached as the cutoff is lowered. The usual argument based

on the linearization of the blocking relation is not obviously wherek’ <k in the Euclidean space-time. The Fourier trans-
applicable due to the presence of infinitely many relevantorm of the fields¢(x) and ¢’ (x) is non-vanishing only for
operators. This question is discussed in the framework oh<k’ and k' <p<k, respectively. The right hand side is

lattice regulation by tailoring the Wegner-Houghton equationgygjuated by means of the loop expansion, so that(Eq.
for lattice regulated models. As a result, the approach to thgjyes

low energy physics can be compared for the momentum
space cutoff regularization in the continuum and for the lat- 5
tice regularization, and the universality, the regulator inde- Sl p]=Sd ¢+ o1+ 5 trlog §2°S+ O(42?), 2
pendence, can be established well beyond the linearized ap- 2
proximation of the blocking relations.
The organization of this paper is the following. The in- where
finitesimal renormalization group step, the Wegner-

D

Houghton equation, is described in Sec. Il. The running cou- 8°SL b+ )]
pling constants are introduced and their evolution equations 52S(x,y)= S TPI—— 3
are given in Sec. Il for scalar models. The asymptotic UV 8¢’ (x)6'(y)

evolution is discussed in Sec. IV fdr=2, 3, and 4. Section
V is devoted to the demonstration of the difficulties in find- and the saddle point), is defined by the extremum condi-
ing a perturbative model iM=2. The Wegner-Houghton tion
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S o+ dol 1f d’p
=T T, 4 U s(®)=U(®)+ = log[ p2+ U (d
58’ 4 k—ok(P)=Uy(P) 2) (2m) ap k(P)]
2
in which the infrared background fielgh(x), is held fixed. It +O(8K%), (10

can be proved that the saddle point is trivia},= 0, as long
as the matrixs?S(x,y) is invertible and the IR background
field is homogeneoush(x)=®.

Now, each successive loop integral in thdoop contri- 9 Ok
butions which are not explicitly written in Eq2) brings a k%Uk(q)): _ log[ k2+U}(P)], (11)

where the integration extends over the skellok<p<Kk. In
the limit 5k—0 one then finds the differential equation

suppression factor 2(27)8
Kd—'d k—k' where()4 denotes thel-dimensional solid angle
krd - Kk’ (5) 2’7le2
Qd:—d. (12)
due to the integration volume in the momentum space. Thus r<_
Sklk=(k—k')/k appears as a new small parameter which 2

suppresses the higher loop contributions in the blocking re-

lation and the “exact” functional differential equation ob- | d mixi £ th i tants of th
tained in the limit6k— 0 includes the one-loop contribution o0p resumme mlxmgno € coupling constants ot the po-
tentialU,=2,(g,/n!)®". In fact, an expansion of the loga-

only. But we should bear in mind that the loop expansion thm in th d derivati f th tential o
had to be used at the initial stage of the derivation so thd!thm In the second derivative ot the potential gives
resulting “exact” equation might be unreliable in the strong

The Wegner-Houghton equatidfhl) represents the one-

© " n
coupling situation. All we know is that the loop corrections o (@)= — Ok 10 —U(®) 13
to the evolution equation obtained in the one loop level are gk K 22md iz N KR+Ul(d))
vanishing.
We will use the gradient expansion for the action, up to a field independent constant. This is the usual one loop

resummation of the effective potentiglO] except that the
- | on loop momentum is now restricted to the subspace of the
S[d’]:nzo f d™x Un(p(x), "), (6)  modes to be eliminated. Actually, the fact that the right-hand
side(RHS) includes the running potentiél, (®) rather than
the bare onelU , (®), indicates that the contributions of the
successive eliminations of the degrees of freedom are piled
up during the integration of the differential equation and the
solution of the renormalization group equation resums the
Z($) perturbation series. The solution of the differential equation
S ol= f d“x{T(anS)ZJr U(o)|, (7)  interpolates between the bare and the effective potential as
is lowered from the original cutofi\ to zero.

o _ i Finally, let us note that the derivation of E@.1) shows
and furthermore the simplification(¢) =1 will be used 10 4t the restoring force for the fluctuations into the equilib-

derive a simple differential equation for the potentilThis  i,m is proportional to the argument of the logarithm func-

local potential will be then the only function characterizing tjon Thus a nontrivial saddle point should be used when
the action. If we use now a homogeneous infrared back-

ground field,#(x) =, we obtain from Eqgs(2) and(7) an K2+ U[(d)=<0. (14)
equation for the local potenti&),(¢=>):

where U,, is an homogeneous function of orden 2n the
derivative. In the leading order of this expansion, the so
called local potential approximation, we have

[ll. EVOLUTION OF THE COUPLING CONSTANTS

1
_ - " 2
Uk— k(D) =Uy(P)+ ztf|09[D+Uk(q))]+O( 5K%), Our effective action is

8

. ) _ d
where we have introduced the notation Sk—f d'x

1
5GP TUS)|, (19

U (D) u and the initial condition for the evolution equation is given at
ap2 U=—-3d,d ©) k=A. The potential(®) is assumed to be polynomial so
it is expanded as

Up(®)=

and the trace is taken in the subspace of the eliminated N
?noddzz.tWe can explicitly write the trace in momentum space Uy (D)= z‘o mgn(‘Do)((D—q)o)n- (16)
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We study the model in the symmetric phase, where the
saddle point is trivial®y=0. The polynomial structure of

the potential is consistent because we avoid the singularity of
Eq. (11) atkg=—Uy (@) [recall Eq.(14)] which occurs in where nowk runs from 1 to 0. Their beta functions are

Gn(k) =k "A-d2~dg (k)= (Ak) "1-dD-dg (k)
(22)

a region aroundb =0 in the symmetry broken pha§g|.
Taking then-th derivative of Eq(16) at ®=0 we obtain

the coupling constang,(k), and define the corresponding

beta function by

n

gn(k)= Ur(P)jo=0.

adp"
(17

n

d J
Bn:k&gn(k)zﬁkﬁuk(qn-

By taking the successive derivatives of E#j1), we obtain

Q ke
Bn=— 2(277)‘17)”(62, o Gnr2)s (18
where
G,= kzi”gz (19)
and
g
Pn=aq)nlog[k2+ U(®)] (20)
is a polynom of ordem in the variablesG;, j=2,...n
+2,
P1=Ga3,
P,=G,—G3,
P3=G5—3G3G,+2G3,
(21

Py=Gg—4GsG;—3G2+12G3G,— 6G3,

Ps=G;—5G¢G3— 10G5G,+ 20G5G3
+30G2G;— 60G,G5+ 24G3,

Pg=Gg—6G;G3— 15G¢G,— 10G2+30G¢G3
+120G5G 4G5+ 30G3 — 120G5G3— 270G3G3
+360G,G3—120GS.

The coupling constants defined through Etp) are di-
mensional parametershe field variable¢p has dimension

Bn: _ §n+ kfn(ldeZ)deBn , (23)

d
n l_i +d

where the first and the second term stands for the tree-level
and the loop corrections, respectively. One can see that the
super-renormalizable coupling constants follow asymptoti-
cally free scaling law at the tree level.

IV. UV SCALING LAWS AND THEIR EXTENSIONS

One can distinguish an ultraviolet and an infrared scaling
regime, fork?>|m?(k)| and for k?<|m?(k)|, respectively.
In the UV regime the scale dependence comes dominantly
from the k? term of the propagator, see the denominator of
Eq. (19); the k-dependence is generated by the phase factor
k% in the IR regime wheré? could be neglected in the in-
verse propagator. We will begin at the UV scale with the
usual ¢* potential @,=m?)

Y, (¢>)—1m2¢2+i 4+i 6 (24)
A - 2 41 g4¢ 6! g6¢ ’
and see how the different couplings are generated when we
move towards the IR regime.
One ignores thg, term in the denominator of E419) in
the asymptotic UV regime and finds

dg, Q4

de_ 9% pd-3

dk 2(277)dk 941

dg4 Qd 3
—=——k%3 —gi—0gs|, 25
dk 227 (kzg4 96) 25
dge Qd 10
—o— % _3g,kd75| —g2—5g,],
dk 2(27T)d g4 ( k2 g4 gﬁ)

where in the last equation we omitted the contributioygf
Consider the usual strategy in which the coupling constants
0, are neglected fon>4 and the resulting equation is easy
to integrate,

()"
Y
94(k)  ga(A)  (4—d)2(2m)%K4 9

This expression agrees with the result of the minimal sub-
traction (MS), a scheme which proved to be specially con-
venient in the ultraviolet scaling regime. It is based on the
analytical continuation of the loop integrals in the ultraviolet
domain so the resulting beta functions are mass independent,

(26)

(d—2)/2]. However, the corresponding dimensionless pai.e. the termg)(g,/k?) are neglected. When extrapolating to
rameters have more physical sense. We obtain them in thibe infrared regime we find erroneously the mass indepen-

following way:

dent resulg,~k* 9 (g,~logk in d=4), g, tends to zero as
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k—0. This can be understood by inspecting E2b) where
we find large positive values in the infrared fgs+ 0 (this
conclusion remains valid for finitgg, as wel). When the

PHYSICAL REVIEW 51 085018

We see that the extraction of the scaling in the likit
—0 from the UV scaling laws, which is the commonly ac-
cepted practice in perturbation theory is incorrect when the

mass term is retained the beta function assumes the corrdetS scheme is used. One has to come back to the complete
behavior and become@(k?) in the infrared. Note that the scaling laws in order to describe correctly the IR scaling.

term with gg acts in the opposite manner thap, cf. the
different signs in the right-hand side of E@®5), so that it
can change the evolution considerably.

It is instructive to look into the evolution of the dimen-

sionless coupling constant:

k 4—d k 4—d
1 (K) 39“( 1_(K) )
= == + .
ga(k)  94(A) (4—d)2(2m)°

For 4—d>0 the one-loopw=4—d universal critical expo-

(27)

nent is reached fok values sufficiently below the cutoff
wherek/A=~0. The latter condition is needed to get rid of
the non-universal cutoff effects. The scaling changes qual

tatively asd— 4 because the non-univerda+ A behavior is

spread over the whol& range due to the smallness of 4

—d. This is what happens in the expansion

Four-dimensional asymptotically free gauge models
present an infrared Landau pole in perturbation theory. But
this behavior results from the extrapolation from the UV
scaling laws. As we have just remarked, the IR limit of the
UV regime is not correct in general, and the mass term can
change considerably the actual behavior in the IR. Moreover,
at the IR side of the UV regime, there are nonlinear effects
that make important the contribution of the irrelevéanon-
renormalizablg couplings[see Fig. 8), commented on in
the next sectiol therefore even the IR limit of the UV scal-
ing can be influenced by these couplings. These ideas have
been considered qualitatively in the previous paragraphs, af-
ter inspection of Eq(25). Let us now examine them more

jquantitatively.

We take as an example of asymptotically free model the
scalar theory in three dimensions. We know from the
epsilon-expansion resyli1] that below four dimensions, the
N ¢* theory does not present an infrared Landau pole, but a

K\ 4-d k fixed point located at
1- K) —>(d—4)InK, (28) _ 16772
*= €, (33
employed in the dimensional regularization scheme. This 3

generalizes to any dimension: the marginal coupling constant
follows the scaling law extended from the non-universal cut

off regime.
The evolution forg, is of the form

dg, o

—=- kd—3, 29
It predicts

d

%~k, g,~k?+ const (30)

in lack of any dimensional constant.

In the IR scaling regime we neglect thé term in the
denominator of Eq(19) and using Egs(18) and (21), we
get, forg, (assuming agaigg=0),

dg, 304 (Hg_i

——= . 31
dk  202md° g3 D

This evolution is much slower comparing with E@6). In
fact, ford>1 we have now a suppression fackdr * which

at ordere=4-—d. This is the Wilson-Fisher fixed point. For

finite €, for example in two and three dimensions, we can get
this one-loop result from our beta functions of the dimen-
sionless coupling constants obtained from Eg&8) and(18)

in the asymptotic UV regimé&hat is, ignoringg,), which for
the'g, coupling give

Ba= —(4—d>64+3622(2—7‘1)d, (34
giving the IR fixed point
e ?éizﬂd - (35)
Restricting ourselves to thee=3 case, we find
o =4—772 ~13.15947. (36)

3

However, in three dimensiong is a marginal coupling, and
it can be generated by the RG flow, modifying the position

of the fixed point(36). If we includegg in our analysis, we

makes the coupling to stabilize at the attractive IR fixedget the beta functions

point. In the same way, we obtain, fgs,

dg; Qy a-194

dk 202m)d 02 (32

with a variation which is slower than that predicted by the

UV scaling and a suppression factor for 0.

3 - 1

B g S Lo
Ba=—04 42347, 20

3~ ~ ~
— 2_
Be= a2 94 (1093 —59e)-

(37
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It is immediate to see that the zeros of these beta functions Nothing unusual happens for infinitesimalwhen one

are at the point stays in the vicinity of the Gaussian fixed point. In that case,
_ linearity applies all along the renormalization grotRG)
g% =4m?=39.4784, flow from the Gaussian fixed point to the Wilson-Fisher
(38) fixed point given by Eq(33). However, as we have seen, its
ag =3274~3117.091. location is changed for finite by nonlinear effects produced

in the flow from one fixed point to the other. In the vicinity
But now let us consider the inclusion of a non- of this infrared fixed poinfwhich, we stress again, is artifi-
renormalizable couplinggs. The beta functions for the cial in the sense that it neglects the influence of the mass
(94.,96.95) model are term) we of course have again the classification of relevant
and irrelevant terms, which, in the case of three and two
5 5 3 _ 1 _ dimensions, is different from the one obtained from power
Ba=—04+t 294 —Us. counting. For example, this IR fixed point has in two dimen-
4m 4m sions just the mass and the fourth order coupling as relevant
parameters, while higher order couplings are irrelevant.
~ - 1. It is well known that the poles of the fixed point action at
/86— 294 (1095~ 596)_ 298' (39 complex values of the field variable make the Taylor expan-
sion in the field unreliabl¢8]. We do not see any reason to
reject a blocked action only because the potential is diverg-
ing beyond a given field strength. This kind of internal space
singularity might only indicate a maximal particle density in
the system. We should stay only sufficiently far from this
From them, one obtains the fixed point IImltlng value of the field variable when the evolution equa-
tion is truncated. We interpret the difference of the two fixed
points as an indication of the breakdown of the simple uni-
9= 210(195+ V29625=69.01, versality which is based on the linearized flow equation
around the UV fixed point.

So far we considered the extrapolation of the UV scaling
laws to the IR regime. Does the conclusion concerning the
importance of the non-renormalizable coupling constant

=15g% 3~ 60mg; 2=2.11x 1¢P. remains valid when the true evolution equation, wggh= 0,
is considered? The mass slows down the evolution but this
These values are also obtained in the numerical integratiomay happen “too late” and the strong coupling effects can
of Egs.(39), independently of the initial values for the dif- be found on the true renormalization group trajectory for
ferent couplinggif they are different from zero, which cor- small enough renormalized mass, close enough to the critical
responds to the Gaussian fixed pgint point. When the mass is large then crossover freezes the

To assess the importance of this result, the difference beevolution of the coupling constants “earlier” and the linear-
tween the physics around the fixed poi(@8) and (40), re- ization remains valid. To demonstrate this case recall that the
call that the modification of the irrelevant operator set at thdR limit of the UV regime means a fixed point for the dimen-
cutoff influences the overall scale of the model. Thus one hasionless couplings. For a super-renormalizable coupling con-
to consider dimensionless quantities in comparing the twatant such ag,, which has positive dimension, this would
coupling constant regions. The most obvious candidate, thevean that the dimensional coupling goes to zero wken
dimensionless ratio between the mass and the four point ver-0. However, we know that for a relevant coupling, the
tex, gzlg4, is trivially vanishing in our approximation. But dimensionless quantity diverges whkn:0, so that the di-
ge is dimensionless and its variation at the fixed points indi-mensional coupling will take a finite value at the IR. This
cates that no adjustment of the overall scale could bring theeasoning can be explicitly checked in Fig. 1, in which we
physics of these two fixed points together. consider thed=3 scalar theory with just one coupling,.

As we have expected, the non-renormalizable couging The white points follow the evolution of the UV regime and
modifies the position of the fixed point without changing theits extrapolation t&k=0. We observe that indeed the dimen-
blocking procedure, turning to a situation of strong couplingsionless coupling reaches the fixed point given by ©B§),
dynamics in the IR. This is because the linearity which onewhile the dimensional coupling goes to zero. However, if
assumes to ignore the irrelevant coupling constants is none considers the complete beta function, i.e. retaimging
longer valid in the strong coupling regime. Agx and gg (black points, the behavior is the same in the UV regime,
approach their large IR fixed point the linearization fails andbut then the true trajectory separates from the IR limit of this
new scaling laws are found which in turn generate new relregime and enters into the actual IR regime, which implies a
evant operator$9], overlapping with¢®. Thus the strong divergent dimensionless couplingkat 0, and a certain finite
coupling dynamics may induce a néand artificia) IR scal-  value of the dimensional coupling, as explained above. One
ing regime even if the UV scaling laws are extrapolatedcan however see numerically that this finite value is stable
down to low energies. and almost does not change when one introduces more and

- o~ 7 - - - -
Bs=0s— 4—772<—9093+6mﬁe— 505—4949s)-

0% =—47%g% +3g% 2=11563, (40)
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) ) ) ) - FIG. 2. Renormalization group flow for the dimensionless cou-

FIG. 1. Numerical RG evolution for the) dlmen5|o?lessg4 pling constantgg(k) in d=4. The initial conditions areg,(1)
coupling and(b) dimensionalg, coupling in thed=3 g,¢* scalar ~ . ~ T g

: : : =0,4(1)=0.01, together with the values @f;(1)=0.0,4x10"°,

theory. Black points result from the integration of the complete beta e 4y ) ) i ~ .
function with g,=0.052, while white points show just the UV re- 9%107%,10" " for the different lines in plo(a), andge(1)=10
gime (see text In (a), the IR limit of the UV regime is given by the for plot (b). In this last plot the points of the numerlcal~renormal-
fixed point(36). ization group flow are joined by the linearized scaligg~k?,
shown by a dashed line.

more non-renormalizable couplings in the RG evolution. " h . | lized traiectdrvTh
This is what one expects when the crossover captures tHg lon, the universal renormalize€d drajectaryine non-
renormalizable (irrelevan} coupling constants “forget

coupling constants and slows down their evolution in the = .~ =~~~ - X
. . L : quickly” their initial value and take values which are gener-
regime of linearizability where the non-renormalizable cou-

i . tant ated by the universal flow. This general trend is demon-
plings are unimportant. strated by the renormalization group flow shown b+ 4
In the same way, it might well be that the IR Landau pole,,y 3'jn"Figs. 2 and 3, respectively. In those figures the

observed in four-dimensional gauge theories is just an artigimensionless coupling constants are displayed as the func-
fact of a wrong IR limit or the truncation of the renormalized jons of the cutoff which is measured in the units of the

action. First, the nature of the singularity can change whennitial cutoff value, k—KkA..

one adds non-renormalizable couplings, and then the IR Lan- | the case of theories with non-Gaussian asymptotically
dau p0|e would be the reflection of the insufficient fUnCtionalfree Coup”ngithe case of our model fat< 4), an excessive
form of the blocked action, and second, the true IR trajectoryyrowth of these couplings in the UV regime may produce a
can be quite different from the IR limit of the UV scaling. non-perturbative situation in the infrared. We want to study
this by comparing the values of the couplingkat0. To do
so, we will adopt the convention that a model with positive
renormalized mass square is non-perturbative in the vertex

V. ASYMPTOTIC FREEDOM AND THE PERTURBATION gno" if the radiative correctiorO(g,) to the self energy is
EXPANSION stronger than the mass term, i.e.,
We examine in this section the scaling laws in dimensions 9n(K)

d=2, 3 and 4 from the point of view of the applicability of 1 (41
the perturbation expansion.

As we have seen in the previous section, in the RG evo-
lution of our model there are two asymptotic scaling re-wherem?(k)=g,(k). In case this inequality were satisfied in
gimes,k—o andk— 0. The latter one is trivial as mentioned the infrared k=0), this would mean a non-perturbative situ-
above, because the beta functigh8) are suppressed by the ation and the invalidity of renormalized perturbation expan-
factork? and the evolution of the dimensional coupling con- sion.
stants slows down ak— 0. The asymptotic UV scaling is
however more involved. The super-renormalizaipédevany
and the renormalizablémargina) coupling constantsgy, 2Ignoring the triviality ind=4 where the tree level marginal cou-

with n<2d/(d—2) and n=2d/(d—2) according to the pling constant, is actually irrelevant due to the radiative correc-
power counting, respectively, follow their autonomous evo-tions.

(n—2)/2)! 2("=22m2(k) g
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FIG. 3. (a) Renormalization group flow for the dimensionless coupling consgytte), n=2, 4, 6 and 8 ird=3. The initial conditions
are g,(1)=0,(1)=0.019,(1)=0 for n=6. (b) Evolution of gg(k) with the same initial conditions that before except ty(1)=6
x 1075, together with the linearized scaling lagy(k) ~k, indicated by the dashed line.

We remark that we are asking here about the validity ofrange of the scales as it can be seendgfl)=9-10"8.
the perturbative condition at the truk=0, infrared fixed gych a scale independence is the ultimate goal of the im-
point, where the RG flow ends. We are not considering fofyroved action progranil2]. As the initial value increases
example the situation at the Wilson-Fisher IR fixed point iNheyond the plateau level the coupling constant decreases in a

dh<4’ WhiChI: ast\)/v:;l]s gxplaifne%in Sec. 'r\](’ ri]sdthe IIT)Iimithof monotonous manner as the cutoff is lowered. In order to
the UV scaling behaviofa fixed point which describes the cnocy the critical exponent coming from the linearized

behavior of the system at the end of the UV reginaad not ) ~ .
the real IR fixed point if we ask for the behavior of the Plocking we need a&g(k) larger than the universal value
system at energy scales much lower than the m#$3 (for ~ since the latter originates in the nonlinear Ie\(é(,gi). The
example, in dimension two, we will see that at the crossovereyolution follows the linear relatiogg~k? for k<1 indi-

or the end of the UV regime, the high order couplings start tacated by the dashed line in the last plot of Fig. 2. The infra-

take large values, while they are irrelevant couplings for thered scaling regime is @k<0.1 wheregs(k) tends to zero

Wilson-Fisher IR fixed point; this is because the true RGWith k alona the universal traiectory. The theorv remains
flow separates from the extrapolation of the UV flow, as was 9 J Y. y

explicitly shown in Fig. 1 in the case af=3) perturbative ind=4 since it has no relevant non-Gaussian
We now turn to a detailed analysis of the situation atcourr):mghcons;gnt. ional lizati flow is d

dimensions four, three and two. Since the neglected higher, T e_t ree-cdimensiona renor_ma_lzatlon group flow'Is de-

order vertices may influence the evolution while we lowerPiCted in Fig. 3. The asymptotic infrared scaling laws are

the cutoff, we have to address the problem of the system dether simple, the super-renormalizable coupling constants

coupled equations numerically. diverge, the renormalizable ome=6 converges and the non-
The evolution of a non-renormalizable coupling constantfénormalizable ones tend to zero in the infraree; 0. The

0e in four dimensions, is shown in Fig. 2. The irrelevance isultrawolet scaling law, abovk~0.1 indicates the weak, ra-

expressed by the independenceggfk) on the initial value diative correctiorl generated relevance ggf for the given
To(1) for k<12 The value given in the leading order of the initial conditions,g,(1). Theinsensitivity on the initial con-

perturbation expansich()(g3), is reached ak~0.3 for not _d|t|on 9s(1) for k<0.3 seen in th.e last plot supports the
too large values 056(1)_ Since the model is in the weak irrelevance ofgg. In fact, the evolution ofjg(k) follows the

coupling regime the evolution is rather slow after arriving atlmganzed Sf?“ng law a§ long as !ts valge Is far form the
this universal value if the cutoff is high enough to provide auniversalo(g,) value. It is worthwhile noting that the non-
long scaling regime. In our case the scale window<k3 renormalizable coupling constangs (k) always develop a
<1 was insufficient and the plateau is reduced into a peak gteak of sign ¢ 1)1""2 around the crossovek~0.1. The
k~0.3 before the crossover. But the bringingga{1) close appearancgof the peak can be understood as the result of the
to the universal value creates a plateau even with this limiteéhcrease ofg,(k)| from zero as the cutoff is lowered in the
ultraviolet scaling regime and the decrease in the infrared
side of the crossover.
3The different initial value for the non-renormalizable coupling Non-perturbative p_henomgna may arise at. the low energy
constants may induce a different overall scale factor. This effect i dge of t'he UV scaling ,reg'me due to the 'r,]crease of the
very weak in our case due to the smallness of the renormalizabl_@symptOt'Ca"y free coupling constangs, andg if the scal-

coupling constants. ing regime is Igng enouqh and the initial value of the cou-
“Which is not applicable for the strongly coupled ca8®8 or  pling constantg,(1) andgg(1l) are large enough. There is
(40). however no problem in finding a perturbative, asymptotically
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free theory in the infrared. The parameter with the highesthe coupling constants. The result, depicted in Fig. 4, shows
energy dimension in the Lagrangian gg=m? for d>2.  a marked increase at the low energy end of the UV scaling
Thus g, is the largest among the dimensionless coupling®9ime. This increase originates from the asymptotically free

constants according to E(3), and it dominates the action €volution. The relevant behavior of a coupling constant is
and renders the theory perturbative in the IR limit. The com-d€fined on the linearized level of the blocking, i.e. in the
parison of this conclusion with E40) reveals the necessity '€2ding order of the perturbation expansion. This one-loop
of treating the IR scaling laws properly in establishing the®Sult can be obtained by replacing the running coupling con-
validity of the renormalized perturbation expansion. stants in the beta functions by their initial values at the cut-
As d approaches 2 more and more coupling constants bé?_ff. The local potential obtained in the one-loop approxima-
come super-renormalizable. The fastest increasing dimeron 1S
sionless non-Gaussian coupling constant during the decrease

of the cutoff isg,. The critical exponent, the measure of the 1 p
speed of the increase, becomes degenerate for infinitely Uy(¢)=V(d)+ EJ 2Iog[szrVX(qﬁ)]
many coupling constants whet=2. The specialty of the k<p<A (2)

lower critical dimension is the existence of infinitely many

1

super-renormalizable coupling constants,, with equal —g{[AZJFVX(¢)]|09[A2+VX(¢)]
critical dimension. This degeneracy of the dimensions
evolves the non-Gaussian pieces of the action with the same —[k2+V(p)Nlog k?+ V5 ()]— A2+Kk?,
rate as the mass term on the tree level and the theories are
not obviously perturbative any more. In other words, it re-
mains for the radiative corrections, the last term in the right
hand side of Eq(23) to determine if the theory runs into ith
weak- or strong-coupling regime at the infrared.

The renormalization group equations were integrated out
numerically in two dimensions with the initial conditions
(g5=—0.001g,=0.01g,=0,n>4) to find the evolution of

2

(42

A
Via=mea)+ 20 g2 @3
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The comparison of the numerical solution with the one-loopiting value or the trend can be reversed for a sufficiently high
evolution is shown in Fig. 5. The one-loop formu{d2) order coupling. Indeed, Fig. 7 reveals that this happens for
cannot be extended down tc=0, because there will be a the n=24 coupling N=26), which suggests that one will
value ofk such thatk’?+m?(A)=0, sincem?(A) is nega- have a non-perturbative situation also at this value of bare
tive. But we only want to compare the results in the pertur-going to a sufficiently high order coupling constant. The situ-
bative regime. So we have stopped the evolution in Fig. 5 aation is the same, even stronger, below two dimensions: the
k~0.3. One can also see an increase in the one-loop solutiexistence of an infinite number of relevant couplings makes
at smallk which accumulates and drives the system nonthat one cannot assure perturbativity by looking to a finite
perturbative at lower values &t number of couplings, no matter what the initial conditions
The numerical results of Fig. 4 show that the initial con-
ditions (g,= —0.001g,=0.01g,=0,n>4) correspond to a o
non-perturbative system. Can we find initial conditions 108
which yield perturbative dynamics? In order to answer this
guestion the left-hand side of the inequal{@l) is plotted
against the initial value fog, on Fig. 6, for the different
couplings up toN=20, at a value ofy,=0.001. The result
does not change qualitatively for different values of bgue
It supports the general trend of having the systems more
perturbative when the Gaussian part of the action is in-
creased. The higher order coupling constants tend to grow
faster but it seems thaf, can be brought into the perturba-
tive regime for sufficiently large initial mass square. @it 1076
=0.01, for example, all the couplings are perturbative, and
this perturbative character is more pronounced for the high
couplings. However, the separation between the values of the
LHS ratio of Eq.(41) at g,=0.01 is smaller as we go to  FIG. 6. The left-hand side of E¢41) as a function of the bare
higher couplings, and one can ask whether it has got a limmass square fan=4, . ..,20 ind=2.

3

9n(0)
((n—2/2))! 200~2D/2 2(0)

_
9
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of these extrema is an evidence of the slowing down in the
decrease of the propagator as the momentum approaches the
boundary of the first Brillouin zone. This in turn indicates the
weaker suppression of the high energy modes compared to
the continuum regularization. Does this mean that the UV
scaling laws are different in the continuum than on the lat-
tice? We shall find an affirmative answer to this question but
this result does not contradict the universality.

Some words of caution are in order at this point. One
would object the interpretation of the modification of the
cutoff as the introduction of new irrelevant coupling con-
stants by recalling that the theory ceases to be renormalizable
I T T in the presence of the non-renormalizakileelevany cou-

0.0000 0.0025 0.0050 0.0075 0.0100 plings. The resolution of the apparent paradox is based on
(1) the difference between the ways the renormalization group is
used in statistical and high energy physics. We are interested
in the dynamics close to the cutoff in statistical physics and
this is respected by the employment of the blocking which

are. We take this and similar other failures in finding a per-keeF)S thecompletedynamics unchanged below the actual

turbative theory observed at different initial conditions as acu'to_ff - The price of this precision 1s the appearance Of. the
nfinitely many irrelevant coupling constants in the action.

strong numerical indication of the non-perturbative nature o e seek the dynamics at finite, fixed scales in high energy
anytwo and lower dimensional scalar field theory with poly- physics. Since the cutoff is sent to the infinity this boils

nomial interaction. down the problem of keeping the physics cutoff independent
far from the cutofionly. The obvious gain of such an ease of
VI. LATTICE WEGNER-HOUGHTON EQUATION the conditions is the freedom from the adjustment of the
The previous sections dealt with the renormalizationNOn-renormalizable parameter_s. Thus one can remove the
group flow at finite scales. We address now a differentFUtOﬁ whgn thg non-renormalizable parameters are present
asymptotic problem, the manner the sensitivity on the initialn the action without any problefas long as the renormal-
values of the irrelevant coupling constants is suppressed dufzation conditions are imposed far from the cutoff.
ing the renormalization. This question is usually rendered The lattice regularization of the scalar model can be de-
trivial by the universality argument. But there are two rea-Scribed by using the momentum space as the introduction of
sons to suspect that such a reasoning which is based on tfe non-renormalizable higher order derivative terms:
linearization of the blocking relation might be oversimpli-

FIG. 7. The same as Fig. 6 but now including the 24 cou-
pling.

fied; both are related to an infinite set of operators. , 4(  ad, 2 o a\2 _ 2
The reason motivating a more careful check of the uni- (9,¢)"— —|sin=¢ | = IZO @+nriz) 7 ¢ .
versality, mentioned in the Introduction, is that the models at a B ' (44)

or below the lower critical dimension contain infinitely many
relevant operators. It is not obvious whether the sum over the _ )
interaction vertices is always convergent enough to make théhe cutoff dependence of the non-renormalizable coupling
linearization of the blocking relation a reliable approxima-constants follows a tree-level relation arising from the Taylor
tion. expansion of the sine function. This is sufficient to establish
Another potential problem shows up if one changes infi-convergent physics at finite scales wreer-0 [14], a claim
nitely many irrelevant terms in the action by choosing an-© be ver|f|eq in this section numerically by means of the
other regulator. Let us compare the momentum space cutoffiPlementation of the Wegner-Houghton scheme on the lat-
in the continuum with the lattice regularization. The propa-tice. But this convergence cannot rule out a modification of
gator is a monotonic function of the momentum in the con-the scaling laws in the asymptotical UV regime. In fact, we
tinuum. This is not the case on the lattice. In fact, the fer-Shall find a new scaling regime between the region where the
mion doubling problem on the lattide 3] results from the uspal universal UV scalmg_ is obseryed and the UV fixed
periodicity of the propagator in the first Brillouin zone, the POint. The only effect the different adjustments of the non-
appearance of -1 new maxima in the propagators in the renormallzgd coupling congtantg may leave on the finite
UV, non-universal regime. The existence of a maximum ofSCale physics can be comprised in an overall scale factor.
the propagator in the UV regime contradicts an assumption It is rather stralghtforvyard to repeat the steps leading to
of the studies of the continuum models, namely that theé=d- (11) on the lattice. It is shown in the Appendix that the
propagator decreases monotonically ms %, and renders only change required is the modification of the “solid
the perturbation expansion non-universal for lattice fermi-
onic models[14]. There is no species doubling for bosons
but their propagator remains periodic on the lattice and we Signoring again the possibility of the triviality, the appearance of
find 29— 1 lattice extrema in the UV regime. The existencean UV Landau pole.
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angle” factor, Q) (k): the lattice evolution equatiofA25) is  tial conditions m?(8)=g,(8)=—0.001, g,(8)=0.01, and
obtained from Eq(11) by replacing Eq(12) by Eq.(A22).  g,(8)=0, n>4 [where we have already made the rescaling
One recovers the continuum solid angle tb+2,Q,=27,  Eq. (45)] was evolved in the infrared direction. As the sys-
in Eq. (A22) ask— 0, thus the WH equations agree in the IR tem reached= kg4 the continuum WH equation was used
limit. In fact, one sees numerically that the behavior of thetg increase the cutoff. The result is a “perfect matching” of
eVOlUtion of the different Coupling constants in the |attice RGthe models in the UV which gives the same low energy phys_
is qualitatively the same as in the continuum case. But thes i the IR. As we can see in Fig. 8, the latticé* model
question we are interested in is the relation between the regi two dimensions isiot the continuumi ¢ theory. It con-

larizations in the UV, where the coupling constants are Ntains contributions of infinitely many renormalizable other

troduced, when the physics is the same at finite scales. It '8oupling constants. Of course, numerically we had to trun-

shown in the Appendix that there is a natural relation be- . . 2
tween the cutoffsA?=8/a?, which matches the finite scale cate the equations at a certain coupfhgre, alO(®*)] but

physics. We shall follow the renormalization group flow in we checked that these “truncation effects” hardly influence

terms of the coupling constants whose dimension is removeﬁ]e values of the low order coupling constants.2 )
We have taken for the parametef,;the valuek?=0.3 in

by the initial value of the cutoff, _ _ )
Fig. 8, while the crossover is &~0.01. We had to use

9n—0n/A2, 45  kZ,;>KZ, because the high order couplings have very large
values at the crossover which requires very fine discretiza-
in order to avoid the singularities &t=0. tion in the numerical resolution of our differential equations

Let us considei ¢* lattice theory which can be studied to ensure that the way back to the UV is done accurately.
either numerically or analytically and whose properties carHoweverkZ,qshould also be sufficiently small that the flow
be matched to those of the continuum theory by the adjustoe universal there, in other words to make sure that the ir-
ment ofg, andg,. But the situation is more involved in two relevant lattice contributions are suppressedkforkZ .
dimensions. The reason is again that there are infinitely The choice kZ,;>0 introduces an uncertainty in the
many renormalizable coupling constants and one cannahatching. To assess it we repeated the “go-return” evolu-
match the finite scale physics by adjustipgandg,. Thisis  tion described above and checked the discretization errors for
demonstrated in Fig. 8 where the lattice model with the ini—kgndz 0.8, 0.5 and 0.3. After then we took the appropriate
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TABLE I. Relative differences between the continuum and lat-stants tends to infinity. In other words, theparameter tends
tice coupling constants &t=0, Eq.(46), after having matched the to the cutoff as the lower critical dimension is approached,
couplings at the UV using the parametep. d—2. Such a behavior limits considerably the values of the
coupling constants for a perturbative system in dimension 3

Keng=0.8 kens=05 Kend=0-3 and rendersall two- and lower dimensional field theories

Ag, 0.0166 0.0096 0.0052 with polynomial couplings non-perturbative. This makes the
Ag, 0.0028 0.0011 0.0002 understanding of the noncritical low dimensional condensed
Agg 0.0188 0.0116 0.0069 matter systems more involved. The one-dimensional models
Agg 0.0199 0.0135 0.0092 belong to first quantized quantum mechanics and our result is
Agqo 0.1793 0.0992 0.0494 a manifestation qf the failure of the convergence of the per-
Agy, 0.0680 0.0424 0.0259 turbation expansion for an anharr_nom_c oscillator.

AQys 0.0522 0.0340 0.0221 Such a conclusion does not invalidate the well known
Agys 0.9300 0.5558 0.3226 results for two-dimensional systems, such as the applicability
Agis 0.2116 0.1261 0.0731 of the Bethe ansatz, bosonization and the availability of cer-
Adao 0.0584 0.0389 0.0259 tain exact information for models with conformal invariance.

Instead, it makes the asymptotic state structure and the rela-
tion between the the dressed particles and the states created

bare parameters at the UV end points in both regularization8Y the application of the field operator from the vacuum

and followed the evolutions down to=0. The relative dif- more involved. , _
ference, We found an interesting analogy between the infrared

Landau pole of the confining four-dimensional Yang-Mills
1g°"(0)— glatt(0)| theories gr)(_:i the low dimensional scalar models which. opens
n= n n (46)  the possibility of an unexpected, nontrivial structure in the
|9:2(0)| asymptotic states in the low dimensional scalar models.
Viewed with interest in particle physics our conclusion sug-
is shown in Table | for the different coupling constants atgests that one can avoid the IR Landau pole by following the

k=0. The smallness of the deviation assures that the IR beevolution of the non-renormalizable operators.

havior has practically been obtained wkf, = 0.3, and one How to find the non-renormalizable operators whose
can trust the conclusions, the approach of the flow to a unipresence stabilizes the theories at low energigsi@ well
versal curve, extracted from Fig. 8. known that massive Lagrangians generate trivial infrared

The first two plots in Fig. 8 show that the mass and thescaling laws, i.e. the Gaussian mass term is the only relevant
quartic coupling constant run parallel in the SUV region ofoperator in the infrared scaling regime. This is because the
the lattice regularizatior{see Appendix and in the con- fluctuations are exponentially suppressed beyond the corre-
tinuum. There is no convergence between the two reguladation length so the evolution of the coupling constants slows
izations in this unusual scaling regime, anticipated abovedown at the infrared side of the crossover. The theories with
The approach to the universal curve startskbr4, below  dimensional transmutation, i.e. dynamically generated scale
the SUV regime only. The fact that the renormalizationparameter or infrared instability only can support non-
group flow converges to the universal one in thé!2h part  perturbative dynamics in the IR scaling regime. Thus the
of the Brillouin zone only sets an unexpected high loweroperators sought should be relevant in the IR regime, their
limit on the lattice size when the continuum limit is sought in growth being fed by IR or collinear divergences. There are
numerical simulations. The higher order vertices seem tdew known cases only where the low modes are controlled
converge to the universal curve from the very beginning buby non-renormalizable operators. These include the four fer-
the difference between the two regularizations is surprisinglynion contact term in solids inducing the BCS transiti@s],
large. The universal trajectory of thé* model is reached the higher order derivative terms in the action which gener-
later by the higher order vertices. This effect appears to be ate inhomogeneous vacu[6], the common element being
counterpart of the non-perturbative features seen in Figs. 6,lhe onset of a Bose-Einstein condensafi®h
and introduces a large uncertainty in identifying two- Inthe second part of the paper the infinitesimal renormal-
dimensional models in different regularizations. ization group scheme is generalized for lattice regularization.
The matching of the continuum and the lattice regulariza-
tions is carried out numerically and the approach of the uni-
versal renormalization group flow is demonstrated for the

The renormalization group flow of scalar models with two-dimensionalg* lattice model. This result suggests that
polynomial interaction is considered in the first part of thisthe naive argument for the universality, which is based on
paper by solving the Wegner-Houghton equation numerithe linearization of the blocking relations remains valid in
cally in the local potential approximation far=2, 3 and 4. the presence of infinitely many relevant operators. Other po-

The numerical results showed in this paper suggest thaential troublemakers, the infinitely many higher order de-
the length of the UV scaling regime which is needed to gen+ivatives contained in the lattice kinetic energy do generate a
erate non-perturbative dynamics in the infrared shrinks taew, “super UV” scaling regime but universality is restored
zero as the number of the asymptotically free coupling conat the IR end of the usual UV scaling regime. Another use of

VIl. CONCLUSIONS
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the lattice regulated version of the Wegner-Haughton equa- - T
tion is the estimate of the finite size effects in a non-
perturbative manner. This provides a useful check of the
thermodynamic limit of the numerical results obtained in
general on small lattices.

T

ACKNOWLEDGMENTS

We wish to thank V. Branchina, S.B. Liao, J. Alexandre,
H. Mohrbach, E. Vicari and A. Pelissetto for useful discus-
sions. This work was partially supported by the Spanish
MEC, Accion Integrada hispano-francesa HF1997-0041, the
French program, Actions Integrs franco-espagnol, Picasso
98064. J.M.C. acknowledges support from the EU TMR pro-
gram ERBFMRX-CT97-0122. He also thanks the Spanish - n
MEC, the CAIl European program and DGEONSH-D) for Px
financial support.

-

FIG. 9. Lines of equal value of the lattice propagator. To the
inside, the lines drawn correspondpé=7.9,7,6,5,4,3,2,0.5,0.1.

APPENDIX
The details of the derivation of the Wegner-Houghton Jp
equation in the lattice regularization are given in this Appen- J= > > ' (A3)
dix. Let us consider the scalar field theory regularized on a \/ 1— p—co§ ol 1- p—sinz 0
lattice of lattice spacinjp=1. We want to derive a WH 4 4

equation similar to Eq(11). We integrate over spherical

shells in the momentum space for the continuum regulariza-

tion, because the propagator has spherical symmetry. This WhereJ,, is the usual Jacobian for the polar change of vari-

no longer the case on the lattice, where we have ables,Jp:p. The transformatiofA2) can be easily general-
ized to three and four dimensions; however, we can only

d treat analytically the integral that appears in the derivation of
0= 2 E)z b =25in&. (A1) the WH equation in thel=2 case.
= 2 To derive the equivalent of the Wegner-Houghton equa-

tion (11) in the bidimensional lattice regularization we will

Let us see the surfaces of equal value of the lattice propag&t@'t from Eq.(8), and calculate the trace by integrating in
tor in two dimensions by performing the following change of MoMentum space over a shil- sk<p<k, wherep is the

variables: parameter we have introduced in E42),
(px ,py)—>(p' 0) 1 ” 1 d2p . pX . py 4
5"'09[D+Uk]=§f ﬁlog 4S|nz?+4smz?+uk
(27)
4sir12%+4sinz%:p2 (A2) 1 f ) 2
= daf dpJlo +Uy
22my2) 9 9P lodP Ui
¢ sin(py/2)
no=g : 2 "
A= klog[k“+ U] Q(k), A4
sin(p,/2) 2(2m) o k] (k) (A4)

We can see in Fig. 9 the form of the curves of constant
propagator for several values pf. p can be identified as the With
“momentum scale” that runs from the cutoff gi?=A2

=8 to the IRp?=0. It is also clear in that figure that the

value p?=4 separates two regimes, still in the ultraviolet Q(k):j do (A5)

region, that we could call super-UsUV), for 8>p?>4, 64— 16k%+K*sirf 26

and normal-UV regimes. Fop?~0, the lines are spheres,

and our change of variablé#2) reduces to the usual rela-

tion between Cartesian and polar coordinates. We have to distinguish two different regimes in making the
The absolute value of the Jacobian of the transformatiointegration:(i) k?<4. In this region the range of values fér

(A2) is found to be is (0,2m),
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Q(k) f 46 8 3 4
= _ k=4 f
0 \/64_ 1&(2"_ k4 S|n2 26 ( ) k/2 \/XZ(k4+ 16) 4k2(1+X4)
4
=2 O;(k), (A6) 8]2/k dx
i=1 =—1_ .
k492 \[(x —Ki2) (27— %) (x+ KI2) (x+ 2]K)
where we have split the interval (G2 into four intervals (A14)
(0,7/2), (wl2,7), etc. Let us considef)(k). With the
change of variabl&=tané and the notation This integral is related agaifi7] to an elliptic integral and
an hypergeometric function:
K2=4-K2, (A7)
32 |78 | 16m (11 (8-k?)?
this integral can be brought into the form Q= _F 22 | ke 272 e
(A15)
Q4(k) f 2 & (A8) w Id like to h ion (k) f
(k== —, e would like to have a common expression or
kJo J(x*+b?)(x*+b"?) both casesi) and (ii). From Egs.(A11) and (A15), we find

- in fact that the expressions differ in a factor 2 iS=4. The
whereb?=4/k?. The integral in Eq(A8) is related to the reason is that actually our integral is divergent at this point.

elliptic integral of the first kind17] F(¢,t): From Eg.(A5) we see that the divergent integral is
Kk d 5 2m 2
_|* @ Qk :4)=f df———— (A16)
K)=F|=,V8—K2|, F(o,t —J = —— sin 26
fhall= [2 4 } (.0 0o V1-tZsirfa o | |

(A9) [in fact, the hypergeometric functiofA10) converges in

general only in the unit circléz|]<1 [17]]. We will see,
however, that this divergence is integrable during the RG
evolution fromk?=8 tok?=0, and therefore it has no physi-
cal significance. In order to have a consistent, single expres-
sion for the cases8k?<4 and 4<k?<0, we will make use

The result is the same for the other integrflls, i=2,3,4.
But F(7/2t) is a complete elliptic integral, which can be
expressed in terms of the hypergeometric funcfibn, 1§

F o I'(y) i F(a+ nI'(B+n) 2" of the following property of the hypergeometric functions
(auB”}/!Z) F( )F(B =0 ,y+n) n! [17]
(A10)
|:1112—1|:1 1—42 0 1
+ L _ 44 -
as 227 | T1vz (272 1+22)2) z<L.
(A17)
11 (8—k?K?
Q(k)=2nF| 5 >l | (A11) Let us consider the expressi¢Al1l) which is valid for

k?<4. Using the propertyA17) one finds
(i) 4<k?<8. This is the SUV region. We split again the

integral into four integrations in the corresponding quad- Q(k)= 27T|:(l - 1. 4z
rants. By using the same change of variables as above, we 22 (1+2%)?
have to calculate 11
=27(1+2)F —,—,1;22), (A18)
2’2
4 dx
Q(k) = j , (A12) h h
\/xz(k4+l6) AK2(1+x%) where we have set
K2V 12
where 4z =(8 KOk ) (A19)
(1+2%)? 16
T2 12
K=ki—4. (AL3) This equation has two solutions faras a function ok:
Special care is needed at the limits of integraticecall Fig. K2 8 K2
9). It can be seen that the four integrals can be put together in 7= , (A20)
the form 8—k? k2
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but only the first one is admissible for EGA18), because it I'(a+pB)
givesz<1 fork?<4, while the second solution gives avalue F(a,B;a+B;2)= >
greater than 1 in this region. Now, if we defike=8—k?, T(a)I'(B))
then we have=(8—k?)/k?, and Eq.(A18) becomes y “ T(a+n)I(B+n)
8 (11 o (b’
Q(k)=2w~k—2F 5,5;1;22). (A21) X[24(n+1)— p(a+n)—(B+n)
—log(1-2)](1-2)",
Comparing this last expression with the reqélil5) for the (A23)
case 4 k?<8, we can finally write (arg1-2)|<m|1-2]<1),
o where[18]
16w (1 1 8—k?
_ D 22 ; _ dlogI'(z)
Q(k) e F 2,2,1,z>, with z e W(z2)= =, (A24)

which gives a better convergence for the function
F(%,%:1;7%) nearz=1 because it is a series in the variable
(A22) (127
—Zz).
In conclusion, our generalization of the WH equat{dd)
for a lattice regularization in two dimensions is

Kk2=K? if k2=8...4,
a _
K2=8—-k2 if k*=4...0

The hypergeometric functioff(3,%;1;2z%) can be com-
puted directly from its definition/A10). One can obtain a d Q(k)k?
high precision in the evaluation of the series with a reason- kﬁuk( )=- 2(27)2
able number of termgsay, around 50when z is not very
close to 1, say, for 0#z>0. For 1>z>0.7 we have used wherekis the parametegp of Eq. (A2), andQ (k) is given by

log[k?+Up(P)], (A25)

the following alternative formul@l8]: Eq. (A22).
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