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Bounds on the Wilson Dirac operator
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New exact upper and lower bounds are derived on the spectrum of the square of the Hermitian Wilson Dirac
operator. It is hoped that the derivations and the results will be of help in the search for ways to reduce the cost
of simulations using the overlap Dirac operator. The bounds also apply to the Wilson Dirac operator in odd
dimensions and are therefore relevant to domain-wall fermions as well.

PACS number~s!: 11.15.Ha, 12.38.Gc
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INTRODUCTION

Let D(m) denote the continuum Euclidean Dirac opera
where the real parameterm is the fermion mass. In eve
dimensionsd a generalization ofg5 exists and shall be de
noted bygd11 . D(0) is anti-Hermitian and anticommute
with gd11 . Then, H(m)5gd11D(m) is Hermitian. H(m)
will be referred to as the Hermitian Dirac operator. A cha
acteristic property of this operator is the range of its sp
trum as a function of the real mass parameterm. Since
H2(m)5D†(m)D(m) it is meaningful to consider the spec
trum of H2(m) both in even and odd dimensions.

Figure 1 displays the familiar spectral structure ofH(m)
in the continuum in an arbitrary fixed gauge backgrou
The boundaries shown come from rigorous lower bounds
the spectrum ofH2(m). These bounds hold for any gaug
background and are often saturated, for example, in the
that the gauge background is trivial, or in the case tha
consists of a gauge field carrying nonzero topology. Ther
no upper bound onH2(m), and the spectrum will indeed
increase indefinitely in any fixed smooth gauge backgrou
All this holds also on a compact manifold, henceforth tak
to be a flat torus.

The objective of this paper is to clarify what happe
when the massive Dirac Hamiltonian is put on the latt
following Wilson’s prescription. The most fundamental fe
ture of a lattice operator is that its spectrum is absolut
bounded from above—this is how the lattice acts as a re
lator. However, lower bounds obeyed by the Hermitian W
son Dirac operatorHW

2 (m) are also very important, becaus
often we wish to useHW(m) to put massless, or almos
massless quarks on the lattice.

When the gauge background is trivial,HW(m) can be
explicitly diagonalized and one finds the spectral struct
shown in Fig. 2. A simpler derivation is contained in wh
follows.

When the gauge field is turned on the figure gets d
torted. The upper bound onHW

2 (m) remains unchanged, an
so does the lower bound for positive values of the m
parameterm. Changes occur only form,0 and for the lower
bound ofHW

2 (m). So long as we are close to the trivial ca
the distortion is small: it amounts to the replacement of
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string of rhombi in Fig. 2 by a string of smaller rhomb
inscribed into the ones we have in Fig. 2. The new rhombi
longer touch each other. Asm is varied, eigenvalues o
HW(m) can cross zero in the intervals that open up, sepa
ing the rhombi. When the gauge background is rand
enough the internal rhombi close up completely and very l
eigenvalues ofHW

2 (m) are no longer excluded@1# for any
mass in the segment (22d,0). For any gauge backgroun
the figure stays mirror symmetric about them52d vertical
line.

Although we focus on even dimensions here, as long
we phrase the results for the Wilson Dirac operator itself a
not its Hermitian version, they hold for odd dimensions
well. In particular, the five-dimensional case applies
domain-wall formulations of QCD.

NOTATION AND CONVENTIONS

Let us start by establishing our notation. We are worki
on a d-dimensional hypercubic lattice. When comparing
the continuum the lattice spacing is denoted bya. On its
links we have SU(n) matrices Um(x) which make up the
gauge background with which the fermions interact.m

FIG. 1. Spectrum of the Dirac Hamiltonian in the continuum
All oblique lines have slopes61.
©2000 The American Physical Society15-1
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FIG. 2. Spectrum of the Wilson Dirac Hamil
tonian on the lattice ford54. All oblique lines
have slopes61.
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51,2, . . .d denotes positive directions andx denotes a lat-
tice site. The lattice is finite.

The fermions are vectorsca
i (x). a is a spinorial index,i

is a gauge group index andx is a lattice site. The action on
the fermions is described in terms of several unitary ope
tors. First are the Euclidean Diracgm’s which act only on
spinorial indices. Second come the directional parallel tra
portersTm which act on the site index and the group inde
They are defined by

Tm~c!~x!5Um~x!c~x1m̂ !.

A third class of unitary operators implements gauge trans
mations, each characterized by a collection ofg(x)
PSU(n) acting onc pointwise, and only on the group ind
ces. The action is represented by a unitary operatorG(g)
with „G(g)c…(x)5g(x)c(x). TheTm operators are ‘‘gauge
covariant,’’

G~g!Tm~U !G†~g!5Tm~Ug!,

where

Um
g ~x!5g~x!Um~x!g†~x1m̂ !.

The variablesUm(x) are distributed according to a probab
ity density that is invariant underU→Ug for any g.

The lattice replacement of the massive continuum Di
operatorD(m) is an element in the algebra generated
08501
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Tm ,Tm
† ,gm . Thus,D(m) is gauge covariant. ForUm(x)51

the Tm become commuting shift operators.
The Wilson Dirac operatorDW(m) is the sparsest possibl

analog of the continuum massive Dirac operator which ob
hypercubic symmetry. Fixing the so-calledr parameter to its
preferred value (r 51), DW(m) can be written as

DW5m1(
m

~12Vm!; Vm
† Vm51;

Vm5
12gm

2
Tm1

11gm

2
Tm

† .

In evend we associate with the Wilson Dirac operator t
Hermitian Wilson Dirac operator,HW(m)5gd11DW(m).

All our lattices are assumed finite and therefore all o
operators are finite dimensional matrices. An eigenvalue
matrix A will be denoted byl(A); if the eigenvalues are
labeled, the label is attached tol. When it makes sense, w
may deal with the maximal~minimal! eigenvalues of
A,lmax(min)(A). We choose the following norm definition fo
matricesA: iAi5@lmax(A

† A)#1/2. This is a standard choice
induced by the vector normivi25S I uv I u2, whereI is a ge-
neric component index@2#. The norm of a gauge covarian
matrix is gauge invariant.
5-2
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FORMAL CONTINUUM LIMIT

The connection to the continuum is as follows: Assume to be given smooth functions1 Am(x) on the torus. Then,

Um~x!5 lim
N→`

@ei ~a/N!Am~x!ei ~a/N!Am@x1~a/N!m̂#ei ~a/N!Am@x12~a/N!m̂#...ei ~a/N!Am@x1~N21!a/Nm̂##

[P expF i E
l
dxmAm~x!G ~the symbolP denotes path ordering!.
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Consider a smooth functioncc(x) with the same index struc
ture as the corresponding object on the lattice. By looking
x’s coinciding with a lattice point one gets a lattice vect
c(x5nW a), wherenW PZd. The action of theTm produces an-
other lattice vectorc8. One can define a continuum operat
Tmc such that the lattice restriction ofTmccc will be a func-
tion cc8 whose lattice restriction isc8. The formula is2

Tmc5eaDm, Dm5]m1 iAm .

The simplicity of this expression can be viewed as a moti
tion to introduce theTm’s as central objects on the lattice
the first place.

The formula is easy to prove:

cc~x1am̂ !5eadmcc~x!

for any vectorcc . On the other hand, for any operatorOc
acting pointwise byOc(x) we have

Oc~x1bm̂ !5eb]mOc~x!e2b]m.

Inserting this expression@with b5k(a/N)] repeatedly into
the definition ofUm(x), implementing the shift of the argu
ment ofcc(x) as above, and takingN to infinity at the end,
produces the desired result using Trotter’s formula@4#.

The Vm’s have associated continuum operatorsVmc ,
given by

Vmc5e2agmDm no sum onm.

The Wilson Dirac operator is a lattice restriction of the co
tinuum operator

aDWc~m!5m1(
m

~12e2agmDm!.

DWc(m) could be viewed as an approximation togmDm in
the continuum which is good for eigenvalues small in ab
lute value but whose spectrum is restricted to a boun
domain. Such operators are frequently introduced when
regulates infinities in the continuum. The continuum Dir

1In general theAm(x) are not smooth functions, rather they ma
up a one form(mAm(x)dxm which is a smooth connection on
possibly nontrivial bundle with structure group SU(n) over the four
torus.

2This generalizes an observation of van Baal@3#.
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operatorSmgmDm formally emerges asa goes to zero, and
the mass is of orderm/a, wherem is a pure number. But, a
an operator in the continuumDWc(m) is special: when it acts
on cc to producecc8 , the values ofcc8 at lattice points are
solely determined by values ofcc at lattice points. There-
fore, there exists an exact relation to the lattice opera
DW(m).

There is no remnant of chiral symmetry~for even dimen-
sion d! becauseDWc(m) is not just a function ofSmgmDm ;
only in the smalla limit ~strictly speaking, one would nee
to replacem by mca before takinga to zero! do we get an
expression involving only the chiral combinationSmgmDm .

It is important to appreciate that one does not ne
DWc(0) to anticommute withgd11 to have some amount o
lattice chirality: any reasonableDc(m) that is a function of
only the combinationSmgmDm would do. For example, if
aDWc(m) were replaced by

aDWc8 ~m!5m112e(mgmDm,

we would have enough symmetry because

gd11e21/2 (mgmDm@em2e2m1(mgmDm#e21/2(mgmDmgd11

52@e2m2em1(mgmDm#.

Since dete21/2(m gmDm is unity (]/]m)log det@em

2e2m1(mgmDm# is odd in m and this is enough to eliminat
additive quark mass renormalization. However, the opera
e(mgmDm cannot be restricted to the lattice because whe
acts onc and producesc8 it is not true that the values ofc8
at lattice points depend only on values ofc at lattice points.

One can try to ‘‘improve’’ DWc(m) by looking at the
differenceDWc8 (m)2DWc(m) to leading order ina and re-
placing it by a function of theTmc ~again to leading order in
a!. Adding the new term toDWc(m) produces an operato
which can be restricted to the lattice and is ‘‘clover im
proved;’’ it agrees withDWc8 (m) to leading and subleading
order in a. In fluctuating gauge field backgrounds on
changes the coefficient of the new term to a number de
mined numerically. One can also maintain chiral symme
on the lattice exactly@5,6#, using the overlap Dirac operato

Upper bound

Our first objective is to find a bound for the largest eige
value ofHW

2 . Clearly,lmax(HW
2 )5iDW(m)i2. The triangle in-

equality then gives
5-3
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HERBERT NEUBERGER PHYSICAL REVIEW D61 085015
iDW~m!i<um1du1(
m

iVmi5um1du1d.

The lowest upper bound as a function of mass is obtaine
m52d, which is a symmetry point forHW

2 (m), because
DW(2d) and 2DW(2d) are unitarily equivalent. This
is a consequence of the existence of a unitary Hermi
operator S such that SVmS52Vm , implying SDW(m)S
52DW(2m22d); S is diagonal and the diagonal entrie
are 1 if the sitex has(mxm even and21 otherwise.S exists
because the hypercubic lattice we are working on is bipar

For m>2d the upper bound is attained if there exists
vectorc which is a common eigenvector to alld Vm opera-
tors, with the eigenvalue21 in each case. It is likely to find
such an eigenvector when@Tm ,Tn#50 for all m andn. These
commutators vanish when all plaquette parallel transpor
are unity; this is so, in particular, in the free case.

Lower bound

Let us introduce some shorthand notation:

hm5
1

2
~Tm1Tm

† !5hm
† , am5

1

2
gm~Tm

† 2Tm!52am
† .

The unitarity ofVm holds because of the identities

hm
2 2am

2 51, @hm ,am#50.

Let l(m)5l„HW(m)… be some eigenvalue ofHW(m).
l(m) is differentiable becauseHW(m) depends smoothly on
m: dl/dm5Sx,i ,a,bca

i* (x)g5a,bcb
i (x), where HW(m)c

5l(m)c andc has the unit norm. Sinceg5
251 one has

Udl

dmU>1.

The theoretical usefulness of expressions fordl/dm has
been recently emphasized by Kerler@7#. This inequality re-
stricts the slope of lines describing the flow of eigenvalues
HW(m) as a function ofm. We shall refer to this inequality
as the ‘‘flow inequality.’’ It has the important consequen
that we shall prove below: If we know tha
0,lmin„HW

2 (m)… for somem, we have

@l min„HW
2 ~m8!…#1/2>@l min„HW

2 ~m!…#1/22um2m8u.

Before describing the proof let us note that the result is u
ful only if

um2m8u,@l min„HW
2 ~m!…#1/2.

The main observation is that a lower bound
@l min„HW

2 (m)…#1/2 at an arbitrary mass pointm can be ex-
tended to a lower bound on@l min„HW

2 (m8)…#1/2 in some
mass range aroundm.

The basic inequality can be best proven referring to
sketch shown in Fig. 3. The graphical meaning of the
equality is that HW

2 (m) has no eigenvalues in the are
bounded by the right angle rhombus in the figure when i
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given that there are no eigenvalues along its main diago
~A,B!. Recognizing this, the proof becomes trivial: if we d
have an eigenvalue anywhere inside the rhombus the
inequality would have to be violated somewhere in order
avoid an eigenvalue flow crossing the main diagonal.

We start with an explicit formula forHW
2 (m):

HW
2 ~m!5Fm1(

m
~12hm!G2

2F(
m

amG2

2 (
mÞn

@am ,hn#

5m212~m11!(
m

~12hm!

1 (
mÞn

@~12hm!~12hn!2aman2@am ,hn##.

While in the continuumD†(m)D(m) commutes with
gd11, the last term inHW

2 (m) does not. All terms are indi-
vidually Hermitian. SinceHW(m) connected sitesx,x8 with3

ux2x8u50,1 we could have expectedHW
2 (m) to connect

sites with ux2x8u50,1,&,2, but because of the relation
hm

2 2am
2 51 and @hm ,am#50 sites withux2x8u52 are still

disconnected. Another special property ofHW
2 (m) is that the

site-diagonal piece is proportional to the identity matrix.
If @Tm ,Tn#50 we haveSmÞnaman50, @hm ,an#50 and

@hm ,hn#50. Then,

HW
2 ~m!5m212~m11!(

m
~12hm!

1 (
mÞn

~12hm!~12hn!.

If we keep allhm fixed but one, sayhn , the dependence on
the latter is linear, so the external values are obtained ahn

561. The argument is applied again and again to a decr
ing number of remaining directions leading to the conclus

3For two sitesx andy we defineux2yu5A(m(xm2ym)2.

FIG. 3. A rhombus containing no eigenvalues. All oblique lin
have slopes61.
5-4
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BOUNDS ON THE WILSON DIRAC OPERATOR PHYSICAL REVIEW D61 085015
that in order to find the extrema ofHW
2 , viewed as a function

of the quantitieshm ~more precisely, their eigenvalues, sin
the hm can be simultaneously diagonalized by assumpti!
we only need to check the 2d possibilities hm561. The
upper bound comes out as above, and the lower bound
@lmin(HW

2 )#1/2 has the shape shown in Fig. 2. We learn tha
the pointsm50,22,24, . . .22d the theory has massles
fermions; the multiplicities are given byd!/(d2n)!n!
where m522n, n50,1,2, . . . ,d. Thus, for m
522,24, . . .22d12 we have several doublers, the num
ber of different species being given by the number of diff
enthm configurations producing a zero at the respective s
cial mass point.

From now on we shall concentrate on the regi
22,m,0. This region is interesting when we want to de
with one Dirac fermion and avoid doublers. The region clo
to m50 is important for traditional numerical QCD wit
Wilson fermions. The region close tom521 is important
for applications of the overlap Dirac operator where o
would like HW

2 (m) to have a large gap around zero. Wh
@Tm ,Tn#50, the highest lower bound is obtained atm
521. As long as all operators@Tm ,Tn# are small in norm
we expect the same to be true. We therefore focus on
point m521 first, and later extend the bound to a ran
aroundm521 using the consequence of the flow inequal
established earlier.

In the general case where the matricesTm do not com-
mute, we have

HW
2 ~21!511 (

mÞn
@~12hm!~12hn!2aman2@am ,hn##.

We now analyze each term in the bracket individually;
treat them separately because their spinorial index struct
are different. The first term is rewritten as

(
mÞn

@~12hm!~12hn!#

5
1

4 (
mÞn

~12Tm!~12Tm
† !~12Tn!~12Tn

†!

5Q1X.

Here,Q is positive semidefinite,

Q5
1

8 (
mÞn

$~12Tm!~12Tn!@~12Tm!~12Tn!#†

1~12Tm
† !~12Tn!@~12Tm

† !~12Tn!#†%,

while X depends only onTm commutators:

X52
1

8 (
mÞn

~Tm@Tm
† ,Tn1Tn

†#1Tm
† @Tm ,Tn1Tn

†# !

52
1

8 (
m

H Tm ,FTm
† ,(

n
~Tn1Tn

†!G J .

Proceeding, we find
08501
on
t

-
e-

l
e

e

he

es

2 (
mÞn

aman52
1

8 (
mÞn

gmgn@Tm2Tm
† ,Tn2Tn

†#5Y,

and

2 (
mÞn

@am ,hn#5
1

8 (
mÞn

@~gm2gn!~@Tm ,Tn#1H.c.!

1~gm1gn!~@Tm ,Tn
†#1H.c.!#

5Z.

The operatorsQ, X, Y, Zare all Hermitian. Moreover, each o
the traces ofX2,Y2,Z2 are linearly related to the singl
plaquette Wilson action~see below! and decrease when th
latter increases and the continuum limit is approached.

Consider now the commutators@Tm ,Tn#. Their norm is
determined by

@Tm ,Tn#†@Tm ,Tn#5~12Pmn!†~12Pmn!,

where the unitaryPmn are given by

Pmn5Tn
†Tm

† TnTm .

The operatorsPmn are site diagonal, with entries that a
parallel transporter round plaquettes:

~Pmnc!~x!5Umn~x!c~x!,

Umn~x!5Un
†~x2 n̂ !Um

† ~x2 n̂2m̂ !Un~x2 n̂2m̂ !Um~x2m̂ !.

Umn(x) is associated with the elementary loop starting at s
x, going first in the negativen direction, then in the negative
m direction, and coming back round the plaquette.

The main relation is

i@Tm ,Tn#i5i12Pmni .

Any pure gauge action with the right continuum limit wi
strongly prefer configurations where allUmn(x) are close to
the unit matrix. Therefore, it is not unreasonable to impo
the constraint, for allm.n,

i@Tm ,Tn#i<emn .

Note that this is equivalent to

i12Umn~x!i<emn

for every sitex. It is easy to see that the same bound w
hold when we interchange in the commutator them,n indi-
ces, and when we replace, independently, theTm and Tn

operators by their Hermitian conjugates.
Using the triangle inequality and thatiABi<iAiiBi , we

now obtain

iXi< (
m.n

emn , iYi< (
m.n

emn , iZi<&(
m.n

emn .

The& factor comes in because (gm6gn)252 for mÞn.
We finally obtain
5-5
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HERBERT NEUBERGER PHYSICAL REVIEW D61 085015
lmin~X!>2 (
m.n

emn , lmin~Y!>2 (
m.n

emn ,

lmin~Z!>2&(
m.n

emn .

By the variational principle and the positivity ofQ we arrive
at

lmin„H
2~21!…<12~21& ! (

m.n
emn .

Our result is meaningful only when the number on the rig
hand side in the above equation is non-negative.

In the rotational invariant case one could setemn5h.
Then, ford54, we obtain

Almin„H
2~21!…>A126~21& !h'A1220.5h.

The general bound we obtained is

@lmin„DW
† ~m!DW~m!…#1/2

>F12~21& ! (
m.n

emnG1/2

2u11mu.

This bound is useful only for

u11mu<F12~21& ! (
m.n

emnG1/2

.

This range is contained in the open segment22,m,0. The
bound holds in both even and odd dimensions. In the p
ticular case of domain-wall fermions, plaquettes parallel
the extra dimension make no contribution since theiremn

vanishes.

COMPARISON TO OTHER WORK

Related issues were studied in@8# and in@9#. The authors
of @8# established the upper bound

Almax„HW
2 ~m!…<8

in four dimensions with the restriction22,m,0. This is
compatible, but less stringent than our upper bound, wh
becomesm18 in this mass range.

In numerical investigations with pure gauge Wilson a
tion, it was reported in@8# that, for b56.0,6.2,6.4 andm
521.0,21.2,21.4,21.6, for SU~3!, lmax„HW

2(m)… stays
around 41 and hardly changes. Our upper bound form
521.6 is 6.42540.96 and increases for the lowerm’s. Thus,
at the extremal mass value~assuming the value quoted in@8#
was rounded!, our bound is saturated to numerical accura
08501
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.

The claimed mass independence seems surprising, and
entirely consistent with numerical results at otherb values
and volume sizes.4

In @8# a bound onlmin„HW
2(21)… is also established. It is

expressed in terms of a bound on the norm of the comm
tors, but the precise definition of the norm used is not giv
I shall assume it is the one adopted in this paper. A boun
quoted only for thed54 case, form5215 and for the ro-
tational invariant caseemn5h. The bound derived in@8# is

lmin„HW
2 ~21!….1230h.

This bound is compatible with the result of this pape
lmin„HW

2 (21)…>@126(21&)h#, but weaker. To be sure
that HW

2 (21) has no zero eigenvalues the bound in@8#
places a restriction onh that is stronger than ours by abo
one third.

LESSONS

Let us first identify what about our results could ha
been expected without any calculations. Clearly, we kn
that there will be some uniform upper bounds on the sp
trum just by virtue of compactifying momentum space a
because theUm(x)’s are unitary. Moreover, once the fre
case is worked out and the spectral restrictions of Fig. 2
derived, one knows that close to the continuum the struc
will be essentially similar even in the presence of nontriv
gauge fields. The reasoning is as follows: We are dea
with operators that are analytic inTm and Fig. 2 holds when-
ever allTm’s commute. All that enters in the bound deriv
tions above is that theTm’s are unitary. Commuting unitary
Tm’s can be smoothly deformed into noncommuting on
and the changes in the spectrum must be smooth too. Thu
the commutators of theTm’s are sufficiently small there will
be a region aroundm521 where the spectrum ofHW(m)
will have a gap around zero. One can simply think about
commuting case as a ‘‘semiclassical’’ approximation to t
noncommuting case.

The operatorsTm connect only sites one spacing apart
them direction. The gauge invariant norm of theTm commu-
tators cannot depend on anything else but the norm of
elementary plaquettes. Forcing all unitary plaquette opera
close to identity produces a link configuration for which t
Tm’s almost commute. The precise relation between theTm
commutators and the plaquettes is well known@10# since the
discovery of largen reduction of lattice gauge theories@11#.

So, all that really required some work was to turn t
above into a quantitative estimate. Because of the prac
difficulties associated with low eigenvalues ofHW

2 (m) it
makes sense to try to be as careful as possible in deriving
quantitative form of the bounds. Still, it is known that th

4The numerical work was carried out by the SCRI group, at
time consisting of Edwards, Heller, and Narayanan.

5According to David Adams@9#, in unpublished work, the author
of @8# have extended their bound by using the triangle inequality
a range ofm values contained within the segment~22, 0!.
5-6
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BOUNDS ON THE WILSON DIRAC OPERATOR PHYSICAL REVIEW D61 085015
lower bounds in the22,m,0 region are not directly use
ful in backgrounds generated at coupling constants that
practical in numerical QCD today. In spite of this, the exa
bounds and their derivation might provide helpful insights,
particular in the context of implementations of the overl
Dirac operator. In this case one wishes to work with ope
torsHW(m) with 22,m,0 but with as large a gap aroun
zero as possible. This would make the matrixHW(m) well
conditioned and speed up the calculations.

The most basic observation is that one can control the
in HW(m) by controlling the plaquette variables alone.6 This
was understood long ago@13#; a natural guess would be tha
replacing the pure Wilson gauge action by the so-ca
‘‘positive plaquette’’ model@14# @for gauge group SU~2!#
will create a gap around zero. Numerical checks by Helle
early 1998 have shown that this was not the case@15#. In
addition, one cannot just change the form of a sin
plaquette action and get something useful in four dim
sions. The correlation length increases exponentially as
plaquettes are forced to identity and physically realistic v
umes rapidly become totally impractical. A milder approa
is therefore called for. There are a few possibilities.

First, one could use a more complicated action tha
single plaquette one. The idea is that a more complica
action might make the plaquettes close to unity, but still ke
the gauge fields sufficiently random so that the correlat
length does not exceed a few lattice spacings. The impro
ments observed in simulations using domain walls~which
can be viewed as a particular truncation of the overlap@16#!
when one switches from Wilson to so-called ‘‘Iwasaki a
tions’’ might be a reflection of this mechanism@17#. A more
systematic approach would be to follow an approxim
renormalization-group trajectory@18#, where the correlation
length is controlled, to regimes in the coupling consta
space where the single plaquettes are closer to unity. A
of caution: the inclusion of the fermionic determinant in t
gauge measure may be important and a fix that works
quenched simulations may fail in the dynamical case@19#.

Another observation is that making only the plaquettes
some directions close to unity would help. This only requi
one to increase one dimension of the lattice and there is
exponential relation between this dimension and the clo
ness of the timelike plaquettes to unity. In four dimensio
there are other good reasons for working on asymmetric
tices@20#, so this looks like a cheap and attractive alternat

6This was exploited when the parameters of the first dynam
simulation of the exactly massless Schwinger model were cho
@12#.
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worth exploring.7 In lower dimensions than four the impac
of going to asymmetric lattices would be even more p
nounced.

Yet another possibility is to filter out the ‘‘roughness
from the gauge background seen by the fermions by rep
ing the link variablesUm(x) by new link variablesUm

APE(x)
which are functions of the original link variables, transfor
the same way under gauge transformations, but prod
plaquette variables closer to unity. Recent work has obtai
such ‘‘APE smeared’’ Um

APE(x) @21# with associated
plaquettes extremely close to unity@22#. Of course too much
‘‘filtering’’ may take the lattice theory at typical simulation
parameters too far away from the desired continuum limit
QCD.8 If this is true, one could also try a ‘‘half smeared
approach where only the links entering the ‘‘Wilson ma
term’’ 1

2(m(Tm1Tm
† ) in DW(m) are APE smeared but th

links entering the chiral part12(mgm(Tm2Tm
† ) are not, so the

fermions are not insulated from the ultraviolet fluctuations
the gauge field. Unfortunately this would spoil the relatio
hm

2 2am
2 51 and @hm ,am#50, so the consequences on th

bounds are complicated. Also, the spinorial structure
longer only involves the projectors12(16gm) which causes
some numerical overhead. Note, however, that with A
smearing the difference betweenUm

APE(x) andUm(x) goes to
zero when the originalTm commutators go to zero. There
fore, some bounds of similar structure to the bounds p
sented here would still hold.

It is hoped that the analysis of this paper would pro
helpful in guiding our search for improvements in the gau
action and in the structure ofDW(m).
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7K.-F. Liu has informed me that his group is studying some ph
ics questions using the overlap on asymmetric lattices.

8Too little filtering may provide no advantages: for example, in
dynamical simulation of a two-dimensional chiral model@23#, mod-
est filtering produced no gains.
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