PHYSICAL REVIEW D, VOLUME 61, 085015

Bounds on the Wilson Dirac operator
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New exact upper and lower bounds are derived on the spectrum of the square of the Hermitian Wilson Dirac
operator. It is hoped that the derivations and the results will be of help in the search for ways to reduce the cost
of simulations using the overlap Dirac operator. The bounds also apply to the Wilson Dirac operator in odd
dimensions and are therefore relevant to domain-wall fermions as well.

PACS numbds): 11.15.Ha, 12.38.Gc

INTRODUCTION string of rhombi in Fig. 2 by a string of smaller rhombi,
inscribed into the ones we have in Fig. 2. The new rhombi no
Let D(m) denote the continuum Euclidean Dirac operatorlonger touch each other. Am is varied, eigenvalues of
where the real parameten is the fermion mass. In even Hw(m) can cross zero in the intervals that open up, separat-
dimensionsd a generalization ofys exists and shall be de- ing the rhombi. When the gauge background is random
noted by yy.;. D(0) is anti-Hermitian and anticommutes enough the internal rhombi close up completely and very low
with y4.,. Then, H(m)= y4.,D(m) is Hermitian. H(m) eigenvalues oH\ZN(m) are no longer excludefll] for any
will be referred to as the Hermitian Dirac operator. A char-Mass in the segment<2d,0). For any gauge background
acteristic property of this operator is the range of its specthe figure stays mirror symmetric about thie= —d vertical
trum as a function of the real mass parameterSince N

H2(m)=D'(m)D(m) it is meaningful to consider the spec- Although we focus on even dimensions here, as long as
trum of H2(m) both in even and odd dimensions we phrase the results for the Wilson Dirac operator itself and

Fi . . not its Hermitian version, they hold for odd dimensions as
igure 1 displays the familiar spectral structurettfim) IIl. In particular, the five-dimensional case applies to
in the continuum in an arbitrary fixed gauge background.We - N P - PP
: . domain-wall formulations of QCD.

The boundaries shown come from rigorous lower bounds on
the spectrum oH?(m). These bounds hold for any gauge
background and are often saturated, for example, in the case
that the gauge background is trivial, or in the case that it
consists of a gauge field carrying nonzero topology. There is Let us start by establishing our notation. We are working
no upper bound oM?(m), and the spectrum will indeed on ad-dimensional hypercubic lattice. When comparing to
increase indefinitely in any fixed smooth gauge backgroundthe continuum the lattice spacing is denoted &yOn its
All this holds also on a compact manifold, henceforth takenlinks we have SUf) matrices U,(x) which make up the
to be a flat torus. gauge background with which the fermions interagt.

The objective of this paper is to clarify what happens
when the massive Dirac Hamiltonian is put on the lattice
following Wilson’s prescription. The most fundamental fea- \\\\\\ & H
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so does the lower bound for positive values of the masghh \ AN
parametem. Changes occur only fon<<0 and for the lower \\\\\\ \ \
bound ofH\ZN(m). So long as we are close to the trivial case \\\ N4 R
the distortion is small: it amounts to the replacement of the k\\ -6

FIG. 1. Spectrum of the Dirac Hamiltonian in the continuum.
*Email address: neuberg@physics.rutgers.edu All oblique lines have slopes 1.
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=1,2,...d denotes positive directions anddenotes a lat- T, 'TL'W' Thus,D(m) is gauge covariant. Fdd ,(x)=1

tice site. The lattice is finite. the T, become commuting shift operators.

The fermions are vectorg (x). « is a spinorial indexi The Wilson Dirac operatdd,(m) is the sparsest possible
is a gauge group index andis a lattice site. The action on @nalog of the continuum massive Dirac operator which obeys
the fermions is described in terms of several unitary operaflypercubic symmetry. Fixing the so-callegparameter to its
tors. First are the Euclidean Dirag,’s which act only on ~ Preferred valuer(=1), Dy,(m) can be written as
spinorial indices. Second come the directional parallel trans-
portersT,, which act on the site index and the group index.

They are defined by Dy=m+ >, (1-V,); VLVfl;
T () () =U () (X + fv). :

A third class of unitary operators implements gauge transfor-

mations, each characterized by a collection @€x) Vv
e SU(n) acting ony pointwise, and only on the group indi-
ces. The action is represented by a unitary oper&i(g)
with (G(9) #)(x) =g(x)¥(x). TheT, operators are “gauge
covariant,”

1_7;4 1~|—7M
WS T

N
T,

In evend we associate with the Wilson Dirac operator the
Hermitian Wilson Dirac operatoily,(m) = y4. 1Dw(m).

G(g)TM(U)GT(g)zTM(Ug), All our Iattige_s are assqmed finitt_a and the(efore all our
operators are finite dimensional matrices. An eigenvalue of a
where matrix A will be denoted by\(A); if the eigenvalues are
labeled, the label is attached Xo When it makes sense, we
U%(x):g(x)uﬂ(x)gT(x+ ). may deal with the maximéahinimal) eigenvalues of

A, N maxminfA). We choose the following norm definition for
The variabledJ ,(x) are distributed according to a probabil- matricesA: [|Al|=[\n(AT A)J*2 This is a standard choice,
ity density that is invariant undey — U? for any g. induced by the vector norfv||>=3,|v,|%, wherel is a ge-
The lattice replacement of the massive continuum Dirameric component indek?]. The norm of a gauge covariant
operatorD(m) is an element in the algebra generated bymatrix is gauge invariant.
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FORMAL CONTINUUM LIMIT

The connection to the continuum is as follows: Assume

to be given smooth fuﬁoﬁgﬁx) on the torus. Then,

UM(X) = lim [ei(a/N)AM(x)ei(alN)AM[XJr(a/N),&]ei(a/N)AM[erZ(a/N),fL]_ ] _ei(a/N)AH[er(Nfl)a/N,&]]

N—oo

=P ex;{i JldxMAM(x)

Consider a smooth functiaf.(x) with the same index struc-

(the symbolP denotes path ordering

operatorz, D, formally emerges aa goes to zero, and

wYu

ture as the corresponding object on the lattice. By looking afhe mass is of ordem/a, wheremis a pure number. But, as

X's coinciding with a lattice point one gets a lattice vector
Yy(x=na), whererie Z%. The action of theT , produces an-
other lattice vector)'. One can define a continuum operator
T, such that the lattice restriction af, ¢ will be a func-
tion . whose lattice restriction ig’. The formula i
T,.=€3Pu

uc , D,=d,+iA,.

an operator in the continuub,,(m) is special: when it acts
on ¢, to producey,, the values ofy, at lattice points are
solely determined by values af. at lattice points. There-
fore, there exists an exact relation to the lattice operator
Dw(m).

There is no remnant of chiral symmetifpr even dimen-
siond) becauseD,y(m) is not just a function ok ,y,D,,;

The simplicity of this expression can be viewed as a motiva@nly in the smalla limit (strictly speaking, one would need

tion to introduce theT ,’s as central objects on the lattice in
the first place.
The formula is easy to prove:

Pe(X+ai)=e i (X)

for any vectori.. On the other hand, for any operat®y,
acting pointwise byO.(x) we have

Oc(x+bin) =€ (x)e %,

Inserting this expressiofwith b=k(a/N)] repeatedly into
the definition ofU ,(x), implementing the shift of the argu-
ment of .(x) as above, and takinly to infinity at the end,
produces the desired result using Trotter’s formdla

The V,’s have associated continuum operatdrfg.,
given by

Dy

\Y

we= e

no sum onu.

The Wilson Dirac operator is a lattice restriction of the con-

tinuum operator
aDym)=m+ >, (1—e 27Pxu),
M

Dwdm) could be viewed as an approximation 49D , in
the continuum which is good for eigenvalues small in abso

lute value but whose spectrum is restricted to a bounde
domain. Such operators are frequently introduced when on
regulates infinities in the continuum. The continuum Dirac

Yn general theA ,(x) are not smooth functions, rather they make
up a one formz A, (x)dx, which is a smooth connection on a
possibly nontrivial bundle with structure group Sty(over the four
torus.

2This generalizes an observation of van Bl

to replacem by m.a before takinga to zerg do we get an
expression involving only the chiral combinatiar,y,D,, .

It is important to appreciate that one does not need
Dwd(0) to anticommute withyy, ; to have some amount of
lattice chirality: any reasonable (m) that is a function of
only the combination* ,y,D, would do. For example, if
aDy,(m) were replaced by

aDyy(m)=m+1—e>*n7uPu,
we would have enough symmetry because

yd+1e_1/22#7#'3u[e“— e_M+EM7MDM]e_l/22My#D#‘yd+1

_[e—M_e,u+Eﬂ#D#]_

Since  dee YZu7Pu  is  unity  (9/dw)log defe*
—e #"%mPu] is odd in w and this is enough to eliminate
additive quark mass renormalization. However, the operator
e*«"Pu cannot be restricted to the lattice because when it
acts ony and produces/ it is not true that the values af
at lattice points depend only on valuespht lattice points.
One can try to “improve” DyyJ{(m) by looking at the
differenceD,y(m) —Dwdm) to leading order ira and re-
placing it by a function of thd . (again to leading order in
a). Adding the new term tdy(m) produces an operator
which can be restricted to the lattice and is “clover im-
roved;” it agrees withDyy(m) to leading and subleading
rder in a. In fluctuating gauge field backgrounds one
ghanges the coefficient of the new term to a number deter-
mined numerically. One can also maintain chiral symmetry
on the lattice exactly5,6], using the overlap Dirac operator.

g

Upper bound

Our first objective is to find a bound for the largest eigen-
value ofH3,. Clearly,\ ma(H%)=Dw(m)|?. The triangle in-
equality then gives
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[Dwm)|<|m+d|+2> [V, ]|=|m+d|+d. H
"

The lowest upper bound as a function of mass is obtained at
m= —d, which is a symmetry point foH\ZN(m), because
Dw(—d) and —Dy(—d) are unitarily equivalent. This
is a consequence of the existence of a unitary Hermitian
operator S such thatSV,S=-V,, implying SDy(m)S
=—-Dyw(—m—2d); Sis diagonal and the diagonal entries
are 1 if the sitex hasX ,x, even and—-1 otherwise S exists
because the hypercubic lattice we are working on is bipartite.
For m=—d the upper bound is attained if there exists a
vector ¢ which is a common eigenvector to al V,, opera-
tors, with the eigenvalue-1 in each case. It is likely to find
such an eigenvector wheit ,, T, ]=0 for all x and». These
commutators vanish when all plaquette parallel transporters
are unity; this is so, in particular, in the free case. FIG. 3. A rhombus containing no eigenvalues. All oblique lines
have slopest1.

Lower bound . . . L
given that there are no eigenvalues along its main diagonal

Let us introduce some shorthand notation: (A,B). Recognizing this, the proof becomes trivial: if we did
have an eigenvalue anywhere inside the rhombus the flow
hMZE(TMJrTT):hT ’ aM:} Y;L(TT ~T,)= —at. inequality \(vould have to be viollated somgwhgre in order to
2 # 2 w " avoid an eigenvalue flow crossing the main diagonal.

We start with an explicit formula foH\zN(m):

> a,
"

The unitarity ofV,, holds because of the identities
2

2

- 2 [a,u.!hv]

2 —
h2-a?=1, [h,,a,]=0. H&/(m)= 2

m+2, (1-h,)
“

Let A\(m)=A(Hy(m)) be some eigenvalue dfl,,(m).
A (m) is differentiable becaudd,,(m) depends smoothly on =m?+2(m+ 1)2 (1-h,)
M dNAm=3,; o sU4 (X) VsasWs(X),  Where Hy(m)y z
=\(m) ¢ and ¢ has the unit norm. Sincng: 1 one has
+ 2 [(1-h,)(1-h,)—-a,a,~[a,,h,]].

‘ dn mFEV

—=1.

dm While in the continuumDT(m)D(m) commutes with
vd+1, the last term irH\zN(m) does not. All terms are indi-
vidually Hermitian. SincéH(m) connected sites,x’ with®

. : - . —x'|=0,1 we could have expected2,(m) to connect
stricts the slope of lines describing the flow of eigenvalues oP.( X'| o w .
! P ! 1oing WO CIgENVAILES Oiias with |[x—x'|=0,1¥2,2, but because of the relations

Hy(m) as a function oimn. We shall refer to this inequality ~, "~ " o i o :
as the “flow inequality.” It has the important consequenceh_uu_aM_1 and[h,,a,]=0 _snes with|x—x |__2 are still
that we shall prove below: If we know that disconnected. Another special propertyHﬁ,(m) is that the
0< A yn(H2,(m)) for somem, we have site-diagonal piece is proportional to the identity matrix.

mint oW ’ If [T,,T,]=0 we haveX,.,a,a,=0,[h,,a,]=0 and

The theoretical usefulness of expressions dar/dm has
been recently emphasized by Ker[&. This inequality re-

[)\ min(H\zN(m,))]llzz[)\ min(H\ZN(m))]llz_ |m_ m’ | [hM ’hV] =0. Then'
Before describing the proof let us note that the result is use- HZ(m)=m?+2(m+1)>, (1— h,)
ful only if m
- (42 12
[m=m’[ <[\ min(H(m)]H2 +> (1—h,)(1—h,).

The main observation is that a lower bound on o

[\ mm(HSv(m))]l/Z at an arbitrary mass poimh can be ex- If we keep a!lhﬂ fixed but one, say,, the depende_nce on

tended to a lower bound op\ yin(H2,(m’))]¥2 in some the latter is linear, so the external values are obtained, at

mass range aroun. ==*1. The argument is applied again and again to a decreas-
The basic inequality can be best proven referring to dnd number of remaining directions leading to the conclusion

sketch shown in Fig. 3. The graphical meaning of the in-

equality is thatH\zN(m) has no eigenvalues in the area

bounded by the right angle rhombus in the figure when it is *For two sitesx andy we define[x—y| == ,(x,,—¥,)%.

v Yu
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that in order to find the extrema &f?,, viewed as a function 1 . ‘

of the quantitiesh,, (more precisely, their eigenvalues, since ~ ~ Zv aa,= g ZV Yol Tp= T, T,=T,I=Y,
the h,, can be simultaneously diagonalized by assumption # :

we only need to check theY2possibilities h,=*1. The and
upper bound comes out as above, and the lower bound on

[ Nmin(H&) T2 has the shape shown in Fig. 2. We learn that at
the pointsm=0,—2,—4,...—2d the theory has massless
fermions; the multiplicities are given by!/(d—n)!n!

where m=-2n, n=0,1,2...d. Thus, for m
=—2,—4,...—2d+2 we have several doublers, the num-

ber of different species being given by the number of differ-

e.nthﬂ configyrations producing a zero at the respective speypg operator, X, Y, Zare all Hermitian. Moreover, each of
cial mass point. the traces ofX?Y? Z?2 are linearly related to the single

From now on we shall concentrate on the regionyaquette Wilson actiofisee below and decrease when the
—2<m<0. This region is interesting when we want to deal|5iter increases and the continuum limit is approached.
with one Dirac fermion and avoid doublers. The region close  cqnsider now the commutatofd , ,T,]. Their norm is

PERNAE

to m=0 is important for traditional numerical QCD with yatermined by
Wilson fermions. The region close tm=—1 is important
for applications of the overlap Dirac operator where one
would like H\z,\,(m) to have a large gap around zero. When ) )
[T..T,]=0, the highest lower bound is obtained mt where the unitany,,, are given by
=—1. As long as all operatorfsT,,,T,] are small in norm P —THTIT T
we expect the same to be true. We therefore focus on the A
point m=—1 first, and later extend the bound to a rangethe gperatorsP,, are site diagonal, with entries that are
aroundm= —1 using the consequence of the flow inequality parallel transpoﬁer round plaguettes:
established earlier.

In the general case where the matridgs do not com-
mute, we have

Eu [(y,—vy,)([T,,T,]+H.c)

| =

- > [a,.h,]=
mFV

+ (7, v)([T,, TH+H.c)]
=Z.

[T, T[T, T]=(1-P,) (1-P,,),

(Pt (X)=U ,,(x)(X),

U () =U5(x= DU (x= D= @)U ,(x= 7= @)U (X~ &v).
2/ — _ _ _ _
H(—1) 1+,§V [A=h,)(1=h,)~a,a,~ a,.h,]]. U ,.(X) is associated with the elementary loop starting at site

X, going first in the negative direction, then in the negative
We now analyze each term in the bracket individually; wey, direction, and coming back round the plaquette.
treat them separately because their spinorial index structures The main relation is
are different. The first term is rewritten as

”[T,u ’TV]” = ”1_ P;LV”

;y [(1=h,)(1=h,)] Any pure gauge action with the right continuum limit will
strongly prefer configurations where &ll,,(x) are close to
the unit matrix. Therefore, it is not unreasonable to impose

1 S t t
=72 A-THA-THA-T)(A-T,) the constraint, for allu> v,

nFEV
:Q+X_ ||[TM’TV]||$6MV

Here,Q is positive semidefinite, Note that this is equivalent to

1 [1-U,,(0l<€,,
Q=g 2 {(1-TYA-T)[(L-THA-T)] - |
u#v for every sitex. It is easy to see that the same bound will
hold when we interchange in the commutator jhe’ indi-

+(A-THA-THA-THA-T)]™,

while X depends only ofT,, commutators:

1
X=— §,§V (T[T T, +TH+TH T, T,+T5)

=_%% {Tﬂ

Proceeding, we find

T T
: TM,EV (T,+T))

ces, and when we replace, independently, Theand T,
operators by their Hermitian conjugates.

Using the triangle inequality and thipAB||<|/Al||B||, we
now obtain

XIS S € VIS S € 12123 €,
u=>v w>v

u=>v

The v2 factor comes in becausey(+ v,)?=2 for u#v.
We finally obtain
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The claimed mass independence seems surprising, and not
Anin(X)=— 2 €uvs Amin(Y)=— > €uv entirely consistent with numerical results at oti®ralues
nev w=y and volume size$.
In [8] a bound o\ ,i,(HZ(— 1)) is also established. It is
Aein(2)= V2D €. expressed in terms of a bound on the norm of the commuta-
min = M tors, but the precise definition of the norm used is not given.
| shall assume it is the one adopted in this paper. A bound is

_ —_15 )
By the variational principle and the positivity G we arrive ~ duoted only for thed=4 case, fom=—1"and for the ro
at tational invariant case,,= 7. The bound derived if8] is

Nmin(H3(—1))>1-307.
. 2 — = —
Amin(H(—1))<1 (2“@% - This bound is compatible with the result of this paper,
Amin(H3(—1))=[1—6(2+v2) 5], but weaker. To be sure
Our result is meaningful only when the number on the right-that Hi(—1) has no zero eigenvalues the bound[8]
hand side in the above equation is non-negative. places a restriction om that is stronger than ours by about
In the rotational invariant case one could sgt,=7.  ©One third.

Then, ford=4, we obtain

LESSONS
VAmin(H2(—1))=V1-6(2+v2) = 1-20.57. Let us first identify what about our results could have
been expected without any calculations. Clearly, we know
The general bound we obtained is that there will be some uniform upper bounds on the spec-
trum just by virtue of compactifying momentum space and
[ X min(D (M) Dyy(m))]H2 because thdJ ,(x)'s are unitary. Moreover, once the free

case is worked out and the spectral restrictions of Fig. 2 are
derived, one knows that close to the continuum the structure
will be essentially similar even in the presence of nontrivial
gauge fields. The reasoning is as follows: We are dealing
with operators that are analytic i, and Fig. 2 holds when-
ever allT,’'s commute. All that enters in the bound deriva-
1 tions above is that th&,'s are unitary. Commuting unitary
T,'s can be smoothly deformed into noncommuting ones
and the changes in the spectrum must be smooth too. Thus, if
the commutators of th&,’s are sufficiently small there will

This range is contained in the open segme@<m<0. The  P€ a region arounth=—1 where the spectrum dfy(m)
bound holds in both even and odd dimensions. In the parWill have a gap around zero. One can simply think about the
ticular case of domain-wall fermions, plaquettes parallel to°0mmuting case as a “semiclassical” approximation to the

the extra dimension make no contribution since thejr, noncommuting case. _ _ _
vanishes. The operatord’,, connect only sites one spacing apart in

the u direction. The gauge invariant norm of tfig commu-
tators cannot depend on anything else but the norm of the

1/2
—[1+m|.

=

1-(2+V2) X €,

u=>v

This bound is useful only for

|1+m|$[1—(2+\f2)2 €0

u=>v

COMPARISON TO OTHER WORK elementary plaquettes. Forcing all unitary plaquette operators
Related issues were studied[B] and in[9]. The authors clo,se tlo identity producets1 a link .conflglurgtlog for which the
of [8] established the upper bound T,’'s almost commute. The precise relation betweenThe

commutators and the plaquettes is well kndif] since the
> discovery of largen reduction of lattice gauge theorigsl].
VAmadHi(m))<8 So, all that really required some work was to turn the
above into a quantitative estimate. Because of the practical
in four dimensions with the restrictior 2<m<0. This is  difficulties associated with low eigenvalues bf3,(m) it
compatible, but less stringent than our upper bound, whiclmakes sense to try to be as careful as possible in deriving the
becomesn+ 8 in this mass range. guantitative form of the bounds. Still, it is known that the
In numerical investigations with pure gauge Wilson ac-
tion, it was reported i8] that, for 8=6.0,6.2,6.4 andn

=-10,-12,-14,-186, for SU3), ApafHy(M)) stays “The numerical work was carried out by the SCRI group, at the
around 41 and hardly changes. Our upper boundnfor time consisting of Edwards, Heller, and Narayanan.

=—1.6is 6.4=40.96 and increases for the lowais. Thus, SAccording to David Adam§9], in unpublished work, the authors
at the extremal mass valgassuming the value quoted[i8]  of [8] have extended their bound by using the triangle inequality to
was roundef] our bound is saturated to numerical accuracy.a range ofm values contained within the segment2, 0).
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lower bounds in the-2<m<0 region are not directly use- worth exploring’ In lower dimensions than four the impact
ful in backgrounds generated at coupling constants that aref going to asymmetric lattices would be even more pro-
practical in numerical QCD today. In spite of this, the exactnounced.
bounds and their derivation might provide helpful insights, in  Yet another possibility is to filter out the “roughness”
particular in the context of implementations of the overlapfrom the gauge background seen by the fermions by replac-
Dirac operator. In this case one wishes to work with operaing the link variablesU ,(x) by new link variablesyA"5(x)
tors Hyy(m) with —2<m<0 but with as large a gap around which are functions of the original link variables, transform
zero as possible. This would make the matdy(m) well  the same way under gauge transformations, but produce
conditioned and speed up the calculations. plaguette variables closer to unity. Recent work has obtained
The most basic observation is that one can control the gaguch “APE smeared” UﬁPE(x) [21] with associated
in Hy(m) by controlling the plaguette variables alch&his  plaquettes extremely close to unj§2]. Of course too much
was understood long agd3]; a natural guess would be that “filtering” may take the lattice theory at typical simulation
replacing the pure Wilson gauge action by the so-callecharameters too far away from the desired continuum limit of
“positive plaquette” model[14] [for gauge group S{2)]  QCD2 If this is true, one could also try a “half smeared”
will create a gap around zero. Numerical checks by Heller inapproach where only the links entering the “Wilson mass
early 1998 have shown that this was not the dd€g. In  term” %zﬂ(‘rﬁ_ TL) in Dy(m) are APE smeared but the
addition, one cannot just change the form of a singlginks entering the chiral paéZ”yM(TM—TL) are not, so the
plaquette action and get something useful in four dimentermions are not insulated from the ultraviolet fluctuations in
sions. The correlation length increases exponentially as thge gauge field. Unfortunately this would spoil the relations
plaquette_s are forced to |denfc|ty and_phy5|cal_ly realistic vol-hi_aizl and[h,,a,]=0, so the consequences on the
umes rapidly become totally impractical. A ”?"Sj.e.f approachyonds are complicated. Also, the spinorial structure no
is th_erefore called for. There are a few _pOSS|b|I|t|¢s. longer only involves the projector1= y,) which causes
First, one could use a more complicated action than ome numerical overhead. Note, howeltler, that with APE

single plfa\quette one. The idea is that a more complicate mearing the difference betwee\ﬁPE(x) andU ,(x) goes to
action might make the plaguettes close to unity, but still keep commutators go tc;L ero. There-
u .

) - -~'zero when the original
the gauge fields sufficiently random so that the correlatlor} .
) . : ore, some bounds of similar structure to the bounds pre-
length does not exceed a few lattice spacings. The improve- .
A - g 4 . sented here would still hold.
ments observed in simulations using domain walich It is hooed that th \vsis of th Id
can be viewed as a particular truncation of the ovefl) t I hoped that the analysis of this paper would prove
: . " . helpful in guiding our search for improvements in the gauge
when one switches from Wilson to so-called “lwasaki ac- action and in the structure @,(m)
tions” might be a reflection of this mechanidrh7]. A more WA
systematic approach would be to follow an approximate
renormalization-group trajectofyi8], where the correlation
length is controlled, to regimes in the coupling constant
space where the single plaquettes are closer to unity. A note My research at Rutgers is partially supported by the DOE
of caution: the inclusion of the fermionic determinant in theunder Grant No. DE-FG05-96ER40559. | wish to thank
gauge measure may be important and a fix that works foDavid Adams for exchanges regarding the lower bounds. |
guenched simulations may fail in the dynamical cpk@. am indebted to Urs Heller for providing numerical informa-
Another observation is that making only the plaquettes intion on the spectrum of the Wilson Dirac Hamiltonian in
some directions close to unity would help. This only requiresgauge fields generated both with the positive plagquette action
one to increase one dimension of the lattice and there is nand with the Wilson action. | am grateful to Rajamani Naray-
exponential relation between this dimension and the closeanan for making available to me numerical results about ei-
ness of the timelike plaquettes to unity. In four dimensionsgenvalue flows and about upepr boundsHg(m).
there are other good reasons for working on asymmetric lat-
tices[20], so this looks like a cheap and attractive alternative———
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