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A study of magnetic monopoles in the original version of Born-Inf@¢) electrodynamics is performed. It
then is realized that interesting new physics emerges and it includes exotic behavior of the radial electric
monopole field such as its regularity es-0 and its changing behavior with the absence or presence of the
radial magnetic monopole field. This last point has been interpreted as the manifestation of the existence of
pointlike dyons in Abelian Bl theory. Two pieces of clear evidence in favor of this dyon interpretation are
provided. It is also demonstrated that despite these unique features having no analogue in standard Maxwell
theory, the cherished Dirac quantization condition remains unchanged. Lastly, comments are given concerning
that dyons found here in the original version of Bl electrodynamics should be distinguished from the ones with
the same name, or Blons, being studied in the recent literature on D-brane physics.

PACS numbeps): 11.10.Lm, 03.50-z, 11.15—q

[. INTRODUCTION When both electric and magnetic monopoles are preseat
are located, say, at the same ppiurprises continue and

Recently, the Born-InfeldBI) theory has received much particularly the behavior of electric monopole field in the
attention since the Bl-type Lagrangians naturally appear irpresence of the magnetic monopole becomes different from
string theories. Namely, it has been realized that they cathat in the absence of the magnetic monopole. Obviously,
describe the low-energy dynamics of D-braf2k And this  this can be attributed to the highly nonlinear nature of the Bl
state of affairs triggered the revival of interest in the originaltheory action which then results in the direct and unique
Bl electromagnetisnil] and further the exploration of Bl coupling between the electric and magnetic fields in a highly
gauge theorie$2] in general. Indeed, in spite of its Iong nontrivial manner even in the static case and hence is a really
history this theory has remained almost unnoticed and hen%ique feature having no analogue in the usual Maxwell
nearly uncovered. This theory may be thought of as a highlyheory. We then interpret this exotic behavior of monopole
nonlinear generalization of or a nontrivial a}lternatlye to thefialds in the presence of both electric and magnetic charges
standard Maxwell theory of electromagnetism. It is knownarising from the unique coupling between electric and mag-

ﬂ:?t ?c()jrrt]hiant% Inrfeldb hadnb%er; L?dn’ Wheﬂ the% f';i‘c’r:itccr’]n'netic fields as the manifestation of the existence of “dyons”
stucte s theary, by considerations such as the ENCRen in Abelian BI gauge theory. Indeed two pieces of clear
of the energy in electrodynamics, natural recovery of theevidences in favor of the dyon interpretation will be provided
usual Maxwell theory as a linear approximation, and the y P P

hope to find solitonlike solutions representing pointlike and one of which employs the argument based on the trans-

charged particles. In this respect, it seems that this theory@iONS of monopole fields and the other invokes the energet-

aside from its connection to the recently fashionable bran&S argument. Finally, we shall point out that despite all
physics[2], deserves serious and full exploration in a mod-these unique features of monopoles and dyons in Bl electro-
ern field theory perspective. It is precisely this line of dynamics, something seems to never change and that is the
thought that initiated the present study. Namely, in this workcherished Dirac quantization condition and the meaning that
we would like to perform the study of magnetic monopolesunderlies it. One might wonder how the dyon solutions
in the original version of pure Abelian Bl gauge thedfy. found in this work should be understood in relation to the
To be a little more concrete, we shall introduce the magnetisoliton solutions dubbed “Blons” or just dyons studied in
charge current density in Bl equations just as Dirac did inthe recent literature on brane physj@s-9]. Thus later on in
Maxwell equations and see if this introduction can providethe concluding remarks section, we shall comment on this
the Bl equations with dual symmetry. Although this turns outpoint in detail.
not to be the case, we find that the Abelian Bl gauge theory
exhibits unique features which have no analogues in the stan-
dard Maxwell theory. That is, because of the lack of dua|||_ MONOPOLE FIELDS IN MAXWELL GAUGE THEORY
symmetry, the static electric monopole field and the static
magnetic monopole field have differantlependences. To be As stated, our main objective in this work is the parallel
more specific, the static electric monopole field shows exotistudy of physics of magnetic monopoles in Abelian Bl elec-
behaviors such as the regularityras-0 signaling the finite- trodynamics and in the standard Maxwell electrodynamics.
ness of the energy stored in the field of electric point chargeThus to this end, we begin with the brief review of Dirac’s
proposal for the introduction of magnetic monopoles in Max-
well theory. Consider the action for the Maxwell gauge
*Email address: hongsu@sirius.kyungpook.ac.kr theory in flat spacetiméand in mks unit
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1 Note, however, that this dual invariance is just a symmetry in
=J d*x| — 2 Fu P IEALL (1) the classical field equation and the Bianchi identity tottin
the Maxwell theory actionL=-—3F, F*’ as F,F*
where F,,=d,A,—d,A, is the field strength andj* =—F,,F*". Lastly, before we end our review of magnetic

=(pe, | ) is the electric source current for the Abelian field monopoles in Maxwell gauge theory, we recall, for later use,
A . Extremizing this action with respect to the gauge fieldthat the expressions for the static electric and magnetic fields

, then, yields the field equation fdx, as generated by electric and magnetic monopoles sitting at the
origin and hence the solutions %- E—eé\?'(r) andV-B
3, FHr=—j", 2 =98%r) are given, respectively, big=(e/4mr?)r and B

=(g/4mr?)r for r 0. They have the same structure, i.e., the
In addition to this, there is a supplementary equation comingdentical r dependences as can be expected from the dual
from an identity satisfied by the Abelian gauge field strengthsymmetry of the Maxwell equations. This point, which is so
tensord,F,,+d,F,,+d,F,,=0. This is the Bianchi iden- familiar and hence looks trivial, will be contrasted to what
tity which is just a geometrical equation and in terms of thehappens in the study of static monopole fields in Abelian Bl
Hodge dual field strengtf#”= 3 e*"*PF .4, it can be writ- ~ gauge theory to which we now turn.
ten as

lll. MONOPOLE AND DYON FIELDS
5, Frr=0, 3) IN ABELIAN Bl GAUGE THEORY

As usual, we begin with the action for this Abelian BI

It seems noteworthy that the field equation A9y in Eq. (2) theory which is given, in four dimensions, bg]

is the dynamical field equation which gets determined by the
concrete nature of the gauge theory action such as the one in
Eqg. (1). The Bianchi identity in Eq(3), on the other hand, is [ 1
simply a geometrical identity and is completely independenS= d4X[ B 1—- \/— de< 77,“,+EFW
of the choice of the context of the gauge theory. This set of .
four equations, known as the Maxwell equations for classical
electrodynamics, however, may be viewed as being some- r 1 1
what incomplete in that the right hand side@HS) of the fd“ {,32 1— \/1+_2|:M|: ——(F L, )ZJ
Bianchi identity is vacant. Thus Dirac proposes to make it ! 2p 16:3
look complete by adding the “magnetic current density”
termk“=(pm, jm) On the RHS. Further, if one decomposes +j“A#],
these covariant equations using”=(—d/dt,V;), 4,

=1,,0"=(d/t,V;) [namely, we use the sign conventlon . . .
7,,=diag(-1,1,1 1)] A“=(, A and the field identifica- Where “B” is a generic parameter of the theory having the

tion, E;=Fo, Bj= quk;: or Fj; E”kB the dynamical dimension dimg]=dimF,,]=+2. It probes the degree of
field equation decomposes into deviation of Bl gauge theory from the standard Maxwell

theory and obviously— o limit corresponds to the standard
Maxwell theory. Again, extremzing this action with respect

t] “AM} )

N N &E N . . . .
V.E=p., VXB- E:je @) to A, yields the dynamical Bl field equation
hile th trical Bianchi identity d 1 =g
while the geometrical Bianchi identity decomposes as Fav_ —2(FaﬁFaﬁ)F’”
a3 _
V-B VXE B_; 5 - 1 -
BT Pms +E_ Jm- ( ) \/1+ zFa,BFa'B_ 4(Faﬁﬁaﬁ)2
2B 16p8

These Maxwell equations are then invariant under the “du- ®

ality transformation” (here in this work, we restrict our-

selves to the discrete duality transformationt the continu- ~ The geometrical Bianchi identity, which is a supplementary
ous duality rotation$4]) equation to this field equation is, as mentioned earlier, inde-

pendent of the nature of the gauge theory action. Thus it is

FrrmFri(E—B), jr—k* (®)
3, Fr=0. (9)
and a
As before, we now split up these covariant equations and
Frre —FrY(B——E), kio—jm write them in terms of andB fields to get
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(10

1 1

\/ B B

for the dynamical BI field equation and

(E2—B?)— —(E-B)?

R . B
V.B=0, VXE+ —

(?to

11
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cal field equationsV-[{E+ (E-B)B/B%/R]=es%(r) with
R={1-(E?-B?)/B?— (E-B)%B*}'2 Again forr#0, and

in spherical-polar coordinates, this equation becomes
[9,(r2sin6E,)+ 4 Sin6Ep)+d4(rE ) )r?sing=0 with E;
=[E;+(E-B)B;/B?]/R. First, in the absence of the mag-
netic monopole,E;=E;/\1—E% 32 and then the above
equation is solved byE,(r)=el/4x\r*+ (eldwB)% E,
=E,=0. Next, in the presence of the magnetic monopole,
one has to put the magnetic monopole fiBld (g/47r?)r in

E, and R and then solve the equation. Then the
equation admits the solution E.(r)=e/
Am\r4+(e2+ g2 /(47 B)2, E,=E4=0. The static mag-
netic monopole field in the Abelian Bl theory, therefore,
turns out to be identical to that in the standard Maxwell
theory. Concerning the static electric monopole field in this
Abelian BI theory, however, there are two peculiar features
worthy of note. For one thing, unlike in the Maxwell theory,
the electric monopole field and the magnetic monopole field
exhibit differentr dependences which can be attributed to the

for the geometrical Bianchi identity and where we usedfact that in this Bl theory, the dynamical field equation and

F,,F*'=—2(E?>~B? andF, F**=4E-B. We now con-
sider the case when both the electric current denpity

=(pe.] o) and the magnetic current densi§= (p,.jm) are
present. Then as before, the Bianchi identity gets modified t

VXE+ &é—
=

V-B=ppm, - (12

Jm

or, in covariant form, to?MT:”Vz —k”. One can then readily
realize that, unlike the Maxwell equations, these four BI

the Bianchi identity are not dual to each other. Besides, since
the static electric monopole field is not singularasO, the
energy stored in the field of electric point charge could be

(fJinite and this point seems to be consistent with the consid-

eration of finiteness of energy, which is one of the motiva-
tions to propose this Bl electrodynamics when it was first
devised. For the other, it is very interesting to note that the
static electric monopole field gets modified when the mag-
netic monopolgfield) is present although the dependence
itself remains essentially the same as we observed above.
This is indeed a very peculiar feature which is unique and

equations evidently do not possess the duality invariancBas no analogue in the standard Maxwell theory. When the
mentioned earlier. Namely, the two dynamical Bl field equa-magnetic monopolefield) is present, the strength of the
tions and the remaining two geometrical Bianchi identity areStatic electric monopole field appears to experience some at-
not dual to each other any more and it can be attributed to th€nuation which is particularly noticeable in the “smafl-
fact that when passing from the standard Maxwell to thisf€gion, when compared to the case without the magnetic

highly nonlinear BI theory, only the dynamical field equa-
tions experience nontrivial changénonlinearization”) and

monopole field. It is also tempting to interpret this unique
coupling between the electric and magnetic field even in the

the geometrical Bianchi identity remains unchanged as it i$tatic monopole casewvhich evidently originates from the
independent of the nature of gauge theory itself. This inherhighly nonlinear nature of Bl theory action in four dimen-

ent lack of dual invariance in Bl equations then may imply

siong as the manifestation of the existence of “dyon” even

that we need not introduce the pointlike magnetic monopoldn “Abelian” Bl gauge theory. Thus we elaborate on this

study of the interesting monopole physics in Maxwell theory,

of the det(y,,, +F,,/B) in the general form of the Bl action

here we shall assume the existence of pointike magnetigarticularly in four dimensions produces the term
monopole and explore the physics of it such as the structuréF , ,F#*)%/168%=(E-B)% %, i.e.,
of static monopole fields and the possible existence of the

dyon solution. First, we consider the static magnetic mono-

pole field and electric monopole field in this Abelian BI
gauge theory. The static magnetic monopole field can b

obtained by solving one of the Bianchi identity equations

V-B=g&%(r). Forr#0, and in spherical-polar coordinates,
this equation is given by[d,(r?sin6B,)+d,r sin6B,)
+3,(rB,)]/r?sing=0 and is solved byB,(r)=g/4wr? B,
=B,4=0. Note that this solution form holds irrespective of

\/— de( vt %FW)
B

2p2

e

v Eurv)2
F,U«VFM - 16B4(Fp,vl:ﬂ ) .

It is precisely this term which induces a unique and direct

the existence of the electric monopole. Next, the static eleceoupling between the electric and magnetic field even in the
tric monopole field can be obtained from one of the dynami-static monopole case and hence generates the dyon solution.
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Then next, we seem to be left with the question: what are thavith R as given earlier. The energy density stored in the
evidences that would support the dyon interpretation oflectromagnetic field can then be read off as
monopole solutions?

9 . - e - 1.
r, E= r. (13 1+ —B?

4r? e’+g? ) B
4da\|r*+ — Too=pB —-1| (19
(4mpB) 1

1. . -
\/l—I?(EZ—BZ)—E(EB)Z

é:

Even in a loose sense, two pieces of evidences can be sug-
gested. We begin with the first one. Consider that in the
standard Maxwell theory, the monopole solutios  which does reduce to its Maxwell theory’s counterpdzt (
—{gldm|r—rg|?H(r—rg) and E={eldn|r—rg|3(r—rg), +B?/2inthe limit3—x as it should. We now compute the
corresponding to the configuration in which the magneticenergy density solely due to the magnetic field generated by
chargeg is fixed atr= FB and the electric charge is fixed at the magnetic chargg. Using §=(g/47'rr2)F,

r=rg separately, are simultaneous solutions to the Maxwell
. . .2 N 1 R 2 1
equations. And the particular solutios={g/47xr“}r and /1+ ’?Bz—l =,82[ 14 (43[3)2 F_l}

B _ 2
E={el4mr?}r just represent the case when the two mono- Too=F
polesg ande happen to be sitting on the same location, the (16)
origin. In the BI theory of electromagnetism, however, the

particular solutions given in Eq13) above do not simply Next, we calculate the energy density stored in the electric
represent the case when the two monopglende are sit-  field generated by the electric charge Then usingE

ting separately at the origin. Instead, these particular statig{emm/rﬁlmz};’ one gets

monopole solutions represent a single, pointlike entity carry-
ing both electric and magnetic charges, i.e., the “pointlike

dyon.” TP see ii tpis iAs jndeed the case, nOticeTE:,Bz 1 g » e2 i—l
that _ QB:{g/4a-r|r—rB|2}(r—rEj) ~and E={e/ 00 1 (4mB)%r4
am|r—rel*+[e?+ g% (4mB)]}(F—Te) [where —Tg) -5

=(r—rg)/|r—rg|] fail to be simultaneous solutions to the 17)

Bl equations V-B=g&(r-rg) and V-[{E+(E

.B)B/B?}/IR]=e8%(r—rg) (where again R={1—(E?> There now seem to be two points worthy of note. One is the
—~B?)/8%—(E- 5)2/34}1/2) for rg#rg. They, however, can fact thatT(E)‘0 andTg0 are basically the same except tigeind

be simultaneous solutions only for=rg, namely only e are interchanged although the magnetic monopole feld

when g and e stick to each other. It is straightforward to and the electric monopole field possess different depen-
check that the static monopole solutions to Bl equations fogences. The other is, as Born and Infeld hoped when they

re#re, when actually worked out, turn out to take different constructed this new theory, the energy stored in a static

structures from those given above by simply replacfng monopole field is indeed finite. For instance, the electric

- - - - . . . monopole energy can be evaluated in a concrete manner as
—(r—rg) andr—(r—rg). This is certainly in sharp con- #] P 9y

trast to what happens in standard Maxwell electromagnetis
where B={g/4w|r—rg|?}(r—rg) and E={e/dn|r—rg|?}

P B °° e’
X(r—rg), which are obtained simply by replacing— (r E=f d3ngo=f drﬂz{ (47r?)2+ Ez—élwrz
—rg) andr—(r—rg) are legitimate and unique solutions to 0
the Maxwell equations even fa#rg. Undoubtedly, this B3 (= B w32
observation implies that in Bl theory, when both electric and = 4_f dy[Vy*+1-y?]= A 3.2
. . T Jo a SF(Z)
magnetic charges are present, they can stick together to form
a pointlike dyon and the static electric and magnetic fields it Be
produces are given by the expressions given above ﬁ/gith =1.236O497&/4—, (18

= FE. Thus this can be thought of as one clear evidence in

favor of the dyon interpretation and the other can be derived . . . .
in terms of er¥ergetic$§rgument in terms of energys fol- wherey®=(4mp/e?)r? and in they integral, integration by

lows. Consider the energy-momentum tensor of this gPart and the elliptic integral have begn used. Coming back to
theory the argument based on the energetics, lastly we compute the

energy density due to the electric and magnetic fields gener-
ated by both the electric charge and the magnetic charge.
Substituting the expressions given in Efj3) into Eg. (15),

(14 one gets

) 1 . 1 B =,
T/,LV:B (1_R)77MV+§ F,u,aFv_4_182(FaﬁF )F,u,aFv
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9> 1

Y G
ar
Tho B= 8 “1 (19

1 1 9> 1
. ol o]
(47B)° {r*+ (e?+g?)/(47B)%} (4mB)°r

Now note the following two points: concerning the dyon the static monopole fields in nontrivial Bl theofye., for
interpretation, we would like to draw some hints by compar-“finite” g) are effectively indistinguishable from those in
ing T5; 8 with TS+ T5,. Firstly, TS, ® turns out not to be the standard Maxwell theory in the far-¢) zone and the
symmetric undee— g whereasT5,+ TS5, was as we noticed possibly significant deviations occur only in the near (
earlier. Secondly, the sum of energy density of magnetic—0) zone.

monopole field aloneTg, and energy density of electric ~ Before we close the study of monopoles and dyons in
monopole field alond@, is notequal to the energy density of APelian Bl gauge theory, we would like to make one more

electric and magnetic fields when both the electric and magP0int which seems worthy of note. In the standard Maxwell
B Again theory, the motion of an electrically charged particle in a

netic monopoles are present, i.@gy+ Too#* Too . : o :

these observations are in apparent contrast to what happe?‘?sd'al magnetic monopole field is of some interest. Thus \{Ye

in standard Maxwell theory where now cor_15|der the motion of an electrically c_har_ged test

particle in the external “background” magnetic field gener-

e’+g? (1 - ated by a static magnetic monopole acting as just a source.

W( ) =Too (Thus this situation should be distinguished from the system
of static electric charge and magnetic chargg we consid-

and hence the possibility of theeg bound state or dyon is ered above when bothandg are fixed at each position and

completely excluded even if they are forced to be broughthus treated as sources for static monopole figlls. be a

together_ Here, when Considering the total energy Ofet.lgﬁ little more SpeCiﬁC, it is well known that in this System the

System, one m|ght wonder Why tl‘mg interaction potentia' conserved quantity is not Jl;lst the orbital angular momentum

energy is not taken into account. Recall, however, that wef the charged test particle, but the “total” angular mo-

are considering only the “static” case when bahndgare  mentum given by

held fixed at each position and hence exert no force to each

other. To see this, note that the Lorentz force law is gener-

alized in the presence of both electric and magnetic charges A

to (the validity of this Lorentz force law even in the context

of BI electrodynamics will be discussed carefully latep on wherejem=fd3x[>2><(li>< g)]: —(eg/47r)f is the angular

momentum of the charged point particle’s electric field obey-

1 . R
Too™ TSOZE(EZ"‘ B?)= :

<y
Il

|
|

-~)

(21)

2
m d X: —(eFr+ g]fl“’)% ing V-E=es%x—r) (with r being the trajectory of the elec-
dr 7 tric charge and the static monopole’s magnetic fieRl
or in components, to =(gl4mr?)x. In a quantized version of the theory, then, one
R o o expects components dfto satisfy the usual angular momen-
F=e(E+vXB)+g(B—vXE) (200  tum commutation relations implying that the eigenvalues of

) ) ) J; are half integers. Since the orbital angular momenkuis
from which one can realize that, unlike the homogeneou%xpected to have integral eigenvalues, one then egér
systems of electric charges alone or magnetic charges alone, /> \ith n being integers. Thus Eq21), in turn, implies
the interaction forcgland hence the potential enejgye- the Dirac quantization condition ’ ’
tweene andg arises only when one of the two is in motion
relative to the other. Therefore in the static case, there is no eg=2mn. (22)
interaction force and potential energy between s@afndg
and thus the total energy density of teg system is given  Then one might wonder what would happen to the same test
simply by Tg, . Therefore this consideration of energetics electric charge-source monopole system particularly con-
of the e-g system also appears to provide another concreteerning the Dirac quantization rule in the context of Abelian
evidence in favor of the existence of arg bound state, i.e., BI theory. The answer is, interestingly, that no essential
a dyon in Bl theory of electromagnetism although the defi-changes occur. To see this, we first attempt to derive the
nite statement can be made if one could somehow showxpression for the conserved total angular momentum of this
Too B<T5o+ TS, which, at least to us, does not look so easysystem. To do so, however, one needs to know the BI theory
to demonstrate in a straightforward manner. Lastly, one carmersion of Lorentz force law. As we mentioned earlier, in-
realize that despite all these unique and interesting featuredeed the Lorentz force law is determined in a gauge theory-
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independent manner. This can be readily checked as followsheory. And this result implies that the usual Dirac quantiza-
We begin with the four-vector current of a charged particletion condition still holds true in Abelian Bl theory as well. In
localized on its spacetime trajectoxy(7) with = being the addition, we also realized in this work that in this Bl theory,
particle’s proper time pointlike dyons as well as magnetic monopoles can exist.
And it is not hard to see that even in the combined system of

e Oy i“é\? - = an electrically charged test particle and a static source dyon,
JAty)=e dt [y=x( T)]|t=X°(T) the conserved total angular momentum is the same as in the
test particle-monopole system and hence the Dirac quantiza-

:eJ dei” Sy —x(7)] tion condition also remains the same. Next, it seems worthy

dr of note that the interpretation of this total angular momentum

. . . . ) as the sum of orbital angular momentinof the test electric
which fulfills the continuity equatio,j“=0. Now to see

how the Lorentz force law would look in the context of Bl cha[ge e and the f'e!d angular momentumemf —(ey
electrodynamics, we consider the combined system of 47)F due to the electric chargeand the magnetic charge

charged test particle and a given background gauge field if/SC Stays the same as in the Maxwell theory case. Namely,
Abelian Bl theory described by the action the angular momentum is passed back and forth between the

electric charge and the field as it is expected to be. This

statement sounds natural and hence can be taken for granted.
SZJ d4X[LBI+jMA,u,]_mf ds But to demonstrate that this is indeed the case even in the

context of Bl theory is not so trivial and hence seems worth

doing. Thus in the following, we briefly sketch the demon-
:j d4XLB'+ef dXMAM[X(T)]_mJ ds stration. And to do so, we need some preparation. In the
dynamical Bl field equations given earlier, we define, for the
zf d4XLBI+f dt[—m\/l——v?—eAOwLeA‘vi], (23) sake of convenience of the formulation, the “electric dis-
' placement’D and the “magnetic field"H in terms of the

whereLg, is the Abelian Bl theory action given earlier and fundamental fields andB as
we usedds=d7-=dt\/1—vi2. Apparently, any charged par- 1
ticle acts as an additional source thus modifying the sur- p==
rounding field. If, however, we neglect this “back reaction” R
effect as a first approximation and assudé as just an

external background field, we may leave out the gauge fiel§/nere
action as the external field serves as just a “hard” back-

grour)d. Thus in this usual apprqximation in which the ba_lck R= \/1_ —12(I§2—I§2)— %(E. é)z

reaction of the charged test particle to the surrounding field B

is neglected, the motion of the charged particle becomes in-

dependent of the detailed dynamical nature of the gaugis as defined earlier. Then the Bl equations take the form
theory itself. Therefore the motion of a charged particle un-

£+ (e §>§] F 1[* 1 e é)é]
Lessl actle L ese
3 RIB B

der the influence of a given external gauge field would be R . oD .
governed by the action V-D=pe, VXH=—=]e, (24)
szfdt —myl—vi+e(Av;—A°) . . B .
[ ' ' ] V-B=pm, VXE+—=—]n.

and by extremizing it with respect 13, one gets the follow-

ing Euler-Lagrange’s equation of motioP/dt=e(E+v  Now E-(Amperés law equation-H-(Faradays induc-
X B) whereP'=mu'/\1—v?. Since this is the usual Lorentz {iOn law equationyields

force law, we can realize _that indeed it holds irrespective of B i®B

the context of the dynamical gauge theory as stated above. = 2, 2 3 ¥ 2

Thus even in this X\belian B% gguge thgory, the rate of H-(VXE)=E-(VXH)=—H. 25 —E- 2
change of the orbital angular momentum of the system con- e L

sisting of the electrically charged test particle and the source —JeE=jmH.

magnetic monopole is )
Further using

dI:_*XdI5_ g . o o d/eg. ) L R L.
a—r E—ml’ (r r)—& EI’ H-(VXE)—E-(VXH)=V-(EXH),
again suggesting that the conserved total angular momentum . B . D d

E 00+

is given byJ=L — (eg/4m)r just as in the standard Maxwell ot et
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whereT, is the energy density stored in the electromagnetidhese dyon solutions are also static solutions in Abelian Bl
field in Bl theory given in Eq(15), one arrives at the famil- gauge theory, they all arise in theories resulting from the

iar local energy conservation equation dimensional reduction of some higher-dimensioritn-
dimensional, to be more specifisupersymmetric pure Abe-
. du R, : . : )
V.St —=—j, E—j,H (25) lian Bl theory. Being theories which emerge as a result of
at ¢ " dimensional reduction, they inevitably involve one or more

L. scalar fields degrees of freedom representing the compacti-
whereu=Tyg is the energy densityfs=EXH is the “Poyn-  fied extra dimensions in addition to the four-dimensional
ting vector” representing the local energy flow per unit time Abelian Bl gauge field. And it is precisely these additional
per unit area ane- j - E—j o- H on the right-hand side is the scalar fields which play the role of Higgs-type field in the
power dissipation per unit volume. In particular fpg-E  familiar \,(ar)g-Mllls_-nggs theory[10] and thus lead to
—0=].-H. one gets Bogomol nyi-type first-order equationgl1] of. which the

Jm F, solitonic solutions are generally dyon solutions. Thus the

. du dyon solutions in these brane-inspired theories are really
V-S+ Tt =0 Julia-Zee-type dyon solutiond2] in nature and the Abelian

Bl gauge field involved behaves as the Abelian projection of

which is precisely the equation of continuity for electromag-the non-Abelian Yang-Mills field after the spontaneous sym-
netic energy density. Now having derived the BI theory ver-metry breaking. And the dyon solutions there rely, for their
sion of the Poynting vector a8=ExH=Ex (B/R), the existence, entirely on the nonvanishing scalar fields having
angular momentum of the electromagnetic field is ,obtaineéome particular solution behavior. In addition, in the electric

by integrating the moment of the Poynting vector over aIIggi;geafgg;?eersmﬁgsqggg cphaergea:gergnaergtr;%t ftly(\;?n”;dgﬁ]erré
space which yields P - » they g g
}: f d3x

-

parameter of the theory. In addition, it seems worth mention-
Jem= f d3x B

- - ing that even some early work3,4] (but in modern perspec-

EXB tive) on four-dimensional nonlinear electrodynamics, such as
that of Bl, never considered the physics in the presence of
B Brc 2 G 3 - magnetic monopoles and discussed only the exotic behavior

_f d*x[xx (D xB)]= _f d°x(V-D) of static electric monopole field. In contrast, our philosophy
in the present work was the parallel comparison of monopole
€g. physics between standard Maxwell electrodynamics and the

:_Er’ (26) original version of Abelian Bl electrodynamics having no
connection whatsoever to the brane physics. Thus the rel-

where we use®=(g/4mr2)x andV-D=es3(x—r) repre- €vant degree of freedom of the theory is just the Abelian

senting the configuration in which the static source magneti@auge field alone and then we discovered static solutions
monopole is sitting at the origin while the test electric POSSessing all the evidences in favor of the dyon interpreta-

charge, at some point of time, is@tThus this completes the tion. Moreov_er, this pomtll_ke dyon_ solution carries electric
demonstration and magnetic charges which are independent of each other

up to Dirac quantization condition. To conclude, therefore,
pointlike dyon solution in the original version of the four-
IV. CONCLUDING REMARKS dimensional Bl electrodynamics found in the present work
To summarize, it is interesting to note that in the contextShould be distinguished from the ones with the same name

of B electrodynamics, despite the inherent lack of dual sym_appearing in the recent literature. As we stressed in the text,

metry in Bl equations, when we assume the existence dhis occurrence of_ pointlike dyor_l solutlon_ in Bl electrody-

magnetic monopoles, interesting new physics emerge such hamics can be attrlbu_ted to the hlgh[y nonlmeaf nature of _the
the exotic behavior of static electric monopole field and theN€Cry, or more precisely, to the unique and direct coupling
existence of pointlike dyons while the cherished principles?&tween electric and magnetic fields appearing particularly

such as the Dirac quantization condition still hold true with-in four-dimensions even in the static case. Lastly, in the
out experiencing any modification. present work we witnessed that even the simple study of

Concemning the nature of the present work, a word ofmonopole physics exposed some of the unique and exciting

caution may be helpful to answer possible criticism. That ishidden features of the Abelian Bl gauge theory and this

one might wonder what exactly distinguishes the present€®MS to suggest that the Bl gauge theories, Abelian or non-
work from the pile of works on similar subjects in the recent”\P€lian, really deserve serious and full exploration in mod-

literature [3-9]. As we mentioned at the beginning of the €M field theory perspective.
introduction, the revival of interest in the Bl gauge theory

X X Exl X X !
X R R

9
4

was triggered by the recently fashionable D-brane physics ACKNOWLEDGMENTS
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