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Genuine dyons in Born-Infeld electrodynamics
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A study of magnetic monopoles in the original version of Born-Infeld~BI! electrodynamics is performed. It
then is realized that interesting new physics emerges and it includes exotic behavior of the radial electric
monopole field such as its regularity asr→0 and its changing behavior with the absence or presence of the
radial magnetic monopole field. This last point has been interpreted as the manifestation of the existence of
pointlike dyons in Abelian BI theory. Two pieces of clear evidence in favor of this dyon interpretation are
provided. It is also demonstrated that despite these unique features having no analogue in standard Maxwell
theory, the cherished Dirac quantization condition remains unchanged. Lastly, comments are given concerning
that dyons found here in the original version of BI electrodynamics should be distinguished from the ones with
the same name, or BIons, being studied in the recent literature on D-brane physics.

PACS number~s!: 11.10.Lm, 03.50.2z, 11.15.2q
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I. INTRODUCTION

Recently, the Born-Infeld~BI! theory has received muc
attention since the BI-type Lagrangians naturally appea
string theories. Namely, it has been realized that they
describe the low-energy dynamics of D-branes@2#. And this
state of affairs triggered the revival of interest in the origin
BI electromagnetism@1# and further the exploration of B
gauge theories@2# in general. Indeed, in spite of its lon
history this theory has remained almost unnoticed and he
nearly uncovered. This theory may be thought of as a hig
nonlinear generalization of or a nontrivial alternative to t
standard Maxwell theory of electromagnetism. It is know
that Born and Infeld had been led, when they first co
structed this theory, by considerations such as the finiten
of the energy in electrodynamics, natural recovery of
usual Maxwell theory as a linear approximation, and
hope to find solitonlike solutions representing pointli
charged particles. In this respect, it seems that this the
aside from its connection to the recently fashionable br
physics@2#, deserves serious and full exploration in a mo
ern field theory perspective. It is precisely this line
thought that initiated the present study. Namely, in this w
we would like to perform the study of magnetic monopo
in the original version of pure Abelian BI gauge theory@1#.
To be a little more concrete, we shall introduce the magn
charge current density in BI equations just as Dirac did
Maxwell equations and see if this introduction can prov
the BI equations with dual symmetry. Although this turns o
not to be the case, we find that the Abelian BI gauge the
exhibits unique features which have no analogues in the s
dard Maxwell theory. That is, because of the lack of d
symmetry, the static electric monopole field and the sta
magnetic monopole field have differentr dependences. To b
more specific, the static electric monopole field shows ex
behaviors such as the regularity asr→0 signaling the finite-
ness of the energy stored in the field of electric point char
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When both electric and magnetic monopoles are present~and
are located, say, at the same point!, surprises continue and
particularly the behavior of electric monopole field in th
presence of the magnetic monopole becomes different f
that in the absence of the magnetic monopole. Obviou
this can be attributed to the highly nonlinear nature of the
theory action which then results in the direct and uniq
coupling between the electric and magnetic fields in a hig
nontrivial manner even in the static case and hence is a re
unique feature having no analogue in the usual Maxw
theory. We then interpret this exotic behavior of monopo
fields in the presence of both electric and magnetic char
arising from the unique coupling between electric and m
netic fields as the manifestation of the existence of ‘‘dyon
even in Abelian BI gauge theory. Indeed two pieces of cl
evidences in favor of the dyon interpretation will be provid
and one of which employs the argument based on the tr
lations of monopole fields and the other invokes the ener
ics argument. Finally, we shall point out that despite
these unique features of monopoles and dyons in BI elec
dynamics, something seems to never change and that is
cherished Dirac quantization condition and the meaning
underlies it. One might wonder how the dyon solutio
found in this work should be understood in relation to t
soliton solutions dubbed ‘‘BIons’’ or just dyons studied
the recent literature on brane physics@3–9#. Thus later on in
the concluding remarks section, we shall comment on
point in detail.

II. MONOPOLE FIELDS IN MAXWELL GAUGE THEORY

As stated, our main objective in this work is the paral
study of physics of magnetic monopoles in Abelian BI ele
trodynamics and in the standard Maxwell electrodynam
Thus to this end, we begin with the brief review of Dirac
proposal for the introduction of magnetic monopoles in Ma
well theory. Consider the action for the Maxwell gaug
theory in flat spacetime~and in mks unit!
©2000 The American Physical Society14-1
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S5E d4xF2
1

4
FmnFmn1 j mAmG , ~1!

where Fmn5]mAn2]nAm is the field strength andj m

5(re , j e
i ) is the electric source current for the Abelian fie

Am . Extremizing this action with respect to the gauge fie
Am , then, yields the field equation forAm as

]mFmn52 j n. ~2!

In addition to this, there is a supplementary equation com
from an identity satisfied by the Abelian gauge field stren
tensor]lFmn1]mFnl1]nFlm50. This is the Bianchi iden-
tity which is just a geometrical equation and in terms of t
Hodge dual field strength,F̃mn5 1

2 emnabFab , it can be writ-
ten as

]mF̃mn50. ~3!

It seems noteworthy that the field equation forAm in Eq. ~2!
is the dynamical field equation which gets determined by
concrete nature of the gauge theory action such as the o
Eq. ~1!. The Bianchi identity in Eq.~3!, on the other hand, is
simply a geometrical identity and is completely independ
of the choice of the context of the gauge theory. This se
four equations, known as the Maxwell equations for class
electrodynamics, however, may be viewed as being so
what incomplete in that the right hand side~RHS! of the
Bianchi identity is vacant. Thus Dirac proposes to make
look complete by adding the ‘‘magnetic current densit
term km5(rm , j m

i ) on the RHS. Further, if one decompos
these covariant equations using]m5(2]/]t,¹ i), ]m
5hmn]n5(]/]t,¹ i) @namely, we use the sign conventio
hmn5diag(21,1,1,1)#, Am5(f,Ai) and the field identifica-
tion, Ei5Fi0 , Bi5

1
2 e i jkF jk or Fi j 5e i jkBk, the dynamical

field equation decomposes into

¹•EW 5re , ¹3BW 2
]EW

]t
5 jWe ~4!

while the geometrical Bianchi identity decomposes as

¹•BW 5rm , ¹3EW 1
]BW

]t
52 jWm . ~5!

These Maxwell equations are then invariant under the ‘‘
ality transformation’’ ~here in this work, we restrict our
selves to the discrete duality transformation,not the continu-
ous duality rotations@4#!

Fmn→F̃mn~EW →BW !, j m→km ~6!

and

F̃mn→2Fmn~BW →2EW !, km→2 j m.
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Note, however, that this dual invariance is just a symmetry
the classical field equation and the Bianchi identity butnot in
the Maxwell theory actionL52 1

4 FmnFmn as F̃mnF̃mn

52FmnFmn. Lastly, before we end our review of magnet
monopoles in Maxwell gauge theory, we recall, for later u
that the expressions for the static electric and magnetic fi
generated by electric and magnetic monopoles sitting at
origin and hence the solutions to¹•EW 5ed3(rW) and ¹•BW

5gd3(rW) are given, respectively, byEW 5(e/4pr 2) r̂ and BW

5(g/4pr 2) r̂ for rÞ0. They have the same structure, i.e., t
identical r dependences as can be expected from the d
symmetry of the Maxwell equations. This point, which is
familiar and hence looks trivial, will be contrasted to wh
happens in the study of static monopole fields in Abelian
gauge theory to which we now turn.

III. MONOPOLE AND DYON FIELDS
IN ABELIAN BI GAUGE THEORY

As usual, we begin with the action for this Abelian B
theory which is given, in four dimensions, by@2#

S5E d4xH b2F12A2detS hmn1
1

b
FmnD G1 j mAmJ ~7!

5E d4xH b2F12A11
1

2b2 FmnFmn2
1

16b4 ~FmnF̃mn!2G
1 j mAmJ ,

where ‘‘b ’’ is a generic parameter of the theory having th
dimension dim@b#5dim@Fmn#512. It probes the degree o
deviation of BI gauge theory from the standard Maxw
theory and obviouslyb→` limit corresponds to the standar
Maxwell theory. Again, extremzing this action with respe
to Am yields the dynamical BI field equation

]mF Fmn2
1

4b2 ~FabF̃ab!F̃mn

A11
1

2b2 FabFab2
1

16b4 ~FabF̃ab!2
G52 j n.

~8!

The geometrical Bianchi identity, which is a supplementa
equation to this field equation is, as mentioned earlier, in
pendent of the nature of the gauge theory action. Thus i

]mF̃mn50. ~9!

As before, we now split up these covariant equations a
write them in terms ofEW andBW fields to get
4-2
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¹•F 1

R S EW 1
1

b2 ~EW •BW !BW D G5re , ~10!

¹3F 1

R S BW 2
1

b2 ~EW •BW !EW D G2
]

]tF 1

R S EW 1
1

b2 ~EW •BW !BW D G5 jWe ,

where

R[A11
1

2b2 FabFab2
1

16b4 ~FabF̃ab!2

5A12
1

b2~EW 22BW 2!2
1

b4 ~EW •BW !2

for the dynamical BI field equation and

¹•BW 50, ¹3EW 1
]BW

]t
50 ~11!

for the geometrical Bianchi identity and where we us
FmnFmn522(EW 22BW 2) and FmnF̃mn54EW •BW . We now con-
sider the case when both the electric current densityj m

5(re , jWe) and the magnetic current densitykm5(rm , jWm) are
present. Then as before, the Bianchi identity gets modifie

¹•BW 5rm , ¹3EW 1
]BW

]t
52 jWm ~12!

or, in covariant form, to]mF̃mn52kn. One can then readily
realize that, unlike the Maxwell equations, these four
equations evidently do not possess the duality invaria
mentioned earlier. Namely, the two dynamical BI field equ
tions and the remaining two geometrical Bianchi identity a
not dual to each other any more and it can be attributed to
fact that when passing from the standard Maxwell to t
highly nonlinear BI theory, only the dynamical field equ
tions experience nontrivial change~‘‘nonlinearization’’! and
the geometrical Bianchi identity remains unchanged as
independent of the nature of gauge theory itself. This inh
ent lack of dual invariance in BI equations then may imp
that we need not introduce the pointlike magnetic monop
and current in the first place. But for the sake of para
study of the interesting monopole physics in Maxwell theo
here we shall assume the existence of pointlike magn
monopole and explore the physics of it such as the struc
of static monopole fields and the possible existence of
dyon solution. First, we consider the static magnetic mo
pole field and electric monopole field in this Abelian B
gauge theory. The static magnetic monopole field can
obtained by solving one of the Bianchi identity equatio
¹•BW 5gd3(rW). For rWÞ0, and in spherical-polar coordinate
this equation is given by@] r(r

2 sinuBr)1]u(r sinuBu)
1]f(rBf)#/r2 sinu50 and is solved byBr(r )5g/4pr 2, Bu
5Bf50. Note that this solution form holds irrespective
the existence of the electric monopole. Next, the static e
tric monopole field can be obtained from one of the dyna
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cal field equations¹•@$EW 1(EW •BW )BW /b2%/R#5ed3(rW) with
R[$12(EW 22BW 2)/b22(EW •BW )2/b4%1/2. Again for rWÞ0, and
in spherical-polar coordinates, this equation becom

@] r(r
2 sinuÊr)1]u(r sinuÊu)1]f(rÊf)#/r2 sinu50 with Êi

[@Ei1(EW •BW )Bi /b2#/R. First, in the absence of the mag

netic monopole,Êi5Ei /A12EW 2/b2 and then the above
equation is solved byEr(r )5e/4pAr 41(e/4pb)2, Eu
5Ef50. Next, in the presence of the magnetic monopo
one has to put the magnetic monopole fieldBW 5(g/4pr 2) r̂ in
Êi and R and then solve the equation. Then th
equation admits the solution Er(r )5e/

4pAr 41(e21g2)/(4pb)2, Eu5Ef50. The static mag-
netic monopole field in the Abelian BI theory, therefor
turns out to be identical to that in the standard Maxw
theory. Concerning the static electric monopole field in t
Abelian BI theory, however, there are two peculiar featu
worthy of note. For one thing, unlike in the Maxwell theor
the electric monopole field and the magnetic monopole fi
exhibit differentr dependences which can be attributed to
fact that in this BI theory, the dynamical field equation a
the Bianchi identity are not dual to each other. Besides, si
the static electric monopole field is not singular asr→0, the
energy stored in the field of electric point charge could
finite and this point seems to be consistent with the con
eration of finiteness of energy, which is one of the motiv
tions to propose this BI electrodynamics when it was fi
devised. For the other, it is very interesting to note that
static electric monopole field gets modified when the m
netic monopole~field! is present although ther dependence
itself remains essentially the same as we observed ab
This is indeed a very peculiar feature which is unique a
has no analogue in the standard Maxwell theory. When
magnetic monopole~field! is present, the strength of th
static electric monopole field appears to experience some
tenuation which is particularly noticeable in the ‘‘small-r ’’
region, when compared to the case without the magn
monopole field. It is also tempting to interpret this uniq
coupling between the electric and magnetic field even in
static monopole case~which evidently originates from the
highly nonlinear nature of BI theory action in four dimen
sions! as the manifestation of the existence of ‘‘dyon’’ eve
in ‘‘Abelian’’ BI gauge theory. Thus we elaborate on th
particularly interesting point. First notice that the evaluati
of the det(hmn1Fmn /b) in the general form of the BI action
particularly in four dimensions produces the ter
(FmnF̃mn)2/16b45(EW •BW )2/b4, i.e.,

A2detS hmn1
1

b
FmnD

5A11
1

2b2 FmnFmn2
1

16b4 ~FmnF̃mn!2.

It is precisely this term which induces a unique and dir
coupling between the electric and magnetic field even in
static monopole case and hence generates the dyon solu
4-3
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HONGSU KIM PHYSICAL REVIEW D 61 085014
Then next, we seem to be left with the question: what are
evidences that would support the dyon interpretation
monopole solutions?

BW 5
g

4pr 2r̂ , EW 5
e

4pAr 41
e21g2

~4pb!2

r̂ . ~13!

Even in a loose sense, two pieces of evidences can be
gested. We begin with the first one. Consider that in
standard Maxwell theory, the monopole solutionsBW

5$g/4purW2rWBu3%(rW2rWB) and EW 5$e/4purW2rWEu3%(rW2rWE),
corresponding to the configuration in which the magne
chargeg is fixed atrW5rWB and the electric charge is fixed a
rW5rWE separately, are simultaneous solutions to the Maxw
equations. And the particular solutionsBW 5$g/4pr 2% r̂ and
EW 5$e/4pr 2% r̂ just represent the case when the two mon
polesg ande happen to be sitting on the same location, t
origin. In the BI theory of electromagnetism, however, t
particular solutions given in Eq.~13! above do not simply
represent the case when the two monopole,g ande are sit-
ting separately at the origin. Instead, these particular st
monopole solutions represent a single, pointlike entity ca
ing both electric and magnetic charges, i.e., the ‘‘pointl
dyon.’’ To see if this is indeed the case, noti
that BW 5$g/4purW2rWBu2%( r̂ 2 r̂ B) and EW 5$e/

4pAurW2rWEu41@e21g2/(4pb)2#%( r̂ 2 r̂ E) @where (r̂ 2 r̂ B)
[(rW2rWB)/urW2rWBu# fail to be simultaneous solutions to th
BI equations ¹•BW 5gd3(rW2rWB) and ¹•@$EW 1(EW

•BW )BW /b2%/R#5ed3(rW2rWE) ~where again R[$12(EW 2

2BW 2)/b22(EW •BW )2/b4%1/2) for rWBÞrWE . They, however, can
be simultaneous solutions only forrWB5rWE , namely only
when g and e stick to each other. It is straightforward t
check that the static monopole solutions to BI equations
rWBÞrWE , when actually worked out, turn out to take differe
structures from those given above by simply replacingrW

→(rW2rWB) and rW→(rW2rWE). This is certainly in sharp con
trast to what happens in standard Maxwell electromagne
where BW 5$g/4purW2rWBu2%( r̂ 2 r̂ B) and EW 5$e/4purW2rWEu2%
3( r̂ 2 r̂ E), which are obtained simply by replacingrW→(rW

2rWB) andrW→(rW2rWE) are legitimate and unique solutions
the Maxwell equations even forrWBÞrWE . Undoubtedly, this
observation implies that in BI theory, when both electric a
magnetic charges are present, they can stick together to
a pointlike dyon and the static electric and magnetic field
produces are given by the expressions given above withrWB

5rWE . Thus this can be thought of as one clear evidence
favor of the dyon interpretation and the other can be deri
in terms of energetics~argument in terms of energy! as fol-
lows. Consider the energy-momentum tensor of this
theory

Tmn5b2~12R!hmn1
1

R FFmaFn
a2

1

4b2 ~FabFab!FmaF̃n
aG
~14!
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with R as given earlier. The energy density stored in t
electromagnetic field can then be read off as

T005b2F 11
1

b2BW 2

A12
1

b2~EW 22BW 2!2
1

b4 ~EW •BW !2

21G ~15!

which does reduce to its Maxwell theory’s counterpart (EW 2

1BW 2)/2 in the limit b→` as it should. We now compute th
energy density solely due to the magnetic field generated
the magnetic chargeg. UsingBW 5(g/4pr 2) r̂ ,

T00
B 5b2FA11

1

b2BW 221G5b2FA11
g2

~4pb!2

1

r 421G .
~16!

Next, we calculate the energy density stored in the elec
field generated by the electric chargee. Then usingEW

5$e/4pAr 41(e/4pb)2% r̂ , one gets

T00
E 5b2F 1

A12
1

b2EW 2

21G5b2FA11
e2

~4pb!2

1

r 421G .

~17!

There now seem to be two points worthy of note. One is
fact thatT00

B andT00
E are basically the same except thatg and

e are interchanged although the magnetic monopole fielBW

and the electric monopole fieldEW possess differentr depen-
dences. The other is, as Born and Infeld hoped when t
constructed this new theory, the energy stored in a st
monopole field is indeed finite. For instance, the elec
monopole energy can be evaluated in a concrete manne
@4#

E5E d3xT00
E 5E

0

`

drb2FA~4pr 2!21
e2

b224pr 2G
5Abe3

4p E
0

`

dy@Ay4112y2#5Abe3

4p

p3/2

3G~ 3
4 !2

51.23604978Abe3

4p
, ~18!

wherey25(4pb/e2)r 2 and in they integral, integration by
part and the elliptic integral have been used. Coming bac
the argument based on the energetics, lastly we compute
energy density due to the electric and magnetic fields ge
ated by both the electric charge and the magnetic cha
Substituting the expressions given in Eq.~13! into Eq. ~15!,
one gets
4-4
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T00
E1B5b2F 11

g2

~4pb!2

1

r 4

A12
1

~4pb!2

1

$r 41~e21g2!/~4pb!2%
Fe22g2H 11

g2

~4pb!2

1

r 4J G
21G . ~19!
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Now note the following two points: concerning the dyo
interpretation, we would like to draw some hints by comp
ing T00

E1B with T00
E 1T00

B . Firstly, T00
E1B turns out not to be

symmetric undere↔g whereasT00
E 1T00

B was as we noticed
earlier. Secondly, the sum of energy density of magn
monopole field aloneT00

B and energy density of electri
monopole field aloneT00

E is not equal to the energy density o
electric and magnetic fields when both the electric and m
netic monopoles are present, i.e.,T00

E 1T00
B ÞT00

E1B . Again
these observations are in apparent contrast to what hap
in standard Maxwell theory where

T00
E 1T00

B 5
1

2
~EW 21BW 2!5

e21g2

2~4p!2 S 1

r 4D5T00
E1B

and hence the possibility of thee-g bound state or dyon is
completely excluded even if they are forced to be brou
together. Here, when considering the total energy of thee-g
system, one might wonder why thee-g interaction potential
energy is not taken into account. Recall, however, that
are considering only the ‘‘static’’ case when bothe andg are
held fixed at each position and hence exert no force to e
other. To see this, note that the Lorentz force law is gen
alized in the presence of both electric and magnetic cha
to ~the validity of this Lorentz force law even in the conte
of BI electrodynamics will be discussed carefully later on!

m
d2xm

dt2
5~eFmn1gF̃mn!

dxn

dt

or in components, to

FW 5e~EW 1vW 3BW !1g~BW 2vW 3EW ! ~20!

from which one can realize that, unlike the homogene
systems of electric charges alone or magnetic charges a
the interaction force~and hence the potential energy! be-
tweene andg arises only when one of the two is in motio
relative to the other. Therefore in the static case, there is
interaction force and potential energy between statice andg
and thus the total energy density of thee-g system is given
simply by T00

E1B . Therefore this consideration of energeti
of the e-g system also appears to provide another conc
evidence in favor of the existence of ane-g bound state, i.e.
a dyon in BI theory of electromagnetism although the de
nite statement can be made if one could somehow s
T00

E1B,T00
E 1T00

B which, at least to us, does not look so ea
to demonstrate in a straightforward manner. Lastly, one
realize that despite all these unique and interesting featu
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the static monopole fields in nontrivial BI theory~i.e., for
‘‘finite’’ b) are effectively indistinguishable from those
the standard Maxwell theory in the far (r→`) zone and the
possibly significant deviations occur only in the nearr
→0) zone.

Before we close the study of monopoles and dyons
Abelian BI gauge theory, we would like to make one mo
point which seems worthy of note. In the standard Maxw
theory, the motion of an electrically charged particle in
radial magnetic monopole field is of some interest. Thus
now consider the motion of an electrically charged ‘‘tes
particle in the external ‘‘background’’ magnetic field gene
ated by a static magnetic monopole acting as just a sou
~Thus this situation should be distinguished from the syst
of static electric chargee and magnetic chargeg we consid-
ered above when bothe andg are fixed at each position an
thus treated as sources for static monopole fields.! To be a
little more specific, it is well known that in this system th
conserved quantity is not just the orbital angular moment
of the charged test particleLW , but the ‘‘total’’ angular mo-
mentum given by

JW5LW 2
eg

4p
r̂ , ~21!

where JWem5*d3x@xW3(EW 3BW )#52(eg/4p) r̂ is the angular
momentum of the charged point particle’s electric field obe
ing ¹•EW 5ed3(xW2rW) ~with rW being the trajectory of the elec
tric charge! and the static monopole’s magnetic fieldBW

5(g/4pr 2) x̂. In a quantized version of the theory, then, o
expects components ofJW to satisfy the usual angular momen
tum commutation relations implying that the eigenvalues
Ji are half integers. Since the orbital angular momentumLW is
expected to have integral eigenvalues, one then getseg/4p
5n/2 with n being integers. Thus Eq.~21!, in turn, implies
the Dirac quantization condition

eg52pn. ~22!

Then one might wonder what would happen to the same
electric charge-source monopole system particularly c
cerning the Dirac quantization rule in the context of Abeli
BI theory. The answer is, interestingly, that no essen
changes occur. To see this, we first attempt to derive
expression for the conserved total angular momentum of
system. To do so, however, one needs to know the BI the
version of Lorentz force law. As we mentioned earlier, i
deed the Lorentz force law is determined in a gauge theo
4-5
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HONGSU KIM PHYSICAL REVIEW D 61 085014
independent manner. This can be readily checked as follo
We begin with the four-vector current of a charged parti
localized on its spacetime trajectoryxm(t) with t being the
particle’s proper time

j m~ t,yW !5e
dxm

dt
d3@yW2xW~t!#u t5x0(t)

5eE dt
dxm

dt
d4@y2x~t!#

which fulfills the continuity equation]m j m50. Now to see
how the Lorentz force law would look in the context of B
electrodynamics, we consider the combined system o
charged test particle and a given background gauge fiel
Abelian BI theory described by the action

S5E d4x@LBI1 j mAm#2mE ds

5E d4xLBI1eE dxmAm@x~t!#2mE ds

5E d4xLBI1E dt@2mA12v i
22eA01eAiv i #, ~23!

whereLBI is the Abelian BI theory action given earlier an
we usedds5dt5dtA12v i

2. Apparently, any charged par
ticle acts as an additional source thus modifying the s
rounding field. If, however, we neglect this ‘‘back reaction
effect as a first approximation and assumeAm as just an
external background field, we may leave out the gauge fi
action as the external field serves as just a ‘‘hard’’ ba
ground. Thus in this usual approximation in which the ba
reaction of the charged test particle to the surrounding fi
is neglected, the motion of the charged particle becomes
dependent of the detailed dynamical nature of the ga
theory itself. Therefore the motion of a charged particle u
der the influence of a given external gauge field would
governed by the action

S5E dt@2mA12v i
21e~Aiv i2A0!#

and by extremizing it with respect toxi , one gets the follow-
ing Euler-Lagrange’s equation of motiondPW /dt5e(EW 1vW

3BW ) wherePi5mv i /A12v i
2. Since this is the usual Lorent

force law, we can realize that indeed it holds irrespective
the context of the dynamical gauge theory as stated ab
Thus even in this Abelian BI gauge theory, the rate
change of the orbital angular momentum of the system c
sisting of the electrically charged test particle and the sou
magnetic monopole is

dLW

dt
5rW3

dPW

dt
5

eg

4pr 3 rW3~rẆ3rW !5
d

dt S eg

4p
r̂ D

again suggesting that the conserved total angular momen
is given byJW5LW 2(eg/4p) r̂ just as in the standard Maxwe
08501
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theory. And this result implies that the usual Dirac quantiz
tion condition still holds true in Abelian BI theory as well. I
addition, we also realized in this work that in this BI theor
pointlike dyons as well as magnetic monopoles can ex
And it is not hard to see that even in the combined system
an electrically charged test particle and a static source dy
the conserved total angular momentum is the same as in
test particle-monopole system and hence the Dirac quan
tion condition also remains the same. Next, it seems wor
of note that the interpretation of this total angular moment
as the sum of orbital angular momentumLW of the test electric
charge e and the field angular momentumJWem52(eg/
4p) r̂ due to the electric chargee and the magnetic chargeg
also stays the same as in the Maxwell theory case. Nam
the angular momentum is passed back and forth between
electric charge and the field as it is expected to be. T
statement sounds natural and hence can be taken for gra
But to demonstrate that this is indeed the case even in
context of BI theory is not so trivial and hence seems wo
doing. Thus in the following, we briefly sketch the demo
stration. And to do so, we need some preparation. In
dynamical BI field equations given earlier, we define, for t
sake of convenience of the formulation, the ‘‘electric d
placement’’DW and the ‘‘magnetic field’’HW in terms of the
fundamental fieldsEW andBW as

DW 5
1

R H EW 1
1

b2 ~EW •BW !BW J , HW 5
1

R H BW 2
1

b2 ~EW •BW !EW J ,

where

R5A12
1

b2 ~EW 22BW 2!2
1

b4 ~EW •BW !2

is as defined earlier. Then the BI equations take the form

¹•DW 5re , ¹3HW 2
]DW

]t
5 jWe , ~24!

¹•BW 5rm , ¹3EW 1
]BW

]t
52 jWm .

Now EW •~Ampere8s law equation!2HW •~Faraday8s induc-
tion law equation! yields

HW •~¹3EW !2EW •~¹3HW !52HW •
]BW

] t
2EW •

]DW

] t

2 jWe•EW 2 jWm•HW .

Further using

HW •~¹3EW !2EW •~¹3HW !5¹•~EW 3HW !,

2HW •
]BW

] t
2EW •

]DW

] t
52

]

]t
T00,
4-6
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whereT00 is the energy density stored in the electromagne
field in BI theory given in Eq.~15!, one arrives at the famil-
iar local energy conservation equation

¹•SW 1
]u

]t
52 jWe•EW 2 jWm•HW , ~25!

whereu5T00 is the energy density,SW 5EW 3HW is the ‘‘Poyn-
ting vector’’ representing the local energy flow per unit tim
per unit area and2 jWe•EW 2 jWm•HW on the right-hand side is th
power dissipation per unit volume. In particular forjWe•EW

505 jWm•HW , one gets

¹•SW 1
]u

]t
50

which is precisely the equation of continuity for electroma
netic energy density. Now having derived the BI theory v
sion of the Poynting vector asSW 5EW 3HW 5EW 3(BW /R), the
angular momentum of the electromagnetic field is obtain
by integrating the moment of the Poynting vector over
space which yields

JWem5E d3xFxW3S EW 3
1

R
BW D G5E d3xFxW3S 1

R
EW 3BW D G

5E d3x@xW3~DW 3BW !#52E d3x~¹•DW !F g

4p
x̂G

52
eg

4p
r̂ , ~26!

where we usedBW 5(g/4pr 2) x̂ and ¹•DW 5ed3(xW2rW) repre-
senting the configuration in which the static source magn
monopole is sitting at the origin while the test elect
charge, at some point of time, is atrW. Thus this completes the
demonstration.

IV. CONCLUDING REMARKS

To summarize, it is interesting to note that in the cont
of BI electrodynamics, despite the inherent lack of dual sy
metry in BI equations, when we assume the existence
magnetic monopoles, interesting new physics emerge suc
the exotic behavior of static electric monopole field and
existence of pointlike dyons while the cherished princip
such as the Dirac quantization condition still hold true wi
out experiencing any modification.

Concerning the nature of the present work, a word
caution may be helpful to answer possible criticism. That
one might wonder what exactly distinguishes the pres
work from the pile of works on similar subjects in the rece
literature @3–9#. As we mentioned at the beginning of th
introduction, the revival of interest in the BI gauge theo
was triggered by the recently fashionable D-brane phy
@2#. Indeed in the recent literature, one finds a number
works discussing dyons in Abelian BI gauge theory@5–9#.
Some of them use the terminology, ‘‘BIons’’ for soliton so
lutions possessing the properties of these dyons. Altho
08501
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these dyon solutions are also static solutions in Abelian
gauge theory, they all arise in theories resulting from
dimensional reduction of some higher-dimensional~ten-
dimensional, to be more specific! supersymmetric pure Abe
lian BI theory. Being theories which emerge as a result
dimensional reduction, they inevitably involve one or mo
scalar fields degrees of freedom representing the comp
fied extra dimensions in addition to the four-dimension
Abelian BI gauge field. And it is precisely these addition
scalar fields which play the role of Higgs-type field in th
familiar Yang-Mills-Higgs theory @10# and thus lead to
Bogomol’nyi-type first-order equations@11# of which the
solitonic solutions are generally dyon solutions. Thus
dyon solutions in these brane-inspired theories are re
Julia-Zee-type dyon solutions@12# in nature and the Abelian
BI gauge field involved behaves as the Abelian projection
the non-Abelian Yang-Mills field after the spontaneous sy
metry breaking. And the dyon solutions there rely, for th
existence, entirely on the nonvanishing scalar fields hav
some particular solution behavior. In addition, in the elect
charge and the magnetic charge there are not two inde
dent parameters. Instead, they are generated from a s
parameter of the theory. In addition, it seems worth menti
ing that even some early works@3,4# ~but in modern perspec
tive! on four-dimensional nonlinear electrodynamics, such
that of BI, never considered the physics in the presence
magnetic monopoles and discussed only the exotic beha
of static electric monopole field. In contrast, our philosop
in the present work was the parallel comparison of monop
physics between standard Maxwell electrodynamics and
original version of Abelian BI electrodynamics having n
connection whatsoever to the brane physics. Thus the
evant degree of freedom of the theory is just the Abel
gauge field alone and then we discovered static soluti
possessing all the evidences in favor of the dyon interpr
tion. Moreover, this pointlike dyon solution carries electr
and magnetic charges which are independent of each o
up to Dirac quantization condition. To conclude, therefo
pointlike dyon solution in the original version of the fou
dimensional BI electrodynamics found in the present wo
should be distinguished from the ones with the same na
appearing in the recent literature. As we stressed in the t
this occurrence of pointlike dyon solution in BI electrod
namics can be attributed to the highly nonlinear nature of
theory, or more precisely, to the unique and direct coupl
between electric and magnetic fields appearing particul
in four-dimensions even in the static case. Lastly, in
present work we witnessed that even the simple study
monopole physics exposed some of the unique and exc
hidden features of the Abelian BI gauge theory and t
seems to suggest that the BI gauge theories, Abelian or n
Abelian, really deserve serious and full exploration in mo
ern field theory perspective.
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