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BF models, duality, and bosonization on higher genus surfaces

A. Restuccia* and J. Stephany†

Departamento de Fı´sica, Universidad Simo´n Bolı́var, Apartado Postal 89000, Caracas 1080-A, Venezuela
~Received 16 February 1999; published 23 March 2000!

The generating functional of two dimensionalBF field theories coupled to fermionic fields and conserved
currents is computed in the general case when the base manifold is a genusg compact Riemann surface. The
Lagrangian densityL5dB`A is written in terms of a globally defined 1-formA and a multivalued scalar field
B. Consistency conditions on the periods ofdB have to be imposed. It is shown that there is a nontrivial
dependence of the generating functional on the topological restrictions imposed toB. In particular if the periods
of theB field are constrained to take values 4pn, with n any integer, then the partition function is independent
of the chosen spin structure and may be written as a sum over all the spin structures associated with the
fermions even when one started with a fixed spin structure. These results are then applied to the functional
bosonization of fermionic fields on higher genus surfaces. A bosonized form of the partition function which
takes care of the chosen spin structure is obtained.

PACS number~s!: 11.10.Ef, 11.15.Me
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I. INTRODUCTION

In this paper we compute the generating functional ofBF
@1# topological systems coupled to fermions on a two dim
sional compact manifold of arbitrary genus. We then ap
the result to discuss the bosonization@3# of the fermionic
fields. Our computation which is closely related to the wo
presented in Refs.@4,5# has two different motivations. First
it has been observed@6# that the allowed world hypersurface
described by classical sources (p-branes! coupled to aBF
theory are subject to restrictions of a topological nature. O
is then led to ask the question of how this effect is transla
to the quantum theory. The second aspect which motiv
this work concerns the relation between topological mod
and duality transformations. For a large class of syste
duality transformations have been devised along the line
the T-duality transformation in the sigma models@7#. The
method consists essentially in a two step elimination of o
field in terms of its dual variable. First one introduces
auxiliary gauge field constrained at the beginning to ha
zero curvature. This allows us to decouple the original va
able from the currents and then one may perform the rem
ing integration in the quadratic approximation. At this po
the connection with theBF @1# theory appears, since to im
pose the zero curvature condition into the functional integ
one may introduce the partition function of aBF topological
model. When the duality transformation is applied to t
generating functional of free fermionic fields on genus z
manifolds@8#, it leads to the bosonized@3# representation of
the theory. In the operatorial approach bosonization in t
@3# and three dimensions@9,10# has been related to the con
struction of dual soliton operators@11# in bosonic theories
and this gives an additional meaning to the duality trans
mation discussed in the papers of Ref.@8#. At the intermedi-
ate step after introducing the gauge field one is dealing w
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a BF theory coupled to fermions which is the subject of th
paper. This point of view has been also extended to hig
dimensions@12,13#.

Over topologically trivial manifolds, the procedure d
scribed above allows in some cases to determine e
equivalences between fields theories. When the base m
fold has genusg one has to take care of the global definitio
of the geometrical objects appearing in the formulati
@14,15#. The global aspects introduced by the auxiliary fiel
in the path integral have been explicitly tested for example
the purely bosonic self-dual vectorial model in 32D. This
model is known to be locally equivalent to the topologica
massive model@16# and in fact can be viewed as a gau
fixed version of it@17#. Nevertheless it has been shown th
in topologically nontrivial manifolds this equivalence has
be reinterpreted@15,18,19# since the partition function of the
topologically massive model has an additional factor of
pological origin. When matter fields are included, the co
pling with the topological field theory may be related to se
interaction terms for the fermions@20#.

In the specific case of the fermionic models there
other reasons to explore the consequences of defining
system on higher genus surfaces. Even in genus zero
faces, when coupled to gauge fields with nontrivial topolo
cal properties, the fermions show dynamical effects. T
most notorious of these is the nonvanishing of fermion c
densates@21–23# due to the contributions of the instanton
associated in four dimensions to the resolution of the U~1!
problem@24#. The vanishing of such condensates in the
pological trivial case is enforced by gauge symmetry. T
nonvanishing result in the most general situation may
traced in the functional approach to an explicit contributi
of the zero modes of the fermionic fields@21#. In higher
genus surfaces one expects a more rich structure in the g
field sector, but also further complications are introduced
the duality transformation when gauge fields of nonvanish
topological index have to be considered. For this reason
this article we exclude this possibility.

This paper is organized as follows. In Sec. II we revie
©2000 The American Physical Society10-1
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A. RESTUCCIA AND J. STEPHANY PHYSICAL REVIEW D61 085010
some useful concepts and notation and discuss the r
@4,5# of the computation of the fermionic determinant in g
nusg manifolds. In Sec. III we compute the generating fun
tional of a particularBF topological theory coupled to fer
mions. This model which as we will see later appe
naturally in the bosonization of fermions in higher gen
surfaces is described in terms of a 1-formA globally defined
and a multivaluedB field. SincedB should remain univalued
one has to impose restrictions over the periods ofdB. When
these periods are chosen to be integral multiples of 4p the
partition function is shown to be a sum over all spin stru
tures even if one starts with a fixed spin structure. This is
interesting result which in particular implies that the partiti
function is independent of the spin structure originally ch
sen. In Sec. IV we discuss the bosonization@3# of fermionic
fields on higher genus Riemann surfaces. Here ag
bosonization may be understood as a duality transforma
@8# between the fermionic current and the Hodge dual of
field intensity tensor of a vector field. A careful treatment
the global aspects in the formulation leads naturally to
bosonized effective action in terms of a multivalued 0-for

II. THE FERMIONIC DETERMINANT ON HIGHER
GENUS COMPACT RIEMANN SURFACES

We considerBF models coupled to fermionic fields ove
higher genus Riemann surfaces. In order to compute its
tition function one needs the explicit formula for the ferm
onic determinant in the case of zero curvature gauge po
tials A on trivial U~1! line bundles. This determinant wa
computed in Refs.@4,5#. To express the result, let us intro
duce some notation concerning the properties of the m
fold and the fields. We takeai and bj to be a basis of ho-
mology of closed curves overS, a compact Riemann surfac
of genusg. The set of curvesai andbj will be denoted byC I .
If one deform continuously the fermionic field along th
curves of the basis, after returning to the original point
fermionic field may change sign or not. A spin structure ov
S is determined by taking one of these possibilities for ea
of the curves of the basis. The gauge potentialsA on a trivial
U~1! bundle are characterized by the vanishing of the Ch
class

E
S
F~A!5E

S
dA50. ~1!

The index of the corresponding Dirac operator is then z
and consequently there are no zero modes in the fermi
sector.

The potential may be decomposed into its exact, co-ex
and harmonic parts:

A5ds1* dp1Ah . ~2!

The harmonic part of the field is expressed in terms of a b
of real harmonic formsa i andb i , i , j 51, . . . ,g as follows:

Ah52p(
i

g

~uia i2v ib i !. ~3!
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The real harmonic basisa i and b j is constructed from two
normalized holomorphic basisv j and v̂ j , j 51, . . . ,g

E
ai

v j5d i j , E
ai

v̂ j5V̂ i j ,

E
bi

v j5V i j , E
bi

v̂ j5d i j , ~4!

whereV is the period matrix. In terms ofv j andv̂ j , a i and
b j are given by

b j5
1

2i
~vk2v̄k!@ Im V#k j

21 ,

a i5
1

2i
~v̂k2 v̂̄k!@ Im V̂#ki

21 . ~5!

The imaginary part of the period matrix ImV is always an
invertible matrix. Let us now consider a fermionic field d
fined over a genusg compact Riemann surface with a de
nite but arbitrary spin structure. The spin structure is fixed
specifying twog dimensional vectorse i andk j with compo-
nents 0 or1

2 so that the periodicities of the fermions abo
the cycles ai and bj are respectively exp(2piei) and
exp(22pikj). The partition function which defines the ferm
onic determinant is

Ẑf@A,e,k#5E DcDc̄expS E
S
d2xAgc̄~2 iD” 1A” !c D

5det@2 iD” 1A” #, ~6!

where we takeD” to be the covariant derivative for the fe
mions.

The fermionic determinant in this situation may be o
tained from the results in@4,5# and is given by

Ẑf@A,e,k#5expS 2
1

2pES
F~A!

1

D0
* F~A!

3Fdet ImV Vol~S!

det8D0
G 1/2D UuF u1e

v1kG~0uV!U2

.

~7!

Here D0 is the Laplacian operator acting on 0-forms a
Vol(S) is the area of the Riemann surface. The third fac
is a u function given by

uFu

vG~0uV!5 (
nPZ g

exp@ ip~n1u!V~n1u!1 i2p~n1u!v#.

~8!

We note that in Eq.~7! the first factor depends only on th
coexact component of the gauge field. This contribution c
responds to the result for genus zero surfaces@25# which is
usually written in the form
0-2
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BF MODELS, DUALITY, AND BOSONIZATION ON . . . PHYSICAL REVIEW D 61 085010
det~2 i ]”1A” !

det~2 i ]” !
5expF2

1

2pE d2xAgAmS dmn2
]m]n

h
DAnG .

~9!

The other two factors in Eq.~7! give the Dirac determinan
for a purely harmonic potentialAh of the form~3!. The result
~7! has been used to investigate the Schwinger mode
higher genus surfaces@26#.

Finally by summing over all spin structures, we may a
define

Ẑf@A#5(
e,k

Ẑf@A,e,k#, ~10!

which will play a role in what follows.

III. TWO DIMENSIONAL BF THEORIES COUPLED
TO FERMIONS

In this section we compute the generating functional fo
particular BF system coupled to fermions over a genusg
Riemann surface. The action functional of aBF theory is
written in terms of a connectionA and a fieldB which may
be interpreted as a Lagrange multiplier which enforces thA
field to have zero curvature@1#. In its usual form it is given
by

SBF5E
S
dA`B. ~11!

Here the 0-formB anddA are defined globally on the man
fold S. The connectionA may be allowed to have transition
over S. The computation of the partition function of th
system was discussed in@2#. The off-shell BRST charge wa
computed in@27#. We will consider a modification of this
system which appears naturally in the context of boson
tion. We consider the action

SBF
mod5E

S
dB`A, ~12!

which may be different from the action above, for trivi
bundles, only over higher genus surfaces. The one formA
anddB have to be globally defined butB may be multival-
ued. Due to the nontrivial topological structure of the ma
fold, one may distinguish three cases in the definition of
generating functional. One may consider the following co
ditions on the periods ofdB:

R
CI

dB50, ~13!

R
CI

dB52pmI , ~14!

R
CI

dB54pmI . ~15!
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The first case is the usualBF model. In the second and thir
cases we consider the summation on all the values ofmI in
the functional integral~16!. Each of the choices defines
different model.

The generating functional of these systems coupled
conserved currentsj andJ is given in all the cases by

Z@ j ,J,e,k#5(
mI

E DCDADBDcDc̄e2Seff, ~16!

Seff5E d2xAg@c̄~ iD” 2A” 2 j”!c1Lg#

1E
S
S i

2p
dB`A2 * J`AD ~17!

whereLg includes the gauge fixing term and the contrib
tions of the auxiliary fields~ghosts fields and Lagrange mu
tipliers! andDC stands for the integration measure in tho
fields. The sum inmI is included to stress the fact that we a
summing over theB field configurations which satisfy eithe
Eqs. ~13!, ~14!, or ~15!. The spin connection is fixed an
identified by theg dimensional vectorse i andk j .

The functional integration on the Lagrange multiplierB of
course provides the factord„F(A)… in the measure of the
generating functional but as we will see presently, the ad
tional summation over the periods gives rise to a fac
which constrain also the periods ofA. Let us see how this
works. Suppose for example that we compute the genera
functional ~16! summing over theB field configurations
which satisfies Eq.~15!. Given two different configurations
of B, sayB1 andB2, satisfying this condition we have

B22B15b, ~18!

whereb is univalued overS. In general we may then write

B5BmI1b, ~19!

with BmI a specific configuration satisfying Eq.~15! with a
set of valuesmI . The functional integration on the multival
uedB field has been expressed as an integration on the
valued functionb and a sum over all possible choicesmI .
Consider now theBF action in the sector defined by one o
such choices. We have

E
S
dB`A5E

S
d~BmIA!1E

S
~2BmI !`dA1E

S
~2b!`dA.

~20!

The generating functional becomes

Z@ j ,J,e,k#5(
mI

E DADbDCDcDc̄e2Seff ~21!
0-3
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A. RESTUCCIA AND J. STEPHANY PHYSICAL REVIEW D61 085010
Seff5E
S
d2xAg@c̄~ iD” 2 j”2A” !c1Lg#1

i

2pES
@d~BmIA!

2~BmI1b!`dA#2E
S

* J`A.

At this point, one recovers the factord(dA) in the mea-
sure of the generating functional by performing the fun
tional integral inb and in the ghost fields introduced to gua
antee the Becchi-Rouet-Stora-Tyutin~BRST! invariance of
the effective action. In particular this makes the second te
in Eq. ~20! to vanish and to disappear also from Eq.~21!.

To evaluate the remaining functional integral, conside
triangulation of S in terms of elementary domainsUi , i
P@1, . . . ,N#. Since S is compact the triangulation exist
and the covering is provided by a finite number of elem
tary domains. LetAi andBmI

i be the restrictions of the field
to the domainUi . Then, in the functional space projected
d(dA), we have

F E
S
dB`AG

udA50

5E
S
d~BmIA!5(

i 51

N E
Ui

d~BmI
i Ai !

5 (
UiùU jÞB

E
UiùU j

~BmI
i

2BmI
j

!A

5 (
UiùU jÞB

4pm( i j )E
UiùU j

A ~22!

wherem( i j ) are integers. Using again that the connection
flat we finally get

ei /2p*SdB`A5e i (I 2mI RCIA. ~23!
al
ro

g
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Here one recognizes the coefficients of the Fourier expan
of a delta function with periodp. Upon summing over allmI

the total contribution is

d„F~A!…(
I

dS R
C I

A2pnI D . ~24!

When theB field in Eq.~16! is taken to satisfy Eq.~13! only
the factord„F(A)… appears. We will not discuss this cas
furthermore. When theB field is taken to satisfy Eq.~14!, the
second delta function has period 2p and the factor turns ou
to be

d„F~A!…(
I

dS R
C I

A22pnI D . ~25!

Let us see now how the conditions~24! or ~25! enter in the
complete evaluation of Eq.~16!. Using the decomposition
~2! for the A field, the factord(dA) in the measure of Eq
~16! allows the integration of the coexact part ofA and we
are left with the task of determining which are the config
rations of Ah that contribute. It is now straightforward t
show that the delta functions in Eq.~24! @or respectively Eq.
~25!# constrain the values of the coefficients in the expans
~3! of Ah to be half-integers~or integers!. To continue we use
this fact and perform the functional integration in the ferm
ons. Definingu0 andv0 to be the coefficients in the expan
sion of the harmonic part ofj,

j h52p(
i

g

~ui
0a i2v i

0b i !, ~26!

we obtain
Z@ j ,J,e,k#5(
u,v

Fdet ImV Vol~S!

det8D0
G 1/2UuF u1u01e

v1v01kG~0uV!U2

expF E
S
S * J`Ah2

1

2p
d j

1

D0
* d j D G . ~27!
-
e
m

The sum in Eq.~27! is over the allowed values ofu and v
which as we already said are all the integers or all the h
integers depending which case we are considering. F
here on we have to distinguish between the two cases.

Let us take first the case when theB field satisfies Eq.
~14!. Then in Eq.~27! we have a sum over theg-tuples with
integral entries which we label bym and l. The factor with
the theta function in Eq.~27! takes the form

UuFu01m1e

v01 l 1k G~0uV!U2

. ~28!

It is straightforward to see from Eq.~8! that this becomes
independent ofl due to the square norm that we are takin
Moreover Eq.~28! also is independent ofm, since in Eq.~8!
f-
m

.

one may redefinen1m5n8 and one still will have summa
tion in all n8. We can then factorize the contribution of th
harmonic part of the field to the partition function in the for

Z2n@ j,J,e,k#5Ẑf@ j,e,k#(
m,l

expS E
S

* J`AhD ~29!

with Ẑf@ j ,e,k# given by Eq.~7!;

Ẑf@ j ,e,k#5Fdet ImV Vol~S!

det8D0
G 1/2UuF u01e

v01kG~0uV!U2

3expS 2
1

2pES
d j

1

D0
* d j D . ~30!
0-4
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Note that the external currentJ only couples to the harmoni
part of the vector field. WhenJ is zero we obtain

Z2n@ j ,0,e,k#5NẐf@ j ,e,k# ~31!

with N a constant which measures the volume of the h
monic space. This factor is expected from the original
pression~16! since in that case the volume of the zero mod
factorizes from the functional integral.

Consider now the situation when Eq.~15! holds. We have
instead of Eq.~28! the expression

U uF u01
m

2
1e

v01
l

2
1k

G ~0uV!U 2

~32!

where m/2 and l /2 are the half-integer periods ofA. We
consider the following decomposition,

m

2
5m81h,

l

2
5 l 81m, ~33!

where m8 and l 8 are integer numbers whileh and m are
g-tuples with components 0 or1

2 . Summation in allm andl is
equivalent to summation in all (h,m) and all (m8,l 8). The
summation in the integers may be handled as before. T
the summation in the half-integers (h,m) may be reinter-
preted as a sum over all spin structures~weighted by a factor
which depends onJ). WhenJ is zero we have

Z4n@ j ,0,e,k#5N (
e8,k8

Ẑ@ j ,e8,k8#5NZf@ j #. ~34!

The factorN here gives the same measure of the space
harmonic 1-forms with integral periods as in Eq.~31!. We
started with a fixed spin structure, however the final res
corresponds to the partition function of spinor fields w
summation n in all spin structures. In particular it shows t
Z4n@ j ,0,e,k# is independent of the spin structure~i.e., of e
andk).

IV. BOSONIZATION IN HIGHER GENUS SURFACES

As an application we use the results of the previous s
tion to discuss the bosonization of fermions over higher
nus compact Riemann surfaces. Equations~29! and ~34! al-
ready establish the relation between the partition function
the fermions and the partition function of theBF model. In
this section we obtain this result using the constructive
proach of@8#.

Let us begin with a quick review of the situation in th
topologically trivial case. Consider the generating functio
of a fermion field coupled to a conserved currentj:
08501
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Zf@ j #5E DcDc̄expS E d2xAgc̄~2 i ]”1 j”!c D . ~35!

We suppose here that the currentj has a topological index
zero. In two dimensions, on a genus zero surface, this
mion determinant is explicitly known@25# and given by Eq.
~9!. The duality-bosonization transformation allows us to e
press this result in terms of a bosonic field. To construct t
transformation one begins observing that the system ha
global U~1! gauge invariance. Then@8,7# one makes a
change of variables with the functional form of a local gau
transformation and identify the spurious contributions wh
appear in the action as coupling terms with a gauge field
zero curvature. The adequate change of variables in this
is

c~x!→eiL(x)c~x! ~36!

whereL(x) is an arbitrary parameter with local dependen
on x. The fermionic generating functional turns out to be

Zj@ j #5KE DcDc̄expS E d2xAgc̄~2 i ]”1 j”1]” /L!c D ,

~37!

whereK is the Jacobian of the transformation~which in this
case is a nonrelevant constant!. This can be reinterpreted a
the partition function of a model consisting of a flat conne
tion Am coupled to the fermions in the particular gau
where

Am5]mL. ~38!

The zero curvature condition onAm implies, of course, that
the connection is locally a pure gauge. Since the vanishin
* F(A)5emnFmn(A) implies that ofFmn(A), one introduces
the 1-form connection restricted by the condition

* F~A!5emnFmn~A!50. ~39!

After imposing this constraint in the functional integral on
gets

Zj@ j #5E DADcDc̄
d * „F~A!…

Vol~GA!

3expS E d2xAgc̄~2 i ]”1 j”1A” !c D , ~40!

where GA is the gauge group ofA. Now one introduces a
Lagrange multiplierB to raise thed(F) to the exponential
but has to take into account that since there are infinit
many solutions of the equation* F(A)50, the functional
d( * F) has to be defined with some care. It is properly d
fined @15# in terms of the generating functional of aBF
topological field theory@27#. Using the BRST invariance as
guide to guarantee that the functional integral remains w
defined, we obtain
0-5
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Zf@ j #5E DADBDcDc̄DCexpF E d2xAgS c̄~2 i ]”1 j”

1A” !c2
i

2p
emn]mBAn1LgD G , ~41!

where againDC stands for the measure of the ghosts a
auxiliary fields andLg for the contributions of those field
plus the gauge fixing term to the Lagrangian. The appeara
of the BF effective action should be expected since the f
tor which comes from the exterior derivative ind„ * F(A)…
may be expressed as a function of the Ray-Singer torsio
hence related to theBF effective action@2#. In two dimen-
sions the Ray-Singer torsion turns out to be equal to one

To complete the bosonization of the generating functio
one makes a shiftA1 j→A. The fermionic field remains
coupled only to the newA field. Then one uses the result~9!
for the fermionic determinant, chooses an adequate ga
fixing condition which allow to make the quadratic fun
tional integral inA and ends up with

Zf@ j #5Z@0#NE DBexpF2E d2xAgS 1

4
]mB]mB

2
i

2p
emn]mB jnD G , ~42!

whereN is the factor which appears after the quadratic in
gral onA has been performed. This is the bosonized effec
action. The external currentj appears in this expressio
coupled to the topological current of the Lagrange multipl
B.

Let us now turn to the general case on an arbitrary ge
g, compact Riemann surface. On the light of Eq.~34! we
start with

Ẑf@ j #5 (
e i ,k j

E DcDc̄expS E d2xAgc̄~2 i ]”1 j”!c D .

~43!

Instead of using Eq.~34! directly let us argue how one ca
adapt the discussion presented for the genus zero sur
and recover theBF partition function in a constructive way
Let us introduce the change of variables~36!. In order to
have a uniform change of variables in the functional integ
L(x) must satisfy

R
C I

dL5pnI ~44!

wherenI are integers. If all thenI are even the change o
variables does not change the spin structure that we h
defined overS. Otherwise we change from one to anoth
spin structure but since we are summing over all of them
is not a problem here. We get again,

Ẑf@ j #5 (
e i ,k j

E DcDc̄expS E
S
d2xAgc̄~2 i ]”1 j”1]”L!c D .

~45!
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In this case we also wish to rewrite this in terms of
globally defined flat connectionA. For two dimensional sur-
faces this means thatA should be a flat connection over
trivial U~1! line bundle. To achieve consistency with E
~44! we have to impose that

G~A!5 R
C I

A5pnI . ~46!

This is exactly the condition forced by Eq.~24! and in fact its
appearance at this point provided the original motivation
the discussion presented in the previous section. Things
follow smoothly. First, in order to introduceA satisfying Eq.
~46! in the functional integral one extends the functional
tegral to the space of connections and introduces fac
d„F(A)… andd„G(A)… in the measure. We get

Ẑf@ j #5E DADcDc̄
d„F~A!…d„G~A!…

Vol~GA!

3expS E
S
d2xAgc̄~2 i ]”1 j”1A” !c D , ~47!

whereGA is the group of allowed gauge transformations ofA,
that is of those gauge transformations with an uniform ga
function.

Now we want to raise thed functions to the exponential
From our results of the previous section, the right way to
that is to take a multivalued Lagrange multiplier B overS
satisfying

R
C I

dB54pmI ~48!

and to integrate over the functional space ofB with all pos-
sible mI . In order to have a well-defined functional integra
the measure has to be defined in terms of precisely theBF
topological field theory we considered previously. We th
recover Eq.~34!:

Ẑf@ j #5Z4n@ j ,0,e,k#5(
mI

E DCDADBDcDc̄e2Seff,

~49!

Seff5E d2xAg@c̄~ iD” 2A” 2 j”!c1Lg#1
i

2pES
~dB`A!.

~50!

Here as we discussed earlier the result does not depen
the spin structure (e,k). To obtain the bosonized represent
tion of Eq. ~43! we now choose the gauge fixing and gho
terms in Eq.~49! and perform the fermionic integral. We ca
work more generally withJÞ0 and use Eq.~16!. Making
first a shift

Ã5A1 j ~51!

in Eq. ~16!, taking the gauge condition

* d * Ã50 ~52!
0-6
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and performing the fermionic integral we have

Z4n@ j ,J,e,k#5@det8D0#1/2@det ImV Vol~S!#1/2

3UuFu1e

v1kG~0uV!U2(
mI
EDBDÃe2S[ Ã,B] ,

~53!

S@Ã,B#5
1

2pES
S dÃ

1

D0
* dÃ1 idB`~Ã2 j !

1
1

2
d * Ã` * d* Ã22p * J`~Ã2 j ! D ~54!

where a factor@det8D0# arises from the integration on th
ghost and antighost fields. The argumentsu and v in the
theta function are the coefficients in the expansion ofÃh and
are not restricted until now. To write out our final expressi
we introduce the decomposition~2! for Ã ,

Ã5ds̃1 * dp̃1Ãh

and observe that~i! integration ins̃ contributes with a factor
(det8D0)21. ~ii ! Integration in p̃ and the Jacobian of th
transformation contribute a factor (det8D0)1/2 and a term in
the action of the form

S~B,J!52
1

2pES
~dB12p i * J!exact̀ * ~dB12p i * J!exact

since only the exact part of (dB12p i * j ) couples withp̃.
~iii ! One is left with the integration inÃh . Using the decom-
position~19!, for the the fieldB one may show again that th
summation over the periods ofB leads to the half integra
periodicity conditions inÃh . The integral inÃh is then a
summation over the half-integral periods. We finally obta

Z4n@ j ,J,e,k#5(
l ,m

E Dbe2S[ Ãh ,b]@det ImV Vol~S!#1/2

3uuF l

2

m

2

G ~0uV!u2 ~55!
.

08501
where the contribution of the spin structure is included in
argument of theu function and we define

S@Ãh ,b#5
1

2pES
~db12p i * Jexact!` * ~db12p i * Jexact!

2 i ~db12p * Jexact!` j 1E
S
* J`Ãh , ~56!

with Ah given by Eq.~3! restricted to half-integers periods
When J is zero this gives the bosonized expression for
fermionic partition function in higher genus surfaces. A sim
lar expression for the partition function over a single sp
structure may be obtained straightforwardly, following t
same lines, starting from Eq.~29!.

V. CONCLUSION

The results presented in this paper show that when
investigates the properties of a system of fermions on a R
mann manifold of arbitrary genus, the information about t
spin structure of the manifold may be expressed in terms
the topological properties of the fields of aBF model. More-
over the nontrivial topological properties of theBF fields are
shown to be included in the path integral which defines
generating functional of the coupled system. The bosoni
version of the generating functional which, in this approa
is obtained after integrating out the fermionic fields, is e
pressed in terms of theseBF fields. It may be view as a dua
model in a way that generalize in a nontrivial way the res
for genus zero surfaces.
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