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BF models, duality, and bosonization on higher genus surfaces
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The generating functional of two dimensiorgF field theories coupled to fermionic fields and conserved
currents is computed in the general case when the base manifold is agyeompact Riemann surface. The
Lagrangian density =dB/\A is written in terms of a globally defined 1-forfand a multivalued scalar field
B. Consistency conditions on the periodsdi have to be imposed. It is shown that there is a nontrivial
dependence of the generating functional on the topological restrictions impoBebhtparticular if the periods
of the B field are constrained to take valuesd, with n any integer, then the partition function is independent
of the chosen spin structure and may be written as a sum over all the spin structures associated with the
fermions even when one started with a fixed spin structure. These results are then applied to the functional
bosonization of fermionic fields on higher genus surfaces. A bosonized form of the partition function which
takes care of the chosen spin structure is obtained.

PACS numbed(s): 11.10.Ef, 11.15.Me

[. INTRODUCTION a BF theory coupled to fermions which is the subject of this
paper. This point of view has been also extended to higher
In this paper we compute the generating functionaB&f  dimensiond12,13.
[1] topological systems coupled to fermions on a two dimen- Over topologically trivial manifolds, the procedure de-
sional compact manifold of arbitrary genus. We then applyscribed above allows in some cases to determine exact
the result to discuss the bosonizati8] of the fermionic  equivalences between fields theories. When the base mani-
fields. Our computation which is closely related to the workfold has genug one has to take care of the global definition
presented in Ref44,5] has two different motivations. First, of the geometrical objects appearing in the formulation
it has been observd@] that the allowed world hypersurfaces [14,15. The global aspects introduced by the auxiliary fields
described by classical sourceg-ifrane$ coupled to aBF  in the path integral have been explicitly tested for example in
theory are subject to restrictions of a topological nature. On¢he purely bosonic self-dual vectorial model ir-®. This
is then led to ask the question of how this effect is translateanodel is known to be locally equivalent to the topologically
to the quantum theory. The second aspect which motivatemassive model[16] and in fact can be viewed as a gauge
this work concerns the relation between topological modeldixed version of itf17]. Nevertheless it has been shown that
and duality transformations. For a large class of systemsn topologically nontrivial manifolds this equivalence has to
duality transformations have been devised along the lines dfe reinterpretefl15,18,19 since the partition function of the
the T-duality transformation in the sigma moddlg]. The topologically massive model has an additional factor of to-
method consists essentially in a two step elimination of ongological origin. When matter fields are included, the cou-
field in terms of its dual variable. First one introduces anpling with the topological field theory may be related to self-
auxiliary gauge field constrained at the beginning to haventeraction terms for the fermiorf20].
zero curvature. This allows us to decouple the original vari- In the specific case of the fermionic models there are
able from the currents and then one may perform the remairother reasons to explore the consequences of defining the
ing integration in the quadratic approximation. At this point system on higher genus surfaces. Even in genus zero sur-
the connection with th&F [1] theory appears, since to im- faces, when coupled to gauge fields with nontrivial topologi-
pose the zero curvature condition into the functional integratal properties, the fermions show dynamical effects. The
one may introduce the partition function oBd topological  most notorious of these is the nonvanishing of fermion con-
model. When the duality transformation is applied to thedensate$21-23 due to the contributions of the instantons
generating functional of free fermionic fields on genus zeraassociated in four dimensions to the resolution of th&)U
manifolds[8], it leads to the bosonizdd] representation of problem[24]. The vanishing of such condensates in the to-
the theory. In the operatorial approach bosonization in tw@ological trivial case is enforced by gauge symmetry. The
[3] and three dimensior{®,10] has been related to the con- nonvanishing result in the most general situation may be
struction of dual soliton operatofd1] in bosonic theories traced in the functional approach to an explicit contribution
and this gives an additional meaning to the duality transforof the zero modes of the fermionic field21]. In higher
mation discussed in the papers of R@&f. At the intermedi- genus surfaces one expects a more rich structure in the gauge
ate step after introducing the gauge field one is dealing withield sector, but also further complications are introduced in
the duality transformation when gauge fields of nonvanishing
topological index have to be considered. For this reason in
*Email address: arestu@usb.ve this article we exclude this possibility.
"Email address: stephany@usb.ve This paper is organized as follows. In Sec. Il we review
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some useful concepts and notation and discuss the resurhe real harmonic basis; and g; is constructed from two

[4.5] of the computation of the fermionic determinant in ge- normalized holomorphic basis; and (j)j Ji=1,...9
nusg manifolds. In Sec. lll we compute the generating func-

tional of a particularBF topological theory coupled to fer- ~ 4

mions. This model which as we will see later appears L_"’i:‘sij ’ f“’j:Qij ’

naturally in the bosonization of fermions in higher genus
surfaces is described in terms of a 1-fofnglobally defined
and a multivalued field. SincedB should remain univalued f o=, f &)J: Sij » (4)
one has to impose restrictions over the periodd Bf When bi bi
these periods are chosen to be integral multiples oftde ) . i N
partition function is shown to be a sum over all spin struc-where{ is the period matrix. In terms ab; andw;, a; and
tures even if one starts with a fixed spin structure. This is arj are given by
interesting result which in particular implies that the partition
function is independgnt of the spin structure originglly_ cho- ﬁ:i-(wk—ak)[lmﬂ][-l,
sen. In Sec. IV we discuss the bosonizati@hof fermionic boai !
fields on higher genus Riemann surfaces. Here again,
bosonization may be understood as a duality transformation
[8] between the fermionic current and the Hodge dual of the
field intensity tensor of a vector field. A careful treatment of
the global aspects in the formulation leads naturally to arhe imaginary part of the period matrix Ifh is always an
bosonized effective action in terms of a multivalued O-form.invertible matrix. Let us now consider a fermionic field de-
fined over a genug compact Riemann surface with a defi-
II. THE FERMIONIC DETERMINANT ON HIGHER nite but arbitrary spin structure. The spin structure is fixed by
GENUS COMPACT RIEMANN SURFACES specifying twog dimensional vectors; and «; with compo-

) o nents O ors so that the periodicities of the fermions about
We consideiBF models coupled to fermionic fields over he cycles a; and b, are respectively exp(de) and

higher genus Riemann surfaces. In order to compute itS pagsyp i x). The partition function which defines the fermi-
tition function one needs the explicit formula for the fermi- 5nic determinant is

onic determinant in the case of zero curvature gauge poten-

tials A on trivial U(1) line bundles. This determinant was ~ _

computed in Refs[4,5]. To express the result, let us intro- Zf[A,E,K]ZJ 'Dlﬂ'Dl//EX[{f d>X\gy(—iD +A)y

duce some notation concerning the properties of the mani- *

1. =
ai=5(wk—wk)[lmﬂ]ki . (5)

fold and the fields. We take; andb; to be a basis of ho- =def —iD +A], (6)
mology of closed curves ové¥, a compact Riemann surface
of genusy. The set of curvea; andb; will be denoted by'.  where we taked to be the covariant derivative for the fer-

If one deform continuously the fermionic field along the mions.

curves of the basis, after returning to the original point the The fermionic determinant in this situation may be ob-
fermionic field may change sign or not. A spin structure overtained from the results if¢,5] and is given by

3 is determined by taking one of these possibilities for each

of the curves of the basis. The gauge potentfats a trivial . 1 1

U(1) bundle are characterized by the vanishing of the Chern Zf[A,E,K]ZeXP( - ELF(A)A_O*F(A)

class
1/2
It
: N : )
The index of the corresponding Dirac operator is then zero
and consequently there are no zero modes in the fermioniglere A, is the Laplacian operator acting on 0-forms and
sector. Vol(Y) is the area of the Riemann surface. The third factor
The potential may be decomposed into its exact, co-exads a ¢ function given by
and harmonic parts:

u+e 2

vtk

detImQ Vol(3)

0]Q
det A, (0l)

LF(A)zLdAzO. (1) X

u
A=ds+*dp+A,. (2 GL}(OIQF E exdim(n+u)Q(n+u)+i27(n+u)v].
nez9
The harmonic part of the field is expressed in terms of a base ®
of real harmonic formsy; and 8, i,j=1, ... g as follows:

We note that in Eq(7) the first factor depends only on the
g coexact component of the gauge field. This contribution cor-
A=2 Ua—vB). 3 responds to the result for genus zero surfd@&$ which is

n 772 (Uiai—vi) @ usually written in the form

085010-2



BF MODELS, DUALITY, AND BOSONIZATION ON ... PHYSICAL REVIEW D 61 085010

del(—id+A) 1 IHg” The first case is the usuBIF model. In the second and third
—_zexp{ —2—f dzx\/ﬁAﬂ( oM’ — )AV} cases we consider the summation on all the valugs'dh
det(—id) m the functional integral16). Each of the choices defines a

9 different model.
The generating functional of these systems coupled to

The other two factors in Eq7) give the Dirac determinant conserved currentsandJ is given in all the cases by

for a purely harmonic potentidl;, of the form(3). The result
(7) has been used to investigate the Schwinger model in

higher genus surfacé26]. . _ f — s,
Finally by summing over all spin structures, we may also Z[j,J,€,«] %: DCDADBDyDye™ >, (16)
define
2[A1=3 2{A.ex] 10 Su | dauiD - A= y+L]
i
which will play a role in what follows. + L EdB/\A— *J/\A) (17

lll. TWO DIMENSIONAL BF THEORIES COUPLED _ o .
TO FERMIONS where L includes the gauge fixing term and the contribu-

tions of the auxiliary field¢ghosts fields and Lagrange mul-
In this section we compute the generating functional for aipliers) and DC stands for the integration measure in those
particular BF system coupled to fermions over a geryis fields. The sum im' is included to stress the fact that we are
Riemann surface. The action functional of8& theory is  summing over thé field configurations which satisfy either

written in terms of a connectioA and a fieldB which may  Egs. (13), (14), or (15). The spin connection is fixed and
be interpreted as a Lagrange multiplier which enforcesthe identified by theg dimensional vectors; and «; .

field to have zero curvatudd]. In its usual form it is given The functional integration on the Lagrange multiplBeof
by course provides the facta#(F(A)) in the measure of the
generating functional but as we will see presently, the addi-
tional summation over the periods gives rise to a factor
= | dA/\B. 11 . . ) )
Ser Jz (19 which constrain also the periods &f Let us see how this

works. Suppose for example that we compute the generating
Here the O-formB anddA are defined globally on the mani- functional (16) summing over theB field configurations
fold 3. The connectior\ may be allowed to have transitions Which satisfies Eq(15). Given two different configurations
over 3. The computation of the partition function of this of B, sayB, andB,, satisfying this condition we have
system was discussed[iB]. The off-shell BRST charge was
computed in[27]. We will consider a modification of this B,—B;,=b, (18)
system which appears naturally in the context of bosoniza-

tion. We consider the action . . .
whereb is univalued ovei.. In general we may then write

d__
Smod_ LdB/\A, (12 B=Byy+b, (19

which may be different from the action above, for trivial with B, a specific configuration satisfying E¢L5) with a
bundles, only over higher genus surfaces. The one f&kms set of valuesn'. The functional integration on the multival-
anddB have to be globally defined b#& may be multival-  uedB field has been expressed as an integration on the uni-
ued. Due to the nontrivial topological structure of the mani-valued functionb and a sum over all possible choices.

fold, one may distinguish three cases in the definition of theConsider now th@F action in the sector defined by one of
generating functional. One may consider the following con-such choices. We have

ditions on the periods ai B:

480, 13 LdB/\Az Ld(Bm.A)JrL(—Bml)/\dAJr L(—b)/\dA.
c (20
3gC|dB=27rm', (14)  The generating functional becomes
§|d8=4wm'. (15 Z[J',J,G,K]=EI fDADbDCDz//DEe’Seff (21
C m
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) — i Here one recognizes the coefficients of the Fourier expansion
Seft= Ld XVl w(iD —]—A) g+ L]+ ng[d(Bm'A) of a delta function with periodr. Upon summing over ath'
the total contribution is

— (B +b)/AdA]— f *JA\A.
s . (24

5(F(A))EI 5( ffﬁclA— n'

At this point, one recovers the facté{dA) in the mea-
sure of the generating functional by performing the func-When theB field in Eq.(16) is taken to satisfy E¢(13) only
tional integral inb and in the ghost fields introduced to guar- the factor S(F(A)) appears. We will not discuss this case
antee the Becchi-Rouet-Stora-TyuiBRST) invariance of  furthermore. When thB field is taken to satisfy Eq14), the
the effective action. In particular this makes the second terrgecond delta function has periodr2and the factor turns out
in Eq. (20) to vanish and to disappear also from E21). to be

To evaluate the remaining functional integral, consider a
triangulation of% in terms of elementary domainld;, i
e[1,... N]. SinceX is compact the triangulation exists 5(F(A))§I: 5( ﬁlA_ZTf”l)- (25
and the covering is provided by a finite number of elemen-

tary domains. LeA! andl.?;'m. be the restrictions of the fields | ¢ ys see now how the conditiof4) or (25) enter in the
to the domairlJ; . Then, in the functional space projected by complete evaluation of E¢(16). Using the decomposition

6(dA), we have (2) for the A field, the factors(dA) in the measure of Eq.
N (16) allows the integration of the coexact part Afand we
dBAA :J' d(BAA) = d(B A are left with the task of determining which are the configu-
L | 5 (Bri) 21 U (B ) rations of A, that contribute. It is now straightforward to
dA=0

show that the delta functions in E(4) [or respectively Eq.
‘ ‘ (25)] constrain the values of the coefficients in the expansion
= Z f (B'm| - B:n.)A (3) of Ay, to be half-integersor integer$. To continue we use
vinuj#@ Juinu; this fact and perform the functional integration in the fermi-
ons. Definingu® andv® to be the coefficients in the expan-

= > 47rm(”)j A (22)  sion of the harmonic part gf
Uin0;#0 uiny;

N g
wherem()) are integers. Using again that the connection is : 0 0
. =2 U a;—v; B), 26
flat we finally get In WZ (Ui —viBi) (26)

i ; [ .
eI/ZWfEdB/\A: el 2mjclA (23) we obtain

1/2;
u+ul+e

v+vO+K

detImQ Vol(3)

0|Q
det A, (0l)

Z[j,J,G,K]ZE

u,v

2 1 1
ex;{ Jz( J/\Ah_EdJA_O dj”. (27)

The sum in Eq(27) is over the allowed values af andv one may redefine+m=n’ and one still will have summa-
which as we already said are all the integers or all the halftion in all n’. We can then factorize the contribution of the
integers depending which case we are considering. Froarmonic part of the field to the partition function in the form
here on we have to distinguish between the two cases.

Let us take first the case when tBefield satisfies Eq. .
(14). Then in Eq.(27) we have a sum over thgtuples with Zofjdex]=2]j.ex12, EXF{ f *J/\Ah) (29
integral entries which we label by andl. The factor with m! .
the theta function in Eq27) takes the form

’

It is straightforward to see from Ed8) that this becomes 1 1
independent of due to the square norm that we are taking. Xex;{ _ _f dj —*dj). (30)
Moreover Eq.(28) also is independent ah, since in Eq(8) 2]y " Ag

with Z¢[j,e,«] given by Eq.(7);
2

(28) 12 ul+e

v+ K

detImQ Vol(Z)

Zlierl=| — 4%
0

(0/2)
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Note that the external curredtonly couples to the harmonic

part of the vector field. Whed is zero we obtain

Zyn[j.0,6,1=NZ{[j,€,x] (31)

PHYSICAL REVIEW D 61 085010

zi1- | Dmﬂexp( | exgu-io+pa). @9

We suppose here that the currgritas a topological index
zero. In two dimensions, on a genus zero surface, this fer-

with V" a constant which measures the volume of the harmjon determinant is explicitly knowf25] and given by Eq.
monic space. This factor is expected from the original ex9). The duality-bosonization transformation allows us to ex-
pression(16) since in that case the volume of the zero modespress this result in terms of a bosonic field. To construct this

factorizes from the functional integral.
Consider now the situation when E@5) holds. We have
instead of Eq(28) the expression

m 2

0,
u+ > +e
N )

0
+o+
v 2 K

(32

where m/2 and1/2 are the half-integer periods @& We
consider the following decomposition,

i !
p— m +7]’
— —+ , ( )

wherem’ and |’ are integer numbers whilg and n are
g-tuples with components 0 gr. Summation in alm andl is
equivalent to summation in allz{, ) and all (m’,1"). The

transformation one begins observing that the system has a
global U1) gauge invariance. Thef8,7] one makes a
change of variables with the functional form of a local gauge
transformation and identify the spurious contributions which
appear in the action as coupling terms with a gauge field of
zero curvature. The adequate change of variables in this case
is

$(x)— e My (x) (36)
whereA(x) is an arbitrary parameter with local dependence
on x. The fermionic generating functional turns out to be

Z;[i]=/Cf Dt/fDEeprdZXJgT//(—i/HHﬂ/A)w ,
(37)

whereX is the Jacobian of the transformatiomhich in this
case is a nonrelevant constanthis can be reinterpreted as
the partition function of a model consisting of a flat connec-
tion A, coupled to the fermions in the particular gauge
where

summation in the integers may be handled as before. Then

the summation in the half-integers;(x) may be reinter-

preted as a sum over all spin structutegighted by a factor

which depends od). WhenJ is zero we have

Zal§ 0 x]=N2 Zj.€ k' 1=NZdj]l. (34

The factor\ here gives the same measure of the space of

harmonic 1-forms with integral periods as in H§1). We

A,=d,A\. (38)

The zero curvature condition ok, implies, of course, that
the connection is locally a pure gauge. Since the vanishing of
*F(A)=€""F,,(A) implies that ofF ,,(A), one introduces
the 1-form connection restricted by the condition

*F(A)=¢€""F,,(A)=0. (39

started with a fixed spin structure, however the final resulft€r imposing this constraint in the functional integral one

corresponds to the partition function of spinor fields with 98tS
summation n in all spin structures. In particular it shows that

Z4n[J,0,6,k] is independent of the spin structufiee., of €
and«).

IV. BOSONIZATION IN HIGHER GENUS SURFACES

. —5*(F(A))
Z[jl= DADWMV—Q)
A

ol(

xexp:(fd2ngTu(—i,9+1+A)¢ . (40

As an application we use the results of the previous sec-
tion to discuss the bosonization of fermions over higher gewhere G, is the gauge group of. Now one introduces a

nus compact Riemann surfaces. Equati@® and (34) al-

Lagrange multiplierB to raise thes(F) to the exponential

ready establish the relation between the partition function obut has to take into account that since there are infinitely

the fermions and the partition function of tlBF model. In

many solutions of the equatiofiF(A)=0, the functional

this section we obtain this result using the constructive aps(*F) has to be defined with some care. It is properly de-

proach of[8].

fined [15] in terms of the generating functional of BF

Let us begin with a quick review of the situation in the topological field theory27]. Using the BRST invariance as a
topologically trivial case. Consider the generating functionalguide to guarantee that the functional integral remains well

of a fermion field coupled to a conserved currgnt

defined, we obtain
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_ _ In this case we also wish to rewrite this in terms of a

Zf[j]:f DADBDlﬂDlﬂDCeXF{J de\@( Y(—ib+] globally defined flat connectioA. For two dimensional sur-
faces this means th#& should be a flat connection over a
trivial U(1) line bundle. To achieve consistency with Eq.

i
tAY— 59, BA L], (41 (44) we have to impose that

where againDC stands for the measure of the ghosts and G(A)= é A=mn'. (46)
auxiliary fields andL4 for the contributions of those fields c!

plus the gauge fixing term to the Lagrangian. The appearancg, . . . . .
of the BF effective action should be expected since the fac(j‘[ehIS Is exactly the condition forced by E4) and in fact its

: . Lk appearance at this point provided the original motivation to
trg;;/'vgéchcp?giz(;rg?at?ﬁnigtoer:'g; t(:\irll\s:)l/vgiaﬂgelr:t(cﬁ)s)ion a‘ﬁge discussion presented in the previous section. Things now
) ; - . Il hly. First, i [ isfying Eq.
hence related to thBF effective action2]. In two dimen- ow smoothly. First, in order to introduc satisfying Eq

. the Rav-Si torsion t {10 b 't (46) in the functional integral one extends the functional in-
S|0_|r]§ co?‘n I’Cg-e tlr?girosoorrf!ogt'gr:nosf ?hue Oem(aar:?r?a f ?];.noer;afegral to the space of connections and introduces factors
P Izatl 9 Ing functi S(F(A)) and 5(G(A)) in the measure. We get

one makes a shifA+j—A. The fermionic field remains
coupled only to the new field. Then one uses the res(® . —S(F(A)S(G(A))
for the fermionic determinant, chooses an adequate gauge Zf[]]:f DADy Dy Vol (G
fixing condition which allow to make the quadratic func- A
tional integral inA and ends up with

><exp( LdszgT/;(—imHA)(/f . (4

1
Zi[] =ZONfDBex;{—fd2x (—a Bd,B
(L11=2L0] \/a 4 £k wheregG, is the group of allowed gauge transformation#\pf

that is of those gauge transformations with an uniform gauge
(42)  function.
Now we want to raise thé functions to the exponential.
From our results of the previous section, the right way to do

[ .
— ZEMVaMBJV

where is the factor which appears after the quadratic inte—that is to take a multivalued Lagrange multiplier B over

gral onA has been performed. This is the bosonized EffeCtiVesatisfying

action. The external currerjt appears in this expression

coupled to the topological current of the Lagrange multiplier

B. 3€ IdB=477m' (48)
Let us now turn to the general case on an arbitrary genus ¢

g, compact Riemann surface. On the light of £84) we  and to integrate over the functional spaceBofvith all pos-

start with siblem'. In order to have a well-defined functional integral,
the measure has to be defined in terms of preciselyBthe
Zdil= > Dt//DEexp< f d2x\gu(—id+])y). topological fielq theory we considered previously. We then
€ K] recover Eq.(34):

(43

Instead of using Eq(34) directly let us argue how one can Zf[j]:Z4n[j1O7EvK]:2| f DCDADBDyDyje %,
adapt the discussion presented for the genus zero surfaces m (49)
and recover th®&F partition function in a constructive way.

Let us introduce the change of variable6). In order to o i

have a uniform change of variables in the functional integral, Sex= f d2x\g[ (i —A—]) -+ Lol+ 2—f (dBNA).
A(x) must satisfy e (50

fﬁ dA = mn' (44) Here as we discussed earlier the result does not depend on
c! the spin structured, «). To obtain the bosonized representa-
tion of Eq. (43) we now choose the gauge fixing and ghost
terms in Eq.(49) and perform the fermionic integral. We can
ork more generally with1#0 and use Eq(16). Making

wheren' are integers. If all then' are even the change of
variables does not change the spin structure that we ha

defined over,. Otherwise we change from one to another; ;
X . i first a shift
spin structure but since we are summing over all of them this
is not a problem here. We get again, A=A+] (51)
z{i1= E Dd/DJexr( f d2x@(—m+1+m)¢ ' in Eq. (16), taking the gauge condition
€ K| 3 _
' (45) *d*A=0 (52)
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and performing the fermionic integral we have where the contribution of the spin structure is included in the

Zalise.x]=[det Ag]¥Z det ImQ Vol (S V2 argument of thed function and we define

u+e
vtk

~ 1 ~ 1 ~
- __* i —i
S AB] 5 2(dA 5 dA+idB/A(A—j)

X (0|Q)

2
DBDAe SIABI s 1
%f S[Ah,b]=ZJ;(db+27Ti*Jexacg/\*(db+27ri*Jexact)

(53
—i(db+27-r*Jexact)/\j+J *INA, (56)
3

(54)  With A, given by Eq.(3) restricted to half-integers periods.
When J is zero this gives the bosonized expression for the
fermionic partition function in higher genus surfaces. A simi-
lar expression for the partition function over a single spin
structure may be obtained straightforwardly, following the
same lines, starting from E@29).

1 . - -
+5d AN A A= 27 INA-))

where a factofdet Ay] arises from the integration on the
ghost and antighost fields. The argumentand v in the

theta function are the coefficients in the expansioﬁphnd
are not restricted until now. To write out our final expression

we introduce the decompositid@) for A |

A=dst *dﬂb"‘;&h V. CONCLUSION

The results presented in this paper show that when one
investigates the properties of a system of fermions on a Rie-
mann manifold of arbitrary genus, the information about the
spin structure of the manifold may be expressed in terms of
the topological properties of the fields o8& model. More-

1 ] . over the nontrivial topological properties of tBé- fields are

S(B,J)=— EL(dBJF 271 * ) exac{\ ¥ (dB+ 27 *J)exact  shown to be included in the path integral which defines the
generating functional of the coupled system. The bosonized
version of the generating functional which, in this approach
is obtained after integrating out the fermionic fields, is ex-
pressed in terms of the®F fields. It may be view as a dual
model in a way that generalize in a nontrivial way the result
for genus zero surfaces.

and observe thaf) integration ins contributes with a factor

(det Ag) . (i) Integration inp and the Jacobian of the
transformation contribute a factor (da)Y? and a term in
the action of the form

since only the exact part ofd@+2i *j) couples withp.
(iii) One is left with the integration il . Using the decom-
position(19), for the the fieldB one may show again that the
summation over the periods & leads to the half integral
periodicity conditions inA,. The integral inA, is then a
summation over the half-integral periods. We finally obtain
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