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We study the generation of a nonequilibrium plasma in scalar QED withN-charged scalar fields in the cases
~a! of a supercooled second order phase transition through spinodal instabilities and~b! of parametric ampli-
fication when the order parameter oscillates with large amplitude around the minimum of the potential. The
focus is to study the nonequilibrium electromagnetic properties of the plasma, such as photon production,
electric and magnetic screening and conductivity. A novel kinetic equation is introduced to compute photon
production far away from equilibrium in the largeN limit and lowest order in the electromagnetic coupling.
During the early stages of the dynamics the photon density grows exponentially and asymptotically the
frequency distribution becomesNph(v);am2/@l2v3# with l the scalar self-coupling andm the scalar mass.
In the case of a phase transition, electric and magnetic fields are correlated on distancesj(t);At/m during the
early stages of the evolution and the power spectrum is peaked at low momentum. This aspect is relevant for
the generation of primordial magnetic fields in the early Universe and for photoproduction as a potential
experimental signature of the chiral phase transition. Magnetic and Debye screening masses are defined out of
equilibrium as generalizations of the equilibrium case. While the magnetic mass vanishes out of equilibrium in
this Abelian model, we introduce an effective time and wave-number dependent magnetic mass that reveals the
different processes that contribute to screening and their time scales. The Debye mass turns out to bemDeb

2

;am2/l for a supercooled phase transition while in the case of an oscillating order parameter an interpolating
time dependent Debye mass grows asaAmt/l due to a non-linear resonance at low momentum in the charged
particle distribution. It is shown how the transverse electric conductivity builds up during the formation of the
nonequilibrium plasma. Its long wavelength limit reaches a valuesk'0;am/l at the end of the stage of linear
instabilities. It is shown that the electric conductivity staysfinite for all k includingk50 for finite time. In the
asymptotic regime it attains a form analogous to the equilibrium case but in terms of the nonequilibrium
particle distribution functions.

PACS number~s!: 11.15.Pg, 12.20.2m, 13.40.Hq
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I. INTRODUCTION AND MOTIVATION

The study of the dynamics of phenomena strongly ou
equilibrium is very relevant in cosmology where it plays
fundamental role in the consistent description of inflation
scenarios, baryogenesis and of generation of primordial m
netic fields. Also in relativistic heavy ion collisions where
now acquires further phenomenological importance since
relativistic heavy ion collider~RHIC! at Brookhaven begins
operation. RHIC and the forthcoming Large Hadron Collid
at CERN will probe the quark-gluon plasma and the ch
phase transitions in an extreme environment of high te
perature and density. These experimental programs hav
spired intense theoretical efforts to understand the format
evolution and potential experimental signatures of the qua
0556-2821/2000/61~8!/085007~35!/$15.00 61 0850
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gluon plasma~QGP! @1,2# as well as relaxation and transpo
phenomena on unprecedented short time scales. There
several fundamental questions which define to a large ex
the theoretical aspects of this program: how does the qu
gluon plasma form and equilibrates from the evolution of t
parton distribution functions? what are the time scales
electric and magnetic screening that dress the gluons
cut-off small angle scattering? how does a hydrodynam
picture of the space-time evolution of the plasma emer
what are the experimental signatures? These and other
damental but extremely difficult questions are being a
dressed from many different perspectives. An important
proach that seeks to describe the space-time evolution
partons is based on transport equations that describe par
cascades starting from a microscopic description and in
©2000 The American Physical Society07-1
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porate semi-phenomenologically some screening correct
in the scattering cross sections@3–5#. A correct description
of electric and magnetic screening is very important in t
program since both act as infrared cutoffs in transport cr
sections and determine energy losses in the plasma. Amo
the several potential experimental signatures proposed to
tect the QGP, photons and dileptons are deemed to be c
probes of the quark-gluon plasma because they only inte
electromagnetically@1,2,6# and their mean-free paths a
much larger than the size of the fireball'20 fm. Hence,
these electromagnetic probes could provide clean signat
of equilibration or out of equilibrium phenomena unhinder
by the strong interactions. Non-equilibrium phenomena as
ciated with a quenched chiral phase transition could h
potentially important electromagnetic signatures in the p
ton spectrum if there are strong charged pion fluctuati
during the phase transition. A preliminary study in this d
rection was pursued in@7# where it was indicated that depa
tures from equilibrium in the photon distribution at low m
mentum could provide a signature of a supercooled ch
phase transition@8#. In cosmology, post-inflationary phas
transitions or the fast evolution of an inflaton field after i
flation could generate the hot plasma that describes the s
dard big bang scenario with a radiation dominated Friedm
Robertson-Walker cosmology at the end of inflation@9#.
Furthermore, non-equilibrium effects during cosmologic
phase transitions had been conjectured to generate the
mordial magnetic fields that could act as seeds to be am
fied by dynamo mechanisms as an explanation for the
served galactic magnetic fields@10,11#. Theoretical models
for generation of primordial magnetic fields involve stro
fluctuations of charged fields that lead to non-equilibriu
electromagnetic currents@12–14#, much like the strong fluc-
tuations in the pion fields during a possible supercooled
ral phase transition and the possibility of photon product
associated with these fluctuations@7#.

Thus we see that physically relevant non-equilibriu
physical phenomena are common to cosmology and
quark-gluon plasma and chiral phase transition and it
been conjectured that indeed primordial electromagn
fields can be generated from strong electromagnetic fluc
tions at the quark-hadron phase transition@15,16#. An impor-
tant ingredient both in the quark-gluon plasma as well as
the formation of astrophysical and cosmological plasmas
description of the transport properties, in particular t
screening masses and the electrical conductivity. Scree
masses are an important ingredient in charmonium supp
sion which is one of the potential probes of the QGP@17#
and regulate the infrared behavior of transport coefficie
@18,19#.

The electrical conductivity plays an important role in t
formation and correlations of primordial magnetic fields
the early universe and contributes to ohmic heating
therefore energy losses and entropy production in the Q
The electrical conductivity in the early universe was es
mated in@11# and ~equilibrium! screening corrections wer
included in@20#. More recently the electrical conductivity o
the plasma at temperatures near the electroweak scale
calculated in@21–23# including Debye and dynamical~Lan-
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dau damping! screening of electric and magnetic intera
tions.

Hence, there are common relevant problems in cosm
ogy, astrophysics and ultrarelativistic heavy ion collisio
that seek a deeper understanding of the physics of the
mation of a plasma beginning from a non-equilibrium initi
state of large energy density, its evolution, the onset of e
tric and magnetic screening phenomena and the genera
of seeds of bulk electric and magnetic fields, i.e. photon p
duction.

A first principles description of the formation of a ho
plasma and its dynamical evolution from an initial state
large energy density beginning from QCD or the stand
model would be a desirable goal, but clearly an extrem
complicated task.

The goals of this work
In this article we study a model that bears many of t

important aspects of QCD and the standard model wh
combined with a non-perturbative framework allows us
provide quantitative and qualitative answers to many of
questions associated with the formation and evolution o
non-equilibrium plasma.

The model that we propose to study is scalar QED w
N-charged scalar fields coupled toone U(1) photon field and
one neutral scalar field that plays the role of an order par
eter for a phase transition. The model is such that theU(1)
local gauge symmetry associated with the photon field isnot
spontaneously broken much in the same manner as the u
electromagnetic field in the Standard Model. Besides,
model being a suitable framework to study the questio
posed above, we will argue that it is potentially relevant
the description of photon production during the chiral pha
transition of QCD. Therefore, the dynamics and mechanis
revealed in this model could prove to be very valuable in
description of the generation of primordial magnetic fiel
during one of the QCD phase transitions in the early unive
and also in photon production during the chiral phase tra
tions in heavy ion collisions.

Furthermore scalar QED has been shown to share m
properties of spinor QED and QCD in leading order in t
hard thermal loop approximation@22,24#, hence the mode
studied in this article can serve as a useful and relevant
ing ground to study similar questions in QED and QCD.

Since the non-equilibrium processes that lead to the
mation of the plasma are non-perturbative, we resort to
large N limit as a consistent framework to study the no
perturbative dynamics. We take the electromagnetic coup
to be perturbative and compute various quantities, such
the rate of photon production, magnetic and Debye mas
and the transverse conductivity to leading order in the la
N limit and to lowest order in the electromagnetic couplin
discussing the validity of weak coupling in each case.

The focus of this work centers on the following aspec
~i! The description of the formation of a non-equilibriu
plasma of charged particles during a stage of strong n
equilibrium evolution beginning from an initial state of larg
energy density.~ii ! The production of photons and therefo
of electric and magnetic fields from the strong fluctuations
the charged fields. This aspect is relevant for the format
7-2
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of primordial magnetic fields in the early universe and a
for photon production during non-equilibrium stages for e
ample of the chiral phase transition, where the charged fi
would be the pions.~iii ! The dynamical aspects of electr
and magnetic screening. We study in detail the magnetic
Debye masses and the time scale of the different proce
that contribute to screening.~iv! The non-equilibriumtrans-
verse electrical conductivity. We analyze in detail t
build-up of conductivity as the plasma is forming and
asymptotic limit, comparing to the equilibrium case.

In particular two important situations are studied.~a! A
‘‘quenched’’ ~or supercooled! second order phase transitio
in which the initial state of large energy density is the fa
vacuum~the quantum state is localized at the top of the p
tential!. The dynamics in this case is described by the p
cess of spinodal decomposition and phase separation, c
acterized by the exponential growth of long-waveleng
unstable fluctuations. These instabilities and the ensu
large fluctuations of the charged fields and particle prod
tion result in the formation of a non-equilibrium plasma a
the non-perturbative production of photons and therefore
electric and magnetic fields. The spinodal instabilities
shut-off by the non-linearities and the resulting plasma p
sesses a non-equilibrium distribution function of charg
scalars peaked at low momenta.~b! The stage of large am
plitude oscillations of the order parameter around the m
mum of the potential. This stage arises for exampleafter a
phase transition in which the order parameter has ro
down the potential hill and is oscillating around one of t
minima of the potential. Such would be the case in the c
of the chiral phase transition where a small explicit symm
try breaking term~that gives mass to the pions! will force the
isoscalar order parameter to evolve towards the minim
This stage is characterized by parametric amplification
quantum fluctuations of the charged fields and again res
in non-perturbative production of charged scalarsand of
photons@7#. This stage is also relevant in cosmology a
describes the reheating processafter an inflationary phase
transition or in chaotic inflationary models@9#. The phenom-
enon of parametric amplification of quantum fluctuatio
during the oscillatory phase of the order parameter, the
flaton in the cosmological setting, has been recognized
very efficient mechanism of particle production and rehe
ing in the early universe@25,26#. Parametric amplification o
pion fluctuations after a supercooled chiral phase transi
has also been recognized to be an important possibility
heavy ion collisions@27#. Both non-equilibrium phenomen
are non-perturbative in the scalar quartic self-coupli
Therefore, the dynamics in the scalar sector is studied c
sistently in leading order in the largeN expansion, while
electromagnetic phenomena are studied to lowest order ia.

Spinodal instabilities or parametric amplification of qua
tum fluctuations ofcharged fieldsresult in the formation of a
nonequilibrium plasma. In both cases strong fluctuations
the electromagnetic currents result in the production of p
tons i.e. electric and magnetic fields as well as screen
currents generating screening masses and an electrical
ductivity in the medium.

Thus, our main objectives are to study thedynamicsof
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formation of the non-equilibrium plasma, photon producti
and the power spectrum in the generated electric and m
netic fields, the onset of electric and magnetic screening p
nomena described in real time and the build up of cond
tivity in the medium. Equilibrium aspects of hot scalar QE
had been previously studied@22,28# and we will compare the
non-equilibrium aspects to the equilibrium case to highlig
the differences and similarities.

Results: „a… Photon production
We have derived a consistent kinetic equation to desc

photon production in situations strongly out of equilibriu
and used this equation to lowest order ina ~the electromag-
netic coupling! and leading order in the largeN limit for the
charged fields, to obtain the spectrum of photons produ
via spinodal and parametric instabilities. In the case of sp
odal instabilities which correspond to the case of a sup
cooled~second order! phase transition we have obtained t
power spectrum and correlation function of the electric a
magnetic fields generated during the non-equilibrium sta
We find that there is adynamical correlation length that
grows asj(t);At at short times. It determines the spati
correlations of the electromagnetic fields. The power sp
trum is peaked at long-wavelength with an amplitude;a/l2

with l the quartic self-coupling of the charged scalar field
In the case of parametric amplification the power spectr
peaks near the center of parametric resonance bands; the
plitude being also;a/l2 but the electric and magnetic field
have small correlation lengths. In the asymptotic regime
distribution of produced photons as function of frequencyv
behaves as;am2/@v3l2#. This entails a logarithmically in-
frared divergent number of photons but a finite total ener
In the case when the plasma is generated by spinodal in
bilities, the asymptotic photon distribution continues to gro
proportional to logmt due to collinear singularities. Thes
behaviors points to the necessity of a resummation perh
via the dynamical renormalization group introduced
Ref. @29#.

„b… Magnetic and Debye screening masses. We intro-
duce a definition of the magnetic and Debye screen
masses out of equilibrium which are the natural extension
that in equilibrium @24,30,31#. We find that the magnetic
mass out of equilibriumvanishesat ordera through cancel-
lations akin to those that take place in equilibrium. Furth
more, we introduce an effective magnetic mass that descr
non-equilibrium screening phenomena for long-wavelen
fluctuations as a function of time and which reveals the d
ferent time scales of the processes that contribute to the
cellation of the magnetic mass. Asymptotically for lon
times and in the long-wavelength limit we find that proces
which are the non-equilibrium counterpart of Landau dam
ing contribute on time scales which are much longer th
typical production and annihilation processes.

The extrapolation of this time dependent effective ma
netic mass to the zero momentum limit at finite time reve
an unexpected instability in the time evolution of transve
electromagnetic mean fields during the time scales studie
this article. This is a rather weak instability presumably
lated to photon production although the precise relation
not clear and deserves further study.
7-3



n

ke

di
re
-

he
ts
m

in
a

g
ra
c

b-

to
on
-
u

l is

n
on
n
rl
n

I
a
is
, b
e
o
ia

tr
ult
ow

g
th
in
IX

nd
lts
ic
ui-

a-
a
ta-

um
the

the
e
m-

a
ses
or-

c-
d
t of
-

ics

his

eld

n of
ts
ant
a-
ag-
try

phe-
ch
ribe
his

ne-
he

by

a
t

nd
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In the case of spinodal instabilities we find that the~elec-
tric screening! Debye mass at leading order ine2 and 1/N is
finite and given bymDeb

2 58umRu2e2/l1O(1). In thecase of
parametric amplification the Debye mass grows monoto
cally with time asAt times a coefficient of orderO(e2/l).
This result is a consequence of non-linear resonances@32#
which make the charged particle distribution strongly pea
at small momentum,Nk(t5`);umRu2/@lk2#. Since the De-
bye mass is determined by thederivativeof the distribution
function, the singularity at small momentum results in a
vergent Debye mass for asymptotically long time. This
sult, valid to first order ina, strongly suggests that a resum
mation of electromagnetic corrections will be required in t
case of parametric resonance. Such a program lies ou
the scope of this work and will be the subject of a forthco
ing study.

„c… Transverse electric conductivity. As the plasma of
charged particles forms the medium becomes conduct
We study the transverse electrical conductivity from line
response out of equilibrium~Kubo’s conductivity! as a func-
tion of time to lowest order in the electromagnetic couplin
The early time behavior during the stage of spinodal or pa
metric instabilities results in a rapid build up of the condu
tivity which attains a non-perturbative valueO(am/l) at the
end of this stage. We find that the conductivity isfinite for all
k ~including k50) at finite time. Asymptotically at long
times, the conductivity attains a form similar to the equili
rium case~to lowest order ina) but in terms of the non-
equilibrium distribution functions.

This feature of the asymptotic conductivity must apply
other physical magnitudes for asymptotic times. Namely,
can compute theirt→` limit just replacing the thermal oc
cupation numbers in their equilibrium expression by the o
of-equilibrium distribution functions.

The article is organized as follows: in Sec. II the mode
introduced and the largeN limit is described. In Sec. III we
review the main features of spinodal decomposition a
parametric amplification and introduce the relevant n
equilibrium Green’s functions necessary for the calculatio
In Sec. IV we study photon production both during the ea
stages of the instabilities as well as at asymptotically lo
times, In Sec. V we study photon productionin equilibrium
to contrast and compare to the non-equilibrium results.
Sec. VI we study magnetic screening and the magnetic m
out of equilibrium. Just as in the equilibrium case in th
abelian theory, we show that the magnetic mass vanishes
point out the different time scales for the processes involv
A suitably defined effective magnetic mass describes n
equilibrium aspects of magnetic screening on intermed
time scales. Section VII studies the Debye~electric! screen-
ing mass, and it is argued that in the case of parame
amplification the Debye mass diverges because as a res
a singular distribution function for the charged scalars at l
momentum. In Sec. VIII we study Kubo’s~linear response!
transverse electrical conductivity to lowest order ina. In
particular we focus on the build-up of conductivity durin
the early stages of formation of the plasma. We compare
conductivity in the asymptotic time regime to the result
equilibrium. Our conclusions are summarized in Sec.
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Here we also discuss the limit of validity of our studies a
the potential phenomenological implications of the resu
from this model. An Appendix is devoted to a novel kinet
equation that describes photon production away from eq
librium.

II. THE MODEL: SQED WITH N CHARGED SCALARS
IN THE LARGE N LIMIT

We focus on the non-equilibrium dynamics of the form
tion of relativistic quantum plasma at high density after
phase transition, either via long-wavelength spinodal ins
bilities in the early stages of a rapid~quenched! second order
phase transition or by parametric amplification of quant
fluctuations as the order parameter oscillates around
equilibrium minimum. Previous work@26,32–34# revealed
that both types of phenomena are non-perturbative in
scalar self-coupling, hence we propose to use the largN
limit as a consistent tool to study non-equilibrium pheno
ena non-perturbatively. Our main goals are to provide
quantitative understanding of several important proces
that are of interest both in cosmology as well as in the f
mation of a quark-gluon plasma:~i! nonequilibrium produc-
tion of photons, i.e. the nonequilibrium generation of ele
tromagnetic fields,~ii ! the dynamics of screening an
generation of electric and magnetic masses strongly ou
equilibrium,~iii ! the build-up of conductivity in the nonequi
librium plasma.

We consider a version of scalar quantum electrodynam
with N charged scalar fieldsF r to be collectively referred to
as pions coupled to a neutral fields is such a way that the
scalar sector of the theory has anO(2N11) isospin symme-
try. The coupling to the electromagnetic field reduce t
symmetry to anSU(N)global3U(1)local . When we consider
the breaking of the isospin symmetry, the neutral scalar fi
s will acquire an expectation value, butnot the charged
fieldsF r . There are two main reasons for this choice~a! this
allows to separate the Higgs phenomenon and generatio
mass for the vector field from truly non-equilibrium effec
and ~b! we seek to describe a phenomenologically relev
model, in particular the role of non-equilibrium pion fluctu
tions during the chiral phase transition wherein electrom
netism is not spontaneously broken by chiral symme
breaking.

The same methods can be used to study the Higgs
nomenon out of equilibrium and we expect to report on su
study in the near future. Furthermore, as we seek to desc
some relevant phenomenology for low energy QCD, t
model describes the largeN limit of the O(4) gauged linear
sigma model that describes the three pions. Electromag
tism is unbroken but isospin is broken by the coupling of t
charged pions to electromagnetism and this is captured
the model under consideration.

In this Abelian theory it is straightforward to provide
gauge invariantdescription by requiring that the set of firs

class constraints,P050; “W •EW 2r50 annihilate the physi-
cal states@35,36# with P0 being the canonical momentum
conjugate to the temporal component of the vector field a

“
W
•EW 2r50 is Gauss’ law andr is the charge density. This
7-4
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procedure is described in detail in@35,36# where it is shown
to be equivalent to a gauge-fixed formulation in Coulom
gauge. The instantaneous Coulomb interaction is traded
Lagrange multiplierA0(xW ,t) not to be confused with the
original temporal component of the gauge field. The issue
gauge invariance is an important one because we will st
the distribution function of charged scalar fields and by p
viding a gauge invariant description from the beginning
avoid potential ambiguities.

In this formulation we introduce the physical fields

~s,F r ,F r
† ,AW T

i ,A0!, r 51, . . . ,N.

The electromagnetic potential is a physical field which sa
fies the transversality condition

¹•AW T50,

whereasA0 is the Lagrange multiplier associated with th
Gauss’ law constraint

¹•E52¹2A05r.

Thus A0 is a non-propagating field completely specified
the charge density evolution.

To simplify expressions, we now use the following not
tions:

F†F5(
r 51

N

F r
†F r , ]mF†]mF5(

r 51

N

]mF r
†]mF r ,

F†¹F5(
r 51

N

F r
†¹F r , F†Ḟ5(

r 51

N

F r
†Ḟ r .

With these notations the Lagrangian density is written

L5L11L21L3 ~2.1!

with

L15
1

2
]ms]ms1]mF†]mF

2m2S 1

2
s21F†F D2

l

2N S 1

2
s21F†F D 2

, ~2.2!

L25
1

2
]mAW T•]mAW T1

1

2
~¹A0!2 ~2.3!

and

L352
ie

AN
AW T•~F†¹F2¹F†F!

2
e2

N
~AW T

22A0
2!F†F2

ie

AN
A0~FḞ†2F†Ḟ!.

~2.4!
08500
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We have rescaled the couplings with the proper powers oN
so thate, l are fixed in the largeN limit. This rescaling
allows a consistent identification of terms as powers of 1N.

We focus on the evolution of initial states with a nonpe
turbatively large energy density~of orderm4/l@m4) in two
different situations:~i! m2,0: this case corresponds to
symmetry breaking potential. We will choose the neut
field s to describe the direction of global symmetry brea
ing, hence the local gauge symmetry describing electrom
netism is not spontaneously broken, i.e.^F&50. A rapid
~quenched or supercooled! symmetry breaking phase trans
tion can be described by assuming thatm2 changes sign sud
denly from positive describing a symmetric potential
negative describing a symmetry breaking poten
@32,34,37#. The long-wavelength modes become unsta
and grow exponentially, this is the process of spinodal
composition and the hallmark of phase separation.

We emphasize that in the case under consideration
choice of negative signdoes notresult in the spontaneou
breakdown of the gauge symmetry, since in this model
gauge fielddoes notcouple to the order parameters. Indeed,
the global gauge symmetry is always unbroken as
charged fieldsdo notacquire an expectation value.

~ii ! m2.0, ^s&(t50)'m/Al: in this case the expecta
tion value of the sigma field will oscillate inducing larg
parametric amplification of theF field. In both cases the
quantum fluctuations of the fields will become no
perturbatively large in the scalar self-coupling and these w
be treated in the leading order in the largeN limit ~mean
field! @32,34#. The electromagnetic interaction instead, bei
of ordera will only give small corrections to the scalar fiel
evolution: thus the backreaction of the gauge field on
evolution of the scalar field will be neglected. Therefore
leading order inN the equations of motion for the scala
sector are the same as those obtained in Refs.@32# in absence
of electromagnetic coupling.

Assuming in general that the sigma field acquires a n
equilibrium expectation value we shift

s~xW ,t !5ANw~ t !1x~xW ,t !, ^x~xW ,t !&50 ~2.5!

where the expectation value is taken in the time evolv
density matrix or initial state. The largeN limit in the scalar
sector can be obtained either by introducing an auxiliary fi
@38# or equivalently in leading order by the Hartree-like fa
torizations@34#

~F†F!2→2^F†F&F†F ~2.6!

xF†F→x^F†F&. ~2.7!

The non-linear terms of thes field lead to subleading con
tributions in the largeN limit, and to leading order the dy
namics is completely determined by theN complex scalars
F. The factorization that leads to the leading contribution
the largeN limit makes the Lagrangian for these fields qu
dratic ~in the absence of the gauge coupling! at the expense
of a self-consistent condition: thus charged fieldsF acquire a
self-consistent time dependent mass. The dynamics is d
7-5
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mined by the equation of motion ofw(t) and by the Heisen-
berg equations of the charged fields.

III. SPINODAL AND PARAMETRIC INSTABILITIES:
SUMMARY OF MAIN FEATURES

Before we begin our study of non-equilibrium photon pr
duction and the emergence of dynamical masses, we re
the main features associated with the non-equilibrium
namics of the scalar fields to provide the physical picture
the basic ideas upon which we will elaborate with the inc
sion of the gauge fields. For more details the reader is
ferred to @32,34#. As mentioned above the leading order
the largeN limit can be obtained by a Hartree-like factoriz
tion that turns the Lagrangian into a quadratic form. T
equation of motion for the expectation valuew(t) @see Eq.
~2.5!# is given by

ẅ~ t !1m2w~ t !1
l

2
w3~ t !1

l

N
^F†F&w~ t !50. ~3.1!

Introducing the usual decomposition

F r~ t,xW !5E d3k

A2~2p!3
@ar~kW ! f k~ t !eikW•xW

1br
†~kW ! f k* ~ t !e2 ikW•xW#, ~3.2!

F r
†~ t,xW !5E d3k

A2~2p!3
@br~kW ! f k~ t !eikW•xW

1ar
†~kW ! f k* ~ t !e2 ikW•xW#, ~3.3!

we find that the charged fields obey the Heisenberg equat
if the mode functionsf k(t) obey the following equations o
motion @32,34#:

F d2

dt2
1k21m21

l

2
w2~ t !1

l

N
^F†F&G f k~ t !50. ~3.4!

We will choose the initial state to be the state annihilated
the ar(kW ), br(kW ) operators and determined by the followin
initial conditions on the mode functions,

f k~0!5
1

AWk

, ḟ k~0!52 iWkf k~0!. ~3.5!

The frequenciesWk will be chosen in the particular cases
be analyzed below. This choice of initial state with the init
conditions given by Eq.~3.5! corresponds to the vacuum o
the Fock quanta of oscillators of frequenciesWk . This initial
state can be generalized straightforwardly to a thermal d
sity matrix, but the main physical mechanisms can be hi
lighted in a simpler manner by the choice of this state. W
this choice one finds

l

N
^F†F&5

l

4E d3k

~2p!3
u f k~ t !u2. ~3.6!
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This expectation value is ultraviolet divergent, therefore
renormalization must be carried out consistently in terms
mass and coupling constant and the reader is referre
@32,34# for details.

It proves convenient to introduce dimensionless variab
in terms of the renormalized mass and coupling

t5umRut, q5
k

umRu
, g5

lR

8p2
, Vq5

Wk

umRu
~3.7!

h2~t!5
lR

2umRu2
w2~ t !, wq~t!5umRu1/2f k~ t ! ~3.8!

and the subtracted self-consistent self-energy@32,34#

gS~t!5gE
0

`

q2 dqH uwq~t!u22uwq~0!u2

1
Q~q21!

2q3
@2h2~0!1h~t!21gS~t!#J .

~3.9!

From now on we set the only dimensional variable in t
problem umRu[1 and all dimensionful quantities will be in
units of umRu.

To leading order in the largeN limit the dynamics is
completely determined by the following equations of moti
@32,34#:

ḧ~t!6h~t!1h3~t!1gS~t!h~t!50, ~3.10!

F d2

dt2
611q21h2~t!1gS~t!Gwq~t!50. ~3.11!

Two different cases correspond to the different signs
the evolution equations above.

The negative sign is associated with tree level potent
that allow global O(2N11) broken symmetric ground
states, whereas the positive sign determines a potential
a symmetric minimum. As it will be discussed in detail b
low, the non-equilibrium dynamics in thebroken symmetry
case is described for early times by the process of spino
decomposition and phase ordering and triggered by lo
wavelength instabilities just as in a typical second ord
phase transition during a rapid quench through the crit
temperature@37#.

For positive sign, the physical situation that we want
describe is the case when the order parameter has an i
value corresponding to a large amplitudew(t50) of order
O(mR /AlR) i.e. h(0)5O(1) @see Eq.~3.8!#. The subse-
quent non-equilibrium evolution of the order parameter
described in terms of large amplitude oscillations around
minimum of the potential. This situation would describe t
dynamicsafter the phase transition when the order parame
has rolled down the potential hill and undergoes large am
tude oscillations near the minimum. In cosmology this si
ation also describes the period of reheating in chaotic s
7-6
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narios@25,26#. As can be seen from the equation of moti
~3.11! the effective mass for the charged field modes os
lates in time leading to parametric amplification@25,26,34#.

In this case the phenomenon is that of energy tran
from the ‘‘zero mode’’ i.e. from the expectation value of th
order parameter to the modes with non-zero wavevectors
consequence of parametric amplification of quantum fluct
tions.

Thus, the physics is very different between the two ca
and the only feature in common is that either through
growth of long-wavelength fluctuations via spinodal ins
bilities or the growth of fluctuations via parametric ampli
cation the ensuing non-equilibrium dynamics results in
production of a dense plasma of charged particles stron
out of equilibrium.

The initial conditions on the order parameter~condensate!
are chosen to be

h~0!5h0 , ḣ~0!50, ~3.12!

and the initial conditions on the mode functions are@see Eqs.
~3.5! and ~3.8!#

wq~0!5
1

AVq

, ẇq~0!52 iAVq, ~3.13!

where the dimensionless frequenciesVq will be determined
in each particular case below.

A. Broken symmetry: spinodal instabilities

Consider the case in which the system is undergoin
sudden phase transition out of equilibrium from an init
disordered state at large temperature very rapidly to alm
zero temperature, i.e. a quenched phase transition with a
ishing order parameter@34,37#. For t.0 the equations of
motion are those for a broken symmetry case with the (2)
sign in Eq.~3.11! with h(0)!1,ḣ(0)50. For simplicity, we
shall consider the caseh(0)50 which entailsh(t)[0.

Furthermore, we see that for very weak coupling a
early times i.e. when the back reaction from the termgS(t)
in Eq. ~3.11! can be neglected, there is a band ofspinodally
unstablewave-vectors 0<q<1. The modes in this unstabl
band will grow exponentially initially. Because we are d
scribing an initial condition corresponding to a sudd
quench, we impose the initial condition that at the initial tim
the mode functions describe particles of the stable phase,
we choose the initial frequencies for the modes in the
stable band to be given by@32,34,37#

Vq5Aq211 for q2,1 ~3.14!

the short wavelength modes are not affected by the sud
quench and we choose

Vq5Aq221 for q2.1. ~3.15!

However, we emphasize that detailed numerical studies
veal that the dynamics is not very sensitive to the choice
the initial frequencies for weak coupling@32,34#.
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The important feature is that this initial state has no
perturbatively large energy density, of orderumRu4/lR as
compared to the broken symmetry vacuum state, for wh
uhu51.

As discussed in Refs.@32,34# the ensuing dynamics is
strongly out of equilibrium. The modes with wavevectors
the unstable band begin growing exponentially and their c
tribution to the self-consistent expectation valuegS(t)
causes it to grow exponentially. This instability is the ha
mark of the process of phase separation and determines
emergence of correlated regions@32,34,37#: these are the fa-
miliar spinodal instabilities associated with the process
phase separation and phase ordering. The contribution
these unstable modes togS(t) dominates the early time dy
namics and whengS(t) becomes ofO(1) and competes
with the tree level term (21) in the evolution equations fo
the mode functions~3.11! these instabilities shut-off throug
the backreaction. This defines a newdynamical time scale
that determines the onset of full non-linear evolution and
estimated to be@32,34#

tNL5
1

2
lnF1

g
A8

pG1O~ lnu ln gu!. ~3.16!

Thus, two different regimes emerge:
~i! The early time regime fort<tNL in which the back-

reaction can be neglected and the evolution of the m
functions is essentially linear and dominated by the spin
ally unstable wave-vectors for which the mode functio
grow exponentially~linear instabilities!.

~ii ! The late time regime fort>tNL for which the effec-
tive mass squaredM 2(t)5211gS(t)1h2(t) tends to
zero and the mode functions become effectively mass
@32#.

1. Early time regime

For t<tNL and weak coupling, the effects of the bac
reaction can be neglected and the mode functions obe
linear equation of motion. Whereas the modes outside
spinodally unstable band oscillate and their amplitudes
main bound in time, those in the unstable band grow ex
nentially. For the caseh0!1 we can neglect at early time
both the quantum fluctuationsgS(t) andh2(t) in the mode
equations~3.11!. The explicit solution is thus@32#

wq~t!5aqexp~tA12q2!1aq* exp~2tA12q2!
~3.17!

where the coefficientaq is determined by the initial condi
tions ~3.13!, i.e.

wq~0!5~11q2!21/4, ẇq~0!52 i ~11q2!1/4,

we find

aq5
A12q22 iA11q2

2A12q2~11q2!1/4
. ~3.18!
7-7
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A feature of the solution~3.17! with ~3.18! that will become
important is that when the exponentially damped solut
becomes negligible as compared to the exponentially gr
ing one, the phase of the mode functionswq(t) freeze, i.e.
becomes constant in time and is a slowly varying function
q for long wavelengths.

2. Late time regime

For timest.tNL the effective mass termM 2(t)521
1gS(t) vanishes leading to the sum rule@32,34#

gS~`!51 ~3.19!

and the mode functions obey a massless wave equation.
asymptotic solutions are given by@32#

wq~t!5Aqeiqt1Bqe2 iqt ~3.20!

where the coefficientsAq ,Bq are both non-vanishing becaus
the Wronskian is constant and determined by the initial c
ditions

22i 5W@wq ,wq* #5ẇq~t!wq* ~t!2wq~t!ẇq* ~t!

522iq@ uBqu22uAqu2# ~3.21!

leading to the important result

uBqu22uAqu25
1

q
. ~3.22!

Furthermore, the sum rule~3.19! is asymptotically domi-
nated by the modes in the unstable band

gS~t! 5
t→`

gE
0

1

q2dq@ uAqu21uBqu2#1oscillating terms

~3.23!

where the oscillating terms vanish as 1/t. We conclude@32#
that for the modes in the unstable band

uAqu25O~1/g!5uBqu2, 0,q,1 ~3.24!

determining thatAq ,Bq are both ofO(1/Ag) whereasAq ,Bq
are of order one elsewhere.

The following sum rules arise from~a! the vanishing of
the effective mass and~b! conservation of energy@32#

E
0

1

q2dquAqu25
1

2g
1O~1! ~3.25!

E
0

1

q4dquAqu25
1

8g
1O~1!. ~3.26!

Furthermore, the smallq behavior ofAq andBq is given by
@32#,
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q→0

2
i

2q
@K1 iqL1O~q2!#,

Bq 5
q→0 i

2q
@K2 iqL1O~q2!# ~3.27!

where ImLK̄51 according to the Wronskian condition@32#.
The non-zero coefficientK is determined by the linea

growth in time of the modewq50(t) in this case with broken
symmetry@32#. For small coupling it is found numerically to
be given by@32#,

K5K12 iK 2 where

K65
1

Ag
$1.1 . . .70.003 . . .g1O~g2!%. ~3.28!

This asymptotic behavior for small momentum will prove
be important for a quantitative analysis of the magne
mass.

B. Unbroken symmetry: parametric amplification

In the unbroken symmetry case, corresponding to
choice of the plus sign in the equations of motio
~3.10!,~3.11! the frequenciesVq are chosen to be@32#

Vq5Aq2111h2~0! ~3.29!

and the initial condition for the dimensionless order para
eter is chosen to be

h~0![h05O~1!, ḣ~0!50. ~3.30!

In this case the ‘‘zero mode’’~expectation value! h(t) os-
cillates around the minimum of the potential resulting in
oscillatory time dependent mass term for the modeswq(t).

1. Early time regime

Neglecting the backreaction of the fluctuations, an os
latory time dependent mass leads to parametric amplifica
of the mode functions which are Floquet solutions. The
solutions are characterized by parametric instability band

For weak coupling the early time behavior ofh(t) and
the mode functionswq(t) can be found by neglecting th
backreaction terms in the equations of motion~3.10!,~3.11!
for the unbroken symmetry case. The equation for the z
mode with the initial conditions~3.30! has as solution a
simple elliptic function@32#. Inserting this elliptic function,
the evolution equation for each modewq(t) becomes a Lame´
equation that can be analytically solved in terms of Jac
theta functions, the details are given in@32#. The important
feature is that this Lame´ equation hasonly one band of para-
metric instability for realq. The unstable band correspond
to wave vectors@32#

0,q,
h0

A2
. ~3.31!
7-8
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The modes in the unstable band grow exponentially in tim
whereas those in the stable regionh0 /A2,q,` oscillate in
time with constant amplitude.

The explicit solution with boundary conditions~3.13! for
the mode functions in the unstable band is given by

wq~t!5aqUq~2t!1aq* Uq~t! ~3.32!

with the Floquet solutionUq(t) given in @32#.
With the choice of frequencies~3.29! the coefficientaq is

found to be given by

aq5
1

2AVq
S 12

2iVq

Wq
D , Wq522qAh0

2/2111q2

h0
2/22q2

.

~3.33!

The Floquet solutionsUq(t) are derived in detail in@32# and
depend on the initial conditionh0 through the nomeq̂(h0).
Since in this caseq̂(h0),e2p50.0432139 . . . for anyini-
tial conditionh0 @32#, we can expressq̂(h0) by the excellent
approximation

q̂~h0!5
1

2

~11h0
2!1/42~11h0

2/2!1/4

~11h0
2!1/41~11h0

2/2!1/4
~3.34!

with an error smaller than;1027 @32#. In addition we can
use the approximationq̂(h0)!1 and the Floquet solution
simplify in this limit to

Uq~2t!5eBqt
sin~pvq2A11h0

2t!

sinpvq
1O~ q̂! ~3.35!

with Floquet index

Bq54A11h0
2q̂~h0!sin2pvq1O~ q̂2!,

sinpvq5A12
2

h0
2

q21O~ q̂!, cospvq5
A2

h0
q1O~ q̂!.

~3.36!

Therefore the backreactiongS(t) grows exponentially at
early times because of the parametric instabilities. The ex
nential envelope of the backreaction term is given by@32#

gS~t!5
g

ÑAt
eB̃t ~3.37!

whereÑ andB̃ can be found in@32#. When the backreaction
competes with the tree level term, i.e.gS(t)'11h0

2/2 the
full nonlinearities must be taken into account, this equa
determines thenon-linear time scaletNL given by @32#

tNL'
1

B̃
lnF Ñ~11h0

2/2!

gAB̃
G . ~3.38!
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Detailed analytic and numerical studies in@32# reveal that
most of the particle production occurs during the time int
val t<tNL .

For tNL.t.1 the modulus squared of the mode fun
tions uwq(t)u2 is peaked at the value ofq at which the Flo-
quet index is maximum, this value is given by@32#

q* 5
1

2
h0@12q̂~h0!#1O~ q̂2!. ~3.39!

2. Late time regime

The parametrically resonant band, 0<q<h0 /A2, is shut-
off by the non-linearities@the term gS(t)] for times t
*tNL . Two non-linear resonant bands appear in this regim
One nearq50 and the other just belowq5h0 /A2. The
width of these nonlinear resonances diminishes in time.
have for the non-linear resonant bands@32#

0,q2,
K1

t
and

h0
2

2
2

K2

t
,q2,

h0
2

2
~3.40!

~with K1 ,K2 determined in Ref.@32#! and the phase spac
for these small resonant regions becomes increasin
smaller at late times.

Asymptotically, the effective mass oscillates around t
constant value@32#

M 2~`!511gS~`!511
h0

2

2
~3.41!

and the mode functions can be written as

wq~t!5Aq~t!eivqt1Bq~t!e2 ivqt, vq5Aq21M 2~`!

~3.42!

where the amplitudesAq(t) andBq(t) depend on the slow
time scalet/tNL for t.tNL and are defined by@32#

Aq~t!5
1

2
e2 ivqtFwq~t!2 i

ẇq~t!

vq
G ~3.43!

Bq~t!5
1

2
e1 ivqtFwq~t!1 i

ẇq~t!

vq
G . ~3.44!

These amplitudes vary slowly in time and in particul
vquAq(t)u2 is identified with the number of asymptotic pa
ticles of massM 2(`) @32#.

For wave vectors inside the small bands ofnon-linear
resonances~3.40!, these amplitudes grow with a power la
@32#, whereas the modes outside from these resonant reg
oscillate with constant amplitude. The fact that the width
these resonances diminishes at longer times is a consequ
of the non-linearities. A very important consequence is t
asymptotically for all modes withqÞ0, h0 /A2

lim
t→`

Aq~t!5Aq , lim
t→`

Bq~t!5Bq ~3.45!

whereAq andBq are constants.
7-9



so

rta
tiv
re

um
e
s

ar
ze
lo
en

n

th

tr
s
i

th

se
m
in

ly,

e

to
e

tic
les
of

o-
y
a
of
na.

n-
ur

rd

the
der

D. BOYANOVSKY, H. J. de VEGA, AND M. SIMIONATO PHYSICAL REVIEW D61 085007
Hence, the mode functions withqÞ0, h0 /A2 asymptoti-
cally behave as

wq~t! 5
t@1

Aqeivqt1Bqe2 ivqt. ~3.46!

Asymptotically the constancy of the Wronskian leads to

uBqu22uAqu25
1

vq
. ~3.47!

Furthermore, for the modes with wave vectors in the re
nant band 0,q,h0 /A2,

uAqu5OS 1

Ag
D 5uBqu. ~3.48!

Just as in the broken symmetry case, there are two impo
sum rules as a result of the asymptotic value of the effec
mass and of conservation of energy. In this case these
@32#

E
0

h0 /A2
dq q2uAqu25

1

4g
h0

21O~g0!,

E
0

h0 /A2
dq q4uAqu25

1

32g
h0

41O~g0!. ~3.49!

C. Formation of the plasma

The main conceptual feature that emerges from the s
mary above is that in both situations, broken or unbrok
symmetry, spinodal or parametric instabilities lead to profu
particle production. The particles that are produced
charged scalars, these are produced in pairs of total
momentum, and the distribution of produced particles is
calized in the region of instabilities. In the case of brok
symmetry the distribution is peaked in the region 0<q<1
and in the case of unbroken symmetry in the region 0<q
<h0 /A2. In both cases the amplitude of the mode functio
in these regions becomeuwq(t)u25O(1/g) i.e. non-
perturbatively large. This amplitude is associated with
number of particles created@32,34# ~see below! and therefore
we conclude that during the period of spinodal or parame
instabilities 0,t<tNL a dense plasma of charged particle
is formedas a result of these instabilities. This plasma
neutral and is described by the distribution functions of
particles, which is proportional touwq(t)u2 @32,34# ~see be-
low! and is clearly a nonequilibrium distribution in the sen
that it cannot be described by a thermal distribution at so
temperature. These distribution functions had been obta
numerically in@32,34#. Figures 1 and 2 displayguwq(tNL)u2

for the broken and unbroken symmetry cases respective
is clear that the square of the mode functions become
order O(1/g) at t'tNL for wave vectors in the unstabl
bands.

Furthermore the distribution of particles continues
evolve fort.tNL and this evolution is more marked in th
unbroken symmetry case.
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We now turn to the description of the electromagne
properties of this nonequilibrium plasma of charged partic
for which we need the nonequilibrium Green’s functions
the charged scalar fields.

D. Basic ingredients: real time non-equilibrium Green’s
functions

The proper description of real time non-equilibrium ev
lution is in terms of the time evolution of an initial densit
matrix. A formulation in terms of a path integral along
complex contour in time allows to use the familiar tools
quantum field theory to study non-equilibrium phenome
In this, the Schwinger-Keldysh or CTP~closed time path!
formulation @34,39#, the essential ingredients are the no
equilibrium Green’s functions. In particular there are fo
possibile two-point functions, denoted by indices (a,b)P
$1,2% which correspond to the evolution along the forwa
and backward time branches.

(a) Transverse photon propagators
Since photons will be treated perturbatively, we need

bare photon Green’s functions. Furthermore we will consi

FIG. 1. guwq(t5tNL)u2 for broken symmetry forg51024 and
h050.

FIG. 2. guwq(t5tNL)u2 for unbroken symmetry forg51024

andh054.0.
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that the initial state is the photon vacuum. Therefore
relevant real time Green’s functions for transverse phot
are given by

^ATi
(a)~xW ,t !AT j

(b)~xW8,t8!&52 i E d3k

~2p!3G i j
ab~k;t,t8!e2 ikW•(xW2xW8),

where the explicit form ofG i j
ab(k;t,t8) is

G i j
11~k;t,t8!5Pi j ~kW !@G k

.~ t,t8!Q~ t2t8!

1G k
,~ t,t8!Q~ t82t !#, ~3.50!

G i j
22~k;t,t8!5Pi j ~kW !@G k

.~ t,t8!Q~ t82t !

1G k
,~ t,t8!Q~ t2t8!#, ~3.51!

G i j
6~k;t,t8!5Pi j ~kW !G k

,~ t,t8!; G i j
7~k;t,t8!5Pi j ~kW !G k

.~ t,t8!
~3.52!

andPi j (kW ) is the transverse projection operator,

Pi j ~kW !5d i j 2
kikj

k2
. ~3.53!

At tree level

G k
.~ t,t8!5

i

2k
e2 ik(t2t8), ~3.54!

G k
,~ t,t8!5

i

2k
eik(t2t8). ~3.55!

(b) Scalar propagators
The scalar propagators are truly nonequilibrium and

be written in the general form

^F r
(a)†~xW ,t !Fs

(b)~xW8,t8!&

52 id rsE d3k

~2p!3 Gk
ab~ t,t8!e2 ikW•(xW2xW8),

where (a,b)P$1,2%, r ,s51, . . . ,N. With the field expan-
sion given by Eqs.~3.2!,~3.3! in terms of the~dimensionful!
mode functionsf k(t) obeying the equations of motion~3.4!
we obtain in theN5` limit,

Gk
11~ t,t8!5Gk

.~ t,t8!Q~ t2t8!1Gk
,~ t,t8!Q~ t82t !,

~3.56!

Gk
22~ t,t8!5Gk

.~ t,t8!Q~ t82t !1Gk
,~ t,t8!Q~ t2t8!,

Gk
12~ t,t8!5Gk

,~ t,t8!, Gk
21~ t,t8!5Gk

.~ t,t8!,
~3.57!

Gk
.~ t,t8!5

i

2
f k~ t ! f k* ~ t8!, ~3.58!

Gk
,~ t,t8!5

i

2
f k~ t8! f k* ~ t !. ~3.59!
08500
e
s

n

An important property of the mode functions in th
asymptotic region will allow us to establish a correspo
dence between the non-equilibrium results to be obtai
below and the more familiar equilibrium results. In bo
cases, broken or unbroken symmetry, after the non-lin
time scale the mode functions become those of a free fi
theory @see Eqs.~3.20! and ~3.46!#. The Wronskian condi-
tions ~3.22! and ~3.47! allows to write the modulus of the
coefficientsAq ,Bq in the form

uBqu25
1

vq
@11Nq#, uAqu25

1

vq
Nq ~3.60!

with vq5q for broken symmetry orvq5Aq21M 2(`) for
unbroken symmetry.

Nq describes the distribution of asymptotic charged sca
particles created during the rapid non-equilibrium stages
spinodal decomposition or parametric instabilities@32,34#.
These arenonequilibriumdistribution functions, a result o
profuse particle production during the stage of spinodal
stabilities or parametric amplification. The number
charged scalars produced during these stages is
perturbatively large, since for the wave vectors in the u
stable bandsNq is of order 1/g.

The asymptotic behavior of the functionsGk(t,t8) when
both time arguments are in the asymptotic region, mu
larger than the non-linear time scale can be written in
illuminating form

Gk
.~ t,t8! 5

t,t8@1 i

2vk
@~11Nk!e

2 ivk(t2t8)1N ke
ivk(t2t8)#

1 i Re@AkBk* eivk(t1t8)#,

Gk
,~ t,t8!5Gk

.~ t8,t ! ~3.61!

where the mixing terms proportional toe6 ivk(t1t8) are a sig-
nal that the non-equilibrium behavior remains in t
asymptotic region. In most circumstances these rapidly va
ing oscillatory terms lead to contributions that vanish ve
rapidly by dephasing.

The first two terms of the function~3.61!, that depend on
the difference of the time arguments can be compared to
of a free field theoryin equilibrium

Gk,equil
. ~ t,t8!5

i

2vk
$@11nk#e

2 ivk(t2t8)1nke
ivk(t2t8)%,

Gk,equil
, ~ t,t8!5Gk

.~ t8,t ! ~3.62!

wherenk is the thermal distribution function. Thus we se
that the part of the asymptotic non-equilibrium Green’s fun
tions that depends on the difference of the time argume
has the form of the free fieldequilibrium Green’s functions
but in terms of thenonequilibriumdistribution functionsNk .
This formal similarity will allow us to compare the non
equilibrium results in the asymptotic regime to those mo
familiar in equilibrium field theory and to interpret the di
ferent processes in the medium.
7-11
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It is convenient to summarize the main features that w
be responsible for the phenomena studied below.

In either case, spinodal instabilities in the case of the
tential allowing broken symmetry states or parametric ins
bilities associated with the oscillatory evolution of the ord
parameter in the case of unbroken symmetry, there are st
fluctuations that lead to non-perturbative particle product
of the orderO(1/g). At times larger than the non-linear time
when the effects of the backreaction become of the sa
order as the tree level terms, the occupation number
modes in the unstable band is non-perturbatively la
@O(1/g)#. The state of the system can be best character
as anon-equilibriumdense plasma. The distribution functio
of the created particles is not an equilibrium one and ha
finite limit for infinite time.

As a result of non-perturbative particle production, t
Green’s functions of the scalar fields, determined by
mode functionsf k(t), are those of aplasmastrongly out of
equilibrium and will provide anon-perturbativecontribution
to the photon polarization.

To leading order in the largeN limit and to lowest order
in a5e2/4p, the photon polarization is given by the dia
grams shown in Figs. 3a,b.

The loop is in terms of the full scalar propagator in t
leading order in the largeN limit, which receives contribu-
tions from the mean-field and background as depicted in
3c.

We now have all of the ingredients to study the elect
magnetic signatures of these non-perturbative phenomen
leading order in the largeN limit and to lowest order ina
5e2/4p.

We emphasize again that these phenomena have no
to do with the ordinary Higgs mechanism. In this model t
global gauge symmetry isnot spontaneously broken by th
initial state even when the potential for the scalar fields
lows for broken symmetry and remains unbroken through
the dynamical evolution.

IV. PHOTON PRODUCTION VIA SPINODAL AND
PARAMETRIC INSTABILITIES

We study the production of photons both via the spino
instabilities associated with the process of phase ordering~in

FIG. 3. Photon polarization with full largeN scalar propagators
The dashed line with the cross at the end represents an inserti
the backgroundh(t).
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the case of broken symmetry potentials! and via the paramet
ric instabilities associated with the non-equilibrium evoluti
of the order parameter around the symmetric minimum~in
the case of unbroken symmetry potentials!. As described in
the previous section, we carry out this study to leading or
in the largeN limit and to lowest order in the electromag
netic coupling. This is similar to the formulation in@40,41#
for the rate of photon production in the QGP to all orders
as and to lowest order inaem.

However, our approach differs fundamentally from t
usual approach in the literature@40–44#, which relies on the
computation of the photoproductionrate from processes tha
satisfy energy conservation, i.e. on shell. This results fr
the use of Fermi’s golden rule in the computation of a tra
sition probability from a state in the far past to another st
in the far future.

Instead our computation relies on obtaining the integra
photon number atfinite time tfrom the time evolution of an
initial state at t0. Clearly this approach is more appropria
in out-of-equilibrium situations where transient, tim
dependent phenomena are relevant.

Non-equilibrium time dependent transient phenome
cannot be captured by the usual rate calculation based
Fermi’s golden rule, since such calculation will obtain t
number of produced photons divided by the total timet in the
limit when t→`. This definition is insensitive to the non
energy conserving processes, which are subleading in
long time limit but could dominate at finite time, and cou
potentially lead to grossly disparate estimates of the to
number of photons produced in a situation in which a plas
has a finite lifetime as is the case in heavy ion collisions

To lowest order ina and leading order in the largeN the
leading process giving rise to photoproduction is theoff-shell
production of a pair of charged pions and one-photon fr
the initial vacuum strongly out equilibrium. Thus, we co
sider the transition amplitude for the processu0̃&
→up1p2g& to ordere, more precisely the amplitude for th
interaction to create a pair of scalars with momentumqW 1kW

andqW respectively and a photon of momentumkW and polar-
ization l. The initial stateu0̃& at time t0 is the Fock vacuum
for pions and photons but its evolution is non-trivial becau
it is not an eigenstate of the Hamiltonian, nor is it perturb
tively close to an eigenstate. In the case of spinodal insta
ties this state is unstable, and it decays via the productio
pions and photons. In the case of parametric instabilities,
state involves a dynamical expectation value for thes field
with non-perturbatively large amplitude~i.e, h0;1).

The lowest order contribution to this amplitude in th
electromagnetic coupling is given by

Aq,k,l~ t !5^p1p2gu i E
t0

t

dt1 d3xJW~ t1 ,xW !•AW T~ t1 ,xW !u0̃&

~4.1!

whereJW (t1 ,xW ) is the electromagnetic current

JW~ t1 ,xW !5
ie

AN
(
r 51

N

~F r
†¹F r2¹F r

†F r !. ~4.2!

of
7-12
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If the ~transverse! photon field is expanded in terms of cr
ation and annihilation operators of Fock quanta associa
with the vacuum at the initial time

AW T~ t,xW !5 (
l51,2

E d3k

A2k~2p!3
@eWl~kW !e2 ikt1 ikW•xWal~kW !

1„eWl~kW !e2 ikt1 ikW•xW
…* al

†~k!# ~4.3!

and the scalar fields are expanded as in Eqs.~3.2!,~3.3!, we
find the amplitude to be given by

Aq,k,l~ t !5
e

A2Nk
E

t0

t

dt1eWl~kW !•qW Teikt1f q* ~ t1! f uqW 1kW u
* ~ t1!.

~4.4!

Squaring the amplitude, summing overq and r and l and
using

(
l51

2

el
i ~kW !el

j ~kW !5P i j ~kW !

we finally obtain that the total number of photons of mome
tum k produced at timet per unit volume from the initial
vacuum state at timet0 is given by

Nph~k,t !5~2p!3
d6N~ t !

d3x d3k
5

e2

2kE d3q

~2p!3
q2~12cos2u!

3U E
t0

t

f q~ t1! f uqW 1kW u~ t1!e2 ikt1dt1U2

~4.5!

whereu is the angle betweenqW and kW , qW •kW5qk cosu. The
same formula can be obtained as a particular case of
generalized kinetic equation for the photon distribution fun
tion obtained in Appendix A. We refer the reader to th
Appendix for a more detailed discussion of the kinetic eq
tion and its regime of validity.

We point out that if the mode functionsf q(t) are replaced
with the usual exponentials exp(2ivqt)/Avq, and the limits
t0→2` and t→` are taken, the familiar energy
conservation Dirac delta function is recovered and there
the process is kinematically forbiddenin the vacuum. Fur-
thermore, the discussion in the previous section highligh
that during the stage of spinodal instabilities or parame
amplification, the mode functions in the unstable bands g
exponentially. Hence the modes in the unstable band
lead to an explosive production of photons during these e
stages. Clearly the maximum production of photons will o
cur in the region of soft momenta, with the wavevectork in
the unstable bands. In this manner the scalar mode funct
with wavevectorsqW andqW 1kW will be in the unstable band
leading to four powers of the exponential growth fact
Thus we will focus on the production of soft photons stud
ing the case of broken symmetry~spinodal instabilities! and
unbroken symmetry~parametric instabilities! separately.
Having recognized the emergence of a dynamical time s
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@see Eqs.~3.16! and ~3.38! for more detailed expressions#
that separates the linear from the non-linear behavior,
analyze both regionst,tNL andt.tNL separately.

A. Photon production via spinodal instabilities

1. tËtNL

The number of produced photons of wavelengthk per unit
volume at timet is given by Eq.~4.5!. Obviously the inte-
grals in this expression can be computed numerically@7#
since the mode functions are known numerically with hi
precision@32#. However, the summary of properties of mod
functions for t<tNL and t.tNL provided in the previous
section allows us to furnish ananalytical reliable estimate
for the photon production. During the early, linear stages,
can insert the expression for the mode functions given
Eqs.~3.17!,~3.18!. Furthermore, we focus on smallk so that
qW and qW 1kW are in the spinodally unstable bands and ke
only the exponentially increasing terms which dominate
integral at intermediate times. The time integral can now
performed and we find~using dimensionless units!

Nph~k,t!5
e2

2k
E d3q

~2p!3
q2~12cos2u!uaqaq1ku2

3
exp@2t„A12q21A12~qW 1kW !2

…#

@A12q21A12~qW 1kW !2#21k2
.

~4.6!
Furthermore, the dominant contribution to theq integral

arises from the smallq region justifying the non-relativistic
approximationq!1, q1k!1. HenceNph(k,t) becomes

1

16

e2

2k
et(42k2)E

0

` dq

~2p!2E21

1

dx q4~12x2!e22t(q21qkx).

~4.7!

For k2t@1 we can use the approximation

E
21

1

dx~12x2!e2Ax52eAF 1

A2
1O~1/A3!G

to perform the angular integration. Notice that the domin
region corresponds tox521. That isqW and kW in opposite
directions. Physically, this corresponds to two charged s
lars with parallel momentaqW and qW 2kW emitting a collinear
photon with momentum2kW ~see Fig. 4!.

In this regime the photon spectrum becomes

Nph~k,t !5
1

64p2

e2

2k
et(42k2)E

0

`

dq
1

~2qkt!2
2q4e2tqk22tq2

~4.8!
7-13
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where the factor 1/(kt)2 arises from the angular integration
Now it is possible to compute the momentum integral

a saddle point approximation. Using the saddle pointq5q̄
[k/2 we obtain

Nph~k,t!5
N1e2

t5/2k
et[42k2/21O(k4)]1O~1/t! ~4.9!

where the proportionality factorN1 is given by

N15
A2

2048p3/2
.

We see that fort<tNL the number of produced photon
grows exponentially with time. The production is most
abundant for soft photonsk!1. However, the derivation o
Eq. ~4.9! only holds in the region in which the saddle poi
expansion is reliable, i.e. fork2t@1.

The k→0 limit can be studied directly. In such case t
angular integration in Eq.~4.7! is straightforward and the
momentum integration can be done using the result

E
0

`

dq q4exp~22tq2!5
3

64

A2p

t5/2

leading to the same result as Eq.~4.9!,

Nph~k,t! 5
k→0N1e2

t5/2k
e4t1O~1/t!.

We thus find an exponentially growing number of emitt
photons~as ;e4t) for t,tNL . Sincee4tNL;g22, we see
that the total number of emitted photons att'tNL is of the
order

FIG. 4. Kinematical configuration corresponding to saddle po
for photoproduction in the broken symmetry case.
08500
Nph~k,tNL!;
e2

kg2
~4.10!

and is predominantly peaked at very low momentum a
consequence of the fact that the long-wavelength fluctuat
are growing exponentially as a consequence of the spin
instability. The power spectrum for the electric and magne
fields produced during the stage of spinodal growth of flu
tuations is

^uE~k,t!u2&'^uB~k,t!u2&'kNph~k,t!. ~4.11!

Two important results can be inferred for the generation
electric and magnetic fields.

At the spinodal time scalet'tNL the power spectrum is
localized at small momenta and with amplitude;a/g2.

Taking the spatial Fourier transform at a fixed given tim
we can obtain the correlation length of the generated elec
and magnetic fields. A straightforward calculation fort
<tNL using Eq.~4.9! reveals that

^EW ~rW,t!•EW ~0W ,t!&;^BW ~rW,t!•BW ~0W ,t!&;e2r 2/j(t)2
,

j~t!;At. ~4.12!

The dynamical~dimensionful! correlation lengthj(t);At
is the same as that for the scalar fields before the onset o
full non-linear regime@32,34#. Therefore, at early and inter
mediate times the generated electric and magnetic fi
track the domain formation process of the scalar fields
reach an amplitude;a/g2 at time scalest'tNL over length
scales'umRu21@ ln(1/g)#1/2.

2. tÌtNL

We now split the time integral in Eq.~4.5! into two
pieces, one from 0 up totNL and a second one fromtNL up
to t. In the first region we use the exponentially growin
modes as in the evaluation above, and in the second re
we use the asymptotic form of the mode functions given
Eq. ~3.46!. The time integral in this second region can no
be performed explicitly and we find

t

since
Nph~k,t!5
e2

8p2k
E

0

1

q4 dqE
21

11

dx~12x2!U E
0

tNL
dt1wq~t1!w uqW 1kW u~t1!e2 ikt11AqAuqW 1kW u

ei (q1uqW 1kW u2k)t2ei (q1uqW 1kW u2k)tNL

q1uqW 1kW u2k

1AqBuqW 1kW u
ei (q2uqW 1kW u2k)t2ei (q2uqW 1kW u2k)tNL

q2uqW 1kW u2k
2BqAuqW 1kW u

e2 i (q2uqW 1kW u1k)t2e2 i (q2uqW 1kW u1k)tNL

q2uqW 1kW u1k

2BqBuqW 1kW u
e2 i (q1uqW 1kW u1k)t2e2 i (q1uqW 1kW u1k)tNL

q1uqW 1kW u1k
U2

@11O~g!# ~4.13!

whereuqW 1kW u5Aq21k212kqx. The momentum integration is restricted to the region of the spinodally unstable band
only in this region the modes acquire non-perturbatively large amplitudes. The integration overq.1 only provides perturba-
tive O(g) corrections.
7-14
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The contribution of the asymptotic regiont@tNL in Eq. ~4.13! displays potentially resonant denominators. As long as
time argumentt remains finite the integral is finite, but in the limit of larget@tNL the resonant denominators can lead
secular divergences. In the long time limit we can separate the terms that lead to potential secular divergences from
remain finite at all times. Close inspection of Eq.~4.13! shows that asymptotically for large time the square modulus of
second, third and fourth terms yield potential secular divergences. The square modulus of the last term is always boun
and oscillates since the denominator never vanishes. In addition, the cross terms either have finite limits or are subdom
t→`. The square modulus of the first term isNph(k,tNL) given by Eq.~4.10!. In order to recognize the different contribution
and to establish a relationship with the equilibrium case it proves useful to use the definitions given in Eq.~3.60!. We find the
following explicit expression for the dominant contributions asymptotically at late times,

Nph~k,t! 5
t@1

Nph~k,tNL!1
e2

4p2k
E

0

1 q4 dq

q uqW 1kW u
E

21

11

dx~12x2!

3H NqNuqW 1kW u
12cos@~q1uqW 1kW u2k!~t2tNL!#

~q1uqW 1kW u2k!2

1Nq@11NuqW 1kW u#
12cos@~q2uqW 1kW u2k!~t2tNL!#

~q2uqW 1kW u2k!2

1@11Nq#NuqW 1kW u
12cos@~q2uqW 1kW u1k!~t2tNL!#

~q2uqW 1kW u1k!2 J @11O~g!#1O~t0!. ~4.14!

The first term, containing the factorNqNuqW 1kW u , corresponds to the processp1p2→g, i.e. massless charged scalar an
hilation into a photon, the second and third terms~which are equivalent upon re-labellingqW→2qW 2kW ) correspond to brems
strahlung contributions in the medium,p6→p61g.

The following relation:

12x252
1

4q2k2~q1uqW 1kW u2k!~q2uqW 1kW u1k!~q2uqW 1kW u2k!~q1uqW 1kW u1k!,

ensures that there are only simple poles in the integrand of Eq.~4.14!.
Asymptotically for long time the integrals in Eqs.~4.13!,~4.14! have the typical structure@29#

E
0

`dy

y
~12cosyt!p~y! 5

t→`

p~0!log@megt#1E
0

`dy

y
@p~y!2p~0!u~m2y!#1OS 1

t D , ~4.15!
t.
e
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th-
wherep(y) is a continuous function,m an arbitrary scale and
and g50.5772157 . . . is the Euler-Mascheroni constan
Notice that the expression~4.15! does not depend on th
scalem, as can be easily seen by computing its derivat
with respect tom.

Therefore the simple poles arising from the collinear s
gularities translate in logarithmic secular terms appearing
late times according to Eq.~4.15!.

The denominators in Eqs.~4.13!,~4.14! vanish leading to
collinear singularities, i.e. kinematical configurations whe
the photon and a charged particle have parallel or antipar
momentum. More precisely, the denominators in Eq.~4.14!
vanish at the following points:

uqW 1kW u5k2q, q2k andq1k,

corresponding to cosu5x521, 21 and11, respectively.
It is convenient to perform the angular integration usi

the variablej[uqW 1kW u with dx5jdj/qk. Since the most rel-
08500
e

-
r

e
lel

evant contribution arises from the region of momenta ins
the spinodally unstable band withNq5O(1/g)@1 the angu-
lar integration simplifies and we find

Nph~k,t! 5
t@1 e2

2pk3
logmtE

0

1

q dqNq@ uq2kuNuq2ku

1~q1k!Nq1k#@11O~g!#1O~t0!.

~4.16!

Here uq2ku stands for the absolute value of the differen
between the numbersq andk. If we restore dimensions an
we recall thatNq is of orderO(1/g) for 0,q,1, we find
that the logarithmic term has a coefficient;e2umRu3/@g2k3#.
This remark will become useful when we compare later t
similar logarithmic behavior in the case where the scalars
in thermal equilibrium~Sec. VIII!.

These logarithmic infrared divergences lead to logari
mic secular terms much in the same manner as in Ref.@29#
7-15
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and indicate an obvious breakdown of the perturbative
pansion. They must be resummed to obtain consistently
real time evolution of the photon distribution function. Th
dynamical renormalization group program introduced in R
@29# provides a consistent framework to study this resumm
tion.

A similar logarithmic behavior of the occupation numb
has been found in a kinetic description near equilibrium
the hard thermal loop approximation@28#.

Furthermore, we note that the evolution equation for
photon distribution function under consideration has
glected the build-up of population of photons, and theref
has neglected the inverse processes, such as charged-
production from photons and inverse bremsstrahlung. Th
processes can be incorporated by considering the full kin
equation described in Appendix A. Hence a consistent p
gram to establish the production of photons beyond the lin
regime must~i! include the inverse processes in the kine
description and~ii ! provide a consistent resummation of th
secular terms. We postpone the study of photon produc
in the asymptotic regime including these non-linear effects
a forthcoming article.

B. Photon production via parametric amplification

We now study the process of photon production dur
the stage of oscillation of the order parameter around
minimum of the tree level potential in the unbroken symm
try case. This case corresponds to the evolution equat
~3.10!,~3.11! with the plus sign and with the initial condi
tions ~3.29!,~3.30!. We begin by studying the early time re
gime.

1. tËtNL

The dominant contribution to the production of photo
again arises from the exponentially growing terms in
parametrically unstable band. Hence we keep only the ex
nentially growing Floquet solution~3.35! with Floquet index
given by Eq.~3.36!.

In order to perform the time integration we focus on t
exponentially increasing terms and neglect the oscillat
contributions in the product

sin~pvq2A11h0
2t!sin~pvq1k2A11h0

2t!

5sin2~pvq2A11h0
2t!1O~k!

5
1

2
1O~k!1oscillatory terms.

In keeping only the exponentially growing contribution a
neglecting the oscillatory parts we evaluate the envelope
the number of photons averaging over the fast oscillation

With these considerations we now have to evaluate
following integral according to Eq.~4.5!, for t@1, but t
<tNL
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Nph~k,t !5
e2

8k

1

~2p!2E0

`

dqE
21

1

dx

3~12x2!q4U aqaq1k

sinpvqsinpvq1k
U2

3
exp@~Bq1Bq1k!t#

~Bq1Bq1k!
21k2

. ~4.17!

As noted in@32# the Floquet index is maximum atq5h0/2
and this is the dominant region in theq integral. The fact that
during the stage of parametric resonance the integral is do
nated by a region of non-vanishingq is a striking contrast
with the broken symmetry case and a consequence of
structure of the parametric resonance. As before, the stra
is to evaluate the integral for large times by the saddle po
method. Forq nearh0/2 and for smallk the saddle point is
given by

q̄5h0/21x2k21O~k3!,

therefore theq integral in the saddle-point approximatio
yields the result

I 5
e2

256p2

h0
4

kt1/2
expF t16A11h0

2q̂S 12
k2x2

2h0
2 D G1OS 1

t D .

~4.18!

For k2t@1 the angular integral~overx) is dominated by the
region nearx50 and can be evaluated by using anoth
saddle point expansion. In this limit the photon producti
process is dominated by the emission of photons at r
angles with the direction of the scalar with momentumq.
Physically this corresponds to two charged scalars with m
mentaqW andqW 1kW emitting a photon with momentumkW with
qW •kW50 ~see Fig. 5!. This is another difference with the bro
ken symmetry case wherein the production of low mom
tum photons was dominated by collinear emission.

In this limit k2t@1 the saddle point approximation to th
angular integral yields the final result for the photon dist
bution function

Nph~k,t !5e2
N2~h0!

k2t
e4t[ B̂(h0)1O(k3)]1OS 1

t D , k2t@1

~4.19!

FIG. 5. Kinematical configuration corresponding to saddle po
for photoproduction in the unbroken symmetry case.
7-16



itia

t
iti
lu

m
is

e
ll
d

ges
-

e

-

e
Eq.
n-

ion

NONEQUILIBRIUM QUANTUM PLASMAS IN SCALAR . . . PHYSICAL REVIEW D 61 085007
where the coefficientB̂(h0) in the exponential is given by

B̂~h0!54A11h0
2q̂~h0!

with q̂(h0) the nome given by Eq.~3.34!, and the factor
N2(h0) is given by

N2~h0!5
1

32768p

h0
6A11h0

2

~5h0
214!~3h0

214!2q̂3~h0!

and we note that an additional powert21/2 in Eq. ~4.18!
arose from the angular saddle point integration.

We find that there is a strong dependence on the in
condition of the order parameterh(t), i.e. on h0, which
determines completely the energy density in the initial sta
This is consistent with the strong dependence on the in
conditions of the mode functions that determine the evo
tion of the scalar fields@32#.

In particular, we obtain for largeh0

Nph~t! 5

h0@1 e2h0

C1k2t
eC2h0t, C15373.83 . . . ,

C250.69142 . . . , k2t@1. ~4.20!

Furthermore we also point out that in the regionk2t@1
there is an enhancement in the photon spectra at small
menta as compared to the broken symmetry case. This
consequence of the photon emission at right angles (x50) in
contrast with the collinear emission (x561) for the broken
symmetry case.

In the rangek2t<1 the saddle point evaluation of th
angular integral is not reliable, however in the very smak
limit the angular integration can be done directly. We fin
08500
l

e.
al
-

o-
a

Nph~k,t ! 5
k→0e2N3~h0!

kt1/2
e4B̂(h0)t1OS 1

t D , k2t!1,

~4.21!

where the proportionality factorN3(h0) takes the value

N3~h0!5
1

6144p3/2

A2h0
5~11h0

2!3/4

~5h0
214!~3h0

214!2q̂5/2~h0!
.

In particular, for largeh0 we obtain

Nph~t! 5

h0@1 e2h0
1/2

C18kt1/2
eC2h0t, C185422.60 . . . ,

C250.69142 . . . , k2t!1. ~4.22!

This analysis reveals that the soft photon spectrum diver
as 1/k and not as 1/k2 at k→0. That guarantees the electro
magnetic energy density~4.11! is infrared finite.

2. tÌtNL

For timest.tNL we use the asymptotic form of the mod
functions given by Eq.~3.42!, we insert Eq.~3.42! in the
expression~4.5! and we split the time integral into two do
mains 0,t1,tNL and tNL,t1,t. The integral fromtNL
,t1,t is performed explicitly with these asymptotic mod
functions thus obtaining an expression analogous to
~4.13!. In this case, however, the upper limit of the mome
tum integration isqmax5h0 /A2 i.e. the upper limit of the
resonant band which gives the dominant contribut
O(1/g2). The integration over momentaq.qmax gives a cor-
rection perturbative ing. We obtain
Nph~k,t!5
e2

8p2k
E

0

h0 /A2
q4 dqE

21

11

dx~12x2!

3U E
0

tNL
dt1wq~t1!w uqW 1kW u~t1!e2 ikt11AqAuqW 1kW u

ei (vq1v uqW 1kW u2k)t2ei (vq1v uqW 1kW u2k)tNL

vq1v uqW 1kW u2k

1AqBuqW 1kW u
ei (vq2v uqW 1kW u2k)t2ei (vq2v uqW 1kW u2k)tNL

vq2v uqW 1kW u2k
2BqAuqW 1kW u

e2 i (vq2v uqW 1kW u1k)t2e2 i (vq2v uqW 1kW u1k)tNL

vq2v uqW 1kW u1k

2BqBuqW 1kW u
e2 i (vq1v uqW 1kW u1k)t2e2 i (vq1v uqW 1kW u1k)tNL

vq1v uqW 1kW u1k U2

@11O~g!#. ~4.23!
-

We focus on studying the smallk behavior 0,k!1 which
can be obtained with the approximation

v uqW 1kW u5vq1
kqx

vq
1O~k2!.

With this approximation the denominators in Eq.~4.23! be-
come
vq1v uqW 1kW u2k.2vq, vq2v uqW 1kW u2k.2kS 11
qx

vq
D

vq2v uqW 1kW u1k.kS 12
qx

vq
D , vq1v uqW 1kW u1k.2vq .

We remark that sinceM 2(`) is non-zero, these denomina
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torsnever vanish. Therefore the integrals in Eq.~4.23! do not
generate secular terms and they have a finite limit fot
→`. For asymptotically long time and smallk, the two de-
nominators linear ink and their cross-product dominate E
~4.23!. Isolating these dominant contributions we find

Nph~k,`! 5
k→0 e2

4p2k3E0

h0/2q4dq

vq
2 Nq~11Nq!F~q2!@11O~g!#

~4.24!

whereF(q2) is the regular function

F~q2!5E
21

11

dx~12x2!
31~qx/vq!2

@12~qx/vq!2#2

5
2vq

q F4q213M 2~`!

q2
ArgTh

q

vq
2

3vq

q G .

~4.25!

With the identifications given by Eq.~3.60! we recognize
that the dominant contribution in the asymptotic regime
soft photon production arises from bremsstrahlung ofmas-
sivecharged scalars in the medium.

A noteworthy feature is that the soft photon spectrumis
stronglyenhanced for smallk sinceNph(k,`) grows ask23

for k→0, this behavior must be compared to the distribut
at early timet<tNL where we had previously found tha
Nph(k,t)}k21 for k→0 @Eq. ~4.21!#.

Thus in both cases, broken and unbroken symmetry,
find that the asymptotic non-equilibrium photon spectru
behaves for long wavelengths as 1/k3 for k→0. This behav-
ior signals an IR divergence which may require a resumm
tion of higher order terms ina. This is beyond the scope o
this study.

It will be found in Sec. VIII that for charged particlesin
equilibrium, the photon spectrum has very similar featur
Therefore, the total photon numberNph,TOT(t)
5*d3kNph(k,t) is logarithmically divergent at smallk.
Nevertheless the total energy dissipated in photons,

Eph,TOT~t!5E d3kkNph~k,t!

is finite at finite times. As mentioned above, for late time
the broken phase, a resummation ina is needed to asses
more reliably the photon distribution.
08500
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V. PHOTOPRODUCTION FROM CHARGED SCALARS
IN THERMAL EQUILIBRIUM

We compute here the photoproduction process to lead
order in e2 from charged scalarsin thermal equilibriumto
compare it with the non-equilibrium case studied in Sec.
However just as in the non-equilibrium case, we study
production of photons as an initial value problem, i.e,
initial state is evolved in time and the number of photo
produced during afinite timescale is computed. We empha
size again that this calculation is fundamentally differe
from the usual formulation of therate obtained by assuming
the validity of Fermi’s golden rule and energy conservatio

We shall find that there are some striking similarities b
tween the two cases by identifying the high temperature li
T/umRu@1 of the equilibrium case with the small couplin
limit g!1 of the non-equilibrium situation. In both cases t
plasma has a very large particle density.

We highlight the most relevant aspects of the result bef
we engage in the technical details so that the reader
recognize the relevant points of the calculation.

Both from charged scalarsin and outof equilibrium the
photon production isstrongly enhancedin the infrared since
Nph(k,t) increases as 1/k3 whereas for early timesNph(k,t)
grows as 1/k.

In the broken symmetry caseboth in and outof equilib-
rium the number of produced photons increases at late ti
logarithmically in time due to collinear divergences. Th
physical processes that lead to photon production can
identified with collinear pair-annihilation and bremsstrahlu
of pions in the medium.

The distribution of produced photons approaches a
tionary value ast→` in the unbroken caseboth in and out
of equilibrium with a distributionNph(k,`);1/k3. The rel-
evant physical process isoff-shell bremsstrahlungp→p
1g.

Consider that at the initial timet0 there is some given
distribution of photonsNk(t0) and charged scalarsnp . The
kinetic description provided in Appendix A leads to the fo
lowing expression for the change in the photon distribut
when the Green’s functions of all fields are the form of t
equilibrium ones given by Eq.~3.62! but in terms ofnp and
Nk(t0) @28#
Ṅk~ t !5
e2

16p3k
E d3q

vqv uqW 1kW u
q2~12x2!E

t0

t

dt8

3$cos@~vq1v uqW 1kW u1k!~ t2t8!#†@11Nk~ t0!#~11nq!~11nuqW 1kW u!2Nk~ t0!nqnuqW 1kW u‡

1cos@~vq1v uqW 1kW u2k!~ t2t8!#†@11Nk~ t0!#nqnuqW 1kW u2Nk~ t0!~11nq!~11nuqW 1kW u!‡

1cos@~vq2v uqW 1kW u1k!~ t2t8!#†@11Nk~ t0!#~11nq!nuqW 1kW u2Nk~ t0!nq~11nuqW 1kW u!‡

1cos@~vq2v uqW 1kW u2k!~ t2t8!#†@11Nk~ t0!#~11nuqW 1kW u!nq2Nk~ t0!nuqW 1kW u~11nq!‡%. ~5.1!
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The different contributions in the above expression have a simple and obvious interpretation in terms of g
processes@28#.

A. Photoproduction at first order in a

In order to compare to the non-equilibrium situation described above, we will set the initial photon distribution to ze
Nk(t0)50, and we will also neglect the change in the photon population~this is also the case for the rate equation obtained
@40,41#!. Integrating in time we obtain the expression

Nph~k,t !5
e2

8p2k
E q4 dqE

21

1

dx
~12x2!

vqv uqW 1kW u
@A11A21A31A4#~q,k,x! ~5.2!

where

A1~q,k,x!5nqnuqW 1kW u
12cos@a1~ t2t0!#

a1
2

, a15vq1v uqW 1kW u2k

A2~q,k,x!5nq@11nuqW 1kW u#
12cos@a2~ t2t0!#

a2
2

, a25vq2v uqW 1kW u2k

A3~q,k,x!5@11nq#nuqW 1kW u
12cos@a3~ t2t0!#

a3
2

, a35vq2v uqW 1kW u1k

A4~q,k,x!5@11nq#@11nuqW 1kW u#
12cos@a4~ t2t0!#

a4
2

, a45vq1v uqW 1kW u1k.
th
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to
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From this explicit expression one can easily see that in
zero temperature limit there is no photoproduction up to
dere2 . In fact, in the vacuum, only the term proportional
A4(q,k,x) and corresponding to the virtual processu0&
→up1p2g& remains but its contribution vanishes as 1/t in
the long time limit, since the energy conservation conditi

a4~q,k,x!5vq1v uqW 1kW u1k50

cannot be satisfied for positive non-zerovq ,v uqW 1kW u ,k. This
observation highlights that photon production will be co
pletely determined by the plasma of charged scalars bot
and out of equilibrium. We study in detail both cases se
rately.

1. Broken symmetry phase

In this case we study the spectrum of photons escap
from a thermal bath of massless scalars~Goldstone’s bosons!
with energyvq5q. The analysis is very similar to that pe
formed in the nonequilibrium case and hinges upon extr
ing the secular terms in the asymptotic limitmt@1. These
arise from different kind ofon-shellprocesses:

~1! the term A1(q,k,x) corresponds to the annihilatio
p1p2→g in which a hard photon (k.q) is emitted in the
opposite direction of the initial pion (x521);

~2! the termA2(q,k,x) corresponds to the bremsstrahlu
p→p1g in which a soft photon (k,q) is emitted in the
opposite direction (x521);
08500
e
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-
in
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g

t-

~3! the termA3(q,k,x) corresponds to the bremsstrahlun
p→p1g in which the photon in emitted in the same dire
tion of the pion (x51).

Using Eq.~5.2! with vq5q we recognize that the secula
terms are of the same type as those of Eq.~4.15! and lead to
a logarithmic divergence logmt with m an infrared cutoff.
After a detailed analysis similar to that carried out in t
non-equilibrium case, we obtain

Nph~k,t ! 5
mt@1 e2

2p2k3
logmtE

0

`

dq qnq@nuq2kuuq2ku

1nq1k~q1k!# ~5.3!

which is remarkablysimilar to Eq. ~4.16! upon the replace-
ment for the occupation numbers. For a thermal distribut
of charged scalars the momentum integral is finite and
T@k we find

Nph~k,t ! 5
T@ke2

6

T3

k3
logmt. ~5.4!

The high temperature limit of Eq.~5.3! can be compared
to the result out of equilibrium@Eq. ~4.16!# by identifying
(T/m)3 in the thermal case with 1/g2 in the non-equilibrium
case. In other words,mg22/3 sets the scale of an ‘‘effective
temperature’’ to allow a qualitative comparison between
asymptotic description of photon production from charg
7-19
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particles with a thermal distribution and from a no
equilibrium plasma. However we emphasize that the n
equilibrium distribution isfar from thermaland such a com-
parison only reflects a qualitative description. Furthermore
becomes clear that the logarithmic secular term signa
breakdown of the perturbative kinetic equation and a res
mation and inclusion of inverse processes will be required
study the long time limit.

2. Unbroken phase

Also in this case the analysis is similar to the out of eq
librium computation: the final result is finite ast→` since
there are no secular terms and we can simply neglect
oscillatory pieces. This is due to the presence of a non-z
mass for the scalars: as a consequencevq5Aq21m2.q and
the denominators in Eq.~5.2! never vanish~there are no col-
linear divergences!. However for smallk the two denomina-
tors linear ink

a2~q,k,x!.2k~11qx/vq!, a3~q,k,x!.k~12qx/vq!,

dominate and the formula simplifies as follows ast→`:

Nph~k,`! 5
k→0 e2

4p2k3E0

`

q4 dqE
21

11

dx~12x2!

3
1

vqvqW 1kW
H nq@11nuqW 1kW u#

~11qx/vq!2
1

@11nq#nuqW 1kW u

~12qx/vq!2 J .

~5.5!

From this expression one extracts a clear physical inter
tation of the photoproduction process as generated by
off-shell bremsstrahlung of charged scalars in the mediu
To give an estimation ofNph(k,`) in the smallk and high
density limits we rewrite the previous formula as

Nph~k,`!5
e2

4p2k3E0

`

q4 dq
Feq~q2!

vq
2

nq~11nq!@11O~k!#

~5.6!

whereFeq(q
2) is the regular function

Feq~q2!5E
21

11

dx~12x2!
212~qx/vq!2

@12~qx/vq!2#2

5
8vq

2

q2 H vq

q
ArgTh

q

vq
21J

which is similar to the functionF(q2) found in the non-
equilibrium case given by Eq.~4.25!. We can estimate the
temperature dependence of the photon density in the
temperature limitT@m: in this limit the integral~5.6! is
dominated by momentaq;T and we can replacevq and
Feq(q

2) with their asymptotic expressions

vq→q, Feq~q2!→8ln
2q

m
,

m

T
→0
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leading to the result

Nph~k,`! 5
T@m, T@k 2e2

3

T3

k3 F ln
T

m
1O~1!G . ~5.7!

B. Discussion

Here we highlight a fundamental difference between o
analysis of the photoproduction process and the typ
analysis offered in the literature@40–44#.

Our approach hinges upon computing the expecta
value of the number operator of transverse photons in a s
that has been evolved from an initial timet0 to thefinite time
t at which the number of photons is measured. By contr
the usual approach computes the transition probability fr
a state prepared in the infinite past to a state in the infi
future. In such calculation there appears the familiar prod
of delta functions which are interpreted as the on-shell c
dition ~energy momentum conservation! multiplied by the
volume of space-time. Dividing by this volume one obtai
the transition probability per unit volume and time which
interpreted as the production rate: this is basically the con
of Fermi’s golden rule.

In our approach we directly compute the expectat
value^Ṅk&(t)5R(1)(k,t) in a time evolved state and obtai
the photon distribution at a timet by integrating this quan-
tity, i.e., Nph(k,t)5* t0

t dt8R(1)(k,t8). This requires the

knowledge of the dynamical photoproduction rateR(1)(k,t8)
for all times t0<t8<t.

The usual computation via Fermi’s golden rule takes
long time limit and isolates the secular term that is linear
time by replacingR(1)(k,t8) by its asymptotic limit

Ras
(1)~k!5 lim

t→`

R(1)~k,t !. ~5.8!

The condition~5.8! is tantamount to considering onlyon-
shell processes, i.e, those that satisfy energy~and momen-
tum! conservation.

Keepingonly on-shell processes, the large time limit
the photon number becomes

Nph~k,t !5Ras
(1)~k!•~ t2t0!, t2t0→`.

However our approach includes alsooff-shellprocesses tha
contribute toNph(k,t) in a finite time interval. These pro-
cesses do not contribute toṄph(k,t) asymptotically since
they are subleading at very large time, i.e.,

lim
t→`

Ro f f2shell
(1) ~k,t !50

however they could bedominantat finite time. Actually, as
we have seen in the previous section, the off-shell proce
are of lower order in the electromagnetic coupling a
strongly enhanced at soft momenta. Asymptotically we c
write the the photon number in the form

Nph~k,t !5No f f2shell~k,t !1Ras
(1)~k!•~ t2t0!
7-20
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whereRon2shell
(1) (k) is the usual rate calculated in equilibriu

from on-shell processes whose expansion ina begins at or-
dera2 ~or aas in the case of the quark-gluon plasma!. In the
case of broken symmetry studied in the previous section

No f f2shell~k,t !}a ln@m~ t2t0!#.

Therefore off-shell processes dominate during a time s
t,t* with

t* ;
1

ma
ln

1

a
.

This is an important point in the application of our nov
approach to the physics of heavy ion collisions. In this ca
the lifetime of the quark-gluon plasma is relatively short a
the standard approach could miss important physics ass
ated with transient off-shell effects.

This analysis is essential in order to understand the p
sible phenomenological relevance of the transient effects
quantitative assessment of it requires to compare the ma
tude of the contributions to photon production from off-sh
and on-shell processes at thefinite time scalet of survival of
the quark-gluon plasma. We intend to report the details
our studies on these issues within the context of photon
duction in the quark-gluon plasma in a forthcoming articl

VI. THE MAGNETIC MASS OUT OF EQUILIBRIUM

The magnetic massin thermal equilibriumis defined as
@31#

mequil,mag
2 5 lim

k→0
lim
v→0

S̃k,bub
equil ~v!1S tad

equil ~6.1!

where S̃k,bub
equil (v) is the Fourier transform of the retarde

transverse polarization kernelSk
equil(t2t8) of the non-local

part of the self-energy, andS tad
equil is the tadpole contribution

in thermal equilibrium. When the evolution equation for t
transverse mean-field is studied as an initial value probl
the relevant kernel to study is the Laplace transform of
retarded self-energy@28#, i.e.

S̃k,bub
equil ~s!5E

0

`

dt e2stSk,bub
equil ~ t !. ~6.2!

It is important to remark that the limits must be taken in E
~6.1! in the precise order displayed above because the lim
do not commute.

It is a known result thatin equilibrium the magnetic mass
vanishes in an abelian gauge theory. The general argum
relies on the structure of the Schwinger-Dyson equations,
Ward identities and translational invariance in space
time @45#. More specifically to the scalar theory under co
sideration the vanishing of the magnetic mass to leading
der ina ~or alternatively to leading order in the hard therm
loop resummation! relies on theexactcancellation between
the tadpole diagram and the zero frequency limit of
bubble diagram contributing toSk

equil(v). A detailed analy-
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sis of this cancellation reveals the role of the Ward iden
as highlighted by the general result in equilibrium.

The equilibrium aspects of magnetic screening pheno
ena are fairly well established in Abelian theories@45,31#,
however to our knowledge the situationout of equilibrium
has not received much attention. In this section we will stu
the dynamical aspects of the magnetic screening with an
plicit computation at leading order in 1/N and first order
in a.

The initial stage in this program is to obtain an express
for the magnetic mass.

This is achieved by considering the linearized evoluti
equation for the transverse photon condensate or mean
which is generated as a linear response to an externally
scribed transverse currentJW T(xW ,t). Such an equation has a
ready been obtained in@28# and we refer the reader to tha
article for details. In terms of spatial Fourier transforms, it
given by

S d2

dt2
1k2DATi~kW ,t !1E

0

t

dt8Sk,i j ~ t,t8!AT j~kW ,t8!5JTi~kW ,t !,

~6.3!

whereSk,i j (t,t8) is the transverse retarded photon polariz
tion out of thermal equilibrium. It contains two contribu
tions, one local in time and determined by tadpole diagra
displayed in Fig. 3b and the other is non-local and retard
in time and given to lowest order ina by the bubble diagram
displayed in Fig. 3a. We have

Sk,i j ~ t,t8!5Sk
tad~ t !d~ t2t8!d i j 1Sk

bub~ t,t8!Pi j ~kW !,
~6.4!

whereSk
tad(t) is the tadpole diagram~Fig. 3b!

Sk
tad~ t !52e2^F†F&52e2E

0

` dq

~2p!2
q2uwq~ t !u2 ~6.5!

and Sk
bub(t,t8) the bubble diagram in real time~Fig. 3a!,

given by @28#

Sk
bub~ t,t8!524e2E

0

` dq

~2p!2
q4E

21

1

dx~12x2!

3Im@Gq
.~ t,t8!GuqW 1kW u

.
~ t,t8!# ~6.6!

with G,, G. the scalar Green’s functions given by Eq
~3.58!–~3.59! andx being the cosine of the angle betweenqW

andkW .
The linear response to an external current is adifferent

problem from that of photon production studied in the p
vious section, and although the polarization diagram sho
in Fig. 3 describes both processes, here we are intereste
extracting adifferent information, which in equilibrium cor-
responds to the real part of the polarization in the limit
zero frequency.
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Clearly, out of equilibrium, the very concept of mass is
delicate one, but we can make contact with the equilibri
definition@Eq. ~6.1!# by a derivative expansion in time. Writ
ing

Sk
bub~ t,t8!5

dGk~ t,t8!

dt8
, Gk~ t,t8!5E

0

t8
Sk

bub~ t,t9!dt9

~6.7!

and integrating by parts in Eq.~6.3! we find

S d2

dt2
1k21Sk

tad~ t !1Gk~ t,t !D
3ATi~kW ,t !2E

0

t

dt8Gk~ t,t8!
dATi

dt8
~kW ,t8!5JTi~kW ,t !.

Collecting the local terms in this equation of motion leads
the identification

mmag
2 5 lim

k→0
lim
t→`

@Sk
tad~ t !1Gk~ t,t !#. ~6.8!

We see from Eqs.~6.1! that this definition reduces to the on
at equilibrium in the case of time translational invarianc
The definition~6.8! is the description of magnetic screenin
that is consistent with known equilibrium results in abeli
theories.

With the purpose of understanding the time and wa
length dependence of the several contributions, we now
troduce a time andk-dependent effective magnetic mass

mmag
2 ~k,t![E

0

t

dt8Sk
bub~t,t8!1Sk

tad~t!

5mbub
2 ~k,t!1mtad

2 ~t!. ~6.9!

The nonequilibrium definition of the magnetic mass, whi
coincides with the equilibrium definition in the case of tim
translational invariance is then

mmag
2 5 lim

k→0
lim
t→`

mmag
2 ~k,t!

and we remark again that the limits must be taken in t
precise order. We now analyze generally the magnetic m
for both cases, broken and unbroken symmetry.
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We point out, however, that the effective magnetic ma
~6.9! is introduced to highlight the time scale of the differe
processes that contribute to the magnetic mass~6.8! and its
sole purpose is to provide a qualitative understanding of
different dynamical scales for the processes that contribut
magnetic screening.

Using the asymptotic form of the mode functions~3.46!–
~3.42!, the definition of the asymptotic occupation numbe
Nq given by Eq.~3.60! and neglecting oscillatory terms tha
vanish in the asymptotic time regime due to dephasing,
tadpole contribution to the magnetic mass becomes

mtad
2 ~`!5

e2

2p2E0

`q2dq

vq
@112Nq# ~6.10!

which is reminiscent of the equilibrium tadpole contributio
but it contains the out of equilibrium distribution function
Nq .

The non-local contribution is given by

mbub
2 5 lim

k→0
lim
t→`

Gk~ t,t !

5 lim
k→0

lim
t→`

e2

4p2E0

`

q4 dqE
21

1

dx~12x2!

3ImFwq~t!w uqW 1kW u~t!E
0

t

dt8wq* ~t8!w uqW 1kW u
* ~t8!G .

~6.11!

In the asymptotic time region, the mode functions are os
latory and the productwq(t)w uqW 1kW u(t) oscillates very fast for
kt@1. Hence, any contribution that does not cancel
rapid time dependence of the phases will be averaged
The memory integral from 0 up to timet→` can be split
into an integral fromt850 up to a timet85t0>tNL within
which the mode functions are exponentially growing b
with slow oscillations and fromt85t0 up to t85t→`. In
this second region the mode functions have achieved t
asymptotic forms~3.20! and ~3.46!. The contribution from
the first domain cannot possibly cancel the fast oscillatio
from the mode functions att. Therefore this first contribu-
tion will vanish by the rapid oscillation of the mode func
tions at very larget providedkt@1. In the second region
the integral can be performed using the asymptotic form
the mode functions and we find using Eq.~3.60!
mbub
2 5

t@1, kt@1

2
e2

4p2
lim
k→0

lim
t→`

E
0

` q4dq

vqv uqW 1kW u
E

21

1

dx~12x2!F11Nq1NuqW 1kW u

vq1v uqW 1kW u
$12cos@~vq1v uqW 1kW u!~t2t0!#%

2
NuqW 1kW u2Nq

v uqW 1kW u2vq
$12cos@~v uqW 1kW u2vq!~t2t0!#%G . ~6.12!
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This expression is remarkable, the terms with the occupa
numbers are exactly of the same form as those obtained i
equilibrium description@28# and have a similar kinetic inter
pretation, the first describes the production minus the a
hilation of two scalars, and the second term is out of eq
librium analogouos of Landau damping or bremsstrahlu
~and its inverse! in the medium in terms of the asymptot
non-thermaloccupation numbersNq(`) ~3.60!.

In the t→` limit, the terms with cosines inside the inte
gral ~6.12! vanish. After taking thek→0 limit, the integral
over x is immediate and the Landau damping term leads
the derivative of the distribution function. Subtracting t
vacuum contribution we find

mbub,ren
2 52

e2

3p2E0

`q4dq

vq
2 FNq

vq
2

vq

q

dNq

dq G , ~6.13!

thus keepingk fixed and takingt→` we recognize that the
tadpole contribution and the one-loop bubble contribut
have the same structure as the equilibrium calculation bu
terms of the out of equilibrium distribution functionsNq .

Upon integration by parts in Eq.~6.13! and subtracting
the vacuum contribution in Eq.~6.10! we find the exact can
cellation between the bubble@Eq. ~6.13!# and tadpole@Eq.
~6.10!# contributions, i.e.

mmag
2 5mbub,ren

2 1mtad,ren
2 50, ~6.14!

just as is the case in the equilibrium calculation@29,46#.

A. The effective magnetic massmmag
2

„k,t… for ktš1

Having established that the magnetic mass vanishes
of-equilibrium, we can now study in detail the precise tim
evolution of the effective magnetic massmmag

2 (k,t) for late
timest@1 and fixed but smallk, so thatkt@1, by analyzing
the different contributions displayed in Eq.~6.12!. It is at this
point that we justify keeping the oscillatory terms in E
~6.12! so as to highlight the different time scales for t
buildup of the different contributions. The two terms ha
very different oscillatory behavior, whereas the term with t
sumof the frequencies maintains strong oscillations even
k!1, the second term proportional to thedifferenceof the
frequencies evolves slower in time for smallk. This second
term is recognized as the non-equilibrium analogous of L
dau damping. In order to extract the long time behavior
proceed as follows:~i! takek small and replace the differenc
in frequencies by a derivative with respect to momentum,~ii !
neglect the strong oscillatory behavior arising from the te
cos@2vqt#, to find that the effective magnetic mass defin
by Eq. ~6.9! behaves as

mmag
2 ~k,t! 5

kt@1,t@1

2
e2

4p2E0

`q4dq

vq
2 E

21

11

dx~12x2!

3HNq

vq
2

vq

q

dNq

dq F12cosS qkt

vq
xD G J

1
e2

p2E0

`q2dq

vq
Nq ~6.15!
08500
n
an

i-
i-
g

o

n
in

ut-

e
if

-
e

where the first term inside the bracket is the contribution
the two-particle cut after neglecting the strong oscillato
component, the second term is the Landau damping term
last term is the tadpole contribution, and we have subtrac
as usual the vacuum contribution which is renormalized
the absence of the medium.

Upon integrating overx and integrating by parts the Lan
dau damping term, the time independent contributions can
each other out as discussed above and Eq.~6.15! yields

mmag
2 ~k,t! 5

k!1, kt@1 2e2

p2 E0

`

q dqNq

3H 1

~kt!3 FsinS qkt

vq
D2

qkt

vq
cosS qkt

vq
D G

1
m2

ktvq
2sinS qkt

vq
D J ~6.16!

and clearly in the long time limit,

lim
t→`

mmag
2 ~k,t!50

in agreement with Eq.~6.14!. However this analysis clearly
reveals that Landau damping or in-medium bremsstrahl
is the process with theslowest time scalein the long-
wavelength limit.

The case of broken symmetry withvq5q is particularly
clear. Equation~6.16! then simplifies as

mmag
2 ~k,t! 5

kt@1,t@1 2e2

p2 F E
0

`

q dqNqG
3

1

~kt!3 @sin~kt!2ktcos~kt!#.

~6.17!

We see thatmmag
2 (k,t) oscillates around zero for largekt

with an amplitude that decreases asO„1/(kt)2
… and period

2p/k.

B. The effective magnetic massmmag
2

„k,t… for kt™1

As we have noted above the asymptotic long time lim
and the long-wavelengh limit do not commute, this happe
out-of-equilibrium and also in equilibrium where the ze
frequency and the zero momentum limit do not commute

However forfinite time we can ask what is the behavio
of the effective mass in the long-wavelength limit. Th
questionis relevantfor the evolution of the mean field in th
long-wavelength limit and for finite time. This correspon
to studying the effective magnetic mass~6.9! in the opposite
limit kt!1 keepingt@1.

For finite time the effective magnetic mass is a slow
varying function of k thus for t@1 but kt!1, we shall
simply setk50 to explore the regionk!1.

In this case we find for the effective magnetic mass~6.9!,
7-23
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mmag
2 ~k,t! 5

k!1, kt!1 e2

3p2E0

`

q4 dqE
0

t

dt8 Im@wq
2~t!wq

2~t8!* #

1
e2

2p2E
0

`

q2dquwq~t!u2. ~6.18!

For the computation of the bubble contributionmbub
2 (k

50,t) here@the first term in Eq.~6.18!# some remarks are in
order. Naively, sincembub

2 (k50,t) contains a product o
four mode functions, each of orderg21/2, one would expect
the result being of orderg22. However the following inter-
ference argument reveals thatmbub

2 (k50,t) turns out to be
of order 1/g, just as the tadpole contribution@the second term
in Eq. ~6.18!#.

Indeed, for 0,t8,tNL the mode functionswq(t8) are
given approximately by Eq.~3.17!. The exponentially grow-
ing term dominates in Eq.~3.17! while the exponentially
decreasing terms are of the orderO(g) @see Eqs.~3.16! and
~3.38!#. The dominant term has a time independent phas
can be seen read from Eq.~3.17!.

Since the mode equations~3.11! havereal coefficients, a
solution with a constant phase during some time inter
keeps such phase constant for all times. Therefore, the p
of the modes is time independent up toO(g) corrections and
the phases ofwq

2(t) andwq
2(t8)* cancel up toO(g). Hence,

Im@wq
2(t)wq

2(t8)* # is a factorg smaller thang22. That is, it
is of orderg21 and not of orderg22.

Due to this cancellation of the dominant growing exp
nentials, an analytical evaluation ofmmag

2 (k,t) requires de-
tailed knowledge ofO(g) corrections to the mode function
~3.17!, which is not available analytically.

Instead, we evaluated numerically the integrals in E
~6.18! using the high precision modes obtained in Re
@26,32#. The results are displayed in Figs. 6 and 7.

For late times,mmag
2 (k50,t) oscillates around the follow

ing constant values:

FIG. 6. Effective magnetic mass fork50 as a function of time.
Broken symmetry:g51024 andh050.
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mmag
2 ~k50, t@1!520.000513 . . .

e2

g

for broken symmetry,h050,

mmag
2 ~k50, t@1!520.00126 . . .

e2

g

for unbroken symmetry,h054. ~6.19!

The coefficients ofe2/g are not very sensitive to the valu
of g for small couplingg!1, in the unbroken symmetry cas
the coefficient depends on the value ofh0.

Such small numbers arise from a delicate cancellation
the negative contribution from the bubble diagram and
positive contribution from the tadpole diagram. In the unb
ken case, the larger ish0 the more negative ismmag

2 (k
50, t@1).

The negative sign of this effective squared mass indica
the unexpected presence of a weak instability in the ti
evolution of the mean field, which we conjecture to be link
to the strong photon production during this time scale. W
expect to report on a detailed study of these issues in a fo
coming article.

At this point it is important to remind the reader that h
we studied a situation in which the global gauge symme
was spontaneously broken either by the initial state or by
dynamics, there would have been a magnetic mass gene
via the ordinary Higgs mechanism. Hence the vanishing
the properly defined magnetic mass is in agreement with
fact that the gauge symmetry is not spontaneously broken
the dynamics.

VII. SCREENING AND DEBYE MASS GENERATION
OUT OF EQUILIBRIUM

The Debye mass or inverse of the electric screen
length, determines the spatial extent over which elec
charges are screened in the plasma. As in the case o
magnetic mass, the Debye mass can be obtained from a

FIG. 7. Effective magnetic mass fork50 as a function of time.
Unbroken symmetry:g51025 andh054.
7-24
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NONEQUILIBRIUM QUANTUM PLASMAS IN SCALAR . . . PHYSICAL REVIEW D 61 085007
ear response problem. In this case the relevant linear
sponse is that of the Lagrange multiplierA0 associated with
the Coulomb interaction, or longitudinal photon to an ext
nal charge densityJ0(xW ,t). The Debye mass can thus b
recognized from the equation of motion for the expectat
value ofA0(xW ,t) as a linear response to the external cha
density. In terms of spatial Fourier transforms and call
this expectation valueA0(kW ,t) the equation of motion in lin-
ear response is obtained by following the method descri
in detail in @28#. We obtain the following equation of motio
for the expectation value in linear response

k2A0~kW ,t !1E
0

t

dt8 Sk
L~ t,t8!A0~kW ,t8!5J0~kW ,t !, ~7.1!

where the longitudinal retarded self-energySk
L(t,t8) is given

to lowest order ine2 by the following expression@28#

Sk
L~ t,t8!524e2E d3q

~2p!3
Im@] t8Gq

.~ t,t8!] tGuqW 1kW u
.

~ t,t8!

2] t] t8Gq
.~ t,t8!GuqW 1kW u

.
~ t,t8!#, ~7.2!

and J0(kW ,t) is the spatial Fourier transform of the extern
source that generates the linear response.

We remark that Schwinger terms arising from the tim
derivatives of time ordered Green’s functions had cance
the tadpole contribution 2e2^F†F& and after this cancella-
tion the remainder of the longitudinal photon polarization
given by Eq.~7.2!. The reader is referred to@28# for further
details of this cancellation which is independent of whet
the system is in or out of equilibrium.

Following the arguments presented previously in the c
of the magnetic mass above, we define the Debye mass
of equilibrium as

mDeb
2 [ lim

k→0
lim

t→`
F E

0

t

dt8Sk
L~t,t8!G . ~7.3!

We emphasize again that the limitst→` andk→0 must be
taken in the order specified above since they do not c
mute. Taking the limits in the inverse order yields a vanis
ing result.

Using the expressions for the Green’s functions in ter
of the mode functions as given by Eqs.~3.58!,~3.59! @in
terms of the dimensionless mode functionswq(t)] we finally
obtain

mDeb
2 5 lim

k→0
lim

t→`

e2E d3q

~2p!3
ImH @wq~t!ẇ uqW 1kW u~t!

2ẇq~t!w uqW 1kW u~t!#E
0

t

dt8ẇq~t8!* w uqW 1kW u~t8!* J .

~7.4!

We compute now the Debye mass generally in both ca
under consideration: broken and unbroken symmetry.
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expression~7.4! displays a remarkable feature: unless t
memory integral develops singularities ask→0 the Debye
mass will vanish identically in this limit. Separating the tim
integral into a part betweent850 andt85tNL and a second
part from tNL to t we recognize that no singularities ca
arise from the first part. The contribution to the Debye ma
from the region of spinodal or parametric instabilities
regular in the limitk→0 and do not survive in thet→`
limit. Therefore, we conclude that despite the fact that th
are strong non-equilibrium processes during the stage
spinodal and parametric amplification, they are not direc
associated with the generation of a Debye mass. Howeve
it will become evident below, the late timedistribution of
particles produced during these stages determines the D
screening mass. In the second part of the integral the mo
acquire their asymptotic form. Just as in the discussion of
magnetic mass, only few of the contributions survive t
rapid dephasing in the limitt→`.

Replacing the mode functions in Eq.~7.4! by their
asymptotic behavior, using the relation~3.60! and neglecting
the oscillatory contributions in the limit oft→` with k
fixed, we obtain

mDeb
2 5 lim

k→0
lim

t→`
H e2E d3q

~2p!3vq

3Fv uqW 1kW u2vq

v uqW 1kW u1vq
~11Nq1NuqW 1kW u!

2
v uqW 1kW u1vq

v uqW 1kW u2vq
~NuqW 1kW u2Nq!G J ~7.5!

which is recognized as the longitudinal polarization eva
ated at zero frequency@28#. Again the different contributions
have an obvious kinetic interpretation which has been d
cussed in Ref.@28#.

Taking the zero momentum limit, we finally find

mDeb
2 52

e2

p2E0

`

dq qvq

dNq

dq
. ~7.6!

This expression reveals at once the important feature tha
Debye mass is determined by thederivativeof the distribu-
tion function of the charged fields with respect to mome
tum. Although this happens in other contexts, it is seld
highlighted in the literature. Integrating by parts at fini
times the surface term atq50 vanishes since the distributio
Nq is regular atq50 for finite times. We obtain the fina
form

mDeb
2 5

e2

p2E0

`dq

vq
@2q21M 2~`!#Nq . ~7.7!

We now study each case separately.
7-25
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A. Broken symmetry

In the broken symmetry case withvq5q; M(`)50, the
distribution functionNq is of O(1/g) in the region 0<q
<1 and near the origin behaves asNq(t);1/q for all times
including t→`. Figure 8 showsgqNq(t) vs q. Since
limq→0q2Nq50 we are justified in neglecting the surfac
term in Eq.~7.6! and Eq.~7.7! is valid even fort→`. Using
Eq. ~7.7!, the relation~3.60! and the sum rule~3.25! we find
for the broken symmetry case

mD
2 5

e2

gp2
@11O~g!#. ~7.8!

B. Unbroken symmetry

As discussed in detail in Sec. III A 2, in the unbroke
symmetry case the distribution function at times larger th
tNL is dominated by the peak of the non-linear resonanc
The distribution functioncontinuesto evolve at long times
with two marked peaks in the region of non-linear res
nances~3.40! inside which the amplitudesAq(t); Bq(t) and
consequently the distribution functionNq grows with a
power law in time. The width of these non-linear resona
bands diminishes in time, the resonance nearq'h0 /A2 be-
comes subdominant and the resonance in the region 0,q
,AK1 /t becomes the dominant one, the peak growing
amplitude and the width of the resonance diminishing
time evolves. Figure 9 displaysgqNq(t) vs q for different
times.

Our extensive numerical calculations shows that for tim
t@tNL the distribution function takes the scaling form

Nq~t!5
G~q2t!

gq2 with ~0!50. ~7.9!

The function G only depends on time andq through the
combinationx[q2t. We plotG(x) as a function ofx in Fig.
10. Notice thatG(x) is of orderO(g0).

FIG. 8. gqNq(t52000) for the broken symmetry case as
function ofq for g51024 andh050. The distribution saturates fo
most of the range att'tNL but for very small momentum.
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At finite times the distribution functionNq is finite at q
50 and neglecting the surface terms in the integration
parts leading to Eq.~7.7! is justified.

Since the derivative of the distribution function is dom
nated by this peak, we find that even asymptotically the D
bye mass~7.6! continues to grow with time asAt. Figure 11
displays the Debye mass as a function of time, it is cl
from this figure that the trend is that of monotonic increa
asAt as one obtains inserting the scaling form of the dis
bution function~7.9! into Eq. ~7.7!:

E
0

`dq

vq
Nq 5

t→` At

2gM 2~`!
E

0

h0
2t/2 dx

x3/2
G~x!1O~1!.

Notice that the integral converges fort5` sinceG(`) is
finite @see Fig. 10#.

The reason for this increase is that the distribution
dominated by the peak nearq'0 which continues to evolve

FIG. 9. gqNq(t5500,1500,2000) for the unbroken symmet
case as a function ofq for g51024. The distribution continues to
evolve as a function oft. The peak at low momentum is atq0

'AK1 /t and moves towards the origin while its magnitude i
creases.

FIG. 10. The functionG(x)[gq2Nq(t) as a function ofx
[q2t. Unbroken symmetry:h053 andg51026.
7-26
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as a consequence of the non-linear resonance with the w
ever decreasing in time and the peak continues to grow.

In the infinite time limit the distribution will be peaked a
zero momentum behaving as

Nq~t5`!5
G~`!

gq2

leading to adivergentDebye mass becauseM 2(`)Þ0 and
thus the behavior atq50 makes the integral in Eq.~7.7! to
diverge.

This divergence suggests that higher order contributi
in the electromagnetic coupling must be taken into acco
and perhaps a resummation of higher order terms can lea
a finite Debye mass, but clearly this possibility requires
more detailed study which is beyond the scope of this arti

VIII. NONEQUILIBRIUM TRANSVERSE CONDUCTIVITY

Consider applying an external transverse electric fi

EWT,ext(xW ,t)52AẆ T,ext(xW ,t) with AW T,ext(xW ,t) an external trans-
verse vector potential. The induced transverse current is
tained in linear response by coupling the external vector
tential to the current in the Lagrangian densityL→L
1JWT•AT,ext . The transverse current induced by the exter
vector potential is obtained in linear response in terms
spatial Fourier transforms as

^JT
i ~kW ,t !&5 i E dt8^JT

i ~kW ,t !JT
j ~2kW ,t8!& retA T,ext

j ~kW ,t8!

~8.1!

where ^JT
i (kW ,t)JT

j (2kW ,t8)& ret is the retarded correlation
function given by

FIG. 11. The integralg*0
h0 /A2dqNq(t)/vq that contributes to

the Debye massmDeb
2 @see Eq.~7.7!# as a function oft for the

unbroken symmetry case. The Debye mass grows with time asAt
as a result of the evolving distribution at small momemtum.
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^JT
i ~kW ,t !JT

j ~2kW ,t8!& ret

5^JT
1,i~kW ,t !JT

1, j~2kW ,t8!&2^JT
1,i~kW ,t !JT

2, j~2kW ,t8!&

~8.2!

and the symbols6 refer to the time branches along the CT
contour. Comparing with the expression for the photon p
larization in the equation of motion~6.3! we recognize that
the retarded current-current correlation function is given
lowest order@O(a)# by

i ^JT
i ~kW ,t !JT

j ~2kW ,t8!& ret52Sk
bub~ t,t8!P i j ~kW ! ~8.3!

with Sk
bub(t,t8) given by Eq.~6.6!.

Introducing the non-equilibrium transverse conductiv
as follows:

skW
i j
~ t,t8!5P i j ~kW !sk~ t,t8!

52P i j ~kW !E
0

t8
dt9Sk

bub~ t,t9!, t.t8 ~8.4!

integrating by parts in Eq.~8.4! and neglecting surface term
we obtain the linear response relation

^JT
i ~kW ,t !&5E dt8sk

i j ~ t,t8!E T
j ~kW ,t8!. ~8.5!

Although the definition of the conductivity~8.4! may not
look familiar, it is straightforward to confirm that in the equ
librium case it leads to the usual relation between the c
ductivity and the polarization in equilibrium.

In thermal equilibrium the polarization is a function of th
time difference and the system has been in equilibrium fr
t52`. Thus, extending the lower limit in Eq.~8.4! to t9
52` and writing

Sk,bub
equil ~ t2t9!5E

2`

1`

dv S̃k,bub
equil ~v!eiv(t2t9)

it is straightforward to find the spatial and temporal Four
transform of the conductivity to be given by

s̃k
equil~v!5

S̃k,bub
equil ~v!

iv
~8.6!

which is the usual relationship between the bubble polar
tion and the equilibrium conductivity at lowest order ina.

Since in the out of equilibrium case under considerat
the initial state at timet50 is the vacuum and the plasma
generated during the stage of strong non-equilibrium evo
tion, the time integral in the conductivity kernel~8.4! has the
initial time (t50) as the lower limit.

The explicit expression for the conductivity at leading o
der in a follows from Eq.~6.6! and is given by
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sk~t,t8!52
e2

4p2
E

0

`

q4 dqE
21

11

dx

3~12x2!ImFwq~t!w uqW 1kW u~t!

3E
0

t8
dt9wq* ~t9!w uqW 1kW u

* ~t9!G . ~8.7!

It is difficult to compute explicitly the conductivity in the
full range of the two time variables, however we can prov
explicit formulas in the relevant regimes 1,t8,t<tNL and
when both time variables are in the asymptotic regimet
.t8.tNL for fixed k.

A. 1Ët8ËtËtNL

In this time regime there are no fast oscillatory solutio
and we can simply setk50 to obtain an estimate for th
long-wavelength limit of the conductivity.

Broken symmetry. In this case the mode functions in th
time regime are given by Eqs.~3.17!,~3.18!. Furthermore the
modes that grow the most are those forq'0 for which a
non-relativistic approximationq!1 is reliable. The compu-
tation of the conductivity proceeds in three steps:~i! recog-
nize the terms that contribute to the imaginary part in E
~6.6!, ~ii ! carry out the integral in the variablet9, and ~iii !
08500
e

s

.

perform the integral in theq variable in the saddle poin
approximation using the non-relativistic approximation f
the mode functions. In the region 1,t8,t<tNL the domi-
nant term of the conductivity in the long-wavelength limit
given by

sk'0~t,t8!5
e2

16F t8

p3/2t5/2
e2t2

e2t8

15p2G @11O~k2t!#.

~8.8!

We remark that since the expression for the polarization~6.6!
involves four mode functions one would naively conclu
that the polarization and the conductivity would be;e4t,
however these terms are real and do not contribute to
imaginary part in Eq.~6.6!. Therefore at the end of the ex
ponential growth of long-wavelength modes att;t8;tNL
the conductivity is of orderO(e2/g) and positive since the
first term dominates over the second one in Eq.~8.8! for t
.t8.

Unbroken symmetry. For this case the mode functions a
given by Eqs.~3.32!–~3.36!. The calculation of the conduc
tivity in this time regime follows the same steps as in t
broken symmetry case, with the difference in the third s
being that the saddle point in theq-integral is at the maxi-
mum of the Floquet indexq* given by Eq. ~3.39!. After
some tedious but straightforward calculation we find
e above
e scale

nbroken
does not

e

aster

e case of
ory
lation
sk'0~t,t8! 5

tNL.t.t8@1 e2h0
5

768p3/2
Aq̂~h0!

t

t8S 5

4
h0

212De2B̄(h0)t

~h0
211!1/4S 11

3

4
h0

2D 3/2A11
5

4
h0

2

F11OS q̂~h0!,
1

t D G ~8.9!

whereB̄(h0)54q̂(h0)A11h0
2@124q̂(h0)1O„q̂2(h0)…#.

Hence, besides some quantitative differences, this result is qualitatively similar to that in the broken symmetry cas
with the same conclusion in the order of magnitude of the transverse conductivity in the long-wavelength limit at the tim
tNL .

B. tNLËt8Ët, k fixed

In this regime we can use the asymptotic form of the mode functions generally in both cases, broken and u
symmetry. When we studied the magnetic mass in the previous section, we have noted that the long-wavelength limit
commute with the long time limit. Thus, we will consider the long time limit but keepingk fixed. Furthermore, since th
conductivity is a function of two time variables, we will considert*t8 and both argumentst and t8 larger thantNL . In
particular we will consider that phases involving thesumof the time arguments vary more rapidly and therefore dephase f
than those that depend on thedifferenceof these time arguments, effectively deciding thatt2t8 is slower varyingthan t
1t8 but both arguments are in their asymptotic regime. The calculation proceeds along the same steps outlined in th
the magnetic mass, the productwq(t)wqW 1kW(t) is strongly oscillatory in the asymptotic regime. Keeping only the oscillat
factors in the difference of time argumentst2t8, neglecting terms that oscillate much faster than these and using the re
~3.60!, we find

sk~t,t8! 5
kt@1!kt8 e2

4p2E q4dq

vqv uqW 1kW u
E

21

1

dx~12x2!H ~11Nq1NuqW 1kW u!
cos@~vq1v uqW 1kW u!~t2t8!#

~vq1v uqW 1kW u!

2~NuqW 1kW u2Nq!
cos@~v uqW 1kW u2vq!~t2t8!#

~v uqW 1kW u2vq! J . ~8.10!
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This expression can be written in a more familiar form by introducing the representation

cos@~v uqW 1kW u6vq!~t2t8!#

~v uqW 1kW u6vq!
5E dv

eiv(t2t8)

2v
@d„v2~v uqW 1kW u6vq!…2d„v1~v uqW 1kW u6vq!…# ~8.11!

which leads to the final relation

sk~t,t8!5E dv eiv(t2t8)
S̃k

bub~v!

iv
~8.12!

whereS̃k(v) is the imaginary part of the Fourier transform of the asymptotic real-time, retarded polarization out of e
rium,

S̃k
bub~v!52

ie2

8p2E0

` q4dq

vqv uqW 1kW u
E

21

1

dx~12x2!$~11Nq1NuqW 1kW u!@d~v1vq1v uqW 1kW u!2d~v2vq2v uqW 1kW u!#

2~NuqW 1kW u2Nq!@d~v2vq1v uqW 1kW u!2d~v1vq2v uqW 1kW u!#%. ~8.13!
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Hence, we find the remarkable result that in the asympt
limit the conductivity and the polarization are related in
manner akin to that inequilibrium ~8.6!, i.e.,

s̃k~v!5
S̃k

bub~v!

iv
~8.14!

we stress however, that there isnonequilibriuminformation
in this relationship because the distribution function of t
produced particles isout of equilibrium.

The expression for the conductivity~8.13!,~8.14! simpli-
fies considerably for smallk and in the static limitv50.
Similarly to the Debye mass, to lowest order ina the con-
ductivity is determinated by the derivative of the distributi
function,

s̃k~0! 5
k→0

2
e2

4p2k
E

k/2

`

q2dq
dNq

dq
. ~8.15!

In the broken symmetry case thek→0 limit of the integral
can be computed by part using the sum rule~3.25! leading to

s̃k~0! 5
k→0 e2

4p2g

mR
2

k
.

This result can be compared with the equilibrium conduc
ity at v50 simply by replacingNq by its thermal counter-
part nq5(eq/T21)21 which yields

s̃k
equil~0! 5

k→0e2T2

12k
.

This shows aqualitativecomparison between the high tem
perature limit in thermal equilibrium and the small couplin
limit out of equilibrium, which in dimensionful units reads
08500
ic

-

g21↔ p2

3 S T

umRu D
2

.

We emphasize that this comparison is onlyqualitativeand
shouldnot be taken as a direct relation between the two ca
since the non-equilibrium distributions are very far fro
thermal.

Consider for instance the conductivity in theunbroken
phase: our analysis in the previous sections shows that
distribution functionNq is strongly enhanced at smallq as a
consequence of the non-linear resonance atq50, i.e, Nq
;1/q2 for q→0. This non-equilibrium effect leads to a loga
rithmic enhancement for long wavelenths

s̃k~0! ;
k→0e2

gk
mR

2 lnS mR

k D ,

which has no analog in the equilibrium counterpart.
We remark that the non-equilibrium conductivity@Eqs.

~8.13!,~8.14!# is finite for all k including k50 at finite time.
Only in thev50 limit, which corresponds to an integra

up to infinite time, the conductivity has a divergentk→0
limit, such is the case for the equilibrium static conductiv
s̃k

equil(0). Thus whereas the non-equilibrium conductivity
well behaved for long-wavelengths at anyfinite time, the
long time limit will require a resummation of diagrams th
must include the the width of the charged scalar particles
the static limit the finite mean-free path of charged partic
will provide a cutoff for long-wavelength~long distance!
propagation and will lead to a finite long-wavelength sta
conductivity.

Our analysis reveals~i! the initial stages of build up of the
conductivity through the formation of the nonequilibriu
plasma and~ii ! an asymptotic description at long times
terms of the non-equilibrium distribution functions which
akin to the equilibrium description.
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IX. CONCLUSIONS, DISCUSSION AND FURTHER
QUESTIONS

In this article we have studied the formation of a plas
of charged particles from the strongly out of equilibriu
processes of~a! spinodal decomposition~or phase separa
tion! and ~b! parametric amplification. The model, scal
QED with N-charged scalar fields and aU(1) photon, does
not only provide an arena to study the questions of the
mation of the plasma, electric and magnetic screening, p
ton production and conductivity out of equilibrium, but als
is phenomenologically relevant both in cosmology and
heavy ion collisions as a description of the chiral phase tr
sition out of equilibrium. In cosmology an important cons
quence of this study is the novel mechanism of generatio
primordial magnetic fields at the time scale of the QC
phase transition, whereas in heavy ion collisions the mec
nisms studied here can lead to strong photon production
non-equilibrium distributions that could be an important s
nature of non-equilibrium effects associated with the ch
phase transition.

Spinodal decomposition describes the early stages du
a quenched or supercooled second order phase transition
the dynamics is determined by the exponential growth of
fluctuations with wave vectors in the unstable band. Param
ric amplification of quantum fluctuations occurs during t
stage when the order parameter is oscillating around
minimum of the potential with large amplitude. In this sit
ation there are resonances that amplify exponentially qu
tum fluctuations with wavevectors in the regions of param
ric instability. In both cases, the explosive exponen
growth of charged fluctuations lead to the formation of
non-equilibrium plasma and to photon production and
generation of electric and magnetic fields. These unstabil
are shut-off by the non-linear field interactions which a
systematically and consistently treated in the largeN limit
@32,34#. Thus we have combined the largeN limit that allows
the non-perturbative aspects of the formation of the plas
and a novel kinetic description of photon production to stu
many relevant electromagnetic properties of the n
equilibrium plasma. Our conclusions and further questio
can be summarized as follows:

Photon production. We have obtained a novel kineti
equation to study photon production strongly out of equil
rium to lowest order ina and to leading order in the largeN
expansion. We find that at the end of the linear stage do
nated by the exponential growth of instabilities in both cas
spinodal decomposition and parametric amplification,
photon distribution function is peaked at low momentu
with a typical photon density ofO(a/l2) with l the scalar
self-coupling. In the case of a quenched phase transition
find that electric and magnetic fields generated during
non-equilibrium stage are correlated on distances given b
dynamical correlation lengthj'At/umRu for times t,tNL
with umRu the ~renormalized! mass scale of the scalar field
These mechanisms of photon productioncould bean impor-
tant source of primordial magnetic fields in the early u
verse at a time scale of the chiral phase transitiont'1025

seconds after the big bang and temperature sc
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O(100) MeV, however before coming to definite concl
sions on the cosmological implications, two important issu
must be studied further:~i! whether a strongly supercoole
~quenched! chiral phase transition can take place, given th
the relaxation time scales for QCD are much shorter than
inverse of the expansion rate of the Universe during the tr
sition, and~ii ! the kinetic equation used to study photon pr
duction neglected an initial population and therefore stim
lated processes, these must be taken into account fully in
case of the cosmological phase transition since the Univ
is radiation dominated at that stage.

Perhaps, phenomenologically more relevant is the cas
the chiral phase transition in ultrarelativistic heavy ion co
sions, since it is quite possible that in this situation the ph
transition occurs out of equilibrium@8#. In this case the pho-
tons produced through spinodal decomposition would hav
non-equilibrium spectrum that could be a potential expe
mental signature@7#. In the case of broken symmetry w
have found that the presence of massless particles asymp
cally, lead to collinear divergences in the bremsstrahlu
contributions in the medium. These infrared divergences
sult in a logarithmic growth of the photon density asympto
cally. This growth is also present in the equilibrium case a
points out to a breakdown of the perturbative kinetic eq
tion. A thorough understanding of the photon distributi
function in this regime requires a consistent resummat
using the dynamical renormalization group@29#.

Magnetic screening mass. We have introduced a defini
tion of the magnetic mass out of equilibrium which is th
natural generalization of the equilibrium case. We find th
the magnetic mass vanishes through a cancellation me
nism similar to that in the equilibrium case despite the f
that the asymptotic distribution functions are non-therma

To highlight the different processes that contribute to
magnetic mass and their widely different time scales in
long-wavelength limit we have introduced aneffectivemag-
netic mass that coincides asymptotically with the prop
definition of the magnetic mass.

We find that the non-equilibrium generalization of La
dau damping begins to compete with the contributions fr
two particle excitations and mean-field on time scales tha
the long wavelength limit are far longer than those for the
processes. This effective magnetic mass displays mem
effects that correlates the spinodal or parametric particle p
duction at early times with the dynamics at late times. W
also find some unexpected weak long-wavelength instab
in the time evolution of the mean transverse gauge fie
which we conjecture to be related to the strong photoprod
tion during the early stages of spinodal or parametric ins
bilities.

Electric (Debye) screening mass. As in the case of the
magnetic screening mass, we define the electric~Debye!
screening mass out of equilibrium as the natural general
tion of the equilibrium case.

In the case of spinodal instabilities we find that the Deb
mass is given bymDeb

2 58umRu2e2/l1O(l0).
In the case of parametric amplification we find that t

Debye massdivergesasymptotically asAt with a coefficient
of the orderO(e2l21). This result is a consequence ofmas-
7-30
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sive asymptotic states and the presence of non-linear r
nances@32# that result in a peak in the distribution functio
of the charged particles that moves towards zero momen
and whose width vanishes at long times. Since the De
mass is determined by thederivativeof the distribution func-
tion ~7.6! in the case of massive particles a distributi
which is singular at small momentum such as the one res
ing from the non-linear resonances gives a divergent De
mass.

A divergent result to first order ina suggests that a re
summation of electromagnetic corrections using for exam
the dynamical renormalization group@29# must be carried
out.

Transverse electric conductivity (Kubo). The transverse
electric conductivity is an important transport coefficie
which in the case of primordial magnetic fields limits th
propagation and correlation of these fields and in the QG
enters in the calculation of Ohmic energy losses in
plasma. We have obtained the non-equilibrium conductiv
from Kubo’s linear response out of equilibrium. The elect
conductivity is a complicated function of two time variabl
and the wavelength. We solved in detail thebuild-upof con-
ductivity during the early stages of formation of the no
equilibrium plasma as well as the asymptotically long tim
regime. The long-wavelength conductivity builds up exp
nentially because of the instabilities that lead to the form
tion of the plasma, and at the end of the stage dominate
linear instabilities it achieves a magnitudesk'0'umRue2/l.
At asymptotically long times we find that the conductivi
has a similar structure to the equilibrium conductivity b
with non-equilibrium distribution functions replacing th
thermal ones. We find that the electric conductivity sta
finite for all momenta includingk50 at finite times.

Our study offers a novel view of the electromagnetic
sponse of non-equilibrium plasmas in a model that allows
extract quantitative and qualitative information and that a
bears phenomenological interest from the point of view
generating seeds of primordial magnetic fields at the ch
phase transition in the early universe and of describing n
equilibrium aspects of pion-photon dynamics in heavy
collisions.
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APPENDIX: KINETIC EQUATION FOR THE PHOTON
DISTRIBUTION

If the charged scalar fields were in equilibrium the rate
photon production would be determined by the imagina
part of the Fourier transform in frequency and momentum
the polarization depicted in Fig. 3. The expression for pho
production in equilibrium has been obtained in@40–43# for
the case of the QGP.

In the situation under consideration, strongly out of eq
librium, the polarization is not time translational invaria
and the frequency representation is not available. The t
evolution of the photon distribution function must be o
tained from a kinetic equation. The validity of a kinetic d
scription requires a wide separation of time scales betw
the time scale over which the photon distribution functi
changes and that of the phenomena that is strongly ou
equilibrium. In the case under consideration the no
equilibrium evolution of the scalar fields result from spinod
and parametric unstabilities and these occur on fast t
scales of orderumRu21ln(1/g), we expect that the change i
the photon distribution will occur on time scales that a
longer by at least a factor 1/a. Hence under the assumptio
of weak electromagnetic coupling, the photon distributi
function will evolve much slower than the non-equilibriu
dynamics of the charged scalar field. Under these circu
stances a kinetic description is valid. Furthermore since
charged scalar particles are far-off shell, a simple Boltzma
equation for the photon distribution function will miss th
important off-shell effects associated with the no
equilibrium evolution of the scalar fields. This point becom
more important during the stage of spinodal instabilit
when there is no meaning to on shell particles.

In this Appendix we obtain the kinetic equation for th
photon number from first principles~see also@7,28#!.

By using the simplest definition for the photon number
phase space distribution~for homogeneous systems!
Nph~k,t !5~2p!3
d6N

d3xd3k
5 (

l51,2
^al

†~k!al~k!&5
1

2k
^ȦT~2kW ,t !•ȦT~kW ,t !1k2AT~2kW ,t !•AT~kW ,t !&, ~A1!

one extracts the time derivative of the distribution function as follows:
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Ṅph~k,t !5
1

2k
^ÄT~ t1 ,2kW !ȦT~ t2 ,kW !1ȦT~ t2 ,2kW !ÄT~ t1 ,kW !1k2AT~ t1 ,2kW !ȦT~ t2 ,kW !1k2ȦT~ t2 ,kW !AT~ t1 ,kW !&u t15t25t

5
1

2k

]

]t2
F S ]2

]t1
2

1k2D ^AT~ t1 ,2kW !•AT~ t2 ,kW !1AT~ t2 ,2kW !•AT~ t1 ,kW !&G
t15t25t

.

Therefore the photon density rate can be rewritten as

Ṅph~k,t !52
i

2k

]

]t2
F S ]2

]t1
2

1k2D „Ḡi i
.~k;t1 ,t2!1Ḡi i

,~k;t1 ,t2!…G
t15t25t

whereḠi j represent theexactphoton propagator not to be confused with the free propagatorGi j .
In order to simplify this expression we need the Schwinger-Dyson equations forG. and G, . Including a mean field

contributiondV2(t)52e2^F†(t)F(t)& in the Hamiltonian we have

S ]2

]t1
2

1k2D Ḡi i
.~k;t1 ,t2!52dV2~ t !Ḡi i

.~k;t1 ,t2!1E @P im
11~k;t1 ,t !Ḡmi

, ~k;t,t2!2P im
12~k;t1 ,t !Ḡmi

11~k;t,t2!#dt

and

S ]2

]t1
2

1k2D Ḡi i
,~k;t1 ,t2!52dV2~ t !Ḡi i

,~k;t1 ,t2!1E @2P im
22~k;t1 ,t !Ḡmi

. ~k;t,t2!1P im
21~k;t1 ,t !Ḡmi

22~k;t,t2!#dt.
e
e

ro
he
o

d

le

y

Using the definitions

P im
11~ t,t8;k!5P im

. ~ t,t8;k!u~ t2t8!1P im
, ~ t,t8;k!u~ t82t !

P im
22~ t,t8;k!5P im

. ~ t,t8;k!u~ t82t !1P im
, ~ t,t8;k!u~ t2t8!

P im
21~ t,t8;k!5P im

. ~ t,t8;k!, P im
12~ t,t8;k!5P im

, ~ t,t8;k!

the photon production rate can be rewritten in the form

Ṅ~k,t !5
i

k
dV2~ t !

]

]t1
@ Ḡi i

.~k;t,t1!1Ḡi i
,~k;t,t1!# t15t

2
i

kEt0

t

@P im
. ~k;t,t8!] tḠmi

, ~k;t8,t !

2P im
, ~k;t,t8!] tḠmi

. ~k;t8,t !#dt8. ~A2!

This expression isexactbut formal. To make progress, w
consider the first order ina by replacing the full transvers
photon propagatorḠi j

. with its free field form but with non-
equilibrium distribution functions and neglecting the elect
magnetic contribution to the Green’s functions of t
charged scalar field. If there is an initial non-zero phot
distributionN(k,t0) the free Wightman functions read

G i j
.~k;t8,t !5

i

2k
Pi j ~kW !$e2 ik(t82t)@11N~k,t0!#

1eik(t82t)N~k,t0!%,
08500
-

n

G i j
,~k;t8,t !5

i

2k
Pi j ~kW !$eik(t82t)@11N~k,t0!#

1e2 ik(t82t)N~k,t0!%.

By inserting this propagator in the first term~contribution
from the mean field! in Eq. ~A2! we see that the mean fiel
does notcontribute to the photon production toO(a). To
first order ina the production rate obtains a rather simp
form

Ṅ~k,t !5E
t0

t

@G1
(1)~k,t,t8!„11N~k,t0!…

2G2
(1)~k,t,t8!N~k,t0!#dt8 ~A3!

with the time dependent rates

G1
(1)~k,t,t8!52

i

2k
@P i j ~kW !P i j

.(1)~k;t,t8!e2 ik(t2t8)

1P i j ~kW !P i j
,(1)~k;t,t8!eik(t2t8)#,

G2
(1)~k,t,t8!52

i

2k
@P i j ~kW !P i j

.(1)~k;t,t8!eik(t2t8)

1P i j ~kW !P i j
,(1)~k;t,t8!e2 ik(t2t8)#.

The transverse self-energies are given to lowest order b
7-32



m

tim
th
e

e
a-
n
u
th

ua
e
e

r i

ct
is
er
ce
bu
c

op
e
w
b
ro
lly
ec
i-

term
he
ase
an

ake

m-
li-

h

e
ling
is
he

n

on
n-

ed
ics

e
ses
on

the

f

t
the
nd

la-

i-
on

NONEQUILIBRIUM QUANTUM PLASMAS IN SCALAR . . . PHYSICAL REVIEW D 61 085007
Pk,i j
. ~ t,t8!524ie2E d3q

~2p!3
qTiqT jGk

.~ t,t8!GqW 1kW
.

~ t,t8!

Pk,i j
, ~ t,t8!524ie2E d3q

~2p!3
qTiqT jGk

,~ t,t8!GqW 1kW
,

~ t,t8!

~A4!

where in the largeN limit the Green’s functionsG,,. are
given by Eqs.~3.58!,~3.59! leading to the final form of the
self-energies to be used to lowest order ina and leading
order in the largeN limit,

P i j ~kW !P i j
.(1)~k;t,t8!

5 ie2E d3q

~2p!3
q2~12cos2u! f q~ t ! f q* ~ t8!

3 f uqW 1kW u~ t ! f uqW 1kW u
* ~ t8!

P i j ~kW !P i j
,(1)~k;t,t8!5P i j ~kW !P i j

.(1)~k;t8,t !. ~A5!

In the case in which the initial state is the photon vacuu
i.e. N(k,t0)50 the expression~A3! simplifies considerably.
Upon integrating Eq.~A3! in time up to timet,

N~k,t !5E
t0

t

Ṅ~k,t8!dt8

one obtains two terms each one with a nested double
integral which can be written as a double integral up to
time t by inserting a theta function. Upon relabelling the tim
variables in one of the terms we obtain the expression~4.5!,
which is valid to lowest order ina and for vanishing initial
population of photons. The photon production rate obtain
in equilibrium in @40–43# also neglects the photon popul
tion in the initial state as well as the stimulated emission a
the loss process. In these references the photons are ass
to escape from the medium without thermalizing and
photon production rate is valid to lowest order inaem and to
all orders in the strong coupling constant. The kinetic eq
tion ~4.5! is precisely the non-equilibrium counterpart of th
rate obtained in these references which is valid also to low
order in the electromagnetic coupling and to leading orde
the largeN.

This equation is clearly only approximate since it negle
the buildup of the population of photons. As the photon d
tribution increases in time due to photon production th
will be stimulated photon production from the Bose enhan
ment factor resulting in enhanced photon production,
also processes in which a photon present in the plasma
decay into two charged scalars as well as change in the p
lation with momentumk by bremsstrahlung or invers
bremsstrahlung in the medium. These latter processes
result in a depletion of population of photons and must
accounted for by a more complete kinetic description p
vided below which must eventually be studied numerica
However, if the initial state is the photon vacuum, we exp
Eq. ~4.5! to be qualitatively correct for early and intermed
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ate time scales, since Bose enhancement and the loss
from photon annihilation and scattering will depend on t
number of photons present in the appropriate region of ph
space. Hence first photons must be produced requiring
O(a) and then the stimulated and loss processes will t
place requiring another power ofa. Thus we expect that the
early stages of photon production through spinodal deco
position or parametric amplification will be described re
ably with the simplified kinetic equation~4.5!, the late stages
will require the full kinetic equation described below whic
will involve a numerical study.

The equation for the change of population~4.5! as well as
the more general kinetic equation~A3! do not account for the
change in the photon population, sinceN(k,t0) is the popu-
lation at the initial time. Under the assumption of a wid
separation of time scales, which relies on the weak coup
expansion ina a dynamical renormalization group analys
@36# leads to a resummation of this kinetic equation by t
replacement~to lowest order! N(k,t0)→N(k,t), thus leading
to the final form of the~lowest order! kinetic equation

Ṅ~k,t !5R1
(1)~k,t !@11N~k,t !#2R2

(1)~k,t !N~k,t !
~A6!

with the time dependentforward and backward rates give
by

R6
(1)~k,t !5E

t0

t

dt8G6
(1)~k,t,t8!. ~A7!

This resummation is akin to the Markovian approximati
introduced in@28,46# and is justified as a consistent expa
sion in the electromagnetic coupling.

The resummation implied by this kinetic equation is bas
on a dynamical renormalization group analysis of kinet
@36,29# valid under the assumption of the separation of tim
scales, between the time scale of non-equilibrium proces
of the scalar fields and that of the evolution of the phot
distribution function, which is justified for smalla. Physi-
cally the process that gives rise to this kinetic equation is
following @29,46,36#: evolve the system from the initial time
t0 with Eq. ~A3! up to a timet1 at which the photon distri-
bution has changed by a small amount ofO(a):

N~k,t1!5N~k,t0!1E
t0

t1
Ṅ~k,t8!dt8 ~A8!

with Ṅ(k,t8) given by Eq.~A3! in terms of the photon dis-
tribution att0. At this timet1 reset the occupation number o
the photon states to Eq.~A8! and evolve up to a further time
t2 using Eq.~A3! but now with the occupation number a
time t1. The dynamical renormalization group establishes
equation that performs this operation infinitesimally a
leads to Eq.~A6! @36,29#. As explained in Refs.@36,46# the
coarse graining results from neglecting off-diagonal corre
tions of the typeaa,a†a† in the time evolution of the density
matrix.

A similar resummation scheme is implied by the sem
classical Boltzmann equation, in which if the occupati
7-33
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numbers are treated in lowest order, the change is linea
time. Replacing the occupation numbers by the time dep
dent ones in the Boltzmann equation leads to a resumma
and exponentiation of the time series@46#. However, as dis-
cussed in@46# the Boltzmann equation assumes comple
collisions that result in a coarse graining in time and negle
all of the transient effects and dynamics on short time sca

In particular, for the case considered in the previous s
tion with vanishing photon occupation number in the init
state, the photon distribution function at a given timet is
given by

N~k,t !5E
t0

t

dt1R1
(1)~k,t1!e2* t1

t g(k,t2)dt2 ~A9!

with g(k,t)5R2
(1)(k,t)2R1

(1)(k,t) being the total time de-
pendent rate toO(a). Clearly Eq.~A9! provides a resumma
tion of the perturbative series as is generally the case in
kinetic description wherein the rates are calculated pertu
-

ki
3

s

.

u

e

od

08500
in
n-
on

d
ts
s.
c-
l

ny
a-

tively. The early time behavior of the growth of photo
population is obtained from Eq.~A9! by approximating
g(k,t)'0, leading to the expression~4.5!. A more detailed
estimate of the photon population including the reverse p
cesses and depletion for a general range of momentak will
undoubtedly require a numerical evaluation of the mem
kernels in Eq.~A9!, this is clearly a formidable task.

If the time evolution were slow forall fields, we could
write down a closed set of coupled kinetic equations for
distribution functions of photons and charged scalars. Ho
ever, the strongly out of equilibrium evolution of the scal
fields and fast dynamics associated with the spinodal
parametric instabilities prevent such a kinetic description
there is no natural separation of time scales for the evolu
of the scalar fields. The evolution of the scalar fields is the
fore taken into account fully through the largeN equations of
motion and enters in the Green’s functions that define
forward and backward rates~A7!.
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