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We study the generation of a nonequilibrium plasma in scalar QEDMitharged scalar fields in the cases
(a) of a supercooled second order phase transition through spinodal instabiliti€ls) afcbarametric ampli-
fication when the order parameter oscillates with large amplitude around the minimum of the potential. The
focus is to study the nonequilibrium electromagnetic properties of the plasma, such as photon production,
electric and magnetic screening and conductivity. A novel kinetic equation is introduced to compute photon
production far away from equilibrium in the lardé limit and lowest order in the electromagnetic coupling.
During the early stages of the dynamics the photon density grows exponentially and asymptotically the
frequency distribution becomeekph(w)~am2/[>\2w3] with \ the scalar self-coupling anu the scalar mass.
In the case of a phase transition, electric and magnetic fields are correlated on digtanea&/m during the
early stages of the evolution and the power spectrum is peaked at low momentum. This aspect is relevant for
the generation of primordial magnetic fields in the early Universe and for photoproduction as a potential
experimental signature of the chiral phase transition. Magnetic and Debye screening masses are defined out of
equilibrium as generalizations of the equilibrium case. While the magnetic mass vanishes out of equilibrium in
this Abelian model, we introduce an effective time and wave-number dependent magnetic mass that reveals the
different processes that contribute to screening and their time scales. The Debye mass turns ood Jp be
~am?/\ for a supercooled phase transition while in the case of an oscillating order parameter an interpolating
time dependent Debye mass growssadnt/\ due to a non-linear resonance at low momentum in the charged
particle distribution. It is shown how the transverse electric conductivity builds up during the formation of the
nonequilibrium plasma. Its long wavelength limit reaches a valug,~ am/\ at the end of the stage of linear
instabilities. It is shown that the electric conductivity stéiydte for all k includingk=0 for finite time. In the
asymptotic regime it attains a form analogous to the equilibrium case but in terms of the nonequilibrium
particle distribution functions.

PACS numbsds): 11.15.Pg, 12.26:m, 13.40.Hq

I. INTRODUCTION AND MOTIVATION gluon plasmdQGP [1,2] as well as relaxation and transport
phenomena on unprecedented short time scales. There are
The study of the dynamics of phenomena strongly out okeveral fundamental questions which define to a large extent
equilibrium is very relevant in cosmology where it plays athe theoretical aspects of this program: how does the quark-
fundamental role in the consistent description of inflationarygluon plasma form and equilibrates from the evolution of the
scenarios, baryogenesis and of generation of primordial magearton distribution functions? what are the time scales for
netic fields. Also in relativistic heavy ion collisions where it electric and magnetic screening that dress the gluons and
now acquires further phenomenological importance since theut-off small angle scattering? how does a hydrodynamic
relativistic heavy ion collidefRHIC) at Brookhaven begins picture of the space-time evolution of the plasma emerge?
operation. RHIC and the forthcoming Large Hadron Colliderwhat are the experimental signatures? These and other fun-
at CERN will probe the quark-gluon plasma and the chiraldamental but extremely difficult questions are being ad-
phase transitions in an extreme environment of high temdressed from many different perspectives. An important ap-
perature and density. These experimental programs have iproach that seeks to describe the space-time evolution of
spired intense theoretical efforts to understand the formatiorpartons is based on transport equations that describe partonic
evolution and potential experimental signatures of the quarkeascades starting from a microscopic description and incor-
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porate semi-phenomenologically some screening correctiordau damping screening of electric and magnetic interac-
in the scattering cross sectiof3-5]. A correct description tions.
of electric and magnetic screening is very important in this Hence, there are common relevant problems in cosmol-
program since both act as infrared cutoffs in transport crosegy, astrophysics and ultrarelativistic heavy ion collisions
sections and determine energy losses in the plasma. Amongstat seek a deeper understanding of the physics of the for-
the several potential experimental signatures proposed to deiation of a plasma beginning from a non-equilibrium initial
tect the QGP, photons and dileptons are deemed to be cleatate of large energy density, its evolution, the onset of elec-
probes of the quark-gluon plasma because they only interattic and magnetic screening phenomena and the generation
electromagnetically{1,2,6) and their mean-free paths are of seeds of bulk electric and magnetic fields, i.e. photon pro-
much larger than the size of the firebal20 fm. Hence, duction.
these electromagnetic probes could provide clean signatures A first principles description of the formation of a hot
of equilibration or out of equilibrium phenomena unhinderedplasma and its dynamical evolution from an initial state of
by the strong interactions. Non-equilibrium phenomena assdarge energy density beginning from QCD or the standard
ciated with a quenched chiral phase transition could havenodel would be a desirable goal, but clearly an extremely
potentially important electromagnetic signatures in the phoeomplicated task.
ton spectrum if there are strong charged pion fluctuations The goals of this work
during the phase transition. A preliminary study in this di- In this article we study a model that bears many of the
rection was pursued if¥] where it was indicated that depar- important aspects of QCD and the standard model which
tures from equilibrium in the photon distribution at low mo- combined with a non-perturbative framework allows us to
mentum could provide a signature of a supercooled chiraprovide quantitative and qualitative answers to many of the
phase transition8]. In cosmology, post-inflationary phase questions associated with the formation and evolution of a
transitions or the fast evolution of an inflaton field after in- non-equilibrium plasma.
flation could generate the hot plasma that describes the stan- The model that we propose to study is scalar QED with
dard big bang scenario with a radiation dominated FriedmanN-charged scalar fields coupleddaae U(1) photon field and
Robertson-Walker cosmology at the end of inflatif8]. one neutral scalar field that plays the role of an order param-
Furthermore, non-equilibrium effects during cosmologicaleter for a phase transition. The model is such thatig)
phase transitions had been conjectured to generate the pldcal gauge symmetry associated with the photon fieltbis
mordial magnetic fields that could act as seeds to be amplspontaneously broken much in the same manner as the usual
fied by dynamo mechanisms as an explanation for the obelectromagnetic field in the Standard Model. Besides, this
served galactic magnetic field40,11. Theoretical models model being a suitable framework to study the questions
for generation of primordial magnetic fields involve strong posed above, we will argue that it is potentially relevant to
fluctuations of charged fields that lead to non-equilibriumthe description of photon production during the chiral phase
electromagnetic currenfd2—14, much like the strong fluc- transition of QCD. Therefore, the dynamics and mechanisms
tuations in the pion fields during a possible supercooled chirevealed in this model could prove to be very valuable in the
ral phase transition and the possibility of photon productiordescription of the generation of primordial magnetic fields
associated with these fluctuatiopd. during one of the QCD phase transitions in the early universe
Thus we see that physically relevant non-equilibriumand also in photon production during the chiral phase transi-
physical phenomena are common to cosmology and th#gons in heavy ion collisions.
quark-gluon plasma and chiral phase transition and it has Furthermore scalar QED has been shown to share many
been conjectured that indeed primordial electromagnetiproperties of spinor QED and QCD in leading order in the
fields can be generated from strong electromagnetic fluctudrard thermal loop approximatiof22,24], hence the model
tions at the quark-hadron phase transifits,16. An impor-  studied in this article can serve as a useful and relevant test-
tant ingredient both in the quark-gluon plasma as well as inng ground to study similar questions in QED and QCD.
the formation of astrophysical and cosmological plasmas is a Since the non-equilibrium processes that lead to the for-
description of the transport properties, in particular themation of the plasma are non-perturbative, we resort to the
screening masses and the electrical conductivity. Screenirlgrge N limit as a consistent framework to study the non-
masses are an important ingredient in charmonium suppregerturbative dynamics. We take the electromagnetic coupling
sion which is one of the potential probes of the Q@F] to be perturbative and compute various quantities, such as
and regulate the infrared behavior of transport coefficientshe rate of photon production, magnetic and Debye masses
[18,19. and the transverse conductivity to leading order in the large
The electrical conductivity plays an important role in the N limit and to lowest order in the electromagnetic coupling,
formation and correlations of primordial magnetic fields in discussing the validity of weak coupling in each case.
the early universe and contributes to ohmic heating and The focus of this work centers on the following aspects.
therefore energy losses and entropy production in the QGRIi) The description of the formation of a non-equilibrium
The electrical conductivity in the early universe was esti-plasma of charged particles during a stage of strong non-
mated in[11] and (equilibrium) screening corrections were equilibrium evolution beginning from an initial state of large
included in[20]. More recently the electrical conductivity of energy density(ii) The production of photons and therefore
the plasma at temperatures near the electroweak scale wakelectric and magnetic fields from the strong fluctuations of
calculated iN21-23 including Debye and dynamicélan-  the charged fields. This aspect is relevant for the formation
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of primordial magnetic fields in the early universe and alsoformation of the non-equilibrium plasma, photon production
for photon production during non-equilibrium stages for ex-and the power spectrum in the generated electric and mag-
ample of the chiral phase transition, where the charged fieldsetic fields, the onset of electric and magnetic screening phe-
would be the pions(iii) The dynamical aspects of electric nomena described in real time and the build up of conduc-
and magnetic screening. We study in detail the magnetic antvity in the medium. Equilibrium aspects of hot scalar QED
Debye masses and the time scale of the different processbad been previously studi¢@2,28 and we will compare the
that contribute to screeningiv) The non-equilibriumtrans-  non-equilibrium aspects to the equilibrium case to highlight
verse electrical conductivity. We analyze in detail thethe differences and similarities.
build-up of conductivity as the plasma is forming and its Results: (a) Photon production
asymptotic limit, comparing to the equilibrium case. We have derived a consistent kinetic equation to describe
In particular two important situations are studied) A photon production in situations strongly out of equilibrium
“quenched” (or supercooledsecond order phase transition and used this equation to lowest orderdr(the electromag-
in which the initial state of large energy density is the falsenetic coupling and leading order in the large limit for the
vacuum(the quantum state is localized at the top of the po-charged fields, to obtain the spectrum of photons produced
tentia). The dynamics in this case is described by the provia spinodal and parametric instabilities. In the case of spin-
cess of spinodal decomposition and phase separation, ch#dal instabilities which correspond to the case of a super-
acterized by the exponential growth of long-wavelengthcooled(second ordgrphase transition we have obtained the
unstable fluctuations. These instabilities and the ensuing§ower spectrum and correlation function of the electric and
large fluctuations of the charged fields and particle productmagnetic fields generated during the non-equilibrium stage.
tion result in the formation of a non-equilibrium plasma andWe find that there is alynamical correlation length that
the non-perturbative production of photons and therefore ofirows asé(t)~ \t at short times. It determines the spatial
electric and magnetic fields. The spinodal instabilities arecorrelations of the electromagnetic fields. The power spec-
shut-off by the non-linearities and the resulting plasma postrum is peaked at long-wavelength with an amplitude/\?
sesses a non-equilibrium distribution function of chargedwith \ the quartic self-coupling of the charged scalar fields.
scalars peaked at low momenth) The stage of large am- In the case of parametric amplification the power spectrum
plitude oscillations of the order parameter around the minifpeaks near the center of parametric resonance bands; the am-
mum of the potential. This stage arises for examgfter a  plitude being alse- @/\? but the electric and magnetic fields
phase transition in which the order parameter has rolledhave small correlation lengths. In the asymptotic regime the
down the potential hill and is oscillating around one of thedistribution of produced photons as function of frequency
minima of the potential. Such would be the case in the casbehaves as- am?/[ w®\?]. This entails a logarithmically in-
of the chiral phase transition where a small explicit symme-+{rared divergent number of photons but a finite total energy.
try breaking term(that gives mass to the pionwill force the  In the case when the plasma is generated by spinodal insta-
isoscalar order parameter to evolve towards the minimumbilities, the asymptotic photon distribution continues to grow
This stage is characterized by parametric amplification oproportional to lognr due to collinear singularities. These
quantum fluctuations of the charged fields and again resultsehaviors points to the necessity of a resummation perhaps
in non-perturbative production of charged scalared of via the dynamical renormalization group introduced in
photons[7]. This stage is also relevant in cosmology andRef.[29].
describes the reheating procesfter an inflationary phase (b) Magnetic and Debye screening masse¥Ve intro-
transition or in chaotic inflationary mod€]l8]. The phenom- duce a definition of the magnetic and Debye screening
enon of parametric amplification of quantum fluctuationsmasses out of equilibrium which are the natural extension of
during the oscillatory phase of the order parameter, the inthat in equilibrium[24,30,31. We find that the magnetic
flaton in the cosmological setting, has been recognized asmass out of equilibriunvanishesat ordera through cancel-
very efficient mechanism of particle production and reheatfations akin to those that take place in equilibrium. Further-
ing in the early universg25,26. Parametric amplification of more, we introduce an effective magnetic mass that describes
pion fluctuations after a supercooled chiral phase transitiomon-equilibrium screening phenomena for long-wavelength
has also been recognized to be an important possibility ifluctuations as a function of time and which reveals the dif-
heavy ion collisiong27]. Both non-equilibrium phenomena ferent time scales of the processes that contribute to the can-
are non-perturbative in the scalar quartic self-couplingcellation of the magnetic mass. Asymptotically for long
Therefore, the dynamics in the scalar sector is studied cortimes and in the long-wavelength limit we find that processes
sistently in leading order in the largd expansion, while which are the non-equilibrium counterpart of Landau damp-
electromagnetic phenomena are studied to lowest order in ing contribute on time scales which are much longer than
Spinodal instabilities or parametric amplification of quan-typical production and annihilation processes.
tum fluctuations otharged fieldgesult in the formation of a The extrapolation of this time dependent effective mag-
nonequilibrium plasma. In both cases strong fluctuations imetic mass to the zero momentum limit at finite time reveals
the electromagnetic currents result in the production of phoan unexpected instability in the time evolution of transverse
tons i.e. electric and magnetic fields as well as screeninglectromagnetic mean fields during the time scales studied in
currents generating screening masses and an electrical cdims article. This is a rather weak instability presumably re-
ductivity in the medium. lated to photon production although the precise relation is
Thus, our main objectives are to study thgnamicsof  not clear and deserves further study.
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In the case of spinodal instabilities we find that teéec-  Here we also discuss the limit of validity of our studies and
tric screening Debye mass at leading orderéd and 1N is  the potential phenomenological implications of the results
finite and given byn3,,=8|mg|?e?/\ + O(1). In thecase of ~ from this model. An Appendix is devoted to a novel kinetic
parametric amplification the Debye mass grows monotoni€quation that describes photon production away from equi-
cally with time asyt times a coefficient of orde®(e?/x).  librium.

This result is a consequence of non-linear resonaf82k
which make the charged particle distribution strongly peaked !l THE MODEL: SQED WITH N CHARGED SCALARS
at small momentum,(t=o)~|mg|%[\k?]. Since the De- IN THE LARGE N LIMIT

bye mass is determined by tlderivativeof the distribution We focus on the non-equilibrium dynamics of the forma-

funct|on,DthE smgularlt%/ at small mpmltlentlum re_sults_ll_rr]]_a di-tion of relativistic quantum plasma at high density after a
vergent Debye mass for asymptotically long time. This re'phase transition, either via long-wavelength spinodal insta-

sult, valid to first order inx, strongly suggests that a resum- pjiies in the early stages of a rapiuenchetisecond order
mation of electromagnetic corrections will be required in the - < transition or by parametric amplification of quantum

cr?se of paranr":_etrlc rEsor:jan{:ltlabSur(]:h agrogram I'eShOUtS' fictuations as the order parameter oscillates around the
the scope of this work and will be the subject of a fort COM-equilibrium minimum. Previous work26,32—34 revealed

ing study. lectri ductivi he ol ‘ that both types of phenomena are non-perturbative in the
(c) Transverse electric conductivity As the plasma o scalar self-coupling, hence we propose to use the latge

charged particles forms the medium becomes conductingyit 45 5 consistent tool to study non-equilibrium phenom-
We study the transverse electrical conductivity from linear

f b bo ductivi ¢ ena non-perturbatively. Our main goals are to provide a
response out of equilibriutkubo’s conductivity as a func- g . antitative understanding of several important processes

tion of timg to Iowest.order ?n the electromagn_etic coupling.ihat are of interest both in cosmology as well as in the for-
The .ea'rly time pehawor dgrlng thg stage of spinodal or para, 5tion of a quark-gluon plasmé&;) nonequilibrium produc-
metric instabilities results in a rapid build up of the conduc-, o photons, i.e. the nonequilibrium generation of elec-
tivity which attains a non-perturbative vald¥ am/\) at the tromagnetic fields, (i) the dynamics of screening and

end of this stage. We find that the conductivityirste for all generation of electric and magnetic masses strongly out of

k (including k=0) at finite time. Asymptotically at long  gqyilibrium, (jii ) the build-up of conductivity in the nonequi-
times, the conductivity attains a form similar to the equilib- jrium plasma.

rium case(to lowest order ina) but in terms of the non-

g e : We consider a version of scalar quantum electrodynamics
equilibrium distribution functions.

; : . with N charged scalar field®, to be collectively referred to
This feature of the asymptotic conductivity must apply to 5 pions coupled to a neutral fietdis such a way that the

other physical magnitudes for asymptotic times. Namely, ON&calar sector of the theory has @j2N+ 1) isospin symme-

can compute theit— o limit just replacing the thermal oc- " The coupling to the electromagnetic field reduce this
cupation r!umbe_rs in thelr equn!brlum expression by the out-Symmetry t0 arBU(N) gjopaX U(1)jocar - When we consider
of-equnlbr_lum_dlstr|bu§|on functions. . . the breaking of the isospin symmetry, the neutral scalar field
The article is organized as follows: in Sec. Il the model IS - will acquire an expectation value, but the charged
introduced and the largd limit is described. In Sec. Il we ields®, . There are two main reasons for this cholgthis

review the main .feaFures of §p|nodal decomposition an llows to separate the Higgs phenomenon and generation of
parametric amplification and introduce the relevant non-

o , : . mass for the vector field from truly non-equilibrium effects
equilibrium Green’s functions necessary for the calculatlonsand (b) we seek to describe a phenomenologically relevant
In Sec. I\f/ v;e §tudybp|h_oton prodlljlctlon both during thl‘la elarlymodel, in particular the role of non-equilibrium pion fluctua-
stages of the instabilities as well as at asymptotically long;,,g during the chiral phase transition wherein electromag-
times, In Sec. V we study photon productionequilibrium

I netism is not spontaneously broken by chiral symmetry
to contrast and compare to the non-equilibrium results. Irbreaking
Sec. VI we study magnetic screening and the magnetic mass The same methods can be used to study the Higgs phe-

out .Of equilibrium. Just as in the equili.brium case in this nomenon out of equilibrium and we expect to report on such

abgllan theory,. we shoyv that the magnetic mass van_lshes, b dy in the near future. Furthermore, as we seek to describe
point out the different time scales for the processes involved, o \olevant phenomenology for low energy QCD, this

A suitably defined effective magnetic mass describes NoN=. s el describes the large limit of the O(4) gauged linear

gquilibrium aSpe‘?ts of magn_etic screening on intermediatgigma model that describes the three pions. Electromagne-
time scales. Sec_tu_)n Vil studies the Debjpéectrig screen- tism is unbroken but isospin is broken by the coupling of the
INg mass, and it is argued th"?‘t in the case of p""r"’”‘nemf:harged pions to electromagnetism and this is captured by
amplification the Debye mass diverges because as a result f?{e model under consideration.
a singular distribution function for the charged scalars at low In this Abelian theory it is straightforward to provide a
momentum. In S_ec. Vil we s_tu_dy Kubotinear resp_onSe gauge invariantdescription by requiring that the set of first
transverse electrical conductivity to lowest orderadn In ) - 2 o )
particular we focus on the build-up of conductivity during ¢lass constraintdlo=0; V-E—p=0 annihilate the physi-
the early stages of formation of the plasma. We compare thga! stateg35,36 with I1, being the canonical momentum
conductivity in the asymptotic time regime to the result in cﬁonjugate to the temporal component of the vector field and

equilibrium. Our conclusions are summarized in Sec. IX.V-E—p=0 is Gauss’ law ang is the charge density. This
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procedure is described in detail i@5,36 where it is shown We have rescaled the couplings with the proper poweis of
to be equivalent to a gauge-fixed formulation in Coulomb’sso thate, N are fixed in the largeN limit. This rescaling
gauge. The instantaneous Coulomb interaction is traded by alows a consistent identification of terms as powers df. 1/

Lagrange muItipIieer(i,t) not to be confused with the We focus on the evolution of initial states with a nonper-
original temporal component of the gauge field. The issue ofurbatively large energy densitpf orderm*/x>m?*) in two

gauge invariance is an important one because we will studglifferent situations:(i) m?<0: this case corresponds to a
the distribution function of charged scalar fields and by pro-Symmetry breaking potential. We will choose the neutral
viding a gauge invariant description from the beginning wefield o to describe the direction of global symmetry break-

avoid potential ambiguities. ing, hence the local gauge symmetry describing electromag-
In this formulation we introduce the physical fields netismis not spontaneously broken, i.¢®)=0. A rapid
(quenched or supercooledymmetry breaking phase transi-
(o,®,,® AL Ag), r=1,...N. tion can be described by assuming the&tchanges sign sud-

denly from positive describing a symmetric potential to
The electromagnetic potential is a physical field which satishegative describing a symmetry breaking potential

fies the transversality condition [32,34,37. The long-wavelength modes become unstable
and grow exponentially, this is the process of spinodal de-
V.,&Tzo, composition and the hallmark of phase separation.

We emphasize that in the case under consideration the
whereasA, is the Lagrange multiplier associated with the choice of negative siguloes notresult in the spontaneous

Gauss’ law constraint breakdown of the gauge symmetry, since in this model the
gauge fielddoes notouple to the order parameter Indeed,
V.-E=-V?Ay=p. the global gauge symmetry is always unbroken as the

. _ _ - charged fieldslo notacquire an expectation value.
Thus A, is a non-propagating field completely specified by  (ji) m?>0, <g>(t:o)%m/\/x; in this case the expecta-

the charge density evolution. tion value of the sigma field will oscillate inducing large

~ To simplify expressions, we now use the following nota- parametric amplification of thé field. In both cases the

tions: quantum fluctuations of the fields will become non-
N N perturbatively large in the scalar self-coupling and these will

be treated in the leading order in the larlyelimit (mean
field) [32,34]. The electromagnetic interaction instead, being
of ordera will only give small corrections to the scalar field
N N evolution: thus the backreaction of the gauge field on the
otvd = 2 q;r*vcpr, dth= 2 qa;fc'pr_ evolution of the scalar field will be neglected. Therefore to
r=1 r=1 leading order inN the equations of motion for the scalar
) ) ) o ) sector are the same as those obtained in R&2$.in absence
With these notations the Lagrangian density is written of electromagnetic coupling.

Assuming in general that the sigma field acquires a non-

fp=2 o, 4,dTd=2 9,0/,
r=1 r=1

L=Lyt Lot Ly 2.1 equilibrium expectation value we shift
with - - -
a(X,0)=Ne(t)+x(x,t), (x(x,))=0 (2.5
1
£1=§r7#08“0'+ aMCDTMCD where the expectation value is taken in the time evolved
density matrix or initial state. The larde limit in the scalar
1 N (1 2 sector can be obtained either by introducing an auxiliary field
—m2(502+<1>fd>) - m(502+ <I>*<I>) , (2.2 [38] or equivalently in leading order by the Hartree-like fac-
torizations[34]
P )2 T\t
xPTD— (DT D), (2.7
and
) The non-linear terms of the field lead to subleading con-
ie . ibuti i imi i -
Lo=— —Ar (BVO-VD'D) tributions in the largeN limit, and to leading order the dy

namics is completely determined by thecomplex scalars
&. The factorization that leads to the leading contribution in
e? 22 20t ie e the largeN limit makes the Lagrangian for these fields qua-
N (AT AP - \/—NAo(‘DCD —P'D). dratic (in the absence of the gauge couplirag the expense
of a self-consistent condition: thus charged fieldacquire a
(2.9 self-consistent time dependent mass. The dynamics is deter-

N

085007-5



D. BOYANOVSKY, H. J. de VEGA, AND M. SIMIONATO PHYSICAL REVIEW D61 085007

mined by the equation of motion @f(t) and by the Heisen- This expectation value is ultraviolet divergent, therefore the

berg equations of the charged fields. renormalization must be carried out consistently in terms of
mass and coupling constant and the reader is referred to
IIl. SPINODAL AND PARAMETRIC INSTABILITIES: [32,34 for details.
SUMMARY OF MAIN FEATURES It proves convenient to introduce dimensionless variables

) - in terms of the renormalized mass and coupling
Before we begin our study of non-equilibrium photon pro-

duction and the emergence of dynamical masses, we review Kk AR W,
the main features associated with the non-equilibrium dy- =|mglt, q= » g
namics of the scalar fields to provide the physical picture and

the basic ideas upon which we will elaborate with the inclu-

sion of the gauge fields. For more details the reader is re- 5 AR
ferred to[32,34. As mentioned above the leading order in K (T)_2|mR|2‘P
the largeN limit can be obtained by a Hartree-like factoriza-

tion that turns the Lagrangian into a quadratic form. Theand the subtracted self-consistent self-en¢B;34]
equation of motion for the expectation valyét) [see Eq.
(2.5)] is given by

(3.7)

Imel” ® gx2" 9 [mg|

2(t), @q(7)=|mg]Y#f(t) (3.9

gE(r)=gf:q2dq{|<pq(r)|2—|soq(0)|2
o(t)+m?e(t) + %¢3(t)+ %@T@)@(t):o. (3.2

L 0+ P+ g3 (7]
Introducing the usual decomposition 293 7 7 '
d3k . (3.9
0 — " ik-x
CD’(t’X)_f 1/2(2W)3[ar(k)fk(t)e From now on we set the only dimensional variable in the
) . problem|mg|=1 and all dimensionful quantities will be in
+bl (k) fE(t)e k], (3.2 units of|mg|.
To leading order in the larg®l limit the dynamics is
- d3k R 0 completely determined by the following equations of motion
(I)t,x=f—bkfte' :
e (1) 2(27T)3[ r(K) fi(t) (32,34
cal (R (e ¥ 7] 33 7(DEn(n)+ 70 +gE(Dn(n=0, (3.10
r ’ .

d2

we find that the charged fields obey the Heisenberg equations
: Y 7.4 ST (DT O3(7) oy =0, (3.1
T

if the mode functiond (t) obey the following equations of
motion[32,34:

Two different cases correspond to the different signs in
the evolution equations above.

The negative sign is associated with tree level potentials
that allow global O(2N+1) broken symmetric ground
We will choose the initial state to be the state annihilated bystates, whereas the positive sign determines a potential with

the a, (K), b, (k) operators and determined by the following & symmetric mini_n_1ur_n. As it WiII_ be_discussed in detail be-
initial conditions on the mode functions, low, the non-equilibrium dynamics in theroken symmetry

case is described for early times by the process of spinodal
decomposition and phase ordering and triggered by long-

— +k? 24 N 2 lcI>TcI>f =0. (3.4
+ +m+2<p(t)+N< )| fk(H)=0. (3.9

1 .
fl(0)= —, T (0)=—iW,f(0). (3.5  wavelength instabilities just as in a typical second order
\/Wk phase transition during a rapid quench through the critical
temperaturg 37].

The frequencie®V, will be chosen in the particular cases to For positive sign, the physical situation that we want to

be analyzed below. This choice of initial state with the initial describe is the case when the order parameter has an initial
conditions given by Eq(3.5 corresponds to the vacuum of value corresponding to a large amplitugét=0) of order
the Fock quanta of oscillators of frequenciég. This initial O(me/Vhg) ie. 7(0)=0(1) [see Eq.(3.8]. The subse

R R . . - . . . =

state can be generalized straightforwardly to a thermal der}juent non-equilibrium evolution of the order parameter is

sity matrix, but the main physical mechanisms can be high- : . . L
lighted in a simpler manner by the choice of this state. Withdescnbed in terms of large amplitude oscillations around the

this choice one finds minimum of the potential. This situation would describe the
dynamicsafterthe phase transition when the order parameter

N N d3K has rolled down the potential hill and undergoes large ampli-
_<¢,Tq>>:_j ——|f (D)2 (3.9  tude oscillations near the minimum. In cosmology this situ-
N 4) (2m)® ation also describes the period of reheating in chaotic sce-
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narios[25,26. As can be seen from the equation of motion The important feature is that this initial state has non-
(3.11) the effective mass for the charged field modes oscilperturbatively large energy density, of ordeng|*/ g as
lates in time leading to parametric amplificatit2b,26,34. compared to the broken symmetry vacuum state, for which
In this case the phenomenon is that of energy transfef|=1.
from the “zero mode” i.e. from the expectation value of the  As discussed in Refqd.32,34 the ensuing dynamics is
order parameter to the modes with non-zero wavevectors asstrongly out of equilibrium. The modes with wavevectors in
consequence of parametric amplification of quantum fluctuathe unstable band begin growing exponentially and their con-
tions. tribution to the self-consistent expectation valg& (7)
Thus, the physics is very different between the two casesauses it to grow exponentially. This instability is the hall-
and the only feature in common is that either through themark of the process of phase separation and determines the
growth of long-wavelength fluctuations via spinodal insta-emergence of correlated regiof82,34,37: these are the fa-
bilities or the growth of fluctuations via parametric amplifi- miliar spinodal instabilities associated with the process of
cation the ensuing non-equilibrium dynamics results in thephase separation and phase ordering. The contribution of
production of a dense plasma of charged particles stronglthese unstable modes ¢& (7) dominates the early time dy-

out of equilibrium. namics and whemg (7) becomes ofO(1) and competes
The initial conditions on the order parameteondensate  with the tree level term < 1) in the evolution equations for
are chosen to be the mode function$3.11) these instabilities shut-off through
. the backreaction. This defines a nelynamicaltime scale
7(0)=no, 7(0)=0, (3.12  that determines the onset of full non-linear evolution and is

I . . estimated to b§32,34]
and the initial conditions on the mode functions ggee Egs.

(3.5 and(3.9)] 1 1\F
. | TNL=§|I’I sVa +0O(In|Ing)). (3.19
(Pq(o):_u ‘Pq(o):_i Qq, (3.13
\/Q_q Thus, two different regimes emerge:

(i) The early time regime for< 7y, in which the back-
reaction can be neglected and the evolution of the mode
functions is essentially linear and dominated by the spinod-
ally unstable wave-vectors for which the mode functions
grow exponentially(linear instabilitie$.

Consider the case in which the system is undergoing a (i) The late time regime for= 7y _ for which the effec-
sudden phase transition out of equilibrium from an initial tive mass squared\ ?(7)=—1+g3(7)+ %(7) tends to
disordered state at large temperature very rapidly to almostero and the mode functions become effectively massless
zero temperature, i.e. a quenched phase transition with a vaf32].
ishing order parametdi34,37]. For 7>0 the equations of

where the dimensionless frequencieg will be determined
in each particular case below.

A. Broken symmetry: spinodal instabilities

motion are those for a broken symmetry case with thg ( 1. Early time regime
sign in Eq.(3.11) with (0)<1,7(0)=0. For simplicity, we For r<r,_ and weak coupling, the effects of the back-
shall consider the casg(0)=0 which entailsy(7)=0. reaction can be neglected and the mode functions obey a

Furthermore, we see that for very weak coupling andinear equation of motion. Whereas the modes outside the
early times i.e. when the back reaction from the tgl(7)  spinodally unstable band oscillate and their amplitudes re-
in Eq. (3.1 can be neglected, there is a bandspinodally  main bound in time, those in the unstable band grow expo-
unstablewave-vectors &sq<1. The modes in this unstable nentially. For the casej,<1 we can neglect at early times
band will grow exponentially initially. Because we are de- both the quantum fluctuatiom (7) and (7) in the mode
scribing an initial condition corresponding to a suddenequations(3.11). The explicit solution is thu§32]
guench, we impose the initial condition that at the initial time
the mode functions describe particles of the stable phase, i.e., — M—_q2 * - 1—a2
we choose the initial frequencies for the modes in the un- Pl 7) = aqeXH VI 0) +aqexp(— V1= )(3_17)
stable band to be given 482,34,37

where the coefficienty, is determined by the initial condi-

Qq=Vag*+1 for g*<1 (319 ions (3.13, i.e.
the short wavelength modes are not affected by the sudden o _ -~
quench and we choose ¢q(0)=(1+099) """, @q(0)=—=i(1+g9)™",
Q,=Vq?-1 for g*>1. (319  we find
However, we emphasize that detailed numerical studies re- ) \/1——qz—i\/1+—qz

veal that the dynamics is not very sensitive to the choice of
the initial frequencies for weak couplifi§2,34.

(3.18

q

2V1-q(1+ )
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A feature of the solutiori3.17) with (3.18 that will become -0

important is that when the exponentially damped solution Aq = — —[K+igL+0O(g?)],
becomes negligible as compared to the exponentially grow- 2q

ing one, the phase of the mode functiopg(7) freeze i.e.

becomes constant in time and is a slowly varying function of qjo i . 2
q for long wavelengths. Bq = E[K—|qL+O(q )] (3.27
2. Late time regime where ImMLK =1 according to the Wronskian conditi82].
For times 7> 7y, the effective mass term2(7)=—1 The non-zero coefficienK is determined by the linear
+9g3(7) vanishes leading to the sum rulg2,34 growth in time of the mode,_(7) in this case with broken
symmetry[32]. For small coupling it is found numerically to

g3(»)=1 (3.19 be given by[32],
K=K, —iK_ wh
and the mode functions obey a massless wave equation. The v where
asymptotic solutions are given §hg2]

1
: . K.=—={11...50.08...9+0(g%}. (3.2
@q(T) =A€7 +Bye " (3.20 B @{ - 9+0(gY) 9

where the coefficientd, ,B, are both non-vanishing because This asymptotic behavior for small momentum will prove to
the Wronskian is constant and determined by the initial conP® important for a quantitative analysis of the magnetic
ditions mass.

. - : B. Unbroken symmetry: parametric amplification
~2i=Wleq, ¢4 1=q(7) ¢} (1)~ @q(1) 5 (7) ymmeny: p P
In the unbroken symmetry case, corresponding to the

= _ZiQ[|Bq|2_ |Aq|2] (3.21 choice of the plus sign in the equations of motion
) . (3.10,(3.1)) the frequencies$), are chosen to bE32]
leading to the important result
Q4= JgZ+1+ 5%(0) (3.29
|Bq|2_ |Aq|2=a- (3.22  and the initial condition for the dimensionless order param-

eter is chosen to be

Furthermore, the sum rul€3.19 is asymptotically domi-

nated by the modes in the unstable band 7(0)=70=0(1), 7(0)=0. (330

In this case the “zero mode(expectation valuez(7) os-

R K ) 5 o cillates around the minimum of the potential resulting in an
9(7) = gfo q°dq[|Aq|“+|Bg|“] + oscillating terms oscillatory time dependent mass term for the mogdgér).
(323 1. Early time regime
where the oscillating terms vanish ag.1We concludg32] Neglecting the backreaction of the fluctuations, an oscil-
that for the modes in the unstable band latory time dependent mass leads to parametric amplification
of the mode functions which are Floquet solutions. These
|Aq|2=(9(1/9)=||3q|2, 0<g<1 (3.24 solutions are characterized by parametric instability bands.

For weak coupling the early time behavior gfr) and
determining thaf\, B, are both ofO(1/\/g) whereasA,,B,  the mode functionsp,(7) can be found by neglecting the

are of order one elsewhere. backreaction terms in the equations of mot(@'ﬂ.@,(3l]}
The following sum rules arise frorfa) the vanishing of ~for the unbroken symmetry case. The equation for the zero
the effective mass anﬂb) conservation of energBBZ] mode with the initial Conditi0n5(3.3() has as solution a

simple elliptic function[32]. Inserting this elliptic function,

1 1 the evolution equation for each mogg(7) becomes a Lame
f qqulAq|2=—+O(1) (3.29 equation that can be analytically solved in terms of Jacobi

0 29 theta functions, the details are given[B2]. The important

feature is that this Lamequation hasnly one band of para-

., , 1 metric instability for realg. The unstable band corresponds
fo q*da|A,| =@+O(1). 320 o wave vector§3?]
Furthermore, the smat| behavior ofA, and B is given by 0<q<@. (3.3))
[32], V2
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The modes in the unstable band grow exponentially in timeDetailed analytic and numerical studies[i82] reveal that
whereas those in the stable regigg/ 2<q< oscillate in ~ most of the particle production occurs during the time inter-

time with constant amplitude. val 7< 7y .

The explicit solution with boundary conditior§8.13 for For 7y >7>1 the modulus squared of the mode func-
the mode functions in the unstable band is given by tiOI’lSI(pq(T)|2 is peaked at the value of at which the Flo-

quet index is maximum, this value is given [82]
@q(T)=aqUq(— 1)+ agUq(7) (3.32 L
* A N2

with the Floquet solutiot () given in[32]. a" =7 7ol 1= a(70) ]+ 0O(q"). (339

With the choice of frequencig8.29 the coefficienta, is
found to be given by 2. Late time regime

) The parametrically resonant bands@=< 7,/+/2, is shut-
= 1 (1— Z'Qq) W= — 24 7 /1](2)/2+1+q2 off by the non-linearities[the term gX(7)] for times 7
d 2\/Q_q W, ) 2j0—q2 = 7y . Two non-linear resonant bands appear in this regime.

(3.33 One nearq=0 and the other just below= 7,/2. The
width of these nonlinear resonances diminishes in time. We
The Floquet solutionsl ,(7) are derived in detail if32] and  have for the non-linear resonant bari8g]
depend on the initial conditiory through the nomey( 7).
Since in this case(7,)<e "=0.043213 ... for anyini- 0<q2<K_ and@— K_<q <77° (3.40

tial condition o [32], we can express( ) by the excellent 2

approximation (with K4,K, determined in Ref[32]) and the phase space

2 1/4 214 for these small resonant regions becomes increasingly
q(70) = E (14 70)™" = (1+ no/2) (3.34 smaller at late times.
(70 2 (1+ 7}3)1/4+( 1+ 7](2)/2)1/4 ' Asymptotically, the effective mass oscillates around the
constant valug¢32]

with an error smaller than-10" 7 [32]. In addition we can
7]0

use the approximation(z,)<1 and the Floquet solutions M?(0)=1+g3(0)=1+ — (3.4)
simplify in this limit to 2
e Tsm(frvq m ) o) (335 and the mode functions can be written as
g\ — 7T S|n7TUq q . (Pq(T):Aq(T)eiqu+ Bq(T)efiqu' wq= q2+M 2(00)
3.4
with Floquet index (342
where the amplituded,(7) andB,(7) depend on the slow
B,=4 1+ ﬂoza(ﬂo)SinzﬂTqur 0(9?), time scaler/ 7y, for 7> 7y and are defined b}32]
1 (Pq( )}
2 - A 7)=se " i 3.4
sinrug=\/1— —q2+ 0(q), cogrvq=£q+0(q). ol7) 2 #a(7)- wgq (343
770 7o
(3.39
q(T)_ etion| o (T)+|¢q( L (3.44
Therefore the backreactiog (7) grows exponentially at

early times because of the parametric instabilities. The exp

nential envelope of the backreaction term is giver(88] % hese amplitudes vary slowly in time and in particular

wq|Aq(7)|? is identified with the number of asymptotic par-
ticles of massM () [32].
g3 (7) = ,,ieé (3.37) For wave vectors inside the small bands rain-linear
N\/; resonanceg3.40), these amplitudes grow with a power law
[32], whereas the modes outside from these resonant regions
whereN andB can be found if32]. When the backreaction oscillate with consta_mt_ amplitude. The f:_;lct thgt the width of
competes with the tree level term, igS,(7)~1+ 7](2)/2 the these resongnce_s_dlmlnlshes at longer times is a consequence
full nonlinearities must be taken into account, this equalityOf the no_n-||near|t|es. A very |mportant consequence is that
determines th@on-lineartime scalery, given by[32] asymptotically for all modes with# 0, 70/2
. ] lim Ay(7)=Aq, lim By(7)=By (3.45

TNL™ :ln
B

N(1+ 73/2)

o\B

(33& T— 0 T—00

WhereAq and B, are constants.
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Hence, the mode functions with# 0, 7,//2 asymptoti- :
cally behave as

80 r
1

@q(7) = Age'“a™+Be v, (3.46
o 607 =
Asymptotically the constancy of the Wronskian leads to =
1 <
[-)) -
|Bq|2_|Aq|2:_- (3.47) *
Wq

Furthermore, for the modes with wave vectors in the reso- 207
nant band 8q< 7,/+/2,

1 0 T T T T
|Aq| _ O( \/_a) = Bq|. (3.48 0.0 03 0.6 0.9 12 q

FIG. 1. g|gq(7=my.)|? for broken symmetry fog=10"* and
Just as in the broken symmetry case, there are two importanf,=0.

sum rules as a result of the asymptotic value of the effective
mass and of conservation of energy. In this case these read \we now turn to the description of the electromagnetic

[32] properties of this nonequilibrium plasma of charged particles
o IZ 1 for which we need the nonequilibrium Green’s functions of
fo 0 dq qZ‘|Aq|2:E 773+ 0(g9), the charged scalar fields.

D. Basic ingredients: real time non-equilibrium Green’s

12 .
J’no dq q“IAqIZ:%néﬂLO(gO). (3.49 functions
0 The proper description of real time non-equilibrium evo-
lution is in terms of the time evolution of an initial density
C. Formation of the plasma matrix. A formulation in terms of a path integral along a

The main conceptual feature that emerges from the SurnQomplex contour in time allows to use the familiar tools of
mary above is that in both situations, broken or unbroke uan_tum field the_ory to study non-equilibrium -phenomena.
symmetry, spinodal or parametric instabilities lead to profus n this, Fhe Schwmger—KeIdysh or CTRI.osed time path
particle production. The particles that are produced ar ormgla_ﬂon [34,39, the egsenUaI mgrgdlents are the non-
charged scalars, these are produced in pairs of total Zel%qun!b_rlum Gree_n's func_t|ons. In partlcular_ th_ere are four
momentum, and the distribution of produced patrticles is IO_ch:ss_lbneht.wk(‘)—pomt funcc??n;,] denoltetq byllnd|ci[ert]!s, t? N d
calized in the region of instabilities. In the case of brokent d b} V\Ii 'c dc?rresgon ho € evolution along the forwar
symmetry the distribution is peaked in the regiogr <1 an aTc war |meh rf\nc €s- t
and in the case of unbroken symmetry in the regiergO (a) Transverse photon propagators

. . Since photons will be treated perturbatively, we need the
= 70/+2.1n bqth cases the amp'““f'f of the mpde funCtIonsoare photon Green'’s functions. Furthermore we will consider
in these regions becomgey(7)|°=0O(1/g) i.e. non-

perturbatively large. This amplitude is associated with the
number of particles creat¢82,34] (see belowand therefore
we conclude that during the period of spinodal or parametric
instabilities 0<7< 1y, a dense plasma of charged particles
is formedas a result of these instabilities. This plasma is
neutral and is described by the distribution functions of the
particles, which is proportional thp,(7)|* [32,34 (see be-
low) and is clearly a nonequilibrium distribution in the sense
that it cannot be described by a thermal distribution at someg;
temperature. These distribution functions had been obtaine:
numerically in[32,34). Figures 1 and 2 displag| ¢q(7y.)|? 17 B
for the broken and unbroken symmetry cases respectively, i
is clear that the square of the mode functions become ol
order O(1/g) at 7=~y for wave vectors in the unstable .
bands' 0.0 0i5 1!0 1{5 2‘.0 215 310 q
Furthermore the distribution of particles continues to
evolve for 7> 7y and this evolution is more marked in the  FIG. 2. g|g,(7=7y.)|? for unbroken symmetry fog=10"*
unbroken symmetry case. and 5,=4.0.

3

[N
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that the initial state is the photon vacuum. Therefore the An important property of the mode functions in the
relevant real time Green’s functions for transverse photonasymptotic region will allow us to establish a correspon-

are given by dence between the non-equilibrium results to be obtained
&K below and the more familiar equilibrium results. In both

@¢g A g7+ — i ab et 17y a—ik-(x=x') cases, broken or unbroken symmetry, after the non-linear

(AT OCDAT X)) 'f (277)3g” (kitt)e ' time scale the mode functions become those of a free field

o b . theory [see Eqs(3.20 and (3.46]. The Wronskian condi-
where the explicit form of7i"(k;t,t") is tions (3.22 and (3.47) allows to write the modulus of the

++ o[> coefficientsA,B in the form
G (Gt t) =P (K[ G (Lt)O(t—t")

1 1
+G R (L0t —1)], (3.50 |Bq|2=w—[1+/\/q], |Aq|2:w—/\/q (3.60
q q
Gij ~(kitt) =P (K[Gy (t,t)O(t' 1) with wq=q for broken symmetry ot y=\qZ+ M 2(x) for

unbroken symmetry.
N describes the distribution of asymptotic charged scalar

- , - A= - , particles created during the rapid non-equilibrium stages of

Gii (kt,t) =Py G (Lt); Gij(kt,t)=Py(K)G (Lt") spinodal decomposition or parametric instabilit{@2,34].

(3.52 These arenonequilibriumdistribution functions, a result of
profuse particle production during the stage of spinodal in-
stabilities or parametric amplification. The number of

Kok charged scalars produced during these stages is non-

’pij(|2)=5ij_ -1 (3.53 perturbatively large, since for the wave vectors in the un-

k? stable bands\Vj is of order 1¢.
The asymptotic behavior of the functio&(t,t’) when

+G ()0 (t—t")], (3.5))

and Pij(IZ) is the transverse projection operator,

Attree level both time arguments are in the asymptotic region, much
i larger than the non-linear time scale can be written in the
G (t,t)= ﬂe*ik(t*t’), (3.59 illuminating form
nT'>1

GE(Lt) = ekt (3.55 G (tt) = 2—,,,k[(1+/\/k)e““’k“‘t"+Nke“"k““')]
k y —ﬂ . .

+i REABy e 1],
(b) Scalar propagators dABK I
The scalar propagators are truly nonequilibrium and can

< N _ >t
be written in the general form G (LU) =Gy (1.1) (369

o @O 1D DR ' where the mixing terms proportional & k") are a sig-
(PP (X DD (X)) o . s
nal that the non-equilibrium behavior remains in the

) d3k aby +r\ ik (= X) asymptotic region. In most circumstances these rapidly vary-
= _'5rsJ WGK (t,t")e ; ing oscillatory terms lead to contributions that vanish very
rapidly by dephasing.
where @,b)e{+,-}, r,s=1,... N. With the field expan- The first two terms of the functio(8.61), that depend on

sion given by Egs(3.2),(3.3) in terms of the(dimensionfu) the difference of the time arguments can be compared to that
mode functionsf,(t) obeying the equations of motiai3.4)  of a free field theoryn equilibrium
we obtain in theN=o limit,

> N — i —io(t—t’ o (t—t’
Gl:r+(t,t/):Gi(t’t/)®(t_t/)+Gk<(t,t/)®(tr_t), kaequ“(t,t )_2_(1)|({[1+nk]e i w( )+nke| K )},
(3.56
Grequi(t,t’) =G (t',t 3.6
G;_(t,t,):GE(t,t,)®(t,_t)+Gk<(t,t,)®(t_t,), k,eqU|I( ) k( ) ( 2
e, - e, - wheren, is the thermal distribution function. Thus we see
G (LU)=G (1), G " (Lt)=G (tt'), that the part of the asymptotic non-equilibrium Green’s func-
857 fions that depends on the difference of the time arguments
i has the form of the free fieldquilibrium Green’s functions
Gy (t,t) = f (D (L), (3.59  butin terms of thenonequilibriumdistribution functionsV.
2 This formal similarity will allow us to compare the non-
_ equilibrium results in the asymptotic regime to those more
' familiar in equilibrium field theory and to interpret the dif-
< ry — IAY 24
Gie (L) = 2 (i (). (359 ferent processes in the medium.
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(b)

FIG. 3. Photon polarization with full largd scalar propagators.
The dashed line with the cross at the end represents an insertion
the backgroundy( 7).

It is convenient to summarize the main features that will

be responsible for the phenomena studied below.

In either case, spinodal instabilities in the case of the po -0- - s ¢
tential allowing broken symmetry states or parametric installl Out-of-equilibrium —situations  where  transient,
bilities associated with the oscillatory evolution of the order
parameter in the case of unbroken symmetry, there are strong
fluctuations that lead to non-perturbative particle productiorf

of the orderO(1/g). At times larger than the non-linear time,

when the effects of the backreaction become of the sam@ . . o MV =z
Olfmlt when t—coc, This definition is insensitive to the non-

&nergy conserving processes, which are subleading in the

order as the tree level terms, the occupation number
modes in the unstable band is non-perturbatively larg

PHYSICAL REVIEW D61 085007

the case of broken symmetry potentjasd via the paramet-
ric instabilities associated with the non-equilibrium evolution
of the order parameter around the symmetric minimm
the case of unbroken symmetry potentialss described in
the previous section, we carry out this study to leading order
in the largeN limit and to lowest order in the electromag-
netic coupling. This is similar to the formulation [40,41]

for the rate of photon production in the QGP to all orders in
ag and to lowest order invgp,.

However, our approach differs fundamentally from the
usual approach in the literatufé0—44], which relies on the
computation of the photoproductigate from processes that
satisfy energy conservation, i.e. on shell. This results from
H?e use of Fermi's golden rule in the computation of a tran-
sition probability from a state in the far past to another state
in the far future.

Instead our computation relies on obtaining the integrated
photon number dfinite time tfrom the time evolution of an
initial state at ty. Clearly this approach is more appropriate
i time-
dependent phenomena are relevant.

Non-equilibrium time dependent transient phenomena
annot be captured by the usual rate calculation based on
Fermi’s golden rule, since such calculation will obtain the
umber of produced photons divided by the total tinrethe

[O(1/g)]. The state of the system can be best characterizend time limit but could dominate at finite time, and could
as anon-equilibriumdense plasma. The distribution function Potentially lead to grossly disparate estimates of the total

of the created particles is not an equilibrium one and has
finite limit for infinite time.

As a result of non-perturbative particle production, the

umber of photons produced in a situation in which a plasma
as a finite lifetime as is the case in heavy ion collisions.
To lowest order i and leading order in the largé the

Green’s functions of the scalar fields, determined by thd€@ding process giving rise to photoproduction isdffeshell

mode functionsf(t), are those of @lasmastrongly out of
equilibrium and will provide anon-perturbativecontribution
to the photon polarization.

To leading order in the largd limit and to lowest order
in a=e?/4m, the photon polarization is given by the dia-
grams shown in Figs. 3a,b.

The loop is in terms of the full scalar propagator in the,

leading order in the larg8l limit, which receives contribu-
tions from the mean-field and background as depicted in Fi
3c.

We now have all of the ingredients to study the electro

magnetic signatures of these non-perturbative phenomena Q

leading order in the largdl limit and to lowest order inx
=e?/4.

We emphasize again that these phenomena have nothi
to do with the ordinary Higgs mechanism. In this model the

global gauge symmetry isot spontaneously broken by the

initial state even when the potential for the scalar fields al- _
lows for broken symmetry and remains unbroken throughout Aq i (t)=(7" 7 y]i

the dynamical evolution.

IV. PHOTON PRODUCTION VIA SPINODAL AND
PARAMETRIC INSTABILITIES

We study the production of photons both via the spinodal

instabilities associated with the process of phase ordéiing

ng

production of a pair of charged pions and one-photon from
the initial vacuum strongly out equilibrium. Thus, we con-

sider the transition amplitude for the proces®)
—|m* 7~ y) to ordere, more precisely the amplitude for the

interaction to create a pair of scalars with momentﬁlﬁnlz
andﬁ respectively and a photon of momentinand polar-

ization \. The initial statd0) at timet, is the Fock vacuum
for pions and photons but its evolution is non-trivial because

Yt is notan eigenstate of the Hamiltonian, nor is it perturba-

tively close to an eigenstate. In the case of spinodal instabili-

ies this state is unstable, and it decays via the production of
E)ons and photons. In the case of parametric instabilities, this
state involves a dynamical expectation value for éhéeld

with non-perturbatively large amplitudee, 7o~1).

The lowest order contribution to this amplitude in the
electromagnetic coupling is given by

t - - - - ~
f dt; d®J(ty,%) - Ar(ty,x)|0)
to
4.0

whereJ(t,,X) is the electromagnetic current

N
J(ty,X)= = 2 (OIVD, -VOID,). (4.2

ie
\/_rl
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If the (transversgphoton field is expanded in terms of cre- 1
ation and annihilation operators of Fock quanta associated L In| =
with the vacuum at the initial time g

[see Egs(3.16) and (3.38 for more detailed expressiohs

. d*k Lo e . . :
At )= J— e, (K)e ikttikxg () that separates the linear from the non-linear behavior, we
! A=12 \/2k(277)3[ 4§ i analyze both regions< 7y and 7> 7 separately.
e e ) al (] (4.3

A. Photon production via spinodal instabilities

and the scalar fields are expanded as in E8%®),(3.3), we 1. 7<myL

find the amplitude to be given by The number of produced photons of wavelerifier unit
t volume at timet is given by Eq.(4.5). Obviously the inte-
__ ¢ > PN A ikt f * grals in this expression can be computed numericgllly
Aakrl0)= mftodtlex(k).%e 1fq(t1)f\5+'zl(t1)' since the mode functions are known numerically with high
(4.4 precision[32]. However, the summary of properties of mode

functions for <7y and 7> provided in the previous

Squaring the amplitude, summing ovgrandr and X and  section allows us to furnish aanalytical reliable estimate

using for the photon production. During the early, linear stages, we

can insert the expression for the mode functions given by

oL s Egs.(3.17),(3.18. Furthermore, we focus on smllso that

> ek k=P Kk T and G4k are | :

<4 g andq+k are in the spinodally unstable bands and keep
only the exponentially increasing terms which dominate the

we finally obtain that the total number of photons of momen-integral at intermediate times. The time integral can now be

tum k produced at timet per unit volume from the initial Performed and we findusing dimensionless unjts

vacuum state at timg, is given by

2

) e? r diq
Npn(k,7)=—
q%(1—cog0) : 2kJ (2m)®

) Xexp{ZT(\/l—q2+ V1-(q+k)?)]
. VI—+V1-(g+R2P+K2

_ R . (4.9
where ¢ is the angle betweeq andk, q-k=gkcosé. The Furthermore, the dominant contribution to thentegral
same formula can be obtained as a particular case of thgises from the smali region justifying the non-relativistic

generalized kinetic equation for the photon distribution fU”C'approximationq<1 g+k<1. HenceN,(k,7) becomes
tion obtained in Appendix A. We refer the reader to this ' P

q%(1—-cos 0)| agagl®

Npn(k,t) = (27)° AN ezf =

Bx Pk 2k) (2m)3

X

t .
ft fo(t) fgeg (e Kadt
0

Appendix for a more detailed discussion of the kinetic equa- 1 2 o (= dg [t "

tion and its regime of validity. — 74—k )f j dx off(1—x?)e=27a"+aky,
We point out that if the mode functiorfg(t) are replaced 16 2k 0 (2m)?) -1

with the usual exponentials exp(wgt)/\wq, and the limits 4.7

tp——~ and t—o are taken, the familiar energy-
conservation Dirac delta function is recovered and therefore
the process is kinematically forbidden the vacuum Fur- L
thermore, the discussion in the previous section highlighted f dx(1—x2)e A*=2eA
that during the stage of spinodal instabilities or parametric -1
amplification, the mode functions in the unstable bands grow
exponentially. Hence the modes in the unstable band wilto perform the angular integration. Notice that the dominant
lead to an explosive production of photons during these earlyegion corresponds ta= —1. That isq andk in opposite
stages. Clearly the maximum production of photons will oc-gjrections. Physically, this corresponds to two charged sca-
cur in the region of soft momenta, with the wavevedon |, .o \ith narallel momenta andq— K emitting a collinear
the unstable bands. In this manner the scalar mode functlon%1 X - )
with wavevectorsy and g+ Kk will be in the unstable bands photon -Wlth momentuwk (see Fig. 4

. . In this regime the photon spectrum becomes
leading to four powers of the exponential growth factor.
Thus we will focus on the production of soft photons study-

Fork?7>1 we can use the approximation

1 3
7+ OWAY)

2 %
ing the case of broken symmettgpinodal instabilitiesand N,n(K,t)= _er(4—k2)f dg 2q4eZqu—ZTq2
unbroken symmetry(parametric instabilities separately. P 642 2K o (2qkr)?
Having recognized the emergence of a dynamical time scale (4.8
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q e?
Nph(l<,tNL)~k—g2 (4.10

q+k _k—

and is predominantly peaked at very low momentum as a
consequence of the fact that the long-wavelength fluctuations
are growing exponentially as a consequence of the spinodal
instability. The power spectrum for the electric and magnetic
fields produced during the stage of spinodal growth of fluc-

FIG. 4. kinematical configuration corresponding to saddle point
for photoproduction in the broken symmetry case.

where the factor 1K7)? arises from the angular integration.
Now it is possible to compute the momentum integral via

i T _ i tuations is
a saddle point approximation. Using the saddle pajintq
=k/2 we obtain (|E(k, 7)[2)~(|B(k,7)[®)~kNpn(k,7).  (4.11)
N,e? 4 K2J2+ O(KH Two important results can be inferred for the generation of
Npn(k, 7)= 512 el o) (49 electric and magnetic fields.
At the spinodal time scale~ r, the power spectrum is
where the proportionality factd¥; is given by localized at small momenta and with amplitusiex/g2.
Taking the spatial Fourier transform at a fixed given time
V2 we can obtain the correlation length of the generated electric
N1=—2048ﬂ3,2- and magnetic fields. A straightforward calculation fer

<7\ Using Eq.(4.9) reveals that

We see that forr= 7y the number of produced photons L. .. .. Lo .
grows exponentially with time. The production is mostly (E(r,7)-E(0,m)~(B(r,7)-B(0,7))~e 74",
abundant for soft photorls<1. However, the derivation of
Eq. (4.9 only holds in the region in which the saddle point &(r)~ \/; (4.12
expansion is reliable, i.e. fd?r>1.

The k—0 limit can be studied directly. In such case the The dynamical (dimensionful correlation lengthé(7)~ 'z
angular integration in Eq(4.7) is straightforward and the is the same as that for the scalar fields before the onset of the

momentum integration can be done using the result full non-linear regimg 32,34]. Therefore, at early and inter-
mediate times the generated electric and magnetic fields
* a3 N track the domain formation process of the scalar fields and
JO dq of'exp( —279%) = 64 52 reach an amplitude- «/g? at time scales~ ry, over length

scales~|mg| Y[ In(1/g) "2
leading to the same result as E4.9),

2. ’T>’TN|_
k—>0N e2 . . . . .
Nop(K, 7) = = e+ O(1/7). _ We now split the time integral in Eq4.5 into two
2 pieces, one from 0 up tey, and a second one fromy,_ up

to 7. In the first region we use the exponentially growing
We thus find an exponentially growing number of emittedmodes as in the evaluation above, and in the second region
photons(as ~e*") for 7<7 . Sincee*N.~g 2 we see we use the asymptotic form of the mode functions given by
that the total number of emitted photonsrat 7, is of the  Eq. (3.46. The time integral in this second region can now
order be performed explicitly and we find

2 (1 e | N gia+lark=k7_ gi(a+|a+k -k me
Nph(k,r)=8772kfoq dqf_ldX(l—X) fo d7104(T) @ig+k(T1)€ T+ AGA Gk arla+k—K
gl (a=la+k—K)7_ gia—la+k~KmyL e i@ la+K+ )7 _ g=i(a—|a+k+Kmy,
B T R G- [G+KI+k
e—i(q+\a+|2|+k)r_e—i(q+|cj+|2\+k)rNL‘2
~BaBg+k

= 1 4.1
g |Gkl k | [1+0(9)] (4.13

where|q+k| = Jg?+k%+2kgqx. The momentum integration is restricted to the region of the spinodally unstable band since
only in this region the modes acquire non-perturbatively large amplitudes. The integratiog>e%eonly provides perturba-
tive O(g) corrections.
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The contribution of the asymptotic regia> 7y in Eq. (4.13 displays potentially resonant denominators. As long as the
time argumentr remains finite the integral is finite, but in the limit of large> 7y the resonant denominators can lead to
secular divergences. In the long time limit we can separate the terms that lead to potential secular divergences from those that
remain finite at all times. Close inspection of E4.13 shows that asymptotically for large time the square modulus of the
second, third and fourth terms yield potential secular divergences. The square modulus of the last term is always bound in time
and oscillates since the denominator never vanishes. In addition, the cross terms either have finite limits or are subdominant for
7—0. The square modulus of the first termNgy,(k,ty,) given by Eq.(4.10. In order to recognize the different contributions
and to establish a relationship with the equilibrium case it proves useful to use the definitions giveridro@qWe find the
following explicit expression for the dominant contributions asymptotically at late times,

1 eZ q dq
Nn(k,7) = Non(k,7n0) + j dx(1—x?)

4n?kJog |g+K|
o 1—-cod (q+|q+Kk|—K) (7= mn0)]
e SR

1—cog(q—|gq+k|—k)(7— )]
—lg+k/—k)?

+N[1+Nq+k“

1-co§(q—|g+K/+K) (7= my)]
(a-|a+k|+k)?
The first term, containing the factdv, gk, corresponds to the process m — v, i.e. massless charged scalar anni-

hilation into a photon, the second and third terfwéich are equivalent upon re—IabeIIimi;—>—ﬁ—IZ) correspond to brems-
strahlung contributions in the medium,” — 7=+ y.
The following relation:

+H[1+ NN g+ [1+0(g)]+0O(7°). (4.14

1-x*=— g oala+la+k—k(a—la+k +kq-la+k—k(a+|q+k/+k),

ensures that there are only simple poles in the integrand of4£ty).
Asymptotically for long time the integrals in Eqgt.13,(4.14 have the typical structur29]

t—o

=dy ~dy 1
f —(1—cosyt)p(y) = p(O)log[Me’tHJ —[p(y)—p(O)ﬁ(u—y)HO(—), (4.15
oy oY t

wherep(y) is a continuous functiorny an arbitrary scale and evant contribution arises from the region of momenta inside
and y=0.577215 ... is the Euler-Mascheroni constant. the spinodally unstable band witti,= O(1/g)>1 the angu-
Notice that the expressio.15 does not depend on the lar integration simplifies and we find

scaleu, as can be easily seen by computing its derivative

with respect tou. ™1 g2 1

Therefore the simple poles arising from the collinear sin- Npn(k,7) = 3 f q daVy[la—Kk|Ng—k
gularities translate in logarithmic secular terms appearing for 2m 0
late times according to Eq4.15). +(g+ KN 140 +O(79).

The denominators in Eq$4.13,(4.14) vanish leading to (@F Nl (0] (™)
collinear singularities, i.e. kinematical configurations where (4.19

the photon and a charged particle have parallel or antlparallel
momentum. More precisely, the denominators in Egl14)
vanish at the following points:

Here |g—k| stands for the absolute value of the difference
between the numbeigandk. If we restore dimensions and
we recall that\; is of orderO(1/g) for 0<q<1, we find
that the Iogarlthmlc term has a coefficiene?|mg| /[ g%k®].
This remark will become useful when we compare later to a
similar logarithmic behavior in the case where the scalars are
corresponding to co&=x=—1, —1 and +1, respectively. in thermal equilibrium(Sec. VIII).

It is convenient to perform the angular integration using  These logarithmic infrared divergences lead to logarith-
the variablet¢= |q+k| with dx= &d¢é/gk. Since the most rel-  mic secular terms much in the same manner as in [Réf.

lg+kl=k—q, gq—k andqg+Kk,
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and indicate an obvious breakdown of the perturbative ex-
pansion. They must be resummed to obtain consistently the .
real time evolution of the photon distribution function. The gtk
dynamical renormalization group program introduced in Ref.
[29] provides a consistent framework to study this resumma-
tion.
A similar logarithmic behavior of the occupation number rFl
has been found in a kinetic description near equilibrium in
the hard thermal loop approximati$gs]. FIG. 5. kinematical configuration corresponding to saddle point
Furthermore, we note that the evolution equation for theor photoproduction in the unbroken symmetry case.
photon distribution function under consideration has ne-
glected the build-up of population of photons, and therefore e 1 oo 1
has neglected the inverse processes, such as charged-scalar ~ Npp(K,t) = 3Kk zf dqf dx
production from photons and inverse bremsstrahlung. These (2m)=Jo -1

=4

processes can be incorporated by considering the full kinetic gy k ‘2
equation described in Appendix A. Hence a consistent pro- X (1-x3)q% = a3

gram to establish the production of photons beyond the linear smm)qsmm;quk\

regime must(i) include the inverse processes in the kinetic ex (By+ By ) 7]

description andii) provide a consistent resummation of the X a~ —ark (4.17)
secular terms. We postpone the study of photon production (Bg+Bgri) 2+ Kk

in the asymptotic regime including these non-linear effects to

a forthcoming article. As noted in[32] the Floquet index is maximum at= 7,/2

and this is the dominant region in thigntegral. The fact that
during the stage of parametric resonance the integral is domi-

B. Photon production via parametric amplification nated by a region of non-vanishirgyis a striking contrast
We now study the process of photon production duringWith the broken symmetry case and a consequence of the
structure of the parametric resonance. As before, the strategy

th? .stage it qrdgr parameter around th?s to evaluate the integral for large times by the saddle point
minimum of t.he tree level potential in the unbroken SYMMe- e thod Forg near 7y/2 and for smalk the saddle point is
try case. This case corresponds to the evolution equatlongslven b)./ 0

(3.10,(3.11) with the plus sign and with the initial condi-
tions (3.29,(3.30. We begin by studying the early time re-

gime. q=no/2+x2k?+ O(K%),

therefore theq integral in the saddle-point approximation

. N _ yields the result
The dominant contribution to the production of photons

1. T<TN|_

again arises from the exponentially growing terms in the 9 4 N 1
para.metrically' unstable band. Hence we keep only .the expo- | = ﬂex r16v1+ 770?{1 1__X2 +0 _>_
nentially growing Floquet solutio(8.35 with Floquet index 256m2 krt? 276 T
given by Eq.(3.36). (4.18

In order to perform the time integration we focus on the
exponentially increasing terms and neglect the oscillatoryFor k?7>1 the angular integrabverx) is dominated by the
contributions in the product region nearx=0 and can be evaluated by using another
saddle point expansion. In this limit the photon production
process is dominated by the emission of photons at right

sin( v — \/1+—77§T)sin(7rvq+k— \/1+—7,§T) angles with the direction of the scalar with momentgm
Physically this corresponds to two charged scalars with mo-
=sin(mvq— 1+ 757) + O(K) mentaq andq+ k emitting a photon with momentuikwith
1 q-k=0 (see Fig. 5. This is another difference with the bro-
= §+O(k)+oscillatory terms. ken symmetry case wherein the production of low momen-

tum photons was dominated by collinear emission.
In this limit k27> 1 the saddle point approximation to the
angular integral yields the final result for the photon distri-

In keeping only the exponentially growing contribution and ) ion function

neglecting the oscillatory parts we evaluate the envelope o
the number of photons averaging over the fast oscillations.
With these considerations we now have to evaluate the h(k’t):ezwe4r[é(no)+0(k3)]+o(E)’ K2r>1
following integral according to Eq4.5, for 7=1, but 7 P K27 T
<7\ (4.19
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where the coefficiené(no) in the exponential is given by k—0e2N,4( 70) aBin) 1 ,
. . Nph(k,t) = Te 707+ 0O ; y k T<l,
B(770) =41+ 750( 7o) kr
4.2)
with q(70) the nome given by Eq(3.34, and the factor o
No( 7o) is given by where the proportionality factdd;( 7o) takes the value
71+ 72 Na(17g) = — V273(1+ ) ¥
= 3{70) = = :
N2(70)= 357687 (592+4)(372+4)203 (o) 6144w (575+4)(375+4)29°4 1)
and we note that an additional power ¥ in Eq. (4.1  In particular, for larger, we obtain
arose from the angular saddle point integration. o>l 2,112
W.e. find that there is a strong depe_ndence on th_e initial Npn(7) = eCa7o7 Cl=422.8...,
condition of the order parametej(7), i.e. on 7y, which C k2
determines completely the energy density in the initial state.
This is consistent with the strong dependence on the initial C,=0.6912 ..., k’r<1. (4.22
conditions of the mode functions that determine the evolu-
tion of thg scalar field$32]. This analysis reveals that the soft photon spectrum diverges
In particular, we obtain for largey as 1k and not as ¥? atk—0. That guarantees the electro-
0> g2 magnetic energy densiiy.11) is infrared finite.
Npn(7) = 7’20 et2mr, C;=373.8... ,
1k T 2 T>TN|_
C,=0.6012 ..., K2r>1. (4.20 For timesT> 1 we use the asymptotic form of the mode

functions given by Eq(3.42, we insert Eq.(3.42 in the

Furthermore we also point out that in the regikfir>1  expression(4.5 and we split the time integral into two do-
there is an enhancement in the photon spectra at small meains 0<7; <7y, and 7y <7;<7. The integral fromry_
menta as compared to the broken symmetry case. This isa7,<7 is performed explicitly with these asymptotic mode
consequence of the photon emission at right angles)) in ~ functions thus obtaining an expression analogous to Eg.
contrast with the collinear emissiom+ =+ 1) for the broken  (4.13. In this case, however, the upper limit of the momen-
symmetry case. tum integration isgma=70/v2 i.e. the upper limit of the

In the rangek?7<1 the saddle point evaluation of the resonant band which gives the dominant contribution
angular integral is not reliable, however in the very snkall O(1/g?). The integration over momentg> g, Jives a cor-
limit the angular integration can be done directly. We find rection perturbative ig. We obtain

2 1z +1
Npn(K, 7)= f’"’ q4qu71dx(1—x2)

8w’k Jo
fTNLd " ei(wq+w\d+l2\_k)7— ei(“’q+“’\d+ﬁ\—k)TNL
x T T soo(m)e K+ AA L
0 l¢q( l)(P‘quk'( ) aMa+k| wq+w|€1+12\_k
e (g~ gk =R 7— gl(@q~@jgri ~K mNL e 1 (0q=@|qri K T_ g i(0g= g+ K TNL
AP ~BoAjg+k

Wq~ ®|gk —K Wq~ ®|g+k| TK

e—i(wq+w‘a+g‘+k)7_ e_i(wq+w|d+lzl+k)TNL‘ 2

~BBlg+i oo war itk | [1+0(9)]. (4.23
|
We focus on studying the smatlbehavior 6<k<1 which qx
can be obtained with the approximation wgt oGk~ K=20q, ©q—ogg—k=— k( I+
q
kgx )

a)|a+,;‘=wq+w—+(9(k ). gx
q wq— o)g+ i+ K=K 1_w_ , Wqt oG tK=20q.

With this approximation the denominators in E4.23 be- !

come We remark that sincéV () is non-zero, these denomina-
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torsnever vanishTherefore the integrals in E4.23 do not V. PHOTOPRODUCTION FROM CHARGED SCALARS
generate secular terms and they have a finite limit for IN THERMAL EQUILIBRIUM
—o0. For asymptotically long time and sm&| the two de-
nominators I.inear irk and their cross—product domilnate Eg. We compute here the photoproduction process to leading
(4.23. Isolating these dominant contributions we find order ine? from charged scalar® thermal equilibriumto
compare it with the non-equilibrium case studied in Sec. IV.
k=0 g2  ra2q*dq : : -

Nop(K,0) = —— Ny (1+N)F(g)[1+0O(g)] However just as in the non-equilibrium case, we study the

pht®, 21 3 2 /Vq q q g . ... .

47k g production of photons as an initial value problem, i.e, an

(4.24  initial state is evolved in time and the number of photons

0

whereF (g?) is the regular function p_roduced_ during éinite timesgale i_s computed. We empha-
, size again that this calculation is fundamentally different

F(q?) = +ldx 1-x2) 3+ (qx/ wq) from the usual formulation of theate obtained by assuming
(a%)= 1 ( [1— (g wg)?]? the validity of Fermi’s golden rule and energy conservation.
a We shall find that there are some striking similarities be-
2wy 49%+3M?(0) q 3oq tween the two cases by identifying the high temperature limit

- q 9 ArgT 0q T q I T/|mg|>1 of the equilibrium case with the small coupling

limit g<<1 of the non-equilibrium situation. In both cases the
(4.29  plasma has a very large particle density.

With the identifications given by Eq3.60 we recognize '€ Nighlight the most relevant aspects of the result before
we engage in the technical details so that the reader will

that the dominant contribution in the asymptotic regime to J X _
soft photon production arises from bremsstrahlungnafs- ~ '€c0gnize the relevant points of the calculation.
sivecharged scalars in the medium. Both from charg.ed scalais and OL_Jtof eqwhbnum .the

A noteworthy feature is that the soft photon spectrism Photon production istrongly enhanceth the infrared since
stronglyenhanced for smak sinceN,(k, =) grows ask 2 Npn(kit) increases as &7 whereas for early timel,(k,t)
for k—0, this behavior must be compared to the distributiongrows as I.
at early timer<ry,_ where we had previously found that  In the broken symmetry cadeothin and outof equilib-
Nph(k, )k~ for k—0 [Eq. (4.2D)]. rium the number of produced photons increases at late times

Thus in both cases, broken and unbroken symmetry, wéogarithmically in time due to collinear divergences. The
find that the asymptotic non-equilibrium photon spectrumphysical processes that lead to photon production can be
behaves for long wavelengths a&3for k—0. This behav- identified with collinear pair-annihilation and bremsstrahlung
ior signals an IR divergence which may require a resummaef pions in the medium.
tion of higher order terms i. This is beyond the scope of  The distribution of produced photons approaches a sta-
this study. tionary value ag— in the unbroken caséoth in and out

It will be found in Sec. VIII that for charged particleés  of equilibrium with a distributiori\lph(k,oo)~1/k3. The rel-

equilibrium, the photon spectrum has very similar features.eyant physical process isff-shell bremsstrahlungmr— 7
Therefore, the total photon numberN,,rot(7) +y.

=fd3kNph(k,7-) is logarithmically divergent at smalk.

e ; Consider that at the initial timé, there is some given
Nevertheless the total energy dissipated in photons,

distribution of photonsN,(tg) and charged scalars,. The

3 kinetic description provided in Appendix A leads to the fol-
Epn,rorl T):f d°kkNpp(k, 7) lowing expression for the change in the photon distribution
when the Green'’s functions of all fields are the form of the

is finite at finite times. As mentioned above, for late time inequilibrium ones given by Eq3.62 but in terms ofn, and
the broken phase, a resummationanis needed to assess N,(to) [28]

more reliably the photon distribution.

) e? d3 t
() = f 1 21— f at
1673k Wq@|q+K| to

x{cog (gt |+ +K)(t=t") ][ 1+ Ny(to) J(1+ng) (L+nig. k) — Ni(to)Ngnig+i(1

+ 08 (wgt gk —K) (t=t") JI[ 1+ Ni(to) Ingnig+ i — Ni(to) (1 +ng) (1 +nig1i)]

+c08 (wgq— @)g+k T K)(t=t") JIL1+ Ny(to) J(1+ng)N|g+ i = Ni(to) Ng(1+Njg+i)]

+cod (wq— oGk — K (t=t")JILL+ Ni(to) (1 + g4 k) Ng— Ni(to) gk (1+ng) I} (5.1
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The different contributions in the above expression have a simple and obvious interpretation in terms of gain-loss
processes$28].

A. Photoproduction at first order in «

In order to compare to the non-equilibrium situation described above, we will set the initial photon distribution to zero, i.e.
N, (to) =0, and we will also neglect the change in the photon populdttus is also the case for the rate equation obtained by
[40,41)). Integrating in time we obtain the expression

N (K, t) ¢ f 44 fld (1) [Ap+ A+ Ag+ALl(a,k ) (5.2
)= X——— 1 IX .
PR 872k ey, wgoger o |

where

1-cog aqi(t—tp)]
A1(9,k,X) =ngN g+ 2 , 1= 0gt o~k
1

1-cogay(t—tp)]
a3

Ax(a,KX)=ng[ 1+ NG, ]

2= Wg~ gk K

1—cod as(t—tg)]

2
a3

As(9,k,x)=[1+nq]Ing+k , 3= wq— @)g+k K

1—cod ay(t—tg)]

2
ay

A9,k x)=[1+ng][1+n;g4i]

, ag= gt gtk

From this explicit expression one can easily see that in the (3) the termA3(q,k,x) corresponds to the bremsstrahlung

zero temperature limit there is no photoproduction up to or-m— &+ y in which the photon in emitted in the same direc-

dere? . In fact, in the vacuum, only the term proportional to tion of the pion &=1).

A4(g,k,x) and corresponding to the virtual procefs) Using Eq.(5.2) with wq=q we recognize that the secular

—|7* 7~ y) remains but its contribution vanishes as it ~ terms are of the same type as those of @dql5 and lead to

the long time limit, since the energy conservation conditiona logarithmic divergence logt with w« an infrared cutoff.
After a detailed analysis similar to that carried out in the

ay(q,K,X) =g+ og:k+k=0 non-equilibrium case, we obtain

cannot be satisfied for positive non-zeng , g ,K. This p>1 g2 o

observation highlights that photon production will be com- Npn(k,t) = mlog,utjo dg qny[njq-ila—k|

pletely determined by the plasma of charged scalars both in m

andlout of equilibrium. We study in detail both cases sepa- +Ngk(q+K)] (5.3
rately.
which is remarkablysimilar to Eq. (4.16) upon the replace-
1. Broken symmetry phase ment for the occupation numbers. For a thermal distribution

In this case we study the spectrum of photons escapin ;ci?argi%dscalars the momentum integral is finite and for
from a thermal bath of massless scal@sldstone’s bosons we i
with energywoy=q. The analysis is very similar to that per- ToKa2 3
formed in the nonequilibrium case and hinges upon extract- e T_
) . L Npn(k,t) = log ut. (5.9
ing the secular terms in the asymptotic limit>1. These 6 K3

arise from different kind obn-shellprocesses:

(1) the termA4(q,k,x) corresponds to the annihilation The high temperature limit of Eq5.3) can be compared
777~ — v in which a hard photonk>q) is emitted in the to the result out of equilibriuniEq. (4.16] by identifying
opposite direction of the initial pionxE —1); (T/m)2 in the thermal case with 4 in the non-equilibrium

(2) the termA,(q,k,x) corresponds to the bremsstrahlung case. In other wordsng™ 2 sets the scale of an “effective
7— 1+ 7y in which a soft photon K<q) is emitted in the temperature” to allow a qualitative comparison between the
opposite directionX=—1); asymptotic description of photon production from charged
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particles with a thermal distribution and from a non- leading to the result

equilibrium plasma. However we emphasize that the non-

equilibrium distribution isfar from thermaland such a com- Te>m, T>k 92 T3
parison only reflects a qualitative description. Furthermore, it Npn(k, ) = 3 F
becomes clear that the logarithmic secular term signals a

breakdown of the perturbative kinetic equation and a resum-

mation and inclusion of inverse processes will be required to B. Discussion
study the long time limit.

T
n—+0(1)|. (67

Here we highlight a fundamental difference between our
analysis of the photoproduction process and the typical
analysis offered in the literatufd0—44].

Also in this case the analysis is similar to the out of equi- Our approach hinges upon computing the expectation
librium computation: the final result is finite as-o since  value of the number operator of transverse photons in a state
there are no secular terms and we can simply neglect thignat has been evolved from an initial tirygto thefinite time
oscillatory pieces. This is due to the presence of a non-zerbat which the number of photons is measured. By contrast,
mass for the scalars: as a consequenge Jg?+m?>qand the usual approach computes the transition probability from
the denominators in E@5.2) never vanishthere are no col- a state prepared in the infinite past to a state in the infinite
linear divergences However for smalk the two denomina- future. In such calculation there appears the familiar product

2. Unbroken phase

tors linear ink of delta functions which are interpreted as the on-shell con-
dition (energy momentum conservatjomultiplied by the
ay(q,kx)=—=Kk(1+qxwg), a3(q,kx)=k(l-qx/wg), volume of space-time. Dividing by this volume one obtains

the transition probability per unit volume and time which is
interpreted as the production rate: this is basically the content
o 2 of Fermi's golden rule.
- e 0 +1 . .
Nop(k,2) = f q4dqf dxX(1—x?) In our approach we.dlre.ctly compute the expectat.|on
47°k3Jo -1 value (N,)(t)=R*)(k,t) in a time evolved state and obtain

dominate and the formula simplifies as followstasoe:

the photon distribution at a timeby integrating this quan-
1 Ngl1+nNjg+k] N [1+ng]nig+k tity, i.e., Nph(k,t)zﬁodt’R(*)(k,t’). This requires the
(1+qx/wq)2 (1—qx/a)q)2 ' knowledge of the dynamical photoproduction refé’)(k,t")
(5.5 for all timesty<t’'=<t.
' The usual computation via Fermi’s golden rule takes the
From this expression one extracts a clear physical interprd®ng time Iimit.and(iJrs)olate’s the secular term that is linear in
tation of the photoproduction process as generated by thigme by replacingR™™’(k,t") by its asymptotic limit
off-shell bremsstrahlung of charged scalars in the medium. ()1 — fir B(+)
To give an estimation ol ,(k,) in the smallk and high Ras’(k) = lim R (k). 58
density limits we rewrite the previous formula as

WqWq 1k

5 F (D) The condition(5.8) is tantamount to considering onign-
€ * q shell processes, i.e, those that satisfy en d momen-
— 4 eq p ’ ’ fy e‘iw
Npn(k,*) 4w2k3f0 da > No(1+ng)[ 1+ O(K)] tum) conservation.
a (5.6) Keepingonly on-shell processes, the large time limit of
the photon number becomes

WhereFeq(qz) is the regular function
Npn(k,H) =R{(K) - (t—tg), t—to—o.
2+2(qx/ wq)?

+1
2y _ 2
Feq(q ) f—l dX(l X )[1_(qX/wq)2]2

However our approach includes alsti-shell processes that
contribute toNyn(k,t) in a finite time interval. These pro-

wg wq q cesses do not c_ontribute Nph(k,t)_ asy_mptotically since
= ? EArgThw—q—l they are subleading at very large time, i.e.,
i (+) =

which is similar to the functiorF(g?) found in the non- tlmROfffshe”(k’t) 0

equilibrium case given by Eq4.25. We can estimate the

temperature dependence of the photon density in the highowever they could bdominantat finite time. Actually, as

temperature limitT>m: in this limit the integral(5.6) is  we have seen in the previous section, the off-shell processes

dominated by momentg~T and we can replace, and are of lower order in the electromagnetic coupling and

Feq(qz) with their asymptotic expressions strongly enhanced at soft momenta. Asymptotically we can
write the the photon number in the form

20 m
2 n—m, ——
®q—0, Fedd”)—8Inr, =0 Non(K,t) = Nott_snen(kot) +RED(K) - (t—to)
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whereR{") .. . (k) is the usual rate calculated in equilibrium sis of this cancellation reveals the role of the Ward identity
from on-shell processes whose expansiomibegins at or-  as highlighted by the general result in equilibrium.
dera? (or aas in the case of the quark-gluon plasmin the The equilibrium aspects of magnetic screening phenom-
case of broken symmetry studied in the previous sections ena are fairly well established in Abelian theor{ets,31],
however to our knowledge the situatiaut of equilibrium
Nott—shen(k,t)ca In[ u(t—1g)]. has not received much attention. In this section we will study
the dynamical aspects of the magnetic screening with an ex-
Therefore off-shell processes dominate during a time scalgjicit computation at leading order in N/and first order
t<t* W|th in .
The initial stage in this program is to obtain an expression
t* ~ ilni. for the magnetic mass.
pa o This is achieved by considering the linearized evolution
equation for the transverse photon condensate or mean field

This is an important point in the application of our novel which is generated as a linear response to an externally pre-

approach to the physics of heavy ion collisions. In this case i ransver - h an ion h I-
the lifetime of the quark-gluon plasma is relatively short and-C bed transverse curregk(x,t). Such an equation has a

the standard approach could miss important physics asso r.ge}dy been ob_tained #28] and we refer t_he reader to thaF
. ' Yrticle for details. In terms of spatial Fourier transforms, it is
ated with transient off-shell effects. iven by
This analysis is essential in order to understand the posg
sible phenomenological relevance of the transient effects. ) t
guantitative assessment of it requires to compare the magnJ-= 2 (G IS A (Rt — T (e
tude of the contributions to photon production from off-shell? dt? T Ank )+ fodt i (L) Ari(kt) = Ik,
and on-shell processes at tligite time scalet of survival of 6.3
the quark-gluon plasma. We intend to report the details of
our studies on these issues within the context of photon prowvhereX, ;;(t,t') is the transverse retarded photon polariza-
duction in the quark-gluon plasma in a forthcoming article. tion out of thermal equilibrium. It contains two contribu-
tions, one local in time and determined by tadpole diagrams
VI. THE MAGNETIC MASS OUT OF EQUILIBRIUM displayed in Fig. 3b and the other is non-local and retarded

) ) o ) in time and given to lowest order i by the bubble diagram
The magnetic masi thermal equilibriumis defined as displayed in Fig. 3a. We have

[31]

- . () =SRY ) S(t—t') 8 + 3PVt )Py (K
im |im2§%‘t'£(w)+2te§du” (6.1) Ek,lj(l ) Ek () ( ) |J+2k (' )PI]( )'(6_4)

z |
k—0 w—0

mequil,mag:

S equi here3 [29(t) is the tadpole diagrar(Fig. 3b
where 3£ (w) is the Fourier transform of the retarded where2, (1) | pole diagrartFig. 3b

transverse polarization kernBE9"'(t—t') of the non-local

part of the selfjt_en(_ergy, arﬁffd“” is the tadpole con_tribution zf(ad(t):292<<p‘rq>>:2e2jw d 2q2|<pq(t)|2 (6.5
in thermal equilibrium. When the evolution equation for the 0 (2m)

transverse mean-field is studied as an initial value problem,
the relevant kernel to study is the Laplace transform of theand EE”b(t,t’) the bubble diagram in real timéig. 33,
retarded self-energh28], i.e. given by[28]

EE%LI{JI:J(S): fO dt eistzﬁ%tijlg(t)- (62) EEUb(t’t/): _4e2fwd_qq4fl dX(l—Xz)
0(2m)? J-1

It is important to remark that the limits must be taken in Eq. N T

(6.1) in the precise order displayed above because the limits XIm[Gq (1) Gy g (L.LY)] €9

do not commute . - s , . .

It is a known result thain equilibrium the magnetic mass With G™, G~ the scalar Green’s functions given by Egs.
vanishes in an abelian gauge theory. The general argumef®-58—(3.59 andx being the cosine of the angle betwegn
relies on the structure of the Schwinger-Dyson equations, thendKk.

Ward identities and translational invariance in space and The linear response to an external current idifferent
time [45]. More specifically to the scalar theory under con-problem from that of photon production studied in the pre-
sideration the vanishing of the magnetic mass to leading ovious section, and although the polarization diagram shown
der ina (or alternatively to leading order in the hard thermalin Fig. 3 describes both processes, here we are interested in
loop resummationrelies on theexactcancellation between extracting adifferentinformation, which in equilibrium cor-

the tadpole diagram and the zero frequency limit of theresponds to the real part of the polarization in the limit of
bubble diagram contributing t8£9""(w). A detailed analy-  zero frequency.

085007-21



D. BOYANOVSKY, H. J. de VEGA, AND M. SIMIONATO PHYSICAL REVIEW D61 085007

Clearly, out of equilibrium, the very concept of mass isa We point out, however, that the effective magnetic mass
delicate one, but we can make contact with the equilibrium(6.9) is introduced to highlight the time scale of the different
definition[Eq. (6.1)] by a derivative expansion in time. Writ- processes that contribute to the magnetic més® and its
ing sole purpose is to provide a qualitative understanding of the

different dynamical scales for the processes that contribute to
dry(tt) magn_etic screening. _ _
SPUBt )= ——— Ty(t,t’ )_f SPUB(t ) dt” Using the asymptotic form of the mode functiof3s46—
dt’ (3.42, the definition of the asymptotic occupation numbers
(6.7 Ny given by Eq.(3.60 and neglecting oscillatory terms that
vanish in the asymptotic time regime due to dephasing, the

and integrating by parts in E¢6.3) we find tadpole contribution to the magnetic mass becomes

d2

_+k2+2tad t +F t,t ) e2 qudq

e LU0+ T M (o0)= —— f [1+24,]  (6.10
27%)o wq

X Api(K, 1) — fdtr tt' (K1),

which is reminiscent of the equilibrium tadpole contribution,
but it contains the out of equilibrium distribution functions
Collecting the local terms in this equation of motion leads toN

the identification The non-local contribution is given by

Mpag= lim lim[229t) + Ty (t,1)]. (6.8

2 o .
KOt Myyp= M lim I (t,t)

k—0 t—o

We see from Eqg6.1) that this definition reduces to the one

at equilibrium in the case of time translational invariance. = lim ||m_f q dqf dx(1—x3)

The definition(6.8) is the description of magnetic screening k—0 t—odar

that is consistent with known equilibrium results in abelian

theories. XIm eq(7))g ~(r>f7df'<p*<r'><p*~ (7))
With the purpose of understanding the time and wave- T Plark T a la+K '

length dependence of the several contributions, we now in-

troduce a time an#-dependent effective magnetic mass (6.17
r In the asymptotic time region, the mode functions are oscil-
mrznag(k,T)Ef dr' 3P (7, 7 )+ 21390 7) latory and the produap(7) ¢|5k|(7) oscillates very fast for
0 kr>1. Hence, any contribution that does not cancel the
= Mg b(K, 7) + Miyg(7). (6.9 rapid time dependence of the phases will be averaged out.

The memory integral from O up to time—o can be split
into an integral fromr’ =0 up to a timer’ = 75= 7y within
which the mode functions are exponentially growing but
with slow oscillations and front’ = 74 up to 7' = 7—0. In
this second region the mode functions have achieved their
asymptotic forms(3.20 and (3.46). The contribution from
Miag= lim lim mZ . (k, 7) the first domain cannot possibly cancel the fast oscillations
k=0 7o from the mode functions at. Therefore this first contribu-
tion will vanish by the rapid oscillation of the mode func-
and we remark again that the limits must be taken in thigions at very larger providedkr>1. In the second region
precise order. We now analyze generally the magnetic magke integral can be performed using the asymptotic form of

The nonequilibrium definition of the magnetic mass, which
coincides with the equilibrium definition in the case of time
translational invariance is then

for both cases, broken and unbroken symmetry. the mode functions and we find using E8§.60
) ™>1,kr>1 e2 o N +Nq+k\
m = ——lim Ilmf f dx(1—x?) 1-cod(wgqt+wigep)(7— T
bub 4772kﬂ0rﬁoo 0 wqw|q+k\ ( +w|q+k| { 5{( q \q+k|)( O)]}
Ma+k~Ng
—{1 cod (w|q+k|— @q) (T~ 7o) I} |- (6.12
Wlg+k
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This expression is remarkable, the terms with the occupatiowhere the first term inside the bracket is the contribution of
numbers are exactly of the same form as those obtained in ghe two-particle cut after neglecting the strong oscillatory
equilibrium descriptiori28] and have a similar kinetic inter- component, the second term is the Landau damping term, the
pretation, the first describes the production minus the annitast term is the tadpole contribution, and we have subtracted
hilation of two scalars, and the second term is out of equias usual the vacuum contribution which is renormalized in
librium analogouos of Landau damping or bremsstrahlunghe absence of the medium.

(and its inversgin the medium in terms of the asymptotic  Upon integrating ovexk and integrating by parts the Lan-
non-thermaloccupation numbera/y(«) (3.60. dau damping term, the time independent contributions cancel

In the 7—co limit, the terms with cosines inside the inte- each other out as discussed above and(&45 yields
gral (6.12 vanish. After taking th&k— 0 limit, the integral

over x is immediate and the Landau damping term leads to k<1, kr>12a2 ro
the derlvat|ve. of.the d|st_r|but|on function. Subtracting the mﬁqag(k,r) = —Zf qdaN
vacuum contribution we find 7" JOo

bub,ren 372)0 wg wg  q dq)’ . (k7) wgq wg o
o . . m?  [qgkr
thus keepind fixed and takingr—« we recognize that the + —25|n( _)] (6.16
tadpole contribution and the one-loop bubble contribution krog Wq
have the same structure as the equilibrium calculation but in ] ) o
terms of the out of equilibrium distribution functiouié, and clearly in the long time limit,

Upon integration by parts in Eq6.13 and subtracting ) )
the vacuum contribution in E46.10 we find the exact can- lim my; .k, 7)=0
cellation between the bubblé&g. (6.13] and tadpolg Eq. T

6.10] contributions, i.e. . . . .
(6.10] in agreement with Eq(6.14). However this analysis clearly

mﬁ]ag: mgub‘ren+ mtzad’ren=0, (6.14 _reveals that Landgu damping or i_n-medium_ bremsstrahlung
. _ _ _ is the process with theslowest time scalén the long-
just as is the case in the equilibrium calculat{@9,46. wavelength limit.

The case of broken symmetry with,=q is particularly
clear. Equation(6.16) then simplifies as

Having established that the magnetic mass vanishes out-
of-equilibrium, we can now study in detail the precise time kr>1,7>1 g2
evolution of the effective magnetic mass, , (k,7) for late Mhadk?) = —5
times7>1 and fixed but smak, so thatkkr>1, by analyzing ™
the different contributions displayed in E@.12. It is at this
point that we justify keeping the oscillatory terms in Eq. XW
(6.12 so as to highlight the different time scales for the
buildup of the different contributions. The two terms have (6.17
very different oscillatory behavior, whereas the term with the
sumof the frequencies maintains strong oscillations even ifWe see tharnﬁqad(k,r) oscillates around zero for larder
k<1, the second term proportional to tdéferenceof the  with an amplitude that decreases @l/(k7)?) and period
frequencies evolves slower in time for smkllThis second 2#/k.
term is recognized as the non-equilibrium analogous of Lan-
dau damping. In order to extract the long time behavior we g The effective magnetic massn? q(k,7) for kr<1
proceed as followdi) takek small and replace the difference ) ) o
in frequencies by a derivative with respect to moment(in, As we have noted above the asymptotic long time limit
neglect the strong oscillatory behavior arising from the term@nd the long-wavelengh limit do not commute, this happens

co§2wq7], to find that the effective magnetic mass definegout-of-equilibrium and also in equilibrium where the zero
by Eq.(6.9) behaves as frequency and the zero momentum limit do not commute.

However forfinite time we can ask what is the behavior

A. The effective magnetic massmﬁqag(k,f) for km>1

st

[sin(k7) —k7rcogkT)].

ke=lr>1 g2 raghdq [+l of the effective mass in the long-wavelength limit. This
mzmag(k,r) = - > dx(1—x?) questionis relevantfor the evolution of the mean field in the
4m=Jo wq /-1 long-wavelength limit and for finite time. This corresponds
to studying the effective magnetic ma$s9) in the opposite
X(Aﬁ_ ﬂd_/\@{l_cos(q_'“x) ] limit kr<1 keepingr>1.
®g q dq Wq For finite time the effective magnetic mass is a slowly

2 reg?d varying function ofk thus for 71 but k<1, we shall
+ e_f q qN (6.15 simply setk=0 to explore the regioR<1.
m?lo wq d In this case we find for the effective magnetic m&9),
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FIG. 6. Effective magnetic mass f&r=0 as a function of time. FIG. 7. Effective magnetic mass f@=0 as a function of time.

Broken symmetryg=10"* and 5,=0. Unbroken symmetryg=10"° and 7,=4.
e2

5 k<lkr<l @2 e = rr T Mhag k=0, 7>1)=—0.0005B . . .—

Mpad K, 7) = 3.2), 9 dq Odr ImLeg(m)eg(7')*] g
aa

& (w for broken symmetryzo=0,
+-—| 9°%d 2, 6.1
27740 a’daleg(7)| (6.18 2 .
Minag k=0, 7>1)=—0.001% . . ]

For the computation of the bubble contributicmﬁub(k for unbroken symmetryyo=4. (6.19

=0,7) here[the first term in Eq(6.18] some remarks are in

order. Naively, sincemg,,(k=0,7) contains a product of The coefficients 0&?/g are not very sensitive to the value

four mode functions, each of ordgr ¥2, one would expect of g for smgll couplingg<<1, in the unbroken symmetry case

the result being of ordeg 2. However the following inter- the coefficient depends on the valuemj‘.' )

ference argument reveals thaﬁ (k=0,7) turns out to be Such small numbers arise from a delicate cancellation of
ub\™ %,

f order 141 iust as the tadpol tributicth dt the negative contribution from the bubble diagram and the
of order 1, just as the tadpole contributigthe second term positive contribution from the tadpole diagram. In the unbro-

in Eq. (6.18)]. K : L,
en case, the larger i, the more negative isn: ,(k
Indeed, for 0<7'<7y_ the mode functionspy(7') are  _ 1) ger %o ¢ magl

given approximately by E(3.17). The exponentially grow- The negative sign of this effective squared mass indicates
ing term dominates in Eq(3.17) while the exponentially  {he ynexpected presence of a weak instability in the time
decreasing terms are of the orde(g) [see Eqs(3.16 and  eyolution of the mean field, which we conjecture to be linked

(3.38]. The dominant term has a time independent phase &g the strong photon production during this time scale. We

can be seen read from E@.17). expect to report on a detailed study of these issues in a forth-
Since the mode equatiori3.11) havereal coefficients, a coming article.
solution with a constant phase during some time interval At this point it is important to remind the reader that had
keeps such phase constant for all times. Therefore, the phagg studied a situation in which the global gauge symmetry
of the modes is time independent up®g) corrections and was spontaneously broken either by the initial state or by the
the phases o@é(r) and ¢§(T')* cancel up ta?(g). Hence, dynamics, there would have been a magnetic mass generated
|m[@§(7)¢§(7/)*] is a factorg smaller tharg 2. That is, it Vi@ the ordinary Higgs mechanism. Hence the vanishing of
is of orderg~! and not of ordeg 2. the properly defined magnetic mass is in agreement with the
Due to this cancellation of the dominant growing expo-
nentials, an analytical evaluation uffnag(k,r) requires de-
tailed knowledge ofo(g) corrections to the mode functions
(3.17, which is not available analytically. VII. SCREENING AND DEBYE MASS GENERATION

Instead, we evaluated numerically the integrals in Eq. OUT OF EQUILIBRIUM
(6.18 using the high precision modes obtained in Refs. The Debye mass or inverse of the electric screening

fact that the gauge symmetry is not spontaneously broken by
the dynamics.

[26,32. The results are displayed in Figs. 6 and 7. length, determines the spatial extent over which electric
For late timesmfnag(kzo,r) oscillates around the follow- charges are screened in the plasma. As in the case of the
ing constant values: magnetic mass, the Debye mass can be obtained from a lin-
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ear response problem. In this case the relevant linear rexpression(7.4) displays a remarkable feature: unless the
sponse is that of the Lagrange multipligg associated with  memory integral develops singularities ks-0 the Debye
the Coulomb interaction, or longitudinal photon to an exter-mass will vanish identically in this limit. Separating the time

nal charge density/y(x,t). The Debye mass can thus be integral into a part betweerl =0 and7’ =7y, and a second
recognized from the equation of motion for the expectatiorPart from 7y, to 7 we recognize that no singularities can
value oon(f,t) as a linear response to the external charg rise from the first part. The contribution to the Debye mass

density. In terms of spatial Fourier transforms and calling rom thg region (,)f spinodal or paramet_rlc ',nStab'“t'eS IS
regular in the limitk—0 and do not survive in the—o

this expectatio_n valuglo(k,t) the quation of motion in Iin-. limit. Therefore, we conclude that despite the fact that there
€ar response Is obtameq by foIIowmg the m‘?th"d despnbeQre strong non-equilibrium processes during the stages of
|fn dtita'l |n[283.t\.Ne ob;[aln_th? following equation of motion spinodal and parametric amplification, they are not directly
or the expectation value in linear response associated with the generation of a Debye mass. However, as
) t R R it will become evident below, the late timgistribution of
kZAo(k,t)+f dt’ SE(t,t") Ak, t" )= To(k,t), (7.1)  particles produced during these stages determines the Debye
0 screening mass. In the second part of the integral the modes
. R acquire their asymptotic form. Just as in the discussion of the
where the longitudinal retarded self-enefy(t,t') is given magnetic mass, only few of the contributions survive the
to lowest order ine? by the following expressiofi28] rapid dephasing in the limit— .
Replacing the mode functions in Ed7.4) by their
asymptotic behavior, using the relati®60 and neglecting
the oscillatory contributions in the limit of—o with k
fixed, we obtain

d3q
Shtt)= —4e2J (277)3Im[(9t,G§(t,t’)atGEHzl(t,t’)

~0i0uGq (L) Gg, g (HE)], (7.2
N 3
and Jo(k,t) is the spatial Fourier transform of the external m3ep=lim lim er _da
source that generates the linear response. k— 07— (277)3wq

We remark that Schwinger terms arising from the time
derivatives of time ordered Green’s functions had cancelled
the tadpole contribution €®(®Td) and after this cancella-
tion the remainder of the longitudinal photon polarization is

iven by Eq.(7.2). The reader is referred {@8] for further O|g+k T @
given by Eq.(7.2 (@8] _ it oq Nq)H 7.5

details of this cancellation which is independent of whether W|g+K|~ @q a+kl™
the system is in or out of equilibrium.

Following the arguments presented previously in the case

of the magnetic mass above, we define the Debye mass oWhich is recognized as the longitudinal polarization evalu-

of equilibrium as ated at zero frequend8]. Again the different contributions
have an obvious kinetic interpretation which has been dis-
5 o Tl cussed in Ref[28].
Mpep= lim lim fo dr'Z(r,7')|. (7.3 Taking the zero momentum limit, we finally find

k—0r—00

We emphasize again that the limits>~ andk—0 must be @2 [

taken in the order specified above since they do not com- mZDeb= - —zf dq qwqd—q. (7.6
mute. Taking the limits in the inverse order yields a vanish- 70 q

ing result.

Using the expressions for the Green’s functions in termsrhjs expression reveals at once the important feature that the
of the mode functions as given by Eg&.58,(3.59 [in  Debye mass is determined by tHerivativeof the distribu-
terms of the dimensionless mode functigng 7)] we finally  tion function of the charged fields with respect to momen-
obtain tum. Although this happens in other contexts, it is seldom

highlighted in the literature. Integrating by parts at finite

M2 —lim lim e °q im Yorcs (1) times the surface term gt=0 vanishes since the distribution
Deb™ kﬂone (2m)3 [eq(T)@lq-k(T Ny is regular atq=0 for finite times. We obtain the final
form

— 04T @g+k(T)] fOTdT'c'pq(T')*%ﬂ(r')* : o
e° (~dq
(7.4) m%eb:;,fo w—q[2q2+/\/l2(00)]Nq. (7.7

We compute now the Debye mass generally in both cases
under consideration: broken and unbroken symmetry. Th&/e now study each case separately.
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FIG. 8. ggN,(7=2000) for the broken symmetry case as a
function ofq for g=10* and 5,=0. The distribution saturates for
most of the range at~ 7\ but for very small momentum.

FIG. 9. gg/N,(7=500,1500,2000) for the unbroken symmetry
case as a function af for g=10"4. The distribution continues to
evolve as a function ofr. The peak at low momentum is gt
~K,/7 and moves towards the origin while its magnitude in-

A. Broken symmetry creases.

In the broken symmetry case with,=q; M(*)=0, the
distribution function\; is of O(1/g) in the region B<q
<1 and near the origin behaves &§( )~ 1/q for all times
including 7—. Figure 8 showsggN,(7) vs g. Since
Iimq_>0q2J\/q=0 we are justified in neglecting the surface
term in Eq.(7.6) and Eq.(7.7) is valid even forr— . Using
Eq. (7.7), the relation(3.60 and the sum rulé¢3.25 we find
for the broken symmetry case

At finite times the distribution functiotV; is finite atq
=0 and neglecting the surface terms in the integration by
parts leading to Eq(7.7) is justified.

Since the derivative of the distribution function is domi-
nated by this peak, we find that even asymptotically the De-
bye masg7.6) continues to grow with time agr. Figure 11
displays the Debye mass as a function of time, it is clear
from this figure that the trend is that of monotonic increase
as /7 as one obtains inserting the scaling form of the distri-
bution function(7.9) into Eq. (7.7):

eZ
@[1+(’)(g)].

m3 (7.9

=dq ™ 7 g2 dx

fo 4 2gM () Jo  x32

As discussed in detail in Sec. llIA2, in the unbroken
symmetry case the distribution function at times larger thar\otice that the integral converges for== since G(«) is
7L is dominated by the peak of the non-linear resonancesinite [see Fig. 10
The distribution functioncontinuesto evolve at long times The reason for this increase is that the distribution is
with two marked peaks in the region of non-linear reso-gominated by the peak negr=0 which continues to evolve
nanceg3.40 inside which the amplitude&(7); By(7) and
consequently the distribution functioh; grows with a 7
power law in time. The width of these non-linear resonant
bands diminishes in time, the resonance reary,/+/2 be- 6f
comes subdominant and the resonance in the regioq O
<K, /7 becomes the dominant one, the peak growing in®f
amplitude and the width of the resonance diminishing as
time evolves. Figure 9 displaygq/N,(7) vs q for different
times.

Our extensive numerical calculations shows that for times® |
> 7 the distribution function takes the scaling form

B. Unbroken symmetry ° G(x)+0O(1).
q

G(x) = g2 {Cal N}_q as a function of x=q*2 tau, Unbroken symmetry, eta_0=3, g=10A-6] ——

4}

G(g®7)

q(T)Zw—Wlth (0):O (79)

0 1 1 L 1 1 1 1 1 1

0 50 100 150 200 250 300 350 400 450

The functionG only depends on time and through the %0

combinationx=qg?r. We plotG(x) as a function ok in Fig.
10. Notice thatG(x) is of orderO(g°).

FIG. 10. The functionG(x)ququ(r) as a function ofx
=q?7. Unbroken symmetryz,=3 andg=10"°.
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35

Integral of |A_q_*2(tau)]| dq from qm0 10 q = eta_0/sqri2 as a function of tau, eta_Ond, ge10M-6) —— < ‘]IT( |Z t) le_ (— |Z Tt ) > ot

= (I (KDITI(— Kt ) = (IF (K DIT (=K, t))
(8.2

and the symbols:- refer to the time branches along the CTP
contour. Comparing with the expression for the photon po-
larization in the equation of motio(6.3) we recognize that
the retarded current-current correlation function is given at
lowest ordeff O(«a)] by

(KD IH =Kt )) o= =3R4t PI(K) (8.3

0 560 1 0‘00 1 5‘00 2000
| with 3PU"(t,t") given by Eq.(6.6).

FIG. 11. The integragfgo”qu/\fq(r)/wq that contributes to Introducing the non-equilibrium transverse conductivity

the Debye masanDeb [see Eq.(7.7)] as a function ofr for the as follows:

unbroken symmetry case. The Debye mass grows with tim¢ras

as a result of the evolving distribution at small momemtum. UE(t,t’)IP”(IZ) ot

as a consequence of the non-linear resonance with the width

ever decreasing in time and the peak continues to grow.
In the infinite time limit the distribution will be peaked at

zero momentum behaving as

=—Pil(k) ft dr'sPubt,t7), t>t' (8.9
0

integrating by parts in Eq8.4) and neglecting surface terms
we obtain the linear response relation

G(=)
9q°

Ny(r=0)= . ) .
A=) (J'T(k,t)>=J dt’oll (t,t")ELK ). (8.5

leading to adivergentDebye mass becausef %(»)#0 and  Although the definition of the conductivity8.4) may not
thus the behavior aj=0 makes the integral in Eq7.7) to  |ook familiar, it is straightforward to confirm that in the equi-
diverge. librium case it leads to the usual relation between the con-
This divergence suggests that higher order contributionguctivity and the polarization in equilibrium.
in the electromagnetic coupling must be taken into account In thermal equilibrium the polarization is a function of the
and perhaps a resummation of higher order terms can lead time difference and the system has been in equilibrium from
a finite Debye mass, but clearly this possibility requires a= —. Thus, extending the lower limit in Eq8.4) to t”
more detailed study which is beyond the scope of this article= — o and writing

H o = H f ”
VIIl. NONEQUILIBRIUM TRANSVERSE CONDUCTIVITY Sed(t—t") = ﬁw do SE(w)el et

Consider applying an external transverse electric field

Er ext(X,t) = — A7 exd(X,t) With A7 o (X,t) an external trans- it is straightforward to find the spatial and temporal Fourier
verse vector potential. The induced transverse current is olfransform of the conductivity to be given by
tained in linear response by coupling the external vector po-

tential to the current in the Lagrangian densifi/— L iﬁ%ui:)(w)
+J7- At ext- The transverse current induced by the external ot )= # (8.6)

vector potential is obtained in linear response in terms of

spatial Fourier transforms as o ] ) )
which is the usual relationship between the bubble polariza-

tion and the equilibrium conductivity at lowest orderdn
N T e j . Since in the out of equilibrium case under consideration
<JT(k,t)>—|f dt’ (IT(K,1) Ir(—K,t"))rer AT exdKit) the initial state at timé=0 is the vacuum and the plasma is
(8.1 generated during the stage of strong non-equilibrium evolu-
tion, the time integral in the conductivity kern@.4) has the
o initial time (t=0) as the lower limit.
where (Jp(k,t)Jr(—k,t"))er is the retarded correlation The explicit expression for the conductivity at leading or-
function given by der in « follows from Eq.(6.6) and is given by
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Uk(r,r')Z——f q"’dqf dx
4m2Jo -1
><<1—x2>lm{qoq<r><p|a+g<r>

X f Pl (el g ()] 6D

It is difficult to compute explicitly the conductivity in the

PHYSICAL REVIEW D61 085007

perform the integral in the variable in the saddle point
approximation using the non-relativistic approximation for
the mode functions. In the regiondr’ <7< 7y the domi-
nant term of the conductivity in the long-wavelength limit is
given by

2

e
16

’ 27’

T 2
e |11+ o0,

Oy~o(7,7")=

(8.9

full range of the two time variables, however we can provide

explicit formulas in the relevant regimesds’ < r< 7y and
when both time variables are in the asymptotic regime
> 7' > 7y for fixed k.

A. 1<T’<T<TN|_

We remark that since the expression for the polarizaifo®
involves four mode functions one would naively conclude
that the polarization and the conductivity would bee*7,
however these terms are real and do not contribute to the
imaginary part in Eq(6.6). Therefore at the end of the ex-
ponential growth of long-wavelength modesat 7' ~ 7y,

In this time regime there are no fast oscillatory solutionsthe conductivity is of orde(e? g) and positive since the
and we can simply sét=0 to obtain an estimate for the first term dominates over the second one in B39 for 7

long-wavelength limit of the conductivity.

Broken symmetryin this case the mode functions in this

time regime are given by Eqé3.17),(3.18). Furthermore the
modes that grow the most are those &0 for which a
non-relativistic approximatiog<<1 is reliable. The compu-
tation of the conductivity proceeds in three stefsrecog-

>,

Unbroken symmetryFor this case the mode functions are
given by Eqs(3.32—(3.36. The calculation of the conduc-
tivity in this time regime follows the same steps as in the
broken symmetry case, with the difference in the third step
being that the saddle point in tlepintegral is at the maxi-

nize the terms that contribute to the imaginary part in Egmum of the Floquet indexg* given by Eq.(3.39. After

(6.6), (i) carry out the integral in the variablg’, and (iii )

TNL>T>T'>1 ezng

’ 5 2
T (Z’?o+2

some tedious but straightforward calculation we find

e2B(n0)7

Uk%O( 7, 7’ ) =

/El( 7o)
T

whereB(70) =49(70) V1+ 73 1—40a( 7o) + O@%(70))].

76877'3/2

1
3 |32 5 [Ho(q(%)’?”
(7I§+l)l’4(l+;1773) 1+ 75

(8.9

Hence, besides some quantitative differences, this result is qualitatively similar to that in the broken symmetry case above
with the same conclusion in the order of magnitude of the transverse conductivity in the long-wavelength limit at the time scale

TNL -

B. 7y <7'<7, kfixed

In this regime we can use the asymptotic form of the mode functions generally in both cases, broken and unbroken
symmetry. When we studied the magnetic mass in the previous section, we have noted that the long-wavelength limit does not
commute with the long time limit. Thus, we will consider the long time limit but keeghrfixed. Furthermore, since the
conductivity is a function of two time variables, we will considee ' and both arguments and 7’ larger thanzy,_ . In
particular we will consider that phases involving themof the time arguments vary more rapidly and therefore dephase faster
than those that depend on thdferenceof these time arguments, effectively deciding that 7' is slower varyingthan 7
+ 7' but both arguments are in their asymptotic regime. The calculation proceeds along the same steps outlined in the case of
the magnetic mass, the produg(7) ¢4 «(7) is strongly oscillatory in the asymptotic regime. Keeping only the oscillatory
factors in the difference of time arguments 7', neglecting terms that oscillate much faster than these and using the relation

(3.60, we find
, ik @2 1 g*dg 0§ (@q+t @G (7= 7')]
ol(r7) = a2 wqwq+k|f dx(1=x*){ (L+Ng+Ng+) (gt 0GR
cog (w|g+i— @ (7= 7")]
— (N = NP0t ] (8.10

(0)g+K— @q)
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This expression can be written in a more familiar form by introducing the representation

cod (w|g+ i wg)(7—71)]

(w|a+ﬂ * wq)

eiw(T—T')
=f do— (0= (041 = 0g)~ S0+ (0)g:k* @g))] (8.11
which leads to the final relation

22w)

ok(m’)=J do e ") — (8.12

whereik(w) is the imaginary part of the Fourier transform of the asymptotic real-time, retarded polarization out of equilib-
rium,

in2 e A
S bub e a dq ! 2
S (w)=— Q , m 7ldx(1—X ){(1+/\/'q+/\/'|a+|;‘)[5(w+ wqt )gi) — (@0 —wg—w/gk)]
— Mgk = N[ (0= 0g+ 0)g+ k) — 0+ wg—wg11) ]} (8.13
|
Hence, we find the remarkable result that in the asymptotic a2 T \?
limit the conductivity and the polarization are related in a 9_1<—>?(m) .

manner akin to that irquilibrium (8.6), i.e.,

We emphasize that this comparison is ogijalitativeand

S bub
(@) :Ek_ (@) (8.14) s_houldnot be taken asa direc_t re_lati(_)n between the two cases
lw since the non-equilibrium distributions are very far from
thermal.
we stress however, that thererienequilibriuminformation Consider for instance the conductivity in thmbroken
in this relationship because the distribution function of thephase: our analysis in the previous sections shows that the
produced particles isut of equilibrium distribution function\ is strongly enhanced at smajlas a
The expression for the conductivit®.13),(8.14 simpli-  consequence of the non-linear resonanceab, i.e, N
fies considerably for smak and in the static limitw=0. ~1/g? for q— 0. This non-equilibrium effect leads to a loga-

Similarly to the Debye mass, to lowest orderdnthe con-  rithmic enhancement for long wavelenths
ductivity is determinated by the derivative of the distribution

function,
- k—»OeZ 5 mR
o (0) ~ g—kalﬂ T )

~ k=0 @2 (= L ONg
O'k(O) = —4 2ka/ q dqﬁ (815)
m 2 which has no analog in the equilibrium counterpart.
We remark that the non-equilibrium conductivif£gs.
(8.13,(8.14] is finite for all k including k=0 atfinite time
Only in the w=0 limit, which corresponds to an integral
up to infinite time, the conductivity has a divergdat-0

limit, such is the case for the equilibrium static conductivity

o94(0). Thus whereas the non-equilibrium conductivity is
well behaved for long-wavelengths at afipite time, the

This result can be compared with the equilibrium conductiv-long time limit will require a resummation of diagrams that
ity at =0 simply by replacing\i; by its thermal counter- Must include the the width of the charged scalar particles. In
partnq=(eq”—1)‘1 which yields the static limit the finite mean-free path of charged particles

will provide a cutoff for long-wavelengthilong distancg

k-0g272 propaga_tipn and will lead to a finite long-wavelength static
}Equil(o) - conductivity. . _ o _
12k Our analysis reveal@) the initial stages of build up of the

conductivity through the formation of the nonequilibrium
This shows agualitative comparison between the high tem- plasma andii) an asymptotic description at long times in
perature limit in thermal equilibrium and the small coupling terms of the non-equilibrium distribution functions which is
limit out of equilibrium, which in dimensionful units reads akin to the equilibrium description.

In the broken symmetry case the-0 limit of the integral
can be computed by part using the sum (@25 leading to
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IX. CONCLUSIONS, DISCUSSION AND FURTHER O(100) MeV, however before coming to definite conclu-
QUESTIONS sions on the cosmological implications, two important issues

In this article we have studied the formation of a plasmamUSt be studied furtheri) whether a strongly supercooled

of charged particles from the strongly out of equilibrium (quenchegchiral phase transition can take place, given that

rocesses ofa) spinodal decompositioor phase separa- the relaxation time scales for QCD are much shorter than the
b P ) MPpo: P P inverse of the expansion rate of the Universe during the tran-
tion) and (b) parametric amplification. The model, scalar

X ) sition, and(ii) the kinetic equation used to study photon pro-
QED with N-charged scalar fields andi(1) photon, does ction neglected an initial population and therefore stimu-
not only provide an arena to study the questions of the foriaieq processes, these must be taken into account fully in the
mation of the plasma, electric and magnetic screening, phQ:ase of the cosmological phase transition since the Universe
ton production and conductivity out of equilibrium, but also js radiation dominated at that stage.
is phenomenologically relevant both in cosmology and in  perhaps, phenomenologically more relevant is the case of
heavy ion collisions as a description of the chiral phase tranthe chiral phase transition in ultrarelativistic heavy ion colli-
sition out of equilibrium. In cosmology an important conse- sions, since it is quite possible that in this situation the phase
quence of this study is the novel mechanism of generation afansition occurs out of equilibriu8]. In this case the pho-
primordial magnetic fields at the time scale of the QCDtons produced through spinodal decomposition would have a
phase transition, whereas in heavy ion collisions the mechazon-equilibrium spectrum that could be a potential experi-
nisms studied here can lead to strong photon production witimental signaturd7]. In the case of broken symmetry we
non-equilibrium distributions that could be an important sig-have found that the presence of massless particles asymptoti-
nature of non-equilibrium effects associated with the chiralcally, lead to collinear divergences in the bremsstrahlung
phase transition. contributions in the medium. These infrared divergences re-
Spinodal decomposition describes the early stages duringult in a logarithmic growth of the photon density asymptoti-
a quenched or supercooled second order phase transition agally. This growth is also present in the equilibrium case and
the dynamics is determined by the exponential growth of thepoints out to a breakdown of the perturbative kinetic equa-
fluctuations with wave vectors in the unstable band. Parametion. A thorough understanding of the photon distribution
ric amplification of quantum fluctuations occurs during thefunction in this regime requires a consistent resummation
stage when the order parameter is oscillating around thasing the dynamical renormalization grofg8].
minimum of the potential with large amplitude. In this situ- Magnetic screening mas$Ve have introduced a defini-
ation there are resonances that amplify exponentially quartion of the magnetic mass out of equilibrium which is the
tum fluctuations with wavevectors in the regions of parametnatural generalization of the equilibrium case. We find that
ric instability. In both cases, the explosive exponentialthe magnetic mass vanishes through a cancellation mecha-
growth of charged fluctuations lead to the formation of anism similar to that in the equilibrium case despite the fact
non-equilibrium plasma and to photon production and thehat the asymptotic distribution functions are non-thermal.
generation of electric and magnetic fields. These unstabilities To highlight the different processes that contribute to the
are shut-off by the non-linear field interactions which aremagnetic mass and their widely different time scales in the
systematically and consistently treated in the lakgémit long-wavelength limit we have introduced affectivemag-
[32,34]. Thus we have combined the larlydimit that allows  netic mass that coincides asymptotically with the proper
the non-perturbative aspects of the formation of the plasmadefinition of the magnetic mass.
and a novel kinetic description of photon production to study We find that the non-equilibrium generalization of Lan-
many relevant electromagnetic properties of the nondau damping begins to compete with the contributions from
equilibrium plasma. Our conclusions and further guestiongwo particle excitations and mean-field on time scales that in
can be summarized as follows: the long wavelength limit are far longer than those for these
Photon production We have obtained a novel kinetic processes. This effective magnetic mass displays memory
equation to study photon production strongly out of equilib-effects that correlates the spinodal or parametric particle pro-
rium to lowest order inv and to leading order in the larg¢ ~ duction at early times with the dynamics at late times. We
expansion. We find that at the end of the linear stage domialso find some unexpected weak long-wavelength instability
nated by the exponential growth of instabilities in both casesin the time evolution of the mean transverse gauge field,
spinodal decomposition and parametric amplification, thewhich we conjecture to be related to the strong photoproduc-
photon distribution function is peaked at low momentumtion during the early stages of spinodal or parametric insta-
with a typical photon density of(a/\?) with \ the scalar bilities.
self-coupling. In the case of a quenched phase transition we Electric (Debye) screening masas in the case of the
find that electric and magnetic fields generated during thénagnetic screening mass, we define the elediiebye
non-equilibrium stage are correlated on distances given by screening mass out of equilibrium as the natural generaliza-
dynamical correlation lengtlé~ \/t/[mg| for times r<r,_  tion of the equilibrium case.
with |mg| the (renormalized mass scale of the scalar fields.  In the case of spinodal instabilities we find that the Debye
These mechanisms of photon productizmuld bean impor- ~ mass is given byn3 = 8|mg|2e?/\ + O(\9).
tant source of primordial magnetic fields in the early uni- In the case of parametric amplification we find that the
verse at a time scale of the chiral phase transitieri0° Debye masslivergesasymptotically as/r with a coefficient
seconds after the big bang and temperature scalesf the orderO(e?\~1). This result is a consequencerofs-

085007-30



NONEQUILIBRIUM QUANTUM PLASMAS IN SCALAR. .. PHYSICAL REVIEW D 61 085007

sive asymptotic states and the presence of non-linear resg¢University of Paris VI and VIl for warm hospitality and
nanceq 32] that result in a peak in the distribution function partial support; H. J. de Vega thanks the Dept. of Physics at
of the charged particles that moves towards zero momentuitine Univ. of Pittsburgh for hospitality. We thank the CNRS-
and whose width vanishes at long times. Since the Deby®ISF cooperation program for partial support. M.S. thanks
mass is determined by thierivativeof the distribution func-  the Foundation “Aldo Gini” of Padova and INFN, Gruppo
tion (7.6) in the case of massive particles a distributionCollegato di Parma for financial support during the early
which is singular at small momentum such as the one resulistages of this work. This work was completed under support
ing from the non-linear resonances gives a divergent Debyef Padova University.
mass.

A divergent result to first order i suggests that a re-
summation of electromagnetic corrections using for example

the dynamical renormalization groJj29] must be carried APPENDIX: KINETIC EQUATION FOR THE PHOTON
out. DISTRIBUTION

Transverse electric conductivity (Kubo)he transverse ) _ o
electric conductivity is an important transport coefficient If the charged scalar fields were in equilibrium the rate of
which in the case of primordial magnetic fields limits the Photon production would be determined by the imaginary
propagation and correlation of these fields and in the QGP ®art of the Fourier transform in frequency and momentum of
enters in the calculation of Ohmic energy losses in théhe polarization depicted in Fig. 3. The expression for photon
plasma. We have obtained the non-equilibrium conductivityProduction in equilibrium has been obtained[#0—-43 for
from Kubo's linear response out of equilibrium. The electric the case of the QGP. _ _ _
conductivity is a complicated function of two time variables  In the situation under consideration, strongly out of equi-
and the wavelength. We solved in detail thild-upof con-  librium, the polarization is not time translational invariant
ductivity during the early stages of formation of the non-and the frequency representation is not available. The time
equilibrium plasma as well as the asymptotically long time€Vvolution of the photon distribution function must be ob-
regime. The long-wavelength conductivity builds up expo-tained from a kinetic equation. The validity of a kinetic de-
nentially because of the instabilities that lead to the formaSCription requires a wide separation of time scales between
tion of the plasma, and at the end of the stage dominated bghe time scale over which the photon dlstr_lbuuon function
linear instabilities it achieves a magnitudg_,~|mgle?/x. ~ changes and that of the phenomena that is strongly out of
At asymptotically long times we find that the conductivity €quilibrium. In the case under consideration the non-
has a similar structure to the equilibrium conductivity but€quilibrium evolution of the scalar fields result from spinodal
with non-equilibrium distribution functions replacing the and parametric unstabilities and these occur on fast time
thermal ones. We find that the electric conductivity staysscales of ordefmg|”in(1/g), we expect that the change in
finite for all momenta includind=0 at finite times. the photon distribution will occur on time scales that are

Our study offers a novel view of the electromagnetic re-longerby at least a factor #/. Hence under the assumption
sponse of non-equilibrium plasmas in a model that allows t®f weak electromagnetic coupling, the photon distribution
extract quantitative and qualitative information and that alsdunction will evolve much slower than the non-equilibrium
bears phenomenological interest from the point of view ofdynamics of the charged scalar field. Under these circum-
generating seeds of primordial magnetic fields at the chiraftances a kinetic dt_escrlptlon is valid. Furthgrmore since the
phase transition in the early universe and of describing noncharged scalar particles are far-off shell, a simple Boltzmann

equilibrium aspects of pion-photon dynamics in heavy iongquation for the photon distribution'function.wiII miss the
collisions. important off-shell effects associated with the non-

equilibrium evolution of the scalar fields. This point becomes
more important during the stage of spinodal instabilities
when there is no meaning to on shell particles.
In this Appendix we obtain the kinetic equation for the
We thank D. Schiff for very useful discussions on photonphoton number from first principlesee alsd7,28)).
production. D.B. thanks the N.S.F. for partial support By using the simplest definition for the photon number or
through grants PHY-9605186 and INT-9815064 and LPTHEphase space distributidifor homogeneous systeins
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1 . . . .
Nph(k,t)=(27-r)3 :)\:212<a;r\(k)a)\(k))=ﬂ(AT(—k,t)-AT(k,t)-i—k2A-|-(—k,t)-AT(k,t)), (A1)

d3xd3k

one extracts the time derivative of the distribution function as follows:
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. 1 . . I o - . - . _ _
Npn(k,t) = 5 (Ar(ts, —K)Ar(tz k) +Ar(ty, —K)Ag(ty, k) + K?At(ty, —K)Ar(tz, K) + K?Ar(ty, K) Ar(ty, K)) =,

(?2
—+k?

pe <AT<t1,—|2>-AT(t2,E>+AT<t2,—E)~AT<t1,E)>1
1

_l a
_EE

t=t,=t

Therefore the photon density rate can be rewritten as

2

. i o[ L\ - _
Npn(k,t)=— 57 — ?‘H‘ (Gii (Kt1, 1) + G (K;ty,t2))
1

2K dt,

ty=ty=t

whereaj represent the@xactphoton propagator not to be confused with the free propagator
In order to simplify this expression we need the Schwinger-Dyson equationg-fand G_ . Including a mean field
contribution 5Q2(t) =2e%(dT(t)d(t)) in the Hamiltonian we have

2

J . _ — —
—5 +k? gﬁ(k;tl,tz)z—592(t)gﬁ(k;t1,t2)+f [TL (Kt D) Gkt t) =TI (Kt ) G (K;t ) 1dt
1
and
92 — — — —
— +k? gﬁ(k;tl,tz):—592(t)gﬁ(k;t1,t2)+f [T (Kot 1) Gkt ) + 11 (Kt ,£) G (Kit, 1) ]t
1

Using the definitions i .
gikt' )= ﬂpij(k){elk(t “I[1+N(k )]
L (4,8 K) =17 (4,15 K) 0(t—t/) + IL5 (4,1 K) 6(t' —1)
+e " MUTON(K to) )
I (4t k) =TI (LK) 6t —t) + T, (6t k) a(t—t")
By inserting this propagator in the first terfoontribution
I (4t k) =TI (5 k), T (k) =TT, (LK) from the mean fielin Eq. (A2) we see that the mean field
does notcontribute to the photon production ©(«). To
the photon production rate can be rewritten in the form first order ina the production rate obtains a rather simple

form
: P —
N(k,t):E5Q (t)ﬁT[gii(k;tvtl)"_gii (k;t,tl)]tl:t . t
L N(k,t)=£ [TOK,tt)(A+N(K,to))
it — 0
— > . ! <. k!
kﬁo[n'm(k’t't J3GmGE.Y IOk N(K to) Jdt (A3)
— T (kit,t) aGm(kit' t)]dt’. (A2)  \ith the time dependent rates
This expression isxactbut formal. To make progress, we i
consider the first order i by replacing the full transverse I'Ok,t,t")=— ﬂ[7>iJ'(|Z)Hﬁ(1)(k;t,t’)e—ik(t—t')
photon propagato@ﬁ with its free field form but with non-
equilibrium distribution functions and neglecting the electro- F PR Dk t tr)eik(tftf)]
1) 1M ]

magnetic contribution to the Green’s functions of the
charged scalar field. If there is an initial non-zero photon

ftriby (i ; ; i N : ,
distributionN(k,t,) the free Wightman functions read F(,l)(k,t,t’)= _ ﬂ[Pu(k)HiT(l)(k;t,tr)em(tft )
i . . L o
Gij (kit" ) =Py (K){e I 1+N(k )] + P Mt )e O],
+e U =ON(K, to)}, The transverse self-energies are given to lowest order by
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d3q ate time scales, since Bose enhancement and the loss term
Hiij(t,t’)=—4ie2f —quiquG;(t,t’)G;lz(t,t’) from photon annihilation and scattering will depend on the
21) number of photons present in the appropriate region of phase

space. Hence first photons must be produced requiring an
< , . q <t i< , O(a) and then the stimulated and loss processes will take
Iy (Lt) = _4|ezf (2m)° Gridri Gy (L) Gg, l(t.17) place requiring another power af Thus we expect that the
(A4) early stages of photon production through spinodal decom-
position or parametric amplification will be described reli-
where in the largeN limit the Green’s functionsG='~ are  ably with the simplified kinetic equatio@.5), the late stages
given by Egs.(3.59,(3.59 leading to the final form of the will require the full kinetic equation described below which
self-energies to be used to lowest orderdanand leading will involve a numerical study.

dS

order in the largeN limit, The equation for the change of populati@h5) as well as
o the more general kinetic equatiéh3) do not account for the
PRI P (k;t,t) change in the photon population, sins¢k,t) is the popu-
. lation at the initial time. Under the assumption of a wide
_ zf d q3q2(1—00§0)fq(t)f;(t’) Z)e(parat_lon _of time scale.s, which relle_s on the weak coupI!ng
. pansion ina a dynamical renormalization group analysis

[36] leads to a resummation of this kinetic equation by the
X fioem(DFS, 2 (t) replacementto lowest order N(k,ty) — N(Kk,t), thus leading
la+k\E T g+ k] . AR .

to the final form of thelowest ordey kinetic equation

P Mkt t) =PI (kI DGt 1), (A5 .
(0T GL ) =PROOT Gt 0. (A9) N(k,t)=RO(k, [ 1+N(k,1)]-RD(k,H)N(k,1)

In the case in which the initial state is the photon vacuum, (A6)
i.e. N(k,tp) =0 the expressiofA3) simplifies considerably.

Upon integrating Eq(A3) in time up to timet with the time dependenforward and backward rates given

by
t.
N(k,t):ft N(k,t")dt’

0

t

ROk,t)= | dt'TO(k,t,t"). (A7)
to

one obtains two terms each one with a nested double time

integral which can be written as a double integral up to theTh'S resummation is akin to the Markovian approximation

timet by inserting a theta function. Upon relabelling the timeIntrOduced in[28,4§ and is justified as a consistent expan-

variables in one of the terms we obtain the expres¢iod, ~ Sion in the electromagnetic coupling. o
which is valid to lowest order ix and for vanishing initial The resummation implied by this kinetic equation is based

population of photons. The photon production rate obtaine@" & dy”?mica' renormalizatior_l group analysis .Of kine_tics
in equilibrium in [40-43 also neglects the photon popula- 36’|29| Vg"“d underhthe_ assumlptlorf1 of the S(?lpbaratlon of time
tion in the initial state as well as the stimulated emission andCa/€S: between the time scale of non-equilibrium processes

the loss process. In these references the photons are assurfed® Scalar fields and that of the evolution of the photon

to escape from the medium without thermalizing and thedlstribution function, which is justified for smalk. Physi-

photon production rate is valid to lowest orderdag,, and to cally the process that gives rise to this kinetic equg?ion_ Is the

all orders in the strong coupling constant. The kinetic equafolloyvmg [29,46,34: evol\(e the syste_m from the '”'“a'_“”_‘e

tion (4.5) is precisely the non-equilibrium counterpart of the to With Ed. (A3) up to a timet, at which the photon distri-

rate obtained in these references which is valid also to lowegution has changed by a small amount(ie):

order in the electromagnetic coupling and to leading order in "

the largeN. N(k,tl)zN(k,to)Jrf N(k,t")dt’ (A8)
This equation is clearly only approximate since it neglects to

the buildup of the population of photons. As the photon dis- )

tribution increases in time due to photon production therewith N(k,t") given by Eq.(A3) in terms of the photon dis-

will be stimulated photon production from the Bose enhancetribution att,. At this timet; reset the occupation number of

ment factor resulting in enhanced photon production, buthe photon states to EGA8) and evolve up to a further time

also processes in which a photon present in the plasma cdp using Eq.(A3) but now with the occupation number at

decay into two charged scalars as well as change in the poptimet;. The dynamical renormalization group establishes the

lation with momentumk by bremsstrahlung or inverse equation that performs this operation infinitesimally and

bremsstrahlung in the medium. These latter processes wileads to Eq(A6) [36,29. As explained in Refd.36,46 the

result in a depletion of population of photons and must becoarse graining results from neglecting off-diagonal correla-

accounted for by a more complete kinetic description pro+ions of the typeaa,a’a’ in the time evolution of the density

vided below which must eventually be studied numerically.matrix.

However, if the initial state is the photon vacuum, we expect A similar resummation scheme is implied by the semi-

Eq. (4.5 to be qualitatively correct for early and intermedi- classical Boltzmann equation, in which if the occupation
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numbers are treated in lowest order, the change is linear itively. The early time behavior of the growth of photon
time. Replacing the occupation numbers by the time deperpopulation is obtained from EqA9) by approximating
dent ones in the Boltzmann equation leads to a resummatiof(k,t)~0, leading to the expressig#.5). A more detailed
and exponentiation of the time serigts]. However, as dis-  estimate of the photon population including the reverse pro-
cussed inf46] the Boltzmann equation assumes completettesses and depletion for a general range of momlemt

collisions that result in a coarse graining in time and neglectgindoubtedly require a numerical evaluation of the memory
all of the transient effects and dynamics on short time scalegernels in Eq(A9), this is clearly a formidable task.

In particular, for the case considered in the previous sec- | the time evolution were slow foall fields. we could
tion W'IL‘ varr:lshlng dPhQLO”_OCCf“Pa“,O” number in the initial \\vite down a closed set of coupled kinetic equations for the
state, ; e photon distribution function at a given timés  yisyripytion functions of photons and charged scalars. How-
given by ever, the strongly out of equilibrium evolution of the scalar

t L . fields and fast dynamics associated with the spinodal and

N(k,t)=f dt,RP(k,ty) e Tiyki)dt (A9)  parametric instabilities prevent such a kinetic description as

fo there is no natural separation of time scales for the evolution

with y(k,t)= R(_l)(k,t)— R(f)(k,t) being the total time de- of the scalar fields. The evolution of the scalar fields is there-

pendent rate t@(«). Clearly Eq.(A9) provides a resumma- fore_taken into account fully throu,gh the I_argleequation§ of
tion of the perturbative series as is generally the case in anjyotion and enters in the Green’s functions that define the
kinetic description wherein the rates are calculated perturbdorward and backward rat&\7).
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