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We use numerical simulations and semianalytical methods to investigate the stability and the interactions of
nontopological stationar) ball solutions. In the context of a simple model we map the parameter sectors of
stability for a singleQ ball and verify the result using numerical simulations of time evolution. The system of
two interactingQ balls is also studied in one and two space dimensions. We find that the system generically
performs breather-type oscillations with frequency equal to the difference of the in@ipall frequencies.

This result is shown to be consistent with the form of @eall interaction potential. Finally we perform
simulations ofQ ball scattering and show that the right angle scattering effect observed in topological soliton
scattering in two dimensions persists also in the cas@ lodlls where no topologically conserved quantities are
present. For relativistic collision velocities tkball charge is split into a forward and a right angle scattering
component. As the collision velocity increases, the forward component gets amplified at the expense of the
right angle component.

PACS numbsds): 11.27+d, 98.80.Cq

I. INTRODUCTION dicted frequency. In Sec. IV we use boost€d ball
configurations to perform scattering numerical experiments
It is well known that realistic supersymmetric theories arein 2+ 1 dimensions showing that for low collision velocities
associated with a number of scalar fields with variousQ balls tend to scatter at right angles like their topological
charges. These theories and in particular the minimal supefounterparts. For relativistic collision velocities we find that
symmetric standard mod@WSSM) allow for baryonic[1,2] ~ the Q ball charge splits into a forward and a right angle
and leptonid 1] nontopological solitonf3] known asQ balls ~ component. The forward component gets amplified as the
[4] made of squarks, sleptons, and Higgs scal&fs Such velocity increases. Finally in Sec. V we conclude, summa-
objects could have interesting cosmological consequencedz€, and briefly discuss future extensions of this work.
For example, they could be responsible for both the net
baryon numbef2] of the universe and its dark matfeg—8. Il. STABILITY: VIRIAL THEOREM
The basic properties dD balls have been studied exten- . i ) . .
sively in the literature using mainly analytical and semiana- Consider a complex scalar fielt in 1+1 dimensions
lytical methodg3]. These methods are particularly useful in Whose dynamics is determined by the Lagrangian
understanding the basic properties@fballs such as exis- 1
tence, small vibrations, and stabilit9] in certain parameter _ - * ol
limits (thick [10] or thin wall [4] approximation but they £ 2(9’*(1) Fe—U(P), @
cannot be very illuminating in understanding more compli-
cated issues such as scattering, interactions, or stability fovhere
arbitrary parameters. The goal of this paper is to use numeri-
cal simulations ofQ ball evolution in one and two spatial
dimensions, along with semianalytical methods, in order to
study the stability under small fluctuations, the interactions,
and the scattering d® balls. Using a rescaling
The structure of the paper is the following. In the next
section we introduce a simple model and show the existence m?
of stableQ ball solutions in its context. By considering small b——, (©)
fluctuations superposed on these solutions for various param-
eters we construct a map showing the stability sectors in
parameter space. These sectors are then verified by perform- X—s —, (4)
ing numerical simulations of time evolution for the solutions m
considered. A virial theorem is also derived and its validity is ) o
demonstrated numerically. In Sec. Ill we consider a systerthe Lagrangianl) gets simplified as follows:
of two interactingQ balls and show analytically that the
interaction potential is time dependent and periodic. This
type of interaction is verified by performing numerical simu-
lations of Q ball evolution which shows that the system per-
forms breather-type oscillations with the analytically pre-where
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Effective Potential QBall Field Profile
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FIG. 1. The effective potential for the classical particle motion.  F1G. 2. The field magnitude profileb (x,t)| of aQ ball solution
The sector aroungP|=0 is plotted to emphasize the motion of the for B=4/9. ©2=0.51.

bound virtual particle.

with the V(| ®])=0 axis! The first condition impliesw?
bm? <1 while the second condition implies that the equation
B=—7. (6) V=0 has at least one real solution different from 0. It is
easy to show that the constraints imposedwhby these two

o
This leads to the field equation conditions can be written as

. 2
(I)—(I)"+CI)—|(I)|(I)+B|(I)|2(D:O- (7) 1—9—B<w2<1. (14)

Using the usuaQ ball ansatz The energy density of the syste) is

d(x)=a(x)e'", (8) . 2 B
E=[D2+ @2+ [P = O+ S[0|%, (15
with the conserved Noether charge

which with theQ ball ansatZ8) becomes

1 + o0 +
Q= Ef_ dx((b*at@—qmt@*):wf_ dx o(x)2,

2 B
— 12 2y 2_ — 3, _ 4
) E=o0' "+ (1l+w%)o 37 +20'. (16)
we obtain the field equation far(x): Our main goal is to study numerically the dynamics and
the stability of single- and mul®@-ball configurations in the
0"+ (w?—1)o+0°—Ba=0. (100  context of the simple modé€ll). The first step in that direc-

tion is to solve Eq(10) numerically(in a parameter region
The requirement of finite energy and the asymptotics obwhereQ ball solutions exist to find the singleQ-ball profile

tained from Eq.(10) imply the boundary conditions and then evolve numerically the solution according to Eq.
(7), checking the total energy and charge conservation.
o'(0)=0 (12) Figure 2 shows the numerically obtain@dball profile for

B=4/9 and w?=0.51 using a fourth-order Runge-Kutta
scheme. The evolution of this configuration in time when
o()=0. (120 ysed as initial condition in Eq7) with periodic boundary
L ) _ conditions has been performed and found to correspond to a
The combination of Eq9(10) and (11),(12) are identical  giaple configuration. The total energy and cha@avere
to the dynamical equations describing the motion of a virtuak.gnserved to within about 3% during the evolution.

particle that starts at rest at “tiT@’(:O from some position Static scalar field configurations in space dimensions
0o and moves tar=0 at “time” x—0 under the influence pigher than 2 are unstable towards collapse because both the
of the effective potentialFig. 1) gradient and the potential terms of the energy may be shown

to decrease with a rescaling of the configuration correspond-

ing to collapsg/11]. On the other hand the stability of the

stationary (time-dependent Q ball configuration towards

collapse or expansion is a result of the different behavior of

without friction. kinetic (time-dependentand potential terms towards spatial
By inspection of Fig. 1 it becomes clear that in order to

have a solution with the boundary conditiofikl),(12) the

following conditions must be satisfied) Symmetry mustbe  ithis condition becomes stronger i+ dimensions(see Sec.

broken by the effective potentidll3) (mZ;=w?—1<0);  IV)where the effective virtual particle moves under the influence of
(if) there must be at least one intersection poinWefi(o) friction.

1 1 1
Verr=5 (@~ 1|0+ 5|0 -ZBl0* (13
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rescaling of the field configuration. This fact may be seen by 012
expressing the energy as a sum of kinetic, gradient, and po- 0.1 staple Solution
tential terms: 005
E:|1+|2+|3, (17) 0.04
0.02 e No Solution
where s
+ o0 Q2 '
Ilzf dX w? g?=—"—, (18 FIG. 3. Parameter sectors of existence and stability(fdyall
- f dx o2 solutions.
- d?
+o O=—-——+(1-20y+3Bc?)+3w?, (25)
l,=| dxo’'? (19) dx? 0

wherea is the unperturbe ball solution. For stability we
. require5°E>0 for all fluctuations that conserve charge. This
' (20 is equivalent to demanding that the Hermitian operador
have no negative eigenvalues. In order to find the parameter

After a rescaling of the spatial coordinate> ax the expres- ~ region corresponding to stabilitfno negative eigenvalups
sion of the total energy becomes we have solved the differential equation

I—j+md 12 23+B
= Xl o 30T 50

1 0s0=0, (26)
E,=—(l1+1y)+alj. (21

@ with initial conditions 6o(0)=1 and 6o’ (0)=0 using a
For stability we demand that the energy be minimized forfourth-order Runge-Kutta scheme. By varying the param-
a=1 which implies that etersB, o we have identified the line in parameter space

where the eigenvalue proble(@6) has a ground state with

dE zero eigenvalue. This line clearly separates the parameter
d - =0=1+1,=13, (22)  sector of stability from the corresponding sector where Eg.
X la=1 (26) has negative eigenvalues and fQéall is unstable.

_ o, ) Figure 3 shows part of the parameter space divided in
while the second derivative id°E,/da®,-1=2(l1+12)  three sectors: the sector where staBlall solutions exist,
>0, implying an energy minimum and therefore stability. the sector wher€ ball solutions exist but they are unstable,
Therefore the stability of th& ball configuration towards gnq the sector where n@ ball solutions exist because the
coordinate rescaling implies the validity of the virial theorem 4 gition (14) is violated. The scale of the plot was chosen
of Eq. (22) connecting the potential energy with the gradientiy order to magnify the sector of instability which would
energy and the kinetic enerdjor a similar virial theorem  iherwise be too small to be seen.

see Ref[10]). We have confirmed numerically the validity ~ \ye have tested and verified the validity of these sectors

of the virial theorem(22) and the virial ratio (1+12  py simulating numerically the evolution of an isolat@dall

—I3)/(I1+12+15) was found to be zero to within less than sing Eq.(7) in the instability and in the stability sectors.

1% for various values o& whereQ ball solutions exist and Figures 4 and 5 show examples of evolution @ &all in

for variousB in the range 2/9(B<1. . . the stability and instability sectors, respectively. Figure 4
In order to study the stability of th@ ball configuration  shows the time evolution of the field amplitude foQaball

under small fluctuations that conserve the cha@ef Eq. i, the stability sector 2=0.1, B=2/9=0.222). Clearly

(9) we must consider variations of the energy obtained frompe Q pall remains stable and evolves undistorted in time
the density(16) and expressed in terms Qf even though the evolution lasts for ten internal frequency
5 Q2 pel’i(.)dS[tmaXZ'J.O(Z?T/w)]. Figure 5 ;hows_the same nu-
E:J dxl o2+ 02— S 3+ — ot + .23 merical experiment for parameters in the instability sector
3 2 dx o2 (w?=0.05, B=2/9=0.222) where Eq(26) has negative ei-
7 genvalues. The evolution lasted only three internal frequency
. _ _ . _ periods[t.,=3(27/ )] but the Q ball configuration got
Since theQ ball is a stationary solution of the field equa- rapidly distorted and decayed into plane waves, thus verify-
tions, the first variation of Eq(23) with respect too van-  ing the semianalytical prediction for instability.
ishes identically. The second variation may be written as
IIl. INTERACTIONS: SCATTERING
We now consider multR-ball configurations in order to

study their interactions and their scattering properties using
where mainly numerical simulations of evolution. For a t@-ball

S’E= f dx 850 éa, (24)
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FIG. 6. The interaction energy of a pair @ balls calculated
using the expression df,, with B=4/9, »?=0.9 showing a be-
havior of the form— cos(2vt).

1:5
[8(x,t) |

frequencyw ;. — w_ while slowly drifting due to the effect of
the small constant interaction tei@ Indeed this is what we
see in the numerical simulations of the time evolution of the

FIG. 4. Evolution of & ball solution in the stability sector. The
evolution of the field magnitud®(x,t) is plotted. The time evolu-
tion was performed in the range 7.5<x<7.5 as shown in the

figure. system. . .
We have considered the ans&®”) with = w;,; and
initial configuration we use the ansatz - = — iy, Which implies o, (x) = o75(x) since the internal
angular frequencies of field rotation are opposite. The inter-
d(x,t)=0, e +g_e-t (27 action energy of this system obtained numerically &gk,

=0.9 as described above by using the numerically calculated
where o, =01(X+Xg) and o_=a,(X—Xg) with o1 (o) o(x) is time dependent and is shown in Fig. 6.
the field magnitude for a singl® ball with w=w, (w This interaction energy, however, assumes that the form
=w_). of the initial ansatz is retained during the time evolution of
The interaction potential between the t@oballs can be the system and should therefore be subject to test by numeri-
obtained by subtracting the energy densitiescal simulation. As expected from the expressiorégf the
e (X,t), e_(x,t) of each noninteracting) ball from the time dependence of the ansatz interaction is proportional to
energy density of the total interacting configuration. After acos(2vj,t).
straightforward calculation we obtain the interaction energy In order to test if the predicted time dependence of the
as interaction is realized in a realistic system we have per-
formed a numerical simulation of the evolution of the ansatz
En=0,0-C0¢ (0w~ w )t|F(o,,0_ 0, ,0_) (27) by solving Eq.(7) using a leapfrog algorithm, periodic
2 2 _ boundary conditions, and initial conditions based on Eg.
*oioeos(v,—w )t +G(a o), (27). The parameter values weBe=4/9, »2,=0.9, and the
whereF andG are time-independent functions 6f(1) and ~ initial Q ball distance was %=10 in a lattice of 21=30
O(o. o), respectively. It is easy to see from the field equa__(these are dlmgn5|0nless QUe to the_rescahng of the Lagrang-
tion (10) that the fieldso. decay exponentially at infinity ian). The evolution of the field magnitude>(x,t)| is shown
and therefore the term proportional B dominates in the in Fig. 7 where the oscillations of the system can be seen
interaction energy. We therefore expect that the @vball cle_arly. The period and the angular frequenpy of these c_)scn-
system will perform oscillations with characteristic angular!ations can be found by plotting the location of the field

| &(x, %)

FIG. 7. The evolution of the field magnitude corresponding to a
pair of Q balls calculated using the ansd®7) with B=4/9, w?,

FIG. 5. Evolution of aQ ball solution in the instability sector. =0.9. As time increases the line becomes thicker and the dashes
The evolution of the field magnitudé(x,t) is plotted. The time larger. The time range for a complete period of spatial oscillations
evolution was performed in the range7.5<x<7.5. is 0<t<3 which implieswgy=2.1=2w;y; to within 10%.
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FIG. 8. Spatial oscillations of the maximum of the field magni-
tude due toQ ball interactions.

FIG. 10. Collision ofQ balls with identical charges and,;

maxima as a function of time. This is shown in Fig. 8 where 02
= " U= V.4

we plot the locatiork,,,(t) of the maximum of®(x,t)| for
x>0 and 0<t<15. Clearly the location of th€ ball at x

. I ®,_o(x,t)=a(x)e'“* which does not move in space we can
>0 described byx,,(t) performs oscillations due to the _v=9 . . |
interactions with theQ ball at x<<0. The period of these construct a conflguratlomvzvo(x,t) that describes & ball

oscillations can easily be seen from Fig. 8 to be approxifnoving with velocityv, by performing a Lorenz transform
mately T=3.5 which is identical with the anticipated result to the spacetime variables. Let=1/(y1—vg) (we use units
T=2m/2w;,= m/0.9=3.5 based on the interaction potential where the velocity of light is unity) be the Lorenz factor
Eint; 1-€., the spatial frequency @ ball oscillationwgpaceis ~ and let
double the internal frequenay;,; of field rotation.

We have verified this consistency between the analyti-
cally predicted period of spatial oscillation and the one seen
in the simulations for several values of internal rotation fre-

queNCywin; - o be the boosted spacetime variables. The field configuration
The result is shown in Fig. 9 where we plot the observedp (x’ t') expressed in terms of, t describes & ball mov-
angular frequencywspace Of spatial Q ball oscillation vs  ing with velocity v, i.e., ®,-, (x,t)=®(x’,t’). The initial
doyble the corresppndmg frequ.en@y]t of internal f!eld ro- fansatz for a twdaR-ball systen;) prepared for a collision pro-
tation. The data points can be fitted well by a straight line o ess mav be written as
slope unity as anticipated by the above-described analytica(ﬁ y
considerations. During all the simulations the energy and to-
tal charge of the system were conserved to within about 3%.
The amplitude of the spatial oscillations was not found to be
constant but the system slowly drifted to larggiball sepa-  An evolved system of this type withy,= 0.2 is shown in Fig.
rations with a rate dependent on the parameter values. Thi) where we have used; = w,= \J0.51 andB=4/9. As can
behavior is consistent with the form of the interaction potente seen in Fig. 10 th® ball collision results in the formation
tial &g, which includes a subdominant time-independentof a long-lived centralQ ball which subsequently decays to

XI:Y(X_UOt)l (28)

t'=y(t—vox) (29

(I)(X!t):q)U: (X_XO!t)wl+(Dv:UO(X+X0!t)w2'

(30

~vg

term.

In order to study the scattering @ balls we need to
consider booste ball configurations, i.e.Q balls moving
with a velocityv. Starting from aQ ball field configuration

Frequency of Spatial Oscillations

2.2
2
$1.8
o
&
3
1.6
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1.4 1.5 1.6 1.7 1.8 1.9 2

2 Wine

FIG. 9. The frequency of spatial oscillations Qfball position
vs the internal frequency of field rotation.

Q balls similar to the original ones.

A more interesting evolution occurs in two-space-
dimensional systems which will be described in the next sec-
tion. There it will be seen that the effect of right angle soliton
scattering which has been observed in topological solitons
persists also in the case of the nontopologi@aballs in a
generalized form.

IV. DYNAMICS IN TWO SPACE DIMENSIONS

The model(1) can be extended to21 dimensions by
letting the indexu take the valueg.=0,1,2. The details of
the formalism are similar to those given in Sec. Il. That is,
the rescaled form of the Lagrangian is given by Exj.while
the field equation reads

O—AD+D—|D|P+B|P|?P=0, (31)
whereA = g2+ 92 . We look for axially symmetric solutions
of Eqg. (31) and make th& ball ansatz
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2.0 ‘ We further note that a steadily movinQ ball can be
found by applying a Lorenz boost to a static one as discussed
in the previous section. The calculat€dballs will be used
®=0.75 ] in the following in numerical simulations on a two-
dimensional lattice. We shall first study their stability. Then
| we shall study interactions between t@dalls; in particular
©=08 we shall perform simulations of scattering.
The numerical mesh we use is typically 30800 and the
05 ] lattice spacing is 0.3. Such a numerical mesh is appropriate
to accommodate the structures given in Fig. 11 and provides
good resolution. The time evolution is performed by a
0.0 ‘ fourth-order Runge-Kutta method.
0 5 10 First, we put a singl€ ball at the center of our numerical
P mesh and simulate its time evolution in order to test its sta-
FIG. 11. The numerically calculated profile of tieball solu-  bility. We use 2/9<B<<1 and test all the values ab for

tions for B=4/9 and various frequency values. In the vertical axiswhich we are able to find th@ ball profile by our shooting
we plot the charge density= wa?. According to Eq(14), Q balls  method. We find thaQ balls are stable everywhere in the

1.5

=085

exist for 0.5< w?<1 or 0.7k w<1. B-w plane and they travel undistorted with the given con-
stant velocity.
d(p,t)=o(p)e®, (32) In the next set of simulations we discuss the problem of
the interaction betwee® balls. Specifically, we focus on
wherep = \/§2+_y2 The profilea(p) satisfies simulations of scattering between tWballs. Such simula-

tions have been performed and have proved to be fruitful for

o' topological solitons. We shall perform all our subsequent
0"+ —+(w?’—1)o+o?—Ba=0. (33)  numerical simulations using the valuBs=4/9, w==*0.75.
p We consider a 2D generalization of the ang&@ which

. ) ) _represents twa@ balls set in a head-on collision course. We
The boundary conditions which have to be met are given iNisew,=w,=0.75 and a small velocity, namely,=0.2. Q

Egs.(11) and(12). Equation(33) is expected to have local- pis are represented through their charge density:
ized solutions by arguments which are presenteijrand
are similar to those used for the 1D model of Sec. II. 1

The search for the solutions is here not straightforward as q= E(q)* 0D — D, d*). (35
for the 1D model(Figs. 1, 2. In the present two-dimensional

case, solutions are found by a numerical shooting methoq. Fig. 12 N ot . for the ch density at
Figure 11 shows the profile of the calculat®dballs for B n Fg. contour plots are given Tor the charge density a

—4/9 and for various values of the frequeney We repre- three characteristic snapshots of this first numerical simula-

X . 2 tion. The first entry of the figure gives the initial ansatz
F;ntEt;e(%]ball profile through the charge density=w o where eacltQ ball is spherically symmetric. The twQ balls

The virial theorem mentioned in Sec. Il has, for our two- are initially ata distance of 20 units apart so that there is no
dimensional theory, the form ove_rlap and interaction between them. Subsgquently they
’ collide at the originimiddle entry and scatter at right angles
(lower entry.
13=1y, (34) The scattering scenario produced by the computer simu-
lation is quite interesting. Indeed, this dynamical behavior
where the symbols are defined as the two-dimensional an&as been found to a robust feature in a variety of models in
logues of Eqs(18) and (20). The virial relation is used to two space dimensions which have topological soliton solu-
check the precision of our numerical calculations. Indeedtions [12,13. However, in our case there is no topological
the solutions that we find by the shooting method satisfy thénvariant associated with th®@ balls, so we need to discuss
above virial relation to very good precision, better than 1%¢the present situation.

Finally, we note that our shooting method is unable to The crucial observation is that the underlying dynamics
find the Q ball profile for the whole frequency rand&4).  which induces this type of scattering can be attributed solely
Numerical errors render the method inapplicable near theo the Hamiltonian structure of the mod@#]. It is related to
lower w bound. For instance, fd=2/9 we are able to find the conservation laws of our model and in particular to linear
the solutions with 0.035w?<1 and forB=4/9 we find momentum conservatiofL5]. We have followed the linear
those in the frequency range 0522<1. The difficulties momentum density plot along the lines describefili] and
with the numerics should be anticipated. Their origin can bave have found a behavior similar to that of topological soli-
traced to the theoretical arguments[4f with respect to the tons at the collision time. As a conclusion, despite that in our
existence ofQ balls in dimensions higher than 1. It is actu- case there is no topological invariant associated withQhe
ally the friction term in Eq(33) which is responsible for the balls, the dynamics related to the right angle scattering be-
numerical difficulties. havior is the same as that for their topological counterparts.
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FIG. 12. Head-on collision of tw@ balls with the same charge. FIG. 13. Head-on collision of tw@ balls with the same charge.

Contour plots of the charge density are given. Three characteristi€ontour plots of the charge density are given. Three characteristic
snapshots are shown at times of the initial angapper entry, time  snapshots are shown at times0 (upper entry, t=19.6 (middle
t=0), at collision time(middle entry,t=41.9), and well after col- entry), and t=69.8 (lower entry. Initial velocity of eachQ ball
lision (lower entry,t=55.9). Parameter valueB=4/9, »=0.75, vo=0.4. Rest of parameters as in Fig. 12.

initial velocity of eachQ ball v4=0.2.

pursue further here this oscillating behavior.

We should therefore expect such a dynamical behavior to The next simulation we present has been prepared in a
occur generically. We shall study in this section the validityway similar to the previous one, but now the initial velocity
of the above remarks. of theQ balls is set to a higher valug,=0.4. The results are

Following the simulation for later times, the tw@ balls  shown in Fig. 13. At the initial stages, the simulation does
are seen to eventually stop along thexis. They then at- not differ from our first simulation. At collision timémiddle
tract, collide again, and subsequently scatter and reemergmtry) a centralQ ball is formed. However, the subsequent
on thex axis. This scenario goes on and gives an oscillatingevolution is considerably different. In the lower entry of the
system with successive right angle scattering. We shall ndigure we have twd® balls which have evolved from a right
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angle scattering process. They are located orytagis and 20— 1
are almost static. In addition to that, two oth@rballs are r ’
continuing their travel along the axis and they are drifting
away from each other. Their drift velocity is approximately
0.24.

It would be interesting to have some insight into the
above-described process. The basic remark is that the sym-
metry that has led to the right angle scattering in the first
(slow Q balls) case leads here again to the same result. On
the other hand, the high kinetic energy of the initiaballs
allows for more complicated scenarios such as the formation :
of newQ balls. That is, some amount of energy that does not 20 ;
follow the right angle scenario reorganizes to fo@rballs -20 0 20
on thex axis. In the case of topological soliton interactions,
arguments related to topology would usually preclude such
scenarios. These arguments do not apply in the case of
balls; thus we are led to a novel result. An interesting obser-
vation is that the four solitons which are created after the
collision seem to b&) balls with a frequency different than
that of the initial ones. This can be seen by comparing the
last entry of Fig. 13 with the profiles @@ balls of various
frequencies, obtained by our numerical shooting method.

We have repeated the above scattering numerical experi-
ment with Q balls of higher initial velocityvy=0.8. The
results of the simulation are given in Fig. 14. A new type of
collision different than in the two previous cases arises. The :
Q balls actually collide to form a centr& ball at the origin .20 :
(middle entry of the figure However, after the collision 20 0 20
(lower entry of the figuretwo Q balls reemerge traveling
along thex axis and drifting away from each other. Their
drift velocity after collision is approximately 0.75. No right
angle scattering is present in this case, soQhwalls appear
to be almost noninteracting. This result is dramatically dif-
ferent from what we see in the case of the sl@wballs of

Fig. 12 where pure right angle scattering occurs. It re- I @ @ ]

20 !

sembles, however, similar results discussed in the literature
for scattering of topological solitons moving with very high
relativistic velocitieq 16].

Notice also that Ward’s chiral model, which is integrable
in 2+ 1 dimensions, presents in some respects similar dy-
namical behavior. Specifically, it has solutions which corre- I
spond to the right angle scatterin@3] and others which 20 :
represent noninteracting solitoh$7] although the velocity 20 0 o0
of the solitons does not seem to play any role there. On the
other hand, the type of scattering shown in Fig. 13 seems to FIG. 14. Head-on collision of tw@ balls with the same charge.
be specific to nontopological solitons and, to our knowledgeContour plots of the charge density are given. Three characteristic
it has not been observed in other two-dimensional models. snapshots are shown at times0 (upper entry, t=12.6 (middle

The right angle scattering of solitons has also been obentry), and t=29.3 (lower entry. Initial velocity of eachQ ball
served in a three-dimensional Yang-Mills-Higgs thefit§].  vo=0.8. Rest of parameters as in Fig. 12.

The problem has been approached within the moduli space,

that is, the space of the multimonopole solutions in theSuch are twd balls with the same profile and opposite field
Bogomonly limit. It has been stressed that the scattering beprecession frequencfcf. Eq. (32)]. Notice that the argu-
havior of the monopoles can be understood when they arments off 15] cannot be applied in this case, at least not in a
considered almost static during the interaction. This requirestraightforward manner. In particular, these arguments indi-
that the velocity of the interacting monopoles be small. Sucltate that we may not expect that the timitial Q balls can

is certainly the case with the first of our simulations herereemerge after collision, traveling at a direction perpendicu-
shown in Fig 12. lar to the initial one. Rather, we would have to think of a

Additional insight into the dynamics can be gained bycombination of parts of the initiad balls which would form
looking at collisions betwee® balls of opposite charge. the final solution after collision. Such a combination, involv-
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ing parts ofQ balls with opposite charge, does not seem to 20 —
form any solution of the present theory; therefore we do not ’
expect a right angle scattering behavior in the current case.
We have to resort to numerical simulations in order to deter-
mine the actual behavior of the system.

We now use an initial ansatz appropriately chosen to ac-
count for opposite-charg® ball collision. This ansatz is
shown in the upper entry of Fig. 15 through contour plots of
the charge density. The positive-chai@eball is located on
the left of the figure and the negative-charge one on the right.
We apply to each of the initidD balls a Lorenz boost with a :
moderate velocity,=0.4. The middle entry of the figure .20 :
shows that, quite interestingly, at the time of collision a -20 0 20
mixed state is formed between the t@balls. After that,
the two Q balls separate again; they appear to pass through
each other and drift apart. The fin@lballs are not identical
to the initial ones. The chard@ of each of them is approxi-
mately half of that of the initial state and it corresponds to a
frequencyw~ *+0.6. They have also decelerated and their
mean velocity is approximately equal to 0.25.

In Sec. I, we have found an interaction between a pair of
oppositely charged balls which introduces an oscillation
frequency to the system equal to twice tQeball internal
frequency. This interaction is present here and it manifests
itself in oscillations of the magnitude of the field values and
also in oscillations of the position of th@ ball centers. The :
oscillations appear when th® balls are coming close to 20 :
collide. They also persist after the collision even when@he -20 0 20
balls are well separatdile., at the instant of the last entry of
Fig. 15 and they do not show any tendency to fade out.

Computer plots of the distribution of the energy density of 20 '
the system show that some small amount of energy is dissi- :
pated at right angles after collision. The underlying mecha-
nism for this phenomenon is presumably similar to that lead-
ing to right angle scattering in the first of our simulations in
this series. Similar behavior has been observed for two col- A
liding topological solitons with opposite topological charge
[16]. In this case, the solitons annihilate and the energy is
dissipated at right angles.

The scattering behavior described by the simulations of
this section can be viewed as a generalization of the corre-
sponding behavior of topological solitons. We observe the 20 ;
two extreme cases which have also been observed in the 20 0 20
topological casépure right angle scattering at low velocities
and pure forward Scattering at very h|gh Ve|ocilies|t we FIG. 15. Head-on collision of tWQ balls with OppOSite Charge.
also observe an intermediate case @ &all split to a for- Cor!t_our plots of the charge densi_ty are give_n. Solid lines represent
ward and a right angle scattering component at intermediatRositive values and dash-dotted lines negative val_ue_s. Contour lev-
velocities. The forward scattering component gets amplified's: £0-2+0.4:08=1.2+1.6. Three characteristic snapshots
at high collision velocities. This amplification occurs at the &€ Shown at times=0 (upper entry, t=28 (middle entry, andt
expense of the right angle scattering component. =61.4(lower entry._lnltlal velocity of eachQ ball vy=0.4. Rest of

The rich behavior of) balls in the scattering simulations parameters as in Fig. 12.
calls for an overview of the different phases.

(i) Low velocity scattering ofQ balls with the same (iii) High velocity scattering{>0.7) leads to pure for-
charge leads to initial right angle scattering and a boundvard scattering. The forward scatter€dballs drift away
system that performs breather-type oscillations. from each other and escape to infinity.

(ii) Intermediate velocity scattering (63 <0.7) leads To clarify the transition from pure right angle scattering
to a combination of forward and right angle scattering ando pure forward scattering in the case of identically charged
the forward scattere@ balls drift away from each other and nontopological solitons we plot in Fig. 16 the charge of each
escape to infinity. of the forward-scattere® balls as a fraction of the initia
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1.0 Q ball instability sector is a very small sector in parameter
space. The validity of a virial theorem in the stability sector
has also been verified and we have shown that syster@s of
ball pairs tend to perform breather-type oscillations for long
time periods compared to the period of the internal field
rotation. Finally we have studied numerically the scattering
of Q ball pairs and found thaD balls in two space dimen-
sions with the same charge tend to scatter at right angles and
subsequently perform oscillations with repeated collisions
through right angle scattering. At relativistic collision veloci-
ties a significant forward scattering component has also been
found which gets amplified as the collision velocity in-
02 creases. This effect is consistent with numerical experiments
0.2 09 involving topological solitons where the charge is discretized
velocity due to topology. In that case complete forward scattering is

FIG. 16. The fractional charge in forward scattering@balls found forv>v1=0.9 [16]. In the nontopological case the
as a function of the rest fram@ ball velocity. The forward com- SMooth interpolation between the above two regimes is al-
ponent is clearly amplified at large velocities. Points in the figurelowed because the charge is not discretized.

are plotted every 0.5 velocity units. Then the points are connected These results are interesting not only in the context of the
by straight lines. general study of the solitonic dynamical properties but also

o L in the context of realistic physical systems. For example in a
is conserved, the rest pf the_charge is scattered at ,rigfgymmetric(SUSY) Q balls, breather-type larg® ball sys-
angles. A small amount is dissipated throughout our lattice e ms could lead to detectable signatures in the gravitational

The charge of the outgoin@ balls is computed as fol- ve spectrum either by direct emission or by exciting vi-
lows: We let theQ balls travel 30 space units on theaxis, bration modes of the neutron stars where they can be trapped

after the collision, and we integrate the charge densitywithirtlg]_ The detectable characteristics of such breather-type

a disk of radius 15 space units around e&Zlball center. . : o
This result is considered to be the charge of the fipaklls. cosmqloglcal systems are cu_rrently under Investigation. An-
other interesting implication is related to the statistical me-

In the case of the scattering of oppositely char@eblalls . .
we have also observed an increase of the forward-scatter&fi@nics ofQ ball systems[6]. Our results imply that the
component charge for high velocitiéapper curve of Fig. number ofQ balls is not conserved in such systems and in
16). This increase, however, does not occur due to reducet@ct it may increase rapidly during multiple high velocity

right angle scatteringthis does not happen in this cagmit ~ collision processes.

opposite-charge

like-charge

due to reduced annihilation between the oppo§tedall A natural extension of our work is the numerical study of
charges which is a result of the reduced time of overlaghe formation ofQ balls during a(cosmological phase tran-
between the fast movin@ ball profiles. sition. Such studies based on numerical simulati@t521]
of a system though a temperature quench have been per-
V. CONCLUSION AND OUTLOOK formed extensively in the context of topological solitons

. o . [21,22 but not as extensively in the context of nontopologi-
We have studied the stability and the dynamicdialls o1 configurations like the ones considered in the present

in the context of a simple toy model. We have found that thegy,qy The numerical simulations performed here can be ex-
tended in a straightforward way to apply to the cas@dfall
formation during a quench or by the Affleck-Dine conden-
2In order to have clearly separat€balls in the charge compu- sate collaps€23,24]. The realization of this extension is cur-
tation, Fig. 16 shows results only for>0.3 andv>0.35 for the  rently in progress.
opposite and same-charge cases, respectively. Then th@ tvadis
clearly separate from each other after collision and drift away. For

smaller velocities, th€ balls collide and go through each other, but ACKNOWLEDGMENT

do not subsequently drift away. Instead the system remains bounded

and performs breather-type oscillations. We thank N. Papanicolaou for useful conversations.
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