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Dynamics of nontopological solitons:Q balls
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~Received 18 October 1999; published 15 March 2000!

We use numerical simulations and semianalytical methods to investigate the stability and the interactions of
nontopological stationaryQ ball solutions. In the context of a simple model we map the parameter sectors of
stability for a singleQ ball and verify the result using numerical simulations of time evolution. The system of
two interactingQ balls is also studied in one and two space dimensions. We find that the system generically
performs breather-type oscillations with frequency equal to the difference of the internalQ ball frequencies.
This result is shown to be consistent with the form of theQ ball interaction potential. Finally we perform
simulations ofQ ball scattering and show that the right angle scattering effect observed in topological soliton
scattering in two dimensions persists also in the case ofQ balls where no topologically conserved quantities are
present. For relativistic collision velocities theQ ball charge is split into a forward and a right angle scattering
component. As the collision velocity increases, the forward component gets amplified at the expense of the
right angle component.

PACS number~s!: 11.27.1d, 98.80.Cq
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I. INTRODUCTION

It is well known that realistic supersymmetric theories a
associated with a number of scalar fields with vario
charges. These theories and in particular the minimal su
symmetric standard model~MSSM! allow for baryonic@1,2#
and leptonic@1# nontopological solitons@3# known asQ balls
@4# made of squarks, sleptons, and Higgs scalars@5#. Such
objects could have interesting cosmological consequen
For example, they could be responsible for both the
baryon number@2# of the universe and its dark matter@6–8#.

The basic properties ofQ balls have been studied exte
sively in the literature using mainly analytical and semian
lytical methods@3#. These methods are particularly useful
understanding the basic properties ofQ balls such as exis
tence, small vibrations, and stability@9# in certain paramete
limits ~thick @10# or thin wall @4# approximation! but they
cannot be very illuminating in understanding more comp
cated issues such as scattering, interactions, or stability
arbitrary parameters. The goal of this paper is to use num
cal simulations ofQ ball evolution in one and two spatia
dimensions, along with semianalytical methods, in order
study the stability under small fluctuations, the interactio
and the scattering ofQ balls.

The structure of the paper is the following. In the ne
section we introduce a simple model and show the existe
of stableQ ball solutions in its context. By considering sma
fluctuations superposed on these solutions for various pa
eters we construct a map showing the stability sectors
parameter space. These sectors are then verified by perf
ing numerical simulations of time evolution for the solutio
considered. A virial theorem is also derived and its validity
demonstrated numerically. In Sec. III we consider a sys
of two interactingQ balls and show analytically that th
interaction potential is time dependent and periodic. T
type of interaction is verified by performing numerical sim
lations ofQ ball evolution which shows that the system pe
forms breather-type oscillations with the analytically pr
0556-2821/2000/61~8!/085006~11!/$15.00 61 0850
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dicted frequency. In Sec. IV we use boostedQ ball
configurations to perform scattering numerical experime
in 211 dimensions showing that for low collision velocitie
Q balls tend to scatter at right angles like their topologic
counterparts. For relativistic collision velocities we find th
the Q ball charge splits into a forward and a right ang
component. The forward component gets amplified as
velocity increases. Finally in Sec. V we conclude, summ
rize, and briefly discuss future extensions of this work.

II. STABILITY: VIRIAL THEOREM

Consider a complex scalar fieldF in 111 dimensions
whose dynamics is determined by the Lagrangian

L5
1

2
]mF* ]mF2U~F!, ~1!

where

U~F!5
1

2
m2uFu22

1

3
auFu31

1

4
buFu4. ~2!

Using a rescaling

F→ m2

a
F, ~3!

x→ x

m
, ~4!

the Lagrangian~1! gets simplified as follows:

L5
1

2
]mF* ]mF2

1

2
uFu21

1

3
uFu32

1

4
BuFu4, ~5!

where
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B[
bm2

a2
. ~6!

This leads to the field equation

F̈2F91F2uFuF1BuFu2F50. ~7!

Using the usualQ ball ansatz

F~x!5s~x!eivt, ~8!

with the conserved Noether charge

Q5
1

2i E2`

1`

dx~F* ] tF2F] tF* !5vE
2`

1`

dx s~x!2,

~9!

we obtain the field equation fors(x):

s91~v221!s1s22Bs350. ~10!

The requirement of finite energy and the asymptotics
tained from Eq.~10! imply the boundary conditions

s8~0!50, ~11!

s~`!50. ~12!

The combination of Eqs.~10! and ~11!,~12! are identical
to the dynamical equations describing the motion of a virt
particle that starts at rest at ‘‘time’’x50 from some position
s0 and moves tos50 at ‘‘time’’ x→0 under the influence
of the effective potential~Fig. 1!

Ve f f5
1

2
~v221!uFu21

1

3
uFu32

1

4
BuFu4 ~13!

without friction.
By inspection of Fig. 1 it becomes clear that in order

have a solution with the boundary conditions~11!,~12! the
following conditions must be satisfied:~i! Symmetry must be
broken by the effective potential~13! (me f f

2 [v221,0);
~ii ! there must be at least one intersection point ofVe f f(s)

FIG. 1. The effective potential for the classical particle motio
The sector arounduFu50 is plotted to emphasize the motion of th
bound virtual particle.
08500
-

l

with the Ve f f(uFu)50 axis.1 The first condition impliesv2

,1 while the second condition implies that the equati
Ve f f50 has at least one real solution different from 0. It
easy to show that the constraints imposed onv by these two
conditions can be written as

12
2

9B
,v2,1. ~14!

The energy density of the system~1! is

E5uḞu21uF8u21uFu22
2

3
uFu31

B

2
uFu4, ~15!

which with theQ ball ansatz~8! becomes

E5s821~11v2!s22
2

3
s31

B

2
s4. ~16!

Our main goal is to study numerically the dynamics a
the stability of single- and multi-Q-ball configurations in the
context of the simple model~1!. The first step in that direc-
tion is to solve Eq.~10! numerically~in a parameter region
whereQ ball solutions exist!, to find the single-Q-ball profile
and then evolve numerically the solution according to E
~7!, checking the total energy and charge conservation.

Figure 2 shows the numerically obtainedQ ball profile for
B54/9 and v250.51 using a fourth-order Runge-Kutt
scheme. The evolution of this configuration in time wh
used as initial condition in Eq.~7! with periodic boundary
conditions has been performed and found to correspond
stable configuration. The total energy and chargeQ were
conserved to within about 3% during the evolution.

Static scalar field configurations in space dimensio
higher than 2 are unstable towards collapse because bot
gradient and the potential terms of the energy may be sh
to decrease with a rescaling of the configuration correspo
ing to collapse@11#. On the other hand the stability of th
stationary ~time-dependent! Q ball configuration towards
collapse or expansion is a result of the different behavior
kinetic ~time-dependent! and potential terms towards spati

1This condition becomes stronger in 211 dimensions~see Sec.
IV ! where the effective virtual particle moves under the influence
friction.

. FIG. 2. The field magnitude profileuF(x,t)u of a Q ball solution
for B54/9, v250.51.
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DYNAMICS OF NONTOPOLOGICAL SOLITONS:Q BALLS PHYSICAL REVIEW D 61 085006
rescaling of the field configuration. This fact may be seen
expressing the energy as a sum of kinetic, gradient, and
tential terms:

E5I 11I 21I 3 , ~17!

where

I 15E
2`

1`

dx v2 s25
Q2

E dx s2

, ~18!

I 25E
2`

1`

dx s82, ~19!

I 35E
2`

1`

dxS s822
2

3
s31

B

2
s4D . ~20!

After a rescaling of the spatial coordinatex→ax the expres-
sion of the total energy becomes

Ea5
1

a
~ I 11I 2!1aI 3 . ~21!

For stability we demand that the energy be minimized
a51 which implies that

dEa

da U
a51

50⇒I 11I 25I 3 , ~22!

while the second derivative isd2Ea /da2ua5152(I 11I 2)
.0, implying an energy minimum and therefore stabili
Therefore the stability of theQ ball configuration towards
coordinate rescaling implies the validity of the virial theore
of Eq. ~22! connecting the potential energy with the gradie
energy and the kinetic energy~for a similar virial theorem
see Ref.@10#!. We have confirmed numerically the validit
of the virial theorem ~22! and the virial ratio (I 11I 2
2I 3)/(I 11I 21I 3) was found to be zero to within less tha
1% for various values ofv whereQ ball solutions exist and
for variousB in the range 2/9,B,1.

In order to study the stability of theQ ball configuration
under small fluctuations that conserve the chargeQ of Eq.
~9! we must consider variations of the energy obtained fr
the density~16! and expressed in terms ofQ:

E5E dxFs821s22
2

3
s31

B

2
s4G1

Q2

E dx s2

. ~23!

Since theQ ball is a stationary solution of the field equ
tions, the first variation of Eq.~23! with respect tos van-
ishes identically. The second variation may be written as

d2E5E dx dsÔds, ~24!

where
08500
y
o-

r

t

Ô52
d2

dx2 1~122s013Bs0
2!13v2, ~25!

wheres0 is the unperturbedQ ball solution. For stability we
required2E.0 for all fluctuations that conserve charge. Th
is equivalent to demanding that the Hermitian operatorÔ
have no negative eigenvalues. In order to find the param
region corresponding to stability~no negative eigenvalues!
we have solved the differential equation

Ôds50, ~26!

with initial conditions ds(0)51 and ds8(0)50 using a
fourth-order Runge-Kutta scheme. By varying the para
etersB, v we have identified the line in parameter spa
where the eigenvalue problem~26! has a ground state with
zero eigenvalue. This line clearly separates the param
sector of stability from the corresponding sector where E
~26! has negative eigenvalues and theQ ball is unstable.

Figure 3 shows part of the parameter space divided
three sectors: the sector where stableQ ball solutions exist,
the sector whereQ ball solutions exist but they are unstabl
and the sector where noQ ball solutions exist because th
condition ~14! is violated. The scale of the plot was chos
in order to magnify the sector of instability which woul
otherwise be too small to be seen.

We have tested and verified the validity of these sect
by simulating numerically the evolution of an isolatedQ ball
using Eq.~7! in the instability and in the stability sectors.

Figures 4 and 5 show examples of evolution of aQ ball in
the stability and instability sectors, respectively. Figure
shows the time evolution of the field amplitude for aQ ball
in the stability sector (v250.1, B52/9.0.222). Clearly
the Q ball remains stable and evolves undistorted in tim
even though the evolution lasts for ten internal frequen
periods @ tmax510(2p/v)#. Figure 5 shows the same nu
merical experiment for parameters in the instability sec
(v250.05, B52/9.0.222) where Eq.~26! has negative ei-
genvalues. The evolution lasted only three internal freque
periods@ tmax53(2p/v)# but the Q ball configuration got
rapidly distorted and decayed into plane waves, thus ver
ing the semianalytical prediction for instability.

III. INTERACTIONS: SCATTERING

We now consider multi-Q-ball configurations in order to
study their interactions and their scattering properties us
mainly numerical simulations of evolution. For a two-Q-ball

FIG. 3. Parameter sectors of existence and stability forQ ball
solutions.
6-3
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MINOS AXENIDES et al. PHYSICAL REVIEW D 61 085006
initial configuration we use the ansatz

F~x,t !5s1eiv1t1s2eiv2t, ~27!

where s1[s1(x1x0) and s2[s2(x2x0) with s1 (s2)
the field magnitude for a singleQ ball with v5v1 (v
5v2).

The interaction potential between the twoQ balls can be
obtained by subtracting the energy densit
e1(x,t), e2(x,t) of each noninteractingQ ball from the
energy density of the total interacting configuration. Afte
straightforward calculation we obtain the interaction ene
as

Eint5s1s2cos@~v12v2!t#F~s1 ,s2 ,v1 ,v2!

1s1
2 s2

2 cos2@~v12v2!t#1G~s1 ,s2!,

whereF andG are time-independent functions ofO(1) and
O(s1s2), respectively. It is easy to see from the field equ
tion ~10! that the fieldss6 decay exponentially at infinity
and therefore the term proportional toF dominates in the
interaction energy. We therefore expect that the two-Q-ball
system will perform oscillations with characteristic angu

FIG. 4. Evolution of aQ ball solution in the stability sector. The
evolution of the field magnitudeF(x,t) is plotted. The time evolu-
tion was performed in the range27.5,x,7.5 as shown in the
figure.

FIG. 5. Evolution of aQ ball solution in the instability sector
The evolution of the field magnitudeF(x,t) is plotted. The time
evolution was performed in the range27.5,x,7.5.
08500
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frequencyv12v2 while slowly drifting due to the effect of
the small constant interaction termG. Indeed this is what we
see in the numerical simulations of the time evolution of t
system.

We have considered the ansatz~27! with v15v int and
v252v int which impliess1(x)5s2(x) since the internal
angular frequencies of field rotation are opposite. The in
action energy of this system obtained numerically forv int
50.9 as described above by using the numerically calcula
s(x) is time dependent and is shown in Fig. 6.

This interaction energy, however, assumes that the fo
of the initial ansatz is retained during the time evolution
the system and should therefore be subject to test by num
cal simulation. As expected from the expression ofEint the
time dependence of the ansatz interaction is proportiona
cos(2vintt).

In order to test if the predicted time dependence of
interaction is realized in a realistic system we have p
formed a numerical simulation of the evolution of the ans
~27! by solving Eq.~7! using a leapfrog algorithm, periodi
boundary conditions, and initial conditions based on E
~27!. The parameter values wereB54/9, v int

2 50.9, and the
initial Q ball distance was 2x0510 in a lattice of 2d530
~these are dimensionless due to the rescaling of the Lagr
ian!. The evolution of the field magnitudeuF(x,t)u is shown
in Fig. 7 where the oscillations of the system can be s
clearly. The period and the angular frequency of these os
lations can be found by plotting the location of the fie

FIG. 6. The interaction energy of a pair ofQ balls calculated
using the expression ofEint with B54/9, v250.9 showing a be-
havior of the form2cos(2vt).

FIG. 7. The evolution of the field magnitude corresponding to
pair of Q balls calculated using the ansatz~27! with B54/9, v int

2

50.9. As time increases the line becomes thicker and the da
larger. The time range for a complete period of spatial oscillatio
is 0,t,3 which impliesvsp.2.1.2v int to within 10%.
6-4
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DYNAMICS OF NONTOPOLOGICAL SOLITONS:Q BALLS PHYSICAL REVIEW D 61 085006
maxima as a function of time. This is shown in Fig. 8 whe
we plot the locationxmax(t) of the maximum ofuF(x,t)u for
x.0 and 0,t,15. Clearly the location of theQ ball at x
.0 described byxmax(t) performs oscillations due to th
interactions with theQ ball at x,0. The period of these
oscillations can easily be seen from Fig. 8 to be appro
mately T.3.5 which is identical with the anticipated resu
T52p/2v int5p/0.9.3.5 based on the interaction potenti
Eint ; i.e., the spatial frequency ofQ ball oscillationvspaceis
double the internal frequencyv int of field rotation.

We have verified this consistency between the anal
cally predicted period of spatial oscillation and the one s
in the simulations for several values of internal rotation f
quencyv int .

The result is shown in Fig. 9 where we plot the observ
angular frequencyvspace of spatial Q ball oscillation vs
double the corresponding frequencyv int of internal field ro-
tation. The data points can be fitted well by a straight line
slope unity as anticipated by the above-described analy
considerations. During all the simulations the energy and
tal charge of the system were conserved to within about
The amplitude of the spatial oscillations was not found to
constant but the system slowly drifted to largerQ ball sepa-
rations with a rate dependent on the parameter values.
behavior is consistent with the form of the interaction pote
tial Eint which includes a subdominant time-independe
term.

In order to study the scattering ofQ balls we need to
consider boostedQ ball configurations, i.e.,Q balls moving
with a velocityv. Starting from aQ ball field configuration

FIG. 8. Spatial oscillations of the maximum of the field mag
tude due toQ ball interactions.

FIG. 9. The frequency of spatial oscillations ofQ ball position
vs the internal frequency of field rotation.
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Fv50(x,t)5s(x)eivt which does not move in space we ca
construct a configurationFv5v0

(x,t) that describes aQ ball

moving with velocityv0 by performing a Lorenz transform
to the spacetime variables. Letg51/(A12v0

2) ~we use units
where the velocity of lightc is unity! be the Lorenz factor
and let

x85g~x2v0t !, ~28!

t85g~ t2v0x! ~29!

be the boosted spacetime variables. The field configura
F(x8,t8) expressed in terms ofx, t describes aQ ball mov-
ing with velocityv0, i.e.,Fv5v0

(x,t)5F(x8,t8). The initial

ansatz for a two-Q-ball system prepared for a collision pro
cess may be written as

F~x,t !5Fv52v0
~x2x0 ,t !v1

1Fv5v0
~x1x0 ,t !v2

.
~30!

An evolved system of this type withv050.2 is shown in Fig.
10 where we have usedv15v25A0.51 andB54/9. As can
be seen in Fig. 10 theQ ball collision results in the formation
of a long-lived centralQ ball which subsequently decays t
Q balls similar to the original ones.

A more interesting evolution occurs in two-spac
dimensional systems which will be described in the next s
tion. There it will be seen that the effect of right angle solit
scattering which has been observed in topological solit
persists also in the case of the nontopologicalQ balls in a
generalized form.

IV. DYNAMICS IN TWO SPACE DIMENSIONS

The model~1! can be extended to 211 dimensions by
letting the indexm take the valuesm50,1,2. The details of
the formalism are similar to those given in Sec. II. That
the rescaled form of the Lagrangian is given by Eq.~5! while
the field equation reads

F̈2DF1F2uFuF1BuFu2F50, ~31!

whereD5]x
21]y

2 . We look for axially symmetric solutions
of Eq. ~31! and make theQ ball ansatz

FIG. 10. Collision ofQ balls with identical charges andv01

52v0250.2.
6-5
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F~r,t !5s~r!e6 ivt, ~32!

wherer5Ax21y2. The profiles(r) satisfies

s91
s8

r
1~v221!s1s22Bs350. ~33!

The boundary conditions which have to be met are given
Eqs.~11! and ~12!. Equation~33! is expected to have local
ized solutions by arguments which are presented in@4# and
are similar to those used for the 1D model of Sec. II.

The search for the solutions is here not straightforward
for the 1D model~Figs. 1, 2!. In the present two-dimensiona
case, solutions are found by a numerical shooting meth
Figure 11 shows the profile of the calculatedQ balls for B
54/9 and for various values of the frequencyv. We repre-
sent theQ ball profile through the charge densityq5v s2

@cf. Eq. ~9!#.
The virial theorem mentioned in Sec. II has, for our tw

dimensional theory, the form

I 35I 1 , ~34!

where the symbols are defined as the two-dimensional
logues of Eqs.~18! and ~20!. The virial relation is used to
check the precision of our numerical calculations. Inde
the solutions that we find by the shooting method satisfy
above virial relation to very good precision, better than 1

Finally, we note that our shooting method is unable
find the Q ball profile for the whole frequency range~14!.
Numerical errors render the method inapplicable near
lower v bound. For instance, forB52/9 we are able to find
the solutions with 0.035,v2,1 and for B54/9 we find
those in the frequency range 0.52,v2,1. The difficulties
with the numerics should be anticipated. Their origin can
traced to the theoretical arguments of@4# with respect to the
existence ofQ balls in dimensions higher than 1. It is act
ally the friction term in Eq.~33! which is responsible for the
numerical difficulties.

FIG. 11. The numerically calculated profile of theQ ball solu-
tions for B54/9 and various frequency values. In the vertical a
we plot the charge densityq5vs2. According to Eq.~14!, Q balls
exist for 0.5,v2,1 or 0.71&v,1.
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We further note that a steadily movingQ ball can be
found by applying a Lorenz boost to a static one as discus
in the previous section. The calculatedQ balls will be used
in the following in numerical simulations on a two
dimensional lattice. We shall first study their stability. Th
we shall study interactions between twoQ balls; in particular
we shall perform simulations of scattering.

The numerical mesh we use is typically 3003300 and the
lattice spacing is 0.3. Such a numerical mesh is appropr
to accommodate the structures given in Fig. 11 and provi
good resolution. The time evolution is performed by
fourth-order Runge-Kutta method.

First, we put a singleQ ball at the center of our numerica
mesh and simulate its time evolution in order to test its s
bility. We use 2/9,B,1 and test all the values ofv for
which we are able to find theQ ball profile by our shooting
method. We find thatQ balls are stable everywhere in th
B-v plane and they travel undistorted with the given co
stant velocity.

In the next set of simulations we discuss the problem
the interaction betweenQ balls. Specifically, we focus on
simulations of scattering between twoQ balls. Such simula-
tions have been performed and have proved to be fruitful
topological solitons. We shall perform all our subseque
numerical simulations using the valuesB54/9, v560.75.

We consider a 2D generalization of the ansatz~30! which
represents twoQ balls set in a head-on collision course. W
usev15v250.75 and a small velocity, namely,v050.2. Q
balls are represented through their charge density:

q5
1

2i
~F* ] tF2F] tF* !. ~35!

In Fig. 12 contour plots are given for the charge density
three characteristic snapshots of this first numerical sim
tion. The first entry of the figure gives the initial ansa
where eachQ ball is spherically symmetric. The twoQ balls
are initially at a distance of 20 units apart so that there is
overlap and interaction between them. Subsequently t
collide at the origin~middle entry! and scatter at right angle
~lower entry!.

The scattering scenario produced by the computer si
lation is quite interesting. Indeed, this dynamical behav
has been found to a robust feature in a variety of model
two space dimensions which have topological soliton so
tions @12,13#. However, in our case there is no topologic
invariant associated with theQ balls, so we need to discus
the present situation.

The crucial observation is that the underlying dynam
which induces this type of scattering can be attributed so
to the Hamiltonian structure of the model@14#. It is related to
the conservation laws of our model and in particular to line
momentum conservation@15#. We have followed the linear
momentum density plot along the lines described in@15# and
we have found a behavior similar to that of topological so
tons at the collision time. As a conclusion, despite that in
case there is no topological invariant associated with theQ
balls, the dynamics related to the right angle scattering
havior is the same as that for their topological counterpa
6-6
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We should therefore expect such a dynamical behavio
occur generically. We shall study in this section the valid
of the above remarks.

Following the simulation for later times, the twoQ balls
are seen to eventually stop along they axis. They then at-
tract, collide again, and subsequently scatter and reem
on thex axis. This scenario goes on and gives an oscillat
system with successive right angle scattering. We shall

FIG. 12. Head-on collision of twoQ balls with the same charge
Contour plots of the charge density are given. Three character
snapshots are shown at times of the initial ansatz~upper entry, time
t50), at collision time~middle entry,t541.9), and well after col-
lision ~lower entry,t555.9). Parameter values:B54/9, v50.75,
initial velocity of eachQ ball v050.2.
08500
to

ge
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ot

pursue further here this oscillating behavior.
The next simulation we present has been prepared

way similar to the previous one, but now the initial veloci
of theQ balls is set to a higher valuev050.4. The results are
shown in Fig. 13. At the initial stages, the simulation do
not differ from our first simulation. At collision time~middle
entry! a centralQ ball is formed. However, the subseque
evolution is considerably different. In the lower entry of th
figure we have twoQ balls which have evolved from a righ

tic
FIG. 13. Head-on collision of twoQ balls with the same charge

Contour plots of the charge density are given. Three character
snapshots are shown at timest50 ~upper entry!, t519.6 ~middle
entry!, and t569.8 ~lower entry!. Initial velocity of eachQ ball
v050.4. Rest of parameters as in Fig. 12.
6-7
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MINOS AXENIDES et al. PHYSICAL REVIEW D 61 085006
angle scattering process. They are located on they axis and
are almost static. In addition to that, two otherQ balls are
continuing their travel along thex axis and they are drifting
away from each other. Their drift velocity is approximate
0.24.

It would be interesting to have some insight into t
above-described process. The basic remark is that the s
metry that has led to the right angle scattering in the fi
~slow Q balls! case leads here again to the same result.
the other hand, the high kinetic energy of the initialQ balls
allows for more complicated scenarios such as the forma
of newQ balls. That is, some amount of energy that does
follow the right angle scenario reorganizes to formQ balls
on thex axis. In the case of topological soliton interaction
arguments related to topology would usually preclude s
scenarios. These arguments do not apply in the caseQ
balls; thus we are led to a novel result. An interesting obs
vation is that the four solitons which are created after
collision seem to beQ balls with a frequency different tha
that of the initial ones. This can be seen by comparing
last entry of Fig. 13 with the profiles ofQ balls of various
frequencies, obtained by our numerical shooting method

We have repeated the above scattering numerical exp
ment with Q balls of higher initial velocityv050.8. The
results of the simulation are given in Fig. 14. A new type
collision different than in the two previous cases arises. T
Q balls actually collide to form a centralQ ball at the origin
~middle entry of the figure!. However, after the collision
~lower entry of the figure! two Q balls reemerge traveling
along thex axis and drifting away from each other. The
drift velocity after collision is approximately 0.75. No righ
angle scattering is present in this case, so theQ balls appear
to be almost noninteracting. This result is dramatically d
ferent from what we see in the case of the slowQ balls of
Fig. 12 where pure right angle scattering occurs. It
sembles, however, similar results discussed in the litera
for scattering of topological solitons moving with very hig
relativistic velocities@16#.

Notice also that Ward’s chiral model, which is integrab
in 211 dimensions, presents in some respects similar
namical behavior. Specifically, it has solutions which cor
spond to the right angle scattering@13# and others which
represent noninteracting solitons@17# although the velocity
of the solitons does not seem to play any role there. On
other hand, the type of scattering shown in Fig. 13 seem
be specific to nontopological solitons and, to our knowled
it has not been observed in other two-dimensional mode

The right angle scattering of solitons has also been
served in a three-dimensional Yang-Mills-Higgs theory@18#.
The problem has been approached within the moduli sp
that is, the space of the multimonopole solutions in
Bogomonly limit. It has been stressed that the scattering
havior of the monopoles can be understood when they
considered almost static during the interaction. This requ
that the velocity of the interacting monopoles be small. Su
is certainly the case with the first of our simulations he
shown in Fig 12.

Additional insight into the dynamics can be gained
looking at collisions betweenQ balls of opposite charge
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Such are twoQ balls with the same profile and opposite fie
precession frequency@cf. Eq. ~32!#. Notice that the argu-
ments of@15# cannot be applied in this case, at least not in
straightforward manner. In particular, these arguments in
cate that we may not expect that the twoinitial Q balls can
reemerge after collision, traveling at a direction perpendi
lar to the initial one. Rather, we would have to think of
combination of parts of the initialQ balls which would form
the final solution after collision. Such a combination, invol

FIG. 14. Head-on collision of twoQ balls with the same charge
Contour plots of the charge density are given. Three character
snapshots are shown at timest50 ~upper entry!, t512.6 ~middle
entry!, and t529.3 ~lower entry!. Initial velocity of eachQ ball
v050.8. Rest of parameters as in Fig. 12.
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DYNAMICS OF NONTOPOLOGICAL SOLITONS:Q BALLS PHYSICAL REVIEW D 61 085006
ing parts ofQ balls with opposite charge, does not seem
form any solution of the present theory; therefore we do
expect a right angle scattering behavior in the current c
We have to resort to numerical simulations in order to de
mine the actual behavior of the system.

We now use an initial ansatz appropriately chosen to
count for opposite-chargeQ ball collision. This ansatz is
shown in the upper entry of Fig. 15 through contour plots
the charge density. The positive-chargeQ ball is located on
the left of the figure and the negative-charge one on the ri
We apply to each of the initialQ balls a Lorenz boost with a
moderate velocityv050.4. The middle entry of the figure
shows that, quite interestingly, at the time of collision
mixed state is formed between the twoQ balls. After that,
the twoQ balls separate again; they appear to pass thro
each other and drift apart. The finalQ balls are not identica
to the initial ones. The chargeQ of each of them is approxi
mately half of that of the initial state and it corresponds to
frequencyv;60.6. They have also decelerated and th
mean velocity is approximately equal to 0.25.

In Sec. II, we have found an interaction between a pai
oppositely chargedQ balls which introduces an oscillatio
frequency to the system equal to twice theQ ball internal
frequency. This interaction is present here and it manife
itself in oscillations of the magnitude of the field values a
also in oscillations of the position of theQ ball centers. The
oscillations appear when theQ balls are coming close to
collide. They also persist after the collision even when theQ
balls are well separated~i.e., at the instant of the last entry o
Fig. 15! and they do not show any tendency to fade out.

Computer plots of the distribution of the energy density
the system show that some small amount of energy is d
pated at right angles after collision. The underlying mec
nism for this phenomenon is presumably similar to that le
ing to right angle scattering in the first of our simulations
this series. Similar behavior has been observed for two
liding topological solitons with opposite topological char
@16#. In this case, the solitons annihilate and the energy
dissipated at right angles.

The scattering behavior described by the simulations
this section can be viewed as a generalization of the co
sponding behavior of topological solitons. We observe
two extreme cases which have also been observed in
topological case~pure right angle scattering at low velocitie
and pure forward scattering at very high velocities! but we
also observe an intermediate case of aQ ball split to a for-
ward and a right angle scattering component at intermed
velocities. The forward scattering component gets amplifi
at high collision velocities. This amplification occurs at t
expense of the right angle scattering component.

The rich behavior ofQ balls in the scattering simulation
calls for an overview of the different phases.

~i! Low velocity scattering ofQ balls with the same
charge leads to initial right angle scattering and a bou
system that performs breather-type oscillations.

~ii ! Intermediate velocity scattering (0.3,v,0.7) leads
to a combination of forward and right angle scattering a
the forward scatteredQ balls drift away from each other an
escape to infinity.
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~iii ! High velocity scattering (v.0.7) leads to pure for-
ward scattering. The forward scatteredQ balls drift away
from each other and escape to infinity.

To clarify the transition from pure right angle scatterin
to pure forward scattering in the case of identically charg
nontopological solitons we plot in Fig. 16 the charge of ea
of the forward-scatteredQ balls as a fraction of the initialQ

FIG. 15. Head-on collision of twoQ balls with opposite charge
Contour plots of the charge density are given. Solid lines repre
positive values and dash-dotted lines negative values. Contour
els: 60.2,60.4,60.8,61.2,61.6. Three characteristic snapsho
are shown at timest50 ~upper entry!, t528 ~middle entry!, and t
561.4~lower entry!. Initial velocity of eachQ ball v050.4. Rest of
parameters as in Fig. 12.
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MINOS AXENIDES et al. PHYSICAL REVIEW D 61 085006
ball charge versus the initial velocity.2 Since the total charge
is conserved, the rest of the charge is scattered at r
angles. A small amount is dissipated throughout our latti

The charge of the outgoingQ balls is computed as fol
lows: We let theQ balls travel 30 space units on thex axis,
after the collision, and we integrate the charge density wit
a disk of radius 15 space units around eachQ ball center.
This result is considered to be the charge of the finalQ balls.

In the case of the scattering of oppositely chargedQ balls
we have also observed an increase of the forward-scatt
component charge for high velocities~upper curve of Fig.
16!. This increase, however, does not occur due to redu
right angle scattering~this does not happen in this case! but
due to reduced annihilation between the oppositeQ ball
charges which is a result of the reduced time of over
between the fast movingQ ball profiles.

V. CONCLUSION AND OUTLOOK

We have studied the stability and the dynamics ofQ balls
in the context of a simple toy model. We have found that

2In order to have clearly separatedQ balls in the charge compu
tation, Fig. 16 shows results only forv.0.3 andv.0.35 for the
opposite and same-charge cases, respectively. Then the twoQ balls
clearly separate from each other after collision and drift away.
smaller velocities, theQ balls collide and go through each other, b
do not subsequently drift away. Instead the system remains bou
and performs breather-type oscillations.

FIG. 16. The fractional charge in forward scattering ofQ balls
as a function of the rest frameQ ball velocity. The forward com-
ponent is clearly amplified at large velocities. Points in the fig
are plotted every 0.5 velocity units. Then the points are conne
by straight lines.
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Q ball instability sector is a very small sector in parame
space. The validity of a virial theorem in the stability sect
has also been verified and we have shown that systemsQ
ball pairs tend to perform breather-type oscillations for lo
time periods compared to the period of the internal fie
rotation. Finally we have studied numerically the scatter
of Q ball pairs and found thatQ balls in two space dimen
sions with the same charge tend to scatter at right angles
subsequently perform oscillations with repeated collisio
through right angle scattering. At relativistic collision veloc
ties a significant forward scattering component has also b
found which gets amplified as the collision velocity in
creases. This effect is consistent with numerical experime
involving topological solitons where the charge is discretiz
due to topology. In that case complete forward scattering
found for v.vcrit.0.9 @16#. In the nontopological case th
smooth interpolation between the above two regimes is
lowed because the charge is not discretized.

These results are interesting not only in the context of
general study of the solitonic dynamical properties but a
in the context of realistic physical systems. For example i
cosmological setup where dark matter comes from sup
symmetric~SUSY! Q balls, breather-type largeQ ball sys-
tems could lead to detectable signatures in the gravitatio
wave spectrum either by direct emission or by exciting
bration modes of the neutron stars where they can be trap
@19#. The detectable characteristics of such breather-t
cosmological systems are currently under investigation. A
other interesting implication is related to the statistical m
chanics ofQ ball systems@6#. Our results imply that the
number ofQ balls is not conserved in such systems and
fact it may increase rapidly during multiple high veloci
collision processes.

A natural extension of our work is the numerical study
the formation ofQ balls during a~cosmological! phase tran-
sition. Such studies based on numerical simulations@20,21#
of a system though a temperature quench have been
formed extensively in the context of topological solito
@21,22# but not as extensively in the context of nontopolog
cal configurations like the ones considered in the pres
study. The numerical simulations performed here can be
tended in a straightforward way to apply to the case ofQ ball
formation during a quench or by the Affleck-Dine conde
sate collapse@23,24#. The realization of this extension is cu
rently in progress.
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