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We study the central extensions of thé=1 superalgebras relevant to the soliton solutions with the axial
geometry—strings, wall junctions, etc. A general expression valid in any four-dimensional gauge theory is
obtained. We prove that the only gauge theory admitting BPS stringgeak couplingis supersymmetric
electrodynamics with the Fayet-lliopoulos term. The problem of the ambiguity oflf2el/2 central charge
in the generalized Wess-Zumino models and gauge theories with matter is addressed and solved. A possibility
of existence of the BPS strings at strong coupling\is 2 theories is discussed. A representation of different
strings within the brane picture is presented.

PACS numbsdis): 11.27+d

I. INTRODUCTION given by the value of the central charge.
Another physically interesting example where the
1/2,1/2 charges play a role is the wall junction. The fact
at generalized Wess-Zumii@&W2Z) models with a global
symmetry of the 1) or Zy type may contain BPS wall
junctions was noted in Ref10]. Interest in the wall junc-
tions preserving one-quarter of the original supersymmetry
was revived recently after the publication[dfl,12], discuss-
ing such junctions in some GWZ models.

In this work we calculate the central extension of ke
=1 superalgebra of th& , ; type for a generic gauge theory,
with or without matter. As will be seen, a spatial integral of
a full spatial derivative of the appropriate structure does in-
deed emerge. It will be explained how the mass of the satu-
general theory of the central chargeshNf 1 superalgebras :g[r(]adoioilrt](;na\’/(\;;thaigla(ll?; (])Jmaet(r:)ér(]jt(ragler;?}zr(;résthe':(c:)?n:g;na

was re\_/lsned recentl{_,ﬁ]._ . . . solitons that are pure BPS stringise. they possess axial
In this paper we will discuss, in various theories, the cen-

. . . geometryand their energy density is completely localized
tral extensions ofV=1 superalgebras with the central charge faar some axjsonly the(1/2,1/2 charge can contribute. We

Zqj lying in the representatiof1/2,1/3 of the Lorentz  foynqd that in the Wess-Zumino models, as well as in the
group(to be referred to as th€l/2,1/2 charge$ Such cen-  gauge theories with matter, the expression for this central
tral charges are related to BPS objects with axial geometryghargeper secontains certain terms with coefficients which
in particular, saturated strings. The fact that they exist is veryre ambiguous. Of critical importance is the ambiguity in the
well known in the context of supersymmetric QEBQED  coefficient of the squark term. Using this ambiguity, we will
with the Fayet-lliopoulos term; see Refg,8] and especially prove that inweak couplingthe only A’=1 gauge model
Ref. [9], specifically devoted to this issue. In R¢®] it is  admitting the BPS strings is SQED with the Fayet-lliopoulos
shown, in particular, that if the spontaneous breaking@U term. We then present some speculative ideas as to the pos-
is due to the superpotentighe so-called= mode), then the  sibility of the BPS strings in the non-Abelian models in
Abrikosov strings cannot be saturated. At the same time, iftrong coupling For the objects of type of the wall junctions
the spontaneous breaking of(1) is due to the Fayet- the ambiguity mentioned above conspires with a related am-
lliopoulos term(the so-calledd model, with the vanishing biguity in the (1,0) central charge, so that the resulting
superpotentig) then the Abrikosov string is saturated, one-
half of supersymmetry is conserved, and the string tension is———

The statements above refer A6=1 theories. In certainV=2

extensions of QED one finds BPS saturated strings without the
*Permanent address. Fayet-lliopoulos term. See Secs. IV and IX C.

In the last several years much has been said about tr}
domain walls in various supersymmetric field theories in
four dimensions[1]. The existence of the Bogomol'nyi-
Prasad-SommerfielBPS saturated domain walls is in one-
to-one correspondence with the central extensiooVef1
superalgebra, with the central chaigg; lying in the repre-
sentation{0,1} or {1,0} of the Lorentz grougfor brevity we
will refer to such charges as tt&,0 charge$ In the non-
Abelian gauge theories th&,0) central charge emerges as a
guantum anomaly in the superalgelp?a-4]. The possibility
of the existence of the tensorial central charges\is 1
superalgebras was noted in the brane context in[BgfThe
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1
TABLE |. General structure of the supercharge anticommutaﬁE{SQQ} .

Q; Q, Q Q2
M
Ql r _§akdxk 0 A 0
M

Q2 0 T +da,dx, B
— — M
Q; A 0 T~ $audx 0
— — M
Q2 0 B 0 r +95akdxk

energy of the wall junction configuration is unambiguous. where M is the total mass of the string. For the saturated
strings

Il. GENERALITIES M=TL: (5)

Let Qa,ad be supercharges of theV=1 four- . . o .
dimensional field theory under consideration. The central-€- the mass of the string coincides with the central charge

charge relevant to stringg&,,,, , appears in the anticommuta- appegring_ i.n the_\/zl supgralgebrgl). The parameteT is
tor 9 9Baa. PP then identified with the string tension. If the state of the BPS

string is denotedstr), then

{Qa,Qut=2P,,+2Z,, Q4sth=Q;|sth=0. (6)

EZ[ Pu+f dsxsouvxavax](ff”)aaa (D) In other wordsQ; andQ; annihilate the string—this half of
supersymmetry is conserved in the saturated string back-

where P, is the momentum operator, arad’ is an axial ground. The action 0Q, andQ; on |stry produces the fer-
vector specific to the theory under consideration. It must benion zero modes.
built of dynamical fields of the theory. In other words, the  Any four-dimensional\/=1 theory can be dimensionally
(1/2,1/2 central charge is reduced to two dimensions, where it beconiés 2 theory.

If the latter has topologically stable instantons, elevating the

B 3 vox theory back to four dimensions gives us strings. Classical
Z,= | dXegy, 07ak. 2) descriptions are totally equivalent. Distinctions occur at the
level of quantum corrections, which are to be treated differ-
The corresponding tensor current ently in two- and four-dimensional theories. The topological
charge of the two-dimensional theory is related to the central
jpu=¢ ad’ax charge of the centrally extended algelifa. This simple

pUYVX . . .
observation allows one to use a wealth of information re-

is obviously conserved nondynamically, irrespective of thegarding various two-dimensional models in analysis of satu-

concrete form of the axial curreat'. rated strings in four dimensions at the classical level.
Assume that the string is aligned along the vectp(it is For the solitons of the wall junction type, which preserve

normalized by the condition,n“=—1), andL is the length @ quarter of the original supersymmetiyiore generally, for

of the string  is assumed to tend to infinity Then the the BPS solitons with the axial geomelirit is necessary to

second term in Eq(1) can be always represented as consider, simultaneously, thH&,0) charge, which appears in
the commutator

Z.=1|d d'aX=TLn,, 3 - .
“ f XEguyyd & Ny ) {QQQB}Z—‘”(O’)aﬁj *x V3, @

whereT is a parameter of dimension mass squared. The di- _
rection ofn,, can always be chosen in such a way as to makavhereZ, is a scalar operator built of the dynamical fields of
T in Eq. (2) positive. We will always assume>0. the theory, and
In the rest frame of the string lying along taelirection .
(.e., n={0,0,1 or n,={0,0,0~1}) the superalgebral) (0)ap=1—T73,1,T1}ap- (8)

takes the form _ _
For the BPS strings thél,0) charge must vanish; how-

- M—TL 0 ever, for the wall junctions and other axial geometry BPS
{Qa,Qé}IZ[ 0 MATL| (4)  solitons both thg1,0) and (1/2,1/2 charges do not vanish
+ aa (see Sec. Il In this case the general structure of the super-
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charge anticommutators is as in Table | where the integrals x
above are taken in the plane perpendicular to the axis of the
soliton(i.e., in thex,y plane, along a closed path of radifs

(it is assumed thaR— ), dn, is the element of the length

of the curve(see Fig. 1 (dn is perpendicular talx),

A=—2if d?X[(— 9151+ 32S,) +i(9:S,+ 9,S,) ], y

B=—2i f A2X[(0,S1+ 3,S,) +i(— 1S+ 3.Sy) ],

. FIG. 1. The integration contour in they plane. The soliton axis
and, finally, (the solid circle lies perpendicular to this plane.

{S1,S;}={ReX,ImX}, 9

geometry, and derive thél/2,1/2 central charge in these
models. The full expression for tH&,0) central charge was
found previously[4]. The Lagrangian has the form

so that

jgakdxkz f d?x(dgay— dyay)

(13

1 -
KZZEI deGdZHCDiq)i-i-

1 2

=J X[ —id(a +iay) +idggax—iay)],

(10)
where®; is the set of the chiral fields, and the superpotential

) — W is an analytic function of the field®;. The original
% d”ksk:f dX[ 9,2+ 521, (1) (renormalizable Wess-Zumino model implies that is a
cubic polynomial in®; . We shall not limit ourselves to this
and the complex coordinatés? are introduced below in Eq. @ssumption, keeping in mind that GWZ models with more
(15). contrived superpotentials can appear as low-energy limits of
It is helpful to adopt a phase conventiéin be referred to  Some renormalizable microscopic field theories. The case of

as astandard convention Namely, the phases @fand the ~more general Kaler potential will be considered later.
superpotential will be adjusted in such a way tfiathere is The equations of the BPS saturation for the solitons with
no phase in Eq(14); (ii) the phase of the superpotential the axial geometry in this model were first deri¢éd Ref.

on the solution increases in the anti-clockwise directi@n; ~ [4]; they have the form

one of the walls in the junction runs along tkexis in the

positive direction. Then it is not difficult to show that d; B 10w (14)
a2 (ga '
% dnijskJ:O,
where
B/(—2i) is real and positive, and
_ g 1/a 9
§=X+Iy, é’_gzi 5_IW . (15)

B=-2i ﬁg dnS.

. ) . The soliton axis is assumed to lie along thaxis, while the
The BPS bound on the soliton mass is obtained from thgjiton profile depends or,y. Note that it isnot assumed

requirement of vanishing of the determinant of the abovenat the solution of Eq(14) is analytic in¢ (in fact, one can

matrix, which implies prove that it must depend on bothand ¢ in the general

M case. A constant phase, which could have appeared on the
—=- fﬁ aydx,+2 fﬁ dn, S . (120  right-hand side of Eq(14), is absorbed irl.

L Given the solution of Eq(14), one gets two constraints

For saturated objects the master equatib?) expresses the g;;i:nrzltr;)l/ng the parameter of the resid(@nservejisuper-

tensions in terms of two contour integrals over a large circle:

I1l. GENERALIZED WESS-ZUMINO MODELS
2See Sec. IlID of Ref[4] entitled, rather awkwardly, “BPS-

In this section, as a warmup exercise, we will discuss theaturated strings.” In fact, the authors meant BPS solitons with the
GW?Z models which give rise to the BPS solitons with axial axial geometry.
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(1+73)e=0, %(1—7'3)5,‘:;, (16 __—%2 (21)

where the spinorial indices of,& are suppressetboth are One can check thainly the combinedcontribution of the
assumed to be the upper indigeand we follow the nota- central charges above correctly reproduces the mass of the
tions and conventions collected [F"] The first constraint BPS solitons with the axial geometry, e.g. the wall ]uncuons

implies thate has only the lower component, which reduces|ndeed, Eq(12) implies that in the model at harid,
the number of supersymmetries from 4 to 2; the second con-

straint further reduces the number of the residual supersym- M 21 —
metries to 1. f x| i+ |—— 7% ~3%N(99P)
In order to calculate thé&l,0) and(1/2,1/2 central charges
one needs the expression for the supercharges. In fact, since 2 ) - —
we focus on full derivatives, we need to know the supercur- =—2|1- 3 X[ 9P =9 pI]
rent J4=(1/2)(0)?PJ,,pj, rather than the superchargesr _
se The corresponding expression is well knovsee, e.g. f 2 4% —_}—07_
Ref. [4]): 2] o W 3¢a¢ R ¢a¢

— — 22
3ups=2V2S, [(3up®) 5 €saF U] 22

On the other hand, for the BPS-saturated solution one can
write

V2 - _ _
=3 2 [0ap(p)+ I ) — 3€gad (1 )].

(17) 0=f dx
o

+2 f PX[ 9, pIrd—d, pard]—2 f X[ 9 W+ T W]

oW Y
2&§¢—ﬁ Zﬂz(ﬁ— %
w 2}

dp

The supercharg®,, is defined as
x| b+ | =

1
fd?’xJ0 =2 (a#)BﬁJaﬁﬁ (18)

The term in the second line in E(L7) is conserved by itself.
Moreover, in the supercharge it is represented as an integral (23
over the full derivative. Below we will discuss the impact of
deleting this term. We will keep it, however, for the time or
being, since we want to use the supercurrent which enters |n
one supermultiplet with the geometiiecurrent[13] (some- o
times called theR, curren). The R, current is conserved in L —Zf X006 54¢f¢]+zf X[+ IV,
conformal theories. (24
It is not difficult to find the full derivative terms in

{Qa@,} by computing the canonic commutators of the fields
at the tree levelthe (1/2,1/2 central charge appears already
at the tree levél The task is facilitated if one observes that

in order to get thg1/2,1/2 central charge it is sufficient to . . . .
g d 2 9 +(4/3) in the first case and 2 in the seconfl Upon inspec-

keep onl'y t'erms of m'xe‘?' symmeFry. '{rQ_&‘]aﬁﬁ}’ namely,  tion one sees that E@22) has a different expression for the
symmetric Ina,ﬁ and antisymmetric |m,ﬂ or vice versa (1,0) central Charge too. The difference is
The result of this calculation reduces to Eg) with

At first sight it might seem that Eq$22) and (24) con-
tradict each other, since the axial current contribution to the
soliton mass in these two expressidasrresponding to the
(1/2,1/2 central chargkhas different coefficientgcf. —2

1
af‘zzaf‘w) - gaﬁzﬁ) ; (19 3The term— (1/3)3,d, (b $) is irrelevant both for strings and wall
junctions, since it vanishes in both cases. It contributes, however, in

wherea*. anda“.. are the fermion and boson axial Currents,the energy of the axial geometry solitons of the type discussed in
respectm;Iy' (4) 4]. This term occurs in passing from the canonic energy-

momentum tensor

aly=—2 yoty, aly=—i> ¢i"¢. (20 02NN 5 b, b+ 3,3, b+ fermions-g,,, L

. . to the one which is traceless in the conformal limit:
The expression for th€l,0) central charge in the GWZ

model found previously4] at the tree level takes the form of raceless. jcanonic, L wr _
Eq. (7) with Ou =00 5(0u00" 00— 9,0,) -
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The solution of the BPS saturation equation for an isolated
wall exists; it was discussed [14]. (Here and belovN will

be assumed large, and only leading term8liwill be kept)
The tension of the minimal wall connecting the neighboring
vacua is

T=2|AW|=4nN. (29)

Consider the BPS wall junctions of the type depicted in Fig.
2. Assuming that there is a solution of E44), to the lead-
ing order inN one can write(at | {|— )

FIG. 2. The domain wall junction in the theory witty sym- b= Ne*™  «(0)=0, a(27)=2m, (30)
metry. The “hub” is denoted by the closed circle.
which entails, in turn,

Zfdz RGN ST N2 o
3] X Sgg |t b= | fﬁ a = —[ (27) — a(0)]= “ZN2. (31)
Ix|=R—c 3 3
For the BPS saturated solitons satisfying Bd) it is easy to We also observe that
show that
2( , oW —oW 2 3€dnkwk=2N2Rj dycoga—7y)=47NR,
_§ d=x 0; (15% + 7 ¢£
4 L {wq,wot={ReW,Im W}, (32
— 2 Yy Y 2y a9 1
- §f X[ P p— 0, pd ]~ §j d"x3%00 g ¢. which is exactly the mass ™ isolated walls inside the con-
tour. Furthermore,
(25)
4
This relation immediately implies the coincidence of the 2 %dnksk=4wN2R—§N2. (33

soliton masses ensuing from E§82) and(24), respectively.
In fact, the superficial difference between them is due t
the ambiguity in the choice of supercurrditie terms with
the full derivatives in Eq(17)] and the corresponding ambi-
guity in the energy-momentum tensor. Equati@?) is de-
rived on the basis of the supercurrent and the energy- — =47N?R—27N? (34
momentum tensor with the propertie‘éﬂJaﬁgzo, ¢,=0n L
the conformal limit. Passing to the minimal supercurrent an(gsfee alsd15]). The first term can be interpreted as the mass

the C‘?“?O”‘C energy—mom_entum tensor one drops all term the “spokes” joined at the origin, while the second as that
containing the factor 1/3 in Eq22) and recovers Eq24). Pf the “hub.”

The mass of the soliton stays intact due to a reshuffling o Let us remark that the string§/hub” ) contribution to the

contrlpllljtlons du;z t(Qll_Z.l/IZ and (1,0).ghar?es.. total mass equals twice the area of the contour onhe
Tjoll ustrate tde. pgnt ft us rﬁ:o}:m er, for mstr_;mlci,a plane covered by the solution. Since we consider the junction

model suggested in Refi14], with the superpotentia with N “minimal” domain walls connecting the neighboring

%rhe total mass of the junction configuration comes out the
same from both expressions, E¢®2) and (24),

N [ @\N+1 vacua, the contour is closed. The closeness is nothing but the
W:N[q)__ _) ] (26)  equilibrium condition at the junction line.
N+11N Summarizing, we observe an ambiguity in t{2,1/2

] ] ) ] central charge. This ambiguity is due to the fact that both the
where ® is a chiral superfield. The mode! obviously pos- supercurrent and the energy-momentum tensor are not
sesses &y symmetry, and the vacuum manifold correspondspiquely determined. Both admit certain full derivative terms
to N points, which are conserved by themselves and, therefore, do not

affect the supercharges and the energy-momentum four-
. k=012...N-1, 27) vector. They do affect the _expressipns for the cgntral

charges, however. For the soliton solutions of the wall junc-

tion type the ambiguity in th¢1/2,1/2 central charge com-

N 2mik
¢ =N ex N

while the vacuum value of the superpotential is bines with another ambiguity, in th@,0) central charge, to
o ik produce an unambiguous expression for the soliton mass. As
Y ml we will see shortly, the same ambiguisgnd a similar con-
W) =N ex;{ » N—oe. (28) spiracy takes place in the gauge theories with matter.
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Practically, it is more convenient to work with minimal Where¢ andy are the lowest components of the superfields
supercurrentgand the canonic energy-momentum tepisor SandT, respectively, with the electric chargesl, e.g.,
Then, one omits the second line in Ed7). The expression

for a* in the (1/2,1/2 central charge then becomes Du¢=0,9=1Aud, [Dy,Dy]dp==iF,,¢. (40
1 1 o Without loss of generality we can assume that0.
a“zzaﬁ,,)— Ea%, aé‘d,):—iE P+, (35 For static field configurations, assuming in addition that

all fields depend only or andy andAy=A;=0, one gets an

I energy functional in the form
while 2 in the (1,0 central charge becomes %y

_ 1 e?
=W 5=f dXdy[—Ffer > (Di¢)TDi¢+_(¢T¢_§)2]
2e? i=12 2
IV. SQED WITH THE FAYET-ILIOPOULOS TERM 1 e : 2
= | dxdy) |—=Fp+—= -
The simplest theoryand the only one in the clagg=1; f e J2e © \/§(¢ $=4)

see belowwhere saturated strings exist in the weak coupling

regime is supersymmetric electrodynami&JSY QED, or ) + )

SQED), with the Fayet-lliopoulosFl) term. In superfield H(D1+iD;) ¢ (D1+iDR) b +Q, (41)
notation the Lagrangian of the model has the form

L 1 where @ is the surfacdtopologica) term:
z::[—zf oW+ H.c.] +Zf d*0(SeVS+Te VT)

i - N
ge Q= J dxdy( €F 12— 50($'D; ¢)s”], j=12. (42
- ; f d?0d26V(x, 6, 06), (36)
We will discuss the value of the surface term later.

wheree is the electric chargeS and T are two chiral super- The saturation equations are
fields with electric charges-1 and—1, respectively, ang Fo=—e(¢lgp—¢&)
is the coefficient of the Fayet-lliopoulos term. The model '
with one chiral superfield is internally anomalous. Topologi- (D1+iDy)¢p=0. (43

cally stable solutions in this model and its modifications ) _ _
were considered more than once in the pastd]. We com-  The ansatz which goes through these equations is

bine various elements scattered in the literature, with a spe- b= \/E oia
cial emphasis on the algebraic aspect. The supersymmetry of =
this model is minimal NV=1.
Jda
If £+0, the vacuum state corresponds to the spontaneous A=al i=1.2, (44)

breaking of Ul). The spectrum of the model is that of a Ix!
massive vector supermultipledine massive vector field, one

real scalar and one Dirac fermion, all of one and the sam&here

mass, plus a massless moduldsne chiral superfieldpa-

rametrized by the produQT: a=Arg{, {=x+iy, (45)

and n, a are some functions depending onThis must be
supplemented by the standard boundary conditions, namely

The vacuum valley is represented by the one-dimensional
complex manifold with the Kialer function 7(r), a(r)—

— /&2
K(®.®) Frod. (38) For the given ansatz the saturation equati@® degenerate
In a generic point nonsingular Abrikosov stringsmiat exist  into a system of first-order equations
[8]. There is one special point, however,=0, where the
theory supports the saturated string. a'=e*ér(n°-1),
In components the Lagrangian of SQED, E2f), has the
form (in the Wess-Zumino gauge

®=2ST. (37)

0 atr—0,

1 atr—-co. (46)

1_
L ai-a w

r
1
L=——F, F*+(D,$)"D*p+(D,x)"D*x

4e2 M’ where the prime denotes differentiation ovelts solution is
) well known.
e S . . .
— (b= rTv— )2+ : It is instructive to compare the topological term in Eg.
2 (¢7¢=x'x— "+ fermions, (39 (42) with the central charge of the superalgebra. To derive
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the central charge one needs an expression for the superc@xpression in the square brackets in E&B) is included in
rent in SQED, which takes the forigin the spinorial nota- the definition of the supercurrent. The result quoted above
tion) refers to the minimal supercurrent, with the second line in
Eq. (48) discarded. Since th@,0) central charge is irrelevant
for the string solution, this ambiguity alone shows that the
¢f5”¢ term cannot contribute to the central charge under
consideration. It is certainly the case, sinbé¢ falls off
sufficiently fast ar — o (wherer is the distance to the string

2 _
Japp= 3 (IF pedp+ €aDN) +2022 (Do) g

V2

. t . t
3 2 [9ap(PpbN) + (Yo" axis) for the string solution. At the same time, the photon
four-potentialA” falls off slowly, as 1f. Thus, the(1/2,1/2
—3635,(92;( lﬂyqu)]. (48  central charge is saturated by tlijeterm exclusively. The

latter is unambiguously fixed in Ed50); i.e., it does not
Above it is assumed that there is no superpotential. The exdepend on the full derivative terms in the supercurrent. The
pression in the square brackets may or may not be added, €it/2,1/2 central charge is obviously proportional gand to
will. [The expression in the square brackets in B is  the magnetic flux of the string,
conserved by itself; in the supercharge it presents a full spa-
tial derivative, hence, its contribution vanishe$he sum M
runs over various matter supermultiplets, in particulsand fzgj:' (52)
T in the case at hand.

To find the central charge one must compute the anticomyhere

mutator{Q, ,Jjs}. Moreover, we decompose the anticom-

mutator above with respect to irreducible representations of

the Lorentz group, by spingling out the symrr?etric and anti- f:f dxdy F12= 3g A X (53
symmetric combinations of the indices with and without

overdots. The one which is symmetric with respect to both Note that the very same saturation equati¢é® are ob-
pairs, (x,8) and (ﬂy) is the Lorentz spin dthe energy- tained in./\_/=2 SQED with 'ghe vanishing Fayet-lliopoulos
momentum tensywhich contributes td,;,, rather than to €M and linear superpotential; see Sec. IXC.

the central charge. The combination which is antisymmetric

with respect to both pairsa(8) and (8v), is Lorentz sin- V. KAHLER SIGMA MODELS
glet; it represents the trace terms in the energy-momentum

tensor. To single out the central charge we must isolate thgtrings in the four-dimensionar models on the Kaler

terms of the mixed symmetry, i.e., symmetric with respect Wnanifolds. The two-dimensional reductions of these models
(a,6) and antisymmetric with respect tg3¢), andvice  are well studied; in the Euclidean formulation they admit
versa instantons, which are the solutions of the first order self-

Keeping in mind this remark, and using the canonic comuality equations. In the supersymmetric version the self-
mutation relations and equations of motion for Defield,  duality equations in two dimensions are reinterpreted as BPS
we get an expression similar to that in the Wess-Zumingaquations in higher-dimensional theoriésg., [16]). It is

In this section we present some arguments concerning

model, plus an extra contribution due to theterm: obvious that the instantons of the two-dimensional models
are BPS strings in four dimensions. Thus, the four-

{Qa@}=i§f d3X[Fﬁa8ﬁa_Eﬁ8-w]_ (49)  dimensionaloc models on the Kialer manifolds do have the
BPS strings at the quasiclassical level, at weak coupling.

Keeping in mind the assertion we are going to prove later
(Sec. VIIl) we discuss where the Kéer sigma models stand
i 1 compared to other models.
Z#=f dBx sowp( EPVAP— D, Ea"(¢’pﬂ¢)+ ZaVRP Let us start with theCP; model. In a sense, this model
can be obtained as a limiting case of SQED with a somewhat
different matter content compared to that of Sec($¥e, for
, (50) instance[17]). Indeed, assume that the matter superfi€ds
andT have both charges 1, rather thant 1. As a quantum
theory, it is anomalous, but for the time being we limit our-
selves to the classical consideration. The limit to be taken is
e’— o, Let us have a closer look at E@®9), with the sign of
1 the charge of they field reversedcorrespondingly, théd
RP=— —\o’\, afyy=— > patip. (51)  term takes the formd = e2(pTp+ xTx— £€)]. In this limit the
e photon mass tends to infinity; the photon becomes nondy-
. namical and can be eliminated. It drags with itself two real
Note that the coefficient of theéD’¢ (i.e., the selectron scalar degrees of freedom. The remaining two scalar degrees
axial current term is ambiguous—it depends on whether theof freedom are massless. Their interaction reduces to the

This implies

1 )

where R” is the photino current, whil@f,, is that of the
electrons:
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sigma model on a sphere. This is most easily seen from Edn the limit under consideration, and is expressible in terms
(39). In the limit >~ the D term must vanish, which of the residual scalars. Since our consideration is quasiclas-
implies that¢™¢+ x"xy=£&. In fact, gauge freedom allows sical, it is not surprising that the current of the matter fermi-
one to identically eliminate one out of four degrees of free-ons does not contribute. The second term in &) does
dom residing ing, x. The remaining three are subject to the not contribute either—as was discussed, its coefficient is am-

constraint, telling us that the radius of the spheré.is biguous.
Thus, SQED with the Fayet-lliopoulos term, in the limit ~ The Q3) (or CP,) model belongs to a more general class
e?— o, gives rise to a model with the action of CPy models. The latter can be derived as the low-energy

limit of SQED with the FI term and witiN+ 1 chiral matter
superfields(all of them have charge+1), in the limit e?
—c0. One can eliminate the nondynamieg| field, much in
the same way as i€ P4, arriving in this way at a nonlinear
where® is a chiral superfield: sigma model. _

One has to introduce complex coordinawes= ¢ [ ¢

(X, 0)= (X)) + 20, (x )+ 6?F(x)). (55  wherei+j which can be considered as scalar components of

the chiral superfield®| . The action can be written in terms
of ®! as follows:

1 _ _
S= —f d*xd?6d%6 In(1+ D D), (54)
292

The coupling constant §f has the dimension of mass
squared and is equal t The string tension will be propor-
tional to 25%= £. The metric of the sphere in the target space

G in this case is S= 1 f d*xd?6d%6 In
292

1+, qT{'cD{'). (58)
1]
2 1
== W (56) The identificationé=1/g? is transparent since both param-
g (1+ ) eters determine the size of the target manifold in two formu-
lations.

The energy functional for the stringy solution takes a form .
9y 9y The general expression for the central chargel

which looks exactly as the action in the Euclidean two-

dimensional sigma model whose world volume is transverse
to the string. It is easy to rewrite it in terms of a topological z:f dzx{ag(KW;?(j;—KgazE)Jraz(KgagE— Kgded)}
charge plus a positive definite contribution,

(59
2 rrihee
fzf dzx{i @f n ig P (‘75' ‘7_v¢ ] where the complex variableis_defined in Eq(15) and the
L g?|1+¢d| o> "\ 1+00 subscripts¢, ¢ denote theg, ¢ partial derivatives of the

(57)  Kahler metric.
h h q he i | he full derivati More generally, we expect similar strings for all toric va-
where the second term, the integral over the Tull derivative jqgieq which can be presented as low energy limits of gauged
presents the topological charge and the integral runs in thg,ea sigma model. In Sec. IX we shall encounter one more

lpla_ne Itrahnsver.se_ to the string. Ir?stantons Zaturlat(_a the 1op@sample of the Kaler sigma model coupled to the Abelian
ogical charge; sincer,(S,) =Z, the saturated solutions are o, e field—the low-energy effective action fov’=2

labeled by an integem, equal to the topological charge. The g;gy Yang-Mills theory in four dimensions
surface term contribution in E@57) is thus proportional to '
—2n—
g “n=¢n.
In four dimensions the instantons present the BPS satu-
rated strings. These strings are rather peculiar. Since the two- To begin with, consider the simplest non-Abelian gauge

dimensional theory is classicallpupeyconformally invari-  model, SUSY gluodynamics. The Lagrangian is
ant, the two-dimensional instantons can have any size

VI. SUPERSYMMETRIC GLUODYNAMICS

(correspondingly, the cross section of the string in four- 1
dimensional theory can be arbitraryThe larger the trans- L= —Zf d? Trw?+H.c., (60)
verse size of the string, the smaller the energy density in the 49

string. However, the string tension remains constant propor-  raea a
tional tog ™ 2= £. This is the limiting profile of the Abrikosov where W=W"T*, and T* are the generators of the gauge

string in SQED with the Fayet-lliopoulos term—the profile it group G in the fundamental representation. Although the

acquires when the vector field mass tends to infinity whiledaude groupG can be arbitrary, for definiteness we fimit

the remaining degrees of freedom of the matter fields remaiﬁurselveS to SUN). In components,
massless.

For our purposes it is imp_ortant to intejrpret the surface [= i[ _ lGa Gaﬂyﬂ)\aapa.ﬁyab _ (61)
term contribution in the string tension in terms of the g?l 4"
(1/2,1/2 central charge of four-dimensional SQED. Upon
inspecting Eq(50) we conclude that this contribution comes There is a supermultiplet of the classically conserved cur-

from the first term in Eq(50). The fieldA,, is not dynamical rents(for a recent review see e.§18]),
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4 . through the fact that the energy-momentum tensor ceases to
Tua=——5Te"W,e7 YW, ] be traceless, and,R” no longer vanishes. On general
g grounds it is clear, however, that Edq4), (65) stay intact.
The occurrence of a full-derivative term in the algebra
presents a precondition for a nontrivial central extension.
(620  Whether or not this term actually vanishes is a dynamical
issue which depends on the presence of the string-like soli-
whereR,,, is the chiral current]g,,, is the supercurrent, and tons. These may be strings or domain-wall junctions, as in
Jaapp 1S @ combination of the energy-momentum tensorRef.[12]. SUSY gluodynamics is a strongly coupled theory;
Vaapp=(0") aal0") gpd,, and a full derivative appearing therefore, one cannot use quasiclassical considerations to
in the central charge, namely, search and analyze solitons. The hope is that there is a dual
description in terms of effective degrees of freedom, for
4 — which quasiclassical analysis may be relevant. Within this
aa _?Tr)‘a)‘a' dual description the second term in Ed) is mapped onto
some relevant operator of the effective theory. It is clear that
4i the second term in Eq1) is the necessary but not sufficient
[ — o : . :
Ip0a=(0") 4id . s=—Tr Guphyys condition for the existence of the saturated strings. If it were
absent, there would be no hope.

= Rac-t_{i aﬁJBa(—I‘f‘ H.C.}—Zﬁﬂyp.]aaﬁﬁq- cee

R

[ i :
P DY b VII. GENERIC NON-ABELIAN MODEL WITH MATTER
Jaapp=Vaapp™ 78ap025Rey T 78R
The (1/2,1/2 central charge in the generic non-Abelian
2 - - o theory is obtained by combining the expressions we have
ﬁaéﬁB:_ZTr[i)\{apﬁ}BM_i(pB{BM)M}jL G.sGapl- denv_ed in the previous sections. The operatgrin .Eq. @
g receives contributions from the gluino term, as in Sec. VI,
(63)  which is unambiguous, and the contributions from matter
o S (both the scalar and spinor components of matter graerin
The symmetrization ovew,3 or «,B is marked by the the generalized Wess-Zumino mod8&kc. I, whose coef-
braces. In fact, since the chiral current is classically conficients are not fixed—they depend on how one defines the
served(so far we disregard anomallessymmetrization in  supercurrent in those terms that are total derivatives. This
the third line is superfluous: the corresponding expressiongmbiguity derives its origin from that in the definition of the
are automatically symmetric. To obtain the expression on thgupercurrents,
right-hand side from TeYW, e YW, ] we observe that the
expression fod,, sz has mixed symmetry: the part symmet- 2 A — —
g s 2 ay © e
ric in {«,B} and{«,B} is the(1,1) Lorentz tensor; it repre- ‘Jaﬁﬁ_gz('GﬁaAB”LéBaD 7‘3)+2\/§2 [(Dapd ) ¥s
sents the(tracelesy energy-momentum tensor. The remain-

der, i.e. the part symmetric ifr, 3} and antisymmetric in _ifﬁaFJB]
{a,B} or vice versais the(0,1)+(1,0 Lorentz tensor. The 3
part antisymmetric in botfie, 8} and{«,8} is (0,0). It rep- s > (90 '/’B¢T)+5Bi3( Wb

resents the traces which vanish in the classical approxima-
tion. It is quite obvious that the only part relevant for the

Y
central charge i$0,1)+(1,0) piece inJ,, ;. This means, in _363“‘9}8( "l’yd’T)]’ (66)
particular, that the inclusion of the traces will have no impact .
on the central charge. where the sum runs over all matter supermultiplets, laﬁd
It is easy to see that andF are the corresponding andF terms. The second line
is conserved by itself, nondynamically; the spatial integral of
{Q, j/'ma}ZZJam;é- (64) the time-like component reduces to an integral over the total

derivative for the second line. Therefore, it may or may not
Combining this equation with the third line in E¢s3) we  be included in the definition of the supercurrents. This is the
conclude that the centrally extended algebra is given by Eqgupersymmetric analogue of the ambiguity in the energy-

(1) with momentum tensor in nonsupersymmetric theories with the
scalar fields. The ambiguity in the choiceXfs; leads, with
L1 necessity, to the fact that the coefficients of the matter terms
a ZZR : 69 in a# in Eq. (1), namely,a(,, and afy,, are not uniquely
fixed.

Unlike the central extension relevant for the domain Because of this ambiguity, the matter componentbf
walls, which appear$2—4] as a quantum anomaly, in the cannot contribute t& for strings(it could contribute, though,
problem at hand the algebra gets a full-derivative term at théor the wall junctions and other similar object with axial
tree level. The presence of the anomaly manifests itselfeometry.
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VIIl. STRINGS CANNOT BE SATURATED IN  N=1 dinate, the order parametar={tr¢?). At low energies the
NON-ABELIAN GAUGE THEORIES IN WEAK COUPLING effective theory becomes Abelian and is described by a
single holomorphic function—the prepotential which de-

Here we will prove that in the absence of th€llfactors, ) ) )
even if the theory under consideration does support string!rMinNes 2the effective coupling constant of the theary
=g°Floa*, as well as the Kialer metric on the Coulomb

like solitons in the quasiclassical considerati@ome ex- ; .
amples are discussed e.g., in Rf9]), the central charge Pranch of the moduli space, which appears to be a one-
dimensional special Kder manifold. The Khler potential

necessarily vanishes. Therefore, these straagsot be satu- X
rated can be found from the prepotential as follows:

In weak coupling(i.e., for the string solitons in the qua-
siclassical treatmeptthe (1/2,1/2 central charge must be
saturated by the term with thieosonicaxial current.(We
recall that the FI term is abseniAs was explained, the co- wherea is the vacuum value of the third component of the
efficient of this term is not unambiguous—it depends on thescalar field and, = d./Ja. The variablea can be expressed
definition of the supercurrer(e.g., minimalversusconfor-  in terms of variableu as follows:
mal). Since we are interested in string solitons, rather than

K(a,a)=Imapa, (67)

wall junctions, this ambig_uity cannot be canc_eled_by that in ey x2dx

the (1,0) central charge, since the latter must identically van- auw=| ___ . (68)
ish. This is dictated by Lorentz symmetry arguments. This ~VurAZ (xP—u)Z— A*

means that th€1/2,1/2 central charge must vanish identi-

cally. Unlike the variableu, the variablea cannot be considered

The consideration above shows that if BPS objects withas a global coordinate on the moduli space since thaeata
axial geometry exist in the quasiclassical linfih non-  metric Imr(a) has zerogherer is the complexified coupling
Abelian gauge theorigsthe stringy core must be accompa- constant Therefore, to analyze the complex planeapfan
nied by objects with(1,0) charges. In four dimensions do- explicit expression fora(u) is needed. Direct inspection
main walls do the job. Within the brane picture it is possibleshows that the region of smallis essentially removed from
to consider four-dimensional theories as that on the branghe complex plane so thé(u)|>constx A.
embedded in M theory. For instance, the expected domain The lower bound ora can be seen also geometrically if
wall junctions in V=1 Yang-Mills theory—the gauge ana- we recall that it is just the mass of théboson, which can be
logue of the junctions in the GWZ models—can be identifiedrepresented in the theory on D3 probes as a pronged string
as a junction of M5 branes, so that the definition of theconnecting the probe and a spli{ @ orientifold [22]. It is

current for the theory on M5 removes any ambiguity. clear that the minimal mass of t# boson geometrically is
the distance between the 7-branes onufpane; it is, thus,
IX. STRINGS IN THE SEIBERG-WITTEN AN=2 MODEL proportional toA. Therefore, we see that; of the scalar

) ) ) field manifold is nontrivial—topologically stable objects
Here we will speculate on possible BPS strings at strongyith the axial geometry are expected, providadwinds
coupling. As we already know, such strings do not appear ityround the “forbidden” region.
weak coupling. Thé1/2,1/2 central chargéappearing in the Whether these objects are strin@e., have finite energy
anticommutatof Q,Q}) is not holomorphic—it need not de- per unit length depends on dynamics, on how fast the vol-
pend holomorphically on the chiral parameters, in contradisume energy density dies off as we go away from the axis in
tinction with the(1,0) charge. This means that even if both the perpendicular direction. The convergence could be en-
the weak and strong coupling regimes are attainable in onsured by an appropriate form of the ldar metric, as in the
and the same theory, generally speaking, nothing can be sagiigma models. It is quite obvious that in this case the string
regarding BPS strings in the strong coupling regime from theension
behavior at weak coupling.
T=constx A2. (69)
A. Strings in pure N'=2 Yang-Mills theory

We turn now to a discussion of th&=2 Yang-Mills The existence of such stable objects with axial geometry
theory without matter hypermultiplets. The exact solution forwould be a purely strong coupling effect since at the classical
the low-energy effective action, as well as the exact spectrurtevel the pointa=0 is attainable, and, correspondingty;
of the BPS particles, is know[20]. Now we address the is trivial. If the strings do exist, they may be BPS saturated
issue of possible stringy central charges, besides the standgpebvided the term due to the gluino currd®it in the central
ones, saturated by particlg®1]. From the discussion above charge is nonvanishing. To this end the gluino current must
we saw that it can be attributed only to the gluino axialfall off at large distances from the axis as 1/ Finiteness of
current since there is no Fl term in the model. Let us restricthe string tension would imply then that effective degrees of
ourselves to the S@) gauge group. freedom coupled t&®* form a U1) gauge interaction. If the

The key features of the Seiberg-Witten solution can bestring tension is finite and the gluino current falls off at large
summarized as follows. The vacuum manifold develops thelistances from the axis faster than tl,/the string is tension-
Coulomb branch which is parametrized by the global coordess.
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B. Strings in N'=2 SQCD the first term is small. Genericallyu(ap) breaks\'=2 su-

Adding the matter hypermultiplets to the model discussedersymmetry down tdv/= 1. However, in the linear approxi-
in Sec. IXA we getV'=2 SQCD. Since there is no restora- mation, when
tion of the SU2) gauge symmetry at the generic point at the
Coulomb branch, the “forbidden” region on the complax W= uapA+MapM, (73
plane exists in the theory with fundamental matter too. The
BPS strings may appear on the Coulomb branch, with théV’=2 is unbroken.
tension saturated by thR current of gluinos. The tension Let us forget about the origin 0¥/=2 SQED and discuss
now depends on the masses of the fundamental matter arnlis U(1) theory with the superpotentiér3) per se Minimi-
can be determined, in principle, from the explicit expressiorzation of the potential stemming from E¢Z3) yields the
for a(u,A,m). monopole condensation. Abrikosov strings obviously do ex-
Moreover, the Higgs brandiparametrized by the vacuum ist. Their tension is proportional ta. They were discussed

expectation values of the fundament&®),(Q)) is possible, in the Iiter.ature previously27,28. The classica_ll equations
and the question of the BPS strings on the Higgs branch caf@r the string reduce to Eq43).* Thus, the string is satu-
be addressed. We recall that geometrically the Higgs branckated. The question is how this could happen given that the
is the hyper-Kaler manifold[23] (for a review sed24]) (1/2,1/2 central charge must vanish in the absence of the FI
whose metric can be determined classically. It is not renort€rm. o

malized by quantum corrections. Actually, the Higgs branch The central charge in the anticommuta{,Q.} is in-

for SU(N,) theory withN; flavors is the cotangent bundle of deed zero. One should not forget however, that SQED with
the GrassmannianT*GrNC,Nf, with the antisymmetric the superpotential73) is an =2 theory—there exist two

N,-form. The metric on this manifold can be found from the Supercharge®,Q" of the type(1/2,0 and two supercharges

Kahler potential Q,Q’ of the type(0,1/2. Therefore, one should look for the
_ central extension in the anticommutator of the general form
K(Q,Q)=TrJk2+MMT, (70 {0,0.} whereQ is a linear combination 0§ andQ’. A
) ) ) nonvanishing central term of this type does exist.
wherek is a solution of the equation If we now return to the original non-AbeliaoV=2

theory, we conclude that at small the string is(approxi-
detkly,+ k1y +MMT)=det(QQ"), (7)) mately BPS saturated. It becomes exactly saturated in the
limit u—0, A—oco with uA fixed[27,28. The saturation is
andM =Q0Q is the meson matrix. approximate, rather than exact, since higher order terms in
Since m,(Gr, ) #0, instantons in the two-dimensional [non-linear inap terms in the superpotential of the low-
sigma model onT*Gr, , are possible. The arguments pre- €nergy U1) theory] break V=2 and return us back to the
sented in Sec. V suggest that these instantons can be intek’=1 theory. INnN'=1 the extra supercharg€¥’, Q' disap-
preted as strings on the Higgs branch. It would be interestingear, while the central charge in the anticommuta@gQ;,!
to understand whether a version of the string on the Higg$anishes.
branch recently found ih25] can be BPS saturated.
The existence of the BPS string on the Higgs branch wa ]
recently conjectured within the brane approd@6]. This X. BRANE PICTURE: HOW IT CORRESPONDS TO FIELD
; . . THEORY
string was expected to be tensionless at the root of the Higgs
branch, which qualitatively agrees with the discussion above. A. Fayet-lliopoulos string as a membrane

S With the brane picture in mind, we can look for the brane
C. Softly broken A’=2 theory (strings in N'=2 SQED) configuration corresponding to the BPS strings discussed
If the softly brokenA’=2 Yang-Mills theory is consid- above. The interpretation of the strings whose tension is pro-
ered near the monopole or dyon singularities, the effectivéortional to the four-dimensional FI terms is rather simple.
low-energy theory which ensuesié=2 dual SQED. Thisis Letus consider the brane configuration relevant for the Abe-
the famous Seiberg-Witten result. A small mass term of thdian V=2 Yang-Mills theory in the type IIA picture. It con-
chiral superfields of the original/=2 non-Abelian theory is S'%ts 10f A pan Og parallel NS5 branes with world volumes
translated in a small perturbation of the superpotential for théX > X",X",x*,x",x), plus a single D4 brane with world vol-

matter fields in SQED. If the monopoler dyon superfields ume &°x*,x?x%x%). The gauge theory is defined on the
are denoted aM, M, the superpotential in the low-energy world volume of the D4 brane, and the distance between the

; NS5 branes along the® direction plays the role of the in-
ED . ; . .
SQED can be written as verse coupling in the Abelian theory. Since the four-
_ w7 dimensional FI terms have the meaning of the relative dis-
W= puu(ap)+MapM, 72 X
wu(@p) ° (72 tance between the NS branes i’ &8 x% [29], the “FI

whereap, is a chiral superfield which is th&=2 superpart-
ner of the(dual vector superfield. The second term in Eq. B
(72) is fixed by N=2 supersymmetry. The parameierin 41t should be taken into account that on the solutib]=|M]|.
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strings” are nothing but the D2 branes stretched between thparameter combining the two-dimensional FI term with ¢he
NS branes in some of thex{,x8,x°) directions. The rest of term; twisted mass terms ith=2 correspond to the coordi-
their world volume coordinates coincide with the D4 ones. nates on the Coulomb branch in tte=4 theory; finally, the
This picture gets slightly modified if one considers the Riemann surfaces providing the BPS spectra in both theories
Abelian N=1 theory. According to the well-known proce- are the same.
dure (see, for instance29]), one has then to rotate one of  The correspondence above has a rather simple explana-
the NS5 branes, which now haxo(xl,xz,x3,x8,x9) as the tionin the brang despription of both theo_ries. It appears that
world volume. The Fayet-lliopoulos term now has the meanihe brane conf|gurat|qns fqr both theories are actually the
ing of a displacement of the NS5 branes alofdg The D2~ Same. Thel=4 theory is defined on _the world volume of the
brane stretched between the NS5 branes with world volumB4 br_anes stretche(_j b_etween a pair of the NS5 branes. The
(x°,x1,x7) plays the role of the BPS string. coupling constant is just the distance between the I\_ISS
Let us note that the FI string can be elevated smoothly it’Llranes. In M theory all branes above are elevated to a pair of

M theory. Indeed, the NS5 branes and the D4 brane can 5 branes, one of which is flat and the second is wrapped
identified with thc'e single M5 brane in M theory. The FI around the Riemann surface. The configuration is described

string can be considered as an M2 brane stretched betwe&Y the holomorphic embedding into four-dimensional space,

two components of the M5 branes. The tension of the FI

o . N—Nj¢ N
string is proportional to the length of the M2 brane along the AN N—N = _ B
x’ direction and, therefore, proportional to the value of the Fl (t=AT)| AT H (v—m;) H (v—my) [ =0,
parametei, in full agreement with the field theory expecta- (74)
tions. Recently a similar picture for the FI strings was dis- ] .
cussed inf26]. where the first factor represents the flat brane, while the sec-

ond the curved one, and;’s correspond to the masses of the
fundamental hypermultiplets.
_ ) ] ~ Let us add a D2 brane and consider the Abelian gauge
The BPS saturated objects with axial geometry were distheory on its world volume. If the D2 brane is stretched
cussed in the brane picture previously. For instance, the dgsetween the same NS5 branes, we arrive atQRg model
main wall junction inA/=1 supersymmetric gluodynamics i, =2 where it has the extended supersymmeis 2.
which is expected to saturate both tt#2,1/2 and (1,00 Thjs explains the coincidence between the complexified cou-
central charges occurs as the intersection of the M5 branegjing constant in the four-dimensional theory and the FI term
since the domain walls were identified as MS branesp the two-dimensional theory. Therefore, the picture can be
wrapped on 4-manifold in M theor}80]. _apparently interpreted as follows: the=2 sigma model,
. Here we would like to add a few remarks on a possibleyith the twisted masses added, is the theory on the brane
interpretation of strong coupling BPS strings in the brangynich is the probe for thev=2 low-energy theory in four
picture. Previous attempts to recognize BPS tensionlesgimensions.
strings in four dimensions, apparently seen within the brane | 33 34 it was shown that the spectrum of BPS particles
approach[31], were based on the intersection of the MSiy A=2 theory at the root of the baryonic branch exactly
branes or the M2 brane stretched between two M5 braneggincides with the spectrum of BPS dyonic kinks in the cor-
The BPS string on the Coulomb branch discussed in Sec. IXespondingC Py, model. Moreover, the brane identification
is nothing but a wrapped M5 brane, since its tension is progpows that hypermultiplets id=4 andd=2 arise essen-
portional to the area on the region on the Coulomb branchyg|ly in the same way. Therefore, we can use the relation
However, the explicit geometry of intersection of the M5 onween the models in a twofold way. The existence of in-
branes yielding saturation of th@/2,1/2 central charge is  gtantons in thec P, model implies that one can expect BPS
still to be clarified. _ _ saturated strings at the root of the baryonic branch. In the
Another possible approach to the brane interpretation ofnosite direction, thél/2,1/2 central charge in four dimen-

BPS strings in Yang-Mills theories follows from the corre- gions can be mapped onto the central charge ofAthe2
spondence between Yang-Mills theories in four dimension$,,_dimensional theory. Since in the formulation of the

and two-dimensional sigma models. It was recently reCogsigma model with nondynamical vector field the gauge
nized [32-34 that there is a close relation between two-, ,ential plays the role of the curreat in Eq. (1), the
dimensionalCPy models (which have N’=2) and Yang-  central charge is actually mapped onto the Chern number

Mills theories in four dimensions, with’=1 or N=2, with  rAqy Certainly, these issues need further clarification. We
or without fundamental matter. In the latter case the correhope to discuss them elsewhere.

spondence relies on the coincidence of the spectra of the
BPS domain walls in four dimensions and BPS solitons in
two.

A more direct relation connects th€=2 theory withN; In this paper we elaborated on the generic structure of the
flavors at the root of the baryonic branch of the moduli spacCeentral Charges in Supersymmetric gauge theories in four di-
with the CPy -1 model [33,34. The translation dic- mensions. The central finding is that th2,1/2 charge is
tionary between the two models looks as follows: the com-ambiguous in the part related to the matter fields, due to
plex coupling in four dimensions corresponds to a complexpossible total derivative terms in the supercurrents. The part

B. (Conjectured) strong coupling BPS strings via branes

Xl. CONCLUSIONS AND DISCUSSION
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related to the gauge fieldicluding gaugindis unambigu-  5nticommutatofQ,Q}, whereB is the two-form field and
ous..T.hat is why |n.the vyeak couplln_g regime the °"?'y mocJe'K=AdA— 273 is the dual of the Chern-Simons current in
admitting BPS strings is SQED with the Fayet-liopoulos yo yang_Mills theory. Therefore, we see that the axial cur-
term. In the non-Abelian theories the Fayet-lliopoulos termant of gluons enters into the céntral charge, if gravity de-
is forbidden; hence, at weak coupling there can be no BP§ees of freedom are taken into account. We plan to discuss
strings. Even if some strings exist, they are nonsaturated biis point in more detail elsewhere.
necessity. These assertions are proved at the theorem level. gjnce theh/=2 Yang-Mills theory enjoys duality, one can

The ambiguity we found does not preclude from existencgyose a question of the duality partner of the BPS string.
other BPS saturated objects with axial geometry, i.e., th¢our-dimensional BPS strings can be viewed as objects dual
wall junctions. The ambiguity in th€l/2,1/2 charge is com-  (in the Dirac senseto localized objects. Indeed, since dn
bined with that in thdl,O) Charge to prOdUCG a well-defined Space_time dimensions th:ebrane is dual to ad_ p_4)
answer for the tension of the walls and the “hub™ in the prane, the Dirac quantization condition amounts to the ob-
middle. We presented some examples. servation that thed— p—4) brane is weakly coupled if the

The strong coupling regime is a different story. Since theprane is strongly coupled andce versa Therefore, one can
analyticity argument does not apply to tt#2,1/2 charge, expect that within the framework of duality the strongly
the existence or non-existence of the BPS strings should hgupled BPS string has something to do with the instantons
discussed separately at weak and strong couplings—the legt weak coupling.
sons we learn at weak coupling say nothing about possible To make a conjecture regarding the central charge dual-
scenarios at strong coupling. We speculated on differening the stringy one, let us observe that there is a contribu-

cases when .thethBP?-saturatedl_objects_ withWaxiaI ge%”lﬁt%n in the central charge fC{IQ,a} in six dimensions, satu-
matly atr_Jpearf Itnh ﬁzslr/onghcoup Intg :eglme. E;_ argue b Hated by instantonic strings. In five dimensions the instanton
saturation of the1/2,1/2 charge at strong coupling can be presents a particle with masgy#/ saturating 35] the central

attributed to the M5 brane intersectio(The Fayet- 4 . ;
lliopoulos BPS strings come from the M2 branekhe BPS- chargefd*xFF. In four dimensions we can expect a remnant
of this central charge resulting from dimensional reduction.

saturated strings may be expected in fie2 Yang-Mills
theories on the Coulomb branch.
In the N=1 gauge theories an obvious candidate for the
BPS saturation is the domain wall junction. One cannot as- We would like to thank M. Strassler, A. Vainshtein and
sert at the moment with absolute certainty that the strong\. Yung for useful discussions. A part of this work was done
coupling junction exists iNNV=1 supersymmetric gluody- while one of the authorM.S.) was visiting the Aspen Cen-
namics, but thevl theory arguments suggest that such junc-ter for Physics, within the framework of the program “Phe-
tions do exist. Additional support in favor of this conclusion nomenology of Superparticles and Superbranes.” A.G.
is provided by field-theoretic models considered 15]. thanks TPI at the Minnesota University for the kind hospi-
A comment is in order regarding the situation in super-tality. This work was supported in part by DOE under grant
gravity coupled to Yang-Mills theory. Upon inspecting the DE-FG02-94ER408. The work of A.G. was also supported
(1/2, 1/2 central charge one finds the teiii=dB—K inthe by INTAS Grant INTAS-97-0103.
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