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Einstein constraints on asymptotically Euclidean manifolds
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We consider the Einstein constraints on asymptotically Euclidean manifoldsM of dimensionn>3 with
sources of both scaled and unscaled types. We extend to asymptotically Euclidean manifolds the constructive
method of proof of existence. We also treat discontinuous scaled sources. In the last section we obtain new
results in the case of non-constant mean curvature.

PACS number~s!: 04.20.Ha, 02.40.2k, 04.20.Ex
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I. INTRODUCTION

The geometric initial data for the (n11) dimensional
Einstein equations are a properly Riemannian metricḡ and a
symmetric 2-tensorK on ann-dimensional smooth manifold
M. These data must satisfy the constraints, which are
Gauss-Codazzi equations linking the metricḡ induced onM
by the spacetime metricg with the extrinsic curvatureK of M
as a submanifold imbedded in the spacetime (V,g) and the
value onM of the Ricci tensor ofg.

As equations onM, these constraints read

R~ ḡ!2K•K1~ trK!252r Hamiltonian constraint, ~1!

¹̄•K2¹̄trK5 j momentum constraint. ~2!

R(ḡ) is the scalar curvature and the center dot denote
product defined by the metricḡ. The quantityr is a scalar
andj a vector onM determined by the stress energy tensor
the sources. In coordinates adapted to the problem, wher
equation ofM in V is x050, one has

j i5N̄Ti
0 , r5N̄2T00 ~3!

with r>0 if the sources satisfy the weak energy conditi
and if r>ḡ( j , j )1/2 the sources satisfy the dominant ener

condition. The space scalarN̄ is the spacetime lapse func
tion.

A classical method of solving the constraints, initiated
Lichnerowicz whenn53, is the conformal method~cf. @1#
and references therein anterior to 1980,@2#!. In these papers
solutions were obtained under the condition that the ini
submanifold will have constant mean extrinsic curvatu
i.e., trK5const. Recently the results have been extende
the non-constant mean curvature case with some hypoth
on the smallness of its variations. The case of a comp
manifold M is treated in@3# and @4#, the first by using the
Leray-Schauder theory, the second through a construc
method. Results for asymptotically EuclideanM are given in
0556-2821/2000/61~8!/084034~20!/$15.00 61 0840
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@5#, using again the Leray-Schauder theory. All the quo
papers treat the case of scaled and continuous sources
three-dimensional manifoldM.

We will in this article consider the case where the ma
fold M has an arbitrary dimensionn>3 and the sources ar
the sum of scaled and unscaled ones. We will extend
asymptotically Euclidean manifolds the constructive meth
We will extend the existence proof to discontinuous sca
sources.

In the last section we obtain results in the non-const
trK case. In the asymptotically Euclidean case, non-cons
trK denotes non-maximal submanifolds. A simple smallne
assumption on the variations of trK is sufficient to insu
existence of solutions for metrics in the positive Yamab
Brill-Cantor class when there are no unscaled sources. In
other cases the study is more delicate, as pointed ou
O’Murchadha, and we obtain some results, in particular
unscaled sources.

We do not claim to have constructed solutions with sca
sources in the negative Yamabe class on non-maximal m
folds. The problem of the existence of solutions with lar
variations of trK also remains open.

We will use the conformal thin sandwich formulation d
veloped recently by one of us@6# to express the momentum
constraint. It gives a better understanding of the splitt
between given and unknown initial data.

II. CONFORMAL METHOD IN ITS THIN SANDWICH
FORMULATION

One turns the Hamiltonian constraint into an elliptic equ
tion for a scalar functionw by considering the metricḡ as
given up to a conformal factor. A convenient choice is to s
whenn.2,

ḡ[gw2p, i.e., ḡi j 5w2pg i j , with p5
2

n22
. ~4!

Then the following identity holds:
©2000 The American Physical Society34-1
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R~ ḡ![w2(n12)/(n22)S wR~g!2
4~n21!

n22
ngw D . ~5!

The Hamiltonian constraint becomes a semi-linear ellip
equation forw with a non-linearity of a fairly simple type
wheng andK are known—namely

ngw2knR~g!w1kn~K•K2t212r!w (n12)/(n22)50
~6!

with

t[trK, kn5
n22

4~n21!
. ~7!

We now explain the conformal form of the momentu
constraint as recently deduced by one of us@6# from thin
sandwich considerations. It can be construed to include
vious methods as special cases, but no tensor splittin
needed. The initial metricḡ being known up to a conforma
factor, it is natural to consider that the time derivative of th
metric ~the other ingredient of the initial data in a thin san
wich formulation! is known only for its conformal equiva
lence class. We have above

ḡi j 5w4/(n22)g i j . ~8!

If ḡi j andg i j depend ont, their time derivatives are linked b

ūi j 5w4/(n22)ui j , ūi j 5w24/(n22)ui j ~9!

with

] tḡi j 2
1

n
ḡi j ḡ

hk] tḡhk[ūi j ~10!

and an analogous expression forui j constructed withg i j .
We will consider the traceless symmetric two-tensorui j

as given on the manifold (M ,g). Recall the identity

Ki j [~2N̄!21$2] tḡi j 1¹̄ i b̄ j1¹̄ j b̄ i%, ~11!

whereb̄ andN̄ will be respectively the shift and the lapse
the imbedding spacetime. The shift vectorb̄ i is not to be
weighted; it is not a dynamical variable. The other no

dynamical variable is not the lapseN̄ but a scalar densitya

of weight 21 such thatN̄5a det(ḡ)1/2 ~cf. @8#!. We there-
fore consider as given in this context a functionN with the

spacetime lapseN̄ linked to it by the relation:

N̄5w2n/(n22)N. ~12!

We denote by¹̄ and¹ the covariant derivatives in the me
rics ḡ and g respectively. We denote byL the conformal
Killing operator

~L̄b̄ ! i j [¹̄ i b̄ j1¹̄ j b̄ i2
2

n
ḡi j ¹̄hbh. ~13!
08403
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We have

~L̄b̄ ! i j [w24/(n22)~Lb! i j , b̄ i[b i ~14!

and

Ki j 5
1

n
ḡi j t1w22(n12)/(n22)Ai j ~15!

with

Ai j [~2N!21$2ui j 1~Lb! i j %. ~16!

One finds by straightforward calculation that the moment
constraint now reads as an equation on (M ,g) with unknown
b ~andw if Dt[” 0):

¹ j$~2N21!~Lb! i j %5¹ j$~2N21!ui j %1
n21

n
w2n/n22¹ it

1w2(n12)/(n22) j ~17!

whereN, t, andu are given.
The Hamiltonian constraint now reads

ngw2knR~g!w1knw (23n12)/(n22)A•A

2
n22

4n
w (n12)/(n22)t2522knrw (n12)/(n22).

~18!

The scaling of the quantitiesr and j appearing in~17! and
~18! depends upon the nature of the source fields. For gen
fluid sources, with no independent field equations of th
own, we may~a! leave the fields unscaled,~b! scale them in
a way that is convenient for analysis of the constraints, or~c!
combine the two approaches. In this last case, we set

j [J1w22(n12)/(n22)v,
n22

2~n21!
r5c1qw22(n11)/(n22).

~19!

HereJ andc are unscaled, whilev andq are scaled.
When the source fields do have their own field equatio

the scaling is to an extent dictated by these source field e
tions. Here, we discuss two examples; see Isenberg
Nester, as referenced in@1#, for further discussion of the
scaling of sources.

Examples of source field scalings

~1! n53, the source is an electromagnetic or Yang-Mi
field F. The electric and magnetic fields relative to a spa
time observer at rest with respect to the initial manifoldM
~i.e., with 4-velocity orthogonal to this manifold! are

Ēi[N̄21F0
i 5w26N21F0

i [w26Ei ~20!

H̄ i5
1

2
h̄ i jkF jk5

1

2
w26h i jkF jk[w26Hi ~21!

with h and h̄ respectively the volume forms ofg and ḡ.
4-2
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Note that if (Ēi ,H̄ i) satisfy the Maxwell constraints

¹̄ i Ē
i50 and ¹̄ i H̄

i50 in the metricḡ, the fields (Ei ,Hi)
satisfy these constraints in the metricg. We consider that it
is these last fields which are known onM.

The energy density is

r5
1

2
ḡi j ~Ēi Ēj1H̄ i H̄ j ![w28q ~22!

with q, considered as known onM, given by

q[
1

2
g i j ~EiEj1HiH j !. ~23!

The momentum density is

j i5N̄Ti05N̄F0 jF j
i 52Ēj ḡikhk j lH

l5w210v i ~24!

with v i the quantity considered given as

v i52g ikhk j lE
jHl . ~25!

The sources are scaled as defined@compare Eq.~19!# and the
constraints decouple ifDt50. Note that ifq>(g i j v

iv j )1/2,
thenr>(ḡi j j

i j j )1/2.
~2! General n, the source is a Klein-Gordon field.The

energy density onM of a Klein-Gordon fieldc with respect
to an observer at rest is

r5
1

2
~N̄22u]0cu21ḡi j ] ic] jc1mc2!, ~26!

i.e.,

r5
1

2
$w24n/(n22)N22u]0cu21w24/(n22)g i j ] ic] jc1mc2%.

~27!

If we consider as known onM the initial datacuM and]0cuM
together withg andN, then neither of the terms inr scales
as indicated in Eq.~19!. The termN22u]0wu2 adds in the
Hamiltonian constraint toA•A, the termm2c is unscaled
and gives a contribution toc, the middle term gives a new
positive contribution to thew term which adds to2R(g).
The momentum density is

j i52N̄21ḡi j ] jc]0c52w22(n12)/(n22)g i j ] jc]0c.
~28!

We see that the momentum scales as in Eq.~19!. The con-
straints decouple ifDt50.

The methods we give below to study the constraints w
scaled or unscaled sources can be applied to more ge
scalings, such as this example.

Summary. The given initial data on a manifoldM are on
the one hand~geometric initial data! a set (g,u,t,N), with g
a properly Riemannian metric,u a traceless symmetri
2-tensor,t and N scalar functions, and on the other ha
~source data! a set (J,v,c,q), two vectors and two scalars
The initial data to be determined by the constraints mak
08403
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pair (w,b) with w a scalar function andb a vector onM. In
the conformal thin-sandwich formalism the constraints
duce to Eqs.~17! and ~18! which read, taking Eq.~19! into
account,

¹ j$~2N21!~Lb! i j %5hi~•,w! ~29!

with

hi~•,w![¹ j$~2N21!ui j %1
n21

n
w2n/(n22)¹ it

1w2(n12)/(n22)Ji1v i , ~30!

and

ngw5 f ~•,w!, ~31!

where

f ~•,w![rw2aw (23n12)/(n22)1dw (n12)/(n22)

2qw2n/(n22), ~32!

with r, a, andd defined as functions of the geometric data
in Eq. ~45!.

When t is constant onM and the sources have no un
scaled momentum~i.e., J50) these constraints decouple
the following sense: the momentum constraint~29! is a linear
equation forb, independent ofw, and the Hamiltonian con-
straint~31! is a non-linear equation forw whenb is known.

When the constraints are solved the spacetime metric
M reads

ds252N̄2dt21ḡi j ~dxi1b idt!~dxj1b jdt!, ~33!

with ḡ andN̄ given by the formulas~8! and~12!. The extrin-
sic curvature ofM is determined by Eqs.~15! and ~16!, the

derivative] tḡi j on M by Eq. ~11!. The derivatives] tN̄ and
] tb remain arbitrary.

We now express in our setting the conformal invarian
of the conformal constraints.

Lemma.The constraint equations~17! and ~18! are con-
formally invariant in the following sense: If (b,w) is a
solution of the constraints with data (g,u,t,N;J,v,c,q)
then (b,w̃) is a solution of the constraints with

data @ g̃5(w̃w21)4/(n22)g, ũ5(w̃w21)4/(n22)u, t, Ñ

5(w̃w21)2n/(n22)N; J̃5J, ṽ5(w̃w21)22(n12)/(n22)v, c̃

5c, q̃5(w̃w21)22(n11)/(n22)q].
Proof. If ( b,w) together with the considered given data

a solution of the conformal constraints, the correspond
Einstein initial data set (ḡ,K) is a solution of the Einstein
constraints with sourcesj, r given by Eq.~19!. The Einstein
initial data set and sources constructed with the approxim
quantities are identical with (ḡ,K) and (j ,r). Since the Ein-
stein constraints are satisfied, the conformal constraints w
ten with the approximate quantities are also satisfied.h
4-3
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Remark. In the casen52, equations analogous to th
ones obtained here for the conformal factorw and the vector
b are obtained by setting~cf. @9#!:

ḡ5e2wg, ~34!

and in the thin sandwich point of view,

N̄5e2wN ~35!

which gives

Ki j 5e4wAi j 1
1

2
ḡi j t. ~36!

However we will not considern52 because it poses speci
problems in what could correspond to an asymptotically E
clidean case.

III. ASYMPTOTICALLY EUCLIDEAN MANIFOLDS
AND WEIGHTED SOBOLEV SPACES

TheEuclidean spaceEn is the manifoldRn endowed with
the Euclidean metric which reads in canonical coordina
((dxi)2. A C`, n-dimensional Riemannian manifold (M ,e)
is calledEuclidean at infinityif there exists a compact subs
S of M such thatM2S is the disjoint union of a finite num
ber of open setsUi , and each (Ui ,e) is isometric to the
exterior of a ball inEn. Each open setUi,M is sometimes
called anendof M. If M is diffeomorphic toRn, it has only
one end; and we can then take fore the Euclidean metric.

A Riemannian manifold (M ,g) is called asymptotically
Euclideanif there exists a Riemannian manifold (M ,e) Eu-
clidean at infinity, andg tends toe at infinity in each end.
Consider one endU and the canonical coordinatesxi in the
spaceEn which contains the exterior of the ball to whichU is
diffeomorphic. Setr[$((xi)2%1/2. In the coordinatesxi the
metrice has componentsei j 5d i j . The metricg tends toe at
infinity if in these coordinatesg i j 2d i j tends to zero. A pos-
sible way of making this statement mathematically precis
to use weighted Sobolev spaces.~One can also use in thes
elliptic constraint problems weighted Ho¨lder spaces, but they
are not well adapted to the related evolution problems.!

A weighted Sobolev space Ws,d
p , 1<p,`, sPN1 ,

dPR, of tensors of some given type on the manifold (M ,e)
Euclidean at infinity is the closure ofC0

` tensors of the given
type (C` tensors with compact support inM ) in the norm

iuiW
s,d
p 5H (

0<m<s
E

V
u]muup~11d2!1/2 p(d1m)dmJ 1/p

,

~37!

where], u u and dm denote the covariant derivative, nor
and volume element in the metrice, andd is the distance in
the metrice from a point ofM to a fixed point. If (M ,e) is a
Euclidean space one can choosed5r , the Euclidean distance
to the origin. We recall the multiplication and imbeddin
properties~cf. @10,11#!
08403
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Ws1 ,d1

p 3Ws2 ,d2

p ,Ws,d
p if s<s1 ,s2 ,s,s11s22

n

p
,

d,d11d21
n

p
,

Ws,d
p ,Cb

m if m,s2
n

p
, b,d1

n

p
,

iuiC
b
m[ (

0< l<m
supM„u] luu~11d2!1/2(b1 l )

…. ~38!

The imbedding of the spaceWs,d
p into Ws8,d8

p , s>s8, d
>d8 is compact ifs.s8, d.d8. We have on the other han

~11d2!2b/2PWs,d
p if b.d1

n

p
, s>0. ~39!

Let (M ,e) be a manifold Euclidean at infinity. Then th
Riemannian manifold (M ,g) is said to be ‘‘Ws,r

p asymptoti-
cally Euclidean’’ if g2ePWs,r

p . When we speak of ‘‘as-
ymptotically Euclidean manifolds’’ without further specifi
cation, we suppose thatg2ePWs,r

p with s.n/p11, r.
2n/p. These hypotheses imply thatg is C1 andg2e tends
to zero at infinity.

IV. MOMENTUM CONSTRAINT

In the thin sandwich conformal formulation the mome
tum constraint reads

¹ j$~2N21!~Lb! i j %5h~•,w! ~40!

with

hi~•,w![¹ j$~2N21!ui j %1
n21

n
w2n/(n22)¹ it

1w2(n12)/(n22)Ji1v i , ~41!

where N and t are given functions onM and u a given
symmetric traceless tensor field. The sourcesJ andv are also
considered as known. We suppose momentarily thatw is also
a known function; in fact, it disappears from the equation
¹t[0 andJ[0.

The momentum constraint is a linear elliptic system
the unknownb on the manifold (M ,g). ~The symbol of the
principal operator is an isomorphism.!

Theorem.Let (M ,g) be aWs,r
p asymptotically Euclidean

manifold with s.n/p12,r.2n/p. Let u, tPWs11,d11
p be

given, (12N21) and (12w)PWs12,d
p ,N.0,w.0, and

J,vPWs,d12
p . The momentum constraint has one and on

one solution bPWs12,d
p if s.n/p22 and 0<s<s22,

2n/p,d,n222n/p.
Proof. The operator on the left-hand side of Eq.~40! is

injective onWs12,d
p because a solutionbPWs,d

p , d.2n/p
of the equation

¹ j$~2N!21~Lb! i j %50 ~42!
4-4
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is necessarily a conformal Killing field. Indeed ifbPC0
` the

equation implies by integration onM that

E
M

b i¹ j$~2N!21~Lb! i j %mg5E
M

~2N!21Lb.Lbmg50.

~43!

The same is true ifbPWs12,d8
p with d8.2n/p1n/222

~respectivelyd8>22 if p52). There is such ad8 if b
PWs12,d

p satisfies the homogeneous second order equa
~cf. a similar proof for the Laplace operator in Appendix B!.
It is known that there are no conformal Killing vector field
tending to zero at infinity on an asymptotically Euclide
manifold ~cf. @1# where a proof requiring only low regularit
is cited!.

Because the elliptic operator onb is injective, the isomor-
phism theorem applies to give the existence and unique
of b.

V. HAMILTONIAN CONSTRAINT

In the conformal method the Hamiltonian constraint rea
as a non-linear elliptic equation for the conformal factorw.
We write it

ngw5 f ~•,w!

f ~•,w![rw2aw (23n12)/(n22)1dw (n12)/(n22)

2qw2n/(n22), ~44!

with A given by Eq.~16!, and

r[knR~g!, a[knA•A, kn[~n22!/4~n21!

d[b2c, b[~n22!/~4n!t2. ~45!

By their definitions we have

a>0, b>0, c>0, q>0. ~46!

The functionsq andc, scaled and unscaled sources, are c
sidered as given onM. We will suppose thatt ~henceb) is
also known onM. The functiona is known when the mo-
mentum constraint has been solved: this can be done i
pendently ofw if t is constant and the unscaled sources h
zero momentum.

The constructive method of sub and super solutions u
by one of us@2# to solve non-linear elliptic equations on
compact manifold can be extended to asymptotically Euc
ean manifolds.

The following theorem is a particular case of the theor
proven in the Appendix B.

Theorem.Let (M ,g) be a (p,s,r) asymptotically Euclid-
ean manifold withs.n/p11, r.2n/p. Supposer, a, q,
dPWs,d12

p ,s21>s.n/p,2n/p,d. Suppose the equatio
ngw5 f (x,w) admits a subsolutionw2.0 and a uniformly
bounded supersolutionw1 , functions inC2 such that

ngw2> f ~•,w2!, ngw1< f ~•,w1! ~47!
08403
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w2<1, lim
`

w1>1

w2<w1 on M . ~48!

Suppose thatDw2 , Dw1PWs821,d811
p , s8>s, d8.2n/p.

Then the equation admits a solutionw such that

w2<w<w1 , 12wPWs12,d
p ~49!

if

2
n

p
,d,n222

n

p
. ~50!

Remark. When r[knR(g) we have r PWs22,d12
p if s

.n/p12, d.2n/p.
We will use this theorem directly in Sec. XI, with con

stant sub and super solutions. We will give and use in S
VI and X intermediate simple steps to obtain non-const
sub and supersolutions.

VI. BRILL-CANTOR THEOREM

The constraints in their conformal formulation are inva
ant under conformal rescaling~cf. Sec. II!.

In the case of a compact manifoldM a convenient first
step before studying the solution of the Lichnerowicz eq
tion is to use the Yamabe theorem which says that e
manifold (M ,g) is conformal to a manifold with constan
scalar curvature which can be chosen to be 1,21 or zero.
The positive, negative and zero Yamabe classes corresp
to the signs of these constants and are conformal invaria
There is no known analogous theorem for asymptotica
Euclidean manifolds.~In any case the curvatures could n
be non-zero constants.! However an interesting theorem ha
been proved by Brill and Cantor, with the following defin
tion.

Definition.The asymptotically Euclidean manifold (M ,g)
is in the positive Yamabe class if for every functionf on M
with f PC0

` , f [” 0, it is true that

E
M

$uD f u21r ~g! f 2%mg.0. ~51!

The positive Yamabe class is a conformal invariant due
the identity

ng f 2r ~g! f [w (n12)/(n22)$ng8 f 82r ~g8! f 8% ~52!

g85w4/(n22)g, f 85 f w21, ~53!

which gives after integration by parts withf PC0
` , because

mg85w2n/n22mg ,

E
M

$uD f u21r ~g! f 2%mg5E
M

$uD f 8u21r ~g8! f 82%mg8 .

~54!
4-5
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We will say, following O’Murchada, that the asymptot
cally Euclidean manifold (M ,g) is in the negative Yamabe
class if it is not in the positive one@7#. However, analogy
with the case of a compact manifold can be misleading
shown in the following theorem.

Theorem.~@12#!. The asymptotically Euclidean manifol
(M ,g) is conformal to a manifold with zero scalar curvatur
that is, the equationngw2r (g)w50 has a solutionw.0, if
and only if (M ,g) is in thepositive Yamabe class.

The physical metricḡ that solves the constraints togeth
with the symmetric two-tensorK has a non-negative scala
curvatureR(ḡ) if the sources have positive energy and t
initial manifold has constant mean extrinsic curvature~nec-
essarily zero in the asymptotically Euclidean case!. Thus,
R(ḡ)>0, with R(ḡ)[” 0 except in vacuum for an instant o
time symmetry, i.e.,K[0. Therefore, the physical metricḡ
on an initial maximal submanifold is in the positive Yama
class and all metricsg used as substrata to obtain it must
in that class.

We will prove a more general theorem. We will als
make fewer restrictions than Brill-Cantor on the weight
spaces.

Theorem.On a (p,s,r) asymptotically Euclidean mani
fold the equation

ngw2aw5v, ~55!

where a, vPWs,d12
p , v<0, has a solutionw.0, w21

PWs12,d
p ,s>0, d.2n/p only if for all f PC0

` , f [” 0, the
following inequality holds

E
M

$uD f u21a f 2%mg.0. ~56!

Under the same hypothesis the solutionw exists withw21
PWs12,d

p , and w.0 if one supposes moreovers.n/p, d
.n/22n/p21 if pÞ2 ~respectivelyd>21 if p52), and
that either v,0 or v[0 on M, or a5r (g) with, in this last
case,s>2.

The theorem of Brill and Cantor corresponds to the c
v[0 anda5r (g). They make the additional hypothesisp
.n.

Proof. ~1! ~‘‘only if’’ ! Supposew exists and solves the
equation satisfying the hypothesis of the theorem. Then
will show that for anyf [” 0, f PC0

` ,

E
M

$uD f u21a f 2%mg.0. ~57!

Indeed, letf PC0
` , f [” 0. The functionu5 f w21 has com-

pact support, belongs toW2,d8
p for any d8 and is such that

Du[” 0 sinceu, having compact support, cannot be a co
stant without being identically zero. We have by element
calculus:

uD f u25uDuu2w21wDw•D~u2!1u2uDwu2. ~58!
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The following integration by parts holds for the consider
functions:

E
M

wDw•D~u2!mg5E
M

2u2D•~wDw!mg ; ~59!

therefore,

E
M

wDw•D~u2!mg5E
M

2u2~wngw1uDwu2!mg ~60!

and

E
M

uD f u2mg.E
M

2u2wngwmg. ~61!

Hence whenw satisfies the given equation anduw5 f :

E
M

$uD f u21a f 2%mg.E
M

2vu2wmg>0 ~62!

if w.0 and v<0.
~2! ~‘‘if’’:existence! Settingw511u the equation reads

ngu2au5v1a. ~63!

The operatorng2a is injective onW2,d
p ~cf. Appendix A!.

The general theorem on linear elliptic equations on
asymptotically Euclidean manifold shows that our equat
has one solutionuPWs12,d

p , s>0, 2n/p,d,n222n/p.
The problem is to prove thatw511u is positive. We will
use the maximum principle, supposing the solution to beC2,
i.e., s.n/p. Sincea is not necessarily positive we cann
apply directly the maximum principle. One proceeds as
the Brill-Cantor proof. One considers the family of equ
tions, which all satisfy the criterion for the existence of
solutionwl with wl21PWs12,d

p ,

ngw2law5lv, lP@0,1#. ~64!

The solutionswl depend continuously onl and we have
w051. If the functionw1[w takes negative values there
one of these functionswl0

which takes positive or zero val

ues. The points wherewl0
vanishes are minima of this func

tion. It is incompatible with the equation satisfied bywl0
if v

is negative at that point. Therefore we havewl.0 for l
P@0,1# if v,0.

To prove thatwl0
.0, and hencewl.0 for lP@0,1#,

when v[0, we use, as Brill-Cantor, a theorem of Alexa
drov: if there is a pointx0 wherewl0

50, it is a minimum of

this function, henceDwl0
(x0)50. Since the functionwl0

and the function identical to zero take the same value as
as their first derivatives atx0 and satisfy the same elliptic
equation they must coincide~Alexandrov theorem!, a result
that contradicts the fact thatwl0

tends to 1 at infinity.

If we know only that v<0 but a5r (g) we first confor-
mally transform the metricg to a metric g85gc4n/(n22)

with zero scalar curvature: this is possible by the previo
4-6
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proof for v[0 ~original Brill-Cantor theorem!. The equation
to solve is equivalent to the following equation forw8
5wc21:

ng8w85c2(n12)/(n22)v<0, ~65!

whose solution isw8>1 becausew8 cannot attain a mini-
mum at a point ofM andw8 tends to 1 at infinity. h

VII. SOLUTION OF THE EQUATION

ngwÀr „g…wÄbw „n¿2…Õ„nÀ2…

Theorem. If bPWs,d12
p ,s.n/p,2n/p,d,n22

2n/p,b>0, the equation

ngw2r ~g!w5bw (n12)/(n22) ~66!

on the (p,s,r) manifold (M ,g), s.n/p12,r.n/p has a
solution w511u,uPWs12,d

p ,s<s,r.0 under one or the
other of the following hypotheses:

~1! On the subset ofM wherer (g),0 there exists a num
ber m.0 such that

sup$xPM ,r (g)(x),0%

ur ~g!u
b

<m. ~67!

~2! (M ,g) is in the positive Yamabe class. The solution
unique in both cases.

Proof. ~1! The manifold (M ,g) and the functionf (x,y)
5r (g)f1b(f)(n12)/n22) satisfy the hypothesis~H! spelled
out in Appendix B. The equation admits the subsoluti
w250. A numberw1 is a supersolution if

w1>1 and r ~g!1bw1
4n/(n22)>0 onM . ~68!

The second inequality is a consequence of the first ifr (g)
>0.

The hypothesis made on (M ,g) on the subsetr (g),0
insures the existence of the numberw1>w2[0, given by

w15max~1,m (n22)/4n!. ~69!

The existence of a solutionc, with 0<c<w1 and 12c
PWs12,d

p results from the general theorem. Such a solut
can be obtained constructively. We know thatcÞ0 since it
tends to 1 at infinity.

We show thatc.0 on M by using the Alexandrof theo
rem as we did in the proof of the Brill-Cantor theorem: ifc
vanishes at a pointx0PM this point is a minimum ofc,
henceDc(x0)50. The functionsw5c andw[0 both sat-
isfy the elliptic equation

ngw2@r ~g!1bc4n/n22#w50. ~70!

They, as well as their gradients, take the same values, z
at the pointx0, therefore they coincide. This contradicts t
fact that c tends to 1 at infinity, therefore there exists n
point x0 wherec(x0)50. Hencec.0 on M.

~2! If ( M ,g) is in the positive Yamabe class we confo
mally transform it to a manifold (M ,g8) such thatr (g8)
08403
n

ro,

[0. The subset ofM where r (g8),0 is empty; therefore,
w151 can be chosen as a supersolution. The proof thaw
.0 onM can be made using simply the maximum princip
a solutionwPC2 of the equation

ngw2bw (n12)/(n22)[ngw2~bw4n/(n22)!w50 ~71!

with b>0 cannot attain a nonpositive minimum onM with-
out being a constant~which is not possible withw tending to
1 at infinity except ifb[0, in which casew[1).

The uniqueness property in case 2 is simply a con
quence ofb>0 and of the increasing property withw.0 of
the functionw (n12)/(n22), together with the fact that the dif
ference of two solutions tends to zero at infinity. The uniqu
ness in the general case results from the conformal pro
ties. Indeed suppose the equation

ngw2r ~g!w5bwQ, Q5
n12

n22
~72!

has two solutionw1 andw2. We deduce from the conforma
identity

ngw2r ~g!w52r ~ ḡ!wQ, ḡ5w2pg, p5
2

n22
~73!

that

r ~ ḡ!5r ~gw1
2p!5r ~gw2

2p!52b. ~74!

Consider the identity

ngw
1
2p~w1

21w2!2r ~gw1
2p!w1

21w2[2r ~gw2
2p!~w1

21w2!Q.

~75!

It implies, because of the previous equalities,

ngw
1
2p~u21!2bu

uQ2121

u21
~u21!50, u[w1

21w2 .

~76!

We haveb>0, u.0, (uQ2121)/(u21).0 since u.0
andQ.1. We deduce from the fact thatu21 tends to zero
at infinity thatu2150 on M, i.e., w1[w2. h

Remark. By the above theorem, under the hypothe
made, an asymptotically Euclidean manifold (M ,g) is con-
formal to a metricg8 of given non-positive scalar curvatur
r (g8), and the solutionw of Eq. ~66! with b52r (g8) gives
the conformal factor. ~This result was known to
O’Murchadha.!

VIII. SOLUTION OF THE EQUATION

ngwÀr „g…w¿awÀP¿qwÀP8Ä0, aÐ0, qÐ0

This equation is the conformal expression of the Ham
tonian constraint on a maximal manifold with no unscal
sources. The following theorem has been proved indep
dently in the casen53 in 1979 by Cantor, and Chaljub
4-7
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Simon and Choquet-Bruhat~in weighted Holder spaces!. We
give here a new constructive proof; the corresponding fu
tion f (x,w) satisfies the hypothesis H of Appendix B on a
interval @ l ,`), l .0.

The generalized Brill-Cantor theorem shows that the c
sidered equation can have a solutionw.0 only if (M ,g) is
in the positive Yamabe class, a result in agreement with
fact that the original Hamiltonian constraint on an initi
maximal submanifold (M ,ḡ) implies r (ḡ)>0.

Theorem.The equation on the (p,s,r) asymptotically
Euclidean manifold (M ,g), s.n/p12, r.n/2222n/p if
pÞ2, andr>21 if p52, given by

ngw2r ~g!w52aw2P2qw2P8, a>0, q>0,

P5~3n22!/~n22!, P85n/~n22!,

a, qPWs,d12
p , s22>s.

n

p
, n222

n

p
.d.2

n

p
,

~77!

has a solutionw.0, w21PWs12,d
p if and only if (M ,g) is

in the positive Yamabe class. This solution is such thaw
>1. It can be obtained constructively and is unique.

Proof. ~1! ~‘‘only if’’ ! This part follows from the gener
alized Brill-Cantor theorem.

~2! ~‘‘if’’ ! The manifold (M ,g) is conformal to a mani-
fold (M ,g8) with zero scalar curvature,g8[c4/(n22)g,
r (g8)50. Conformal covariance shows that the resolution
the given equation is therefore equivalent to the resolution
an equation of the same type but with no linear term, whi
suppressing primes, we write as

ngw52aw2P2qw2P8, a>0, q>0. ~78!

This equation admits a constant subsolutionw251 but no
finite constant supersolution. However, it is possible to c
struct a sequenceunPWs12,d

p starting from the subsolution
w251 by solving the equations withk>0, kPWs,d12

p :

ngun2kun52a~11un21!2P2q~11un21!2P82kun21 .
~79!

We haveunPWs12,d
p ,Ca

2 for all a such thata,d1n/p,
henceun tends to zero at infinity and we can use the ma
mum principle to see thatun>0. We could choosek>Pa
1P8q and deduce as before from the maximum princi
that the sequenceun is pointwise increasing, but we do no
obtain an upper bound through the maximum principle
cause we do not have a supersolution. We choose firs
steadk50 to construct our sequence and write the ellip
estimate, using the fact that (11un)2P<1 sinceun>0,

iuniW
2,d
p <C$iaiW

0,d12
p 1iqiW

0,d12
p %. ~80!

The sequence, being uniformly bounded inW2,d
p , admits a

subsequence which converges in theW1,d8
p norm, d8,d, to

an elementuPW2,d
p . The rest of the proof is the same as

the general arguments given in Appendix B, except tha
08403
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the present case, the sequenceun is not proven to be mono
tonic, nor identical to the subsequence which converg
Hence we cannot conclude that the limitu of the subse-
quence is a solution of Eq.~78!.

To obtain a converging sequence, and consequently a
lution, we again use Eq.~79!, but now with k>Pa1P8q.
For Eq.~79! with such ak, the subsequence limitu serves as
a supersolution. Therefore, the increasing sequenceun is
bounded above byu and it converges to it inWs12,d

p . We
havew>1. A pointwise upper bound forw can be deduced
from theWs12,d

p norm of u5w21.
Remark.The sequenceun and the limit u, bounded in

W2,d
p norm in terms of theW0,d12

p norms of a and q, are
therefore bounded inCa

0 norm in terms of these norms ofa
andq if p.n/2.

~3! Uniqueness: the equation withr (g)50 has a unique
solution such thatw tends to 1 at infinity because of th
monotonicity of the right hand side and the maximum pr
ciple. The original equation also has a unique solution.h

IX. SOLUTION FOR SCALED SOURCES

We now prove an existence theorem for the non-lin
elliptic equation forw expressing the Hamiltonian constrai
on an arbitrary initial manifold, when there are no unsca
sources.

Theorem (scaled sources). The equation

ngw2r ~g!w5 f ~•,w![2aw2P2qw2P81bwQ ~81!

with a>0, q>0, b>0; a,q,bPWs,d12
p , s.n/p, 2n/p

,d,n222n/p, has a solutionw511u, uPWs12,d
p , w

.0 which can be obtained constructively, if either~a! or ~b!
holds:

~a! On the subset wherer (g),0

ur ~g!u<b. ~82!

~b! (M ,g) is in the positive Yamabe class.
The solution is unique in either case.
Proof. ~a! The solution exists, with the indicated prope

ties, because the equation admits a subsolutionw2 , with 0
,w2 , which is the solution of the equation~from Sec. VII!

ngw22r ~g!w22bw2
Q50. ~83!

The solution satisfiesw2<1 under the hypothesis made o
r (g) because the equation forw2 admits then a supersolu
tion equal to 1. The original Lichnerowicz equation~81! ad-
mits as supersolutionw1>1 the solution of the equation~cf.
Sec. VIII!
4-8
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ngw11aw1
2P1qw1

2P850 ~84!

because we have

r ~g!w11bw1
Q>0 if w1>1 and r ~g!1b>0.

~85!

~b! When (M ,g) is in the positive Yamabe class, th
equation is equivalent to an equation of the same type w
zero linear term because of conformal covariance. We m
then argue existence just as in~a!, because the condition o
r (g) when it is negative has become vacuous.

The solution tending to 1 at infinity of the equation wi
r (g)50 is unique because of the monotonicity off in w. In
the general case one uses the conformal transformatio
curvature as in Sec. VI. Take for simplicity of writing q50.
We have now, ifw i ~i 51 or 2! is a solution

2r ~w i
2pg!52b1aw i

2P2Q ; ~86!

therefore the conformal identity withu5w1
21w2 gives

nw
1
2pgu1~b2aw1

2(2P1Q)!u5~b2aw2
2(P1Q)!uQ.

~87!

This equation may be written

nw
1
2pgu2H bS uQ2121

u21 D1aw1
2(P1Q)S 12u2P21

u21 D J u~u21!

50. ~88!

If u.0, b>0, a>0 the function u, which tends to 1 a
infinity, can only beu[1 on M. h

Remark 1.We see that the condition that (M ,g) be in the
positive Yamabe class is not necessary for the existence
positive solution ifb[” 0. However ifb[” 0 the Hamiltonian
constraint is coupled with the momentum constraint, and
solution is not the whole story.

Remark 2.The conditionb>2r (g) will somewhat be
relaxed in the last section but we will requireb.0.

X. DISCONTINUOUS SOURCES

It is essential for physical applications to admit isolat
sources, hence discontinuous functionsq. This possibility is
included if we extend the previous existence theorem
functions qPW0,d12

p . We also will takeaPW0,d12
p to in-

clude the possibility of discontinuous scaled momentum
We taked5bPWs,d12

p , s.n/p. We leave the more genera
cases for later study.

Theorem.The Lichnerowicz equation with scaled source

ngw2r ~g!w5 f ~•,w![2aw2P2qw2P81bwQ,
~89!

on a (p,s,r), s.n/p12, r.2n/p asymptotically Euclid-
ean manifold (M ,g) in the positive Yamabe class has o
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and only one solutionw.0, w215uPW2,d
p if a,q

PW0,d12
p with d.2

n

p
, p.n/2, a>0, q>0, b>0, b

PWs,d12
p , s.n/p.

Proof. We first conformally transform the equation to a
equation with no linear term. We then proceed as follow
Consider a Cauchy sequencean ,qnPWs,d12

p , s.n/p, con-
verging in theW0,d12

p norm to a, q. Denote bywn511un

the solution with coefficientsan , qn . We know thatun

PWs12,d
p and that there exists numbersl .0 @depending only

on (M ,g) andb] and m> l @depending only on (M ,g) and
the W0,d12

p norms ofa andq] such thatl<wn<m.
The differenceun2um satisfies the equation

ng~un2um!2Amn~un2um!

5wm
2P~an2am!1wm

2P8~qn2qm! ~90!

with

Amn[anS wm
2P2wn

2P

wn2wm
D 1qnS wm

2P82wn
2P8

wn2wm
D 1bS wn

Q2wm
Q

wn2wm
D .

~91!

Recall that forn53 we haveP57, P853 andQ55. The
quotients in the above formulas are then polynomials~with
coefficients equal to 1! in wm

21 andwn
21 for the first two, and

wm andwn for the third. Therefore, they are on the one ha
positive and, on the other hand, uniformly bounded~for any
pair n, m) because 0, l<wm , wn<m. For generaln the
numbersP, P8 andQ are positive rationals, the quotients
the formula are also positive and uniformly bounded. W
deduce from this uniform boundedness that there exis
numberN such that

iAmniW
0,d12
p <N$ianiW

0,d12
p 1iqniW

0,d12
p 1ibiW

0,d12
p %.

~92!

We infer from this estimate and the positivity ofAmn that the
operatorng2Amn is injective in W2,d

p ~see Condition 2 in
Theorem 1 of Appendix B!. Therefore, there exists a numb
C depending only on (M ,g), theWs,d12

p norm of b, and the
W0,d12

p norms ofa andq such that

iun2umiW
2,d
p <C$ian2amiW

0,d12
p 1iqn2qmiW

0,d12
p %.

~93!

Sincean and qn are Cauchy sequences, the same is true
un , because of the above inequality. Henceun converges in
W2,d

p to a limit uPW2,d
p . The convergence isa fortiori in Ca

0

if p.n/2, and for some positivea, sinced.2n/p. Theun’s
are such that 11un> l .0; therefore alsow511u> l .0.
The functionw satisfies the Lichnerowicz equation~in the
sense of generalized derivatives! with scaled sources. h

XI. GENERAL CASES

In the case where there are unscaled sources the co
cientd in the Lichnerowicz equation is negative or zero on
4-9
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maximal initial manifoldM. It can take different signs ifM is
not maximal. The previous simple method to obtain sub a
super solutions does not apply. We will then look for co
stant sub and super solutionsl andm, 0, l<1<m. We will
also obtain a new theorem for the Lichnerowicz equation
the case of scaled sources on a non-maximal submani
To make the algebra easier we restrict our study to the
portant physical casen53. Results along the same lines c
likely be obtained for general n. The equation is then

ngw2rw1aw271qw232dw550,

a>0, q>0, d5b2c, b>0, c>0. ~94!

The numbersl andm are admissible sub and supersolutio
if they satisfy onM the following inequalities:

Px~ l 4!<0, Px~m4!>0, for all xPM , 0, l<1<m
~95!

wherePx is the polynomial

Px~z![d~x!z31r ~x!z22q~x!z2a~x!. ~96!

Remark.In the case ofn.3 the problem is the study o
the sign of the function:

Fx~z![d~x!zn1r ~x!zn212q~x!z(n21)/22a~x! ~97!

for numbersl 4/(n22) andm4/(n22).
Since all the coefficients inPx tend to zero at infinity the

conditions that we will obtain depend on the ratios of th
respective decays.

We denote byM 1 the subset ofM whered.0, by M 2

the subset whered,0, by M0 the subset whered50. In the
case of isolated sourcesM 2 is a compact subset ofM. We
study the sign ofPx on these various subsets. The derivat
of Px is

dPx /dz53d~x!z212r ~x!z2q~x!. ~98!

~1! On M 1 , d(x).0, the derivativedPx /dz has 2 roots
of opposite signs. The positive root is

z1~x!5
2r ~x!1@r 2~x!13d~x!q~x!#1/2

3d~x!
>0. ~99!

We havez1(x).0 if r (x),0, or if r (x)>0 andq(x).0.
dPx /dz is equal to2q(x)<0 for z50 and is negative or

zero as long asz<z1(x). Therefore Px decreases from
a(x)<0 for z50 to a minimum forz5z1(x) and then in-
creases to1` whenz increases to1`. HencePx has one
and only one positive rootz1(x). We havePx(z)>0 as long
asz>z1(x).

There existsl (x).0 such thatPx„l
4(x)…<0 if and only if

z1(x).0. Indeed numbersl (x) andm(x) such that

0, l ~x!<z1~x!<m~x!, xPM 1 ~100!

satisfy

Px„l
4~x!…<0, Px„m

4~x!…>0. ~101!
08403
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Lemma 1.There exist numbersl 1 andm1 such that

Px~ l 1
4 !<0, Px~m1

4 !>0 for all xPM 1 ~102!

if and only if

inf
xPM1

z1~x!.0 ~103!

and

sup
xPM1

z1~x!,1`. ~104!

Sufficient conditions for the first inequality are

inf
xPM1

H 2r ~x!

3d~x!
1S r 2~x!

9d2~x!
1

q~x!

3d~x!D 1/2J .0 ~105!

or

inf
xPM1

a~x!

d~x!1ur ~x!u
.0. ~106!

For the second inequality they are thatur (x)u/d(x),
q(x)/d(x), a(x)/d(x) be uniformly bounded onM 1 .

Proof. The necessary condition as well as the first su
cient condition are consequences of the previous study.
ficient conditions for this first condition to be satisfied a
that one of the two terms in the sum has a strictly posit
infimum. The second sufficient condition results from t
fact ~elementary calculus! that Px(z)<0 if

z<minS 1,
a~x!

d~x!1ur ~x!u D . h ~107!

Remark.The sufficient conditions will be satisfied on th
whole of M 1 if we can split it into two subsets,M 1

[M1øM2, such that

inf
xPM1

a~x!1q~x!

d~x!1ur ~x!u
.0 and inf

xPM2

2r ~x!

d~x!
.0. ~108!

This pair of inequalities can be realized whenM is compact
anda(x)1q(x)[” 0 by a conformal change of choice of th
metric g to a metricg8 having a strictly negative curvatur
in the complement ofM1 in M. Such a construction can als
eventually be made in the asymptotically flat case, by re
lution of an adequate Dirichlet problem.

~2! On M 2 , d(x),0.
We have Px(z),0 for all z.0, hence no admissible

m(x), if r (x)<0. We therefore supposer (x).0 for all x
PM 2 . If r 2(x)13q(x)d(x)<0, we havedPx /dz<0 for
all z; and the polynomialPx takes non-negative values on
if it is identically zero. If r 2(x)13q(x)d(x).0 the polyno-
mial dP/dz has two positive roots:

0<z1~x!5
r ~x!2$r 2~x!23q~x!ud~x!u%1/2

3ud~x!u
, ~109!
4-10
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z2~x!5
r ~x!1$r 2~x!23q~x!ud~x!u%1/2

3ud~x!u
.0, ~110!

with z1(x).0 if and only if q(x)Þ0.
The polynomialPx decreases for 0<z<z1(x), increases

for z1(x)<z<z2(x), and decreases to2` for z>z2(x). We
havePx(0)52a(x)<0. ThereforePx takes negative value
for somez.0 if either a(x).0 or z1(x).0, i.e.,q(x).0.
The polynomialPx takes positive values, equivalently adm
two positive rootsz1(x) andz2(x) which are such that

z1~x!<z1~x!<z2~x!<z2~x!, ~111!

if and only if its maximum, attained forz5z2(x), is positive,

Px„z2~x!…>0. ~112!

We have thenPx(z)<0 for 0<z<z1(x), andPx(z)>0 for
z>z2(x). If

r 2~x!13q~x!d~x!<0, ~113!

the polynomialPx is always decreasing. It takes positiv
~i.e., non-negative! values only if it is identically zero.

Lemma 2.Suppose thatr (x).0, r 2(x)23q(x)d(x).0
and Px„z2(x)…>0 for all xPM 2 . There exist numbersl 2

andm2 such that

Px~ l 2
4 !<0, Px~m2

4 !>0 for all xPM 2 ~114!

if the following conditions are satisfied:

inf
M2

z1~x!.0, sup
xPM2

z1~x!< inf
xPM2

z2~x!, ~115!

and ur (x)u/ud(x)u, q(x)/ud(x)u, a(x)/ud(x)u are uniformly
bounded onM 2 .

Proof. All numbersl 2 andm2 such that

l 2<z1~x!, z1~x!<m2<z2~x! for all xPM 2

~116!

are such thatPx( l 2
4 )<0, Px(m2

4 )>0. These numbers exis
with l 2.0 and1`>m2> l 2 under the given conditions.h

~3! On M0 , d(x)50, Px reduces to a second order pol
nomial

Px~z!5r ~x!z22q~x!z2a~x!. ~117!

If r (x)<0, thenPx,0 as soon asz.0 except if it is iden-
tically zero. We supposer (x).0. ThenPx admits one posi-
tive root z0(x):

z0~x!5„2r ~x!…21$q2~x!14a~x!r ~x!%1/2>0. ~118!

Lemma 3.We suppose thatr (x).0 for all xPM0.
There existl 0.0 and m0> l 0 such thatPx( l 0

4)<0 and
Px(m0

4)>0 for all xPM0 if and only if

inf
xPM0

a~x!

r ~x!
.0 or inf

xPM0

q~x!

r ~x!
.0 ~119!
08403
and

sup
xPM0

a~x!

r ~x!
,1` and sup

xPM0

q~x!

r ~x!
,1`. ~120!

Proof. Under one or the other of the first inequalities w
have

inf
xPM0

z0~x!.0. ~121!

The other ones insure

sup
xPM0

z0~x!,1`. ~122!

We set

l 0
45 inf

M0

z0~x!, m0
45sup

M0

z0~x!. ~123!

All numbersl andm satisfying the following inequalities

0, l< l 05 inf
M0

z0~x!< sup
xPM0

z0~x!5m0<m ~124!

satisfyPx( l
4)<0 andPx(m

4)>0 for all xPM0. h
The following lemma is an immediate consequence of

previous three.
Lemma 4.We suppose that the conditions given in t

lemmas 1, 2, and 3 for the existence ofl 2 , l 1 , l 0 andm2 ,
m1 , m0 are satisfied. Then there existsl andm such that:

0, l<1<m and Px~ l 4!<0, Px~m4!>0 for all xPM
~125!

if the following inequalities hold:

m1<m2 , m0<m2 , m2>1. ~126!

Proof. Take

m5m2 , l 5min~1,l 0 ,l 1 ,l 2!. ~127!

Then l andm satisfy the required inequalities for allxPM .
They are admissible sub and supersolutions. h

Theorem.On a 3-dimensional asymptotically Euclidea
manifold the Lichnerowicz equation

ngw2rw1aw271qw232dw550,

a>0, q>0, d5b2c, b>0, c>0, ~128!

with r, a, q, dPWs,d12
p , s.n/p, 2n/p,d,n222n/p,

admits a solutionw.0, w21PWs12,d
p if the assumptions of

Lemma 4 are satisfied.
Corollary. No Unscaled Sources, d[b.0. The Lichner-

owicz equation has a solutionw.0, w21PWs12,d
p if

~i! The quotientsur (x)u/b(x), q(x)/b(x), a(x)/b(x) are
uniformly bounded.

~ii ! There is a positive numbere.0 such that if@a(x)
1q(x)#/b(x),e, then
4-11
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r ~x!,0 and
ur ~x!u
b~x!

.e8.0. ~129!

This last condition can be achieved ifa1q[” 0 by a confor-
mal transformation and solution of a Dirichlet problem in t
subset ofM where (a1q)/d,e, so long as this subset i
compact~cf. @1,2#!.

XII. UNSCALED SOURCES, CASE nÄ3

We treat in this section the Hamiltonian constraint f
unscaled sources in the casen53. The Lichnerowicz equa
tion reads

ngw2rw1aw271cw550. ~130!

The functionsa>0 andc>0 are given on (M ,g).
Theorem.Let (M ,g) be a (p,s,r) asymptotically Euclid-

ean manifold,s.n/p12, s.2n/p with r .0. Let a, c
PWs,d12

p be given on (M ,g), s.n/p, s.2n/p. There ex-
ists an open set of values ofa andc such that the Lichner-
owicz equation with unscaled sources has a solutionw.0,
with 12wPWs12,d

p .
Proof. We look for constant admissible sub and super

lutions l andm such that

0, l<1<m,

Px~ l 4!>0, Px~m4!<0, for all xPM , ~131!

whereP is the polynomial,

Px~z![c~x!z32r ~x!z21a~x!. ~132!

~1! Casec.0.
We setz5X21 and consider the polynomial which ha

the same sign asPx ,

Q~X![a$X32a21rX1a21c%. ~133!

This polynomial has 3 real roots if

4r 3>27ac2. ~134!

Two of these roots are positive, given by the classical f
mulas:

X2[l sin
u

3
, X15l sin

u12p

3
~135!

with

l5
2r 1/2

~3a!1/2
, sinu5

3c~3a!1/2

2rr 1/2
, 0<u<

p

2
. ~136!

The corresponding roots ofPx are

z1[
1

X1
<

1

X2
[z2~x!. ~137!
08403
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We have Px(z)>0 for 0<z<z1(x), Px(z)<0 for z1(x)
<z<z2(x).

~2! Casec(x)50.
The polynomialPx reduces to

Px~z![2r ~x!z21a~x!. ~138!

We havePx(z)>0 for 0<z<(r 21a)1/2, and Px(z)<0 for
z>(r 21a)1/2. Note that (r 21a)1/2 is the value forc50 of the
previously computedz1 while the previousz2 tends to infin-
ity whenc tends to zero. The casesc(x)>0 are thus unified.

The following constantsl and m are sub and supersolu
tions if

l<z1~x!, z1~x!<m<z2~x! for all xPM . ~139!

They exist, satisfying the required properties 0, l<1<m, if

inf
xPM

z1~x!.0, inf
xPM

z2~x!>max$1, sup
xPM

z1~x!%. ~140!

One then takes

l 5min$1, inf
xPM

z1~x!%, m5 inf
xPM

z2~x!. ~141!

We give below sufficient conditions to satisfy the vario
inequalities, using the expressions

z15
2

A3

r 21a

sin„~u12p!/3…
, z25

2

A3

r 21a

sin~u/3!
,

with 0<u<
p

2
. ~142!

The functions sin(u/3) and sin„(u12p)/3… are respectively
increasing and decreasing whenu increases from 0 top/2.
Denote byumin andumax the infimum and supremum ofu on
M defined as solutions between 0 andp/2 of the equations

sinumin5 inf
M

3c~3a!1/2

2rr 1/2
, sinumax5sup

M

3c~3a!1/2

2rr 1/2
.

~143!

Therefore

inf
M

z1>
2

A3
inf
M

~r 21a!$sin„~umin12p!/3…%21

sup
M

z1<
2

A3
sup
M

~r 21a!$sin„~umax12p!/3…%21

inf
M

z2>
2

A3
inf
M

~r 21a!$sinumax%
21. ~144!

We find by elementary calculus that
4-12
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0<sin„~umax12p!/3…2sin~umax/3!5A3cos„~umax1p!/3…

<
A3

2
. ~145!

The minimum zero is attained forumax5p/2, i.e.,

sup
M

3c~3a!1/2

2rr 1/2
51. ~146!

To insure the existence of constantsl and m satisfying the
required properties we suppose

l 25
2

A3
inf
M

~r 21a!$sin„~umin12p!/3…%21.0, ~147!

and we set

l 5min$ l 2,1%. ~148!

We suppose also

m1[
2

A3
inf
M

~r 21a!$sin~umax/3!%21>1 ~149!

and

m2[
2

A3
sup
M

~r 21a!$sin„~umax12p!/3…%21<m1 .

~150!

The conditionm2<m1 can be satisfied for an open set
values of the coefficientsc, a ~given r ) due to the previous
elementary study. We can take form any number between
max$1,m2% and m1 . The numbersl and m so chosen are
admissible sub and supersolutions of the Lichnerowicz eq
tion. The existence of a solutionw with the required proper-
ties results from the general theorem, given in Sec. V.h

XIII. COUPLED SYSTEM

In the conformal method the momentum and the Ham
tonian constraints decouple when the initial manifoldM has
constant mean extrinsic curvature and the unscaled sou
have a momentumN50. The theorems of the previous se
tions are then sufficient to give existence, non-existence
uniqueness theorems of the systems of constraints. We
in the next sections study cases where one of these hyp
esis does not hold; hence the constraints do not decoup

XIV. IMPLICIT FUNCTION THEOREM METHOD

The use of the implicit function theorem is the simple
way of proving existence of solutions of equations in t
neighborhood of a given one. It works as follows.

Let U andV be open sets of Banach spacesX andY and
let F be a C1 mapping fromU3V into another Banach
spaceZ:
08403
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F:U3V→Z by ~x,y!°F~x,y!. ~151!

Suppose that the partial derivative ofF with respect toy at a
point (x0 ,y0)PU3V, Fy8(x0 ,y0), is an isomorphism fromY
onto Z; then there exists a neighborhoodW of x0 in U such
that the equation

F~x,y!50 ~152!

has a solutionyPV for eachxPW.
We consider the quantitiesq and v ~scaled sources! to-

gether withN andu, a traceless symmetric 2-tensor as giv
on the asymptotically Euclidean manifold (M ,g), with q, v,
12N21PWs,d12

p , uPWs11,d11
p . We will discuss the exis-

tence ofw andb as we perturbJ andt away from zero. The
points x,y and the Banach spacesX, Y, and Z are as fol-
lows:

x[~t,J!PX[Ws11,d11
p 3Ws,d12

p ,

y[~b,w21!PV[Yù$w.0%, Y[Ws12,d
p 3Ws12,d

p ,

Z[Ws,d12
p 3Ws,d12

p . ~153!

The mappingF is given by

F~x,y![„H~t,J;w,b!, M~t,J;w,b!… ~154!

where H and M are the left hand sides of the conform
formulation of the constraints, H(x,y)[ngw2

f (•;t;b,w), M(x,y)[¹̄•„(2N)21Lb…2h(•;t,J;w).
The multiplication properties of weighted Sobolev spac

show thatF is a C1 mapping fromX3V into Z if s.n/p
andd.2n/p. The partial derivativeFy8 at a point (x,y) is
the linear mapping fromY into Z given by

~db,dw!°~Hy8 ,My8!•~db,dw! ~155!

with @A is given by Eq.~16!#

Hy8•~db,dw![ngdw2adw12knw2P2N21A•Ldb,

a[r 1Pw2P21a~b!1P8qw2P821

1dQwQ21,

My8•~db,dw![¹•~2N21Ldb!2ldw,

l[
2~n21!

~n22!
w (n12)/(n22)Dt1

2~n12!

n22

3w (n16)/(n22)J. ~156!

Theorem.Specify on the asymptotically Euclidean man
fold (M ,g) a traceless tensoruPWs11,d11

p , a scalarN.0
with N21PWs12,d

p , and scaled and unscaled sourcesq, v,
cPWs,d12

p , s.n/p, 2n/p,d,n222n/p. Let (b0 ,w0)
be a solution of the corresponding constraints withDt050
~hencet050 sincet0PWs11,d11

p ), andJ050. Suppose that
on M
4-13
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a0[r 1Pw0
2P21a~b0!1P8w0

2P821q2cQw0
Q21>0.

~157!

Then there exists a neighborhoodU of (t0 ,J0) in X such that
the coupled constraints have one and only one solu
(b,w), w.0, (b,12w)PY.

Proof. Under the hypotheses that we have made the
tial derivativeFy8(x0 ,y0) is an isomorphism fromY onto Z
because the system of linear elliptic equations

¹̄•$~2N!21Ldb%5h

ngdw2a0dw522knw2P~2N21A!•Ldb1k ~158!

has one and only one solution (dw,db)PY for any pair
(h,k)PZ. h

Corollary. The conclusion of the theorem holds if (M ,g)
is in the positive Yamabe class andd>0 ~realized in par-
ticular if all sources are scaled! without having to consider
the sign ofa0.

Proof. If ( M ,g) is in the positive Yamabe class we ca
choose (M ,g8) in the same conformal class and such th
r (g8)50. To the dataN, u, q, v correspond dataN8, u8, q8,
v8 and to the solutionb0 ,w0 corresponds a solution of th
transformed conformal constraints. The correspondinga08 is
positive and the conclusion of the theorem applies to
transformed system, hence also to the original system.h

XV. CONSTRUCTIVE METHOD WITH SCALED
SOURCES

We will give in the next two sections another method
obtain solutions of the coupled system. It will give new r
sults for unscaled sources on a maximal manifold. It is p
sible, though not proven, that the hypotheses we make in
case of scaled sources on a non-maximal manifold imply
this manifold is in the positive Yamabe class.

Lemma 1.The equation

ngw5 f ~•,w![rw2aw2P2qw2P81bwQ ~159!

with r, a, q, b satisfying the hypothesis of the theorem
Sec. IX admits as a supersolution the solutionF(A), 1
2F(A)PWs12,d

p , of the equation

ngw5 f A~•,w![2Aw2P2qw2P8 ~160!

if a<A, with A a given function inWs,d12
p .

Proof. The functionF(A) exists by the theorem in Sec
IX. It satisfies

ngF2 f ~•,F!5 f A~•,F!2 f ~•,F!<~a2A!F2P<0;
~161!

hence it is a supersolution. h
Theorem.Under the conditions onr and b given in the

theorem of Sec. IX there exists a numbere.0 such that if

iDtiW
0,d12
p <e, n.p, d.2n/p, ~162!
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the coupled constraints admit a solution (b,w) with b, 1
2wPWs12,d

p .
Proof. We will construct a sequence (wn ,bn) by the in-

ductive algorithm

ngwn5 f ~•,bn21 ,wn![rwn2a~bn21!wn
2P2qwn

2P8

1bwn
Q ,

¹ i$~2N21!~Lbn! i j %5hj~•,wn!

[¹ i$~2N!21ui j %

1
n21

n
wn

2n/(n22)¹ jt1v j

~163!

with

a~b![kn~2N!22u2u1Lbu2, kn[
n22

4~n21!
. ~164!

The equations for thewn’s admit all the same subsolutio
w2 , which depends only onr and b. They admit the same
supersolutionF(A) if there existsAPWs,d12

p such that
a(bn21)<A for all n.

We start for instance fromb050 and chooseA such that

A.a~0![kn~2N!22uuu2. ~165!

Suppose thatbn21PWs,d12
p and thata(bn21),A. Thenwn

exists, 12wnPWs12,d
p , and w2<wn<F(A). Also, bn

PWs12,d
p exists, and there is a constantC ~cf. Appendix A!

depending only on (M ,g) such that

ibniW
2,d
p <CH n

n21
iDtiW

0,d12
p supMF~A!2n/(n22)

1iPiW
0,d12
p J , ~166!

whereP is the given vector

P[¹•$~2N!21u%1v. ~167!

The weighted Sobolev multiplication theorem and the e
pression fora(b) imply that if bnPW2,d

p , n/p,1, d.
2n/p, then

a~bn!PW1,d812
p for all d8 such thatd8,d1S d1

n

pD ,

~168!

and there exists a numberC such that

ia~bn!iW
1,d812
p <C$iuiW

1,d11
p

2
1ibniW

2,d
p

2
%. ~169!

By the weighted Sobolev inclusion theorem, there exists t
another constantC such that
4-14
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ia~bn!iC
d9
0 <Cia~bn!iW

1,d812
p ~170!

for all d9,d8121n/p, hence also for alld9,2d12
1n/p.

Sinced1n/p.0 there exists a numbera such that

d121
n

p
,a,2d121

n

p
. ~171!

We choose forA a function of the form, withm some posi-
tive constant,

A5m/sa, ~172!

where s[11d2 ~see Sec. III!. We haveAPW0,d12
p since

a.d121n/p. For such a functionA, the inequality
a(bn)<A is equivalent to

saa~bn!<m, i.e., ia~bn!iW
0
2 ,a<m. ~173!

Using the previous estimates we see that a sufficient co
tion to insure onM the inequalitya(bn)<A is to have some
number depending only on (M ,g) andN, denoted byC, that
has the property

iDtiW
0,d12
p

2
supMFm

4n/(n22)1iviW
0,d12
p

2
1iuiW

1,d11
p

2
<Cm,

~174!

where we have setFm[F(s2am).
We choosem large enough to have

Cm.S, S[iviW
0,d12
p

2
1iuiW

011,d11
p

2
. ~175!

The inequality obtained above shows that we can const
wn11 and hencebn11, enjoying the same properties aswn ,
bn if Dt is sufficiently small inW0,d12

p norm. The existence
of a solution (w,b) of the coupled constraints as limit of
subsequence is proved by a compactness argument and
tic regularity as in the case of the Hamiltonian constra
with a givenb. h

Remark.The numbere depends on the choice ofm and
the functionFm . Neither of those depends onr or onb, i.e.,
on t. However, our theorem imposes a restriction on the s
of t on the subset of the manifoldM where r ,0, since it
supposes thatb[(n22)/4nt2>2r . This could lead to a
difficulty, pointed out by O’Murchadha, on an asympto
cally Euclidean manifold wherer would be too negative
Indeed it is known that in the casep52, d521 there exists
a constantCP such that the following Poincare´ estimate
gives an upper bound ofutu in terms ofuDtu:

itiH0,21
<CPiDtiH0,0

. ~176!

If we suppose that an analogous inequality holds fop
.n, d.2n/p, i.e, that there exists a constantCP such that

itiW
1,d
p <CPiDtiW

0,d11
p , ~177!

then by using the Sobolev embedding theorem:
08403
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sup
M

s2at2<CCp
2iDtiW

0,d11
p

2
, for all a,d1

n

p
.

~178!

This inequality implies that the conditionb>2r can be sat-
isfied only if r satisfies the condition

2rs2a<
4n

n22
CCP

2e. ~179!

We can estimate the value ofe as follows, considering for
simplicity the vacuum caseq505v50. The supersolution
Fm satisfies the equation

ngFm52AFm
2P . ~180!

We know thatFm>1; thereforeAFm
2P<A and Fm<Cm ,

whereCm is the solution withCm21PWs12,d
p of the equa-

tion

ngCm52A[2m/sa. ~181!

ObviouslyCm511mw1, wherew1 depends only on (M ,g),
satisfies the equation

ngw1521/sa ~182!

and tends to zero at infinity. The inequality to satisfy is th

iDtiW
0,d12
p

2
<~Cm2S!~11C1m!24n/(n22),

with C15sup
M

w1 . ~183!

The right hand side is maximum for a finite valuem5m0
with m0 given by

m05
~n22!C14nC1S

~3n12!CC1
. ~184!

~Note thatm0.S/C if n.2.! We find therefore

e5H 4n

n12 S 11
C1S

C D J 24n/(n22) n22

3n12 S S1
C

C1
D .

~185!

It is an open problem to prove the analogue of the Poinc´
inequality inW0,d

p and to decide whether the restriction im
posed onr implies that (M ,g) is in the positive Yamabe
class or not. The conclusion may be~cf. @7#! related to the
existence of apparent horizons as in the proof by Schoen
Yau @13# of the positive energy theorem.

XVI. COUPLED CONSTRAINTS WITH UNSCALED
SOURCES

We treat in this section the system of constraints for u
scaled sources on a maximal submanifold in the casen53.
This system is coupled if the given initial momentumJ does
not vanish. The equations are
4-15
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ngw2rw1a~b!w271cw550

¹ i$~2N!21~Lb! i j %5¹ i$~2N!21ui j %1w10Jj . ~186!

The functionsc>0 andN.0 and the tensoru and vectorJ
are given on (M ,g). We denote byb0 the solution of the
equation:

¹ i$~2N!21~Lb0! i j %5¹ i$~2N!21ui j %. ~187!

We have the following straightforward result.
Theorem.We suppose that the given quantitiesr, c, J

PWs,d12
p , uPWs11,d11

p , 12NPWs12,d
p , p.n, d.2n/p

are such that there exist positive functionsA2 , A1

PWs,d12
p with

A2,a~b0!,A1 ~188!

and such that the equation

ngw2rw1A1w271cw550 ~189!

admits as supersolution the constantmA1
>1, and that the

analogous equation constructed withA2 admits as subsolu
tion the constantl A2

<1, l A2
.0. Then there existse.0

such that

iJiW
0,d12
p <e ~190!

implies that the coupled constraint equations have a solu
(b,w) with w.0 andb, 12wPWs12,d

p .
Proof. It is elementary to check thatl A2

and mA1
are

admissible sub and supersolutions of the Lichnerowicz eq
tion constructed witha(b) if

A2<a~b!<A1 . ~191!

In this case the equation has a solutionw with l A2
<w

<mA1
.

The momentum current being independent of other qu
tities its bound does not affect other estimates.

We will construct a sequencewn ,bn as in the previous
section. We now have to showA2,a(bn21),A1 implies
the same inequalities fora(bn) if wn21<mA1

andiJiW
s,d12
p

is small enough. We use the fact that~the notationu u means
here theg norm!:

u$a~b0!%1/22~16N!21uL~b2b0!i<$a~b!%1/2<$a~b0!%1/2

1~16N!21uL~b2b0!u. ~192!

We deduce from the momentum constraint satisfied bybn

the elliptic estimate

ibn2b0iW
2,d
p <CmA1

10 iJiW
0,d12
p . ~193!

The proof is then completed along the same lines of previ
proofs. h
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APPENDIX A: ELLIPTIC LINEAR SYSTEMS ON
MANIFOLDS EUCLIDEAN AT INFINITY

For the convenience of the reader we recapitulate h
some known facts.

A linear differential operator of orderm from sectionsu
of a tensor bundleE over a smooth Riemannian manifol
(M ,g) into sections of another such bundleF reads

Lu[(
k50

m

akD
ku ~A1!

with ak a linear map from tensor fields to tensor fields giv
also by tensor fields overM.

The principal symbol of the operatorL at a pointxPM ,
for a covectorj at x, is the linear map fromEx to Fx deter-
mined by the contraction ofam with ( ^ j)m. The operator is
said to be elliptic if for eachxPM andjPTx* M its principal
symbol is an isomorphism fromEx onto Fx for all jÞ0.

Example.The conformal Laplace operator for a metricg
on M acting from vector fieldsb into vector fields is

¹ i~Lb! i j [¹ i S ¹ ib j1¹ jb i2
2

n
g i j ¹kb

kD . ~A2!

Its principal symbol atx, with jPTxM , is the linear mapping
from covariant vectorsb into covariant vectorsa given by

j ij ibj1j ij jbi2
2

n
j jj

kbk5aj . ~A3!

This linear mapping is an isomorphism ifjÞ0 because

~j ij i !~bjbj !1S 12
2

nD ~j ibi !
2.0 ~A4!

if jÞ0 andbÞ0. The conformal Killing operator is elliptic
Theorem.Let (M ,e) be a ~complete! Riemannian mani-

fold Euclidean at infinity. Let

Lu[(
k50

m

akD
ku ~A5!

be an elliptic operator on (M ,e). Suppose the coefficients o
L satisfy the following hypotheses.
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~1! There is aC` tensor fieldAm on M, constant in each
end of (M ,e) such that for somep with 1,p,1`

am2AmPWsm ,dm

p , sm.
n

p
11, dm.2

n

p
;

and

~2!

akPWsk ,dk

p , sk.
n

p
1k5m11, dk.m2k2

n

p
, 0<k.

Then for eachs such thatsk1m>s>m the operatorL
mapsWs,d

p into Ws2m,d1m
p with finite dimensional kernel and

closed range if

2
n

p
,d,2m1n2

n

p
. ~A6!

If, moreover,L is injective onWs,d
p then it is an isomorphism

and there is a numberC such that for eachu in W0,d
p the

following inequality holds:

iuiW
s,d
p <CiLuiW

s2m,d1m
p . ~A7!

This theorem applies to the Poisson operatorn2k under the
hypothesis indicated in the theorem in Appendix B.

APPENDIX B: SOLUTION OF ngwÆf „x,w… ON AN
ASYMPTOTICALLY EUCLIDEAN „M ,g…

Let ng denote the Laplace operator on scalar functions
(M ,g). Let f be a real valued function onM3I , with I an
interval ofR, given by (x,y)° f (x,y). We will show that the
sub and supersolution method used by one of us~J.I.! in the
case of a compact manifold can be extended to asymp
cally Euclidean ones. Recall that (M ,g) is a (p,s,r) asymp-
totically Euclidean manifoldM of dimension n, if g2e
PWs,r

p with (M ,e) Euclidean at infinity andr.2n/p, s
.n/p11.

1. Linear equations

Definition.SupposeM is not compact. We say thatf tends
to a valuecPR at infinity if for any e>0 there exists a
compactS such that

sup
M2S

u f 2cu<e. ~B1!

Lemma 1 (maximum principle). Let (M ,g) be an asymp-
totically Euclidean manifold. Suppose that aC2 function w
on M satisfies an inequality of the form

ngw1a•Dw2hw<0 ~B2!

with a dot denoting the scalar product in the metricg, while
a andh are respectively a vector field and a function onM,
both bounded. Suppose thath>0 on M. Then~a! If w tends
08403
n

ti-

to c.0 at infinity then there exists a numberl .0 such that
w> l on M. ~b! If w tends toc50 at infinity thenw>0 onM.

Proof. One knows by the classical maximum princip
that if w attains a nonpositive minimuml at a point ofM
thenw[l on M. Also, if D is a bounded domain ofM with
smooth boundary]D and if the functionw attains a nonposi-
tive minimum inDø]D this minimum must be attained o
the boundary]D.

~a! Choosee>0 so small thate,c. If w tends toc at
infinity there is a compactS such thatw>c2e.0 on M
2K. ImbedS in a relatively compact domainD with smooth
boundary]D. On ]D, w takes positive values, thereforew
does not attain a nonpositive minimum on the compact
Dø]D; it attains a positive minimumc8. The numberl is
the smaller of the two positive numbersc2e andc8.

~b! Suppose thatw takes a negative valuea on M. Choose
e,uau. There is a compactS such that

sup
M2S

u f u<e. ~B3!

Take a relatively compact open setD containingS. If w takes
a nonpositive minimum it is on the boundary]D, i.e., in
M2S, which contradicts the fact that the absolute value
this minimum is necessarily greater than or equal touau,
itself greater thane, which is the maximum ofuwu in M
2S. h

Theorem.Let (M ,g) be an (p,s,r) asymptotically Eu-
clidean manifold. LetkPWs,d12

p , d.2n/p be given. The
operatorng2k is injective onWs12,d

p if either

~1! k>0, s.
n

p
, ~B4!

~2! E
M

$uD f u21k f2%mg.0 for all f PC0
` , f [” 0,

s>0 and d.
n

2
2

n

p
21 if pÞ2, d>21 if p52.

~B5!

Corollary. Under the hypotheses 1 or 2 the operatorng

2k is an isomorphism fromWs12,d
p onto Ws,d12

p if s<s
212n/p, 2n/p,d,2n/p1n22.

Proof. ~1! If s.n/p, a solution in Ws12,d
p with d.

2n/p is in Ca
2 for some positivea. The differenceg2e is

in Cb
1 for some positiveb. The maximum principle applies

and shows thatu[0 on M.
~2! The solutionuPW2,d

p is not necessarilyC2. To prove
thatu[0 we will multiply by u the equation and integrate o
M.

If uPC0
` , then

E
M

ungumg52E
M

Du.Dumg . ~B6!

We can estimate the integrals in the above formula in te
of the Sobolev norm. In the casep52 we have
4-17
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E
M

ungumg<iuiH0,d
inguiH0,d12

supM~11d2!2(d11),

~B7!

which is a bounded quantity wheneverd11>0.
In the casepÞ2 we have

E
M

ungumg<iuiW
0,d
p inguiW

0,d12
p i~11d2!2(d11)iLp8,

p85
p

p22
. ~B8!

The consideredLp8 norm is bounded if

2p8~d11!.n, i.e., d11.
n

2
2

n

p
. ~B9!

The same kind of estimate applies to the integral
Du•Du.

The density ofC0
` in the weighted Sobolev spaces sho

then that a solutionuPW2,d
p satisfies the equality

E
M

ungumg52E
M

Du•Dumg5E
M

ku2mg . ~B10!

Therefore, under the hypothesis made, we haveDu50;
henceu5constant andu50 becauseu tends to zero at in-
finity. h

The corollary is a consequence of the general theorem
elliptic systems on an asymptotically Euclidean manifo
recalled in Appendix A.

If n.2 the inequalityd,2n/p1n22 is compatible
with Eq. ~B9! if pÞ2 @respectively withd>21 if p52].

Remark.Under the hypothesies made on (M ,g) andk, the
solutionuPWs12,d

p of an equation

ngu2ku5v ~B11!

with vPWs,d812
p for somed8 such thatd<d8,2n/p1n

22 is in Ws12,d8
p if p.n/2. Indeed uPWs12,d

p and k

PWs,d12
p imply that kuPWs,d912

p , sinces,2s122n/p if
p.n/2, d9,d1(d1n/p). Sinceu satisfies

ngu5ku1v PWs, inf(d9,d8)12
p , ~B12!

we have

uPWs12, inf(d9,d8)
p . ~B13!

An induction argument shows thatuPWs12,d8
p .

2. Non-linear equations

We suppose that the functionf is smooth iny andWs,b12
p

in x. To make it more transparent we takef as a finite sum of
products of functions ofx by functions ofy, as it appears in
the Hamiltonian constraint:
08403
f

n
,

f ~x,y![ (
P50

Q

aP~x!bP~y!. ~B14!

We make the following hypothesis:
Hypothesis H(Ws,d

p ).
~1! There exists an intervalI ,R such that theb’s are

smooth functions ofyPI .
~2! The a’s are functions onM in Ws,d12

p .
Lemma 1.Under the hypothesisH(Ws,d

p ) the function on
M given byx° f „x,w(x)…, denoted in the sequelf (x,w), has
the following properties whenw is continuous and takes it
values in a closed interval@ l ,m#,I :

~1! f (x,w)PW0,d12
p if s>0.

~2! If s.n/p, d.2n/p and DwPWs821,d811
p with d8

.2n/p, s>s8.n/p then f (x,w)PWs8,d12
p .

Proof. Part 1 is trivial. To prove part 2 one uses the c
culus derivation formulas and the multiplication properties
weighted Sobolev spaces. h

Definitions.A C2 function w2 on M is called a subsolu-
tion of ngw5 f (x,w) if it is such that onM,

ngw2> f ~x,w2!. ~B15!

A C2 function w1 is called a supersolution if onM

ngw1< f ~x,w1!. ~B16!

Theorem 1 (existence). Let (M ,g) be a (p,s,r) asymp-
totically Euclidean manifolds.n/p12 and f (x,y) a func-
tion satisfying the hypothesisH(Ws,d

p ) with s.n/p, d.
2n/p. Suppose the equationngw5 f (x,w) admits a subso-
lution w2 and a supersolutionw1 such that onM

l<w2<w1<m, @ l ,m#,I ~B17!

and

lim
`

w2<1, lim
`

w1>1. ~B18!

Suppose thatDw2 , Dw1PWs821,d811
p , s8>s, d8.2n/p.

Then the equation admits a solutionw such that

w2<w<w1 , 12wPWs12,d
p with d<b

and 2
n

p
,d,n222

n

p
. ~B19!

Proof.We construct a solution by induction, starting fro
w2 .

Let k be a positive function onM such thatkPWs,d12
p and

at each pointxPM

k~x!> sup
l<y<m

f y8~x,y!. ~B20!

Such a function exists by the hypothesis made onf.
We setw1511u1. The linear elliptic equation foru1

ngu12ku15 f ~x,w2!2k~w221! ~B21!
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has one solutionu1PWs12,d
p ,C2, since the right hand side

is in Ws,d12
p and the operator on the left is injective fro

Ws12,d
p into Ws,d12

p under the hypothesis made ons and d.
The functionw1 tends to 1 at infinity.

We deduce from the equality and the inequalities satis
respectively byw1 andw2 the following inequality:

ng~w12w2!2k~w12w2!<0; ~B22!

hence, by the maximum principle lemma, sincew12w2

tends toc>0 at infinity,

w1>w2 on M . ~B23!

Also,

ng~w12w1!2k~w12w1!

< f ~x,w1!2 f ~x,w2!2k~w12w2!, ~B24!

and

f ~x,w1!2 f ~x,w2!5~w12w2!

3E
0

1

f y8„x,w21t~w12w2!…dt.

~B25!

By the hypothesis made onk, w1 , andw1 we have onM

ng~w12w1!2k~w12w1!<0, ~B26!

hence

w1<w1 . ~B27!

The induction formula is, withwn511un :

ngun2kun5 f ~x,wn21!2kun21 . ~B28!

We suppose thatwp exists for 0<p<n21 with w05w2 and
upPWs12,d

p for 1<p<n21 and that for thesep’s

w2<wp21<wp<w1 . ~B29!

The elliptic theory showsunPWs12,d
p exists. The functions

wn are continuous, evenC2 sinces.n/p, and tend to 1 at
infinity. The equality resulting from the equations satisfi
by wp whenp<n21 gives

ngwn212kwn215 f ~x,wn22!2kwn22 , ~B30!

ngwp2kwp5 f ~x,wp21!2kwp21 . ~B31!

One deduces then from the maximum principle lemma t
on M
d

08403
d

t

wn21<wn . ~B32!

Analogously one uses the maximum principle and the
equality deduced from the equation and inequality satis
by wn andw1 ,

ng~wn2w1!2k~wn2w1!> f ~x,wn21!2 f ~x,w1!

2k~wn212w1!, ~B33!

to show thatwn21<w1 implies wn<w1 .
The sequence of continuous functionswn has been shown

to be pointwise increasing and bounded. It is therefore c
verging at each pointxPM to a limit w(x)511u(x), with
w2<w<w1 .

To show thatw is a solution of the given equation an
w21PWs12,d

p we proceed as follows. Since thewn are con-
tinuous and take their values in the interval@ l ,m#, the func-
tions f (x,wn)2kun belong to W0,d12

p with uniformly
bounded norms. The linear elliptic inequality@following
from Eq. ~B28!#

iun11iW
2,d
p <Ci f ~x,wn!2kun)iW

0,d12
p ~B34!

shows that the sequenceun is uniformly bounded in theW2,d
p

norm. SinceW2,d
p is compactly embedded inW1,d8

p for any
d8,d, there is a subsequence, still denotedun , which con-
verges inW1,d8

p norm to a functionuPW2,d
p .

The functionsf (x,wn) converge tof (x,w) in theW1,d812
p

norm because of the inequality, which is satisfied ifs
.n/p, d8.2n/p,

i f ~x,w!2 f ~x,wn!iW
1,d12
p <Ciw2wniW

1,d8
p iF1iW

s,d12
p ,

~B35!

whereC depends only on (M ,e) andF1PWs,d12
p is a func-

tion on M, which exists by the hypothesis onf, such that

F1~x!> sup
yP@ l ,m#

u f y8~x,y!u. ~B36!

These convergences imply that the limitw511u satisfies
the equation in a generalized sense. From the linear the
we find that the equation satisfied byu and the fact that~cf.
above lemma! that f (x,w)PW1,d12

p ~also PW2,d12
p sinceu

PW2,d
p ) thatuPW3,d

p . An induction argument completes th
proof thatuPWs12,d

p .
The theorem holds withs50 if f is an increasing function

of y. An example is treated in Sec. X. h
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