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We consider the Einstein constraints on asymptotically Euclidean maniféld$ dimensionn=3 with
sources of both scaled and unscaled types. We extend to asymptotically Euclidean manifolds the constructive
method of proof of existence. We also treat discontinuous scaled sources. In the last section we obtain new
results in the case of non-constant mean curvature.

PACS numbe(s): 04.20.Ha, 02.46:k, 04.20.Ex

I. INTRODUCTION [5], using again the Leray-Schauder theory. All the quoted
papers treat the case of scaled and continuous sources on a
The geometric initial data for thenf-1) dimensional three-dimensional manifolyl.
Einstein equations are a properly Riemannian metrand a We will in this article consider the case where the mani-
symmetric 2-tensoK on ann-dimensional smooth manifold fold M has an arbitrary dimensiom=3 and the sources are
M. These data must satisfy the constraints, which are thé® sum of scaled and unscaled ones. We will extend to
Gauss Codsz equatons ning the metnducec ordt 22/ "BCLCA Eucldean nanifods e consrctve method
by the spacetime metrigwith the extrinsic curvatur& of M P

. . . - sources.
as a submanifold imbedded in the spacetirieg) and the . . :
value onM of the Ricci tensor ofy. In the last section we obtain results in the non-constant

As equations oM, these constraints read trK case. In the asymptotically Euglidean case, non-constant
trK denotes non-maximal submanifolds. A simple smallness
R(g)—K-K+(trK)2=2p Hamiltonian constraint, (1) as_sumption on thg variations (_)f trK is sufficie_nt to insure
existence of solutions for metrics in the positive Yamabe-
Brill-Cantor class when there are no unscaled sources. In the
other cases the study is more delicate, as pointed out by
— . O’Murchadha, and we obtain some results, in particular for
R(g) is the scalar curvature and the center dot denotes Bnscaled sources.
product defined by the metrig. The quantityp is a scalar We do not claim to have constructed solutions with scaled
andj a vector orM determined by the stress energy tensor ofsoyrces in the negative Yamabe class on non-maximal mani-
the sources. In coordinates adapted to the problem, where thi§lds. The problem of the existence of solutions with large

V. K—?terj momentum constraint.  (2)

equation ofM in V is xX°=0, one has variations of trK also remains open.
= — oo We will use the conformal thin sandwich formulation de-
Ji=NTy, p=N°T (3)  veloped recently by one of U$] to express the momentum

_ ) i __constraint. It gives a better understanding of the splitting
with p=0 if the sources satisfy the weak energy conditionpetween given and unknown initial data.

and if p=g(j,j)*? the sources satisfy the dominant energy

condition. The space scal&f is the spacetime lapse func- || coNFORMAL METHOD IN ITS THIN SANDWICH
tion. _ _ ) o FORMULATION
A classical method of solving the constraints, initiated by
Lichnerowicz whenn=3, is the conformal metho¢tf. [1] One turns the Hamiltonian constraint into an elliptic equa-

and references therein anterior to 198%). In these papers tion for a scalar functionp by considering the metrig as

solutions were obtained under the condition that the initialgiven up to a conformal factor. A convenient choice is to set,
submanifold will have constant mean extrinsic curvaturewhenn>2,

i.e., trk=const. Recently the results have been extended to

the non-constant mean curvature case with some hypotheses - 2

on the smallness of its variations. The case of a compact g=v¢?*, ie., gij:(PZp'yij, with p=——=. (4
manifold M is treated in[3] and[4], the first by using the n-2
Leray-Schauder theory, the second through a constructive

method. Results for asymptotically Euclidelsinare given in ~ Then the following identity holds:
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_ 4(n—-1 We have
R(g)=¢ (M2/072)] oR(y)— (n—2 )AW . (5 - o
(L)'= =D (Lp)", p'=p (14
The Hamiltonian constraint becomes a semi-linear elliptic
. X . : : . and
equation fore with a non-linearity of a fairly simple type
wheny andK are known—namely 1 .
Kl :_glj T+ (P—Z(n+2)/(n—2)A|] (15)
Ay = KnR(Y) @ kn(K- K= 72+2p) (1210720 "
©  with
with All=(2N) Y —ul+(LB)1}. (16)
r=trK, k.= n—2 _ ) One finds by straightforward calculation that the momentum
" 4(n—-1) constraint now reads as an equation dh, §) with unknown

and ¢ if D7#0):
We now explain the conformal form of the momentum’B (ande 7#0)

constraint as recently deduced by one of[6§ from thin - o n—-1 .
sandwich considerations. It can be construed to include pre- Vi{(2N™H)(£B)1}=V{(2N"Hul} + T(PZn/anVlT
vious methods as special cases, but no tensor splitting is

needed. The initial metrig being known up to a conformal + 22 n=2); 17)
factor, it is natural to consider that the time derivative of this
metric (the other ingredient of the initial data in a thin sand-
wich formulation is known only for its conformal equiva-

whereN, 7, andu are given.
The Hamiltonian constraint now reads

lence class. We have above Ao—kR(y) o+ k(3N 2/=2)p . A
a4 =¥0-2),, 8 n—2
gij=¢ Yij 8 T QM +2(=2) 2 _ o o, (1+2)/(1-2)
If g;; andy;; depend on, their time derivatives are linked by (18
T = A2 T — - 4(n—2),i]
ujj= @By, Ul =m0 Ayl (9 The scaling of the quantities andj appearing in(17) and
with (18) depends upon the nature of the source fields. For generic
fluid sources, with no independent field equations of their
o1 own, we may(a) leave the fields unscale¢h) scale them in
3Qij — —gijgh"atghkz Ujj (100  away that is convenient for analysis of the constraintgcpr
n combine the two approaches. In this last case, we set
and an analogous expression fgy constructed withy;; . n—2
We will consider the traceless symmetric two-tenggr ~ j=J+¢ 2("+2/00=2)y p=c+qe 2(0T1/(n=2)
: ) L 2(n—-1)
as given on the manifoldM,y). Recall the identity (19
Kij=(2N) "~ a,gi; + ViB; + V; B}, (11)  HereJandc are unscaled, while andq are scaled.

. o When the source fields do have their own field equations,
whereg andN will be respectively the shift and the lapse in the scaling is to an extent dictated by these source field equa-
the imbedding spacetime. The shift vec@r is not to be tions. Here, we discuss two examples; see Isenberg and

weighted; it is not a dynamical variable. The other non-Nester, as referenced id], for further discussion of the

: . . — . li f )
dynamical variable is not the lap$ébut a scalar densityw scaiing of sources

of weight —1 such thatN= a det(g)"? (cf. [8]). We there- Examples of source field scalings
fore consider as given in this context a functidrwith the

. . . . 1) n=3, the source is an electromagnetic or Yang-Mills
spacetime lapsBl linked to it by the relation: () g g

field F. The electric and magnetic fields relative to a space-
= onin-2) time observer at rest with respect to the initial maniftid
N=¢ N. (12 (j.e., with 4-velocity orthogonal to this manifoldre

We denote bW andV the covariant derivatives in the met- Ezﬁ—lpio: ¢ SN"IF = °F (20)
rics g and y respectively. We denote bg the conformal

Killing operator — 1 1 . .
g op HI:EﬂllijkZEQD_(Sﬂ”ijkEGD_GHI (21)

- 2
ij=vyipgl gl — —qli h _ _
(LBI=VE+VIA ng Vo (13 with % and » respectively the volume forms af andg.
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Note that if (E' H') satisfy the Maxwell constraints Pair (¢,8) with ¢ a scalar function ang a vector onM. In

V E'=0 andV H'=0 in the metricg, the fields E',H')
satlsfy these constraints in the metsic We consider that it
is these last fields which are known &h

The energy density is

p=%aj(EE+ﬁﬂi>z<p—8q (22

with g, considered as known advi, given by

1
=57 (EE+HH)). (23
The momentum density is
j'=NTO=NFYFi=—Elghpy H'=¢ 1% (24)
with v' the quantity considered given as

v'=— 9%y EH". (25

The sources are scaled as defifesmpare Eq(19)] and the
constraints decouple B r=0. Note that ifq=(y;jv'v!)*?
thenp=(g;j'j))"2

(2) General n the source is a Klein-Gordon field’he
energy density oM of a Klein-Gordon fieldys with respect
to an observer at rest is

152 2, 4ij 2
p=5(N |90l *+ " 0 pop+ mys?), (26)

i.e.,

1 '
p=5{e  MTINTH a0yl + o~ MDY g+ my.
(27

If we consider as known oM the initial datay|,, anddgi|y

together withy andN, then neither of the terms ip scales
as indicated in Eq(19). The termN~?|dy¢|? adds in the
Hamiltonian constraint toA- A, the termm?y is unscaled

and gives a contribution to, the middle term gives a new,

positive contribution to thep term which adds to-R(y).
The momentum density is

j'= =Nl gjpaqu=— ¢ 20ROyl gyigy.
(29

We see that the momentum scales as in @§). The con-
straints decouple iD7=0.

The methods we give below to study the constraints with—
scaled or unscaled sources can be applied to more genera

scalings, such as this example.
Summary The given initial data on a manifoldl are on
the one handgeometric initial datpa set (y,u, 7,N), with y

the conformal thin-sandwich formalism the constraints re-
duce to Eqs(17) and (18) which read, taking Eq(19) into
account,

VA(NTH(LB)}=h'(-,¢) (29
with
h'(-,¢)=V{(2N"Huil}+ %GDZn/(n—Z)ViT
+(P2(n+2)/(n72)Ji+vi’ (30)
and
Aye=1(-,0), (31)
where
f(.’¢)Er¢_a¢(f3n+2)/(n72)+ d¢(n+2)/(n—2)
—qe (-2, (32)

with r, a, andd defined as functions of the geometric data as
in Eq. (45).

When 7 is constant onM and the sources have no un-
scaled momentuni.e., J=0) these constraints decouple in
the following sense: the momentum constra?) is a linear
equation forg, independent of, and the Hamiltonian con-
straint(31) is a non-linear equation fap when g is known.

When the constraints are solved the spacetime metric on
M reads

ds?=—N2dt*+g;;(dx + gidt)(dxi + gidt), (33
with Eandﬁ given by the formula$8) and(12). The extrin-
sic curvature oM is determined by Eqq15) and (16_), the

derivative d;g;; on M by Eq.(11). The derivatives);N and
dy8 remain arbitrary.

We now express in our setting the conformal invariance
of the conformal constraints.

Lemma.The constraint equationd7) and (18) are con-
formally invariant in the following sense: If4,¢) is a
solution of the constraints with datayu,r,N;J,v,c,q)

then (B,¢) is a solution of the constraints with
data [y=(ee D" Dy, U=(pe H¥ 2, 7, N
_('¢¢—1)2n/(n—2)N; "j:J' ;:('(;Q—l)—Z(n+2)/(n—2)U, T
c, q (‘P‘P 1)72(n+1)/(n72)q]

| Proof. If (B, ¢) together with the considered given data is
solution of the conformal constraints, the corresponding

Einstein initial data setg,K) is a solution of the Einstein
constraints with sourcgs p given by Eq.(19). The Einstein

a properly Riemannian metricy a traceless symmetric initial data set and sources constructed with the approximate
2-tensor,7 and N scalar functions, and on the other hand quantities are identical wnhg( K) and (j,p). Since the Ein-
(source dataa set {,v,c,q), two vectors and two scalars. stein constraints are satisfied, the conformal constraints writ-
The initial data to be determined by the constraints make &n with the approximate quantities are also satisfied.(]
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Remark.In the casen=2, equations analogous to the
ones obtained here for the conformal facgoand the vector
[3 are obtained by settingf. [9]):

g=e’y, (34)
and in the thin sandwich point of view,
N=e2¢N (35)
which gives
Kl =gteAll + %EJ T. (36)

However we will not considen=2 because it poses special

problems in what could correspond to an asymptotically Eu-

clidean case.

. ASYMPTOTICALLY EUCLIDEAN MANIFOLDS
AND WEIGHTED SOBOLEV SPACES

The Euclidean spacé" is the manifoldR" endowed with

the Euclidean metric which reads in canonical coordinate

>(dx)2. A C*, n-dimensional Riemannian manifold(e)
is calledEuclidean at infinityif there exists a compact subset
Sof M such thatM — S is the disjoint union of a finite num-
ber of open setdJ);, and each (J;,e) is isometric to the
exterior of a ball inE". Each open set);CM is sometimes
called anendof M. If M is diffeomorphic toR", it has only
one end; and we can then take ®the Euclidean metric.
A Riemannian manifold ¥,vy) is called asymptotically
Euclideanif there exists a Riemannian manifoldi(e) Eu-
clidean at infinity, andy tends toe at infinity in each end.
Consider one entl and the canonical coordinat&sin the
spaceli” which contains the exterior of the ball to whithis
diffeomorphic. Ser={=(x")2}¥2 In the coordinates' the
metrice has components;; = §;; . The metricy tends toe at
infinity if in these coordinates;; — &;; tends to zero. A pos-

S
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n
WE 5 XWE 5 CWE; if s<51,5;,5<s1+5,— X

n
S< ot Syt

n n
W§’5CCZJ if m<s—5, ﬁ<5+5,

luleg=_ 3 supy(a'ul(1+d? 26 0). (39

The imbedding of the spac®® s into WE, ;,, s=s', &
= ¢’ is compact ifs>s’, §>6'. We have on the other hand
n

(1+d?) P2 WE 5 if B>5+5’ s=0. (39
Let (M,e) be a manifold Euclidean at infinity. Then the
Riemannian manifoldN!, y) is said to be W5  asymptoti-
cally Euclidean” if y—eeW} . When we speak of “as-
ymptotically Euclidean manifolds” without further specifi-
cation, we suppose that—ee W) with o>n/p+1, p>

> n/p. These hypotheses imply thatis C* and y— e tends
to zero at infinity.

IV. MOMENTUM CONSTRAINT

In the thin sandwich conformal formulation the momen-
tum constraint reads

VA@RNH(LB) I =h(-,¢) (40)
with
hi(',¢)EVj{(2N71)uij}+ I'];_"L(,’jzn/(nfz)ViT
+(,D2(n+2)/(n72)\]i+vi’ (41)

sible way of making this statement mathematically precise isvhere N and = are given functions oM and u a given

to use weighted Sobolev spacé®ne can also use in these symmetric traceless tensor field. The sourtasdv are also

elliptic constraint problems weighted Hier spaces, butthey considered as known. We suppose momentarily ¢hiatalso

are not well adapted to the related evolution problgms.  a known function; in fact, it disappears from the equation if
A weighted Sobolev space g’\@/ lsp<ow, selN,, V=0 andJ=0.

deR, of tensors of some given type on the manifoM ,g) The momentum constraint is a linear elliptic system for

Euclidean at infinity is the closure @ tensors of the given the unknowng on the manifold M, ). (The symbol of the

type (C” tensors with compact support M) in the norm principal operator is an isomorphism.

TheoremLet (M, y) be an’;p asymptotically Euclidean

1/p . . _ p
_ m [p 211/2 p(5+m) manifold witho>n/p+2,p>—n/p. Letu, re W, ; 5.1 be
||u||W§,a_(OS§rn:SS f\,'a ulP(1+d%) dp( given, (I-N"1) and (1-¢)eWE,,;N>0,,>0, and
(37  JveW!;, ,. The momentum constraint has one and only
one solutionBeW! , 5 if s>n/p—2 and Oss<o-2,
whered, | | anddu denote the covariant derivative, norm —n/p<s<n—2—n/p.

and volume element in the metrig andd is the distance in Proof. The operator on the left-hand side of B40) is
the metrice from a point ofM to a fixed point. If M.e) isa  injective onW?, , 5 because a solutiope W 5, > —n/p
Euclidean space one can chodaser, the Euclidean distance of the equation ’
to the origin. We recall the multiplication and imbedding

properties(cf. [10,11])

Vi{(2N)"X(Lp)}=0 (42
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is necessarily a conformal Killing field. Indeedgfe C the  and

equation implies by integration o that ) )
Iime_<1, limp,=1

f BiVH{(2N) LB I, = f (2N)"*LB.LBw,=0.
M M

S on M. 48
43 <@y (48)

Suppose thaD¢_, Do, eWs, |, ., s'=s, &'>—nlp.

H H P : ’ _ _
The same is true f8e Wy, 55 With &'>—n/p+n/2=2 Then the equation admits a solutignsuch that

(respectively§’'=—2 if p=2). There is such &’ if B
eW@’Q_JS _satisfies the homogeneous secoqd order equation o_<ep<¢., 1—€DEW’§+2,5 (49)
(cf. a similar proof for the Laplace operator in Appendix B
It is known that there are no conformal Killing vector fields if
tending to zero at infinity on an asymptotically Euclidean
manifold (cf. [1] where a proof requiring only low regularity
is cited.

Because the elliptic operator ghis injective, the isomor-
phism theorem applies to give the existence and uniquene&emark. When r=k,R(y) we havereW! ,; , if o

n n
——<é<n—2——. (50)
p p

of B. >n/p+2, >—nlp.
We will use this theorem directly in Sec. Xl, with con-
V. HAMILTONIAN CONSTRAINT stant sub and super solutions. We will give and use in Secs.

o . VI and X intermediate simple steps to obtain non-constant
In the conformal method the Hamiltonian constraint readssup and supersolutions.

as a non-linear elliptic equation for the conformal facgor
We write it V1. BRILL-CANTOR THEOREM
Ayo=1(-,0) The constraints in their conformal formulation are invari-
ant under conformal rescalirgf. Sec. I).

In the case of a compact manifod a convenient first
step before studying the solution of the Lichnerowicz equa-

f(. ,(P)Er(P_a¢(73n+2)/(n72)+d(P(n+2)/(n72)

_q(P—n/(r'I—Z)' (44) > ) -
tion is to use the Yamabe theorem which says that each
with A given by Eq.(16), and manifold (M, y) is conformal to a manifold with constant
scalar curvature which can be chosen to be-11, or zero.
r=k,R(y), a=k,A-A, k,=(n—2)/4(n—1) The positive, negative and zero Yamabe classes correspond
to the signs of these constants and are conformal invariants.
d=b-c, b=(n—2)/(4n)7. (45  There is no known analogous theorem for asymptotically
Euclidean manifolds(In any case the curvatures could not
By their definitions we have be non-zero constanisHowever an interesting theorem has
been proved by Brill and Cantor, with the following defini-
a=0, b=0, ¢c=0, q=0. (46) tion.

Definition. The asymptotically Euclidean manifold/(, y)
The functionsg andc, scaled and unscaled sources, are conis in the positive Yamabe class if for every functibon M
sidered as given oM. We will suppose that (henceb) is  with f e CJ, f#0, it is true that
also known onM. The functiona is known when the mo-
mentum constraint has been solved: this can be done inde- 5 5
pendently ofe if 7is constant and the unscaled sources have fMﬂ Df[*+r(y)f%u,>0. (51)
zero momentum.
The constructive method of sub and super solutions usetthe positive Yamabe class is a conformal invariant due to
by one of us[2] to solve non-linear elliptic equations on a the identity
compact manifold can be extended to asymptotically Euclid-

ean manifolds. Af—r(y)f=MTO"DIN 1 —r(y)f'} (52
The following theorem is a particular case of the theorem
proven in the Appendix B. y =2y fr=fp 1 (53

TheoremLet (M, y) be a (,o,p) asymptotically Euclid-
ean manifold witho>n/p+1, p>—n/p. Supposer, a, g, Which gives after integration by parts wifre C;, because

deWE 5, ,,0—1=s>n/p,—n/p< 4. Suppose the equation ., =¢""" ?u,,
A o=1(X,¢) admits a subsolutiogp_>0 and a uniformly
bounded supersolutioa, , functions inC? such that f DF2+r(v)f2 :f Df'124r(v')f'2
DR+ r ()= [ {IDFPHr(y)f i,y
Ay =1(-0), Aer<Ff(-,0,) (47 (54)
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We will say, following O’Murchada, that the asymptoti- The following integration by parts holds for the considered

cally Euclidean manifold 1, v) is in the negative Yamabe functions:

class if it is not in the positive ong7]. However, analogy

with the case of a compact manifold can be misleading, as o | a2 )

shown in the following theorem. JM(’DD(P'D(H Yiy= fM 0°D-(¢D@)uy: (59
Theorem.([12]). The asymptotically Euclidean manifold

(M, ) is conformal to a manifold with zero scalar curvature, therefore,

that is, the equatior\ ,¢ —r(y)¢=0 has a solutiorp>0, if

and only if (M,y) is i_n_thepositive Yamabe cla§s f ¢Do- D(02),uy=f _ 02(¢Ay@+|D(}D|2)M'y (60)
The physical metrig that solves the constraints together M M

with the symmetric two-tensdk has a non-negative scalar

curvatureR(E) if the sources have positive energy and thean

initial manifold has constant mean extrinsic curvat(mec-

essarily zero in the asymptotically Euclidean dasghus, fM|Df|2,u,/> fM—HzgoAygo,uy. (61)
R(g)=0, with R(g)#0 except in vacuum for an instant of

time symmetry, i.e.K=0. Therefore, the physical metrE Hence wheny satisfies the given equation afi¢=f:

on an initial maximal submanifold is in the positive Yamabe

class and all metricy used as substrata to obtain it must be P 2 j Y

in that class. JM{|Df| Tafu,> VO en,=0 (62)
We will prove a more general theorem. We will also

make fewer restrictions than Brill-Cantor on the weightedif ¢>0 and 0.

spaces. (2) (“if":existence) Settingeo=1+u the equation reads:
Theorem.On a (p,o,p) asymptotically Euclidean mani-
fold the equation A Uu—au=v+a. (63
ALe—ap=V, (55) The operatoA ,— « is injective onwgﬁ (cf. Appendix A).

The general theorem on linear elliptic equations on an
asymptotically Euclidean manifold shows that our equation
has one solutiome WE, , 5, $=0, —n/p<d<n-—2-n/p.

The problem is to prove thap= 1+u is positive. We will
use the maximum principle, supposing the solution t&€Be
i.e., s>n/p. Since«a is not necessarily positive we cannot
f {|Df|2+af2}luy>o_ (56)  apply directly the maximum principle. One proceeds as in
M the Brill-Cantor proof. One considers the family of equa-
tions, which all satisfy the criterion for the existence of a
Under the same hypothesis the solutiprexists withe—1  solution ¢, with @, —1eW§, , ;,
eW§+2’5, and ¢>0 if one supposes moreover-n/p, &
>n/2—n/p—1 if p#2 (respectivelys=—1 if p=2), and Ayp—Nap=A\v, Ne[0,1]. (64)
that either w0 or v=0 onM, or a=r(y) with, in this last . .
caseo=2. The solutionse, d_epend continuously qn and we have_

The theorem of Brill and Cantor corresponds to the cas&o= 1: If the functiong,=¢ takes negative values there is
v=0 anda=r(y). They make the additional hypothesis one of these functlon% which takes positive or zero val-
>n. ues. The points wherex vanishes are minima of this func-

Proof. (1) (“only if” ) Supposep exists and solves the tion. It is incompatible Wlth the equation satisfied by ifv

equation satisfying the hypothesis of the theorem. Then Wes negative at that point. Therefore we haye>0 for A

where a, veWS§ ;. ,, v=<0, has a solutionp>0, ¢—1
eWS,,5,5=0, 6>—n/p only if for all feCy, f#0, the
following inequality holds

will show that for anyf#0, fe C{, €[0,1] if v<0.
To prove that<pko>0, and hencep, >0 for A €[0,1],
Dfl2+ af?ly >0. 5 when =0, we use, as Brill-Cantor, a theorem of Alexan-
fmﬂ FrafTu, 67 drov: if there is a poink, whereg, =0, it is a minimum of

this function, henceD ¢, (Xo)=0. Since the functionp,
Indeed, letf e Cy, f#0. The functionf=fe ' has com-  and the function identical to zero take the same value as well
pact support, belongs th s for any 6" and is such that as their first derivatives at, and satisfy the same elliptic
D ##0 sinced, having compact support, cannot be a con-equation they must coincidé\lexandrov theorem a result
stant without being identically zero. We have by elementarythat contradicts the fact that, tends to 1 at infinity.
calculus: If we know only that v=0 but a=r(y) we first confor-
mally transform the metricy to a metric y’ = yy*"("=2)
|Df|?=|D6|?¢?+eDe-D(6%)+ #%|Dep|?>. (58  with zero scalar curvature: this is possible by the previous
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proof for v=0 (original Brill-Cantor theorem The equation =0. The subset oM wherer(y’)<0 is empty; therefore,
to solve is equivalent to the following equation fer' ¢, =1 can be chosen as a supersolution. The proof ¢hat
=yt >0 onM can be made using simply the maximum principle:
A g =y 0 2N0-Dysg, 65 a solutiong e C< of the equation

; ; . . A o—beMt2M=2)= A ,— ani(n—2)y,. _ 71
whose solution isp’=1 becausep’ cannot attain a mini- v$~ b o~ (Do )e=0 (71

mum at a point oM and ¢’ tends to 1 at infinity. B With b=0 cannot attain a nonpositive minimum dhwith-
out being a constargtvhich is not possible witkp tending to
VII. SOLUTION OF THE EQUATION 1 at infinity except ifo=0, in which casep=1).
(n+2)/(n—2) The uniqueness property in case 2 is simply a conse-

Ayp—=r(y)e=b . . i
WTIYIemRe quence ob=0 and of the increasing property wigh>0 of

Theorem. If  beWg ;. ,,5>n/p,—Nn/p<é6<n—2  the functione(™*2("~2) together with the fact that the dif-
—n/p,b=0, the equation ference of two solutions tends to zero at infinity. The unique-
B o (n42)/(n-2) ness in the general case results from the conformal proper-
Ayp=r(v)e=be 66 fies. Indeed suppose the equation

on the @,o,p) manifold (M,y), o>n/p+2,0>n/p has a nio
solution ¢=1+U,UEW§+2’5,S$U,p>O under one or the Aﬂ,_r(ym:b@Q, Q=—+ (72)
other of the following hypotheses: n-2

(1) On the subset dfl wherer () <0 there exists a num-

ber x>0 such that has two solutionp; and ¢,. We deduce from the conformal

identity
Ir(y)l

SURyc M, —=<u. (67 — — 2
e 0901 Dye=t(Ne=-1(@)¢% g=¢®y, p=——5 (73

(2) (M, y) is in the positive Yamabe class. The solution is

unique in both cases. that
Proof. (1) The manifold M,v) and the functionf(x,y) _
=1 () ¢+b($)("F2N2) satisfy the hypothesiéH) spelied r(@)=r(ye”)=r(ye3’)=—b. (74)
out in Appendix B. The equation admits the subsolution
¢_=0. A numbere, is a supersolution if Consider the identity

e.=1 and r(y)+bei""2=0 onM. (69 Awip(qol_lﬁoz)— r(yeiP) o1 tor=—1(yes") (01 ')

The second inequality is a consequence of the firs{f) (79
=0. It implies, because of the previous equalities,
The hypothesis made onV(,y) on the subset(y)<0
insures the existence of the numher=¢_=0, given by ulR-1-1
Ayg2p(u=1) —bu———(u=1)=0, u=¢; "¢,.
¢, =max(1,u(N=2) (69 ' : 79

The existence of a solutiogy, with O=¢=<¢, and 1—¢ We haveb=0, u>0, (U2 1-1)/(u—1)>0 sinceu>0

e WE_, 5 results from the general theorem. Such a solution
; . . . .. andQ>1. We deduce from the fact that-1 tends to zero
can be obtained constructively. We know thiat O since it Q

tends to 1 at infinity at infinity thatu—1=0 on M, i.e., p1=0,. O _
We show thatw>b onM by using the Alexandrof theo- Remark. By the above theorem, under the hypothesis
L . .. made, an asymptotically Euclidean manifoll (y) is con-
rem as we did in Fhe proof O.f the _Brllll-Cantqr_theoremz/Af formal to a metricy’ of given non-positive scalar curvature
vanishes at a poinkge M this point is a minimum ofi,

- . o o r(y'), and the solutiorp of Eq. (66) with b= —r(v’) gives
henceD #(xo) =0. The functionsp=y and ¢=0 both sat- the conformal factor. (This result was known to

isfy the elliptic equation O'Murchadhal

Aye=[r(y)+by*""?]¢=0. (70
VIIl. SOLUTION OF THE EQUATION
They, as well as their gradients, take the same values, zero,
at the pointxy, therefore they coincide. This contradicts the
fact thaty tends to 1 at infinity, therefore there exists no  This equation is the conformal expression of the Hamil-
point xq where (Xy)=0. Hencey>0 on M. tonian constraint on a maximal manifold with no unscaled
(2) If (M, ) is in the positive Yamabe class we confor- sources. The following theorem has been proved indepen-
mally transform it to a manifold N1,y’) such thatr(vy') dently in the casen=3 in 1979 by Cantor, and Chaljub-

A o—1(y)e+ae P+qe " =0, a=0, =0
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the present case, the sequengas not proven to be mono-

give here a new constructive proof; the corresponding functonic, nor identical to the subsequence which converges.
tion f(x, ¢) satisfies the hypothesis H of Appendix B on any Hence we cannot conclude that the limitof the subse-

interval[l,), [>0.

The generalized Brill-Cantor theorem shows that the con-

sidered equation can have a solutigrr O only if (M, y) is

quence is a solution of Eq78).
To obtain a converging sequence, and consequently a so-
lution, we again use Ed.79), but now withk=Pa+P’q.

in the positive Yamabe class, a result in agreement with th&or Eq.(79) with such ak, the subsequence limitserves as
fact that the original Hamiltonian constraint on an initial a supersolution. Therefore, the increasing sequancés

maximal submanifold ¥,g) impliesr(g)=0.

Theorem.The equation on thep(o,p) asymptotically
Euclidean manifold (1,y), o>n/p+2, p>n/2—2—n/p if
p#2, andp=—1 if p=2, given by

p’

P_q(P_ , a=0, qBO,

Ayp—r(y)e=—ae"

P=(3n—-2)/(n—2), P'=n/(n—-2),

n n
n—-2——>§6>——,
p p

(77)

has a solutionp>0, ¢—1eWE, , 5 if and only if (M, ) is
in the positive Yamabe class. This solution is such tpat
=1. It can be obtained constructively and is unique.
Proof. (1) (“only if” ) This part follows from the gener-
alized Brill-Cantor theorem.
(2) (“if” ) The manifold M, y) is conformal to a mani-
fold (M,y’) with zero scalar curvaturey’=y*"=2)y,

n
a, qEW[S)’5+2, U_2>S>B,

bounded above by and it converges to it iWg, , ;. We
haveep=1. A pointwise upper bound fap can be deduced
from theW?, , s norm ofu=¢p—1.

Remark.The sequencel, and the limitu, bounded in
W5 s norm in terms of theWj ;,, norms ofa and g, are
therefore bounded i€° norm in terms of these norms af
andq if p>n/2.

(3) Unigueness: the equation witlfy)=0 has a unique
solution such thatp tends to 1 at infinity because of the
monotonicity of the right hand side and the maximum prin-
ciple. The original equation also has a unique solutiof

IX. SOLUTION FOR SCALED SOURCES

We now prove an existence theorem for the non-linear
elliptic equation fore expressing the Hamiltonian constraint
on an arbitrary initial manifold, when there are no unscaled
sources.

Theorem (scaled sourcedjhe equation

r(y')=0. Conformal covariance shows that the resolution of
the given equation is therefore equivalent to the resolution of

an equation of the same type but with no linear term, which,

suppressing primes, we write as

p’

Ap=—ap P—qe P, (78)

This equation admits a constant subsolutipn=1 but no

Ayo—r(y)e=f(-,p)=—a¢ P—qe " +be? (81)

with a=0, q=0, b=0; a,q,beW!;,,, s>n/p, —n/p
<6<n-2-n/p, has a solutionp=1+u, ue W8, ,5, ¢

finite constant supersolution. However, it is possible to con=>0 which can be obtained constructively, if eitiey or (b)
struct a sequence, e WE, , ; starting from the subsolution holds:

¢_=1 by solving the equations witk=0, ke Wt ;. ,:

Au,—ku,=—a(l+u, ;) P—q(l+u, 1) " —ku, ;.
(79

We haveu,eW?, , ,CC? for all @ such thata<5+n/p,

henceu, tends to zero at infinity and we can use the maxi-

mum principle to see that,=0. We could choos&=Pa

(a) On the subset whengy)<0
r(y)|<b. (82

(b) (M, %) is in the positive Yamabe class.
The solution is unique in either case.

+P’q and deduce as before from the maximum principle Proof. (a) The solution exists, with the indicated proper-
that the sequence, is pointwise increasing, but we do not ties, because the equation admits a subsolution with 0
obtain an upper bound through the maximum principle be<<¢_, which is the solution of the equatidfrom Sec. VI
cause we do not have a supersolution. We choose first in-
steadk=0 to construct our sequence and write the elliptic
estimate, using the fact that 1u,) °<1 sinceu,=0,

Ayp_—1(y)e_—be?=0. (83)

+lalwe - (80)

Ju,lwg =Cillallug

0,6+2
] ] . The solution satisfieg - <1 under the hypothesis made on
The sequence, being uniformly boundedWs ;, admits a () pecause the equation for_ admits then a supersolu-
subsequence which converges in v ;, norm, 5'< 4, to  tion equal to 1. The original Lichnerowicz equati8t) ad-
an elemenue W} ;. The rest of the proof is the same as in mits as supersolutiop . =1 the solution of the equatiofef.

the general arguments given in Appendix B, except that irSec. VIII)
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AyﬁD++a(P;P+qQD;P/:0 (84y ~and only one solutione>0, e—1=ueWh; if a,q

n
e W) with 6>——, p>n/2, a=0, q=0, b=0, b
because we have 00+2 pr P a
eWsp,5+2, s>n/p.
r(y)e,+be?=0 if ¢,.=1 and r(y)+b=0. Proof. We first conformally transform the equation to an
85 equation with no linear term. We then proceed as follows.
(85 €q p
Consider a Cauchy sequenag,qyewgg+2, s>n/p, con-

(b) When (M,y) is in the positive Yamabe class, the verging in theWj ;,, norm toa, q. Denote bye,=1+u,
equation is equivalent to an equation of the same type witlhe solution with coefficientsa,, q,. We know thatu,
zero linear term because of conformal covariance. We may WP, ;s and that there exists numbérs 0 [depending only
then argue existence just as (&, because the condition on on (M,y) andb] andm=1 [depending only onNl,y) and
r(y) when it is negative has become vacuous. the W8 5, , norms ofa andq] such thatl<¢,<m.

The solution tending to 1 at infinity of the equation with  Tpe differenceu,— u,, satisfies the equation
r(y)=0 is unique because of the monotonicityfah ¢. In

the general case one uses the conformal transformation of A (u,—u,)—A,,(u,—u,)
curvature as in Sec. VI. Take for simplicity of writing=. )
We have now, ifg; (i=1 or 2 is a solution =¢, (a,~a,)+¢," (q,~0d,) (90)
—r(efPy)=—b+ag P (86  With
. i i _ i -P_ _—P -P'_ _—-P' Q_ Q
therefore the conformal identity with= ¢, *¢, gives A =g |fr T | g [ Fe T b( Py ‘Pu)
uv— v _ qV — —
pr0) Pr0) Pr— Pu Prv— Pu Prv— Pu
A g2, ut(b-ag; ¢ Ju=(b—ag, P*Y)uQ, (91

(87) Recall that forn=3 we haveP=7, P'=3 andQ=5. The
quotients in the above formulas are then polynomiaiigh
coefficients equal to)lin ¢, * and¢, * for the first two, and

1—y-P-1 ¢, andg, for the third. Therefore, they are on the one hand
+a¢1(P+Q)(—) ] u(u—1) positive and, on the other hand, uniformly boundft any
- pair v, u) because &l<¢,, ¢,<m. For generaln the
numbersP, P’ andQ are positive rationals, the quotients in
the formula are also positive and uniformly bounded. We

deduce from this uniform boundedness that there exists a

numberN such that

This equation may be written

u -1
A(Pipyu—'b(ﬁ

=0. (88)

If u>0, b=0, a=0 the function u, which tends to 1 at

infinity, can only beu=1 on M. O
Remark 1We see that the condition tha(y) be in the 1A we  <N{lalwe  +ladwe  +lbolwe 1}
positive Yamabe class is not necessary for the existence of a K 00+2 0.0+2 0.0+2 0.6+2

positive solution ifbs=0. However ifb#0 the Hamiltonian (92)

constraint is coupled with the momentum constraint, and ityye infer from this estimate and the positivity &f,, that the

solution is not the whole story. . operatorA ,—A,,, is injective inW§ ; (see Condition 2 in
Remark 2.The conditionb=—r(y) will somewhat be  Thegrem 1 of Appendix B Therefore, there exists a number

relaxed in the last section but we will requioe>0. C depending only onN1, ), theW? ;. , norm ofb, and the

W s+, norms ofa andq such that
X. DISCONTINUOUS SOURCES

||u1/_u,u”WgﬁgC{”av_a,u”Wp +||qv_q,u||Wp }

It is essential for physical applications to admit isolated 05+2 0.6+2 ©3

sources, hence discontinuous functignshis possibility is
included if we extend the previous existence theorem t
functionsqe Wj 5,,. We also will takeae Wf 5., to in-
\(;:/udte lih(?fgss\'}\)/g'ty of d>ISC/OntI\;\1/U0|US SC?:]Ed momenium vagﬁ to a limitu evvgﬁ. The_gonve.rgence i@ fortiori in Cg
elaked=beWs .o, S=N/p. VVe leave the more general i 5~ /2 and for some positive, sinces>—n/p. Theu,’s

cases for later study. _ o are such that +u,=1>0; therefore alsap=1+u=[>0.
TheoremThe Lichnerowicz equation with scaled sources, The function satisfies the Lichnerowicz equatidim the

sense of generalized derivatiyegith scaled sources. [

%incea,, andq, are Cauchy sequences, the same is true of
u,, because of the above inequality. Hengeconverges in

Ao—t(ye=f(-,p)=—a¢ P—aqe " +be%,

(89 XI. GENERAL CASES

ona (p,o,p), o>n/p+2, p>—n/p asymptotically Euclid- In the case where there are unscaled sources the coeffi-
ean manifold M,7y) in the positive Yamabe class has one cientd in the Lichnerowicz equation is negative or zero on a
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maximal initial manifoldM. It can take different signs M is

PHYSICAL REVIEW D61 084034

Lemma 1.There exist numberks, andm, such that

not maximal. The previous simple method to obtain sub and

super solutions does not apply. We will then look for con-
stant sub and super solutiohandm, 0<I<1=<m. We will

also obtain a new theorem for the Lichnerowicz equation irif and only if
the case of scaled sources on a non-maximal submanifold.

To make the algebra easier we restrict our study to the im
portant physical case=3. Results along the same lines can
likely be obtained for general n. The equation is then

-7 -3 5__
Ap—rotap '+q¢ “—de =0,

a=0, g=0, d=b-c, b=0, c=0. (949

The numberd andm are admissible sub and supersolutions
if they satisfy onM the following inequalities:

P, (1%=<0, P,(m*=0, for all xeM, 0<I<l<m
(95

whereP, is the polynomial

P (2)=d(x)Z3+r(x)z22—q(x)z—a(x). (96)

Remark.In the case ofi>3 the problem is the study of
the sign of the function:

Fu2)=d(02'+ (02" 1 =0z V2-a(x) (97)

for numbers #("~2) and m*("~2),

Since all the coefficients iR, tend to zero at infinity the
conditions that we will obtain depend on the ratios of their
respective decays.

We denote byM , the subset oM whered>0, by M _
the subset wherd<<0, by M the subset wherd=0. In the
case of isolated sourcdd _ is a compact subset &fl. We
study the sign oP, on these various subsets. The derivative
of Py is

dP,/dz=3d(x)Z%+2r(x)z—q(X). (98)

(1) On M, , d(x)>0, the derivatived P,/dz has 2 roots

of opposite signs. The positive root is

=T +[r¥(x) +3d(x)q(0) ]+
§+(X)_ 3d(X)

=0. (99

We havel, (x)>0 if r(x)<0, or if r(x)=0 andq(x)>0.

dP,/dzis equal to—q(x)<0 for z=0 and is negative or
zero as long ag</{,(x). Therefore P, decreases from
a(x)=<0 for z=0 to a minimum forz= ¢, (x) and then in-
creases tor« whenz increases tor~. HenceP, has one
and only one positive roat, (x). We haveP,(z)=0 as long
asz=z,(x).

There exists$(x) >0 such thaP,(I*(x))<0 if and only if
Z,(x)>0. Indeed numberKx) andm(x) such that

o<l(x)<z (x)sm(x), xeM, (100
satisfy

P, (14(x))=<0, P, (m*x))=0. (101

P,(14)=<0, P,(m})=0 for all xeM, (102
_ inf z,.(x)>0 (103
xeM
and
sup z, (x)<+oo, (104

xeM

Sufficient conditions for the first inequality are

[0 A g |2
xlrg+{3d(x)+<9d2(X) 3d(x)) >0 (109
or
nf -2 g (106)

xem, 400 F[r(x)]

For the second inequality they are thét(x)|/d(x),
q(x)/d(x), a(x)/d(x) be uniformly bounded oM , .

Proof. The necessary condition as well as the first suffi-
cient condition are consequences of the previous study. Suf-
ficient conditions for this first condition to be satisfied are
that one of the two terms in the sum has a strictly positive
infimum. The second sufficient condition results from the
fact (elementary calculyghat P,(z)<0 if

a(x)

Yaco+roof) -

(107

z< min(

Remark.The sufficient conditions will be satisfied on the
whole of M, if we can split it into two subsetsM ,
=M,UM,, such that

inf —V(X)>O
nt ———— .
XEMZ d(X)

. ax)+q(x)
inf

XEMld(x)+|r(x)|>O

and (108

This pair of inequalities can be realized whighis compact
anda(x)+q(x)#0 by a conformal change of choice of the
metric y to a metricy’ having a strictly negative curvature
in the complement oM, in M. Such a construction can also
eventually be made in the asymptotically flat case, by reso-
lution of an adequate Dirichlet problem.

(2) OnM _, d(x)<0.

We haveP,(z)<0 for all z>0, hence no admissible
m(x), if r(x)=<0. We therefore supposgx)>0 for all x
eM_. If r?(x)+3q(x)d(x)<0, we havedP,/dz=<0 for
all z, and the polynomiaP, takes non-negative values only
if it is identically zero. Ifr?(x)+3q(x)d(x)>0 the polyno-
mial dP/dz has two positive roots:

(0 —={r’(0—3q(x)|d(x)[}**
3[d(x)|

0=<{1(x) (109

084034-10
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r(x)+{r (X:;|d(3xq)(|X)|d(X)|} >0, (110

{o(X)=

with Z1(x)>0 if and only if g(x) #0.

The polynomialP, decreases for € z<{;(x), increases
for £1(X)=z={5(x), and decreases tox for z={5(x). We
haveP,(0)=—a(x)<0. ThereforeP, takes negative values
for somez>0 if eithera(x)>0 or ;(x)>0, i.e.,q(x)>0.

The polynomialP, takes positive values, equivalently admits

two positive rootsz;(x) andz,(x) which are such that

1(X)=z1(X) = (X) =2zx(x), (11
if and only if its maximum, attained fa= ,(x), is positive,
Pyx({2(x))=0. (112

We have therP,(z) <0 for 0=<z=<z(x), andP,(z)=0 for
z2=275(X). If

r2(x)+3q(x)d(x)<0, (113

the polynomial P, is always decreasing. It takes positive

(i.e., non-negativevalues only if it is identically zero.

Lemma 2.Suppose that(x)>0, r?(x)—3q(x)d(x)>0
and P,(Z,(x))=0 for all xe M_. There exist numberk_
andm_ such that

P,(1*)<0, P,(m*)=0 for all xeM_ (114

if the following conditions are satisfied:
inf z;(x)>0, supz;(xX)< inf zy(x), (115

_ XeM_ XeM_

and [r(x)|/|d(x)|, g(x)/|d(x)|, a(x)/|d(x)| are uniformly
bounded orM _ .

Proof. All numbersl_ andm_ such that

I_<z1(x), Zz(X)=m_<2z,(x) for all xeM_
(116

are such thaP,(1*)=<0, P,(m*)=0. These numbers exist,
with | _>0 and+e=m_=|_ under the given conditioris.

(3) On Mg, d(x)=0, P, reduces to a second order poly-
nomial

(117

If r(x)<0, thenP,<0 as soon ag>0 except if it is iden-
tically zero. We supposg(x)>0. ThenP, admits one posi-
tive rootzy(x):

Pu(2)=r(x)Z*=q(x)z—a(x).

Zo(X)=(2r(x)) (x)}¥2=0.

) Ha%(x
Lemma 3We suppose that(x)>0 for all xe MO
There existlo>0 andmy=Il, such thatP,(I3)<0 and
(mo)>0 for all xe My if and only if

X)+4a(x)r(x (118

inf —

ax ) q(x)
inf —— () or o () >0 (119

XxeMg

PHYSICAL REVIEW D 61 084034

and

a(x)
sup——< +oo

and sup—)< + o0,
Xe Mor( )

xe Mg ( ) (120)

Proof. Under one or the other of the first inequalities we
have

inf z5(x)>0 (121
XEMO
The other ones insure
SupZzy(x) <+, (122
Xe MO
We set
lg=inf zo(x), Mg=supzy(X). (123

Mo Mo

All numbersl andm satisfying the following inequalities

0<I=ly=Iinf zg(X)< supzpg(X)=mg=m (129
Mo xe Mg
satisfy P,(I1*)<0 andP,(m*)=0 for all xe M, O

The following lemma is an immediate consequence of the
previous three.

Lemma 4.We suppose that the conditions given in the
lemmas 1, 2, and 3 for the existencelof, |, , o andm_,
m, , my are satisfied. Then there existandm such that:

0<l<1=m and P,(1*)=<0, P,(m*=0 for all xeM

(129
if the following inequalities hold:
mesm_, mesm_, m_=1. (126)
Proof. Take
m=m_, [=min(1)y,l,,l_). (127

Thenl| and m satisfy the required inequalities for adle M.
They are admissible sub and supersolutions. O

Theorem.On a 3-dimensional asymptotically Euclidean
manifold the Lichnerowicz equation

Ayzp—r(p-l—a(p*?-i- qe 3—de°=0,

a=0, g=0, d=b—c, b=0, c=0, (128
with r, a, g, deW! 5, ,, s>n/p, —n/p<é<n—2-n/p,
admits a solutionp>0, ¢ —1eWE, , 5 if the assumptions of
Lemma 4 are satisfied.

Corollary. No Unscaled Sources,=b>0. The Lichner-
owicz equation has a solutiop>0, ¢—1eWg, , ; if

(i) The quotientdr (x)|/b(x), q(x)/b(x), a(x)/b(x) are
uniformly bounded.

(i) There is a positive numbesr>0 such that if[a(x)
+qg(x)]/b(x)<e, then

084034-11
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[r()|
b(x)

This last condition can be achievedafq#0 by a confor-

r(x)<0 and >e'>0. (129

mal transformation and solution of a Dirichlet problem in the

subset ofM where @+q)/d<e, so long as this subset is
compact(cf. [1,2]).

XIl. UNSCALED SOURCES, CASE n=3

PHYSICAL REVIEW D61 084034

We haveP,(z2)=0 for 0=<z=<2z,(x), P4(2)<0 for z;(x)
<7Z<7,(X).

(2) Casec(x)=0.

The polynomialP, reduces to

P(2)=—r(x)Z?+a(x). (138

We haveP,(z)=0 for 0<z=<(r 'a)*? and P,(z)<O0 for
z=(r 'a)Y? Note that ¢ “*a)'?is the value forr=0 of the
previously computed; while the previous, tends to infin-

We treat in this section the Hamiltonian constraint fority whenc tends to zero. The caseéx)=0 are thus unified.

unscaled sources in the case 3. The Lichnerowicz equa-
tion reads
Ay(p—rzp+acp77+0(p5=o. (130

The functionsa=0 andc=0 are given on {1, v).

TheoremLet (M, y) be a (p,o0,p) asymptotically Euclid-
ean manifold,c>n/p+2, o>—n/p with r>0. Leta, ¢
e WS 5., be givenon ¥,y), s>n/p, o>—nlp. There ex-
ists an open set of values afandc such that the Lichner-
owicz equation with unscaled sources has a solugicn0,
with 1—@e W, , ;.

Proof. We look for constant admissible sub and superso-

lutions| andm such that

o<l=slsm,
P (1=0, P,(m* =<0, for all xeM, (131
whereP is the polynomial,
P (2)=c(x)Z2—r(x)Z%+a(x). (132

(1) Casec>0.
We setz=X"! and consider the polynomial which has
the same sign aB,,

The following constant$ and m are sub and supersolu-
tions if
[<z,(x), zi(X)=m=2z,(x) for all xeM. (139

They exist, satisfying the required propertiesiB<1=<m, if

inf z;(x)>0, infzy,(x)=max1,supz(x)}. (140
xeM XxeM XxeM
One then takes
I=min{1, inf z;(x)}, m= inf z,(x). (141

xeM xeM
We give below sufficient conditions to satisfy the various
inequalities, using the expressions

2 rla 2 rla

AT B sin(6+2mi3) 2T 3 sin(6r3)”

o
with 0= <. (142)

The functions sing/3) and sif(6+2)/3) are respectively
increasing and decreasing whérincreases from 0 ter/2.

a3 -1 1 Denote byf,i, and 6,5, the infimum and supremum @fon
QX)=a{X*=a “rX+a “c}. (133 M defined as solutions between 0 am® of the equations
This polynomial has 3 real roots if
. . 3c(Ba)” _ 3c(3a)”?
4r3=27ac?. (139 S'namin_'uf orpl2 S'ngmax_sﬁp orpl2
Two of these roots are positive, given by the classical for- (143
mulas: Therefore
o= X sins . Xy sino 2T (135 2
=\sing, X;=\sin , ) .
2 3 3 inf z;= —inf(r ~ta){sin(( Oin+ 2m)/3)} 1
M \/§M
with
2r2 3c(3a)l? T supzl<i up(r ~ta){sin(( Opaxt 277)/3)} 1
_ = . e - = max
A= e sing= P O<¢=5. (130 M ﬁSM
i 2
The corresponding roots &, are inf 2,= ——inf(r~1a){sin O} - (144)
M 3m
o (x) (137
Z1=<=2,(X).
XX P We find by elementary calculus that
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0=<SiN(( Opnaxt 27)/3) — SIN Oa3) = V3COL( Oaxt 7)13)

3
< £ (145
2
The minimum zero is attained fd,,=7/2, i.e.,
3c(3a)?
sup———-—= 1 (1406
Mo 2rr

To insure the existence of constamtand m satisfying the
required properties we suppose

B :%inf(r‘la){sm(( Omint 2m)/3)}"1>0,  (147)
M

and we set
[=min{l _,1}. (148
We suppose also
2
m, =—=inf(r ) {sin Ona/3)} 11 (149
and
2 :
M- = —SURT @) {Sin( fnact 2m)/3)}~*<m, .
(150
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FUXV—Z by (X,y)—F(X,y). (151

Suppose that the partial derivative Bfwith respect toy at a
point (Xq,Yo) e UXV, ]-'{,(xo,yo), is an isomorphism fronY
onto Z; then there exists a neighborho@dof x, in U such
that the equation

F(x,y)=0 (152

has a solutiory e V for eachxe W.

We consider the quantitiey andv (scaled sourceso-
gether withN andu, a traceless symmetric 2-tensor as given
on the asymptotically Euclidean manifol(y), with g, v,
1-N"teWP,. ,, ue WL, s, ;. We will discuss the exis-
tence ofp andB as we perturld and r away from zero. The
points x,y and the Banach spacés Y, andZ are as fol-
lows:

X=(7,0) e X=WE, 1 5,1 XWE 5.5,

y=(B,¢—1)eV=YN{¢>0}, YEWngz,&x Wg+2,5v

Z=WE 5, ,XWE 5. (153
The mappingF is given by
Fxy)=H(7,3;¢,8), M(7,3;¢,8)) (154

where’H and M are the left hand sides of the conformal
formulation  of the_ constraints, H(X,y)=A ,¢—
f(-;78,0), M(x,y)=V-((2N)"*LB)—h(-;7,3;¢).

The multiplication properties of weighted Sobolev spaces
show thatF is a C* mapping fromXxV into Z if s>n/p

The conditionm_<m, can be satisfied for an open set of and 6> —n/p. The partial derivativei-')’, at a point &,y) is
values of the coefficients, a (givenr) due to the previous the linear mapping fronY into Z given by

elementary study. We can take for any number between

max1,m_} andm, . The numberd and m so chosen are (8B,0@)—(Hy, M) (5B,5¢) (159
admissible sub and supersolutions of the Lichnerowicz equa- o

tion. The existence of a solutiop with the required proper- With [A is given by Eq.(16)]

ties results from the general theorem, given in Sec. \[J] H§-(5,8,5¢)EA76¢—(15¢+2kn<p*P2N*1A~£5,8,

XIll. COUPLED SYSTEM a=r+Po P la(B)+P'ge P 1
In the conformal method the momentum and the Hamil- 0-1

tonian constraints decouple when the initial manifMdhas +dQe 7,

constant mean extrinsic curvature and the unscaled sources | =

have a momenturhl=0. The theorems of the previous sec- My-(6B,69)=V-(2N""L5B)— e,

tions are then sufficient to give existence, non-existence or

uniqueness theorems of the systems of constraints. We will - 2(n—1) (4 2)/(0-2)p 74 2(n+2)
in the next sections study cases where one of these hypoth- (n—2) ® n—2
esis does not hold; hence the constraints do not decouple. X (1 6(1-2)3. (156

XIV. IMPLICIT FUNCTION THEOREM METHOD Theorem Specify on the asymptotically Euclidean mani-

. . . . p
The use of the implicit function theorem is the S|mplestf0.Id (M,7) a tpraceless tensare W, ; 5,1, a scalaiN>0
way of proving existence of solutions of equations in theWith N—1eWg,, 5, and scaled and unscaled sources,

neighborhood of a given one. It works as follows.
Let U andV be open sets of Banach spacéandY and

ceWt, ,, s>n/p, —n/p<é<n—2—n/p. Let (By, o)
be a solution of the corresponding constraints viith,=0

let F be aC' mapping fromUXV into another Banach (hencery=0 sinceroe WS, ; 5,,), andJo=0. Suppose that

spaceZ:

onM

084034-13



CHOQUET-BRUHAT, ISENBERG, AND YORK PHYSICAL REVIEW D61 084034

aoEH'P‘PEP_la(Bo)"‘P’QDEP,_lq—CQ@oQ_l?O- the couFEJIed constraints admit a solutiof, &) with B, 1
(157 —eeWgps.
Proof. We will construct a sequencep(,,3,) by the in-
Then there exists a neighborhodf (74,Jg) in X such that  ductive algorithm
the coupled constraints have one and only one solution

(B,¢), >0, (B1-9@)eY. Ay¢v=f(~.Byfl.%)zrsoy—a(ﬁyfl)solp—qwip/
Proof. Under the hypotheses that we have made the par- o
tial derivative]—'Q(xo,yo) is an isomorphism fronY onto Z +hey,

because the system of linear elliptic equations . - .
Vi{(2N"H)(LB)"}=h(-,¢,)

=Vi{(2N) "t}
A, Sp—agdp=—2k,e P(2NTA)- L5B+K (158 n—1

+ Tgovnl(n_z)vj r+vl

V-{(2N)"*£5B}=h

has one and only one solutiord$,58) €Y for any pair

(h,k) e Z. O (163
Corollary. The conclusion of the theorem holds ¥i( y) )

is in the positive Yamabe class andd=0 (realized in par- with

ticular if all sources are scalgdvithout having to consider

. -2

the sign ofay. B =Kk (2N) -2l —u+ £Bl2 k=1 (16
Proof. If (M, ) is in the positive Yamabe class we can (B=kn(2N)™ A% ko 4(n—1) (164

choose M,y') in the same conformal class and such that ] ) )

r(y')=0. To the data\, u, g, v correspond dathl’, u’, q’, The equations for the,'s admit all the same subsolution

v’ and to the solutionB, ¢, corresponds a solution of the ¢-» Which depends only on andb. They admit the same
transformed conformal constraints. The correspondifggs ~ SuPersolution®(A) if there existsAe W ;,, such that
positive and the conclusion of the theorem applies to thé(/B,-1)=<A for all ».

transformed system, hence also to the original systerfil We start for instance frong,=0 and choosé\ such that
A>a(0)=Kk,(2N) 2Jul?. (165
XV. CONSTRUCTIVE METHOD WITH SCALED

SOURCES Suppose thaB,_; e WS 5 , and thata(3,-1)<A. Theng,

We will give in the next two sections another method toexists, 1-¢,eWE,,5, and ¢_<¢,<P®(A). Also, B,
obtain solutions of the coupled system. It will give new re- EW’S’Q(s exists, and there is a constadt(cf. Appendix A
sults for unscaled sources on a maximal manifold. It is posdepending only onNl,y) such that
sible, though not proven, that the hypotheses we make in the

case of scaled sources on a non-maximal manifold imply that n 2n/(n—2)
this manifold is in the positive Yamabe class. ”'GV”WQFC[ n—1 ||DT”W8,5+ZSUW(D(A)
Lemma 1.The equation
Aygo=f(~,go)Er(p—ago_P—q(p_P/-f-quQ (159 +|P||W8,5+2]’ (166
with r, a, g, b satisfying the hypothesis of the theorem in whereP is the given vector
Sec. IX admits as a supersolution the solutidfA), 1
—®(A)e WS, , 5, of the equation P=V-{(2N) tu}+v. (167
A o="f (- ‘P)E_A(pr_qufp’ (160 The weighted Sobolev multiplication theorem and the ex-
7 pression fora(B) imply that if B,e W5, n/p<1, &>
if a<A, with A a given function inWg 5., . —n/p, then
Proof. The function®(A) exists by the theorem in Sec. 0
IX. It satisfies a(B,)eW;, ., for all &' such thats’'<s+ 5+B ,
Ayd>—f(~,(I))=fA(~,(D)—f(~,d>)s(a—A)(I>‘Ps0; (168
(161
and there exists a numbérsuch that
hence it is a supersolution. O
Theorem.Under the conditions omn and b given in the la(B,)we $C{||uH\2Np +||BV||\2Np b (169
1,6"+2 1,6+1 2,8

theorem of Sec. IX there exists a numker0 such that if

By the weighted Sobolev inclusion theorem, there exists then

ID T”Wg,,mg €, n>p, &>-nlp, (162 another constan® such that
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latg.)lco <Clla(Blwe, (170
for all §"<é§’+2+n/p, hence also for all§"<26+2
+n/p.

Since d+n/p>0 there exists a number such that

n n
0+2+ —<a<26+2+ —. 171
p p
We choose forA a function of the form, withu some posi-
tive constant,

A=ulo*, (172
where o=1+d? (see Sec. I). We haveAe W}, , since
a>6+2+n/p. For such a functionA, the inequality
a(B,)=<A is equivalent to

o a(B,)<p, ie, [a(B,)lwz.<n. 73

Using the previous estimates we see that a sufficient condi-

tion to insure orM the inequalitya(B,) <A is to have some
number depending only o, y) andN, denoted byC, that
has the property

2 4n/(n-2) 2 2
D7y, suma®i™ D lolyg  Flulag,  =Cr

(174
where we have seb ,=® (o™ “u).
We chooseu large enough to have
2 2
> =
Cu>S, s=[olyp +lulfy . @79

PHYSICAL REVIEW D 61 084034

n
supo?*?<CC2|D75, , for al asot .
M 0,6+1
(178

This inequality implies that the conditidm= —r can be sat-
isfied only if r satisfies the condition

4n
—ro?*< ——CCbe.

— (179

We can estimate the value efas follows, considering for

simplicity the vacuum casq=0=v=0. The supersolution
® , satisfies the equation

— -P

AP ,=—AD . (180

We know that® ,=1; thereforeA@;PsA and®,<V¥,,
whereW , is the solution with¥ ,—1e WL, , ; of the equa-
tion

ANV, =—A=—ulo” (181

ObviouslyV , =1+ uw,, wherew; depends only onNl, y),
satisfies the equation

A wy=—1lo“ (182
and tends to zero at infinity. The inequality to satisfy is then

2 — —
||DT||W85+2$(C:U“_S)(1+ Cip) 4n/(n 2)’

with C;=supw;. (183

M

The inequality obtained above shows that we can construcfp,o right hand side is maximum for a finite valpe= g

¢,+1 and hences,, 1, enjoying the same properties as,
B, if D7 is sufficiently small inWj ;, , norm. The existence

of a solution ¢,B) of the coupled constraints as limit of a
subsequence is proved by a compactness argument and ellip-

with g given by

_(n—2)C+4nC1$
Ko~ @n+2)CC;,

(184)

tic regularity as in the case of the Hamiltonian constraint

with a giveng. O
Remark.The numbere depends on the choice @f and
the function® , . Neither of those depends oror onb, i.e.,

on . However, our theorem imposes a restriction on the size €=

of 7 on the subset of the manifolel wherer <0, since it
supposes thab=(n—2)/4n7?=—r. This could lead to a

(Note thatuy,>S/C if n>2.) We find therefore

C]_S —4n/(n—2) n-2 C
= S+ —|.
C )} 3n+2 cl>

4n

n+2

difficulty, pointed out by O’Murchadha, on an asymptoti- It is an open problem to prove the analogue of the Poincare

cally Euclidean manifold where would be too negative.
Indeed it is known that in the cage=2, §= —1 there exists
a constantCp such that the following Poincarestimate
gives an upper bound ¢f{ in terms of|D7|:

7, =CelD (179

If we suppose that an analogous inequality holds dor
>n, 6>—nl/p, i.e, that there exists a constad} such that

77

Il <CelD g,

then by using the Sobolev embedding theorem:

inequality inW§ ;5 and to decide whether the restriction im-
posed onr implies that M,y) is in the positive Yamabe
class or not. The conclusion may ke. [7]) related to the
existence of apparent horizons as in the proof by Schoen and
Yau [13] of the positive energy theorem.

XVI. COUPLED CONSTRAINTS WITH UNSCALED
SOURCES

We treat in this section the system of constraints for un-
scaled sources on a maximal submanifold in the ces8.
This system is coupled if the given initial momentJndoes
not vanish. The equations are
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Vi{(2N)"HLB) 1=V {(2N) "t} + ™. (186)

We have the following straightforward result.
Theorem.We suppose that the given quantitiesc, J

EWE,IHZ! UEW§+1,§+1- 1_NEW‘S)+2,5' p>n, 6>—nlp

are such that there exist positive functioms , A,

EW2,5+2 with APPENDIX A: ELLIPTIC LINEAR SYSTEMS ON

MANIFOLDS EUCLIDEAN AT INFINITY

A_<a(Bo)<A: (188 For the convenience of the reader we recapitulate here
. some known facts.
and such that the equation A linear differential operator of orden from sectionsu
_ 5 of a tensor bundlé&E over a smooth Riemannian manifold
Ayp—Tot+ALe "+ce°=0 (189 (M, y) into sections of another such bundiereads
admits as supersolution the constamt =1, and that the m
analogous equation constructed with admits as subsolu- Lu= Z aD*u (A1)
tion the constant, <1, I, >0. Then there existg>0 k=0
such that with a, a linear map from tensor fields to tensor fields given
also by tensor fields ovevl.
||J||W§y5+f€ (190 The principal symbol of the operatérat a pointxe M,

for a covector¢ atx, is the linear map fronk, to F, deter-
implies that the coupled constraint equations have a solutiomined by the contraction af,, with (® £)™. The operator is
(B,p) with ¢>0 andp, 1—¢e W2+2,5. said to be elliptic if for eaclkke M and£e Ty M its principal
Proof. It is elementary to check thdfy andm, are symbolis an isomorphism fror, onto F, for all £+0.

admissible sub and supersolutions of the Lichnerowicz equa- Example.The conformal Laplace operator for a metsic
tion constructed witla(B) if on M acting from vector field$3 into vector fields is

< = . . - 2
A-=alp=A. (o VLRIV VIB+VIE - Syivgk|. (A2)
In this case the equation has a solutipnwith 1, <¢
<My, . Its principal symbol ak, with £ T,M, is the linear mapping

The momentum current being independent of other quanf_rom covariant vector$ into covariant vectors given by

tities its bound does not affect other estimates. 5

We will construct a sequence,,f, as in the prev?ous §i§ibj+§i§jbi— —§j§"bk=aj. (A3)
section. We now have to showv_<a(B,_1)<A, implies n
the same inequalities fa(g,) if ¢,_1=<m, and|J o . ) )
, . (Ba) I @-1=ma, ) ” ”WS,HZ This linear mapping is an isomorphismgf4 0 because
is small enough. We use the fact tfitite notatior] | means

here they norm):

{a(Bo) 2= (16N) | £(B— Bo)ll<{a(B)}*><{a(Bo)}*?

+(16N) Y L(B— Bo)|. (1920  if §#0 andb#0. The conformal Killing operator is elliptic.
Theorem.Let (M,e) be a(complet¢ Riemannian mani-

We deduce from the momentum constraint satisfiedgpy fold Euclidean at infinity. Let
the elliptic estimate

(€&)(blby) +

2\
1—5)(5'bi)2>0 (Ad)

m
— k
18~ Bollwg <CmiC [ Ilwg (193 Lu=2, aD"u (AS5)

The proof is then completed along the same lines of previoube an elliptic operator on\,e). Suppose the coefficients of
proofs. O L satisfy the following hypotheses.
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(1) There is aC” tensor fieldA,, on M, constant in each
end of (M,e) such that for some with 1<p<+x

n n
am—Ane W2 5 Sm>5+1, Sm>— —;

-
and

@

akEWEk,5k1

n n
Sk>—+k:m+l, 5k>m_k_—, ng
p p
Then for eachs such thats,+m=s=m the operatorL
mapsW§ s into WE_ 5., with finite dimensional kernel and
closed range if

n n
——<86<-m+n——. (AB)
p p

If, moreover L is injective onW} 5 then it is an isomorphism
and there is a numbe€ such that for eachu in W} ; the
following inequality holds:

lullwe ,=<CllLufwp (A7)

m,é+m

This theorem applies to the Poisson operdtor k under the
hypothesis indicated in the theorem in Appendix B.

APPENDIX B: SOLUTION OF A e=f(x,¢¢) ON AN
ASYMPTOTICALLY EUCLIDEAN (M, y)

Let A, denote the Laplace operator on scalar functions on

(M, ). Let f be a real valued function ol X1, with | an
interval of R, given by &,y)—f(x,y). We will show that the
sub and supersolution method used by one ofdus in the

PHYSICAL REVIEW D 61 084034

to ¢>0 at infinity then there exists a numbler 0 such that
e=1 onM. (b) If ¢ tends toc=0 at infinity theng=0 onM.

Proof. One knows by the classical maximum principle
that if ¢ attains a nonpositive minimurk at a point ofM
theng=\ on M. Also, if D is a bounded domain d#l with
smooth boundaryD and if the functiony attains a nonposi-
tive minimum inDU gD this minimum must be attained on
the boundarngD.

(@) Choosee=0 so small thate<c. If ¢ tends toc at
infinity there is a compacs such thatp=c—e>0 on M
—K. ImbedSin a relatively compact domaid with smooth
boundarydD. On gD, ¢ takes positive values, therefoge
does not attain a nonpositive minimum on the compact set
DUJD; it attains a positive minimune’. The numbet is
the smaller of the two positive numbets- € andc’.

(b) Suppose thap takes a negative value on M. Choose
e<|al. There is a compac$ such that

sup|f|<e. (B3)

M-S

Take a relatively compact open d€2tontainingS. If ¢ takes

a nonpositive minimum it is on the bounda#p, i.e., in

M —S, which contradicts the fact that the absolute value of

this minimum is necessarily greater than or equal dd,

itself greater thane, which is the maximum of¢| in M

-S. d
Theorem.Let (M,y) be an f,0,p) asymptotically Eu-

clidean manifold. Lekke W 5,,, 6>—n/p be given. The

operatorA ,—k is injective onW§, , ; if either

(1) k=0, s>g, (B4)

(2) fM{IDf|2+kf2},L7>o for all feCy, f#0,

case of a compact manifold can be extended to asymptoti-

cally Euclidean ones. Recall thatl(y) is a (p,o,p) asymp-
totically Euclidean manifoldM of dimension n, if y—e
eWb | with (M,e) Euclidean at infinity ancp>—n/p, o
>n/p+1.

1. Linear equations

Definition. SupposeM is not compact. We say thatends
to a valueceR at infinity if for any e=0 there exists a
compactS such that

sup|f—c|<e.
M-S

(B1)

Lemma 1 (maximum principlelet (M,v) be an asymp-
totically Euclidean manifold. Suppose thatC& function ¢
on M satisfies an inequality of the form

Ap+ta-De—he<0 (B2)
with a dot denoting the scalar product in the metyjovhile

a andh are respectively a vector field and a function Mn
both bounded. Suppose thas0 onM. Then(a) If ¢ tends

n n

s=0 and 5>2

1if p#2, 6=—-1 if p=2.
(B5)

Corollary. Under the hypotheses 1 or 2 the operatoy
—k is an isomorphism fromwg, , s onto WE 4, , if s<o
—1—n/p, —n/p<é<—n/p+n—-2.

Proof. (1) If s>n/p, a solution inWE, , 5 with 6>
—n/pisin Ci for some positiven. The differencey—e is
in Cé for some positiveB. The maximum principle applies
and shows thati=0 on M.

(2) The solutionuEWB’(S is not necessarilf?. To prove
thatu=0 we will multiply by u the equation and integrate on
M.

If ueCy, then

uA . u :—f Du.Duuw.,,. B6
fM Ny y My (B6)

We can estimate the integrals in the above formula in terms
of the Sobolev norm. In the cage=2 we have
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f UL = Ul Al Supa(1+d?) 7O,
(B7)

which is a bounded quantity whenevét 1=0.
In the casgp+#2 we have

I(1+d*) =D,

0,6+2

| un un =l 2 ulug

p'= =2 (B8)
The considered.®’ norm is bounded if
n n
2p'(6+1)>n, ie., 5+1>§—5. (B9)

The same kind of estimate applies to the integral of”

Du-Du.

The density ofC{ in the weighted Sobolev spaces shows

then that a solutiom e ng(S satisfies the equality

uA U =—f Du-Du zf ku?w.,. (B1O
fM Uy " "= . (B10O)

Therefore, under the hypothesis made, we h@uwe=0;
henceu=constant andi=0 becauseai tends to zero at in-
finity.

The corollary is a consequence of the general theorem o
elliptic systems on an asymptotically Euclidean manifold,

recalled in Appendix A.
If n>2 the inequality 5<—n/p+n—2 is compatible
with Eq. (B9) if p# 2 [respectively with6=—1 if p=2].
RemarkUnder the hypothesies made av (y) andk, the
solutionue WE, , 5 of an equation

A u—ku=v (B11

with v e W , ., for some &’ such thaté<s'<-—n/p+n
—2 is in Wi, if p>n/2. IndeedueWE,,; and k
e WS 5., imply thatkue W! . ,, sinces<2s+2-n/p if
p>n/2, §"<é+(5+n/p). Sinceu satisfies

Au=kutv eWg inf(o7,87)+2° (B12)
we have
UEWS, 5 insr.sr)- (B13

An induction argument shows thate WE, , ;. .

2. Non-linear equations

We suppose that the functidns smooth iny andW‘S"B+2
in X. To make it more transparent we takas a finite sum of
products of functions ok by functions ofy, as it appears in
the Hamiltonian constraint:
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Q
f(xy)z@o ap(X)bp(y). (B14)

We make the following hypothesis:

Hypothesis HWE ;).

(1) There exists an intervdlCRR such that theb’s are
smooth functions of/ e 1.

(2) Thea’s are functions oM in WE ;. .

Lemma 1.Under the hypothesisl(W£ ;) the function on
M given byx— f(x, ¢(x)), denoted in the sequé(x, ¢), has
the following properties wheg is continuous and takes its
values in a closed interv@l,m]|Cl:

(1) f(x,0) e WG 5, , if s=0.

(2) If s>n/p, 6>—n/p andDeeWy, ,; . With &'
>—nlp, s=s'>n/p thenf(x,¢) e W, ;.

Proof. Part 1 is trivial. To prove part 2 one uses the cal-
culus derivation formulas and the multiplication properties of
eighted Sobolev spaces. O

Definitions.A C? function ¢_ on M is called a subsolu-
tion of A ,o="F(X,¢) if it is such that onM,

Ao _=f(X, o). (B15
A C? function ¢, is called a supersolution if okl
ALpr<f(Xe4). (B16)

Theorem 1 (existencelet (M,y) be a p,o,p) asymp-
totically Euclidean manifoldr>n/p+2 andf(x,y) a func-
fion satisfying the hypothesisi(WS ;) with s>n/p, &>
—n/p. Suppose the equatioh .o =f(X, ) admits a subso-
lution ¢_ and a supersolutiogp, such that orM

I<gp_<¢@,<m, [I,m]CI

(B17)
and

limp,.=1. (B19)

[ee]

limp_<1,

Suppose thaD¢_, Do, eWs, | 5 ;. s'=s, 8'>—nlp.
Then the equation admits a solutignsuch that

e-<o<¢,., 1-peW, ,; with §<p

n n
and — —<6<n—2——. (B19
p p
Proof. We construct a solution by induction, starting from
Q_ .
Letk be a positive function oM such thake W¥ ;. , and
at each poinke M

k(x)= sup fi(x,y).

Isysm

(B20)

Such a function exists by the hypothesis made.on
We setg,=1+u;. The linear elliptic equation fou,

Au—ku=f(X,p_)—k(e_—1) (B21)

084034-18
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has one solutiom; e WE, , sC C?, since the right hand side
is in W 5., and the operator on the left is injective from

WE, , 5 into WE 5, , under the hypothesis made srand é.
The functiong, tends to 1 at infinity.

PHYSICAL REVIEW D 61 084034

Pr-15¢n- (B32)

Analogously one uses the maximum principle and the in-
equality deduced from the equation and inequality satisfied

We deduce from the equality and the inequalities satisfiedy ¢, and ¢,

respectively byp,; and ¢ _ the following inequality:

Ap1—¢)—K(e1—¢_)<O0; (B22)

hence, by the maximum principle lemma, singg— ¢_
tends toc=0 at infinity,

@1=¢_ on M. (B23)
Also,
AYes—@1) Ko+ —e1)
<f(X,¢.)—f(X,@o-) k(e —¢-), (B29
and

fX, o) —f(X 0 )=(@s—¢)

1
X fo fy(X, o +t(e,—¢_))dt.

(B25)

By the hypothesis made dg ¢, , and¢; we have onV

Aer— 1)~ k(e —¢1)<0, (B26)
hence
P1S@y. (B27)
The induction formula is, withp,=1+up:
Agup—Kuy=f(X,0n-1) —Ku,_ ;. (B28)

We suppose thap,, exists for 0<p<n—1 with ¢o=¢_ and
upe WE, , s for I<sp=<n-—1 and that for these’s

PSPy 1SEpSoy. (B29

The elliptic theory show:mneWEJrz’(S exists. The functions
¢, are continuous, eve@? sinces>n/p, and tend to 1 at

A(en—@y)—Klen—@)=f(X, 00 1) —F(X,04)

—k(en-1—¢+), (B33
to show thatp,,_1<¢, impliesp,<¢, .

The sequence of continuous functiaps has been shown
to be pointwise increasing and bounded. It is therefore con-
verging at each pointe M to a limit ¢(x) =1+ u(x), with
P_<P=@y.

To show thate is a solution of the given equation and
@—1eWE, , s we proceed as follows. Since tlgg, are con-
tinuous and take their values in the interyglm], the func-
tions f(x,¢,)—ku, belong to Wf;,, with uniformly
bounded norms. The linear elliptic inequalifyollowing
from Eq.(B29)]

Junalwg =<Clf (o) —kulug, (B34

shows that the sequenaog is uniformly bounded in th&V5 ;
norm. Sincewg(s is compactly embedded inﬁ, for any
&' <6, there is a subsequence, still denotgd which con-
verges inWjy ;, norm to a functiorue W5 5.

The functionsf(x,¢,) converge td (X, ¢) in thewﬁﬁ,+2

norm because of the inequality, which is satisfiedsif
>n/p, §'>—nlp,

||f(X,(P) - f(X,(pn)”Wp

P Clle— (PnHWEﬁ,” FlHWE’MZa

(B35

whereC depends only onNl,e) and Flewgm is a func-
tion on M, which exists by the hypothesis dnsuch that

Fi(x)= sup [fj(x,y)]. (B36)

ye[l,m]

These convergences imply that the lingit=1+u satisfies

infinity. The equality resulting from the equations satisfiedthe equation in a generalized sense. From the linear theory,

by ¢, whenp<=n—1 gives

we find that the equation satisfied byand the fact thafcf.
above lemmathat f(x,¢) e W} 5., (also e WS 5, , sinceu

Bgen-1Ken1=T(X,@n-2)~Ken-2, (B30 e W3 ,) thatue W8 ;. An induction argument completes the
P
Aqoy—koo=F(X, 05 1)—Kop 1. (B31) proof thatue Wg, , 5. _ o _ _ _
e P Pt Pt The theorem holds wite=0 if f is an increasing function
One deduces then from the maximum principle lemma thaof y. An example is treated in Sec. X. O

onM
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