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Hawking radiation in string theory and the string phase of black holes
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The quantum string emission by black holes is computed in the framework of the ‘‘string analog model’’~or
thermodynamical approach!, which is well suited to combine quantum-field theory~QFT! and string theory in
curved backgrounds~particularly here, as black holes and strings possess intrinsic thermal features and tem-
peratures!. The QFT-Hawking temperatureTH is upper bounded by the string temperatureTS in the black hole
background. The black hole emission spectrum is an incomplete gamma function of (TH2TS). For TH

!TS , it yields the QFT-Hawking emission. ForTH→TS , it shows that highly massive string states dominate
the emission and undergo a typical string phase transition to amicroscopic‘‘minimal’’ black hole of mass
Mmin or radiusr min ~inversely proportional toTS) and string temperatureTS . The string back reaction effect
@self-consistent black hole solution of the semiclassical Einstein equations with massM 1 ~radius r 1) and
temperatureT1] is computed. Both the QFT and string black hole regimes are well defined and bounded:
r min<r1<rS, Mmin<M1<M, TH<T1<TS. The string ‘‘minimal’’ black hole has a life timetmin

.(kBc/G\) TS
23 .

PACS number~s!: 04.70.Dy, 04.62.1v, 11.25.2w
r

ce
i

tim

m
e
u

and

ia-
on-
be
e-
rk

-
ing
um
cu-
ing
l

rved
e

ck

s is

pace

ui-
I. INTRODUCTION AND RESULTS

In the context of quantum field theory~QFT! in curved
spacetime, black holes have an intrinsic Hawking tempe
ture Ref.@1# given by

TH5
\c

4pkB

~D23!

r S
, r S[Lcl ,

r S being the Schwarzchild’s radius~classical lengthLcl).
In the context of quantum string theory in curved spa

time, quantum strings in black hole spacetimes have an
trinsic temperature given by

TS5
\c

4pkB

~D23!

Lq
, Lq5

bLS~D23!

4p
, LS[A\a8

c
,

which is the same as the string temperature in flat space
~see Ref.@2# and Sec. III in this paper!.

The QFT-Hawking temperatureTH is a measure of the
Compton length of the black hole, and thus, of its ‘‘quantu
size,’’ or quantum property in the semiclassical-QFT regim
The Compton length of a quantum string is a direct meas
of its sizeLq . The string temperatureTS is a measure of the
string mass, and thus inversely proportional toLq .

The R transform over a length introduced in Ref.@3# is
given by

L̃cl5RLcl5Lq ,

L̃q5RLq5Lcl .
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Under theR operation,T̃H5TS and T̃S5TH . This relation
also holds for the respective QFT-Hawking temperature
string temperature in de Sitter space, Ref.@3#.

In this paper, we investigate the issue of Hawking rad
tion and the back reaction effect on a black hole in the c
text of string theory. In principle, this question should
properly addressed in the context of string field theory. B
cause of the lack of a tractable framework for it, we wo
here in the framework of the string analog model~or ther-
modynamical approach!. This is a suitable approach for cos
mology and black holes in order to combine QFT and str
study, and to go further in the understanding of quant
gravity effects. The thermodynamical approach is parti
larly appropriated and natural for black holes, as Hawk
radiation and the string gas@4,5# possess intrinsic therma
features and temperatures.

In this approach, the string is a collection of fieldsFn
coupled to the curved background, and whose massesmn are
given by the degenerate string mass spectrum in the cu
space considered. Each fieldFn appears as many times th
degeneracy of the mass levelr(m). ~Although the fieldsFn
do not interact among themselves, they do with the bla
hole background!.

In black hole spacetimes, the mass spectrum of string
the same as in flat spacetime Ref.@2#, therefore the higher
masses string spectrum satisfies Eq.~4! (a andb being con-
stants, depending on the model, and on the number of s
dimensions!.

We consider the canonical partition function (lnZ) for the
higher excited quantum string states of open strings~which
may be or may be not supersymmetric! in the asymptotic
~flat! black hole region. The gas of strings is at thermal eq
©2000 The American Physical Society30-1
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librium with the black hole at the Hawking temperatureTH ,
it follows that the canonical partition function,@Eq. ~5!# is
well defined for Hawking temperatures satisfying the con
tion, TH,TS , where TS represents a maximal or critica
value temperature. This limit implies a minimum horizo
radius

r min5
b~D23!

4p
LS

and a minimal mass for the black hole~BH!:

Mmin5
c2~D22!

16pG
AD22r min

D23

S Mmin~D54!5
b

8pG
A\c3a8D .

We compute the thermal quantum string emission of v
massive particles by aD-dimensional Schwarzschild BH
This highly massive emission, corresponding to the hig
states of the string mass spectrum, is naturally expecte
the last stages of BH evaporation.

In the context of QFT, BH emit particles with a Planckia
~thermal! spectrum at temperatureTH . The quantum BH
emissionsq(k,D) is related to the classical absorption cro
section through the Hawking formula Eq.~17!. The classical
total absorption spectrumsA(k,D), Ref. @6#, is entirely os-
cillatory as a function of the energy. This is exclusive to t
black hole~other absorptive bodies do not show this pro
erty!.

In the context of the string analog model, the quant
emission by the BH is given by Eq.~27!, sq(m,D) being the
quantum emission for an individual quantum field with ma
m in the string mass spectrum.m0 is the lowest mass from
which the asymptotic expression forr(m) is still valid. We
find sstring(D) as given by@Eq. ~30!# ~open strings!. It con-
sists of two terms: the first term is characteristic of a qu
tum thermal string regime, dominant forTH close toTS ; the
second term, in terms of the exponential-integral functionEi
is dominant forTH!TS from which the QFT Hawking ra-
diation is recovered~semiclassical QFT regime!.

The computedsstring(D) shows the following: At the first
stages, the BH emission is in the lighter particle masse
the Hawking temperatureTH as described by the semiclass
cal QFT regime@second term in Eq.~30!#. As evaporation
proceeds, the temperature increases, the BH radiates
higher massive particles in the string regime@as described by
the first term of Eq.~30!#. For TH→TS , the BH enters its
quantum string regimer S→r min , M→Mmin . That is, ‘‘the
BH becomes a string,’’ in fact it is more than that, as@Eq.
~30!# accounts for the back reaction effect too: The first te
is characteristic of a Hagedorn-type singularity Ref.@5#, and
the partition function here has the same behavior as
term. Its meaning is the following: At the late stages, t
emitted BH radiation~highly massive string gas! dominates
and undergoes a Carlitz-type phase transition Ref.@5# at the
temperatureTS into a condensed finite energy state. He
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such a state~almost all the energy concentrated in one o
ject! is amicroscopic~or ‘‘minimal’’ ! BH of sizer min , ~mass
Mmin), and temperatureTS . The last stage of the BH radia
tion, properly taken into account by string theory, mak
such a phase transition possible. Here theTS scale is in the
Planck energy range and the transition is to a state of st
size LS . The precise detailed description of such a pha
transition and such a final state deserve investigation
phase transition of this kind has been considered in Ref.@7#.
Our results here support and provide a precise picture
some issues of BH evaporation discussed there in term
purely thermodynamical considerations.

We also describe the~perturbative! back reaction effect in
the framework of the semiclassical Einstein equatio
(c-number gravity coupled to quantum string matter! with
the vacuum expectation value~VEV! of the energy momen-
tum tensor of the quantum string emission as a source. In
context of the analog model, such stress tensor VEV is gi
by Eq. ~32!, where^Tm

n (r ,m)& is the VEV of the QFT stress
tensor of individual quantum fields of massm in the higher
excited string spectrum. The solution to the semiclass
Einstein equations is given by@Eqs. ~48!, ~51!, and ~55!#
(D54):

r 15r SS 12
4

21

A
r S

6D , M 15M S 12
4

21

A
r S

6D ,

T15THS 11
1

3

A
r S

6D .

The string form factorA is given by @Eq. ~57!#, it is finite
and positive. ForTH!TS , the back reaction effect in the
QFT-Hawking regime is consistently recovered. Algebra
terms in (TH2TS) are entirely stringy. In both cases, th
relevant ratioA/r S

6 entering in the solution (r 1 ,M 1 ,T1) is
negligible.

The string back reaction solution shows that the BH
dius and mass decrease, and the BH temperature incre
as it should be. But here the BH radius is bounded fr
below„by r min and the temperature does not blow up~as it is
bounded byTS)…. The ‘‘mass loss’’ and ‘‘time life’’ are

2S dM

dt D
1

52S dM

dt D S 11
20

21

A
r S

6D , t15tHS 12
8

7

A
r S

6D .

The lifetime of the string black hole istmin5(KBc /G\)TS
23 .

The string back reaction effect is finite and consisten
describes both the QFT regime~BH of massM and tempera-
ture TH) and the string regime~BH of massMmin and tem-
peratureTS). Both regimes are bounded as in string theo
we have

r min<r 1<r S , Mmin<M 1<M ,

tmin<t1<tH , TH<T1<TS .

This paper is organized as follows: In Sec. II we consid
quantum strings in the BH geometry and derive the bou
0-2
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TABLE I. Density of mass levelsr(m);m2aexp$bAa8c/\m%. For open stringsa8(c/\)m2.n; for
closed stringsa8(c/\)m2.4n.

Dimension String theory a b kBTS /c2

D
Open bosonic

closed
(D21)/2

D 2pAD22

6 F2pA~D22!

6
S a8c

\
D G21

26
~critical!

Open bosonic
closed

25/2
26 4p

S4pAa8c

\
D 21

10
~critical!

Open superstring
Closed superstring~type II!

9/2
10 p2A2 Fp2A2S a8c

\
D G21

Heterotic 10 p(21A2) Fp~11A2!A2S a8c

\
D G21
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imposed by string theory on the quantum size and temp
ture of the BH. In Sec. III we compute the quantum stri
emission by the BH. In Sec. IV we compute its back react
effect. Section V presents conclusions and remarks.

Such a phase transition takes into account~in the thermo-
dynamical description! the back reaction of the string emis
sion on the black hole. It is clear that at such a stage,
validity of the semiclassical approximation breaks dow
Semiclassical in this context means that quantum matte
coupled toc-number gravity, but for black holes with mass
of the order of the Planck mass, a full quantum gravity d
scription is needed.

II. QUANTUM STRINGS IN THE BLACK HOLE SPACE
TIME

TheD-dimensional Schwarzschild black hole metric rea

ds252a~r !c2dt21a21~r !dr21r 2dVD22
2 , ~1!

where

a~r !512S r S

r D D23

, r S5S 16pGM

c2~D22!AD22
D 1/(D23)

,

AD225
2p (D21)/2

G„~D21!/2…
. ~2!

G is the Newton gravitational constant. ForD54 one has

r S5
2GM

c2
. ~3!

As it is known, the BH — according to its specific he
being negative — increases its temperature in its quan
emission process (M decreases!. Also, it would seem that, if
the BH would evaporate completely (M50), the QFT-
Hawking temperatureTH would become infinite. However
at this limit, and more precisely whenM;M PL , the fixed
classical background approximation for the BH geome
breaks down, and the back reaction effect of the radia
08403
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matter on the BH must be taken into account. In Sec. IV,
will take into account this back reaction effect in the fram
work of string theory.

First, we will consider quantum strings in the fixed B
background. We will see that even in this approximatio
quantum string theory cannot only retard the catastrop
process but, furthermore, provides nonzero lower bounds
the BH mass~M! or horizon (r S), and a finite~maximal!
value for the BH temperatureTH as well.

The Schwarzschild black hole spacetime is asymptotic
flat. Black hole evaporation — and any ‘‘slow down’’ of thi
process — will be measured by an observer which is at
asymptotic region. In Ref.@2# it has been found that the mas
spectrum of quantum string states coincides with the on
Minkowski space. Critical dimensions are the same as
Ref. @2# (D526, open and closed bosonic strings;D510
super and heterotic strings!. Therefore, the asymptotic strin
mass density of levels in black hole spacetimes will read
in Minkowski space

r~m!;SAa8c

\
mD 2a

ebAa8c/\m, ~4!

wherea8[c2/2pT (T is the string tension! has dimensions
of (linear mass density)21; constantsa/b depend on the di-
mensions and on the type of string@8#. For a noncompacti-
fied space time these coefficients are given in Table I.

In this paper, strings in a BH spacetime are studied in
framework of the string analog model. In this model, o
considers the strings as a collection of quantum fie
f1 , . . . ,fn , whose masses are given by the string m
spectrum@a8(c/\)m2.n, for open strings and largen in flat
spacetime#. Each field of massm appears as many times a
the degeneracy of the mass level ; for higher excited mo
this is described byr(m) @Eq. ~4!#. Although quantum fields
do not interact among themselves, they do with the BH ba
ground.

In the asymptotic~flat! BH region, the thermodynamica
behavior of the higher excited quantum string states of o
strings, for example, is deduced from the canonical partit
function @5#:
0-3
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ln Z5
V

~2p!d
Aa8c

\ E
m0

`

dmr~m!

3E ddk lnH 11exp@2bH~m2c41k2\2c2!1/2#

12exp@2bH~m2c41k2\2c2!1/2#
J

~5!

(d is the number of spatial dimensions! where supersymme
try has been considered for the sake of generality;r(m) is
the asymptotic mass density given by@Eq. ~4!#; bH
5(kBTH)21 whereTH is the BH Hawking temperature;m0
is the lowest mass for whichr(m) is valid.

For the higher excited string modes, i.e., the masses o
BH and the higher string modes satisfy the condition

bHmc25
4pmc

~D23!\ F 16pGM

c2~D22!AD22
G 1/(D23)

@1, ~6a!

which reads forD54

bHmc25
8pGMm

\c
@1 ~6b!

@condition Eq.~6b! will be considered later in Sec. IV#. The
leading contribution to the right-hand side~rhs! of Eq. ~5!
will give as a canonical partition function

ln Z.
2VD21S a8

c

\ D 2(a21)/2

~2pbH\2!(D21)/2

3E
m0

`

dmm2a1(D21)/2e2(bH2bS)mc2
, ~7!

wherebS5(kBTS)21, TS being @Eq. ~4!#

TS5
c2

kBbS a8c

\
D 1/2, ~8!

the string temperature~Table I!. For open bosonic string
one divides by 2 the rhs of@Eq. ~7!# ~leading contributions
are the same for bosonic and fermionic sector!.

From @Eq. ~7!# we see that the definition of lnZ implies
the following condition on the Hawking temperature:

TH,TS . ~9!

Furthermore, asTH depends on the BH massM, or on the
horizon r S , @Eqs. ~6a!, ~6b!, and ~3!#, the above condition
will lead to further conditions on the horizon. ThenTS rep-
resents a critical value temperature:TS[Tcr . In order to see
this more clearly, we rewriteTS in terms of the quantum
string length scale

LS5S \a8

c D 1/2

, ~10!
08403
he

namely,

TS5
\c

bkBLS
. ~11!

From Eq. ~9!, and with the help of Eqs.~6a!, ~6b!, and
~11!, we deduce

r S.
b~D23!

4p
LS , ~12!

which shows that~first quantized! string theory provides a
lower bound, orminimum radius, for the BH horizon.

Taking into account Eqs.~2! and ~12!, we have the fol-
lowing condition on the BH mass:

M.
c2~D22!AD22

16pG Fb~D23!

4p
LSGD23

. ~13!

Therefore, there is aminimal BH mass given by string
theory.

For D54 we have

r S.
b

4p
LS , ~14!

M.
c2b

8pG
LS . ~15!

These lower bounds obviously satisfy Eq.~3!, and Eq.~15!
can be rewritten as

M.
bMPL

2

8pMS
,

whereMS5\/LSc is the string mass scale (LS is the reduced
Compton wavelength! and M PL[(\c/G)1/2 is the Planck
mass. The minimal BH mass is then@Eqs.~10! and ~15!#

Mmin5
b

8pG
A\c3a8.

It is appropriate, at this point, to make use of theR or
dual transformation over a length introduced in Ref.@3#. This
operation is

L̃cl5RLcl5LRLcl
215Lq and L̃q5RLq5LRLq

215Lcl ,
~16a!

whereLR has dimensions of (length)2; and it is given by
LR5LclLq .

In our case,Lcl is the classical Schwarzschild radius, a
Lq[r min5@b(D23)LS#/4p @Eq. ~12!#. The R transformation
links classical lengths to quantum string lengths. For the B
the QFT-Hawking temperature is

TH5
\c~D23!

4pkBLcl
, ~16b!

while the string temperature is
0-4
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TS5
\c~D23!

4pkBLq
. ~16c!

Under theR operation we have

T̃H5TS and T̃S5TH , ~16d!

which are valid for allD. From the above equations we ca
read as well

T̃HT̃S5TSTH .

It is interesting to expressTH and TS in terms of their
respective masses

TH5
\c~D23!

4pkB
S 16pGM

c2~D22!AD22
D 21/(D23)

,

S TH~D54!5
\c3

8pkBGM D ,

and

TS5
c2MS

bkB
.

III. THERMAL QUANTUM STRING EMISSION
FOR A SCHWARZSCHILD BLACK HOLE

As it is known, thermal emission of massless particles
a black hole has been considered in the context of Q
@1,9,10#. Here, we are going to deal with thermal emission
high massive particles which correspond to the higher
cited modes of a string. The study will be done in the fram
work of the string analog model.

For a staticD-dimensional black hole, the quantum em
sion cross sectionsq(k,D) is related to the total classica
absorption cross sectionsA(k,D) through the Hawking for-
mula @1#

sq~k,D !5
sA~k,D !

eE(k)bH21
, ~17!

whereE(k) is the energy of the particle~of momentum:p
5\k) and bH5(kBTH)21, beingTH Hawking temperature
@Eq. ~16b!#. The total absorption cross sectionsA(k,D) in
@Eq. ~17!# has two terms Ref.@6#, one is an isotropic
k-independent part, and the other has an oscillatory beha
as a function ofk, around the optical geometric consta
value with decreasing amplitude and constant period. H
we will consider only the isotropic term, which is the mo
relevant in our case. For aD-dimensional black hole spac
time, this is given by~see, for example, Ref.@2#!

sA~k,D !5a~D !r S
D22 , ~18!

wherer S is the horizon@Eqs.~2! and ~3!# and
08403
y
T
f
-
-

r,
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a~D !5
p (D22)/2

G@~D22!/2# S D21

D23D S D21

2 D 2/(D23)

. ~19!

We notice thatr(m) @Eq. ~4!# depends only on the mass
therefore, we could consider, in our formalism, the emitt
high mass spectrum as spinless. On the other hand, as w
dealing with a Schwarzschild black hole~angular momentum
equal to zero!, spin considerations can be overlooked. Em
sion is larger for spinless particles Ref.@11#. The number of
scalar field particles of massm emitted per unit time is

^n~m!&5E
0

`

^n~k!&dm~k!, ~20!

wheredm(k) is the number of states betweenk andk1dk:

dm~k!5
Vd

~2p!d

2pd/2

GS d

2D kd21dk, ~21!

and ^n(k)& is now related to the quantum cross sectionsq
@Eqs.~17! and ~18!# through the equation

^n~k!&5
sq~k,D !

r S
D22

. ~22!

Considering the isotropic term forsq @Eqs.~18! and~19!#,
we have

^n~k!&5
a~D !

eE(k)bH21
, ~23!

where bH51/kBTH , TH being the BH temperature@Eq.
~16b!#. From Eqs.~20! and ~23!, ^n(m)& will be given by

^n~m!&5F~D,bH!m(D23)/2~mc2bH11!e2bHmc2
,

~24!

where

F~D,bH![
VD21a~D !

~2p!(D21)/2

~c2!(D23)/2

bH
(D11)/2~\c!(D21)

[A~D !bH
2(D11)/2. ~25!

The large argumentbHmc2@1, i.e., @Eqs. ~6a! and ~6b!#,
and the leading approximation have been considered in
forming thek integration.

The quantum thermal emission cross section for partic
of massm is defined as

sq~m,D !5E sq~k,D !dm~k! ~26a!

and with the help of Eq.~22! we have

sq~m,D !5r S
D22^n~m!&, ~26b!

where^n(m)& is given by Eq.~24!.
0-5
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M. RAMÓN MEDRANO AND N. SÁNCHEZ PHYSICAL REVIEW D61 084030
In the string analog model, the string quantum therm
emission by a BH will be given by the cross section

sstring~D !5Aa8c

\
E

m0

`

sq~m,D !r~m!dm, ~27!

wherer(m) is given by Eq.~4!, andsq(m,D) by Eqs.~26!
and ~24!; m0 is the lowest string field mass for which th
asymptotic value of the density of mass levels,r(m), is
valid. For arbitraryD anda, we have from Eqs.~27!, ~26b!,
~24!, and~4!

sstring~D !5F~D,bH!r S
D22SAa8c

\
D 2a11

3I D~m,bH2bcr ,a!, ~28!

whereF(D,bH) is given by Eq.~25!,

bcr[bS5~kBTS!215
b

c2
Aa8c

\
~29a!

and

I D~m,bH2bcr ,a![E
m0

`

m2a1(D23)/2

3~mc2bH11!e2(bH2bcr)mc2
dm.

~29b!

After a straightforward calculation we have

I D~m,bH2bS ,a!5
c2bH

@~bH2bS!c2#2a1(D11)/2

3GS 2a1
D11

2
,~bH2bS!c2m0D

1
1

@~bH2bS!c2#2a1(D21)/2

3GS 2a1
D21

2
,~bH2bS!c2m0D ,

~29c!

whereG(x,y) is the incomplete gamma function. For ope
strings,a5(D21)/2 (D is the noncompact dimensions!, we
have

sstring
(open)~D !5A~D !bH

2(D11)/2r S
D22S c2bS

b D 2(D23)/2

3H bH

bH2bS
e2(bH2bS)c2m0

2Ei@2~bH2bS!c2m0#J , ~30!
08403
lwhereEi is the exponential-integral function, and we ha
used Eqs.~25! and ~29a!.

When TH approaches the limiting valueTS , and as
Ei(2x);C1 ln x for small x, we have from Eq.~30!

sstring
(open)~D !5A~D !bS

2(D11)/2r min
D22S c2

b
bSD 2(D23)/2

3H bS

bH2bS
2C2 ln„~bH2bS!m0c2

…J
5B~D !bS

21H bS

bH2bS
2C2 ln„~bH2bS!c2m0…J ,

where

r min5
\c~D23!bS

4p

and

B~D ![A~D !S \c~D23!

4p D D22S c2

b D 2(D23)/2

. ~308!

For bH→bS the dominant term is

sstring
(open)~D ! .

TH→TS

B~D !
1

~bH2bS!
~31a!

for any dimension.
For bH@bS , i.e., TH!TS ,

sstring
(open)~D ! .

TH!TS

A~D !bH
2(D11)/2r S

D22S c2

b
bSD 2(D23)/2

3e2bHc2m0S 11
1

bHc2m0
D

.B~D !bH
(D25)/2bS

2(D23)/2e2bHc2m0 ~31b!

asEi(2x);e2x/x1••• for largex. For D54,

sstring
(open)~4!.B~4!S 1

bHbS
D 1/2

e2bHc2m0.

At this point, and in order to interpret the two differen
behaviors, we compare them with the corresponding beh
iors for the partition function@Eq. ~7!#. For open strings@a
5(D21)/2# ln Z is equal to

ln Zopen

.
2VD21S a8c

\ D 2(D23)/4

~2pbH\2!(D21)/2

1

~bH2bS!c2
e2(bH2bS)m0c2

.

For bH→bS :
0-6



n

c
in

x-

n
m
an

he

h
s
y

e
su
c
s

gy
g

o
V
s

n
n

al
f
f

-

is

at

he

re

HAWKING RADIATION IN STRING THEORY AND THE . . . PHYSICAL REVIEW D 61 084030
ln Zopen.
2VD21S a8c

\ D 2(D23)/4

~2pbH\2!(D21)/2

1

~bH2bS!c2
bH→bS ,

and forbH@bS :

ln Zopen.
2VD21S a8c

\ D 2(D23)/4

~2p\2!~D21!/2c2bH
(D11)/2

e2bHm0c2
bH@bS .

The singular behavior forbH→bS , and allD, is typical
of a string system with intrinsic Hagedorn temperature, a
indicates a string phase transition~at T5TS) to a condensed
finite energy state~Ref. @5#!. This would be the minimal
black hole, of massMmin and temperatureTS .

IV. QUANTUM STRING BACK REACTION IN BLACK
HOLE SPACETIMES

When we consider quantized matter on a classical ba
ground, the dynamics can be described by the following E
stein equations:

Rm
n 2

1

2
dm

n R5
8pG

c4
^tm

n &.

The space time metricgmn generates a nonzero vacuum e
pectation value of the energy momentum tensor^tm

n &, which
in turn, acting as a source, modifies the former backgrou
This is the so-called back reaction problem, which is a se
classical approach to the interaction between gravity
matter.

Our aim here is to study the back reaction effect of hig
massive~open! string modes@described byr(m), Eq. ~4!# in
black hole space times. This will give us an insight on t
last stage of black hole evaporation. Back reaction effect
massless quantum fields in these equations were alread
vestigated@12–14#.

As we are also interested in establishing the differenc
and partial analogies, between string theory and the u
quantum field theory for the back reaction effects in bla
hole space times, we will consider a four-dimensional phy
cal black hole.

The question now is how to write the appropriate ener
momentum tensor̂ tm

n & for these higher excited strin
modes. For this purpose, we will consider the framework
the string analog model. In the spirit of this model, the VE
of the stress tensor̂tm

n & for the string higher excited mode
is defined by

^tm
n ~r !&5

E
m0

`

^Tm
n ~r ,m!&^n~m!&r~m!dm

E
m0

`

^n~m!&r~m!dm

, ~32!

where^Tm
n (r ,m)& is the Hartle-Hawking vacuum expectatio

value of the stress tensor of an individual quantum field, a
08403
d
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the r dependence of̂Tm
n & preserves the central gravitation

character of the problem;r(m) is the string mass density o
levels@Eq. ~4!# and^n(m)& is the number of field particles o
massm emitted per unit time,@Eq. ~24!#.

For a static spherically symmetric metric

ds25g00~r !c2dt21grr ~r !dr21r 2dV2
2 , ~33!

whereg00(r ),0 (r .r S) for a Schwarzschild black hole so
lution, the semiclassical Einstein equations@Eq. ~32!# read

8pG

c4
^t r

r&5grr
21S 1

r

d ln g00

dr
1

1

r 2D 2
1

r 2
, ~34a!

8pG

c4
^t0

0&5grr
21S 1

r 2
2

1

r

d ln grr

dr D 2
1

r 2
. ~34b!

For Schwarzschild boundary conditions

g00~r `!grr ~r `!521, ~35a!

where

grr ~r `!5S 12
r S

r `
D 21

. ~35b!

The solution to Eqs.~34a! and ~34b! is given by

grr
21~r !512

2GM

c2r
1

8pG

c4r
E

r `

r

^t0
0~r 8!&r 82dr8, ~36a!

g00~r !52grr
21~r !expH 8pG

c4 E
r `

r

„^t r
r~r 8!&2^t0

0~r 8!&…

3r 8grr ~r 8!dr8J , ~36b!

whereM is the black hole mass measured fromr ` (r ` may
be infinite or the radius of a cavity where the black hole
put inside to maintain the thermal equilibrium!.

In order to write^Tm
m(m,r )& for an individual quantum

field in the framework of the analog model, we notice th
r(m) @Eq. ~4!# depends only onm; therefore, we will con-
sider for simplicity the vacuum expectation value of t
stress tensor for a massive scalar field.

For the Hartle-Hawking vacuum~black-body radiation at
infinity in equilibrium with a black hole at the temperatu
TH), and when the~reduced! Compton wavelength of the
massive particle (l5\/mc) is much smaller than the
Schwarzschild radius (r S)

\c

2GMm
!1 ~37!

@the same condition as that of Eq.~6b!#. ^Tr
r& and ^T0

0& for
the background BH metric@Eq. ~1!, D54] read@13#
0-7
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8pG

c4
^Tr

r&5
A

r 8
F1S r S

r D , ~38a!

8pG

c4
^T0

0&5
A

r 8
F2S r S

r D , ~38b!

where

A5
M2LPL

6

1260pm2
, ~38c!

F1S r S

r D54412z20161
r S

r
~23291z1512!1O~m24!,

~38d!

F2S r S

r D5211251z50401
r S

r
~12372z5544!1O~m24!.

~38e!

M and m are the black hole and the scalar field masses
spectively,z ~a numerical factor! is the scalar coupling pa
rameter (2zRf2/2; R is the scalar curvature,f is the scalar
field! andLp[(\G/c3)1/2 is the Planck length.

From Eqs.~32!, ~38a!, and ~38b! the VEV of the string
stress tensor will read

8pG

c4
^t r

r&5
A
r 8

F1S r S

r D , ~39a!

8pG

c4
^t0

0&5
A
r 8

F2S r S

r D , ~39b!

where

A5
M2LPL

6

1260p

E
m0

`

m22^n~m!&r~m!dm

E
m0

`

^n~m!&r~m!dm

. ~40!

We return now to Eqs.~36a! and ~36b! which, with the
help of Eqs.~39a!, ~39b!, and~3!, can be rewritten as

grr
21~r !512

r S

r
1

A
r Er `

r

F2S r S

r D 1

r 86
dr8, ~41!

g00~r !52grr
21~r !expH AE

r `

r FF1S r S

r D2F2S r S

r D G
3

grr ~r 8!

r 87
dr8J . ~42!

A Schwarzschild black-body configuration

g00~r !52grr
21~r ! ~43!
08403
e-

is obtained when@Eq. ~42!#

F1S r S

r D2F2S r S

r D[~15662z7056!S 12
r S

r D50, ~44!

i.e., for z5 87
392 for all r.

Then from Eqs.~41! and ~38e!, we obtain

grr
21512

r S

r
2

A
21r 6 F23S r S

r D227G . ~45!

From the above equation it is clear that the quantum m
ter back reaction modifies the horizonr 1 , which will no
longer be equal to the classical Schwarzschild radiusr S . The
new horizon will satisfy

grr
2150, ~46a!

i.e.,

r 1
7 2r Sr 1

6 1A27

21
r 12A23

21
r S50. ~46b!

In the approximation we are dealing with@O(m24), i.e.,
A 2!A], the solution will have the form

r 1.r S~11e!, e!1. ~47!

From Eq.~46b! we obtain

r 1.r SS 12
4A
21r S

6D , ~48!

which shows that the horizon decreases.
Let us consider now the surface gravity, which is defin

as

k~r 1!5
c2

2

dgrr
21

dr
ur 5r 1

~49!

@in the absence of back reaction,k(r 1)5k(r S) given by k
5c2/2r s for D54].

From Eqs.~45!, ~48!, and~49! we get

k~r 1!5
c2

2r S
S 11

1

3

A
r S

6D . ~50!

The black hole temperature will then be given by

T15
\k~r 1!

2pkBc
.THS 11

1

3

A
r S

6D , ~51!

where TH5\c/4pkBr S . @Eqs. ~16b! and ~6b! for D54].
The black hole temperature increases due to the back r
tion.

Due to the quantum emission the black hole suffers a l
of mass. The mass loss rate is given by a Stefan-Boltzm
relation. Without back reaction, we have
0-8
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2S dM

dt D5s4pr S
2TH

4 , ~52!

wheres is a constant. When the back reaction is conside
we will have

2S dM

dt D
1

5s4pr 1
2 T1

4 , ~53!

wherer 1 is given by Eq.~48! andT1 is given by Eq.~51!.
Inserting these values into the above equation we obtain

2S dM

dt D
1

.2S dM

dt D S 11
20A
21r S

6D . ~54!

On the other hand, the modified black hole mass is gi
by

M 1[
c2

2G
r 1.M S 12

4A
21r S

6D , ~55!

which shows that the mass decreases.
From Eqs.~54! and ~55!, we calculate the modified life

time of the black hole due to the back reaction

t1.tHS 12
8A
7r S

6D . ~56!

We see thatt1,tH sinceA.0.
We come back to the string back reaction ‘‘form facto

A @Eq. ~40!# which can be rewritten as

A5
M2LPL

6

1260p

N

De
, ~57!

where

N5E
m0

`

m2a1(D27)/2~mc2bH11!e2(bH2bS)mc2
dm

~58!

and @Eq. ~29!#

De5I D~m,bH2bS ,a!, ~59!

where use of Eqs.~24! and~4! has been made~the common
factors for numerator and denominator cancelled out!.

For arbitraryD anda, N is given by

N5
c2bH

@~bH2bS!c2#2a1(D23)/2

3GS 2a1
D23

2
,~bH2bS!c2m0D

1
1

@~bH2bS!c2#2a1(D25)/2
08403
d,

n

3GS 2a1
D25

2
,~bH2bS!c2m0D . ~60!

In particular, for open strings@a5(D21)/2# we have for
N andDe

N5c4bH~bH2bS!FEi„2~bH2bS!m0c2
…

1
e2(bH2bS)m0c2

~bH2bS!m0c2G2
~bH2bS!2c4

2

3FEi„2~bH2bS!m0c2
…1e2(bH2bS)m0c2

3S 1

~bH2bS!m0c2
2

1

~bH2bS!2m0
2c4D G ~61!

and

De5
bH

bH2bS
e2(bH2bS)c2m02Ei„2~bH2bS!c2m0….

~62!

For bH→bS (M→Mmin ,rS→rmin), we have for the open
string form factor

Aopen.
Mmin

2 LPL
6 ~bH2bS!

1260pbS
S 1

2m0
2

1
c2bS

m0
D . ~63!

Although the string analog model is in the spirit of th
canonical ensemble—all~higher! massive string fields are
treated equally — we will consider too, for the sake of co
pleteness, the string ‘‘form factor’’A for closed strings.

For a5D (D is the noncompact dimensions!, from Eqs.
~29b!, ~29c!, and~59!, we have the following expressions:

De5I D~m,bH2bS ,D !

5
c2bH

@~bH2bS!c2#2(D21)/2

3GS 2
D21

2
,~bH2bS!m0c2D

1
1

@~bH2bS!c2#2(D11)/2
GS 2

D11

2
,~bH2bS!m0c2D

~64!

and @Eq. ~58!#
0-9



r

ing
he

ole
e-

ck
ime
een

sic
e
one

on:
es a
s

n in

the
l
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N5
c2bH

@~bH2bS!c2#2(D13)/2
GS 2

D13

2
,~bH2bS!c2m0D

1
1

@~bH2bS!c2#2(D15)/2
GS 2

D15

2
,~bH2bS!c2m0D .

~65!

For bH→bS andD even, we have then

N5c2bS@~bH2bS!c2# (D13)/2GS 2
D13

2 D
1

c2bS

~m0!(D13)/2@~D13!/2#
1@~bH2bS!c2# (D15)/2

3GS 2
D15

2 D1
1

@~D15!/2#m0
(D15)/2

~66!

and

De5c2bS@~bH2bS!c2# (D21)/2GS 2
D21

2 D
1

c2bS

~m0!(D21)/2@~D21!/2#
1@c2~bH2bS!# (D11)/2

3GS 2
D11

2 D1
1

m0
(D11)/2S D11

2 D . ~67!

Therefore, from Eqs.~57!, ~66!, and~67!, Aclosedis given
by

S N

DeD
closed

5

c2bS

~m0!(D13)/2S D13

2 D 1
1

S D15

2 D ~m0!(D15)/2

c2bS

m0
(D21)/2S D21

2 D 1
1

m0
(D11)/2S D11

2 D
~68!

and forD54, we have forbH→bS (M→Mmin , rS→rmin)

Aclosed5
Mmin

2 LPL
6

1260pm0
2 S c2bS

7
1

1

9m0

c2bS

3
1

1

5m0

D . ~69!

From Eqs.~63! and ~68!, we now evaluate the numbe
A/r S

6 appearing in the expressions forr 1 @Eq. ~48!#, T1 @Eq.
~51!#, M 1 @Eq. ~55!#, andt1 @Eq. ~56!#, for the two opposite
limiting regimesbH→bS andbH@bS :
08403
S Aopen

r min
6 D

bH→bS

.
~bH2bS!

bS

16

315S p

b D 3S MS

M PL
D 2S MS

m0
D

.~bH2bS!
16

315S p

b D 3S MS

M PL
D 2 MS

2c2

bm0
!1,

~70!

S Aclosed

r min
6 D

bH→bS

.
16

735b S p

b D 3S MS

M PL
D 2S MS

m0
D 2

!1. ~71!

In the opposite~semiclassical! regimebH@bS , i.e., TH
!TS , we have from Eqs.~61!, ~62!, ~64!, and~65!

S N

DeD
bH@bS

open

.
1

m0
2

.S N

DeD
bH@bS

closed

~72!

as

bHm0c258pS M

M PL
D S m0

M PL
D@1 ~73!

(m0 ,M@M PL). Then, from@Eq. ~57!#

S A
r S

6D
bH@bS

open / closed

.
1

80640p S M PL

M D 4S M PL

m0
D 2

!1. ~74!

That is, in this regime, we consistently recoverr 1.r S , T1

.TH , M 1.M , andt1.tH5kBc/6sG\TH
3 .

V. CONCLUSIONS

We have suitably combined QFT and quantum str
theory in the black hole background in the framework of t
string analog model~or thermodynamical approach!. We
have computed the quantum string emission by a black h
and the back reaction effect on the black hole in the fram
work of this model. A clear and precise picture of the bla
hole evaporation emerges. The QFT semiclassical reg
and the quantum string regime of black holes have b
identified and described.

The Hawking temperatureTH is the intrinsic black hole
temperature in the QFT semiclassical regime. The intrin
string temperatureTS is the black hole temperature in th
quantum string regime. The two regimes can be mapped
onto another by theR transform.

String theory properly describes black hole evaporati
because of the emission, the semiclassical BH becom
string state~the ‘‘minimal’’ BH !, and the emitted string ga
becomes a condensed microscopic state~the ‘‘minimal’’ BH !
due to a phase transition. The last stage of the radiatio
string theory makes such a transition possible.

The phase transition undergone by the string gas at
critical temperatureTS represents~in the thermodynamica
0-10
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framework! the back reaction effect of the string emission
the BH.

Cosmological evolution goes from a quantum string ph
to a QFT and classical phase. Black hole evaporation g
from a QFT semiclassical phase to a string phase.
Hawking temperature, which we know as the black hole te
perature in the QFT semiclassical regime, becomes the s
temperature for the ‘‘string black hole’’ in the quantu
string regime.
v
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