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The quantum string emission by black holes is computed in the framework of the “string analog nfodel”
thermodynamical approaghwhich is well suited to combine quantum-field thed¢®FT) and string theory in
curved backgroundéparticularly here, as black holes and strings possess intrinsic thermal features and tem-
peratures The QFT-Hawking temperatuiB, is upper bounded by the string temperatliegn the black hole
background. The black hole emission spectrum is an incomplete gamma functiory efTg). For Ty
<Tg, it yields the QFT-Hawking emission. F@iy— Tg, it shows that highly massive string states dominate
the emission and undergo a typical string phase transitionrtaceoscopic‘minimal” black hole of mass
M in OF radiusr i, (inversely proportional td's) and string temperatur€s. The string back reaction effect
[self-consistent black hole solution of the semiclassical Einstein equations with Mhagsadiusr,) and
temperatureT . ] is computed. Both the QFT and string black hole regimes are well defined and bounded:
Moin<r+=<rg, Mpin=<M, <M, T,<T,<Tg. The string “minimal” black hole has a life timeryp,
=(kgC/Gh) Ts°.

PACS numbd(s): 04.70.Dy, 04.62+v, 11.25-w

I INTRODUCTION AND RESULTS Under theR operation,T,=Tg andTs=Ty. This relation

also holds for the respective QFT-Hawking temperature and
In the context of quantum field theo@FT) in curved string temperature in de Sitter space, H&l.
spacetime, black holes have an intrinsic Hawking tempera- |n this paper, we investigate the issue of Hawking radia-

ture Ref.[1] given by tion and the back reaction effect on a black hole in the con-
text of string theory. In principle, this question should be
_ hc (D-3) _L properly addressed in the context of string field theory. Be-
H 4mkg rg ' 'S ol cause of the lack of a tractable framework for it, we work
here in the framework of the string analog modet ther-
rs being the Schwarzchild’s radiuslassical length. ). modynamical approaghThis is a suitable approach for cos-

In the context of quantum string theory in curved space-mology and black holes in order to combine QFT and string
time, quantum strings in black hole spacetimes have an instudy, and to go further in the understanding of quantum
trinsic temperature given by gravity effects. The thermodynamical approach is particu-

larly appropriated and natural for black holes, as Hawking
fic (D-3) bLg(D—3) ha' radiation and the string gd¢},5] possess intrinsic thermal
i L Lq=T, Ls=\/— features and temperatures.

B a In this approach, the string is a collection of fields,
m%oupled to the curved background, and whose massese
given by the degenerate string mass spectrum in the curved
space considered. Each fiele, appears as many times the
degeneracy of the mass leyglm). (Although the fieldsb,,
do not interact among themselves, they do with the black
Qole background

In black hole spacetimes, the mass spectrum of strings is
the same as in flat spacetime REZ], therefore the higher
masses string spectrum satisfies Ej.(a andb being con-
stants, depending on the model, and on the number of space

Ts

which is the same as the string temperature in flat spaceti
(see Ref[2] and Sec. Il in this paper

The QFT-Hawking temperatur€, is a measure of the
Compton length of the black hole, and thus, of its “quantum
size,” or quantum property in the semiclassical-QFT regime
The Compton length of a quantum string is a direct measur
of its sizeL 4. The string temperatur€s is a measure of the
string mass, and thus inversely proportional tp

The R transform over a length introduced in RER] is

given by dimensiong
~ We consider the canonical partition function @nfor the
Le=RLe=Lg, higher excited quantum string states of open strifvgsich
~ may be or may be not supersymmelrin the asymptotic
Lg=RLg=L¢- (flat) black hole region. The gas of strings is at thermal equi-
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librium with the black hole at the Hawking temperatdrg, such a stat€almost all the energy concentrated in one ob-
it follows that the canonical partition functiofiEg. (5)] is  ject) is amicroscopic(or “minimal” ) BH of sizer ., (mass
well defined for Hawking temperatures satisfying the condi-M ,,;,), and temperatur&g. The last stage of the BH radia-
tion, Ty<Tg, where Tg represents a maximal or critical tion, properly taken into account by string theory, makes
value temperature. This limit implies a minimum horizon such a phase transition possible. Here Thescale is in the

radius Planck energy range and the transition is to a state of string
size Lg. The precise detailed description of such a phase
b(D—3) transition and such a final state deserve investigation. A
Fmin= At Ls phase transition of this kind has been considered in [Hef.
Our results here support and provide a precise picture to
and a minimal mass for the black halBH): some issues of BH evaporation discussed there in terms of

purely thermodynamical considerations.
c3(D-2) b3 We also describe thierturbative back reaction effect in
Mmin:mAD—Zrmin the framework of the semiclassical Einstein equations
(c-number gravity coupled to quantum string mattesith
the vacuum expectation valy¥EV) of the energy momen-
M, (D=4)= L hcdal tum tensor of the quantum string emission as a source. In the
min . H H
8 context of the analog model, such stress tensor VEV is given
by Eq.(32), where(T,(r,m)) is the VEV of the QFT stress
We compute the thermal quantum string emission of verytensor of individual quantum fields of massin the higher
massive particles by #@-dimensional Schwarzschild BH. excited string spectrum. The solution to the semiclassical
This highly massive emission, corresponding to the higheEinstein equations is given bjEgs. (48), (51), and (55)]
states of the string mass spectrum, is naturally expected i(D=4):
the last stages of BH evaporation.

In the context of QFT, BH emit particles with a Planckian 4 A 4 A
(therma) spectrum at temperaturé,. The quantum BH re=rs 1_Zr_6 , M =M[1- 21768)"
emissiono(k,D) is related to the classical absorption cross S S
section through the Hawking formula E@.7). The classical
total absorption spectrum,(k,D), Ref.[6], is entirely os- T =Tl 1+ E ﬂ
cillatory as a function of the energy. This is exclusive to the FoH 3 rg '

black hole(other absorptive bodies do not show this prop-
erty). The string form factor4 is given by[Eq. (57)], it is finite

In the context of the string analog model, the quantumand positive. ForTy<Tg, the back reaction effect in the
emission by the BH is given by EQ7), o4(m,D) being the  QFT-Hawking regime is consistently recovered. Algebraic
guantum emission for an individual quantum field with massterms in (Ty—Tg) are entirely stringy. In both cases, the
m in the string mass spectrummy, is the lowest mass from relevant ratiQA/rg entering in the solutionr(, ,M, ,T.) is

which the asymptotic expression fp(m) is still valid. We  negligible.
find ogyindD) as given by{Eq. (30)] (open strings It con- The string back reaction solution shows that the BH ra-
sists of two terms: the first term is characteristic of a quandius and mass decrease, and the BH temperature increases,
tum thermal string regime, dominant fog, close toTs; the  as it should be. But here the BH radius is bounded from
second term, in terms of the exponential-integral funcion below (by r i, and the temperature does not blow(a it is
is dominant forT<Tg from which the QFT Hawking ra- bounded byTg)). The “mass loss” and “time life” are
diation is recoveredsemiclassical QFT regime

The computedrgi,D) shows the following: At the first dM dm 204 8 A
stages, the BH emission is in the lighter particle masses at™ W) - W) 1+ 21,6/ T 1=-25)
the Hawking temperatur€,, as described by the semiclassi- * S
cal QFT regime{second term_ in Eq(30)]. As evaporgﬂon The lifetime of the string black hole is,ninz(KBc/Gh)T§3.
proceeds, the temperatyre Increases, .the BH rgd|ates the The string back reaction effect is finite and consistently
h|gh¢r massive particles in the string regifas described .by describes both the QFT regintBH of massM and tempera-
the first te”*.‘ of Eq..(30)]. For Ty—Ts, the BH e.nte‘r‘s S ture Ty) and the string regiméBH of massM ,,;, and tem-
quantum string reg'm“f,s._’rmi“’_M_’Mmi”' That is, “the peratureTs). Both regimes are bounded as in string theory
BH becomes a string,” in fact it is more than that, [&. we have
(30)] accounts for the back reaction effect too: The first term
is characteristic of a Hagedorn-type singularity R&f, and Fin<l+<ls, Mmn<M,.<M,
the partition function here has the same behavior as this
term. Its meaning is the following: At the late stages, the Tin<T+<7H, Th<T,<Ts.
emitted BH radiation(highly massive string gaslominates
and undergoes a Carlitz-type phase transition Rdfat the  This paper is organized as follows: In Sec. Il we consider
temperatureTs into a condensed finite energy state. Herequantum strings in the BH geometry and derive the bounds
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TABLE |. Density of mass levelp(m)~m~2expbya’c/Am}. For open stringsy’ (c/#)m?=n; for
closed stringsy’ (c/#)m?=4n.

Dimension String theory a b ks Ts/c?
D Open bosonic (D-1)/2 ) D-2 (D-2)[a'c -
T\ —— 2 _
closed D 6 m 6 %
26 Open bosonic 25/2 a'c)\
(critical) closed 26 . 4w I
10 Open superstring 9/2 a'cl\ 1™
(critical) Closed superstringtype 1) 10 7242 72 2(7)

Heterotic 10 m(2+/2)

)

imposed by string theory on the quantum size and temperanatter on the BH must be taken into account. In Sec. IV, we
ture of the BH. In Sec. Ill we compute the quantum stringwill take into account this back reaction effect in the frame-
emission by the BH. In Sec. IV we compute its back reactiorwork of string theory.
effect. Section V presents conclusions and remarks. First, we will consider quantum strings in the fixed BH
Such a phase transition takes into accdimthe thermo-  background. We will see that even in this approximation,
dynamical descriptionthe back reaction of the string emis- quantum string theory cannot only retard the catastrophic
sion on the black hole. It is clear that at such a stage, therocess but, furthermore, provides nonzero lower bounds for
validity of the semiclassical approximation breaks down.the BH mass(M) or horizon (), and a finite(maxima)
Semiclassical in this context means that quantum matter igalue for the BH temperatur€y as well.
coupled toc-number gravity, but for black holes with masses  The Schwarzschild black hole spacetime is asymptotically
of the order of the Planck mass, a full quantum gravity de{lat. Black hole evaporation — and any “slow down” of this

scription is needed. process — will be measured by an observer which is at this
asymptotic region. In Ref2] it has been found that the mass

[l. QUANTUM STRINGS IN THE BLACK HOLE SPACE spectrum of quantum string states coincides with the one in

TIME Minkowski space. Critical dimensions are the same as in

. ) . ) Ref. [2] (D=26, open and closed bosonic string®=10
The D-dimensional Schwarzschild black hole metric readsgper and heterotic stringsTherefore, the asymptotic string

d2= —a(r)czdt2+a‘1(r)dr2+rdeZD,z, 1) mass densny of levels in black hole spacetimes will read as
in Minkowski space
where o |2
_ _ bVe'c/im
re|P3 167GM 1/(D-3) p(m) ( P m) e , (4)
a(r) = 1_ _ ) rS: Y L
r c’(D—-2)Ap_ r_ 2 : : : : :

D-2 wherea’=c“/27T (T is the string tensionhas dimensions
5 (D-1)12 of (linear mass density)"; constantsa/b depend on the di-
Ap_o= m ) ) mensions and on the type of strifig]. For a noncompacti-

I'(D-1)/2) fied space time these coefficients are given in Table .

In this paper, strings in a BH spacetime are studied in the
framework of the string analog model. In this model, one
considers the strings as a collection of quantum fields
3) D1y by whose2 masses are gi\(en by the string mass

spectruni a’ (¢c/f)m==n, for open strings and largein flat
spacetimé Each field of massn appears as many times as

As it is known, the BH — according to its specific heat the degeneracy of the mass level ; for higher excited modes
being negative — increases its temperature in its quanturthis is described by(m) [Eg. (4)]. Although quantum fields
emission process decreasegsAlso, it would seem that, if do not interact among themselves, they do with the BH back-
the BH would evaporate completelyM(=0), the QFT- ground.

Hawking temperaturd,, would become infinite. However, In the asymptotidflat) BH region, the thermodynamical
at this limit, and more precisely wheM ~Mp , the fixed behavior of the higher excited quantum string states of open
classical background approximation for the BH geometrystrings, for example, is deduced from the canonical partition
breaks down, and the back reaction effect of the radiatioriunction[5]:

G is the Newton gravitational constant. FOr=4 one has

2GM
2

I’5=
Cc

084030-3



M. RAMON MEDRANO AND N. SANCHEZ

7 \% a'c (=
nzZ= (Zw)d\/ijodmp(m)

1+exd — Bu(m?c*+ k*h2c?) 12
d |
Xf n|1—exr[—,8H(mzc4+ k?1%c?)Y?)
(5)

(d is the number of spatial dimensionshere supersymme-

try has been considered for the sake of generafityn) is
the asymptotic mass density given H¥Qq. (4)]; By
=(kgTy) ! whereTy is the BH Hawking temperaturex,
is the lowest mass for which(m) is valid.

PHYSICAL REVIEW D61 084030

namely,

fic

Tszm. (11)
From Eq.(9), and with the help of Eqd6a), (6b), and
(11), we deduce

b(D-3)

yp Ss (12

rs>

which shows thatfirst quantizedl string theory provides a
lower bound, ominimum radiusfor the BH horizon.

Taking into account Eqs2) and (12), we have the fol-

For the higher excited string modes, i.e., the masses of thging condition on the BH mass:

BH and the higher string modes satisfy the condition

4amc [ 16mGM YO
Y cA(D-2)Ap_» >1, (3
which reads foD =4
BHmcz=87T:%n>l (6b)

[condition Eq.(6b) will be considered later in Sec. [VThe
leading contribution to the right-hand sidehs) of Eq. (5)
will give as a canonical partition function

c| ~(a-1r

2VD—1( a'%

(2,H_BHﬁ2)(Dfl)/2

InZ=

[ dmnrat©@-Dizg-(Bu-somE (7
Mo
where Bs=(kgTs) "%, T being[Eq. (4)]
C2
Ts= e ®
kgb| —
° ( i )

the string temperaturéTable ). For open bosonic strings

one divides by 2 the rhs dEq. (7)] (leading contributions
are the same for bosonic and fermionic sector

From [Eq. (7)] we see that the definition of lhimplies
the following condition on the Hawking temperature:

Tu<Ts. ©)

Furthermore, a3 depends on the BH mas4, or on the
horizonrg, [Egs. (6a), (6b), and (3)], the above condition
will lead to further conditions on the horizon. Thag rep-
resents a critical value temperatuie=T,.,. In order to see
this more clearly, we rewritd g in terms of the quantum
string length scale

ha' 1/2
LS:(_ : (10

C

D-3

b(D—-3)
4 S

c’(D—2)Ap_
M= ( )JAp -2

167G (13

Therefore, there is aninimal BH massgiven by string
theory.
For D=4 we have

>_
s 47TLS, (14)
YEaLE 1

These lower bounds obviously satisfy E®), and Eq.(15)
can be rewritten as

bMB,

>
M 87TMS'

whereM s= /L sC is the string mass scalé § is the reduced
Compton wavelengthand Mp, = (%c/G)Y? is the Planck
mass. The minimal BH mass is théBgs.(10) and (15)]

b

——hcia'.
87G

M min=
It is appropriate, at this point, to make use of tReor

dual transformation over a length introduced in R8&f. This
operation is

Loy=RLy=Lglg'=Lq and Ti=RLo=Lgl =L,
(163

where £ has dimensions of (length) and it is given by
ER: LCILq .

In our casel . is the classical Schwarzschild radius, and
Lq=rmin=[b(D—3)Lg)/47 [Eq. (12)]. The R transformation

links classical lengths to quantum string lengths. For the BH,

the QFT-Hawking temperature is

_fic(D—3)

TH_W' (16b)

while the string temperature is
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hc(D—-3) 70-22 p_1\/pD—1\20-3)
ST Amkgly (169 aD)= b2 ( D—3 ( 2 ) (19
Under theR operation we have We notice thaip(m) [Eqg. (4)] depends only on the mass,
therefore, we could consider, in our formalism, the emitted
Tu=Ts and Te=Ty, (164 high mass spectrum as spinless. On the other hand, as we are

dealing with a Schwarzschild black hdl@ngular momentum
which are valid for allD. From the above equations we can €gual to zerfy spin considerations can be overlooked. Emis-
read as well sion is larger for spinless particles Rgt1]. The number of

scalar field particles of masa emitted per unit time is

’THTI—S: TSTH . .
— , , (n(m)= [ “{nckoyduch, 20
It is interesting to expres$y and Tg in terms of their 0

respective masses
P wheredu (k) is the number of states betwekrandk+dk:

16eGM | VC¥

hc(D—3) dr2
H™ s . Vd 2 d-1
41kp c3(D—2)Ap_» du(k)= —2 i 74 k" dk, (21
(2m) F(_)
o 2
Tu(D=4)= o—F—=| . _
8mkgGM and(n(k)) is now related to the quantum cross sectigp
[Egs.(17) and(18)] through the equation
and
oq(k,D)
Mg (n(k))= 5. (22)
== I's
ST bkg
Considering the isotropic term fer, [Egs.(18) and(19)],
ll. THERMAL QUANTUM STRING EMISSION we have
FOR A SCHWARZSCHILD BLACK HOLE (D)
a
As it is known, thermal emission of massless particles by (n(k))= ERBr_ 1’ (23

a black hole has been considered in the context of QFT
[1,9,10. Here, we are going to deal with thermal emission Ofwhere Bu=1ksTy, Ty being the BH temperaturéEq.

high massive particles which correspond to the higher ex . .
cited modes of a string. The study will be done in the frame—(16b)]' From Eqs(20) and(23), {n(m)) will be given by

work of the string analog model. _ (D-3)2 ~ Byme

For a staticdD-dimensional black hole, the quantum emis- (n(m))=F(D,y)m (Me*By+1)e ' (24)
sion cross sectiomr,(k,D) is related to the total classical
absorption cross sectian,(k,D) through the Hawking for-  where

mula[1]
_ Vpja(D)  (cH)PTI?
aq(k,D)=%, . F(D,BH):(ZW)(D—l)IZ B0 D2(5c) 0D
eEMBH_ 1 EA(D)’B;(D+1)/2. 25)

where E(k) is the energy of the particleof momentum:p
=#k) and By=(kgTy) %, being T, Hawking temperature
[Eqg. (16b)]. The total absorption cross section(k,D) in . . .
[Eg. (17)] has two terms Ref[6], one is an isotropic forming thek integration. . . .
k-independent part, and the other has an oscillatory behavior, The qugntum' thermal emission cross section for particles
as a function ofk, around the optical geometric constant of massmis defined as

value with decreasing amplitude and constant period. Here

The large argumenBymc®>1, i.e., [Egs. (6a) and (6b)],
and the leading approximation have been considered in per-

we will consider only the isotropic term, which is the more aq(m,D)=J’ aq(k,D)du(k) (269
relevant in our case. For R-dimensional black hole space
time, this is given by(see, for example, Ref2]) and with the help of Eq(22) we have

oa(k,D)=a(D)rg 2, (18) 7q(m,D)=r2"2(n(m)), (26b)
whererg is the horizon Egs.(2) and(3)] and where(n(m)) is given by Eq.(24).
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In the string analog model, the string quantum thermalwhere E; is the exponential-integral function, and we have

emission by a BH will be given by the cross section

[a'c =
a'string(D) = Tfm aq(m,D)p(m)dm, (27

wherep(m) is given by Eq.(4), andoy(m,D) by Egs.(26)

and (24); mq is the lowest string field mass for which the

asymptotic value of the density of mass levelgm), is
valid. For arbitraryD anda, we have from Eqs(27), (26b),
(24), and(4)

B —at+l
osmng<D>=F<D,ﬂH>r22( \/a?c)

XlD(mv:BH_:Bcria)a (28)
whereF (D, By) is given by Eq.(25),

!

b
ﬁCrEBS:(kBTS)_lzg (2939

and

o]
— By ,a)= m—a+(D=3)/2
Mo

Ip(m, By

X (M +1)e Br—bFedmCym,
(29b
After a straightforward calculation we have
¢*By
[(By—Bg)c?] 2+ (P2

Ip(M,By—Bs,a)=

xXT

D+1
- a+T +(Bh _ﬁs)czmo)

1
! [(By—Bg)c?] 2+ (P12

XT

D-1
—a+ T’(IBH_IBS)CZmO) )

(299

used Eqs(25) and(2939.
When T, approaches the limiting valudg, and as
Ei(—x)~C+Inx for smallx, we have from Eq(30)

2 (D-3)/12
g?r’ljr?;)(D) A(D)B (D+l)/2 mln ( b BS)

Bs
Bu—Bs

X

- |n((ﬂH_Bs)moCZ)]

Bs
Bu—Bs

=B<D>ﬂsl[ —C—In«BH—ﬁs)cho)j,

where

hc(D—3)Bs

min: 477_

and

fic(D—3)\P~2
o) 15

)(D3)/2

B(D)=A(D) (30)

For By— Bs the dominant term is

Th—Ts

(open)( D) —

T string

B(D) (319

ot
(Bu—Bs)

for any dimension.
For B> Bs, i.e., Ty<Tg,

Th<Tg ( 2

c —(D=3)/2
oliim(D) = AD)B, P VES? FBS)

1
Brc*mg

- B(D)IB'(_|D—5)/2ﬂg(D—3)/26—ﬁchmo

X e Aucmol 1+

(31b

asE;(—x)~e */x+- - for largex. ForD=4,

1/2
e~ Bucmo,

1
aloheny 4) B<4>( W

At this point, and in order to interpret the two different

whereI'(x,y) is the incomplete gamma function. For open behaviors, we compare them with the corresponding behav-

strings,a= (D —1)/2 (D is the noncompact dimensionsve

have

2185 —(D-3)/2
O'g?r?en)(D D),B (D+l)/2 D 2( )

b

IBH e (BH_ﬂS)CZmO

B

_Ei[_(ﬁH_ﬁs)szo]]: (30

iors for the partition functioEq. (7)]. For open string$a
=(D—-1)/2] InZis equal to

IN Zgpen
o'c) —(D=3)4
ol
= f ! e~ (Bu—BIMC?.
(2mBuh?)P~H2 (B —Bs)c?
For By— Bs:
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a'c) (b-3)4 ther dependence o(fo) preserves the central gravitational

2Vp_1 7 1 character of the problengi(m) is the string mass density of

In Zoper= — Bu— Bs. levels[Eq. (4)] and(n(m)) is the number of field particles of
(2mBuh?)C~V2 (B~ Bs)c? massm emitted per unit time[Eq. (24)].

For a static spherically symmetric metric
and for B> Bs: P y sy

a,c>(oa)/4 ds®=ggo(r)c?dt?+ g, (r)dr?+r2dQ3, (33

ZVH(T
IN Zoper™ (2mh?)(P-1I2c2g(P+1)i2

e~ Brmoc? B> Bs. Wh_eregoo(r)<0_ (r>r_S) for' a Sghwarzsghild black hole so-
lution, the semiclassical Einstein equatidisg). (32)] read

The singular behavior foB,— Bg, and allD, is typical 87G _,(1dIngg 1 1
of a string system with intrinsic Hagedorn temperature, and =0 T T2 T (349
indicates a string phase transitiet T=Tg) to a condensed ¢ r r
finite energy statgRef. [5]). This would be the minimal

_ 87wG 1 1dlIn 1
black hole, of mas#l ., and temperatur&s. h <78>:gr_rl(_2_ - grr) .- (34D
C r r dr r
IV. QUANTUM STRING BACK REACTION IN BLACK
HOLE SPACETIMES For Schwarzschild boundary conditions
When we consider quantized matter on a classical back- _
- . . . [ re)=-—1, 35
ground, the dynamics can be described by the following Ein- Gool )G (F=) (353
stein equations: where
v 1 " 87TG » rs -1
Ru= 5 0uR=—g (7). g”<rm>=(1— r) : (35b)

The space time metrig,,, generates a nonzero vacuum ex- The solution to Eqs(34a and(34b) is given by
pectation value of the energy momentum tendgp, which

in turn, acting as a source, modifies the former background. . 2GM  87G (T )
This is the so-called back reaction problem, which is a semi- g (N=1l-——+— f (7o(r"))r'=dr’, (363
classical approach to the interaction between gravity and cr cr I
matter.

Our aim here is to study the back reaction effect of higher - 87G (T , ,
massive(open string modegdescribed by (m), Eq.(4)]in 9oo(r) = —grrl(r)exp{ o4 rx«T:(r ))=(7o(r")))

black hole space times. This will give us an insight on the

last stage of black hole evaporation. Back reaction effects of

massless quantum fields in these equations were already in- Xf'grr(r')dr'} : (36b)
vestigated 12-14.

As we are also interested in establishing the differences
and partial analogies, between string theory and the usu
quantum field theory for the back reaction effects in black
hole space times, we will consider a four-dimensional physi-p
cal black hole.

The question now is how to write the appropriate energy

hereM is the black hole mass measured from(r.. may
e infinite or the radius of a cavity where the black hole is
ut inside to maintain the thermal equilibrigm

In order to write(T4(m,r)) for an individual quantum
field in the framework of the analog model, we notice that
momentum tensor(rﬁ) for these higher excited string p_(m) [Eq. (_4)] (_je_pends only o, therefore_:, we will con-
modes. For this purpose, we will consider the framework ofs'der for simplicity the vacuum expectation value of the
the string analog model. In the spirit of this model, the VEV stress tensor for a massive scalar field.

v . . . For the Hartle-Hawking vacuurntblack-body radiation at
of the stress tensdr,,) for the string higher excited modes ; u i in"equilibrium with a black hole at the temperature

is defined by T4), and when thereduced Compton wavelength of the
® massive particle X=7#/mc) is much smaller than the
J (To(r,m)){n(m))p(m)dm Schwarzschild radiusrg)
m,
(Th(r)="—"— . (32 he
mo(”(m)>l)(m)dm ZGTn<1 (37

where(T, (r,m)) is the Hartle-Hawking vacuum expectation [the same condition as that of E@b)]. (T;) and(TQ) for
value of the stress tensor of an individual quantum field, andhe background BH metriEq. (1), D=4] read[13]
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87G . A_[rs
r>:_8|:1 T (38@

r r

87G A [rs
a{To=5Fa| T, (38b)

where
MZLg,

=) 38¢
1260rm? (389

s s
Fl(?) =441- 2016+ T( —329+ (1512 +0(m™ %),
(380

rs I's
Fz( T) = — 1125+ {5040+ =(1237- (5544 + o(m™%.
(38¢

M and m are the black hole and the scalar field masses re-
spectively,{ (a numerical factoris the scalar coupling pa-
rameter & [R¢?/2; Ris the scalar curvature) is the scalar

field) andL,=(4G/c®)"2is the Planck length.
From Egs.(32), (383, and(38b) the VEV of the string
stress tensor will read

87TG rs
<Tr>_ (T)v (3959
87TG rS
where
M2L8 fmm (n(m))p(m)dm
PL 0 (40)

12600 (=
fm (n(m))p(m)dm

We return now to Egs(36a and (36b) which, with the
help of Eqs.(39a), (39b), and(3), can be rewritten as

-1 =1— r_s éfr r_S i i
O (N=1- 7+ | Fa| 7)=gdr’s (4D
_ r r r
o=t 4 e
r
LI ] )
r/7
A Schwarzschild black-body configuration
Jool 1) =~ (1) 43
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is obtained whefEg. (42)]

rs
Fl( r) Fs

i.e., for f=35 for all r.
Then from Eqs(41) and(38e, we obtain

)—(1566— {7056)( 1- —) 0, (49

—27]. (45)

From the above equation it is clear that the quantum mat-
ter back reaction modifies the horizan , which will no
longer be equal to the classical Schwarzschild radiusThe
new horizon will satisfy

g,1=0, (463

ie.,

; 6 27 23
r+—rsr++A2—1r+—A—rS=0.

21 (460

In the approximation we are dealing wif®(m~%), i.e.,
A?<A], the solution will have the form

ry=rg(l+e), e<l. (47)
From Eg.(46b) we obtain
1 A (48)
ro=r -—],
+ S 21rg

which shows that the horizon decreases.
Let us consider now the surface gravity, which is defined
as

c?dg,!

5 g lr=r. (49

k(ry)=

[in the absence of back reactidk(r ,)=Kk(rg) given byk
=c?/2rg for D=4].
From Egs.(45), (48), and(49) we get

c? 1A
k(r+)=£ 1+§r_g .

The black hole temperature will then be given by

(50

Ak(ry)

" 2mkee _TH<1+§r_g>’

(51)

where Ty=7cl4wkgrs. [Eqgs. (16b) and (6b) for D=4].
The black hole temperature increases due to the back reac-
tion.

Due to the quantum emission the black hole suffers a loss
of mass. The mass loss rate is given by a Stefan-Boltzman
relation. Without back reaction, we have
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dMm ) D-5 )
e =ocdmrgly, (52 XT'| —a+ 5 J(Bu—Bsg)cmg|. (60
whereg is a constant. When the back reaction is considered, ] .
we will have In particular, for open stringsa= (D —1)/2] we have for
N andDe
dMm
- (H) =c4mr’iT4, (53
+

N=c*Bu(Bu—Bs)| Ei(—(By— Bs)Moc?)

wherer . is given by Eq.(48) and T, is given by Eq.(51).
Inserting these values into the above equation we obtain

N e~ (BuBImoc” B (Bu—Bs)?c?
— d_M - d_M +% (54) (Bu—Bg)moc? 2
dt /), dt 21r8 ’
X | Ei(— (By— Bs)MoC?) + e (Br=Amoc”
On the other hand, the modified black hole mass is given (5 (B~ B)Moc”)
by
X ! ! (61
c? 44 2 224
- - _ (Bu—BsIMoc”  (By—Bs)“MaC
M 4 2Gr+ M| 1 erg , (55)
which shows that the mass decreases. and
From Egs.(54) and (55), we calculate the modified life-
time of the black hole due to the back reaction By )
De= e (Pi Ao, (— (B~ Bg)c’my).
oA Br—Bs
Ti= 7'H< 1- —6) . (56) (62)
Trg

For By— Bs (M—M infs—rmin), We have for the open

<74 Si >0. .
We see thatr, <7 since.A>0 ,» string form factor

We come back to the string back reaction “form factor
A [Eq. (40)] which can be rewritten as

M2 L6 - 1 2
MZLE. N Aoper™ m'”lggéf” P ( S+ Cmﬁ >l (63
= 560, D" (57) Bs 2mg o
where Although the string analog model is in the spirit of the
. canonical ensemble—alhighe massive string fields are
N=| mat®-1N2mcg,+ 1)ef(BH*ﬂs)m02dm treated equally — we will consider too, for the sake of com-
Mo pleteness, the string “form factorA for closed strings.
(58) Fora=D (D is the noncompact dimensiongrom Egs.
29b), (290, and(59), we have the following expressions:
and[Eq. (29)] (29b), (290), and(59) g exp
De=Ip(m,By—Bs,a), (59  De=Ip(m,By—Bs,D)
where use of Eq924) and(4) has been madéhe common c?By

factors for numerator and denominator cancelled.out
For arbitraryD anda, N is given by

D-1
c?By xT _T’(IBH_IBS)mOCZ)
[(By—Bg)c?] 2 (P32

T [(Ba—Bec?] @ DE

N 1 (—D+1(,8 B mac?
xr| a2y (B Bocm, [(Bu—Bge?] G0 | 2 "o P
(64
. 1
[(By—Bg)c?] 2 (P92 and[Eq. (59)]
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2
C°Bhy

N=
[(By—Bg)c?] (PH3)2

D+3
F( 3 =(,3H_,33)szo)

1 D+5
+[(,3H_,3$)CZ]_(D+5)/2F(_ 2

,(ﬁH_ﬁs)szo>-
(65)
For By— Bs andD even, we have then

D+3

2

N:CZﬁs[(ﬁH_ﬁs)CZ](D+3)/2F

N c?Bs
(M) P+ (D +3)/2]

+[(By—Bs)c?] P2

D+5
2

1
+
[(D+5)/2]m{P ")

xT (66)

and

De=c2Bs[<BH—Bs)c2]<Dl>'2r( ——Dgl)

2
C“Bs

2(p — p 1D+
+ (mo)® D72 (D—1)72] +[c(Bu—Bs)]

D+1
2

1
+

mgml)/z(

XTI'| — D1 (67)

2

Therefore, from Eqs(57), (66), and(67), AgoseqiS given
by

c?Bg 1
D+3 D+5
< N (mo)(D+3)/2 > > (mo)(D+5)/2
De closed CZIBS + 1
m{@-1)12 D-1 m(D+1)/2 D+1
0 2 0 2

(68)

and forD=4, we have for8y— Bs (M —M yin, Fs—min)

CZBS 1
MainlpL [ 7 9mg
closed™ 2 (69)
1260mm; c233+ 1
3 5mg

From Egs.(63) and (68), we now evaluate the number
Alré appearing in the expressions for [Eq. (48)], T [Eq.
(51)], M, [Eq.(55)], and, [Eqg.(56)], for the two opposite
limiting regimesBy— Bs and B> Bs:

PHYSICAL REVIEW D61 084030

S REIE

- Bs 315 MpL/ | mg

—_

6
rmin

Aopen)
B

H—Bs

<1,

16(77)3( MS)2M§c2
Mp ) bmg

=(Bu— 55)3_15 b
(70

16(7T3M52M52 171
~73®\b) \Mp) \mg, =%

H—Bs

Aclosed
ré.
min ﬁ
In the opposite(semiclassicalregime B> Bs, i.e., Ty
<Tg, we have from Eqs(61), (62), (64), and(65)

( N )open 1 ( N )closed
— =—=| (72
2
De u=ps Mo De Bu> B
as
Bymyc2=8 (M)(m°)>1 (73)
MeC*=om| —/— >
o Mp /| MpL
(mg,M>Mp,). Then, from[Eq. (57)]
open / closed 4 2
A 1 (Mer) (Me)® g (74)
rg - 806407\ M Mg '

By>Bs

That is, in this regime, we consistently recover=rg, T,
=Ty, M,.=M, andr, =7, =kgC/60GLTS .

V. CONCLUSIONS

We have suitably combined QFT and quantum string
theory in the black hole background in the framework of the
string analog modelor thermodynamical approachWe
have computed the quantum string emission by a black hole
and the back reaction effect on the black hole in the frame-
work of this model. A clear and precise picture of the black
hole evaporation emerges. The QFT semiclassical regime
and the quantum string regime of black holes have been
identified and described.

The Hawking temperatur&y, is the intrinsic black hole
temperature in the QFT semiclassical regime. The intrinsic
string temperaturd g is the black hole temperature in the
quantum string regime. The two regimes can be mapped one
onto another by th& transform.

String theory properly describes black hole evaporation:
because of the emission, the semiclassical BH becomes a
string state(the “minimal” BH ), and the emitted string gas
becomes a condensed microscopic stéte “minimal” BH)
due to a phase transition. The last stage of the radiation in
string theory makes such a transition possible.

The phase transition undergone by the string gas at the
critical temperaturel g representgin the thermodynamical
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