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Gravitational collapse with a cosmological constant
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We consider the effect of a positive cosmological constant on spherical gravitational collapse to a black hole
for a few simple, analytic cases. We construct the complete Oppenheimer–Snyder–de Sitter~OSdS! spacetime,
the generalization of the Oppenheimer-Snyder solution for collapse from rest of a homogeneous dust ball in an
exterior vacuum. In OSdS collapse, the cosmological constant may affect the onset of collapse and decelerate
the implosion initially, but it plays a diminishing role as the collapse proceeds. We also construct spacetimes
in which a collapsing dust ball can bounce, or hover in unstable equilibrium, due to the repulsive force of the
cosmological constant. We explore the causal structure of the different spacetimes and identify any cosmo-
logical and black hole event horizons which may be present.

PACS number~s!: 95.30.Sf, 04.20.Jb, 98.80.Hw
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I. INTRODUCTION

Recent measurements of type Ia supernovae sugges
our universe may have a nonzero cosmological cons
L.0 @1,2#. A more recent analysis@3# of the peculiar mo-
tion of low-redshift galaxies seems to give further eviden
for a finite L. Obviously, such an interpretation of the da
if correct, will have huge implications for cosmology. Mo
generally, if a cosmological constant must be restored to E
stein’s equations of general relativity, surprises may turn
in other physical applications of Einstein’s field equation
although the small size of the constant precludes its havin
significant effect on the scale of typical galaxies, stars,
planets. It is therefore interesting to consider, at least a
point of principle, what impact, if any, the presence of
finite cosmological constant has on our conventional pict
of gravitational collapse to a black hole. Many of the impo
tant dynamical and geometric features of catastrophic
lapse in the absence of a cosmological constant are reve
by the analytic Oppenheimer-Snyder model@4#, which de-
scribes the collapse of a spherical, homogeneous dust
initially at rest in an exterior vacuum, to a Schwarzsch
black hole. In this paper we generalize this model accoun
for the presence of a positive cosmological constant. We
consider closely related, dust ball solutions for which t
implosion does not begin at rest.

There are a number of questions that motivate our an
sis: how does the cosmological constant, which acts a
repulsive force, affect the motion and fate of a collaps
object? Under what circumstances, if any, can a cosmol
cal constantpreventthe collapse of a dust ball which is in
tially imploding? What is the global horizon structure of a
exponentially expanding universe containing a collaps
dust ball? When do black holes form?

II. DYNAMICS OF A HOMOGENEOUS DUST SPHERE
WITH COSMOLOGICAL CONSTANT

The interior of a homogeneous sphere is given by
Friedmann-Robertson-Walker~FRW! metric
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ds252dt21a2F dx2

12kx2
1x2~du21sin2 udf2!G , ~2.1!

wherek521, 0 or 1 for a hyperbolic, flat, or spherical sp
tial geometry, respectively. The density remains homo
neous on spatial slices of constant timet. The surface of the
sphere is located at constantx5X, where 0<X,1 for k
51. Einstein’s equations for a pressureless fluid~i.e.,
‘‘dust’’ ! of density m/a3 in the presence of cosmologica
constantL yield

S ȧ

a
D 2

5
8p

3

m

a3
2

k

a2
1

L

3
. ~2.2!

This interior spacetime is often called the Friedman
Lemaı̂tre ~FL! universe.

The standard Oppenheimer-Snyder~OS! solution @4# for
the interior of a collapsing homogeneous dust sphere,
tially at rest, is a piece of a closed FL (k51) universe with
L50. In OS collapse, the initial time-slicet50 is defined at
the moment of time-symmetry at maximum expansion, wh
the right hand side of Eq.~2.2! vanishes. The same form fo
the interior metric withk51 applies in the presence of
cosmological constant. The solution we seek — collapse
spherical dust ball from rest in an exponentially expand
universe with a positive cosmological constant — we sh
refer to as an Oppenheimer–Snyder–de Sitter~OSdS! space-
time.

According to the generalized Birkhoff theorem@5#, the
vacuum spacetime outside the sphere is Schwarzschild
Sitter ~SdS! spacetime@6#:
©2000 The American Physical Society29-1
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ds252 f dt21
1

f
dr21r 2~du21sin2 udf2!, ~2.3!

f ~r !512
2M

r
2

L

3
r 2,

whereM is a constant. This spacetime represents the vac
exterior of a spherical mass immersed in the exponenti
expanding~at larger ) de Sitter space.

We neglect for the moment the presence of the d
sphere and assume that metric~2.3! describes the entire
spacetime withr in the range 0,r ,`. The metric function
f (r ) ~see Fig. 1! reaches the maximum valuef max51
2(9M2L)1/3 at r m5(3M /L)1/3. Thus, forM,1/3L1/2, f (r )
has two real positive roots,r h and r c.r h , where

r h,c5
2

L1/2
sinF1

3
sin21~3ML1/2!1n

2p

3 G
~2.4!

n50,1

~we choose 0<sin21A<p/2 for 0<A<1; the third root is
negative,r 352r h2r c). For all null and timelike geodesic
crossing theblack hole horizon r5r h inward, 2] r is the
future-directed timelike vector, and so they all terminate
the singularity r 50. All the future and outward-directe
~timelike or null! geodesics atr .r h cross thecosmological
horizon r5r c and ultimately reach cosmological null infinit
I1 at late times.

Returning now to the motion of a dust sphere with t
exterior spacetime~2.3!, we match the spacetime geomet
across the sphere’s surfacer 5R(t) (x5X5const) which
requires~1! the continuity of the surface’s 3-metric

(3)ds252dt21R2~du21sin2udf2!, ~2.5!

where R(t)5Xa(t), as well as~2! the junction condition
@K j

i #[K j
i u

out
2K j

i u
in
50, for the extrinsic curvature@7#

Ki j [2ei•~¹ jn!5n•~¹ jei !. ~2.6!

The three vectorsei are intrinsic to the spacetime hypersu
face swept by the moving surface,u5 ṫ] t1Ṙ] r ( ṫ

FIG. 1. The effective potentialf (r ) (L50.07/M2, X50.96).
Oppenheimer-Snyder-de Sitter~OSdS! collapse starts from rest a
the dot and proceeds inward~leftward along the dotted line!.
08402
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[dt/dt), ]u and ]f , while n5nt] t1nr] r is the outward-
directed unit 4-vector orthogonal to the surface. From
orthonormality conditions

215u•u52 f ṫ21
1

f
Ṙ2,

05u•n52 f ṫnt1
1

f
Ṙnr , ~2.7!

15n•n52 f ~nt!21
1

f
~nr !2,

and the metric forms~2.1! and ~2.3!, we obtain the
t-component of the 4-velocity

ṫ5h1

~Ṙ21 f !1/2

u f u
, h1561, ~2.8!

and components of the unit normal

nr5h2~ f 1Ṙ2!1/2, nt5
h2

h1

Ṙ

u f u
, ~2.9!

(h2561) on the outside, and

nt50, nx5
A12kX2

a
, ~2.10!

on the inside of the surface.
The condition@Ku

u#50, where

Kuuu
out

5n•Guu
i ei52

1

2
nrguu,rU

r 5R

52Rnr ,

Ku
uu

out
52

nr

R
,

~2.11!

Kuuu
in
5nxGxuu52

1

2
nxguu,xU

x5X

52nxa2X,

Ku
uu

in
52

nx

X
,

implies h251 and leads to the equation that describes m
tion in the effective potentialf (R) @see Fig. 1#

Ṙ21 f ~R!512kX2. ~2.12!

Comparing Eqs.~2.2! and ~2.12! we identify

M5
4p

3
mX3. ~2.13!

~The junction conditions for other components of the extr
sic curvature do not yield additional information.!
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For k51 there is a range of parameters,M<1/3L1/2 and
X.(9M2L)1/6, for which equation 0512X22 f 5Lr 2/3
12M /r 2X2 has three real roots, out of which two,r o and
r b.r o , are positive

r o,b5
2X

L1/2
sinF1

3
sin21~3ML1/2/X3!1n

2p

3 G
~2.14!

n50,1.

The third root,r̄ 352r b2r o , is then negative. According to
Eq. ~2.12!, the sphere atR5r o or R5r b is momentarily at
rest.

For f (r ).0 @8#, t is a timelike future-directed coordinat
and Eq.~2.8! implies h151. If, on the other hand,r ,r h or
r .r c , so thatf (r ),0 @assumingf (r ) has positive roots#, r
is timelike. If, in addition,2] r is future-directed@9#, it is
convenient to introduce the new notation,T[2r ,0 andy
[t, in which metric~2.3! takes on the time-dependent for

ds252
1

g
dT21gdy21T2~du21sin2udf2!,

~2.15!

g~T!5
L

3
T22

2M

T
21.0.

Metric ~2.15! describes a 3-dimensional cylindrical spaceli
hypersurface of radiusuTu, symmetric around itsy-axis ~see
Fig. 2!. For r ,r h , this hypersurface contracts radially an
expands in they-direction from zero size at the coordina
singularityT52r h , to an infinite extent at the physical sin
gularity T50. For r c,r ,`, it contracts in the radial direc
tion and along itsy-axis until the coordinate singularit
g(T)50 is reached at timeT52r c .

The vacuum spacetime given by metric~2.15! may extend
to infinity in both directions along they-axis. Alternatively, it
can be bounded on the left~so thatn points toward increas
ing y, ny5nt.0; see Fig. 2! by the surface of an inevitably
contracting sphere@Ṙ52Ṫ,0, and thush1521; see Eq.
~2.9!# that recedes leftward,

FIG. 2. A dust ball with an exterior whose spacelike hypers
faces have cylindrical geometry@see Eq.~2.15!#. One angular di-

mension is suppressed. The dust ball recedes leftward (ẏ,0) as
viewed from the exterior. The interface (x5X) normaln is drawn
tangential to the sphere’s interior.
08402
ẏ52
A12kX2

g
, ~2.16!

along they axis. The trajectory of the surface is given by

dy

dT
52

A12kX2

gA12kX21g

'5 2S 3

L D 3/2A12kX2

T3
~ for T→2`!,

2A12kX2S T

2M D 3/2

~ for T→0!.

~2.17!

For r ,r h , the sphere’s surface therefore starts atT52r h ,
whereg}T2Th→0, at which pointẏ→2` andy→`, and
reaches some finitey5yf at T50. For r .r c , the surface
travels from a finite y5yi , at T52`, to y52` at
T52r c .

If, on the other hand, we place the contracting sphere
the right of the vacuum sector given by metric~2.15!, ny

,0 ~and thush151), and the sphere’s surface will reced
toward increasingy, ẏ.0. If r is a future-directed timelike
coordinate @10# ~so that the notation change would b
T[r , y[t), the motion of the sphere is reversed: it expan
Ṙ5Ṫ.0 and, if, e.g., placed on the left,ny.0, it advances
to the right,ẏ.0.

III. BOUNCING SPHERE

As discussed in the previous section, fork51 we have
the range of parameters,M<1/3L1/2 andX.(9M2L)1/6, for
which a dust sphere contracting from large radii will boun
at R5r b.r h , wherer b is the larger of the two positive root
of the equationf (r )512X2 ~see Fig. 1!.

The Penrose diagram for the complete spacetime is g
in Fig. 3. At large negative timet ~between the past nul
infinity I2 and the past cosmological horizonHc

2) the dy-
namics are dominated by the cosmological constant and
sphere contracts exponentially,R}exp(2AL/3t). After the
sphere’s surface has crossedHc

2 , it will reverse its motion at
R5Xa(t50)5r b and then expand toward the future cosm
logical horizonHc

1 , and ultimately the future null infinity
I 1. In contrast to an implosion in a static Schwarzsch
background, the presence of a positive cosmological cons
is sufficient to halt and reverse the collapse in this case. H
the presence of the dust does not alter in essence the fam
bounce of the spherical spatial hypersurfaces near
‘‘throat’’ of the de Sitter spacetime@11#.

The presence of a massive sphere, however, is not ent
without an effect on the global structure of the spacetime
the limit of vanishing massM, the radial null ray that enters
the sphere at the exact moment when its surface crosse
future cosmological horizon (Hc

1)radius, R5r c , will take
an infinite timet to reach the re-expanding sphere’s cen
x50. On the other hand~see the Appendix!, for any finite
massM.0, the null ray will reach the center in afinite time,

-

9-3
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DRAGOLJUB MARKOVIC AND STUART L. SHAPIRO PHYSICAL REVIEW D61 084029
then proceed outward and reach some finitex5xf at infi-
nitely late times. In this case, the surfacer c no longer has the
significance of a cosmological horizon@12# with respect to
an observer atx50.

The spacetime shown in Fig. 3 is geodesically comple
i.e., all geodesics extend to infinite values of their affi
parameters in both directions. To achieve the completen
we have placed another dust sphere at the right of Fig. 2
Fig. 3. While the second sphere must have the same va
of M andL, we are free to choose for it any values ofkr and
Xr , independent of the choicesk andX for the sphere at the
left. Of the great variety of combinations of two du
spheres, in this paper we will discuss only a few. The cho
we have made in Fig. 3 is symmetric, i.e,kr5k51 andXr

5X. Since the centers of the spheres cross the null raysHc
1

or H c
2 , the two spheres are in causal contact.@Other ways of

extending the spacetime to the right — with either mass
spheres or interiors of black holes — are discussed in
next section.#

IV. COLLAPSING SPHERE

For the range of parameters discussed in the previous
tion, M<1/3L1/2 and X.(9M2L)1/6, one can follow the
motion of the sphere atR,Ri , whereRi is the smaller of the
two positive roots of the equationf (r )512X2. The sphere’s
surface springs out of the past singularity atr 50 ~see Fig.
4!, then emerges through the past black hole horizonHh

2 ,
reverses its expansion atR5Ri , plunges through the future
black hole horizonHh

1 , and finally ends in the future singu
larity at r 50. As discussed in Sec. II, the spacetime exter
to the sphere, usually called the Schwarzschild-de S
~SdS! spacetime@6#, is characterized by two pairs of hor

FIG. 3. The Penrose diagram for the spacetime containin
‘‘bouncing’’ dust sphere. The bouncing dust sphere to the ri
~identical to the one on the left side! is introduced for geodesic
completeness.
08402
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zons: the future and past black hole horizons atr 5r h , and
the futureHc

1 and pastHc
2 cosmological horizon atr 5r c .

In this scenario the sphere always stays inside the cos
logical horizon atr c . If we follow the sphere’s implosion
from the moment of time-symmetry at maximum expans
Ri5r o (C in Fig. 4!, the motion is a straightforward gene
alization for a nonvanishing cosmological constantL of the
familiar Oppenheimer-Snyder collapse. The collapse is
mologous and the density remains homogeneous
t5constant time slices. Qualitatively, the cosmological co
stant serves as a perturbation whose influence on the coll
diminishes as the collapse progresses. We illustrate the in
braking effect ofL on the collapse in Fig. 5 for the indicate

a
t

FIG. 4. Collapse to a black hole in the Schwarzschild-de Si
universe. The dust sphere’s surface emerges from the past sing
ity through the past black-hole horizon, stops its expansion at p
C, and then recollapses to a black hole. The Oppenheim
Snyder-de Sitter~OSdS! collapse to a black hole starts from th
moment of time-symmetry. The bouncing sphere,Xr.(9M2L)1/2,
of massM on the right side is introduced for geodesic comple
ness; it can be replaced by another re-collapsing sphere. The b
hole horizon structure corresponds to regionII in the parameter
space of Fig. 6.

FIG. 5. OSdS collapse to a black hole. Shown is the evolut
R(t) of the surface of a dust sphere starting from rest atR53M for
the indicated values ofLM2. The solid dots mark the points a
which the spheres’ surfaces cross their black-hole horizons.
9-4
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GRAVITATIONAL COLLAPSE WITH A COSMOLOGICAL . . . PHYSICAL REVIEW D 61 084029
values ofLM2. We measure the sphere’s time in the units
the proper time,TL505p(Ri

3/8M )1/2, that a sphere would
take to evolve from the static point atR5Ri all the way to
the final singularity in the case of a vanishingL.

In the left portion of Fig. 4, the past black hole horizo
Hh

2 reaches the center of the spherex50 after the future
black hole horizonHh

1 has emerged from the origin. Thi
configuration of the black-hole horizons would, e.g., make
impossible for an observer atx50 to take off in the radial
direction and escape from the black hole after receiving
earliest possible signal from the past null infinityI 2. As we
discuss in the Appendix, this is the case for the sectorII in
the plane of parametersX and (9LM2)1/6 shown in Fig. 6.

For the values of the parameters from sectorI of Fig. 6,
on the other hand, the arrival ofHh

2 at x50 precedes the
departure ofHh

1 . This case is shown in Fig. 7.
For any values ofM andL ~includingL50) that allow a

recollapse~or the OSdS implosion from rest!, M,1/3L1/2,
the earliest null ray emitted from the portion of the pa
naked singularity not covered by dust~see Figs. 4 and 7! will
reach the sphere’s center before the emergence ofHh

1 ~see
the Appendix!. This will allow an alert observer atx50 to
avoid the future black-hole singularity if he heeds the wa
ing coming from the visible~assuming light can get throug
any finite-density region! sector of the initial singularity.

Instead of another sphere shown in Figs. 3 and 4, Fig.

FIG. 6. Regions in the parameter space that allow an observ
escape from the recollapsing sphere to infinity after receiving ax
50 the first signal from the dust-free portion of the past nak
singularity ~I1II ! or from the past null infinity~I !.

FIG. 7. A recollapsing sphere~compare Fig. 4! for parameters
from regionI of Fig. 6. Instead of another sphere to the right, t
spacetime is closed off with an infinite series of alternat
Schwarzschild-de Sitter exteriors and black-hole interiors.
08402
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completed at the right by an infinite sequence of alternat
Schwarzschild-de Sitter exteriors~with their characteristic
cosmological horizons and spacelike null infinities! and
black-hole interiors~bounded in the past and future by blac
hole singularities!.

For the special valueX5(9M2L)1/6, the sphere can hove
in a state of unstable equilibrium at the maximum of t
effective potential atR5r m. The Penrose diagram contain
ing such a sphere is shown in Fig. 8.

Finally, for M<1/3L1/2 but X,(9M2L)1/6, a sphere con-
tracting from R5` at t52` will pass throughHc

2 and
then form a black hole. Figure 9 contains the correspond
Penrose diagram. Notice that at early times the space
structure is similar to the early-time portion of the bounci
case~see Fig. 3!, while the late-time evolution is akin to tha
of Fig. 4.

V. GLOBAL COLLAPSE

If M.1/3L1/2, f (r ) is negative everywhere and there
no static~i.e., with a time-like Killing vector! portion of the

to

d FIG. 8. A static dust sphere in unstable equilibrium forX
5(9M2L)1/6.

FIG. 9. Collapse into a black hole forX,(9M2L)1/6. The dust
sphere’s surface contracts through the past ‘‘cosmological horiz
Hc

2 , and then collapses to a black hole.
9-5
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DRAGOLJUB MARKOVIC AND STUART L. SHAPIRO PHYSICAL REVIEW D61 084029
spacetime. The entire spacetime is analogous to the fam
vacuum Schwarzschild solution inside the event horiz
where the spacetime is dynamic and the radial and time
ordinates reverse roles@see the last three paragraphs of S
II #. Metric ~2.15! describes a cylindrical spacelike hypersu
face that shrinks~if the timelike coordinateT[2r is future
directed! in the radial (Ṫ.0) direction and expands along i
y-axis (y[t) as the singularity atT50 is approached. At the
left edge of this vacuum spacetime~see Fig. 10!, the surface
of the collapsing sphere recedes leftward along they-axis,
according to Eq.~2.16!.

Since the integral*dy52*2`
0 dT/g(T) is finite, a null

ray travels only a finite differenceDy @see Eq.~2.17!# in the
spacetime outside the sphere over the entire evolution f
the past null infinity,T52`, to the singularity atT50.
This allows us to to place another identical collapsing sph
~needed for geodesic completeness! receding to the right (ẏ
.0) of the first one~see Fig. 10! so that the two sphere
either have causal contact~the specific case of Fig. 10! or are
causally disconnected. In either case, the entire space
ends in a global cosmological singularity.

For k50 or k521, the static, momentarily static, an
bouncing solutions described above do not exist. Depend
on whetherM,1/3L1/2 @13# or not, we have, respectively,
black hole formation shown in Fig. 9 or a ‘‘big crunch
shown in Fig. 10.

VI. SUMMARY

In this paper we have investigated the influence of a fin
cosmological constantL on the evolution of a homogeneou
sphere made of pressureless matter. In addition toL, the
evolution is determined by the massM of the sphere and the
comoving extent,X, of the sphere interior’s spherical (k
51), flat (k50), or hyperbolic (k521) slices of homoge-
neity.

A straightforward generalization of the familia
Oppenheimer-Snyder collapse from rest is possible only
M,1/3L1/2, k51, andX.(9M2L)1/6. In this case, the cos
mological constant can slow down the collapse initially, b
at later times the sphere’s self-gravity dominates entirely
eventually pulls the sphere into the final singularity.

The same range of parameters allows, however, a sp

FIG. 10. Collapse into a global~cosmological! singularity for
M.1/3L1/2.
08402
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contracting from large radii to avoid a collapse and rebou
en route to an exponential expansion at late times. In cont
to the previous case, the bouncing sphere’s evolution
dominated by the cosmological constant, with the ma
playing the role of perturbation.

For all values of the parameters outside the above ran
an initially contracting sphere will not be able to avoid bei
infinitely squeezed in the final singularity. The fate of th
exterior spacetime depends, however, on the mass of
sphere@14#: for M,1/3L1/2, the sphere forms its own blac
hole within its horizon, allowing the exterior space to expa
exponentially at late times. ForM.1/3L1/2, the sphere drags
the entire spacetime into a ‘‘big crunch’’: the exterior co
tracts on its way to the familiar de Sitter-like ‘‘throat’’~see,
e.g.,@11#! but cannot escape out of it due to the overwhel
ing pull of the sphere’s gravity.
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APPENDIX: EXTENSION OF THE COSMOLOGICAL
AND BLACK HOLE HORIZONS INSIDE

THE DUST SPHERE

1. Bouncing sphere

Solving Eq. ~2.1! for future- and inward-directed radia
null rays alongHc

1 and integrating from the point (R5r c) at
which the re-expanding dust sphere’s surface crossesHc

1

~see Fig. 3!, we obtain

sin21X1sin21xf5E
X

0 2dx

A12x2
1E

0

xf dx

A12x2

5Dz[E
r c /X

` da

aȧ

5XE
1

` dz

Az

1

~12p1pz32X2z!1/2

[F~X,p!, ~A1!

wherep[Lr c
2/35122M /r c , z[R/r c , andxf is the outer-

most point inside the dust sphere that can be reached by
null ray after it started atx5X and then passed through th
centerx50. In Eq. ~A1! we have introduced the conforma
time z(t) of the FRW metric.

In the limit of vanishing mass,p(M50)51, F(X,1)
5sin21X, and thusxf50. This is the familiar structure of the
de Sitter spacetime@12#. For M.0, however,xf.0, and
thus the center of the sphere,x50, will crossHc

1 at a finite
proper timetc ~as shown in Fig. 3!.

This can be shown as follows. For any givenL,
(]r c /]M )L52/(123p). Sincep has the minimum valuep
9-6
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51/3 for M51/3L1/2 (r c53M51/L1/2, f max50),
(]r c /]M )L,0, and thus (]p/]M )L will always be negative.
It then follows (]F/]M )X5(]F/]p)X(]p/]M )L.0. Hence,
for any M.0, F@X,p(M )#.F@X,p(M50)#5sin21X and
thusxf.0. The surfacer 5r c , therefore, loses forM.0 the
significance of an event horizon~with respect to the world
line x50) that it has atM50.

2. Collapsing sphere

We now turn to the configuration of the past (Hh
2) and

the future (Hh
1) black hole horizons. Measuring the confo

mal time of the FRW metric from the initial singularity

z~R![E
0

R/Xda

aȧ

53A3
X

Al
ME

0

R dR

uR~r o2R!~r b2R!~ r̄ 32R!u1/2
,

~A2!

wherel[9LM2, and again solving Eq.~2.1! along the past
black-hole event horizon, we find the value

z25z~r h!1sin21X, ~A3!

of the conformal time when the past black-hole horizonHh
2

reaches the center of the sphere~see Fig. 4!. Notice that the
conformal time depends only onX andLM2 in addition to
the current value ofR.
nt

08402
Since the sphere’s evolution is time-symmetric around
point of reversalr o , the conformal time that elapses betwe
the initial and past singularities is 2z(r o). Hence, the future
black hole horizonHh

1 emerges fronx50 at the conformal
time

z152z~r o!2z~r h!2sin21X. ~A4!

If the past horizon is to reach the sphere’s center before
emergence of the future horizon, we must therefore have

z~r o!.z~r h!1sin21X, ~A5!

the condition satisfied by all points in regionI of the param-
eter space of Fig. 6 and by the specific case shown in
Penrose diagram of Fig. 7. If, on the other hand, we requ
that the null ray, emanating from the boundary between
sphere and the dust-free portion of the past singularity, g
at z5sin21X to the sphere’s center before the emergence
Hh

1 , the following inequality needs to hold:

z~r o!2
1

2
z~r h!.sin21X. ~A6!

It turns out that condition~A6! is satisfied for all values of
the parameters that allow a recollapse or an OSdS implos

In the case of a vanishing cosmological constant,z(r o)
2z(r h)5p22 sin21X and the condition~A5! is satisfied if

X,A3/2. At the same time,z(r o)2 1
2 z(r h)5p2sin21X, and

the inequality~A6! holds if X<1, which is satisfied by all
recollapsing spheres.
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