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Gravitational collapse with a cosmological constant
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We consider the effect of a positive cosmological constant on spherical gravitational collapse to a black hole
for a few simple, analytic cases. We construct the complete Oppenheimer—Snyder—d©Sittgrspacetime,
the generalization of the Oppenheimer-Snyder solution for collapse from rest of a homogeneous dust ball in an
exterior vacuum. In OSdS collapse, the cosmological constant may affect the onset of collapse and decelerate
the implosion initially, but it plays a diminishing role as the collapse proceeds. We also construct spacetimes
in which a collapsing dust ball can bounce, or hover in unstable equilibrium, due to the repulsive force of the
cosmological constant. We explore the causal structure of the different spacetimes and identify any cosmo-
logical and black hole event horizons which may be present.

PACS numbe(s): 95.30.5f, 04.20.Jb, 98.80.Hw

I. INTRODUCTION 2

dx
ds*=—d7r*+a®| ——— +x3(de*+sir’ 6d¢?) |,  (2.2)

Recent measurements of type la supernovae suggest that 1—kx

our universe may have a nonzero cosmological constant
A>0 [1,2]. A more recent analysig3] of the peculiar mo-
tion of low-redshift galaxies seems to give further evidence . .
for a finite A. Obviously, such an interpretation of the data,wherek: —1,00r1 fo_r a hyperbolic, fI_at, or sphencal spa-
if correct, will have huge implications for cosmology. More tial geometry, respectively. The density remains homoge-
generally, if a cosmological constant must be restored to Eind€ous on spatial slices of constant timeThe surface of the
stein’s equations of general relativity, surprises may turn uggphere is located at constaxtX, where 6sX<1 for k
in other physical applications of Einstein’s field equations,=1. Einstein’s equations for a pressureless fldick.,
although the small size of the constant precludes its having adust”) of density u/a® in the presence of cosmological
significant effect on the scale of typical galaxies, stars, ogonstantA yield
planets. It is therefore interesting to consider, at least as a
point of principle, what impact, if any, the presence of a
finite cosmological constant has on our conventional picture
of gravitational collapse to a black hole. Many of the impor-
tant dynamical and geometric features of catastrophic col-
lapse in the absence of a cosmological constant are revealed
by the analytic Oppenheimer-Snyder mogi¢], which de-
scribes the collapse of a spherical, homogeneous dust ball,
initially at rest in an exterior vacuum, to a Schwarzschild__, . . . . .
black hole. In this paper we generalize this model accountin%hIS Interior spacehme is often called the Friedmann-
for the presence of a positive cosmological constant. We als ematre (FL) universe. ) )
consider closely related, dust ball solutions for which the TNhe standard Oppenheimer-Snyd@S) solution[4] for
implosion does not begin at rest. the interior of a collapsing homogeneous dust sphere, ini-
There are a number of questions that motivate our analytially at rest, is a piece of a closed Fk<1) universe with
sis: how does the cosmological constant, which acts as & =0. In OS collapse, the initial time-slice=0 is defined at
repulsive force, affect the motion and fate of a collapsingthe moment of time-symmetry at maximum expansion, when
object? Under what circumstances, if any, can a cosmologithe right hand side of Ed2.2) vanishes. The same form for
cal constanpreventthe collapse of a dust ball which is ini- the interior metric withk=1 applies in the presence of a
tially imploding? What is the global horizon structure of an cosmological constant. The solution we seek — collapse of a
exponentially expanding universe containing a collapsingspherical dust ball from rest in an exponentially expanding
dust ball? When do black holes form? universe with a positive cosmological constant — we shall
refer to as an Oppenheimer—Snyder—de S{3d9 space-
time.
According to the generalized Birkhoff theoref8], the

The interior of a homogeneous sphere is given by thé/acuum spacetime outside the sphere is Schwarzschild—de
Friedmann-Robertson-WalkéERW) metric Sitter (SdS spacetimd6]:

a

i 2.2

a\’> 8 u k A
3 2% a2 3

II. DYNAMICS OF A HOMOGENEOUS DUST SPHERE
WITH COSMOLOGICAL CONSTANT
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02 F ' A =dt/d7), 9, and d,,, while n=n'9,+n's, is the outward-
0.1 directed unit 4-vector orthogonal to the surface. From the
0 orthonormality conditions
A - - . 1.
0 —1=u-u=—ft*+ -R?
02 = f
03 . .
e N 0=u-n=—ftn'4+ —Rn", 2.7
0 2 4 & 8 f
r/M 1
FIG. 1. The effective potential(r) (A=0.07M?, X=0.96). 1:n'n:_f(nt)2+?(nr)2!
Oppenheimer-Snyder-de SittédSdS collapse starts from rest at
the dot and proceeds inwatkftward along the dotted line and the metric forms(2.1) and (2.3, we obtain the

t-component of the 4-velocity

1
ds?=—fdt?+ ?dr2+r2(d62+ Sir? 6d¢?), (2.3 (R2+ )12
:771 |f| ) nlzill (28)

2M A
f(r)=1— T——rz,

3 and components of the unit normal

whereM is a constant. This spacetime represents the vacuum : . M2 R
exterior of a spherical mass immersed in the exponentially n'=ny(f+R)”S n =TT (2.9
expanding(at larger) de Sitter space.
We neglect for the moment the presence of the dust,,=+1) on the outside, and
sphere and assume that met(2.3) describes the entire

spacetime withr in the range 8<r<e. The metric function 1—kX

f(r) (see Fig. 1 reaches the maximum valug,,=1 n’=0, nX=T, (2.10
—(9M2A) B atr,=(3M/A)Y3 Thus, forM <1/3A %2, f(r)

has two real positive roots,, andr >r,, where on the inside of the surface.

The condition[K9]=0, where
2 [1. | vo 2T [Kol
rh‘CZA—l/zSI §Sln (SMA )+n?

. 1
2.4 Kool =n-Tpel=— Enrgee,r R,
n=0,1 r=R
(we choose &sin *A<#/2 for 0<A<1; the third root is K"| —_ _r
negative,r;=—r,—r.). For all null and timelike geodesics #lout R’
crossing theblack hole horizon &r,, inward, — 4, is the (2.11
future-directed timelike vector, and so they all terminate at o _ y o
the singularityr=0. All the future and outward-directed Kool ,, =" Tpp=— 2M G0y =—ha X,
(timelike or null) geodesics at>r,, cross thecosmological x=X
horizon r=r; and ultimately reach cosmological null infinity «
1" at late times. o= n
Returning now to the motion of a dust sphere with the #lin X’

exterior spacetime¢2.3), we match the spacetime geometry _ _
across the sphere’s surfaceR(7) (x=X=const) which implies 7,=1 and leads to the equation that describes mo-
requires(1) the continuity of the surface’s 3-metric tion in the effective potential(R) [see Fig. 1

(®ds?= —d7?+R*(d¢*+sinfod$?), (2.5 R2+ f(R)=1—kX2. (2.12
where R(7)=Xa(7), as well as(2) the junction condition Comparing Eqs(2.2) and(2.12 we identify
[KjI=Kjl_,—Kjl, =0, for the extrinsic curvaturgr]

4
— 7 x3
Kij=—e-(Vjn)=n-(V;e). (2.6) M= =~ uX" (213

The three vectors; are intrinsic to the spacetime hypersur- (The junction conditions for other components of the extrin-
face swept by the moving surfaceu=td;+Rd, (t sic curvature do not yield additional information.
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aX=|T|

-~ -

FIG. 2. A dust ball with an exterior whose spacelike hypersur-

faces have cylindrical geometfgee Eq.(2.15]. One angular di-
mension is suppressed. The dust ball recedes Ieft\/\@:d)() as
viewed from the exterior. The interfac& X) normaln is drawn
tangential to the sphere’s interior.

Fork=1 there is a range of parametek=1/3A? and
X>(9M?A)Y6, for which equation 61— X?—f=Ar?/3
+2M/r—X? has three real roots, out of which twq, and
ry>r,, are positive

ox 1 2m
ro’bzA—msm 3sin l(3MA1’2/X3)+n?

(2.14
n=0,1.

The third root,rs= —r,—r,, is then negative. According to
Eq. (2.12), the sphere aR=r, or R=r}, is momentarily at
rest.

For f(r)>0 [8], t is a timelike future-directed coordinate

and Eq.(2.8) implies »;=1. If, on the other hand,<r, or
r>r., so thatf(r)<O0 [assumingf(r) has positive roofis r
is timelike. If, in addition,— ¢, is future-directed9], it is
convenient to introduce the new notatidre —r <0 andy

=t, in which metric(2.3) takes on the time-dependent form

1
42— — adT2+gdy2+T2(d62+sin26d¢2),

(2.195

T—AT2 M 1>0
In=3T 5 170
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. J1—kX?
y= P

g (2.1

along they axis. The trajectory of the surface is given by

dy V1—kX?
dT  gJy1-kX?+g
3\321-kX?
—=] = (for T->—x),
A T3

~ (2.1

T 3/2
—yJ1-kX (m) (for T—>0)

For r<ry, the sphere’s surface therefore start§at—ry,
wheregoT—T,—0, at which pointy— —% andy—o, and
reaches some finitg=y; at T=0. Forr>r., the surface
travels from a finitey=y;, at T=—, to y=—o at
T=-r..

If, on the other hand, we place the contracting sphere to
the right of the vacuum sector given by metf2.15, n¥
<0 (and thusnp;=1), and the sphere’s surface will recede
toward increasing, y>0. If r is afuture-directed timelike
coordinate [10] (so that the notation change would be
T=r, y=t), the motion of the sphere is reversed: it expands,
R=T>0 and, if, e.g., placed on the lefty>0, it advances
to the right,y>0.

Ill. BOUNCING SPHERE

As discussed in the previous section, for1 we have
the range of parameterd] <1/3A Y2 andX>(9M?A)Y6, for
which a dust sphere contracting from large radii will bounce
atR=ry>r,, wherer is the larger of the two positive roots
of the equatiorf(r)=1—X? (see Fig. 1

The Penrose diagram for the complete spacetime is given
in Fig. 3. At large negative time (between the past null
infinity I~ and the past cosmological horizét, ) the dy-
namics are dominated by the cosmological constant and the
sphere contracts exponentiallRsexp(—/A/37). After the
sphere’s surface has crossed , it will reverse its motion at
R=Xa(r=0)=rand then expand toward the future cosmo-
logical horizon#_ , and ultimately the future null infinity

Metric (2.19 describes a 3-dimensional cylindrical spacelike| * |n contrast to an implosion in a static Schwarzschild
hypersurface of radiugT|, symmetric around itg-axis (see  background, the presence of a positive cosmological constant
Fig. 2. Forr<ry, this hypersurface contracts radially and is sufficient to halt and reverse the collapse in this case. Here
expands in the/-direction from zero size at the coordinate the presence of the dust does not alter in essence the familiar
singularity T=—ry,, to an infinite extent at the physical sin- bounce of the spherical spatial hypersurfaces near the
gularity T=0. Forr <r <o, it contracts in the radial direc- *“throat” of the de Sitter spacetimgl1].
tion and along itsy-axis until the coordinate singularity  The presence of a massive sphere, however, is not entirely
g(T)=0 is reached at tim&=—r.. without an effect on the global structure of the spacetime. In
The vacuum spacetime given by metf&15 may extend  the limit of vanishing mas#, the radial null ray that enters
to infinity in both directions along thg-axis. Alternatively, it the sphere at the exact moment when its surface crosses the
can be bounded on the Ig&o thatn points toward increas- fyture cosmological horizon?@)radius, R=r., will take
ing y, n=n'>0; see Fig. 2by the surface of an inevitably an infinite timer to reach the re-expanding sphere’s center
contracting spheréR=—T<0, and thusy,;=—1; see Eq. x=0. On the other hangsee the Appendjx for any finite
(2.9] that recedes leftward, massM >0, the null ray will reach the center infaite time,
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FIG. 4. Collapse to a black hole in the Schwarzschild-de Sitter
universe. The dust sphere’s surface emerges from the past singular-
ity through the past black-hole horizon, stops its expansion at point
WV, and then recollapses to a black hole. The Oppenheimer-
Snyder-de SitteOSdS collapse to a black hole starts from the
moment of time-symmetry. The bouncing spheXgs (9M2A)72,

I~ of massM on the right side is introduced for geodesic complete-
ness; it can be replaced by another re-collapsing sphere. The black-

FIG. 3. The Penrose diagram for the spacetime containing &0le horizon structure corresponds to regibnin the parameter
“bouncing” dust sphere. The bouncing dust sphere to the rightSpace of Fig. 6.

(identical to the one on the left sigés introduced for geodesic

completeness. zons: the future and past black hole horizons -at,,, and
o o the future?, and pastH, cosmological horizon at=r.
then proceed outward and reach some finitex; at infi- In this scenario the sphere always stays inside the cosmo-

nitely late times. In this case, the surfageno longer has the |ogical horizon atr.. If we follow the sphere’s implosion
significance of a cosmological horiz¢@?2] with respect to  from the moment of time-symmetry at maximum expansion
an observer ax=0. Ri=r, (¥ in Fig. 4), the motion is a straightforward gener-
The spacetime shown in Fig. 3 is geodesically completealization for a nonvanishing cosmological constanbf the
i.e., all geodesics extend to infinite values of their affinefamiliar Oppenheimer-Snyder collapse. The collapse is ho-
parameters in both directions. To achieve the completenesfiologous and the density remains homogeneous on
we have placed another dust sphere at the right of Fig. 2 ang= constant time slices. Qualitatively, the cosmological con-
Fig. 3. While the second sphere must have the same valuggant serves as a perturbation whose influence on the collapse
of M andA, we are free to choose for it any valueskpind  diminishes as the collapse progresses. We illustrate the initial
X;, independent of the choicésand X for the sphere at the braking effect ofA on the collapse in Fig. 5 for the indicated
left. Of the great variety of combinations of two dust
spheres, in this paper we will discuss only a few. The choice . .
we have made in Fig. 3 is symmetric, ile=k=1 andX,
=X. Since the centers of the spheres cross the null #4ys
or H . , the two spheres are in causal contgOther ways of
extending the spacetime to the right — with either massive
spheres or interiors of black holes — are discussed in the
next section|.

IV. COLLAPSING SPHERE

For the range of parameters discussed in the previous sec-
tion, M<1/3A? and X>(9M?A)¥6, one can follow the
motion of the sphere &<R;, whereR, is the smaller of the
two positive roots of the equatidifr) =1— X2. The sphere’s
surface springs out of the past singularityratO (see Fig. 0 1 2
4), then emerges through the past black hole horizgn, T/,’T(R.S/SM)I/Z
reverses its expansion R=R;, plunges through the future b
black hole horizor#, , and finally ends in the future singu-  FiG. 5. 0sds collapse to a black hole. Shown is the evolution
larity atr =0. As discussed in Sec. Il, the spacetime exterioiR(7) of the surface of a dust sphere starting from re®-a8M for
to the sphere, usually called the Schwarzschild-de Sittethe indicated values oA M?2. The solid dots mark the points at
(Sd9 spacetimd6], is characterized by two pairs of hori- which the spheres’ surfaces cross their black-hole horizons.
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FIG. 6. Regions in the parameter space that allow an observer to _
escape from the recollapsing sphere to infinity after receiving at I
=0 the first signal from the dust-free portion of the past naked FIG. 8. A static dust sphere in unstable equilibrium fér
singularity (I +11) or from the past null infinity(). :(gMZ'A)'lIG.

values ofAM?. We measure the sphere’s time in the units ofcompleted at the right by an infinite sequence of alternating
the proper timeT,_o=7(R*/8M)*? that a sphere would Schwarzschild-de Sitter exteriofsvith their characteristic
take to evolve from the static point &=R; all the way to  cosmological horizons and spacelike null infinilieand

the final singularity in the case of a vanishing black-hole interiorgbounded in the past and future by black-
In the left portion of Fig. 4, the past black hole horizon hole singularities
H,, reaches the center of the sphere 0O after the future For the special valu¥=(9M?A ) the sphere can hover

black hole horizon, has emerged from the origin. This in a state of unstable equilibrium at the maximum of the
configuration of the black-hole horizons would, e.g., make iteffective potential aR=r,. The Penrose diagram contain-
impossible for an observer at=0 to take off in the radial INg such a sphere is shown in Fig. 8.
direction and escape from the black hole after receiving the Finally, for M <1/3A 2 but X< (9M?2A)", a sphere con-
earliest possible signal from the past null infinity. As we  tracting fromR=c at 7=—c will pass through?, and
discuss in the Appendix, this is the case for the seidton  then form a black hole. Figure 9 contains the corresponding
the plane of parameted$ and (9AM?)® shown in Fig. 6.  Penrose diagram. Notice that at early times the spacetime
For the values of the parameters from sedtaf Fig. 6,  structure is similar to the early-time portion of the bouncing
on the other hand, the arrival 6§, atx=0 precedes the case(see Fig. 3 while the late-time evolution is akin to that
departure ofH, . This case is shown in Fig. 7. of Fig. 4.
For any values oM andA (including A =0) that allow a
recollapse(or the OSdS implosion from réstM < 1/3A 1, V. GLOBAL COLLAPSE
the earliest null ray emitted from the portion of the past
naked singularity not covered by dysee Figs. 4 and)will
reach the sphere’s center before the emergendd;ofsee
the Appendix. This will allow an alert observer at=0 to
avoid the future black-hole singularity if he heeds the warn-

If M>1/3AY2 f(r) is negative everywhere and there is
no static(i.e., with a time-like Killing vectoy portion of the

ing coming from the visibldassuming light can get through
any finite-density regionsector of the initial singularity.
Instead of another sphere shown in Figs. 3 and 4, Fig. 7 is
r=0 I r=0
x=0
X=X\\_ ¥
A
r=0 I r=0

FIG. 7. A recollapsing sphereompare Fig. for parameters
from region| of Fig. 6. Instead of another sphere to the right, the  FIG. 9. Collapse into a black hole fot<(9M2A)Y6. The dust
spacetime is closed off with an infinite series of alternatingsphere’s surface contracts through the past “cosmological horizon”
Schwarzschild-de Sitter exteriors and black-hole interiors. 'H. , and then collapses to a black hole.
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contracting from large radii to avoid a collapse and rebound
en route to an exponential expansion at late times. In contrast
to the previous case, the bouncing sphere’s evolution is
\ dominated by the cosmological constant, with the matter
playing the role of perturbation.
For all values of the parameters outside the above range,
FL SdS FL an initially contracting sphere will not be able to avoid being
infinitely squeezed in the final singularity. The fate of the
exterior spacetime depends, however, on the mass of the
spherd 14]: for M <1/3A*?, the sphere forms its own black
hole within its horizon, allowing the exterior space to expand
exponentially at late times. Fod >1/3A Y2, the sphere drags
FIG. 10. Collapse into a globdtosmological singularity for ~ the entire spacetime into a “big crunch™ the exterior con-
M>1/3A %2 tracts on its way to the familiar de Sitter-like “throat’see,
e.g.,[11]) but cannot escape out of it due to the overwhelm-
pull of the sphere’s gravity.

/

I-

spacetime. The entire spacetime is analogous to the familidP9
vacuum Schwarzschild solution inside the event horizon,

where the spacetime is dynamic and the radial and time co- ACKNOWLEDGMENTS
ordinates reverse rolgsee the last three paragraphs of Sec.

[1]. Metric (2.15 describes a cylindrical spacelike hypersur- . ; : .

face that shrinksgif the timelike coordinatéelf=—r is future g\';?rugzlolgzzzh:’n\évgﬁy %z%;g;;g%m%g;bég‘ig?\lr;lgts
directed in the radial T>0) direction and expands along its 5.7152 and NAG 5-8418 at the University of Illinois at
y-axis (y=t) as the singularity af =0 is approached. Atthe yrpana-Champaign.

left edge of this vacuum spacetinigee Fig. 10 the surface
of the collapsing sphere recedes leftward along y#axis,
according to Eq(2.16.

Since the integraldy=—[°_.dT/g(T) is finite, a null
ray travels only a finite differencAy [see Eq(2.17)] in the
spacetime outside the sphere over the entire evolution from 1. Bouncing sphere
the past null infinity, T=—o0, to the singularity afT=0.

This allows us to to place another identical collapsing spher%u
(needed for geodesic completenessceding to the right&(
>0) of the first one(see Fig. 10 so that the two spheres
either have causal contathe specific case of Fig. 10r are

We wish to thank Dr. Thomas Baumgarte for stimulating

APPENDIX: EXTENSION OF THE COSMOLOGICAL
AND BLACK HOLE HORIZONS INSIDE
THE DUST SPHERE

Solving Eq.(2.1) for future- and inward-directed radial
Il rays alongH. and integrating from the poinR=r) at
which the re-expanding dust sphere’s surface crogggs
(see Fig. 3, we obtain

causally disconnected. In either case, the entire spacetime 0 —dx xi dx
ends in a global cosmological singularity. sin” X+ sin" x= +

For k=0 or k=—1, the static, momentarily static, and Xyl=x2 Jo Jy1-x
bouncing solutions described above do not exist. Depending . g
on whetheiM < 1/3A*2[13] or not, we have, respectively, a :Ang _fi
black hole formation shown in Fig. 9 or a “big crunch” re/Xaa
shown in Fig. 10.

. »dz 1
VI. SUMMARY 1\z (1-p+pZ-X*2)"?
In this paper we have investigated the influence of a finite =F(X,p), (A1)

cosmological constant on the evolution of a homogeneous ) _

sphere made of pressureless matter. In additio tahe ~ Wherep=Arg/3=1-2M/rg, z=R/r, andx; is the outer-
evolution is determined by the malkof the sphere and the Most point inside the dust sphere that can be reached by the
comoving extentX, of the sphere interior's sphericak ( null ray after it started ax=X and then passed through the
=1), flat (k=0), or hyperbolic k= —1) slices of homoge- centerx=0. In Eqg.(Al) we have introduced the conformal
neity. time {(7) of the FRW metric.

A straightforward generalization of the familiar ~ In the limit of vanishing massp(M=0)=1, F(X,1)
Oppenheimer-Snyder collapse from rest is possible only for sin”*X, and thus;=0. This is the familiar structure of the
M<1/3AY2 k=1, andX>(9M2A)Y8 In this case, the cos- de Sitter spacetiml2]. For M>0, however,x;>0, and
mological constant can slow down the collapse initially, butthus the center of the sphepes 0, will cross?, at a finite
at later times the sphere’s self-gravity dominates entirely angiroper timer. (as shown in Fig. 8
eventually pulls the sphere into the final singularity. This can be shown as follows. For any giveh,

The same range of parameters allows, however, a sphefér./dM),=2/(1—-3p). Sincep has the minimum valug
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=1/3 for M=1/3A"? (r;=3M=1/A"? £ .=0),
(9r./dM) <0, and thus {p/IM) , will always be negative.
It then follows @F/dM)x= (dF/ap)x(dp/dM),>0. Hence,
for any M>0, F[X,p(M)]>F[X,p(M=0)]=sin"*X and
thusx;>0. The surface =r, therefore, loses foM >0 the
significance of an event horizowith respect to the world
line x=0) that it has aM =0.

2. Collapsing sphere

We now turn to the configuration of the past/{) and
the future (4, ) black hole horizons. Measuring the confor-
mal time of the FRW metric from the initial singularity

RIXda
§(R)Efo £
X R dR
=3y/3—=M — ,
fﬁ fo|R(ro—R><rb—R><r3—R)ll’2

(A2)

wherex=9AM?, and again solving Eq2.1) along the past
black-hole event horizon, we find the value

Lo={(ry)+sin X, (A3)
of the conformal time when the past black-hole horiz@p
reaches the center of the sphésee Fig. 4. Notice that the
conformal time depends only o and AM? in addition to
the current value oR.

PHYSICAL REVIEW D 61 084029

Since the sphere’s evolution is time-symmetric around the
point of reversal ,, the conformal time that elapses between
the initial and past singularities is{2r ). Hence, the future
black hole horizort4, emerges frox=0 at the conformal
time

{1 =24(ro) = {(ry—sin”*X. (A4)
If the past horizon is to reach the sphere’s center before the
emergence of the future horizon, we must therefore have

L(ro)>¢(rp) +sin X, (A5)

the condition satisfied by all points in regiorof the param-
eter space of Fig. 6 and by the specific case shown in the
Penrose diagram of Fig. 7. If, on the other hand, we require
that the null ray, emanating from the boundary between the
sphere and the dust-free portion of the past singularity, gets
at {=sin X to the sphere’s center before the emergence of
H, , the following inequality needs to hold:

1 —
g(ro)—ig(rh)>sm X. (AB)

It turns out that conditior{A6) is satisfied for all values of

the parameters that allow a recollapse or an OSdS implosion.
In the case of a vanishing cosmological constdift,,)

—{(ry)=m—2sin X and the conditior(A5) is satisfied if

X< /3/2. At the same time;(r ) — 3£(rp) = w—sin X, and

the inequality(A6) holds if X<1, which is satisfied by all
recollapsing spheres.

[1] A. G. Riesset al,, Astron. J.116, 1009(1998.

[2] S. Perlmutteret al,, Astrophys. J517, 565(1999.

[3] I. Zehavi and A. Dekel, Naturé_ondon 401, 252 (1999.
[4] J. R. Oppenheimer and H. Snyder, Phys. Rs$;.455(1939.

[5] J. Morrow-Jones, Ph.D. thesis, University of California, Santa[13] The

Barbara, 1988.
[6] F. Kottler, Ann. Phys(Leipzig) 56, 410(1918.
[7] W. Israel, Nuovo Cimento B4B, 1 (1966.
[8] Vacuum regiorE in Fig. 4.
[9] Vacuum region®A andD in Fig. 4.
[10] Vacuum regiond8 andC in Fig. 4.
[11] E. Schralinger, Expanding Universes(Oxford University

Press, Oxford, England, 1956

[12] S. W. Hawking and G. F. R. EllisThe Large Scale Structure
of Space-TiméCambridge University Press, Cambridge, En-
gland, 1973

critical mass  satisfies Mg=1/3AY>=1.8
X 1072M o (H o/65km/sec/Mpc) *Q , 2, where recent Type la
supernovae measurements gmg:/\/?,Hé of order, but just
below, unity[1,2]. HereH, is Hubble's constant.

[14] A related analysis using a different approach and focusing on
the exterior spacetime in the context of the cosmic “no hair”
conjecture has been provided by K. Nakao, Gen. Relativ.
Gravit. 24, 1069(1992.

084029-7



