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General definition of ‘‘conserved quantities’’ in general relativity and other theories of gravity
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Enrico Fermi Institute and Department of Physics, University of Chicago, 5640 S. Ellis Avenue, Chicago, Illinois 60637-143

~Received 24 November 1999; published 28 March 2000!

In general relativity, the notion of mass and other conserved quantities at spatial infinity can be defined in a
natural way via the Hamiltonian framework: Each conserved quantity is associated with an asymptotic sym-
metry and the value of the conserved quantity is defined to be the value of the Hamiltonian which generates the
canonical transformation on phase space corresponding to this symmetry. However, such an approach cannot
be employed to define ‘‘conserved quantities’’ in a situation where symplectic current can be radiated away
~such as occurs at null infinity in general relativity! because there does not, in general, exist a Hamiltonian
which generates the given asymptotic symmetry.~This fact is closely related to the fact that the desired
‘‘conserved quantities’’ are not, in general, conserved.! In this paper we give a prescription for defining
‘‘conserved quantities’’ by proposing a modification of the equation that must be satisfied by a Hamiltonian.
Our prescription is a very general one, and is applicable to a very general class of asymptotic conditions in
arbitrary diffeomorphism covariant theories of gravity derivable from a Lagrangian, although we have not
investigated existence and uniqueness issues in the most general contexts. In the case of general relativity with
the standard asymptotic conditions at null infinity, our prescription agrees with the one proposed by Dray and
Streubel from entirely different considerations.

PACS number~s!: 04.20.Fy, 04.20.Cv, 04.20.Ha
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I. INTRODUCTION

Notions of energy and angular momentum have playe
key role in analyzing the behavior of physical theories. F
theories of fields in a fixed, background spacetime, a loc
conserved stress-energy-momentum tensor,Tab , normally
can be defined. If the background spacetime has a Kil
field ka, thenJa5Ta

bkb is a locally conserved current. IfS
is a Cauchy surface, thenq5*SJadSa defines a conserve
quantity associated withka; if S is a timelike or null surface,
then*SJadSa has the interpretion of the flux of this quanti
throughS.

However, in diffeomorphism covariant theories such
general relativity, there is no notion of the local stress-ene
tensor of the gravitational field, so conserved quantit
~which clearly must include gravitational contributions! and
their fluxes cannot be defined by the above procedures, e
when Killing fields are present. Nevertheless, in general r
tivity, for asymptotically flat spacetimes, conserved quan
ties associated with asymptotic symmetries have been
fined at spatial and null infinity.

A definition of mass-energy and radiated energy at n
infinity, I, was first given about 40 years ago by Trautm
@1# and Bondiet al. @2#. This definition was arrived at via a
detailed study of the asymptotic behavior of the metric, a
the main justification advanced for this definition has been
agreement with other notions of mass in some simple ca
as well as the fact that the radiated energy is always pos
~see, e.g.,@3,4# for further discussion of the justification fo
this definition!. A number of inequivalent definitions o
quantities associated with general Bondi-Matzner-Sa
~BMS! asymptotic symmetries at null infinity have been pr
posed over the years, but it was not until the mid 1980s
Dray and Streubel@5# gave a general definition that appea
to have fully satisfactory properties@6#. This definition gen-
0556-2821/2000/61~8!/084027~16!/$15.00 61 0840
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eralized a definition of angular momentum given by Penr
@7# that was motivated by twistor theory.

In much of the body of work on defining ‘‘conserve
quantities’’ at null infinity, little contact has been made wi
the Hamiltonian formulation of general relativity. An impo
tant exception is the work of Ashtekar and Streubel@8# ~see
also@9#!, who noted that BMS transformations correspond
canonical transformations on the radiative phase space aI.
They identified the Hamiltonian generating these canon
transformations as representing the net flux of the ‘‘co
served quantity’’ throughI. They then also obtained a loca
flux formula under some additional assumptions not rela
to the canonical framework~in particular, by their choice of
topology they, in effect, imposed the condition that the lo
flux formula contain no ‘‘second derivative terms’’!. How-
ever, they did not attempt to derive a local expression for
‘‘conserved quantity’’ itself within the Hamiltonian frame
work, and, indeed, until the work of@5# and @6#, it was far
from clear that, for arbitrary BMS generators, their flux fo
mula corresponded to a quantity that could be locally defin
on cross sections ofI.

The status of the definition of ‘‘conserved quantities’’
null infinity contrasts sharply with the situation at spat
infinity, where formulas for conserved quantities have be
derived in a clear and straightforward manner from t
Hamiltonian formulation of general relativity@10,11#. As
will be reviewed in Secs. II and III below, for a diffeomor
phism covariant theory derived from a Lagrangian, if one
given a spacelike sliceS and a vector fieldja representing
‘‘time evolution,’’ then the Hamiltonian generating this tim
evolution—if it exists—must be purely a ‘‘surface term
when evaluated on solutions~i.e., ‘‘on shell’’!. It can be
shown that ifS extends to spatial infinity in a suitable man
ner and ifja is a suitable infinitesimal asymptotic symmetr
then a Hamiltonian does exist~see ‘‘case I’’ of Sec. IV be-
©2000 The American Physical Society27-1
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low!. The value of this Hamiltonian ‘‘on shell’’ then can b
interpreted as being the conserved quantity conjugate toja.
One thereby directly obtains formulas for the Arnowi
Deser-Misner~ADM ! mass, momentum, and angular m
mentum as limits as one approaches spatial infinity of s
face integrals over two-spheres.

It might seem natural to try a similar approach at n
infinity: Let S be a spacelike slice which is asymptotica
null in the sense that in the unphysical spacetime its bou
ary is a cross section,C, of I. Let the vector fieldja be an
infinitesimal BMS asymptotic symmetry. Then, when eva
ated on solutions, the Hamiltonian generating this ti
evolution—if it exists—must again be purely a ‘‘surfac
term’’ on S; i.e., it must be expressible as an integral o
local expression over the cross sectionC. This expression
would then provide a natural candidate for the value of
‘‘conserved quantity’’ conjugate toja at ‘‘time’’ C.

As we shall see in Sec. III below, the above propo
works if ja is everywhere tangent toC. However, ifja fails
to be everywhere tangent toC, then it is easy to show that n
Hamiltonian generating the time evolution exists. The o
struction to defining a Hamiltonian arises directly from t
possibility that symplectic current can escape throughC.

The main purpose of this paper is to propose a gen
prescription for defining ‘‘conserved quantities’’ in situa
tions where a Hamiltonian does not exist. This proposal c
sists of modifying the equation that a Hamiltonian must s
isfy via the addition of a ‘‘correction term’’ involving a
symplectic potential that is required to vanish whenever
background spacetime is stationary. If such a symplectic
tential exists and is unique—and if a suitable ‘‘reference
lution’’ can be chosen to fix the arbitrary constant in t
definition of the ‘‘conserved quantity’’—we obtain a uniqu
prescription for defining a ‘‘conserved quantity’’ associat
with any infinitesimal asymptotic symmetry. In the case
asymptotically flat spacetimes at null infinity in vacuum ge
eral relativity, we show in Sec. V that existence and uniq
ness do hold, and that this prescription yields the quanti
previously obtained in@5#.

In Sec. II, we review some preliminary material on t
diffeomorphism covariant theories derived from a Lagran
ian. In Sec. III, we investigate the conditions under which
Hamiltonian exists. In Sec. IV, we present, in a very gene
setting, our general proposal for the definition of ‘‘conserv
quantities’’ associated with infinitesimal asymptotic symm
tries. This general proposal is then considered in the cas
asymptotically flat spacetimes at null infinity in general re
tivity in Sec. V, where it is shown to yield the results of@5#.
Some further applications are briefly discussed in Sec. V

II. PRELIMINARIES

In this paper, we will follow closely both the conceptu
framework and the notational conventions of@12# and @13#.
Further details of most of what is discussed in this sect
can be found in those references.

On ann-dimensional manifold,M, we consider a theory
of dynamical fields, collectively denotedf, which consist of
a Lorentzian metric,gab , together with other tensor fields
08402
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collectively denoted asc. To proceed, we must define
space,F, of ‘‘kinematically allowed’’ field configurations,
f5(gab ,c) on M. A precise definition ofF would involve
the specification of smoothness properties off, as well as
possible additional restrictions ongab ~such as global hyper
bolicity or the requirement that a given foliation ofM by
hypersurfaces be spacelike! and asymptotic conditions onf
~such as the usual asymptotic flatness conditions on field
spatial and/or null infinity in general relativity!. The precise
choice ofF that would be most suitable for one’s purpos
would depend upon the specific theory and issues being
sidered. In this section and the next section, we will mer
assume that a suitableF has been defined in such a way th
the integrals occurring in the various formulas below co
verge. In Sec. IV, we will impose a general set of conditio
onF that will ensure convergence of all relevant integrals.
Sec. V, we will verify that asymptotically flat spacetimes
null infinity in vacuum general relativity satisfy these cond
tions.

We assume that the equations of motion of the the
arise from a diffeomorphism covariantn-form Lagrangian
density@13#

L5L ~gab ;Rabcd,¹aRbcde, . . . ;c,¹ac, . . . ! ~1!

where ¹a denotes the derivative operator associated w
gab , and Rabcd denotes the Riemann curvature tensor
gab . @An arbitrary~but finite! number of derivatives ofRabcd
andc are permitted to appear inL .# Here and below we use
boldface letters to denote differential forms on spaceti
and, when we do so, we will suppress the spacetime ind
of these forms. Variation ofL yields

dL5E~f!df1du~f,df! ~2!

where no derivatives ofdf appear in the first term on th
right side. The Euler-Lagrange equations of motion of t
theory are then simplyE50. Note that—when the variation
is performed under an integral sign—the termu corresponds
to the boundary term that arises from the integrations
parts needed to remove derivatives fromdf. We require that
u be locally constructed out off and df in a covariant
manner. This restricts the freedom in the choice ofu to1

u→u1dY ~3!

whereY is locally constructed out off anddf in a covari-
ant manner.

The presymplectic current (n21)-form, v—which is a
local function of a field configuration,f, and two linearized
perturbations,d1f andd2f off of f—is obtained by taking
an antisymmetrized variation ofu:

1If we change the Lagrangian byL→L1dK , the equations of
motion are unaffected. Under such a change in the Lagrangian
haveu→u1dK . Thus, if such changes in the Lagrangian are a
mitted, we will have this additional ambiguity inu. However, this
ambiguity does not affect the definition of the presymplectic curr
form @see Eq.~4! below# and will not affect our analysis.
7-2
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v~f,d1f,d2f!5d1u~f,d2f!2d2u~f,d1f!. ~4!

On account of the ambiguity~3! in the choice ofu, we have
the ambiguity

v→v1d@d1Y~f,d2f!2d2Y~f,d1f!# ~5!

in the choice ofv.
Now let S be a closed, embedded (n21)-dimensional

submanifold without boundary; we will refer toS as aslice.
The presymplectic form,VS , associated withS is a map
taking field configurations,f, together with a pair of linear-
ized perturbations off off, into the real numbers—i.e., it i
a two-form onF—defined by integrating2 v over S:

VS~f,d1f,d2f!5E
S

v. ~6!

Although this definition depends, in general, upon the cho
of S, if d1f and d2f satisfy the linearized field equation
andS is required to be a Cauchy surface, thenVS does not
depend upon the choice ofS, provided thatS is compact or
suitable asymptotic conditions are imposed on the dynam
fields@12#. The ambiguity~5! in the choice ofv gives rise to
the ambiguity

VS~f,d1f,d2f!→VS~f,d1f,d2f!

1E
]S

@d1Y~f,d2f!2d2Y~f,d1f!#

~7!

in the presymplectic formVS . In this equation, by the inte
gral over]S, we mean a limiting process in which the int
gral is first taken over the boundary,]K, of a compact re-
gion, K, of S ~so that Stokes’ theorem can be applied3!, and
then K approaches all ofS in a suitably specified manne
~Note that sinceS is a slice, by definition it does not have a
actual boundary in the spacetime.! Thus, for example, ifS is
an asymptotically flat spacelike slice in an asymptotically
spacetime, the integral on the right side of Eq.~7! would
correspond to the integral over a two-sphere onS in the
asymptotically flat region in the limit as the radius of th
two-sphere approaches infinity. Of course, the right side
Eq. ~7! will be well defined only if this limit exists and is
independent of any of the unspecified details of how
compact region,K, approachesS. In Sec. IV below, we will
make some additional assumptions that will ensure that i
grals over ‘‘]S ’’ of certain quantities that we will conside
are well defined.

2If S is spacelike, the orientation ofS relative to the spacetime
orientationea1 . . . an

is chosen to beva1ea1 . . . an
whereva is a future-

directed timelike vector.
3We choose the orientation of]K to be the one specified b

Stokes’ theorem; i.e., we dot the first index of the orientation fo
on K into an outward pointing vector.
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Given the presymplectic form,VS , we can factorF by
the orbits of the degeneracy subspaces ofVS to construct a
phase space,G, in the manner described in@12#. This phase
space acquires directly from the presymplectic formVS on
F a nondegenerate symplectic form,V. One also obtains by
this construction a natural projection fromF to G. Now, a
complete vector fieldja on M naturally induces the field
variationLjf on fieldsfPF. If ja is such thatLjf corre-
sponds to a tangent field onF ~i.e., if the diffeomorphisms
generated byja mapF into itself!, then we may viewdjf
5Ljf as the dynamical evolution vector field correspondi
to the notion of ‘‘time translations’’ defined byja. If, when
restricted to the solution submanifold,4 F̄, of F, this time
evolution vector field onF consistently projects to phas
space, then one has a notion of time evolution associa
with ja on the ‘‘constraint submanifold,’’Ḡ, of G, whereḠ

is defined to be the image ofF̄ under the projection ofF to
G. If this time evolution vector field onḠ preserves the
pullback toḠ of V, it will be generated by a Hamiltonian
Hj @12#. ~As argued in the Appendix of@12#, this will be the
case whenS is compact; see Sec. III below for some gene
results in the noncompact case.! Thus, this construction pro
vides us with the notion of a Hamiltonian,Hj , conjugate to
a vector fieldja on M.

However, a number of complications arise in the abo
construction. In particular, in order to obtain a consiste
projection ofLjf from F̄ to Ḡ, it is necessary to chooseja

to be ‘‘field dependent,’’ i.e., to depend uponf. As ex-
plained in @12#, this fact accounts for why, in a diffeomor
phism covariant theory, the Poisson bracket algebra of c
straints does not naturally correspond to the Lie algebra
infinitesimal diffeomorphisms. However, these complic
tions are not relevant to our present concerns. To avoid d
ing with them, we prefer to work on the original field con
figuration spaceF with its ~degenerate! presymplectic form,
VS , rather than on the phase space,G. The notion of a
Hamiltonian,Hj , on F can be defined as follows:

Definition. Consider a diffeomorphism covariant theo
within the above framework, with field configuration spa
F and solution submanifoldF̄. Let ja be a vector field on the
spacetime manifold,M, let S be a slice ofM, and letVS

denote the presymplectic form~6!. „If the ambiguity ~5! in
the choice ofv gives rise to an ambiguity inVS @see Eq.
~7!#, then we assume that a particular choice ofVS has been
made.… Suppose thatF, ja, andS have been chosen so th
the integral*Sv(f,df,Ljf) converges for allfPF̄ and all
tangent vectorsdf to F̄ at f. Then a functionHj :F→R is
said to be aHamiltonian conjugate toja on sliceS if for all
fPF̄ and all field variationsdf tangent toF ~but not nec-
essarily tangent toF̄) we have

dHj5VS~f,df,Ljf!5E
S

v~f,df,Ljf!. ~8!

4The solution submanifold,F̄, is sometimes referred to as th
‘‘covariant phase space’’@9#.
7-3
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Note that if a Hamiltonian conjugate toja on slice S

exists, then—assuming thatF̄ is connected—its value onF̄
is uniquely determined by Eq.~8! up to the addition of an
arbitrary constant. In many situations, this constant can
fixed in a natural way by requiringHj to vanish for a natura
reference solution, such as Minkowski spacetime. On
other hand, the value ofHj off of F̄ is essentially arbitrary,
since Eq.~8! fixes only the ‘‘field space gradient’’ ofHj in
directions off ofF̄ at points ofF̄.

If a Hamiltonian conjugate toja on sliceS exists, then its
value provides a natural definition of a conserved quan
associated withja at ‘‘time’’ S. However, in many cases o
interest—such as occurs in general relativity when, say,ja is
an asymptotic time translation and the sliceS goes to null
infinity—no Hamiltonian exists. In the next section, we sh
analyze the conditions under which a Hamiltonian exists
Sec. IV, we shall propose a definition of the ‘‘conserv
quantity’’ conjugate toja on a sliceS when no Hamiltonian
exists.

III. EXISTENCE OF A HAMILTONIAN

When does a Hamiltonian conjugate toja on sliceS ex-
ist? To analyze this issue, it is very useful to introduce
Noether current (n21)-form associated withja, defined by

j5u~f,Ljf!2j•L ~9!

where the ‘‘• ’’ denotes the contraction of the vector fieldja

into the first index of the differential formL . One can show
~see the Appendix of@14#! that for a diffeomorphism cova
riant theory,j always can be written in the form

j5dQ1jaCa , ~10!

where Ca50 when the equations of motion hold; i.e.,Ca
corresponds to ‘‘constraints’’ of the theory. Equation~10!
defines the Noether charge (n22)-form, Q. It was shown in
@13# that the Noether charge always takes the form

Q5Xab~f!¹ [ajb]1Ua~f!ja1V~f,Ljf!1dZ~f,j!.
~11!

From Eqs.~2!, ~4!, and~9!, it follows immediately that for
fPF̄ but df arbitrary~i.e., df tangent toF but not neces-
sarily tangent toF̄), the variation ofj satisfies

d j5v~f,df,Ljf!1d~j•u!. ~12!

Thus, we obtain

v~f,df,Ljf!5jadCa1d~dQ!2d~j•u!. ~13!

Consequently, if there exists a Hamiltonian,Hj , conjugate
to ja on S, then for allfPF̄ and alldf it must satisfy the
equation

dHj5E
S
jadCa1E

]S
@dQ2j•u# ~14!
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where the integral over]S has the meaning explained belo
Eq. ~7!. Note that for field variations which are ‘‘on shell,’
i.e., such thatdf satisfies the linearized equations of motio
we have

dHj5E
]S

@dQ2j•u#. ~15!

Consequently, ifHj exists, it is given purely as a ‘‘surfac
term’’ ~i.e., an integral over]S) when evaluated onF̄.

Equation~14! gives rise to an obvious necessary conditi
for the existence ofHj : Let fPF̄ ~i.e.,f is a solution to the
field equations! and letd1f and d2f be tangent toF̄ ~i.e.,
d1f and d2f satisfy the linearized field equations!. Let
f(l1 ,l2) be a two-parameter family withf(0,0)5f,
]f/]l1(0,0)5d1f, and ]f/]l2(0,0)5d2f. Then, if Eq.
~14! holds, by equality of mixed partial derivatives, we mu
have

05~d1d22d2d1!Hj

52E
]S

j•@d1u~f,d2f!2d2u~f,d1f!#

52E
]S

j•v~f,d1f,d2f!. ~16!

Conversely, if Eq.~16! holds, then—assuming thatF̄ is sim-
ply connected~and has suitable differentiable properties!—it
will be possible to defineHj on F̄ so that Eq.~14! holds
wheneverdf is tangent toF̄.

To show this, on each connected component ofF̄ choose
a ‘‘reference solution’’f0PF̄ and defineHj50 at f0. Let
fPF̄ and letf(l) for lP@0,1# be a smooth, one-paramete
family of solutions that connectsf0 to f. Define

Hj@f#5E
0

1

dlE
]S

@dQ~l!2j•u~l!#. ~17!

This definition will be independent of the choice of pa
f(l) when Eq.~16! holds since, by simple connectednes
any other pathf8(l) will be homotopic tof(l) and one
can apply Stokes’ theorem to the two-dimensional subma
fold spanned by this homotopy. This definesHj on F̄. How-
ever, ifHj is defined onF̄, there is no obstruction to extend
ing Hj to F so that Eq.~14! holds onF̄ for all df tangent to
F ~i.e., includingdf that are not tangent toF̄), since the
additional content of that equation merely fixes the first d
rivative of Hj in the ‘‘off shell’’ directions of field space.

Therefore, the necessary and sufficient condition for
existence of a Hamiltonian conjugate toja on S is that for
all solutions fPF̄ and all pairs of linearized solution
d1f,d2f tangent toF̄, we have

E
]S

j•v~f,d1f,d2f!50. ~18!
7-4
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Note that since this condition refers only to the ‘‘covaria
phase space’’F̄, we shall in the following restrict attention
to entirelyF̄ and use Eq.~15! for Hj @even though the ‘‘off
shell’’ volume integral in Eq.~14! is crucial to justifying the
interpretation ofHj as the generator of dynamics conjuga
to ja].

Note that there are two situations where Eq.~18! will
automatically hold:~i! if the asymptotic conditions onf are
such thatv(f,d1f,d2f) goes to zero sufficiently rapidly
that the integral ofj•v over ]K vanishes in the limit asK
approachesS; ~ii ! if ja is such thatK can always be chose
so thatja is tangent to]K, since then the pullback ofj•v to
]K vanishes. In two these cases, a Hamiltonian conjugat
ja will exist on S. However, if these conditions do not hold
then in general no Hamiltonian will exist.

We turn, now, to giving a general prescription for defi
ing ‘‘conserved quantities,’’ even when no Hamiltonian e
ists.

IV. GENERAL DEFINITION
OF ‘‘CONSERVED QUANTITIES’’

In this section, we will propose a definition of conserv
quantities under very general assumptions about asymp
conditions ‘‘at infinity.’’ We begin by specifying these as
sumptions.

We shall assume that the desired asymptotic condition
the given diffeomorphism covariant theory under consid
ation are specified by attaching a boundary,B, to the space-
time manifold,M, and requiring certain limiting behavior o
the dynamical fields,f, as one approachesB. We shall as-
sume thatB is an (n21)-dimensional manifold, so tha
MøB is ann-dimensional manifold with boundary.5 In cases
of interest,MøB will be equipped with additional nondy
namical structure~such as a conformal factor onMøB or
certain tensor fields onB) that will enter into the specifica
tion of the limiting behavior off and thereby be part of th
specification of the field configuration space,F, and the co-
variant phase space,F̄. We will refer to such fixed, non-
dynamical structure as the ‘‘universal background structu
of MøB.

We now state our two main assumptions concerning
asymptotic conditions on the dynamical fields,f, and the
asymptotic behavior of the allowed hypersurfaces,S: ~1! We
assume thatF has been defined so that for allfPF̄ and for
all d1f,d2f tangent toF̄, the (n21)-form v(f,d1f,d2f)
defined onM extends continuously6 to B. ~2! We restrict
consideration to slices,S, in the ‘‘physical spacetime,’’M,

5The assumption thatB is an (n21)-dimensional manifold struc
ture is not essential in cases wherev vanishes atB ~see ‘‘case I’’
below!. In particular, there should be no difficulty in extending o
framework to definitions of asymptotic flatness at spatial infinity
which B is comprised by a single point@15#.

6It should be emphasized that we require that the fullv extend
continuously toB—not merely its pullback to hypersurfaces th
approachB.
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which extend smoothly toB in the ‘‘unphysical spacetime,’’
MøB, such that this extended hypersurface intersectsB in a
smooth (n22)-dimensional submanifold, denoted]S. Fol-
lowing terminology commonly used for null infinity, we
shall refer to]S as a ‘‘cross section’’ ofB. We also shall
assume thatSø]S is compact—although it would be
straightforward to weaken this assumption considerab
since only the behavior ofS nearB is relevant to our con-
siderations.

An important immediate consequence of the above t
assumptions is that the integral~6! definingVS always con-
verges, since it can be expressed as the integral of a con
ous (n21)-form over the compact (n21)-dimensional hy-
persurfaceSø]S.

We turn, now, to the definition of infinitesimal asymptot
symmetries. Letja be a complete vector field onMøB ~so
that, in particular,ja is tangent toB on B). We say thatja is
a representative of an infinitesimal asymptotic symmetryif
its associated one-parameter group of diffeomorphisms m
F̄ into F̄, i.e., if it preserves the asymptotic conditions spe
fied in the definition ofF̄. Equivalently,ja is a representa-
tive of an infinitesimal asymptotic symmetry ifLjf ~which
automatically satisfies the linearized field equations@12#! sat-
isfies all of the asymptotic conditions on linearized solutio
arising from the asymptotic conditions imposed uponf

PF̄, i.e., if Ljf corresponds to a vector tangent toF̄.
If ja is a representative of an infinitesimal asympto

symmetry, then the integral appearing on the right side
Eq. ~15!, namely

I 5E
]S

@dQ2j•u#, ~19!

always is well defined via the limiting procedure describ
below Eq.~7!, and, indeed,I depends only on the cross se
tion ]S of B, not on S. To see this,7 let Ki be a nested
sequence of compact subsets ofS such that]Ki approaches
]S, and let

I i5E
]Ki

@dQ2j•u#. ~20!

Then, since ‘‘on shell’’ we have

v~f,df,Ljf!5d@dQ2j•u# ~21!

@see Eq.~13! above#, we have, by Stokes’ theorem fori
> j ,

I i2I j5E
S i j

d@dQ2j•u#5E
S i j

v~f,df,Ljf! ~22!

where S i j denotesKi \K j , i.e., the portion ofS lying be-
tween]Ki and]K j . As a direct consequence of our assum

7A similar argument has previously been given to show that
‘‘linkage formulas’’ are well defined~see@16,17#!.
7-5
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tions thatv extends continuously toB and thatSø]S is
compact, it follows that$I i% is a Cauchy sequence, and hen
it has a well-defined limit,I, as i→`. Note that this limit
always exists despite the fact that there is no guarantee
the differential formsQ or u themselves extend continuous
to B. A similar argument establishes that this limit is ind
pendent ofS; i.e., for a sliceS̃ such that]S̃5]S, a simi-
larly defined sequence$ Ĩ i% of integrals onS̃ will also con-
verge toI.

Let ja and j8a be representatives of infinitesima
asymptotic symmetries. We say thatja is equivalentto j8a if
they coincide onB and if, for all fPF̄, df tangent toF̄,
and for all]S on B, we haveI 5I 8, whereI is given by Eq.
~19! andI 8 is given by the same expression withja replaced
by j8a. The infinitesimal asymptotic symmetriesof the
theory are then comprised by the equivalence classes o
representatives of the infinitesimal asymptotic symmetrie

Now consider an infinitesimal asymptotic symmetry, re
resented by the vector fieldja, and letS be a slice in the
spacetime with boundary]S on B. We would like to define
a conserved quantityHj :F̄→R associated withja at ‘‘time’’
S via Eq. ~15!. As we have seen above, the right side of E
~15! is well defined under our asymptotic assumptions, bu
discussed in the previous section, in general, there does
exist anHj which satisfies this equation. The analysis na
rally breaks up into the following two cases:

Case I. Suppose that the continuous extension ofv to B
has vanishing pullback toB. Then by Eq.~18!, Hj exists for
all infinitesimal asymptotic symmetries~assuming thatF̄ is
simply connected and has suitable differentiable propert!
and is independent of the choice of representativeja. Fur-
thermore, if]S1 and]S2 are cross sections ofB that bound
a regionB12,B, we have,8 by Eqs.~15! and ~21!,

dHju]S2
2dHju]S1

52E
B12

v~f,df,Ljf!50. ~23!

Thus,dHj is independent of choice of cross section with
the same homology class. If the arbitrary constant~for each
cross section! in Hj is fixed in such a way that there is
‘‘reference solution’’ for whichHj50 on all cross sections
~see below!, then on all solutionsHj will be independent of
the choice of cross section within the same homology cla
Thus, in this case, not only doesHj exist, but it truly corre-
sponds to a conserved quantity; i.e., its value is indepen
of ‘‘time,’’ S.

Case II. Suppose that the continuous extension ofv to B
does not, in general, have vanishing pullback toB. Then, in
general, there does not exist anHj satisfying Eq.~15!. One
exception is the case whereja and ]S are such thatja is

8We define the orientation ofB to be that obtained by dotting th
first index of the orientation ofM into an outward pointing vector
The orientation of]S was previously specified in footnotes 2 and
The signs in Eq.~24! to correspond to the case where]S2 lies to
the future of]S1.
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everywhere tangent to]S. In this case, ifja is tangent to
cross sections]S1 and]S2, we have

dHju]S2
2dHju]S1

52E
B12

v~f,df,Ljf!. ~24!

Since the right side of this equation is nonvanishing in g
eral, we see that even whenja is tangent to cross sections s
that Hj exists,Hj will not be conserved.

Case I arises in general relativity for spacetimes which
asymptotically flat at spatial infinity as defined in@18#, and
our prescription for definingHj corresponds to that given in
@10# and @11#; see@13# for explicit details of how Eq.~15!
gives rise to the usual expression for ADM mass whenja is
an asymptotic time translation. As we shall discuss in de
in the next section, case II arises in general relativity
spacetimes which are asymptotically flat at null infinity.

The main purpose of this paper is to provide a gene
definition of a ‘‘conserved quantity’’ conjugate to an arb
trary infinitesimal asymptotic symmetryja in case II. In the
following, we will restrict attention to this case, and we w
denote the quantity we seek asHj to distinguish it from a
true HamiltonianHj . As we have seen, in this case an a
tempt to defineHj by Eq. ~15! fails the consistency chec
~16! and thus does not define any quantity. However, c
sider the following simple modification of Eq.~15!: On B,
let Q be a symplectic potential for the pullback,v̄, of the
~extension of the! symplectic current formv to B, so that on
B we have, for allfPF̄ andd1f,d2f tangent toF̄,

v̄~f,d1f,d2f!5d1Q~f,d2f!2d2Q~f,d1f!. ~25!

We require thatQ be locally constructed9 out of the dynami-
cal fields,f, and their derivatives~or limits of such quanti-
ties to B) as well as any fields present in the ‘‘univers
background structure.’’ In the case whereL ~and, hencev)
is an analytic function10 of its variables@see Eq.~1!#, we also
require thatQ depend analytically on the dynamical field
more precisely, iff(l) is a one-parameter family of field
on M that depends analytically onl and satisfies suitable
uniformity conditions11 near B, we require that the corre

9More precisely, by ‘‘locally constructed’’ we mean the follow
ing: Suppose thatx:MøB→MøB is a diffeomorphism which pre-
serves the universal background structure. Suppose (f,df) and
(f8,df8) are such that there exists an open~in MøB) neighbor-
hood,O, of pPB such that for allxPMùO we havef5x* f8
and df5x* df8, wherex* denotes the pullback map on tens
fields associated with the diffeomorphismx. Then we require that
at p we haveQ5x* Q8.

10The condition thatL be an analytic function of its variables~as
occurs in essentially all theories ever seriously considered! has
nothing to do with any smoothness or analyticity conditions co
cerning the behavior of the dynamical fields themselves onM. We
do not impose any analyticity conditions on the dynamical field

11For the case of asymptotically flat spacetimes at null infinity,I,
a suitable uniformity condition would be to require the unphysi
fields to vary analytically withl at I.
7-6
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GENERAL DEFINITION OF ‘‘CONSERVED . . . PHYSICAL REVIEW D61 084027
spondingQ(l) also depend analytically onl. If any arbi-
trary choices are made in the specification of the backgro
structure~such as a choice of conformal factor in the defi
tion of null infinity in general relativity!, then we demand
that Q be independent of such choices~so, in particular, in
the case of null infinity,Q is required to be conformally
invariant!. Our proposal is the following: LetHj satisfy12

dHj5E
]S

@dQ2j•u#1E
]S

j•Q. ~26!

Then it is easily seen that this formula satisfies the con
tency check~16! and, thus, defines a ‘‘conserved quantity
Hj up to an arbitrary constant. Finally, let this arbitrary co
stant be fixed by requiring thatHj vanish~for all infinitesi-
mal asymptotic symmetriesja and all cross sections]S) on
a suitably chosen ‘‘reference solution’’f0PF̄. We will
specify below the necessary conditions that must be satis
by f0.

However, the above proposal fails to define a unique p
scription because the choice of symplectic potentialQ is
ambiguous up to13

Q~f,df!→Q~f,df!1dW~f! ~27!

whereW is an (n21)-form onB locally constructed out of
the dynamical fieldsf as well as the universal backgroun
structure defined onB, with W independent of any arbitrar
choices made in the specification of the background st
ture. Thus, in order to obtain a prescription which defin
Hj , we must specify an additional condition or conditio
which uniquely selectQ.

An additional requirement onQ can be motivated as fol
lows. We have already seen from Eq.~24! above thatHj

cannot, in general, be conserved; i.e., there must be a
zero flux, Fj , on B associated with this ‘‘conserved qua
tity.’’ This is to be expected on account of the possible pr
ence of radiation atB. However, it seems natural to deman
that Fj vanish~and, thus, thatHj be conserved! in the case
where no radiation is present atB. Such a case should occu
when f is a stationary solution, i.e., when there exists
nonzero infinitesimal asymptotic symmetry represented
an exact symmetryta—so that Ltf50 in M—and ta is
timelike in M in a neighborhood ofB. Hence, we wish to
require thatFj vanish onB for all ja for stationary solutions.

To see what condition onQ will ensure that this holds, we
note that from Eq.~26! it follows immediately that

12Here it should be noted that the new term on the right side
this equation is an ordinary integral over the surface]S of B,
whereas, as explained above, the first term in general is defi
only as an asymptotic limit.

13Note that the ambiguity inQ is of an entirely different nature
than the ambiguity~3! in u. The quantityu is defined from the
LagrangianL ~beforev has been defined! and its ambiguity arises
from Eq. ~2!. The quantityQ is defined fromv and its ambiguity
arises from Eq.~25!.
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dHju]S2
2dHju]S1

52E
B12

dFj ~28!

where the variation of the flux (n21)-form, Fj , on B is
given by

dFj5v̄~f,df,Ljf!1d@j•Q~f,df!#. ~29!

Here the first term in this equation arises from taking ‘‘d’’ of
the integrand of the first term in Eq.~26! @using Eq.~21!
above#, whereas the second term is just the ‘‘d’’ of the inte-
grand of the second term in Eq.~26!. However, we have

d@j•Q~f,df!#5LjQ~f,df!

52v̄~f,df,Ljf!1dQ~f,Ljf!.

~30!

Thus, we obtain

dFj5dQ~f,Ljf!. ~31!

We now impose the requirement thatQ(f,df) vanish
wheneverf is stationary~even whendf is non-stationary!.
We also explicitly assume that the reference solution,f0 ~on
which Hj vanishes for all cross sections and henceFj50),
is stationary. Since bothQ andFj vanish onf0, we obtain
from Eq. ~31! the remarkably simple formula

Fj5Q~f,Ljf!. ~32!

It then follows immediately~as a consequence of our choic
of Q) that Fj vanishes~for all j) on stationary solutions, a
we desired. Equation~32! also implies an additional desir
able property ofFj : We haveFj50 wheneverja is an exact
symmetry—i.e., wheneverLjf50—regardless of whethe
radiation may be present.

If a symplectic potentialQ satisfying our above condition
exists and is unique, then Eq.~26! together with the require-
ment thatHj vanish~for all cross sections and allja) on a
particular, specified solution,f0, uniquely determinesHj .
However, there remains a potential difficulty in specifyin
f0: If f0PF̄, then we also havec* f0PF̄, where
c:MøB→MøB is any diffeomorphism generated by a re
resentative of an infinitesimal asymptotic symmetry. Sin
we have no meaningful way of distinguishing betweenf0
and c* f0, if we demand thatHj vanish onf0, we must
also demand that it vanish onc* f0. However, this overde-
terminesHj ~so that no solution exists! unless the following
consistency condition holds: Letha be a representative of a
infinitesimal asymptotic symmetry and consider the fie
variation aboutf0 given by df5Lhf0. Since this corre-
sponds to the action of an infinitesimal asymptotic symme
on f0, under this field variation we must havedHj50. On
the other hand,dHj is specified by Eq.~26!. Since under this
field variation we have

dQ@j#5LhQ@j#2Q@Lhj# ~33!

f

ed
7-7
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ROBERT M. WALD AND ANDREAS ZOUPAS PHYSICAL REVIEW D61 084027
and since, by assumption,Q vanishes atf0, we find that the
consistency requirement onf0 is that for all representative
ja andha of infinitesimal asymptotic symmetries and for a
cross sections]S, we must have

05E
]S

$LhQ@j#2Q@Lhj#2j•u~f0 ,Lhf0!%. ~34!

From Eqs.~21! and~25! together with the vanishing ofQ at
f0, it follows that the right side of Eq.~34! is independent of
cross section and thus need only be checked at one c
section. In addition, Eq.~34! manifestly holds whenha is an
exact symmetry off0—i.e., whenLhf050—sincedf50
in that case. Using

LhQ5d~h•Q!1h•dQ5d~h•Q!1h• j ~35!

together with Eq.~9!, we may rewrite Eq.~34! in the form

05E
]S

$h•u~f0 ,Ljf0!2j•u~f0 ,Lhf0!

2h•~j•L !2Q@Lhj#%. ~36!

@Here, the integral over]S is to be interpreted as a
asymptotic limit, with the limit guaranteed to exist by th
argument given above. IfL extends continuously toB, then
the termh•(j•L ) makes no contribution to the integral sinc
both ha and ja are tangent toB.# Since Eq.~36! is mani-
festly antisymmetric inha andja, it follows that the consis-
tency condition also is automatically satisfied wheneverja is
an exact symmetry off0. However, if bothha and ja are
asymptotic symmetries that are not exact symmetries off0,
then Eq.~34! @or, equivalently, Eq.~36!# yields a nontrivial
condition that must be satisfied byf0.

To summarize, we propose the following prescription
defining ‘‘conserved quantities’’ in case II: LetQ be a sym-
plectic potential onB @see Eq.~25! above# which is locally
constructed out of the dynamical fields and backgrou
structure~and is an analytic function of the dynamical field
whenL is analytic!, is independent of any arbitrary choice
made in specifying the background structure, and is such
Q(f,df) vanishes for alldf tangent toF̄ wheneverf
PF̄ is stationary.@If it exists, such aQ is unique up to
addition of a termdW whereW is locally constructed out o
the dynamical fields and background structure~and is ana-
lytic in the dynamical fields whenL is analytic!, is indepen-
dent of any arbitrary choices made in specifying the ba
ground structure, and is such thatdW vanishes for alldf

tangent toF̄ wheneverf is stationary.# Let f0 be a station-
ary solution that satisfies Eq.~34! @or, equivalently, Eq.~36!#
for all infinitesimal asymptotic symmetriesha andja. Then
we defineHj by Eq. ~26! together with the requirement tha
Hj vanish onf0. To the extent that aQ satisfying the above
requirements exists and is unique, and to the extent th
stationaryf0 satisfying Eq.~34! exists, this defines a pre
scription for defining ‘‘conserved quantities’’ associat
with asymptotic symmetries. This prescription automatica
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gives rise to the flux formula~32!, so that the flux vanishes
wheneverf is stationary orja is an exact symmetry.

In the next section, we analyze what this general presc
tion yields for the case of asymptotically flat spacetimes
null infinity in vacuum general relativity.

V. ‘‘CONSERVED QUANTITIES’’ AT NULL INFINITY
IN GENERAL RELATIVITY

In vacuum general relativity, the manifoldM is taken to
be 4-dimensional and the only dynamical field,f, is the
spacetime metric,gab . We shall write the varied field as

gab[dgab . ~37!

The Einstein-Hilbert Lagrangian of general relativity is

L5
1

16p
Re ~38!

where R denotes the scalar curvature ofgab and e is the
spacetime volume form associated withgab . The presym-
plectic potential 3-formu is given by

uabc5
1

16p
edabcv

d ~39!

where

va5gaegf h@¹ fgeh2¹eg f h# ~40!

where¹a is the derivative operator associated withgab . The
corresponding presymplectic current 3-form is@19#

vabc5
1

16p
edabcw

d ~41!

where

wa5Pabcde f@g2bc¹dg1e f2g1bc¹dg2e f# ~42!

with

Pabcde f5gaegf bgcd2
1

2
gadgbegf c2

1

2
gabgcdge f

2
1

2
gbcgaegf d1

1

2
gbcgadge f. ~43!

Finally, the Noether charge 2-form associated with a vec
field ja is given by@13#

Qab@j#52
1

16p
eabcd¹

cjd. ~44!

We wish to consider spacetimes that are asymptotic
flat at future and/or past null infinity. For definiteness, w
will consider future null infinity.@Sign changes would occu
in several formulas when we consider past null infinity
account of our orientation convention onB ~see footnote 8!.#
7-8
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We denote future null infinity byI and adopt the standar
definition of asymptotic flatness there~see, e.g.,@21#!. The
key ingredient of this definition is that there exist a smoot14

metric, g̃ab , on MøI and a smooth function,V, on MøI
such thatV.0 on M , V50 on I, and ¹̃aV is null15 and
nonvanishing everywhere onI, and such that throughoutM
we have

g̃ab5V2gab . ~45!

We also assume thatI has topology S23R. In the following
all indices will be raised and lowered using the ‘‘unphysic
metric,’’ g̃ab . We write

na5¹̃aV. ~46!

~Here ¹̃a denotes the derivative operator associated w
g̃ab , although, of course, sinceV is a scalar,¹aV is inde-
pendent of the choice of derivative operator.! We may use
the freedomV→vV with v a smooth, strictly positive func
tion on MøI to assume, without loss of generality, that t
Bondi condition

¹̃anbuI50 ~47!

holds. An immediate consequence of Eq.~47! is that onI we
have¹̃a(nbnb)52nb¹̃anb50, so, in the Bondi gauge,

nana5O~V2!. ~48!

Without loss of generality~see, e.g.,@17#!, we also may as-
sume that the conformal factor,V, on MøI and the un-
physical metric,g̃ab , on I are universal quantities; i.e., the
may be assumed to be independent of the physical me
gab , on M. Without loss of generality, we may~by use of
freedom remaining in the choice ofV) take the universa
unphysical metricg̃ab

0 , on I to be such that the induce
spatial metric on all cross sections ofI is that of a round
two-sphere of scalar curvaturek. In the following, we will fix
an allowed choice ofV on MøI and a choice ofk. We will
then take16 F to consist of metrics,gab , on M such that
V2gab extends smoothly toI and equalsg̃ab

0 there, and such
that the Bondi condition~47! holds onI. It may then be
checked that the general notion of infinitesimal asympto
symmetries given in the previous section corresponds to
usual notion of infinitesimal BMS symmetries; indeed, o

14The requirement of smoothness could be weakened conside
without affecting our analysis.

15For solutions to the vacuum field equations, it follows from t

fact thatV50 on I that ¹̃aV is null on I in the metricg̃ab .
16Note that our imposition of this rather rigid structure onF as a

result of our gauge fixing is not done merely for convenience, bu
necessary in order thatv extend toI.
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general definition of infinitesimal asymptotic symmetri
corresponds closely to the definition of infinitesimal BM
symmetries17 given in @17#.

It follows immediately from our conditions onF that the
unphysical perturbed metric

g̃ab[V2gab ~49!

extends smoothly toI and vanishes there, so it can be writte
in the form

g̃ab5Vtab ~50!

wheretab extends smoothly toI and, in general, is nonvan
ishing there. Furthermore, sincedna50, we have

d@¹̃anb#52H ¹̃ (ag̃b)c2
1

2
¹̃cg̃abJ nc. ~51!

Substituting from Eqs.~49!, ~50!, and ~46! and setting the
resulting expression to zero onI in accordance with Eq.
~47!, we obtain

n(atb)cn
cuI50. ~52!

This, in turn, implies thattbcn
c vanishes onI, so we may

write

tbcn
c5Vtb ~53!

wheretb is smooth~and, in general, nonvanishing! atI. This
implies that

dna5d~ g̃abnb!52Vtabnb52V2ta. ~54!

The crucial issue with regard to the applicability of th
ideas of the previous section is whether the presymple
current 3-form18 v extends continuously toI. To investigate
this, we express the quantities appearing in Eq.~41! in terms
of V and variables that extend smoothly toI. Clearly, the
unphysical volume element

ẽ5V4e ~55!

and

P̃abcde f[V26Pabcde f ~56!

bly

is

17The only difference between our definition and the definiti
given in @17# concerns the notion of the equivalence of two rep
sentatives,ja andj8a. In addition to requiring agreement ofja and
j8a at I, we impose the extra requirement that they give rise to
same asymptotic integral~19!. However, it is not difficult to show
that if ja andj8a agree atI, then they automatically give rise to th
same asymptotic integral~19!.

18As noted in Sec. II,v has the ambiguity~5!. However, Iyer@20#
has shown that ifY is such thatu maintains the general form give
by Eq.~23! of @13# with the coefficients in that formula being regu
lar, analytic functions of the fields, thenY must vanish onI. Con-
sequently, in vacuum general relativity, the limit toI of v is, in
fact, unique.
7-9
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ROBERT M. WALD AND ANDREAS ZOUPAS PHYSICAL REVIEW D61 084027
extend smoothly toI and are nonvanishing there. We elim
nate the the action of the physical derivative operator,¹a ,
on gab in terms of the unphysical derivative operator,¹̃a ,
via

¹agbc5¹̃agbc12Cd
a(bgc)d ~57!

where~see, e.g.,@21#!

Cc
ab52V21dc

(anb)2V21ncg̃ab . ~58!

Finally, we substitute

gab5V21tab . ~59!

The terms appearing in the resulting expression forv may
now be classified as follows:~i! Terms in which¹̃a acts on
t1ab or t2ab . For these terms, the powers ofV resulting
from Eqs.~55!, ~56!, and~59! cancel, so these terms exten
smoothly toI and are, in general, nonvanishing there.~ii !
Terms in which¹̃a does not act ont1ab or t2ab and wa is
proportional tona. These terms cancel due to the antisy
metry int1ab andt2ab . ~iii ! Terms in which¹̃a does not act
on t1ab or t2ab but wa is not proportional tona. These terms
necessarily contain a contraction ofna with t1ab or t2ab ,
and Eq.~53! can then be used. The extra power ofV picked
up by the use of this equation ensures that these terms ex
smoothly toI, where they are, in general, nonvanishing. T
upshot is thatv extends smoothly toI and is, in general,
nonvanishing there. Thus, with our definition ofF, asymp-
totically flat spacetimes at null infinity in general relativi
do indeed fall into the category of ‘‘case II’’ of the previou
section.

To apply the proposed prescription of the previous sec
to define a ‘‘conserved quantity,’’Hj , for each BMS gen-
erator, ja, and each cross section,]S, of I, we need an
explicit formula for the pullback,v̄, of the extension ofv to
I. To do so, we define(3)e by

ẽabcd54 (3)e [abcnd] ~60!

so that the pullback,(3)ē, of (3)e to I defines a positively
oriented volume element19 on I ~see footnote 8!. We have

v̄52
1

16p
V24nawa (3)ē. ~61!

A lengthy but entirely straightforward calculation startin
with Eq. ~42!, making the substitutions~57!–~59!, and mak-
ing heavy use of Eqs.~47!, ~48!, and ~53! yields ~see also
@22,9#!

V24nawauI5
1

2
$2t2

bcna¹̃at1bc1t2na¹̃at11t2nat1a%

2@1↔2# ~62!

19For past null infinity, this volume element would be negative
oriented, resulting in sign changes in some of the formulas bel
08402
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where we have writtent5ta
a and ‘‘1↔2’’ denotes the

same terms as in the preceding expression with 1 an
interchanged.

The above formula can be rewritten in a more useful fo
as follows. By a direct computation using Eq.~7.5.14! of
@21#, the variation of the unphysical Ricci tensor atI is given
by

dR̃abuI52n(a¹̃b)t2nc¹̃ctab1n(b¹̃dta)d1n(atb) .
~63!

Hence, definingSab by

Sab[R̃ab2
1

6
R̃g̃ab ~64!

we obtain

dSabuI52n(a¹̃b)t2nc¹̃ctab1n(b¹̃dta)d1n(atb)

2
1

3
~2nc¹̃ct1nctc!g̃ab . ~65!

On the other hand,R̃ab is related toRab by the usual confor-
mal transformation formulas~see, e.g., Appendix D of@21#!.
SettingRab50 by the vacuum field equations, it follows tha
@see Eq.~6! of @3##

Sab522V21¹̃ (anb)1V22ncncg̃ab . ~66!

Taking the variation of this equation and evaluating the
sulting expression onI using Eqs.~51!, ~50!, ~54! and ~53!,
we obtain

dSabuI54n(atb)2nc¹̃ctab2nctcg̃ab . ~67!

Comparing this formula with Eq.~65!, we obtain

@¹̃btab2¹̃at23ta#uI50 ~68!

as well as

@nb¹̃bt12nbtb#uI50. ~69!

Using Eq.~69! together with Eq.~65!, we see that

V24nawauI5
1

2
@t2

abd1Sab2t1
abd2Sab#. ~70!

Now, the Bondi news tensor,Nab , on I is defined by@3#

Nab5S̄ab2rab ~71!

where S̄ab denotes the pullback toI of Sab and rab is the
tensor field onI defined in general by Eq.~33! of @3#, which,
in our gauge choice, is just12 kḡab

0 , where ḡab
0 denotes the

pullback toI of g̃ab
0 . Sincedrab50 and since, by Eq.~53!,

tab on I is tangent toI, we may replacedSab by dNab in
Eq. ~70!. Thus, we obtain our desired final formula:.
7-10
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v̄52
1

32p
@t2

abd1Nab2t1
abd2Nab#

(3)ē. ~72!

To apply our prescription, we must find a symplectic p
tential, Q, for v̄ on I which is locally constructed20 out of
the spacetime metric,gab , and background structure~and
depends analytically on the metric!, is independent of any
arbitrary choices made in specifying the background str
ture, and is such thatQ(gab ,gab) vanishes for allgab when-
evergab is stationary. By inspection, a symplectic potent
satisfying all of these properties is given by21

Q52
1

32p
Nabt

ab (3)ē. ~73!

As discussed in Sec. III, this choice ofQ will be unique if
and only if there does not exist a 3-formW on I which is
locally constructed~in the sense of footnote 9! out of the
physical metric,gab , and background structure~and depends
analytically on the physical metric!, is independent of any
arbitrary choices made in specifying the background str
ture, and is such thatdW vanishes for allgab whenevergab
is stationary. In our case, the only relevant ‘‘backgrou
structure’’ present is the conformal factor,V, since all other
background quantities~such asg̃ab

0 and na on I) can be
reconstructed fromV and the physical metric. Now, th
physical metric,gab , its curvature,Rabc

d , and ~physical!
derivatives of the curvature all can be expressed in term
the unphysical metric,g̃ab , its curvature,R̃abc

d, and un-

20A major subtlety would have arisen in the meaning of ‘‘loca
constructed’’ if we had not imposed the rigid background struct
given by the Bondi condition~47! together with our fixing ofg̃ab

0 .
If, say, the background structure was specified merely by
‘‘asymptotic geometry’’ as defined on p. 22 of@3#, then there would
exist diffeomorphisms locally defined in the neighborhood o
point pPI which preserve the background structure but canno
extended to globally defined diffeomorphisms which preserve
background structure. Indeed, a necessary condition fo
background-structure-preserving local diffeomorphism to be g
bally extendible is that it preserve the tensor fieldrab , defined by
Eq. ~33! of @3#, sincerab can be constructed from a global speci
cation of the background structure. Now, locally defined diffeom
phisms that are not globally extendible are not relevant to the d
nition of ‘‘locally constructed’’ given in footnote 9, since tha
definition requires globally defined diffeomorphisms. Since the
lowed ~globally defined! diffeomorphisms must locally preserv
rab , that quantity would, in effect, count as ‘‘local’’ with regard t
the definition of ‘‘local construction’’ ofQ—even though the con
struction ofrab from the background structure given in@3# involves
the global solution to differential equations. Consequently,
Bondi news tensor~which is constructed out of manifestly loca
quantities andrab) would still be considered as ‘‘locally con
structed’’ even if the background structure had been specified a
@3#. This subtlety does not arise here, since with our gauge cho
rab and the Bondi news tensor are manifestly local.

21That Nab and henceQ vanish for all stationary solutions i
proved, e.g., on pp. 53–54 of@3#.
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physical derivatives of the unphysical curvature toget
with V and its unphysical derivatives. Therefore, we m
view W as a function ofg̃ab , R̃abc

d, and unphysical deriva-
tives of R̃abc

d, together withV and its unphysical deriva
tives. The requirement thatW vary analytically withgab ~at
fixed V) then implies that it must depend analytically ong̃ab
at fixedV.

In our specification of conditions on the backgrou
structure, we required thatg̃ab

0 induce a round two-spher
metric of scalar curvaturek on all cross sections ofI. The
choice ofk was arbitrary, and could have been fixed at a
value. If we keepF fixed ~i.e., consider the same class
physical metrics! but changeV by V→lV with l constant,
then g̃ab

0 will induce a round two-sphere metric of scal
curvaturel22k rather thank on all cross sections. We re
quire that under this scaling ofV ~corresponding to modify-
ing an ‘‘arbitrary choice’’ in the specification of the back
ground structure!, we haveW→W.

To analyze the implications of this requirement, it is us
ful to introduce the following notion of thescaling dimen-
sion @3# of a tensor,Ta1 . . . ak

b1 . . . bl
, of type (k,l ) which is

locally constructed out of the unphysical metric andV: If
under the scalingV→lV, keeping the physical metric
fixed, we haveTa1 . . . ak

b1 . . . bl
→lpTa1 . . . ak

b1 . . . bl
, then we

define the scaling dimension,s, of Ta1 . . . ak
b1 . . . bl

by

s5p1k2 l . ~74!

It follows that the scaling dimension of a tensor does n
change under the raising and lowering of indices using
unphysical metric. It is easily seen that the scaling dimens
of V is 11, the scaling dimension of the unphysical met
is 0, and the scaling dimension of the unphysical curvat
tensor is22. Each derivative decreases the scaling dim
sion by 1, so, for example, the scaling dimension ofna

5¹̃aV is 0 and the scaling dimension of thej th derivative
of the unphysical curvature is2( j 12).

Since the 3-formW is required to be invariant under sca
ing of V, it must have a scaling dimension of23. Since
(3)eabc has scaling dimension 0, if we definew
5Wabc

(3)eabc, we obtain a scalar with scaling dimension
23. By our assumptions,w must be locally constructed ou
of V and g̃ab ~in the sense of footnote 9! and must vary
analytically withg̃ab at fixedV. Presumably, this will imply
that we can writew as a convergent sum of terms~with
coefficients depending on the conformal factor! of products
~with all indices contracted! of the unphysical metric, the
unphysical curvature, unphysical derivatives of the unphy
cal curvature,na5¹̃aV and unphysical derivatives ofna.
~Negative powers ofV can, of course, occur in the coeffi
cients if they multiply a term which vanishes suitably rapid
at I.! Now, the unphysical metric, the unphysical curvatu
and na all have have a non-positive scaling dimension a
derivatives only further decrease the scaling dimensi
Therefore, if any term were composed of more than t
factors containing the unphysical curvature tensor, the o
way of achieving a scaling dimension of23 would be to

e

e

e
e
a
-

-
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ROBERT M. WALD AND ANDREAS ZOUPAS PHYSICAL REVIEW D61 084027
multiply it by a positive power ofV, in which case it would
vanish atI. Similarly, if the term contained a single facto
with two or more derivatives of curvature, it also would ha
to vanish atI. Similar restrictions occur for terms containin
derivatives ofna. This reduces the possible terms that c
occur in w to a small handful, and it is then easily verifie
that there does not exist an allowedw such thatdw is non-
zero in general~so that it contributes nontrivially toQ) but
dw vanishes whenever the physical metric,gab , is station-
ary. Therefore, we conclude thatQ is unique.

To complete the prescription, we need to specify a s
tionary ‘‘reference solution’’f0 satisfying Eq.~36!. A natu-
ral candidate forf0 is Minkowski spacetime and, indeed,
should be possible to show that no other stationary solutio22

can satisfy Eq.~36!. In Minkowski spacetime, an arbitrar
infinitesimal asymptotic symmetry can be written as a sum
a Killing vector field plus a supertranslation. Since Eq.~36!
holds automatically whenever eitherha or ja is a Killing
vector field, it suffices to check Eq.~36! for the case where
bothha andja are supertranslations; i.e., onI they are of the
form ja5ana, ha5bna where a and b are such that
na¹̃aa5na¹̃ab50. Since satisfaction of Eq.~36! does not
depend upon the choice of representative of the infinitesi
asymptotic symmetry, we may assume thatha andja satisfy
the Geroch-Winicour gauge condition@17# ¹aha5¹aja50
~see below!. In that case,*]SQ@Lhj# will vanish and Eq.
~36! reduces to

05E
]S

$h•u~f0 ,Ljf0!2j•u~f0 ,Lhf0!%. ~75!

From Eq.~39! we obtain, onI,

hcucab~f,df!5
1

16p
ẽabcdV

chd ~76!

where

Va[V21@¹̃btab2¹̃at23ta# ~77!

and it should be noted thatVa has a smooth limit toI on
account of Eq.~68!. The pullback ofh•u to I is thus

h•ū52
1

16p
bnaVan• (3)ē. ~78!

In using this equation to evaluate the termh•u(f0 ,Ljf0) in
Eq. ~75!, we must substitutexab for tab where

xab[VLjgab5V21@Ljg̃ab22Kg̃ab# ~79!

with

22If ta denotes the timelike Killing vector field, then*]SQ@ t# is
proportional to the Komar formula for mass and is nonvanishing
all stationary solutions other than Minkowski spacetime. We exp
that Eq.~36! will fail when ha is an asymptotic boost andja is an
asymptotic spatial translation such that their commutator yieldsta.
08402
n
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K[V21jana . ~80!

~Thus,xab52Xab in the notation of@17#; it follows directly
from the definition of infinitesimal asymptotic symmetrie
thatxab andK extend smoothly toI.! It may then be seen by
inspection of Eq.~19! of @17# that u(f0 ,Ljf0) is propor-
tional to the ‘‘linkage flux’’ ~see below! associated withja.
However, from the formula for the linkage flux for supe
translations in Minkowski spacetime given in Eq.~10! of
@23#, it may be verified that that*]Sh•u(f0 ,Ljf0) cancels
*]Sj•u(f0 ,Lhf0), so Eq. ~75! is indeed satisfied, as w
desired to show.

Thus, for the case of null infinity in general relativity, th
general prescription proposed in Sec. IV instructs us to
fine a ‘‘conserved quantity,’’Hj , for each infinitesimal
BMS symmetryja and each cross section,]S, of I by

dHj5E
]S

@dQ2j•u#2
1

32pE]S
Nabt

abj• (3)ē ~81!

together with the requirement thatHj50 for all ja and all
cross sections in Minkowski spacetime.

By our above arguments, there exists a uniqueHj satis-
fying the above requirements. How does this prescript
compare with the one previously given by Dray and Streu
@5#? From our general analysis of Sec. IV, it follows that o
prescription automatically yields the flux formula

Fj5Q~gab ,Ljgab!52
1

32p
Nabx

ab (3)ē. ~82!

Equation~82! agrees with the flux formula proposed by As
tekar and Streubel@8# @see Eq.~19! of @23##. But it was
shown by Shaw and Dray@6# that the Dray-Streubel pre
scription also yields the Ashtekar-Streubel flux formu
Therefore, the difference between ourHj and the ‘‘con-
served quantity’’ proposed by Dray and Streubel must b
quantity that depends locally on the fields at the cross sec
]S and yet—since the flux associated with the difference
these quantities vanishes—for a given solution, is indep
dent of the choice of cross section~i.e., this difference, if
nonzero, would be a truly conserved quantity!. If we restrict
our attention to spacetimes that are asymptotically flat
both null and spatial infinity, the equivalence of our prescr
tion to that of Dray and Streubel would follow from the fa
that they both yield the ADM conserved quantities in t
limit as the cross section approaches spatial infinity. Ho
ever, it is instructive to show the equivalence of the tw
prescriptions directly~without assuming asymptotic flatnes
at spatial infinity!, and we now turn our attention to doing s

Let ]S be a cross section ofI and letja be a represen-
tative of an infinitesimal asymptotic symmetry~i.e., an in-
finitesimal BMS representative!. We may uniquely decom-
poseja into a part that is everywhere tangent to]S on ]S
plus a supertranslation. Since both our prescription and
of Dray and Streubel are linear inja, it suffices to consider
the equivalence of the prescription for each piece separa
i.e., to consider separately the cases where~a! ja is every-
where tangent to]S and ~b! ja is a supertranslation.

r
ct
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GENERAL DEFINITION OF ‘‘CONSERVED . . . PHYSICAL REVIEW D61 084027
Consider, first, case~a!, where as discussed in Sec. IV,
true Hamiltonian exists. In case~a!, Eq. ~81! is simply

dHj5E
]S

dQ. ~83!

One might think that the solution to this equation would
simply Hj5*]SQ, which corresponds to the Komar formu
with the correct numerical factor for angular momentum@see
Eq. ~44! above#. However, although*]SdQ is well defined
and independent of choice of infinitesimal BMS represen
tive ja ~as it must be according to the general considerati
of Sec. IV!, it was shown in@17# that the value of*]SQ
depends upon the choice of infinitesimal BMS representa
and, in this sense, is ill defined unless a representativ
specified. It was also shown in@17# that the Geroch-
Winicour condition¹aja50 in M ~where¹a is thephysical
derivative operator! picks out a class of representativ
which makes*]SQ well defined.@By Eq. ~79!, the Geroch-
Winicour condition is equivalent tox50, where x
5g̃abxab .] We write QGW to denoteQ when ja has been
chosen so as to satisfy the Geroch-Winicour condition
was shown in@17# that*]SQGW is equivalent to a previously
proposed ‘‘linkage formula’’@16# for defining ‘‘conserved
quantities.’’ Furthermore, this linkage formula has the pro
erty that whenja is everywhere tangent to]S, it yields zero
in Minkowski spacetime23 as desired. This suggests that t
solution to Eq.~83! together with the requirement thatHj

vanish in Minkowski spacetime isHj5*]SQGW . However,
it is far from obvious that this formula satisfies Eq.~83!,
since when we vary the metric, we also must, in gene
vary ja in order to continue to satisfy the Geroch-Winico
gauge condition,x50. Indeed, under a variation of the me
ric, dg̃ab5Vtab , keepingja fixed it follows from Eq.~79!
that

dx5d~ g̃abxab!5d~V21gabLjgab!

5V21Ljg5V21Lj~Vt!5Ljt1Kt ~84!

where, as previously defined above,t5g̃abtab . Conse-
quently, in order to preserve the Geroch-Winicour conditi
it will be necessary to vary the infintesimal BMS represe
tative bydja5V2ua ~see@17#! whereua satisfies

2V21¹a~V2ua!52Ljt2Kt. ~85!

Since ¹aua5¹̃aua24V21uana , this relation can be ex
pressed in terms of unphysical variables as

2V¹̃aua24uana52Ljt2Kt. ~86!

Clearly, we have

dE
]S

QGW5E
]S

dQ2
1

16pE]S
eabcd¹

c~V2ud! ~87!

23This fact follows immediately from the equivalence of Eqs.~21!
and ~22! of the first reference of@6#.
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whereua satisfies Eq.~86!. We wish to show that the secon
term on the right side of Eq.~87! vanishes. To do so, it is
convenient to introduce a null vector fieldl a as follows. At
points of]S we takel a to be the unique~past-directed! null
vector that is orthogonal to]S and satisfiesl ana51. We
extendl a to all of I by requiring thatL nl a50 onI. Finally,
we extendl a off of I via the geodesic equationl b¹̃bl a50. A
calculation similar to that given in Eq.~17! of @17# shows
that the integrand of the second term in Eq.~87! can be
written as

I ab[eabcd¹
c~V2ud!5F l c¹̃cY1

1

2
Y¹̃cl

c1D̃cs
cG (2)ẽab

~88!

wheresa denotes the projection ofua to ]S; D̃a and (2)ẽab
are the derivative operator and volume element on]S asso-
ciated with the induced unphysical metric,q̃ab , on ]S, and
we have written

Y[
1

2
@Ljt1Kt#. ~89!

The termD̃cs
c is a total divergence and integrates to zero24

After a significant amount of algebra, it can be shown th
the remaining terms in Eq.~88! can be expressed as

I 85
1

2
LjF S Llt1

1

2
t¹̃al aD (2)ẽG . ~90!

These remaining terms integrate to zero sinceja is tangent to
]S. This establishes that

dE
]S

QGW5E
]S

dQ ~91!

and thus the unique solution to Eq.~83! which vanishes in
Minkowski spacetime is

Hj5E
]S

QGW ~92!

which is equivalent to the linkage formula. This agrees w
the Dray-Streubel expression in case~a!.

We turn our attention now to case~b! whereja is a su-
pertranslation and thus takes the form@17#

ja5ana2V¹̃aa1O~V2! ~93!

wherea is such that onI we havena¹̃aa50. Direct sub-
stitution of Eq.~93! into the variation of Eq.~44! yields, on
I @20#,

24It is erroneously stated in@17# that q̃ab¹̃
aub is an intrinsic di-

vergence. The dropping of that term does not affect any of
results in the body of that paper. However, the formula given
footnote 20 of@17# is valid only whenx (52X in the notation of
@17#! vanishes onI.
7-13
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ROBERT M. WALD AND ANDREAS ZOUPAS PHYSICAL REVIEW D61 084027
dQab52
1

16p
ẽabcd¹̃

c~atd2tde¹̃ea! ~94!

from which it follows that the pullback,dQ̄, of dQ to I is
given by

dQ̄52
1

16p
U•

(3)ē ~95!

where

Ua5¹̃a~atbnb!2anb¹̃bta2natb¹̃ba1nb¹̃ca¹̃btac.
~96!

The pullback ofj•u to I is given by Eq.~78! above~with
the substitutionsh→j andb→a).

Thus, our general prescription instructs us to defineHj in
case~b! by the requirement thatHj50 in Minkowski space-
time together with the equation

dHj52
1

16pE]S
FUal a2aVana1

1

2
aNabt

abG (2)e

~97!

where l a is any covector field onI satisfying nal a51. A
lengthy calculation@20# shows that the solution to this equ
tion is the expression given by Geroch@3#, namely

Hj5
1

8pE]S
Pal a

(2)e ~98!

where

Pa5
1

4
aKabl b1~aDbl c1 l bDca!ḡcdNdeḡ

e[bna] . ~99!

HereDa is the derivative operator onI defined on pp. 46–47
of @3#; ḡab is the ~non-unique! tensor field onI satisfying
ḡacḡ

cdḡdb5ḡab whereḡab denotes the pullback toI of g̃ab ,
andKab5 (3)ēacd (3)ēbe fV21C̄cde f whereV21C̄cde f denotes
the pullback toI of the limit to I of V21C̃cde f , whereC̃cde f
denotes the unphysical Weyl tensor. Equation~98! agrees
with the Dray-Streubel prescription in case~b!. Conse-
quently, our prescription agrees with that given by Dray a
Streubel for all infitesimal BMS representativesja and all
cross sections]S, as we desired to show.

VI. SUMMARY AND OUTLOOK

In this paper, using ideas arising from the Hamiltoni
formulation, we have proposed a general prescription for
fining notions of ‘‘conserved quantities’’ at asymptot
boundaries in diffeomorphism covariant theories of grav
The main requirement for the applicability of our ideas
that the symplectic current (n21)-form v extend continu-
ously to the boundary. If, in addition, the pullback ofv
vanishes at the boundary~case I!, then a Hamiltonian asso
ciated with each infinitesimal asymptotic symmetry exis
and the value of the Hamiltonian defines a truly conser
08402
d

e-

.

,
d

quantity. On the other hand, if the pullback ofv fails to
vanish in general at the boundary~case II!, our prescription
requires us to find a symplectic potential on the bound
which vanishes for stationary solutions. When such a sy
plectic potential exists and is unique—and when a ‘‘ref
ence solution’’f0 can be found satisfying the consisten
condition ~34!—we have provided a well-defined prescri
tion for defining a ‘‘conserved quantity,’’Hj , for each in-
finitesimal asymptotic symmetry,ja, and cross section]S.
This ‘‘conserved quantity’’ is automatically local in th
fields in an arbitrarily small neighborhood of the cross s
tion and has a locally defined flux given by the simple fo
mula ~32!. For the case of asymptotically flat spacetimes
null infinity in vacuum general relativity, our proposal wa
shown to yield a unique prescription which, furthermo
was shown to agree with the one previously given by D
and Streubel@5# based upon entirely different consideration
In this way, we have provided a link between the Dra
Streubel formula and ideas arising from the Hamiltonian f
mulation of general relativity.

Since our approach does not depend on the details of
field equations—other than that they be derivable from
diffeomorphism covariant Lagrangian—there are many p
sible generalizations of the results we obtained for vacu
general relativity. We now mention some of these gener
zations, all of which are currently under investigation.

Perhaps the most obvious generalization is to cons
asymptotically flat spacetimes at null infinity in general re
tivity with matter fields,c, also present. If the asymptoti
conditions onc are such that thev continues to extend
continuously toI and are such that the physical stress-ene
tensor,Tab , satisfies the property thatV22Tab extends con-
tinuously toI ~so that ‘‘Tab vanishes asymptotically to orde
4’’ in the terminology of@3#!, then an analysis can be carrie
in close parallel with that given in Sec. V for the vacuu
case. For minimally coupled fields~i.e., fields such that the
curvature does not explicitly enter the matter terms in
Lagrangian!, it follows from the general analysis of@13# that
there will be no matter contributions toQ from the term
Xab¹ [ajb] @see Eq.~11! above#. @Even for non-minimally
coupled fields such as the conformally invariant scalar fie
theXab¹ [ajb] term inQ will retain the vacuum form~44! in
the limit as one approachesI.# However, in general the sym
plectic potentialu and symplectic currentv will pick up
additional contributions due to the matter fields and the ot
terms inQ in Eq. ~11! may also acquire matter contribution
For the massless Klein-Gordon scalar field,c, we require
V21c to have a smooth limit toI. In that case,v extends
continuously toI. Although Tab does not actually vanish
asymptotically to order 4 in this case~see the Appendix of
@24#!, it appears that all the essential features of the anal
of Sec. V carry through nonetheless. In Einstein-Kle
Gordon theory no additional matter terms occur inQ, so Q
continues to be given by Eq.~44!. Furthermore, the exten
sion to I of the pullback to surfaces of constantV of the
matter field contribution tou satisfies the property that i
vanishes for stationary solutions. Consequently, in this c
we can defineQ onI by simply adding this additional matte
7-14
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GENERAL DEFINITION OF ‘‘CONSERVED . . . PHYSICAL REVIEW D61 084027
contribution tou to the right side of Eq.~73!. The upshot is
that the explicit matter contributions to formula~81! cancel,
so thatHj is again given by the linkage formula~92! when
ja is tangent to]S and is given by Eq.~98! when ja is a
supertranslation. However, the flux formula~82! will pick up
additional terms arising from the additional matter contrib
tions to u and hence toQ. Similar results hold for non-
minimally coupled scalar fields, such as the conforma
coupled scalar field.25

The analysis is similar in the case of higher derivat
gravity theories if we impose, in addition to the usua
asymptotic conditions at null infinity, the requirement th
V22Rab extend continuously toI. ~Of course, there is no
guarantee that the field equations will admit a reasona
number of solutions satisfying this property.! If we consider
a Lagrangian which, in addition to the Einstein-Hilbert ter
~38!, contains terms which are quadratic and/or higher or
in the curvature and its derivatives, then additional terms w
appear inQ as well asu and v ~see @13#!. However, it
appears that none of these additional terms will contribut
Hj or its flux when the limit toI is taken. Thus, it appear
that the formulas for both the ‘‘conserved quantities’’ a
their fluxes will be the same in higher derivative grav
theories as in vacuum general relativity.26

Our proposal also can be applied to situations where
asymptotic conditions considered are very different fro

25For Maxwell and Yang-Mills fields, a new issue of princip
arises as a result of the additional gauge structure of these the
If we merely require the vector potentialAa to extend smoothly to
I, thenv will extend continuously toI and, by the general analysi
of Sec. IV, the integral definingVS will always exist. However,VS

will not be gauge invariant.~Thus, a Hamiltonian onS conjugate to
gauge transformations will fail to exist in general in much the sa
way as a Hamiltonian conjugate to infinitesimal asymptotic symm
tries fails to exist in general.! Consequently, in these cases it a
pears that substantial gauge fixing atI would be needed in order to
obtain gauge invariant expressions for ‘‘conserved quantities.’’

26The interpretation of this result would be that, although high
derivative gravity theories may have additional degrees of freed
these extra degrees of freedom are massive and do not propag
null infinity ~and/or they give rise to instabilities and are exclud
by our asymptotic assumptions!.
n.

c.

ys
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those arising in vacuum general relativity. Thus, for e
ample, it should be possible to use our approach to de
notions of total energy and radiated energy in dilaton grav
theories in 2-dimensional spacetimes. It should also be p
sible to use our approach for asymptotically anti–de Si
spacetimes in general relativity with a negative cosmolog
constant. When suitable asymptotic conditions are impos
the asymptotically anti–de Sitter spacetimes should
within case I of Sec. IV, so it should be possible to defi
truly conserved quantities conjugate to all infinitesim
asymptotic symmetries. It would be of interest to compa
the results that would be obtained by our approach w
those of previous approaches@25#.

Finally, we note that many of the ideas and constructio
of Sec. IV would remain applicable ifB were an ordinary
timelike or null surfaceS in the spacetime,M, rather than an
asymptotic boundary ofM. Thus, one could attempt to us
the ideas presented here to define notions of quasi-loca
ergy contained withinS and/or energy radiated throughS.
However, it seems unlikely that a unique, natural choice
Q will exist in this context, so it seems unlikely that th
approach would lead to a unique, natural notion of qua
local energy. Nevertheless, by considering the case wheS
is the event horizon of a black hole, it is possible that t
ideas presented in this paper may contain clues as to ho
define the entropy of a nonstationary black hole in an a
trary theory of gravity obtained from a diffeomorphism c
variant Lagrangian.
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