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In general relativity, the notion of mass and other conserved quantities at spatial infinity can be defined in a
natural way via the Hamiltonian framework: Each conserved quantity is associated with an asymptotic sym-
metry and the value of the conserved quantity is defined to be the value of the Hamiltonian which generates the
canonical transformation on phase space corresponding to this symmetry. However, such an approach cannot
be employed to define “conserved quantities” in a situation where symplectic current can be radiated away
(such as occurs at null infinity in general relatiyityecause there does not, in general, exist a Hamiltonian
which generates the given asymptotic symmetithis fact is closely related to the fact that the desired
“conserved quantities” are not, in general, conserydd. this paper we give a prescription for defining
“conserved quantities” by proposing a modification of the equation that must be satisfied by a Hamiltonian.
Our prescription is a very general one, and is applicable to a very general class of asymptotic conditions in
arbitrary diffeomorphism covariant theories of gravity derivable from a Lagrangian, although we have not
investigated existence and uniqueness issues in the most general contexts. In the case of general relativity with
the standard asymptotic conditions at null infinity, our prescription agrees with the one proposed by Dray and
Streubel from entirely different considerations.

PACS numbd(s): 04.20.Fy, 04.20.Cv, 04.20.Ha

[. INTRODUCTION eralized a definition of angular momentum given by Penrose
[7] that was motivated by twistor theory.

Notions of energy and angular momentum have played a In much of the body of work on defining “conserved
key role in analyzing the behavior of physical theories. Forquantities” at null infinity, little contact has been made with
theories of fields in a fixed, background spacetime, a locallyhe Hamiltonian formulation of general relativity. An impor-
conserved stress-energy-momentum ten3gqg,, normally  tant exception is the work of Ashtekar and Streul#!(see
can be defined. If the background spacetime has a Killinglso[9]), who noted that BMS transformations correspond to
field k?, thenJ®=T? k" is a locally conserved current. B canonical transformations on the radiative phase spafe at
is a Cauchy surface, they= [+J?d3,, defines a conserved They identified the Hamiltonian generating these canonical
quantity associated witk?; if X is a timelike or null surface, transformations as representing the net flux of the *“con-
thenfJ2d3,, has the interpretion of the flux of this quantity served quantity” througltf. They then also obtained a local
throughy.. flux formula under some additional assumptions not related

However, in diffeomorphism covariant theories such asto the canonical frameworkn particular, by their choice of
general relativity, there is no notion of the local stress-energyopology they, in effect, imposed the condition that the local
tensor of the gravitational field, so conserved quantitiedlux formula contain no “second derivative terms"How-
(which clearly must include gravitational contributiorand  ever, they did not attempt to derive a local expression for the
their fluxes cannot be defined by the above procedures, eveigonserved quantity” itself within the Hamiltonian frame-
when Killing fields are present. Nevertheless, in general relawork, and, indeed, until the work ¢6] and[6], it was far
tivity, for asymptotically flat spacetimes, conserved quanti-from clear that, for arbitrary BMS generators, their flux for-
ties associated with asymptotic symmetries have been denula corresponded to a quantity that could be locally defined
fined at spatial and null infinity. on cross sections df.

A definition of mass-energy and radiated energy at null The status of the definition of “conserved quantities” at
infinity, Z, was first given about 40 years ago by Trautmannull infinity contrasts sharply with the situation at spatial
[1] and Bondiet al.[2]. This definition was arrived at via a infinity, where formulas for conserved quantities have been
detailed study of the asymptotic behavior of the metric, andlerived in a clear and straightforward manner from the
the main justification advanced for this definition has been it4Hamiltonian formulation of general relativity10,11. As
agreement with other notions of mass in some simple caseaill be reviewed in Secs. Il and Il below, for a diffeomor-
as well as the fact that the radiated energy is always positivphism covariant theory derived from a Lagrangian, if one is
(see, e.q.[3,4] for further discussion of the justification for given a spacelike slicE and a vector field? representing
this definition. A number of inequivalent definitions of ‘“time evolution,” then the Hamiltonian generating this time
guantities associated with general Bondi-Matzner-Sachevolution—if it exists—must be purely a “surface term”
(BMS) asymptotic symmetries at null infinity have been pro-when evaluated on solutiong.e., “on shell”). It can be
posed over the years, but it was not until the mid 1980s thashown that if>, extends to spatial infinity in a suitable man-
Dray and Streub€l5] gave a general definition that appearsner and ifé2 is a suitable infinitesimal asymptotic symmetry,
to have fully satisfactory propertig¢§]. This definition gen- then a Hamiltonian does exiésee “case I” of Sec. IV be-
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low). The value of this Hamiltonian “on shell” then can be collectively denoted asy. To proceed, we must define a
interpreted as being the conserved quantity conjugaté.to space,F, of “kinematically allowed” field configurations,
One thereby directly obtains formulas for the Arnowitt- ¢=(g,,,%) on M. A precise definition ofF would involve
Deser-Misner(ADM) mass, momentum, and angular mo- the specification of smoothness propertiesgofas well as
mentum as limits as one approaches spatial infinity of surpossible additional restrictions ay,, (such as global hyper-
face integrals over two-spheres. bolicity or the requirement that a given foliation & by

It might seem natural to try a similar approach at null hypersurfaces be spaceljkand asymptotic conditions os
infinity: Let X be a spacelike slice which is asymptotically (such as the usual asymptotic flatness conditions on fields at
null in the sense that in the unphysical spacetime its boundspatial and/or null infinity in general relativityThe precise
ary is a cross sectiorf;,, of Z. Let the vector fields® be an  choice of F that would be most suitable for one’s purposes
infinitesimal BMS asymptotic symmetry. Then, when evalu-would depend upon the specific theory and issues being con-
ated on solutions, the Hamiltonian generating this timesidered. In this section and the next section, we will merely
evolution—if it exists—must again be purely a “surface assume that a suitabl€ has been defined in such a way that
term” on X; i.e., it must be expressible as an integral of athe integrals occurring in the various formulas below con-
local expression over the cross secti@nThis expression verge. In Sec. IV, we will impose a general set of conditions
would then provide a natural candidate for the value of theon F that will ensure convergence of all relevant integrals. In
“conserved quantity” conjugate tg? at “time” C. Sec. V, we will verify that asymptotically flat spacetimes at

As we shall see in Sec. Ill below, the above proposalnull infinity in vacuum general relativity satisfy these condi-
works if £€2 is everywhere tangent t@. However, if &2 fails  tions.
to be everywhere tangent b then it is easy to show that no We assume that the equations of motion of the theory
Hamiltonian generating the time evolution exists. The ob-arise from a diffeomorphism covariam:form Lagrangian
struction to defining a Hamiltonian arises directly from the density[13]
possibility that symplectic current can escape throdgh

The main purpose of this paper is to propose a general L=L(gab;Rabca: VaRocdes - - ¢, Vath, ...) (D)
sists of modifying the equation that a Hamiltonian must satJab: and Ra.de denote_s. the Riemann cqrva_ture tensor of
isfy via the addition of a ‘“correction term” involving a 9ap- [AN arbltra_ry(but finite) number of derivatives dRapcd
symplectic potential that is required to vanish whenever thénd ¥ are permitted to appear In. | Here and below we use
background spacetime is stationary. If such a symplectic p boldface letters to denote_d|fferent|al forms on spacetime
tential exists and is unique—and if a suitable “reference so@1d: when we do so, we will suppress the spacetime indices
lution” can be chosen to fix the arbitrary constant in the©f these forms. Variation of yields
definition of the “conserved quantity”—we obtain a unique _
prescription for defining a “conserved quantity” associated SL=E(¢)dp+d&¢,5¢) @

with any infinitesimal asymptotic symmetry. In the case ofyhere no derivatives 0b¢ appear in the first term on the
asymptotically flat spacetimes at null infinity in vacuum gen-ignt side. The Euler-Lagrange equations of motion of the
eral relativity, we show in Sec. V that existence and uniquetheory are then simplf=0. Note that—when the variation
ness do hold, and that this prescription yields the quantitieg; performed under an integral sign—the teheorresponds
previously obtained ifiS)]. L _ to the boundary term that arises from the integrations by
_In Sec. I, we review some preliminary material on the 55 needed to remove derivatives frégs. We require that
diffeomorphism covariant theories derived from a Lagrang-g pe locally constructed out of and 8¢ in a covariant

ian. In Sec. Ill, we investigate the conditions under which ay,anner. This restricts the freedom in the choiceddb!
Hamiltonian exists. In Sec. IV, we present, in a very general

setting, our general proposal for the definition of “conserved 60— 0+dY 3)
guantities” associated with infinitesimal asymptotic symme-

tries. This general proposal is then considered in the case @fhereY is locally constructed out o and ¢ in a covari-
asymptotically flat spacetimes at null infinity in general rela-ant manner.

tivity in Sec. V, where it is shown to yield the results[&f. The presymplectic currenin¢1)-form, w—which is a
Some further applications are briefly discussed in Sec. VI. local function of a field configurationp, and two linearized
perturbationsg; ¢ and 8,¢ off of ¢—is obtained by taking
an antisymmetrized variation @

Il. PRELIMINARIES

In this paper, we will follow closely both the conceptual

framework and the notational conventions[@?] and[13]. 3¢ e change the Lagrangian Hy—L +dK, the equations of
Further detalls_ of most of what is discussed in this sectionnotion are unaffected. Under such a change in the Lagrangian, we
can be found in those references. have #— 0+ SK. Thus, if such changes in the Lagrangian are ad-

On ann-dimensional manifoldM, we consider a theory mitted, we will have this additional ambiguity i&. However, this
of dynamical fields, collectively denotepl, which consist of  ambiguity does not affect the definition of the presymplectic current
a Lorentzian metricg,,, together with other tensor fields, form [see Eq(4) below] and will not affect our analysis.
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($,01$,6,0)=610$,52¢)— 5,00 $,614).  (4) Given the presymplectic forn2y , we can factot” by
the orbits of the degeneracy subspace$)gfto construct a

On account of the ambiguit{8) in the choice off, we have phase spacd;, in the manner described [12]. This phase

the ambiguity space acquires directly from the presymplectic fdiy on
F a nondegenerate symplectic forfd, One also obtains by

w— 0+ d[8,Y(p,8,0)— 5:Y (b, 51b)] (5)  this construction a natural projection froffito I'. Now, a
complete vector fieldc? on M naturally induces the field

in the choice ofw. variation L.¢ on fields¢ € F. If £ is such thatC.¢ corre-

Now let 3 be a closed, embedded € 1)-dimensional sponds to a teamgent figld oﬁ (i.e., if the diffeomqrphisms
submanifold without boundary: we will refer  as aslice ~ 9€nerated by™ map 7 into itself), then we may views.¢
The presymplectic form(ls , associated wittS is a map =L¢p as Fhe dynqmlcal evolu.t|onyyect(.)r field corresponding
taking field configurationsg, together with a pair of linear- 0 th_e notion of “time 'Franslat|ons_ defined by Iff when
ized perturbations off of, into the real numbers—i.e., it is restricted to the solution subme}nlfo‘\d}‘, of 7, this time
a two-form onF—defined by integratirfge overs.: evolution vector field onF consistently projects to phase

space, then one has a notion of time evolution associated
with €2 on the “constraint submanifold, T, of I', wherel’

Qs (¢,614,6,4)= L“’- (6) is defined to be the image ¢f under the projection of- to
I'. If this time evolution vector field od” preserves the

Although this definition depends, in general, upon the choicgullback toI" of €, it will be generated by a Hamiltonian,
of 3, if 6;¢ and 6,¢ satisfy the linearized field equations H, [12]. (As argued in the Appendix ¢fL2], this will be the
andy is required to be a Cauchy surface, tifeg does not  case wher¥, is compact; see Sec. Il below for some general
depend upon the choice &f, provided tha® is compact or results in the noncompact cas&hus, this construction pro-
suitable asymptotic conditions are imposed on the dynamicalides us with the notion of a Hamiltoniahi,, conjugate to
fields[12]. The ambiguity(5) in the choice ofw gives rise to  a vector fieldé? on M.

the ambiguity However, a number of complications arise in the above
construction. In particular, in order to obtain a consistent
Os(¢p,614,620) = Qs (¢, 01¢,620) projection of £;¢ from Fto T, it is necessary to choosé

to be “field dependent,” i.e., to depend upah. As ex-
+f [6.Y(h,620)— 8,Y (h,610)] plained in[12], this fact accounts for why, in a diffeomor-
2 phism covariant theory, the Poisson bracket algebra of con-
7) straints does not naturally correspond to the Lie algebra of
infinitesimal diffeomorphisms. However, these complica-
in the presymplectic fornf)s . In this equation, by the inte- tions are not relevant to our present concerns. To avoid deal-
gral overds, we mean a limiting process in which the inte- ing with them, we prefer to work on the original field con-
gral is first taken over the boundargk, of a compact re- figuration space? with its (degeneratepresymplectic form,
gion, K, of 3 (so that Stokes’ theorem can be appfiednd ~ {1x, rather than on the phase spade, The notion of a
then K approaches all oF, in a suitably specified manner. Hamiltonian,H,, on 7 can be defined as follows:
(Note that sinc& is a slice, by definition it does not have an ~ Definition Consider a diffeomorphism covariant theory
actual boundary in the Spacetim§husl for examp|e’ |E is within the above frameWOLk, with field Configuration space
an asymptotically flat spacelike slice in an asymptotically flat7 and solution submanifold. Let €2 be a vector field on the
spacetime, the integral on the right side of E@ would spacetime manifoldM, let 3 be a slice ofM, and letQsy
correspond to the integral over a two-sphere Drin the  denote the presymplectic fori6). (If the ambiguity (5) in
asymptotically flat region in the limit as the radius of the the choice ofw gives rise to an ambiguity i)y [see Eq.
two-sphere approaches infinity. Of course, the right side of7)], then we assume that a particular choiceé)gf has been
Eq. (7) will be well defined only if this limit exists and is made) Suppose thaf, £, andX have been chosen so that

independent of any of the unspecified details of how thgpe integralf s (¢, 8¢, L) converges for all;befand all

compact regionK_,_ approache§,..ln Sec. IV.below, we Wi”. tangent vectord¢ to F at ¢. Then a functiorH . : 7—R is
make som(?‘ ad’fjltlonal a§sumpthns that will ensure th‘f"t Intes'aid to be aHamiltonian conjugate t@? on sliceX, if for all
grals over ‘9%" of certain quantities that we will consider

are well defined. qbefand all field_\/ariation§¢ tangent toF (but not nec-
essarily tangent t¢f) we have

2f 3, is spacelike, the orientation & relative to the spacetime OoH=Q5(¢,0¢,L:h)= L""(‘f"é‘ﬁ'ﬁé‘ﬁ)- 8
orientatione,, ., is chosentobe®e, . wherev®is afuture-
directed timelike vector.

SWe choose the orientation afk to be the one specified by
Stokes’ theorem; i.e., we dot the first index of the orientation form “The solution submanifold, is sometimes referred to as the
on K into an outward pointing vector. “covariant phase space[9].
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Note that if a Hamiltonian conjugate t&* on slice 3

exists, then—assuming that is connected—its value off
is uniquely determined by Ed8) up to the addition of an

PHYSICAL REVIEW D61 084027

where the integral over> has the meaning explained below
Eq. (7). Note that for field variations which are “on shell,”
i.e., such that ¢ satisfies the linearized equations of motion,

arbitrary constant. In many situations, this constant can b#e have

fixed in a natural way by requiring ; to vanish for a natural

reference solution, such as Minkowski spacetime. On the

other hand, the value df . off of F is essentially arbitrary,
since Eq.(8) fixes only the “field space gradient” dfi, in
directions off of 7 at points of £.

If a Hamiltonian conjugate tg® on slicel, exists, then its

value provides a natural definition of a conserved quantity

5H§=f [6Q—¢-4]. (15
23
Consequently, iH, exists, it is given purely as a “surface

term” (i.e., an integral ovev2,) when evaluated OLF.
Equation(14) gives rise to an obvious necessary condition

associated with? at “time” 3. However, in many cases of for the existence ofi;: Let ¢ F (i.e., ¢ is a solution to the

interest—such as occurs in general relativity when, §ays
an asymptotic time translation and the slitegoes to null

infinity—no Hamiltonian exists. In the next section, we shall p(\,\

field equationsand letd; ¢ and 8,6 be tangent taF (i.e.,
61¢ and 5,¢ satisfy the linearized field equatio)nsLet
,) be a two-parameter family with$(0,0)= ¢,

analyze the conditions under which a Hamiltonian exists. Ind¢/ox1(0,0)= 514, and d¢/IN,(0,0)=5,¢. Then, if Eq.
Sec. IV, we shall propose a definition of the “conserved(14) holds, by equality of mixed partial derivatives, we must

quantity” conjugate ta£? on a sliceX when no Hamiltonian
exists.

IIl. EXISTENCE OF A HAMILTONIAN

When does a Hamiltonian conjugate&®on slice ex-

have

0=(016,—0,01)H;

_ng.[ala(qsﬁz(b)—520(¢,51¢)]

ist? To analyze this issue, it is very useful to introduce the

Noether currentrif—1)-form associated witl§?, defined by

j=0 ¢, Lehp)—E-L ©)

where the “” denotes the contraction of the vector fiefd
into the first index of the differential forrh. One can show
(see the Appendix df14]) that for a diffeomorphism cova-
riant theory,j always can be written in the form
j=dQ+¢°Cy, (10)

where C,=0 when the equations of motion hold; i.€,

corresponds to “constraints” of the theory. Equati@D)

defines the Noether charge+ 2)-form, Q. It was shown in
[13] that the Noether charge always takes the form

Q=X($)V[akp)+ Ua($) €2+ V (¢, Le) +dZ( dhf)(-ll

FEm Egs(2), (4), and(9), it follows immediately that for
¢ F but 5¢ arbitrary (i.e., §¢ tangent taF but not neces-
sarily tangent taf), the variation ofj satisfies

=0(¢,6¢,Lep)+d(E-0).

Thus, we obtain

(h,0¢,Le¢)=E0C,+d(6Q)—d(¢- 0).

Consequently, if there exists a Hamiltoniat,, conjugate

to £ onx, then for allqsej?and all §¢ it must satisfy the
equation

12

13

OHe= fE§a5Ca+ J;E[ﬁQ—g-ﬂ (14

_fdzg'w(¢!5l¢152¢)' (16)

Conversely, if Eq(16) holds, then—assuming thatis sim-
ply connectedand has suitable differentiable properjiest

will be possible to defingd, on F so that Eq.(14) holds
whenevers¢ is tangent taf.

To show this, on each connected componenfm‘hoose
a “reference solution”¢,e F and defineH =0 at¢y. Let

¢e Fand leté(N) for A €[ 0,1] be a smooth, one-parameter
family of solutions that connect$, to ¢. Define

1
H§[¢]=f0 dKLE[c?Q(k)—g-H(?\)]- 17

This definition will be independent of the choice of path
#(N\) when Eq.(16) holds since, by simple connectedness,
any other pathg’(\) will be homotopic to¢(\) and one
can apply Stokes’ theorem to the two-dimensional submani-
fold spanned by this homotopy. This defirtég on 7. How-
ever, ifH; is defined onf, there is no obstruction to extend-
ing H, to F so that Eq(14) holds onF for all 6¢ tangent to
F (i.e., including §¢ that are not tangent t#), since the
additional content of that equation merely fixes the first de-
rivative of H, in the “off shell” directions of field space.
Therefore, the necessary and sufficient condition for the
existence of a Hamiltonian conjugate ¢& on 2, is that for
all solutions ¢ F and all pairs of linearized solutions
61¢,65¢ tangent taF, we have

Lzﬁw((ﬁﬁlcﬁﬁzcb):o- (18
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Note that since this condition refers only to the “covariantwhich extend smoothly t# in the “unphysical spacetime,”
phase space’F, we shall in the following restrict attention MU B, such that this extended hypersurface intersBdtsa
to entirely F and use Eq(15) for H, [even though the “off ~Smooth f—2)-dimensional submanifold, denoted.. Fol-
shell” volume integral in Eq(14) is crucial to justifying the lowing terminology commonly used for null infinity, we

interpretation ofH, as the generator of dynamics conjugateshall refer tod% as a “cross section” of5. We also shall
to £7]. assume thatt Ugd> is compact—although it would be

Note that there are two situations where Egg) will straightforward to weaken this assumption considerably,
automatically holdyi) if the asymptotic conditions om are  Since only the behavior gk nearB is relevant to our con-

such thatw(¢, 5,6, 8,¢) goes to zero sufficiently rapidly Siderations. _ .
that the integral of- @ over 9K vanishes in the limit a& An important immediate consequence of the above two

approache& ; (i) if & is such thaK can always be chosen assumptions is that the integid) definingQy always con-
so that£? is tangent to7K, since then the pullback @f wto ~ VErges, since it can be expressed as the integral of a continu-
9K vanishes. In two these cases, a Hamiltonian conjugate t8Us (—1)-form over the compactn(-1)-dimensional hy-

&2 will exist on'S. However, if these conditions do not hold, PersurfacesUdx. o o _
then in general no Hamiltonian will exist. We turn, now, to the definition of infinitesimal asymptotic

We turn, now, to giving a general prescription for defin- Symmetries. LeEaabg a complete vector field od UBESS_O
ing “conserved quantities,” even when no Hamiltonian ex- that, in particular£ is tangent ta5 on B). We say that*® is

ists. a representative of an infinitesimal asymptotic symmétry
its associated one-parameter group of diffeomorphisms maps
IV. GENERAL DEFINITION Finto F, i.e., if it preserves the asymptotic conditions speci-
OF “CONSERVED QUANTITIES” fied in the definition ofF. Equivalently,£? is a representa-

. . , - tive of an infinitesimal asymptotic symmetry 4f;¢> (which

In this section, we will propose a definition of conserved o iomatically satisfies the linearized field equatifi®) sat-
quantities under very general assumptions about asymptofigfies all of the asymptotic conditions on linearized solutions

conditions “at infinity.” We begin by specifying these as- arising from the asymptotic conditions imposed upgn

sumptions. . .
We shall assume that the desired asymptotic conditions i 7 "S". It Lep correqunds toa vgctpr tar)gentje‘o .
If &% is a representative of an infinitesimal asymptotic

the given diffeomorphism covariant theory under consider- mmetry. then the intearal fing on the riaht side of
ation are specified by attaching a boundasyto the space- Ey 1; Ys el € Integral appearing o € right side o
time manifold,M, and requiring certain limiting behavior of g. (15), namely
the dynamical fields¢, as one approachds We shall as-
sume thatB is an (h—1)-dimensional manifold, so that sz [6Q—¢- 6], (19
M U B is ann-dimensional manifold with boundarin cases %
of interest, MU B will be equipped with additional nondy-
namical structurgsuch as a conformal factor dd U or
certain tensor fields oB) that will enter into the specifica-
tion of the limiting behavior ofp and thereby be part of the
specification of the field configuration spacg, and the co-
variant phase space;. We will refer to such fixed, non-
dynamical structure as the “universal background structure”
of MUB. Ii:J [6Q—¢-0]. (20)
. . . JK;

We now state our two main assumptions concerning the :
asymptotic conditions on the dynamical fields, and the Then, since “on shell” we have
asymptotic behavior of the allowed hypersurfaces(1) We
assume thaf has been defined so that for dlle 7 and for o($,0¢,Lep)=d[ 6Q—&- 0] (21
all 61 ¢,6,¢ tangent taF, the (h—1)-form w(p, 514, 5,¢)
defined onM extends continuousiyto B. (2) We restrict
consideration to slices,, in the “physical spacetime,’M,

always is well defined via the limiting procedure described
below Eq.(7), and, indeed| depends only on the cross sec-
tion 93 of B, not on3. To see thi, let K; be a nested
sequence of compact subsets3osuch that’K; approaches
d%, and let

[see Eq.(13) abovd, we have, by Stokes’ theorem for
=j,

Ii—Iszmd[éQ—? 0]= L~w(¢'5¢'£’§¢) (22
5The assumption tha$ is an (1 — 1)-dimensional manifold struc- 4 Y

ture is not essential in cases whevevanishes a3 (see “case | WhereEij denoteSKi\K]- . i.e., the portion of3 lying be-

below). In particular, there should be no difficulty in extending our tweendK; andaK . . As a direct consequence of our assump-
framework to definitions of asymptotic flatness at spatial infinity in : I

which B is comprised by a single poifit5].

81t should be emphasized that we require that the dulextend
continuously toB—not merely its pullback to hypersurfaces that ‘A similar argument has previously been given to show that the
approachs. “linkage formulas™ are well definedsee[16,17).
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tions thatw extends continuously té and thatX U d3 is

PHYSICAL REVIEW D61 084027

everywhere tangent t6X. In this case, ifé? is tangent to

compact, it follows thafl;} is a Cauchy sequence, and henceCross sectiong>,; andd%,, we have

it has a well-defined limit), asi—-c. Note that this limit

always exists despite the fact that there is no guarantee that

the differential form€Q or # themselves extend continuously
to B. A similar argument establishes that this limit is inde-
pendent of; i.e., for a sliceS such thatS =43, a simi-
larly defined sequencﬁi} of integrals on3 will also con-
verge tol.

Let & and &% be representatives of infinitesimal
asymptotic symmetries. We say thtis equivalento &’2 if
they coincide onB and if, for all p € F, §¢ tangent toF,
and for alldX on B, we havel =1’, wherel is given by Eq.
(19) andl’ is given by the same expression wihreplaced
by £'2. The infinitesimal asymptotic symmetriesf the

theory are then comprised by the equivalence classes of t@%

representatives of the infinitesimal asymptotic symmetries.

Now consider an infinitesimal asymptotic symmetry,
resented by the vector fieléf, and let> be a slice in the
spacetime with boundarg2 on B. We would like to define

a conserved quantityl . : F— R associated witlg? at “time”

>, via Eq.(15). As we have seen above, the right side of Eq.

rep-

Sl s, = OHl oy, =~ fB o($.56.Le).  (24)

Since the right side of this equation is nonvanishing in gen-
eral, we see that even whé# is tangent to cross sections so
thatH, exists,H; will not be conserved.

Case | arises in general relativity for spacetimes which are
asymptotically flat at spatial infinity as defined [ib8], and
our prescription for definingd . corresponds to that given in
[10] and[11]; see[13] for explicit details of how Eq(15)
gives rise to the usual expression for ADM mass wiiis
an asymptotic time translation. As we shall discuss in detalil
in the next section, case Il arises in general relativity for
acetimes which are asymptotically flat at null infinity.
The main purpose of this paper is to provide a general
definition of a “conserved quantity” conjugate to an arbi-
trary infinitesimal asymptotic symmetig? in case Il. In the
following, we will restrict attention to this case, and we will
denote the quantity we seek && to distinguish it from a
true HamiltonianH,. As we have seen, in this case an at-

(15) is well defined under our asymptotic assumptions, but agempt to defineH, by Eq. (15) fails the consistency check
discussed in the previous section, in general, there does npte) and thus does not define any quantity. However, con-
exist anH, which satisfies this equation. The analysis natu-sider the following simple modification of Eq15): On B,

rally breaks up into the following two cases:
Case | Suppose that the continuous extensiorwofo B
has vanishing pullback t8. Then by Eq(18), H; exists for

all infinitesimal asymptotic symmetriggassuming thatr is

simply connected and has suitable differentiable properties

and is independent of the choice of representafveFur-
thermore, ifd%; and 9>, are cross sections @ that bound
a region;,C B, we have® by Eqgs.(15) and (21),

SHel s, — 5H§|aEl:_fB o($,0¢,L:4)=0. (23
12

Thus, 6H, is independent of choice of cross section within
the same homology class. If the arbitrary cons{@mt each
cross sectionin H, is fixed in such a way that there is a
“reference solution” for whichH,=0 on all cross sections
(see below, then on all solutiond, will be independent of

let ® be a symplectic potential for the pullbacke, of the
(extension of thesymplectic current forn to B3, so that on

B we have, for all¢ e F and 8, ¢, 5,¢ tangent tarF,

($,010,0,0)= 610(,0,¢) — 5,0(,016).

We require tha® be locally constructetbut of the dynami-
cal fields, ¢, and their derivativesor limits of such quanti-
ties to B) as well as any fields present in the “universal
background structure.” In the case whdregand, henceaw)

is an analytic functiotf of its variablegsee Eq(1)], we also
require that® depend analytically on the dynamical fields;
more precisely, if¢(\) is a one-parameter family of fields
on M that depends analytically oh and satisfies suitable
uniformity condition$® near B, we require that the corre-

(25

the choice of cross section within the same homology class.®More precisely, by “locally constructed” we mean the follow-

Thus, in this case, not only doét; exist, but it truly corre-

ing: Suppose thgy:M U B— M U B is a diffeomorphism which pre-

sponds to a conserved quantity; i.e., its value is independeserves the universal background structure. Supp@s@¢) and

of “time,” X.

Case Il Suppose that the continuous extensionwotfo B
does not, in general, have vanishing pullbackstoThen, in
general, there does not exist by satisfying Eq.(15). One
exception is the case wheg@ and ¢2 are such that? is

8We define the orientation df to be that obtained by dotting the
first index of the orientation oM into an outward pointing vector.
The orientation oPX was previously specified in footnotes 2 and 3.
The signs in Eq(24) to correspond to the case whei®, lies to
the future ofdX ;.

(¢',8¢") are such that there exists an op@n M U B) neighbor-
hood, O, of pe B such that for alxe MNO we have¢=yx, ¢’
and §¢=yx, 6¢', where y, denotes the pullback map on tensor
fields associated with the diffeomorphism Then we require that
atp we have@=y,0’.
1%The condition that. be an analytic function of its variabléas
occurs in essentially all theories ever seriously considete
nothing to do with any smoothness or analyticity conditions con-
cerning the behavior of the dynamical fields themselve&loiwe
do not impose any analyticity conditions on the dynamical fields.
For the case of asymptotically flat spacetimes at null infirity,
a suitable uniformity condition would be to require the unphysical
fields to vary analytically with\ atZ.
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sponding®(\) also depend analytically ok. If any arbi-

trary choices are made in the specification of the background 5H§|¢922_ 5H§|«921: B Lg oF;
structure(such as a choice of conformal factor in the defini- 12
tion of null infinity in general relativity, then we demand
that ® be independent of such choicéso, in particular, in

(28)

where the variation of the fluxn(—1)-form, F,, on B is

i b
the case of null infinity,® is required to be conformally given by
; ; ; T e 12 _
invariany. Our proposal is the following: Lek(, satisfyt SF= @b, 5, Lep) +A £ O, 50)]. (29)
_ _ Here the first term in this equation arises from takirgj’‘of
= o - 0]+ - 0. 26
ot faz[ Q¢ 0] ng (29 the integrand of the first term in E¢26) [using Eq.(21)

abovdg, whereas the second term is just the"*‘of the inte-
Then it is easily seen that this formula satisfies the consisgrand of the second term in E(26). However, we have
tency check(16) and, thus, defines a “conserved quantity”
H, up to an arbitrary constant. Finally, let this arbitrary con-  d[£-O(¢,6¢)]1=L0($,5¢)

stant be fixed by requiring that, vanish(for all infinitesi- ——

mal asymptotic symmetrie&€ and all cross section&.) on 5,04, Lep)+ 0O($,Leh).

a suitably chosen “reference solutionpoe F. We will (30
specify below the necessary conditions that must be satisfied )

by o Thus, we obtain

However, the above proposal fails to define a unique pre-
scription because the choice of symplectic poten@alis
ambiguous up tt

5F ;= 80(p,Leh). (31)

We now impose the requirement th@( ¢, 5¢) vanish

27) wheneverg is stationary(even whend¢ is non-stationary

We also explicitly assume that the reference solutigg(on

which H, vanishes for all cross sections and hefge:0),

is stationary. Since botf andF; vanish on¢,, we obtain
from Eg. (31) the remarkably simple formula

O($,6¢)—0O(¢,6¢)+ W(p)

whereW is an (0n—1)-form on B locally constructed out of
the dynamical fieldsp as well as the universal background
structure defined o8, with W independent of any arbitrary
choices made in the specification of the background struc- _
ture. Thus, in order to obtain a prescription which defines Fe=0($Led). (32
H,, we must specify an additional condition or conditions
which uniquely selec®.

An additional requirement o can be motivated as fol-
lows. We have already seen from E@4) above thatH,

It then follows immediately(as a consequence of our choice
of @) thatF, vanishegfor all £) on stationary solutions, as
we desired. Equatioi32) also implies an additional desir-
able property of;: We haveF,=0 wheneveg? is an exact

cannot, in general, be conserved; i.e., there must be a NOWY mmetry—i.e., whenever,,¢=0—regardless of whether
zero flux, F¢, on B associated with this “conserved quan- radiation maly Be present ¢

tity.” This i‘o’. tq be expected on a_lccount of the possible pres- If a symplectic potentia® satisfying our above condition
ence of radiation aB. However, it seems natural to demand _ .tc and is unique, then E@6) together with the require-

thr?t Fe vams(;l_(?_nd, thus, tha;HétbSe Cﬁnserve)dlnhthel dcase ment thatH, vanish(for all cross sections and adf) on a
where no radiation IS presen uch a case should occur particular, specified solutionp,, uniquely determinegt, .

when ¢ IS g'sta'.uonary solqun, l.e., when there exists 4owever, there remains a potential difficulty in specifying

nonzero infinitesimal asymptotic symmetry represented by, i 7 th | h 7 wh

an exact symmetry®—so that £;¢=0 in M—and t? is bo: $oe 7, then we also havey, ¢oe 7, where
Y:MUB— MU B is any diffeomorphism generated by a rep-

timelike in M in a neighborhood of3. Hence, we wish to tati : infinitesimal toti . Si
require thaf; vanish on for all £ for stationary solutions. resentative of an nfintesimal asympltotic symmetry. since
we have no meaningful way of distinguishing betwag#

To see what condition o® will ensure that this holds, we X .
and ¢, ¢, if we demand that{, vanish on¢,, we must

note that from Eq(26) it follows immediately that . . .
a(26) y also demand that it vanish afn, ¢,. However, this overde-
terminesH, (so that no solution existsinless the following
?Here it should be noted that the new term on the right side of:(;_ns_;ste_nq; Condltlotntholds: Le;tatbe a rspresen(;tatlvteh of fan|d
this equation is an ordinary integral over the surface of B, Iniinitesimal asymptotic. symmetry and consicer the fie

whereas, as explained above, the first term in general is define¥griation aboute, given by 6¢=L,¢o. Since this corre-
only as an asymptotic limit. sponds to the action of an infinitesimal asymptotic symmetry

3Note that the ambiguity i® is of an entirely different nature ©N ¢o, under this field variation we must hawd{;=0. On
than the ambiguity3) in 8. The quantity® is defined from the the other hand§H, is specified by Eq(26). Since under this
LagrangianL (beforew has been defingdand its ambiguity arises ~ field variation we have
from Eg. (2). The quantity® is defined fromw and its ambiguity

arises from Eq(25). oQ[€]=L,Q[§]-Q[L,¢] (33
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and since, by assumptio®, vanishes atp,, we find that the gives rise to the flux formulé32), so that the flux vanishes

consistency requirement afy, is that for all representatives wheneverg is stationary oré? is an exact symmetry.

£2 and »? of infinitesimal asymptotic symmetries and for all  In the next section, we analyze what this general prescrip-

cross sectiongy, we must have tion yields for the case of asymptotically flat spacetimes at
null infinity in vacuum general relativity.

0= LE{KWQE]—Q[E,,&]—&- Kb, Lydo)}t. (34

V. “CONSERVED QUANTITIES” AT NULL INFINITY
From Egs.(21) and(25) together with the vanishing & at IN GENERAL RELATIVITY
¢y, it follows that the right side of Eq34) is independent of
cross section and thus need only be checked at one Crogs
section. In addition, Eq34) manifestly holds whem? is an
exact symmetry ofp;—i.e., when., ¢,=0—sincesp=0
in that case. Using Yab=Tap - (37)

In vacuum general relativity, the manifoM is taken to
4-dimensional and the only dynamical field, is the
spacetime metriag,,. We shall write the varied field as

L,Q=d(7-Q)+7-dQ=d(7-Q)+7-] (35 The Einstein-Hilbert Lagrangian of general relativity is

together with Eq(9), we may rewrite Eq(34) in the form 1
L=—Re (39
167
0= LE{”' & b0, Leto) =& K bo. Lyho) where R denotes the scalar curvature @f, and € is the
spacetime volume form associated widh,. The presym-
—7n-(&-L)—Q[L,£]}. (36)  plectic potential 3-formd is given by
[Here, the integral ovewX is to be interpreted as an P d (39
asymptotic limit, with the limit guaranteed to exist by the abe™ 7 g Cdabd’

argument given above. If extends continuously t8, then

the termy- (£-L) makes no contribution to the integral since Where

both »* and £ are tangent td3.] Since Eq.(36) is mani-

festly antisymmetric iny® and £2, it follows that the consis- v*=9""[Vi¥en—Verm] (40)

tency condition also is automatically satisfied wheneifeis

an exact symmetry of,. However, if both%? and ¢ are

asymptotic symmetries that are not exact symmetriegof

then Eq.(34) [or, equivalently, Eq(36)] yields a nontrivial 1

condition that must be satisfied l,. wabc:EEdachd (41
To summarize, we propose the following prescription for

defining “conserved quantities” in case Il: L& be a sym-  \yhere

plectic potential onB3 [see Eq.(25) abovd which is locally

constructed out of the dynamical fields and background wa=Pabedely Vi vier— Y1bcV Y26 i) (42)

structure(and is an analytic function of the dynamical fields

whenL is analytig, is independent of any arbitrary choices With

made in specifying the background structure, and is such that

®(_¢,5q§) vanishes for allé¢ tangent toF whenever ¢ pabcdefz gaeqfbged ;gadgbegfc_ %gabgcdgef

e F is stationary.[If it exists, such a® is unique up to

addition of a termSW whereW is locally constructed out of 1 1

the dynamical fields and background struct(med is ana- - Egbcgaegfd+§9bcgadgef- (43

lytic in the dynamical fields wheh is analytig, is indepen-

dent of any arbitrary choices made in specifying the backgingjly, the Noether charge 2-form associated with a vector
ground structure, and is such thév vanishes for alldg  fie|g £% is given by[13]

tangent taF whenevere is stationary} Let ¢, be a station-

ary solution that satisfies E(B4) [or, equivalently, Eq(36)] _ cod
for all infinitesimal asymptotic symmetries® and £&2. Then Qapl £1=~ Eeabcdv &
we define?{; by Eq.(26) together with the requirement that

H, vanish ong,. To the extent that @ satisfying the above We wish to consider spacetimes that are asymptotically
requirements exists and is unique, and to the extent that #fat at future and/or past null infinity. For definiteness, we
stationary ¢, satisfying Eq.(34) exists, this defines a pre- will consider future null infinity.[Sign changes would occur
scription for defining ‘“conserved quantities” associatedin several formulas when we consider past null infinity on
with asymptotic symmetries. This prescription automaticallyaccount of our orientation convention #h(see footnote B8]

whereV, is the derivative operator associated wgth,. The
corresponding presymplectic current 3-forn{ 18]

(44)

084027-8



GENERAL DEFINITION OF “CONSERVED. ..

We denote future null infinity byZ and adopt the standard
definition of asymptotic flatness thefsee, e.g.[21]). The
key ingredient of this definition is that there exist a smdbth
metric, §ap, 0N MUZ and a smooth functior), on MUZ
such that)>0 onM, Q=0 onZ, andV,Q is null*® and
nonvanishing everywhere dfy and such that throughoiv
we have

gabzﬂzgab- (45)

We also assume thdthas topology $x R. In the following

PHYSICAL REVIEW D61 084027

general definition of infinitesimal asymptotic symmetries
corresponds closely to the definition of infinitesimal BMS
symmetrie&’ given in[17].

It follows immediately from our conditions o# that the
unphysical perturbed metric

‘?abEQZ?’ab (49

extends smoothly t@ and vanishes there, so it can be written
in the form

Yab=QTap (50)

all indices will be raised and lowered using the “unphysicalwhere r,, extends smoothly t@ and, in general, is nonvan-

3 o~

Oap- We write

metric,

n,= V.. (46)

ishing there. Furthermore, sinén,=0, we have

1.

5[§anb]: _[ﬁ(aﬁi’b)c_ 2Vc7ab] ne. (51)

(Here ¥, denotes the derivative operator associated wittouPstituting from Eqs(49), (50), and (46) and setting the

Uap. although, of course, sind@ is a scalarV,Q is inde-
pendent of the choice of derivative operatdiVe may use
the freedom) — w{) with @ a smooth, strictly positive func-

tion on MUZ to assume, without loss of generality, that the

Bondi condition

AV‘anb|I:0

(47)

holds. An immediate consequence of Ej/) is that onZ we
haveV ,(n°n,)=2n®V_n,=0, so, in the Bondi gauge,
nén,=0(0?). (48)

Without loss of generalitysee, e.g.[17]), we also may as-
sume that the conformal factof), on MUZ and the un-

resulting expression to zero dh in accordance with Eq.
(47), we obtain

n(aTb)CnC|I: 0. (52)
This, in turn, implies that,:n°® vanishes orZ, so we may
write

Tbch:QTb (53)
wherer, is smooth(and, in general, nonvanishipgtZ. This
implies that
on?= 8(§%°np) = — Q1 7°n,= - 0?72, (54)
The crucial issue with regard to the applicability of the
ideas of the previous section is whether the presymplectic
current 3-form® w extends continuously t. To investigate

may be assumed to be independent of the physical metrigt ) and variables that extend smoothly Zo Clearly, the

Jap. ON M. Without loss of generality, we mafby use of
freedom remaining in the choice &) take the universal

unphysical metric@‘a)b, on Z to be such that the induced

spatial metric on all cross sections Bfis that of a round
two-sphere of scalar curvatukeln the following, we will fix
an allowed choice of) on MUZ and a choice ok. We will
then také® F to consist of metricsg,,, on M such that
Q2g,, extends smoothly t@ and equalijgb there, and such
that the Bondi condition47) holds onZ. It may then be

unphysical volume element
e=0% (55)
and

’|5abcdef5976pabcdef (56)

checked that the general notion of infinitesimal asymptotic The only difference between our definition and the definition
symmetries given in the previous section corresponds to theiven in[17] concerns the notion of the equivalence of two repre-

usual notion of infinitesimal BMS symmetries; indeed, ourSentatives¢® and¢’®. In addition to requiring agreement gt and
&' atZ, we impose the extra requirement that they give rise to the

same asymptotic integr&l9). However, it is not difficult to show
that if £ and¢’? agree afZ, then they automatically give rise to the

The requirement of smoothness could be weakened considerablgme asymptotic integréal9).

without affecting our analysis.

8As noted in Sec. llw has the ambiguity5). However, lyef{20]

For solutions to the vacuum field equations, it follows from the has shown that i¥ is such tha® maintains the general form given

fact thatQ=0 onZ thatV,Q is null onZ in the metricg,y.
18Note that our imposition of this rather rigid structure &ras a

by Eq.(23) of [13] with the coefficients in that formula being regu-
lar, analytic functions of the fields, thef must vanish orf. Con-

result of our gauge fixing is not done merely for convenience, but isequently, in vacuum general relativity, the limit Toof  is, in

necessary in order tha# extend toZ.

fact, unique.
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extend smoothly t&@ and are nonvanishing there. We elimi- where we have writtenr= 72, and “1«<2" denotes the
nate the the action of the physical derivative operatyy, same terms as in the preceding expression with 1 and 2

on vy in terms of the unphysical derivative operatdr,,  interchanged. -
via The above formula can be rewritten in a more useful form
as follows. By a direct computation using E(.5.19 of
Va¥oe=Va¥pet 2Cda(byc)d (57) [21], the variation of the unphysical Ricci tensorZais given
by

where(see, e.g.[21])

_ _ 5ﬁ bl =—Nn kV‘bT—nc"V‘Tb'l'nbvdT d+n Th) -
CcabZZQ 150(anb)_ﬂ 1nc§ab. (58) ablz (a ) c'a ( a) (a ) (63)

Finally, we substitute Hence, definingS,;, by

'}’ab:Q_lTab- (59 _ 1.
The terms appearing in the resulting expressiondomay Sap=Ravb™ gR0a 4
now be classified as followsi) Terms in whichAVa acts on
T1ap OF Toap- FOr these terms, the powers 6f resulting
from Egs.(55), (56), and(59) cancel, so these terms extend
smoothly toZ and are, in general, nonvanishing theie)

Terms in whichV, does not act orry,y, Or 75, andw? is . o
proportional ton?. These terms cancel due to the antisym- —3(=NVer+n"7c)Gap- (65)

metry in 71, and 7,45 . (iii ) Terms in whichV , does not act

ON T1ap OF Toap bUtW? is Not proportional tm®. These terms o the other handR,, is related toR,, by the usual confor-
necessarily contain a contraction of with 71, Or 7545, mal transformation formulagee, e.g., Appendix D ¢21]).

and Eq.(53) can then be used. The extra powerbficked  gettingR,,=0 by the vacuum field equations, it follows that
up by the use of this equation ensures that these terms extepsbe Eq(6) of [3]]

smoothly toZ, where they are, in general, nonvanishing. The

upshot is thatw extends smoothly t@ and is, in general, S.p= _29_1v(anb)+9_2ncnc§ab- (66)
nonvanishing there. Thus, with our definition Bf asymp-

totically flat spacetimes at null infinity in general relativity Taking the variation of this equation and evaluating the re-
do indeed fall into the category of “case II” of the previous sylting expression off using Eqs.(51), (50), (54) and(53),

we obtain

5Sab|I: - n(avb)T_ nCVCTab+ n(deTa)d+ n(aTb)

section. we obtain
To apply the proposed prescription of the previous section
to define a “conserved quantity,,, for each BMS gen- 5Sab|I:4n(aTb)_nC§cTab_ N°7Gap - (67)

erator, £2, and each cross sectiony, of Z, we need an

explicit formula for the pullbacke, of the extension ofvto  Comparing this formula with Eq65), we obtain
7. To do so, we definé®e by

- VP70~ Var—37,]|7=0 68

eabcd:4 (3)E[abcnd] (60) [ ab a a]|I ( )
so that the pullback®e, of e to 7 defines a positively > well as
oriented volume elemettton 7 (see footnote B We have [nbnﬁbr+2nbrb]|1=0. 69)

1
w=— EQ*“nawa Cre. (61)  Using Eq.(69) together with Eq(65), we see that
A lengthy but entirely straightforward calculation starting Q*4nawa|l.:£[7-"=21b§15ab_ 725,51 (70)
with Eq. (42), making the substitution&7)—(59), and mak- 2
ing heavy use of Eq947), (48), and (53) yields (see also ) . ,
[22,9) Now, the Bondi news tensoN,,, onZ is defined by[3]
Nab=Sab— Pab (72)

Qf4naWa|I:%{_ N3V o Tapet 7oV o+ o7y}
where S,;, denotes the pullback t& of S,, and p,, is the
—[1-2] (62)  tensor field or defined in general by E¢33) of [3], which,
in our gauge choice, is justkg?,, whereg?, denotes the
pullback toZ ofggb. Sincedp,,=0 and since, by Eq53),
19For past null infinity, this volume element would be negatively 72" on Z is tangent taZ, we may replace’S,, by 6Ny, in
oriented, resulting in sign changes in some of the formulas belowEq. (70). Thus, we obtain our desired final formula:
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. ) ) . physical derivatives of the unphysical curvature together
w=— @[7‘5‘ 81Nap— 75°3,Nap] Ve (72 with Q and its unphysical derivatives. Therefore, we may

view W as a function ofj,,, Rapd, and unphysical deriva-

To apply our prescription, we must find a symplectic po-tives of R,,J, together withQ) and its unphysical deriva-
tential, ®, for @ on Z which is locally constructed out of  tives. The requirement thaV vary analytically withg,y, (at
the spacetime metriqy,,, and background structur@nd  fixed Q) then implies that it must depend analytically @y,
depends analytically on the metrids independent of any at fixed ().
arbitrary choices made in specifying the background struc- In our specification of conditions on the background
ture, and is such th®(gap, van) Vanishes for ally,, when-  structure, we required thall, induce a round two-sphere
everg,, is stationary. By inspection, a symplectic potential metric of scalar curvatur& on all cross sections df. The
satisfying all of these properties is given®by choice ofk was arbitrary, and could have been fixed at any
value. If we keepF fixed (i.e., consider the same class of
physical metricsbut change&) by Q— X with A\ constant,
then g%, will induce a round two-sphere metric of scalar
curvature\ ~ 2k rather thank on all cross sections. We re-

As discussed in Sec. lll, this choice @ will be unique if  quire that under this scaling 61 (corresponding to modify-
and only if there does not exist a 3-forl on Z which is  ing an “arbitrary choice” in the specification of the back-
locally constructedin the sense of footnote) ®ut of the  ground structurg we haveW —W.
physical metricg,,,, and background structutand depends To analyze the implications of this requirement, it is use-
analytically on the physical metpicis independent of any ful to introduce the following notion of thecaling dimen-
arbitrary choices made in specifying the background strucsion[3] of a tensor,Tal'--akbl__,bl, of type (,l) which is
ture, and is such thaiW vanishes for ally,, whenevem,,  |ocally constructed out of the unphysical metric afd If

is stationary. In our case, the only relevant “backgroundynder the scalingl—\, keeping the physical metric
structure” present is the conformal factél, since all other  fixed, we haveT? -2, | —APT21---3& . then we
! 19 1000

background quantitie¢such asg®, and n? on Z) can be
reconstructed from{) and the physical metric. Now, the
physical metric,g,,, its curvature,R,,, and (physica)
derivatives of the curvature all can be expressed in terms of

the unphysical metricg,;,, its curvature,R,,, and un-

1
@Z - ENabTab (S)E (73)

define the scaling dimensios, of T#---%, |, by
s=p+k—1I. (74

It follows that the scaling dimension of a tensor does not
change under the raising and lowering of indices using the
0 _ S _ unphysical metric. It is easily seen that the scaling dimension

A major subtlety would have arisen in the meaning of “locally of () is + 1, the scaling dimension of the unphysical metric
constructed” if we had not imposed the rigid background structurejs g and the scaling dimension of the unphysical curvature
given by the Bondi conditiori47) together with our fixing 062,.  tensor is—2. Each derivative decreases the scaling dimen-
If, say, the background structure was specified merely by the,, by 1, so, for example, the scaling dimension ngf

“asymptotic geometry” as defined on p. 22[d], then there would . . . . . -
exist diffeomorphisms locally defined in the neighborhood of a_VaQ is 0 and the scaling dimension of thign derivative

point p e Z which preserve the background structure but cannot b&@f the unphysical curvature is (j+2).

extended to globally defined diffeomorphisms which preserve the Since the 3-formW is required to be invariant under scal-
background structure. Indeed, a necessary condition for &g of (, it must have a scaling dimension ef3. Since
background-structure-preserving local diffeomorphism to be g|0-(3)6abc has scaling dimension 0, if we definev
bally extendible is that it preserve the tensor fiplg, defined by =W,y (®)¢3b¢ e obtain a scalar with scaling dimension
Eq. (33 of [3], sincep,, can be constructed from a global specifi- —3. By our assumptionsy must be locally constructed out
cation of the background structure. Now, locally defined diffeomor-of () and @, (in the sense of footnote)%nd must vary
phisms that are not globally extendible are not relevant to the defianalytically withg,p, at fixedQ). Presumably, this will imply
nition of “locally constructed” given in footnote 9, since that that we can writew as a convergent sum of ternfwith
definition requires globally defined diffeomorphisms. Since the al-cpefficients depending on the conformal fagtof products
lowed (globally. defined Qiﬁeomorphisms must Ioca!ly preserve (with all indices contractedof the unphysical metric, the
pap. that quantity would, in effect, count as “local” with regard to ynphysical curvature, unphysical derivatives of the unphysi-

the definition of “local construction” of®—even though the con- ~ . L
g cal curvaturen,=V,Q and unphysical derivatives af?.

struction ofp,, from the background structure given[i8] involves N . f f in th i
the global solution to differential equations. Consequently, the( egative powers of) can, of course, occur in the coefil-

Bondi news tensofwhich is constructed out of manifestly local cients if they multiply a.term Wh'.Ch vanishes swtably rapidly

quantities andp,,) would still be considered as “locally con- atZ.) Now, the unphysical metric, the unphysical curvature,
structed” even if the background structure had been specified as iind N, all have have a non-positive scaling dimension and
[3]. This subtlety does not arise here, since with our gauge choicelerivatives only further decrease the scaling dimension.

pap and the Bondi news tensor are manifestly local. Therefore, if.a.ny term were _composed of more than two
2 That N,, and hence® vanish for all stationary solutions is factors containing the unphysical curvature tensor, the only
proved, e.g., on pp. 53-54 p8]. way of achieving a scaling dimension ef3 would be to
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multiply it by a positive power of2, in which case it would
vanish atZ. Similarly, if the term contained a single factor

PHYSICAL REVIEW D61 084027

K= "1&n,. (80)

with two or more derivatives of curvature, it also would have (Thus, x,,=2X4;, in the notation of 17]; it follows directly

to vanish aftZ. Similar restrictions occur for terms containing from the definition of infinitesimal asymptotic symmetries
derivatives ofn®. This reduces the possible terms that canthaty,, andK extend smoothly td@.) It may then be seen by
occur inw to a small handful, and it is then easily verified inspection of Eq.(19) of [17] that 6($,L:¢o) is propor-

that there does not exist an allowedsuch thatéw is non-
zero in generalso that it contributes nontrivially t@) but
Sw vanishes whenever the physical metdg;,, is station-
ary. Therefore, we conclude th@X is unique.

tional to the “linkage flux” (see below associated with?.
However, from the formula for the linkage flux for super-
translations in Minkowski spacetime given in EG.0) of
[23], it may be verified that thaf ;s 7- & ¢, L:o) cancels

To complete the prescription, we need to specify a staf ;s&- (¢o,L,¢0), SO Eq.(79) is indeed satisfied, as we

tionary “reference solution”¢, satisfying Eq.(36). A natu-

ral candidate forp, is Minkowski spacetime and, indeed, it

desired to show.
Thus, for the case of null infinity in general relativity, the

should be possible to show that no other stationary solfftion general prescription proposed in Sec. IV instructs us to de-
can satisfy Eq(36). In Minkowski spacetime, an arbitrary fine a “conserved quantity,”H,, for each infinitesimal
infinitesimal asymptotic symmetry can be written as a sum oBMS symmetryé? and each cross sectiofiy., of Z by

a Killing vector field plus a supertranslation. Since E8p)
holds automatically whenever eithef® or ¢ is a Killing

vector field, it suffices to check E¢36) for the case where
both »? and &2 are supertranslations; i.e., @ithey are of the
form &=an?, 7%=pBn? where « and B are such that

naV,a=n3V_B=0. Since satisfaction of Eq36) does not

1
o= | 150-e 01~ o | Naure P @

together with the requirement tha,=0 for all £* and all
cross sections in Minkowski spacetime.

depend upon the choice of representative of the infinitesimal By our above arguments, there exists a unigtjesatis-

asymptotic symmetry, we may assume thatand £ satisfy
the Geroch-Winicour gauge conditigh7] V,7*=V,£2=0
(see below. In that case/;sQ[ £,¢] will vanish and Eq.
(36) reduces to

OZLE{W'O(¢0'£§¢0)_§'0(¢o,£77¢0)}- (75
From Eq.(39) we obtain, orz,

1
77C Ocan( P, 0¢p) = EmfabcdvC 77d (76)

where
Vva=0 "V, AP-Var—372] (77

and it should be noted that® has a smooth limit t& on
account of Eq(68). The pullback ofy- @ to Z is thus

1
7 0= = 75— BnaVon- e (78)

In using this equation to evaluate the tesmé( ¢, L) in
Eq. (75), we must substitutg 5, for 7,, where
XabEQﬁggabzﬂil[ﬁgﬁab_ 2KGap] (79

with

24f 12 denotes the timelike Killing vector field, thefys Q[t] is

fying the above requirements. How does this prescription
compare with the one previously given by Dray and Streubel
[5]? From our general analysis of Sec. IV, it follows that our
prescription automatically yields the flux formula

1
Fe=0(gab,Lebab) =~ 35— Nanx™ P& (82

Equation(82) agrees with the flux formula proposed by Ash-
tekar and Streub€l8] [see Eq.(19) of [23]]. But it was
shown by Shaw and Draj6] that the Dray-Streubel pre-
scription also yields the Ashtekar-Streubel flux formula.
Therefore, the difference between otf; and the “con-
served quantity” proposed by Dray and Streubel must be a
quantity that depends locally on the fields at the cross section
a2, and yet—since the flux associated with the difference of
these quantities vanishes—for a given solution, is indepen-
dent of the choice of cross sectigne., this difference, if
nonzero, would be a truly conserved quantity we restrict
our attention to spacetimes that are asymptotically flat at
both null and spatial infinity, the equivalence of our prescrip-
tion to that of Dray and Streubel would follow from the fact
that they both yield the ADM conserved quantities in the
limit as the cross section approaches spatial infinity. How-
ever, it is instructive to show the equivalence of the two
prescriptions directlywithout assuming asymptotic flatness
at spatial infinity, and we now turn our attention to doing so.
Let 93 be a cross section ¢f and let&? be a represen-
tative of an infinitesimal asymptotic symmettye., an in-
finitesimal BMS representatiyeWe may uniquely decom-
poseé? into a part that is everywhere tangentd® on 4%,
plus a supertranslation. Since both our prescription and that

proportional to the Komar formula for mass and is nonvanishing forof Dray and Streubel are linear &, it suffices to consider
all stationary solutions other than Minkowski spacetime. We expecthe equivalence of the prescription for each piece separately,

that Eq.(36) will fail when 7® is an asymptotic boost argf is an

asymptotic spatial translation such that their commutator yiglds

i.e., to consider separately the cases wHayet? is every-
where tangent t@2 and(b) £2 is a supertranslation.
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Consider, first, casé), where as discussed in Sec. IV, a whereu? satisfies Eq(86). We wish to show that the second

true Hamiltonian exists. In cage), Eq. (81) is simply term on the right side of Eq87) vanishes. To do so, it is
convenient to introduce a null vector fiel8 as follows. At
Mf:] Q. ) points of 3%, we takel? to be the uniquépast-directeginull
g3 vector that is orthogonal t¢> and satisfied®n,=1. We

extend ® to all of Z by requiring thatC ,12=0 onZ. Finally,

we extend 2 off of Z via the geodesic equatidhV,12=0. A
calculation similar to that given in Eq17) of [17] shows

One might think that the solution to this equation would be
simply H.= [ ;5Q, which corresponds to the Komar formula
with the correct numerical factor for angula}r moment[_ume that the integrand of the second term in E§7) can be
Eq. (44) abovd. However, althouglf ;s 5Q is well defined |, o a5

and independent of choice of infinitesimal BMS representa-

tive £2 (as it must be according to the general considerations oo g = 1o o~ o .
of Sec. IV), it was shown in[17] that the value off ;sQ lap= €apcdV (LU =1V Y+ EYVcl +Dcs"|“eap
depends upon the choice of infinitesimal BMS representative (88)

and, in this sense, is ill defined unless a representative is
Speciﬁed. It was aISO ShOWﬂ |ﬁl7] that the GerOCh- Wheresa denotes the projection Qﬁto (92’ Ba and (Z)Eab

Winicour conditionV,£%=0 in M (whereV , is thephysical  are the derivative operator and volume elementBnasso-

derivative operatQr picks out a class of representatives . ith the i hvsical =
which makesf ;= Q well defined.[By Eq. (79), the Geroch- \(;Jgtﬁgvv:twrgttgr:nduced unphysical metrig,, on 9%, and

Winicour condition is equivalent toy=0, where y

=52 xap.] We write Qg to denoteQ when £ has been 1

chosen so as to satisfy the Geroch-Winicour condition. It YEE[EgH' Kr]. (89
was shown if17] that [ ;s Qgw IS equivalent to a previously

proposed “linkage formula”[16] for defining “conserved tpe termpB ¢ is a total divergence and integrates to Z&ro.

quantities.” Furthermore, this linkage formula has the prop-ager 4 significant amount of algebra, it can be shown that
erty that whené? is everywhere tangent @, it yields zero the remaining terms in Eq88) can be expressed as
in Minkowski spacetim& as desired. This suggests that the

solution to Eq.(83) together with the requirement that, !
vanish in Minkowski spacetime i#,= [ ;s Qgw. However, I"= Eﬁg[
it is far from obvious that this formula satisfies E@®3),

since when we vary the metric, we also must, in generalThese remaining terms integrate to zero siéftes tangent to
vary €2 in order to continue to satisfy the Geroch-Winicour g3,. This establishes that

gauge conditiony=0. Indeed, under a variation of the met-

ric, 60.p=Q74,, keepingé? fixed it follows from Eq.(79) B
that 6 BZQGW_ i3 5Q (91)

8x= 8(3%°ap) = 8(Q19?°Lap) and thus the unique solution to E@3) which vanishes in
:Qflﬁg,y:Qfng(QT)zﬁgT_i_KT (84) Minkowski spacetime is

(2yg

1< a
LT+ ETVal

. (90)

where, as previously defined above,z“gaf’r?b. Consef—. He= f Qow (92
quently, in order to preserve the Geroch-Winicour condition, )

it will be necessary to vary the infintesimal BMS represen- = , , . .
tative by 6¢2=02u? (see[17]) whereu® satisfies which is equivalent to the linkage formula. This agrees with

the Dray-Streubel expression in case
207V, (Q%®) = — L7 KT (85) We turn our attention now to cagb) where¢® is a su-
pertranslation and thus takes the fofhY]
Since V,u?=V,u?—40"'u?n,, this relation can be ex-

pressed in terms of unphysical variables as £=an®-OV3+0(0?) (93
20V u?—4udn,= —Lm—Kr. (86)  wherea is such that orZ we haven®V,a=0. Direct sub-
stitution of Eq.(93) into the variation of Eq(44) yields, on

Clearly, we have 7 [20],

1
5J QGW:J 6Q— —f €ancdV “(Q2u%)  (87)

a3 s 167 J ot . ~ =ap. o

It is erroneously stated ifiL7] that q,,V2u® is an intrinsic di-
vergence. The dropping of that term does not affect any of the
results in the body of that paper. However, the formula given in

2This fact follows immediately from the equivalence of E¢gl) footnote 20 of{17] is valid only wheny (=2X in the notation of

and (22) of the first reference df6]. [17]) vanishes orf.
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1 ~ ~
0Qap=— ﬁEabchC(aTd_ Tdevea') (94

from which it follows that the pullbacké(j, of 5QtoZis
given by

_ 1
8Q=——U.-®¢e

167 (99

where

ua=9V2arny) — anV, 72— n2°V a+n,V.aVPr2C,
(96)

The pullback ofé- 0 to Z is given by Eq.(78) above(with
the substitutiong;— ¢ and 8— «).

Thus, our general prescription instructs us to defifjen
case(b) by the requirement that,=0 in Minkowski space-
time together with the equation

1 a a 1 ab| (2)
_E s U |a—aV na—l— EaNabT €

97

wherel, is any covector field or¥ satisfyingn@ ,=1. A
lengthy calculatiorj20] shows that the solution to this equa-
tion is the expression given by Gerof8l, namely

(SHg:

(98)
where

a 1 ab —cd ~elbnal

P :ZCYK |b+(an|C+|chaf)g Ndeg n©, (99)

HereD, is the derivative operator ahdefined on pp. 46—47
of [3]; g2° is the (non-unique tensor field onZ satisfying
02:9°%G4,= 0.5 Whereg,,, denotes the pullback t6 of Gy, ,
andK b= (Ygacd Brgbefy ~1c . whereQ ~1C_q4o denotes
the pullback toZ of the limit to Z of Q "1Cger, WhereC.ger
denotes the unphysical Weyl tensor. Equati®®) agrees
with the Dray-Streubel prescription in cagb). Conse-
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quantity. On the other hand, if the pullback af fails to
vanish in general at the boundaigase 1), our prescription
requires us to find a symplectic potential on the boundary
which vanishes for stationary solutions. When such a sym-
plectic potential exists and is uniqgue—and when a “refer-
ence solution” ¢, can be found satisfying the consistency
condition (34—we have provided a well-defined prescrip-
tion for defining a “conserved quantity,’,, for each in-
finitesimal asymptotic symmetry£?, and cross section..
This “conserved quantity” is automatically local in the
fields in an arbitrarily small neighborhood of the cross sec-
tion and has a locally defined flux given by the simple for-
mula (32). For the case of asymptotically flat spacetimes at
null infinity in vacuum general relativity, our proposal was
shown to yield a unique prescription which, furthermore,
was shown to agree with the one previously given by Dray
and Streub€]5] based upon entirely different considerations.
In this way, we have provided a link between the Dray-
Streubel formula and ideas arising from the Hamiltonian for-
mulation of general relativity.

Since our approach does not depend on the details of the
field equations—other than that they be derivable from a
diffeomorphism covariant Lagrangian—there are many pos-
sible generalizations of the results we obtained for vacuum
general relativity. We now mention some of these generali-
zations, all of which are currently under investigation.

Perhaps the most obvious generalization is to consider
asymptotically flat spacetimes at null infinity in general rela-
tivity with matter fields,, also present. If the asymptotic
conditions ony are such that thes continues to extend
continuously tdZ and are such that the physical stress-energy
tensor,T,,,, satisfies the property thél 2T, extends con-
tinuously toZ (so that ‘T, vanishes asymptotically to order
4" in the terminology of 3]), then an analysis can be carried
in close parallel with that given in Sec. V for the vacuum
case. For minimally coupled fieldse., fields such that the
curvature does not explicitly enter the matter terms in the
Lagrangian, it follows from the general analysis §13] that
there will be no matter contributions tQ from the term
XabV[agb] [see Eqg.(11) abovd. [Even for non-minimally
coupled fields such as the conformally invariant scalar field,
the XabV[agb] term inQ will retain the vacuum forng44) in

quently, our prescription agrees with that given by Dray andhe limit as one approach&s] However, in general the sym-

Streubel for all infitesimal BMS representativé® and all
cross sectiong,, as we desired to show.

VI. SUMMARY AND OUTLOOK

plectic potential® and symplectic current» will pick up
additional contributions due to the matter fields and the other
terms inQ in Eq. (11) may also acquire matter contributions.
For the massless Klein-Gordon scalar fielt], we require
Q14 to have a smooth limit td. In that casew extends

In this paper, using ideas arising from the Hamiltoniancontinuously toZ. Although T,, does not actually vanish
formulation, we have proposed a general prescription for deasymptotically to order 4 in this cagsee the Appendix of

fining notions of ‘“conserved quantities” at asymptotic

[24]), it appears that all the essential features of the analysis

boundaries in diffeomorphism covariant theories of gravity.of Sec. V carry through nonetheless. In Einstein-Klein-
The main requirement for the applicability of our ideas isGordon theory no additional matter terms occuQnso Q

that the symplectic currenin(-1)-form @ extend continu-
ously to the boundary. If, in addition, the pullback af
vanishes at the boundafgase }, then a Hamiltonian asso-

continues to be given by Ed@44). Furthermore, the exten-
sion toZ of the pullback to surfaces of constafit of the
matter field contribution tof satisfies the property that it

ciated with each infinitesimal asymptotic symmetry exists,vanishes for stationary solutions. Consequently, in this case
and the value of the Hamiltonian defines a truly conservedve can defin@® onZ by simply adding this additional matter
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contribution to# to the right side of Eq(73). The upshot is those arising in vacuum general relativity. Thus, for ex-

that the explicit matter contributions to formui@l) cancel, ~ample, it should be possible to use our approach to define
so that, is again given by the linkage formul@2) when  notions of total energy and radiated energy in dilaton gravity
£ is tangent tod>, and is given by Eq(98) when ¢2 is a  theories in 2-dimensional spacetimes. It should also be pos-
supertranslation. However, the flux form82) will pick up ~ sible to use our approach for asymptotically anti—de Sitter
additional terms arising from the additional matter contribu-spacetimes in general relativity with a negative cosmological
tions to ® and hence to®. Similar results hold for non- constant. When suitable asymptotic conditions are imposed,

minimally coupled scalar fields, such as the conformallythe asymptotically anti—de Sitter spacetimes should lie
coupled scalar fiel@® within case | of Sec. IV, so it should be possible to define
The analysis is similar in the case of higher derivativetruly conserved quantities conjugate to all infinitesimal
gravity theories if weimpose in addition to the usual asymptotic symmetries. It would be of interest to compare
asymptotic conditions at null infinity, the requirement thatthe results that would be obtained by our approach with
Q2R extend continuously t@. (Of course, there is no those of previous approachgz5).
guarantee that the field equations will admit a reasonable Finally, we note that many of the ideas and constructions
number of solutions satisfying this propeityf we consider of Sec. IV would remain applicable i were an ordinary
a Lagrangian which, in addition to the Einstein-Hilbert term timelike or null surfaceS in the spacetimeyl, rather than an
(38), contains terms which are quadratic and/or higher ordefSymptotic boundary oM. Thus, one could attempt to use
in the curvature and its derivatives, then additional terms wilthe ideas presented here to define notions of quasi-local en-
appear inQ as well as@ and w (see[13]). However, it €rgy contained withinS and/or energy radiated through
appears that none of these additional terms will contribute tdlowever, it seems unlikely that a unique, natural choice of
Hg or its flux when the limit toZ is taken. Thus, it appears O will exist in this context, so it seems unlikely that this
that the formulas for both the “conserved quantities” andapproach would lead to a unique, natural notion of quasi-
their fluxes will be the same in higher derivative gravity local energy. Nevertheless, by considering the case wiere
theories as in vacuum general relativify. is the event horizon of a black hole, it is possible that the
Our proposal also can be applied to situations where thigleas presented in this paper may contain clues as to how to

asymptotic conditions considered are very different fromdefine the entropy of a nonstationary black hole in an arbi-
trary theory of gravity obtained from a diffeomorphism co-

variant Lagrangian.

25For Maxwell and Yang-Mills fields, a new issue of principle
arises as a result of the additional gauge structure of these theories. ACKNOWLEDGMENTS
If we merely require the vector potential, to extend smoothly to
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of Sec. IV, the integral definin@; will always exist. However{y to us by Vivek lyer[20] (dating from an early phase of this
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gauge transformations will fail to exist in general in much the same

way as a Hamiltonian conjugate to infinitesimal asymptotic Sylmme_unpubhshed calculations by Marc Pelath for a scalar field in
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obtain gauge invariant expressions for “conserved quantities.” ~Ments from coIIeague_s, particularly Abhay Ashtekar z_and
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