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Holographic stress tensors for Kerr-AdS black holes
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We use the counterterm subtraction method to calculate the action and the stress-energy-momentum tensor
for (Kerr) rotating black holes in AdS 4, forn=2, 3, and 4. We demonstrate that the expressions for the total
energy for the Kerr-Adgand Kerr-Adg spacetimes, in the limit of vanishing black hole mass, are equal to the
Casimir energies of the holographically dumtlimensional conformal field theories. In particular, for Kerr-

AdS; spacetimes, dual to the case of the four-dimensidvia4t supersymmetric Yang-Mills theory on the
rotating Einstein universe, we explicitly verify the equality of the zero mass stress tensor from the two sides of
the correspondence, and present the result for a general mass as a prediction from gravity. Amusingly, it is
observed in four dimensions that while the trace of the stress tensor defined using the standard counterterms
does not vanish, its integral does, thereby keeping the action free of ultraviolet divergences. Using a different
regularization scheme “another” stress tensor can be defined, which is traceless.

PACS numbg(s): 04.62:+v, 04.50+h, 04.65+e€, 04.70.Dy

[. INTRODUCTION The first term is the Einstein-Hilbert action with negative
cosmological constanf A=—n(n—1)/2%]. The second
The AdS/CFT correspondence relates am-+()- term is the Gibbons-Hawking boundary term. Heng, is
dimensional theory of gravity on the anti—de Sitté&dS)  the boundary metric anH is the trace of the extrinsic cur-
spacetime(times a compact manifojdo a conformal field vatureK?2® of the boundary.
theory (CFT) in n dimensions. This duality first arose as a  To deal with the divergences which appear in the gravi-
result of investigating1] N parallel D3 branes in the context tational action(arising from integrating over the infinite vol-
of the low energyi.e., the limit of zeroa’, the inverse string ume of spacetime two different techniques may be em-
tension classicalweak string couplingg) limit of type-11B ployed. The “traditional” background subtraction technique
superstring theory on AdX S°. A precise statement of the [4,5] (which subtracts the contribution from a reference
AdS/CFT correspondend®,3] is the equality of the parti- spacetime to get a finite resulind the “counterterm sub-
tion functions of the two theories: traction” method[6] (which regulates the action by the ad-
dition of certain boundary counterterinsAs the counter-
7 V=7 ' ) terms depend upon the geometrical properties of the
aas )= Zerr( boj)- boundary of the spacetime, the counterterm subtraction
method provides an intrinsic definition of the action for a
From the gravity-on-AdS point of viewg; is a bulk field  particular spacetime. This sidesteps problems which arise in
constrained to the valueg,; on the boundary, while from using the other method when the spacetime in question has
the CFT point of view,¢,; are sources for pointlike opera- an ambiguousor simply unknown choice of background.
tors O in the theory. In the low-energy limit of the theory ~ The divergences of the Einstein-Hilbert action dimen-
one can use the classical gravitational action to calculate th&ons less than sjxcan be canceled by adding the following
partition function of the CFT on the boundary. This action counterterms:
has the forn4]
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where G is the Einstein tensor im dimensions.(Corre-  less integrates to zero. However, we can define a new stress
spondingly, the last term should be omitted for2.) tensor which is tracelegsbowever, se&lote added in progf

(In Ref.[7], the counterterm subtraction method was stud-This illustrates the ambiguity of the definition of the trace
ied extensively, with many examples, and a new counterterranomaly in four dimensions, allowing a term proportional to
was presented there which allows the subtraction regularizd=1R to be added. In the nonrotating case, such a term is not
tion to be performed in dimensions+1=6,7. See also needed6], and so we find here that with rotation present, a
Refs.[8—14] for related studies, some more applications andlifferent regularization scheme must be ug@@|, corre-
further extensions. sponding to supplementing the counterter@swith a term

The prescription4) gives a definition of the action and proportional tof ,,,R 2. (This possibility was noted in Ref.
stress tensor on any regi¢say, of radius in the coordinates [6], and we believe that this is the first such example in this
that we will choose laterbounding the interior of AdS. The AdS/CFT contexy.
AdS/CFT holographic relatioriin the form which we will
need it herg equates these quantities to a dual conformal Il. KERR-AdS 5
field theory residing on the boundary at infinity-¢ o). The . i
theory on the boundary at radiusan be taken to be a dual ~ AS @ warm-up and review, we will study the case of Kerr-
field theory with an ultraviolet cutoff proportional to Then ~ AdSs. The explicit computation of the energy-momentum
r— defines the UV fixed-point conformal field theory. tensor and the mass, angular momentum, and Casimir energy
This dovetails nicely with the fact that the counterterms,Using the counterterm subtraction technique has been done in
while regulating an infrared divergence coming from theRef.[6]. Here, we will perform all of those computations in
bulk, have the dual interpretation as regulating UV diver_a_dlfferent ch0|ce_0f coordinates, supplementing the discus-
gences in the field theori5,6]. sion and calculatlons.where necessary. This will serve the

Recalling that the metric restricted to the boundagg  tWin purposes of setting up the notation of the rest of the
diverges due to an infinite conformal factd¥|?, we define  Paper, and illustrating the similarities t@nd differences
the background metric upon which the dual field theory refrom) the higher dimensional cases which we later present.

sides as We use the form of Kerr-Adgmetric in Ref.[17] which
resembles the higher dimensional Kerr-AdS metrics and can
|2 be obtained from the Balos-Teitelboim-Zanelli black hole
YVap= liM pE; Nap - (5) by coordinate transformatior21,22:
F s
A, a S S
Consequently, the field theory’s stress teriEdtis related to ds’= -~ 2 ( dt— Edd’ + A—rdr
the one abové4) by the rescaling16]
1 (r’+a? |2
V=7 Yan 0= lim =P hyT*, ®) *iz|adt T‘”’) ’ @
r—oo
where
which amounts to multiplying all expressions fof? dis-
played later by (/1)"~2 before taking the limir —o. r2
In this paper we apply these techniques to the study of the A=(r?+ az)( 1+ —]-2M Gr?, (8)
Kerr-AdS,. ; spacetimes,for n=2, 3, and 4. In particular, I
we compute the action, stress tensor, and other quantities, 5
and consider their implications for the dual field theories. ::(1_ a_) )
The dual field theories are defined on the rotating spacetimes - 12/

located at the boundary of Kerr-AdS, and the results which

we present are new for the three- and four-dimensional casegiere, a is the rotational parameter. The horizons are the ze-

In fact, for the massless case we exactly reproduce thgps of A, , andr . is the outer horizon which ig22]:
four-dimensional result for the stress tensor using field

theory. The results for the general mass are offered as pre- |2 a2\ 12 a2 2 22
dictions from the gravity side about the strongly coupledri=§ 2MG—1——2 +§ 1+—2—2MG —4—2.
field theory at finite temperature. Along the way, we learn a | | |

number of interesting things about the dual field theories in (10)
three and four dimensions. In particular, the trace of the four-

dimensional stress tensor obtained using the countert&ms It we were to taket—>l|7, defining the Eucl@ean section
_for the A'=4 supersymmetric Yang-Mills theory on the (putting the theory at finite temperatiireegularity (thermal

rotating Einstein universe— does not vanish, but neverthe@qumbrlum)_requwes that the period of Euclidean time (
=it) —the inverse temperatu@— has the form:

2m(r2+ar,
ISee Refs[17-19 for complementary studies of higher dimen- B= o - (11
sional Kerr-AdS spacetimes and their field theory duals. (ri/l“=a%)
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The angular velocity of the horizon is =(2MG—-1)/(167wGl), giving a standard form for the stress-
_ energy-momentum tensor of a fluid of massless particles
0= a= (12) with some energy density given By,. Notice thatA, in
r2+a? front of the part of the stress tensor in standard form contains

the black hole parameté —the thermal part of the field
while the area of the horizon is theory— whileB, the coefficient of the null vector part, re-
fers only to rotational parameters. We will find that this form
will persist to higher dimensions.

To calculate the conserved quantities for these space-
times, we use the following definition for a conserved charge
In the Euclidean continuation, where we must also Wick[23], associated to a symmetry generated by the Killing vec-
rotatea to i, as the horizon is a bolt of the Killing vector tor ¢+
d,+iQ4d,, the identification7~ 7+ g results[17] in the
|Jcile2r713f|cat|on ¢~ p+iBQ, in addition to the usualp~ ¢ Q.= szn—lx\/;uu-rluvgv, (19)

The boundary metric of Kerr-AdSs, asr—o, given by

27T(fi+az)

—
r+,:

(13

whereu,=—Nt,,, while N and o are the lapse function

r2 2a |2 and the spacelike metric which appear in the Arnowitt-
d32=|—2 —dt?+ —dtdg+ = d¢?|. (14 Deser-Misner(ADM)-like decomposition of the boundary
- - metric
Removing the conformal factor, our dual field theory is de- ds2= — N2d 2+ o( X3+ Nadt) (dxP+ NPdt).  (20)

fined on the spacetime with metrig,,:

Our convention for the Killing vectorg* is as follows:d; is

the Killing vector conjugate to the timeandd,, is the Kill-

ing vector conjugate t@. Using the above definition for the
conserved charge, the mass and the angular momentum of
After some computation, the components of the stress tenstie Kerr-AdS spacetime are given by

at larger are found to be

-1 a/E)

alE Y= A9

[ Yabl=

1 B 1 Ma
1 _ 1 MZSG—:(ZMG_:«), jZEEZ (21
87GT,=5(2MG~2+5)+0| =], = =

Direct evaluation of the counterterms gives the finite action

a(2MG+ZE 1
87GT, = MCTE) (-) 1 m(ri+a?)
21E) |3:|bu|k+|surf+|ct=—Er+—E (22)
87GT, .= [2MG(1+a?/1)—E?]I 410 } The action with the other quantities satisfy the following
¢¢ 252 r” thermodynamical relation
(16)
It is interesting to note that the resulting field theory stress S=BM-QIN ~ln1=45, (23
tensor{obtained using Eq:6) and the discussion beldwan
be written in the following fornt: for n=2, which is a nontrivial check of some of our com-
. putations. We will perform this check in the more compli-
Tab=A(2u2uP+ ) + By 2P, (17 cated examples to come.
where u®=(1,0) is a unit timelike two vector and® Comparison to field theory
=(1,14—a/l?) is a null vector, i.e.p®v,=0. The tensor is i . . ) .
therefore manifestly traceless. The coefficients are Our dual field theory resides on the spacetime with metric
Yuv 9iving the line element
[2MG—(1+a/l)?] a(l+all)? 5 2
= , B= (18) R L da?
167Gl 87GI2 ds’=—dt*+ =-dtd¢+ =d¢~. (24)

It is straightforward to check that this tensor is covariantlyNotice that this can be brought into the form of a metric on
conserved. Notice that whea=0, B vanishes andA  a cylinder Rx S')

ds’=—dT?+R?dd?, (25)

2We thank R. C. Myers for the suggestion thEt® might be  with R=I/{E, using the following coordinate transforma-
written in this form. tion [17]:
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T- - o= grayl? 26) dm(ri+ad) 31)
=—, = a . = ’
VE h r,(3r2/12+1+a?/12—a%r?)

Our traceless result abov&gs. (16) and (17)], therefore,  with the angular velocity of the horizon given by Ed.2).
correctly reproduces the result for the trace anomaly, givetlere,r . is the location of the horizon, the largest root of

in two dimensions by A, . Again, after continuinga—i«, Euclidean regularity
gives ¢ a period ¢~ ¢+iB€), in addition to the usual
fa CR ~¢+2m.
Ta= =54 (27) The area of the horizon is
. . o r2 +a?
wherec is the central charge arfd is the intrinsic curvature A=Az —— (32)
of spacetime, which is zero for the cylinder. =

According to the correspondence, the Casimir energy of

the dual field theoryis the contribution to the mass of space- | € nonvanishing components of the Kerr-Adgress tensor
time M which is independent of the black hole parameter,for larger exactly match the components recently computed
M, and is given by for the Kerr-Newman-Ad$ case in Ref[13] in the limit

where the charges vanighe., theirz—0) and are

1
- 2M

E=

1
r—z) , (33

Given the standard resul25] for the relationship between

the central charge of the conformal field theory and gravity 87GT 4= — ﬂsi,ﬁ%o _12) (34)
in AdS;, c=3I1/2G, we see that this translates into a = r

vacuum energy- c¢/(12) for the theory on the cylinder. This " L

is consistent with the interpretati¢@6] of the spacetimé¢?), _

with M=0, as the Neveu-Schwarz—Neveu-Schwarz vacuum SWGT"”_EJFO r_z)’ 39
of the holographically dual super conformal field theory: The

fermions have antiperiodic boundary conditions as they go M1 sir?é 1

once around the cylinder, preventing their zero-point energy 8mGTyy= T[Sazsinzeller E]+0O r_z)' (36)
from cancelling that of the bosons, as happens in the =

Ramond-Ramond sector. )
The mass and the angular momentum are computed from this

as
lll. KERR-AdS 4,
. . . M aM
The Kerr-Ad§ metric has the following form27]: M==; J==7. (37)
i 2 2 2
ds?=— A—zr(dt— iﬂzed(ﬁ) + Z_dr2+ Z_dQZ The boundary metric of the Kerr-AdSs given by
p = r 0
r2 2asirte de*> _sirfe
A 4sirte (r’+a? |2 ds?=—| —dt?+ ———dtdgp+ 12— +12—=—d¢?|.
+———| adt- —=—d¢| , (29 12 = Ay =
p (39
where Removing the conformal factgsee Eq.5)], our dual field
theory is defined on the spacetimavith coordinates
A,=(r?+a?)(1+r?/1%)—-2MrG, (t,¢,6)] with metric y,p:
A,=1—(a%/1?)coge, -1 asifg/Z 0
[yaol=| asiPO/E I%sifo/E 0 |. (39
2124 52002
p?=r2+a%cog. (30) 0 0 12/A,
The period of Euclidean time is given by Converting with the conformal factor and taking the limit

r—« [see Eq(6)], we find that the stress tensor of the field
theory has this simple form:

3In higher dimensions, connections between energy of a spacetime
solution and Casimir energy of a dual field theory were first pointed Fab_
out in Ref.[24]. 8l

[3uuP+ y2P], (40)
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whereu?=(1,0,0). This is the standard form for the stress
tensor of the nonrotating theof®+ 1)-dimensional confor-
mal field theory. The tensor is covariantly conserved and
manifestly traceless, the latter result being consistent with
the absence of a conformal anomaly in odd dimensional
spacetime. It is interesting to note that the tensor can be
written in such a simple form for this theory, even in the
presence of rotation, in contrast to the case in two dimen-
sions[see Eq(17)], and as we will see, the four-dimensional
case.
The action calculation in this case gives the result

87TGTtt:

87TGTt¢:

=

m(r? +a?)(r2/12-1)

- : (41)
G(3ri/12+r2 +a%r2/1?2—ad)E

ot

which agrees with action calculation using the background
subtraction technique in Reff17] (see also Refl9]), since
the Casimir energy is zero for an odd dimensional field
theory. Also it agrees with the Kerr-Newmann act[d3] in

the limit where the charges vanish. These quantities also sat-
isfy the first lawl[i.e., Eq.(23) with n=3].

IV. KERR-AdS 5

The metric for the Kerr-AdSin general has two rotation
parameters since the rotation group is SGE{&U(2).
X SU(2)z. Here we discuss the one-parameter solution
given by[17]

87TGT96:

2 p2
+r2cog0dy?+ —do?
At‘)

( asinfo
dt—

—
=
—

de
(adt—

A=(r?2+a?)(1+r?/12)—-2MG,

87GT,,=
A ,SirP6 ey

p

(r’+a?)

Lo}
—

p2 2
+—dr?+ qu) . (42
A

Now we have

(43

Using the above definitiofil9) for a conserved charge, one
can calculate the mass and angular momentum of the solu-
tion, with the result.

and the remaining quantities are as in E2)). This time the
inverse temperature is

2m(r2 +a?)

Cra2ri12+1+a2/12)’

(44)

with the angular velocity of the horizon given again by Eq.
(12). Again,r . is the location of the horizon, the largest root
of A,, and ¢ has period¢~ ¢+iB(), in addition to the
usualp~ ¢+ 2.

M— ar
"~ 96G
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After computation, we get the following nonvanishing
components for the stress tensor at large

|
grzleavaii 2—14a’co0/1?— 14a*cog /14

1
r_4 1
al sirfe
W[Zazcos?allz— 7a*cod o4+ =2

+15a%cog0/1*+3(1+a%/1%)?]+ 0

+10a*cog6/1*— 24M G/12— 4a*/14]+ O

1
r_4 1

[3sinf 6

=2
Ll

[7a8cod/1®—7a*cos 0/1%+ 3a%/1©

—8a*cog6/1*—32a’MG cos /1% +1
—10a%co 61— 3a%/124 2a%coL /12

1
+24a’MG/1%—a*/1*+8M G/I2]+O(r—4) ,

3

[BMG/I?+E?—3a’cod o/1*
1
r_4 ’

[2a%cog0/12+ 22+ 8MG/I?

g

8r2A,

+2a%cog0/1%+ 2a*cog6/1*]+ 0

[3cog

2

0

8r

N

—7a*cod'0/l*+2a*cog6/14]+ 0

2 mMa

[a4/I4+QE+7ZGM/I2], jzw

—
=
(=1

For the action one gets

al 2(r2+ +a?)

In Ref.[17] the calculation for the relevant physical quan-
tities was carried out using the subtraction technique. The
reference spacetime in those calculations was the spacetime
with M=0, i.e.,, Adg in very nonstandard coordinates.
Here, we go some steps further, by computing and studying
physics intrinsic to the Kerr-AdSspacetime with no refer-
ence to a background, allowing us to extract physical quan-
tities like the Casimir energy and other interesting features of
the stress tensor, as we shall see.

084025-5
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The above quantities satisfy the first lqixe., Eg.(23) with Using this relation in Eq(51) one gets

n=4]. 2

E=—=(a%1*+9E). 53
A. Comparison to field theory 48 = ( ) 63
The metric on the boundary is that of a rotating Einsteingjnce the the gravitational quasilocal stress tensor and the
universe{28]: stress tensor of the CFT on the boundary are dual to one
another, one can use the following expression for the energy
2 H 2 H
2asir’o de sin’g of the field theory:

r
dsz=—[—dt2+ ———dtdgp+ 12— +12—=—d¢?
|2 g Ay =}

£= > nsf d3x\o g (T ppul. (54)
+12cogod zpz} : (49) s=0121 Js

(Here £ and u® have the same meaning as befpr€his
Removing the factor?/I? (defining the metricy,;) gives the  gives
line element of the spacetinjevith coordinates {, ¢, 6, )]
upon which our conformal field theory resides, and for which . 47 S e B

. = > —(3aY14—92)+ —(aYI*+95) |,
we must compute the energy-momentum tensor in order to 2 s=6in1 |9 3
compare to the gravity computation. This seems at first a (55)
daunting prospect, until one notices by direct computation
that the Weyl tensor vanishes for this spacetime, showingvheren® is the number of particles with spis in the A/
that it is conformally flat. This indeed follows from the fact =4 super Yang-Mills theory on the boundary. The spin-half
[17] that the spacetimé42), with M =0, is actually just particle is the Weyl fermion. Substituting in the values for
AdS; in nonstandard coordinates, and so its boundary shard®®, «* %), we find that the resulting energy of the CFT
some of the conformal properties of the boundary of AdS exactly matches the predictiai®3) for the Casimir energy
One can, therefore, use the following general expressioffom gravity.

from Ref.[20] to calculate the stress tensor of a field theory
defined on conformally flat spacetime in four dimensions: B. Conformal anomaly

nS

1 11 If we expand the trace of the quasilocal stress tensor on
(TSp)=— 6.2 §aSHab(1)+ 2B°H,3|, (500  the gravity side in powers of d/ the leading contribution is
2

a“l
where HXM)| H2®) 45 and g are defined in Ref[20] To=— 8wGr4[a2/|2(3 cod §—2 cog ) — cos2]
[there, they use spacetime indicgs, ¢) for the field theory
while here we use g,b)]. The labelse{0,1/2,1 distin- 1
guishes the spin of the field for which the labeled coefficients + O( r—6> . (56)

«® andB® are computed. We can now compare this to the the

nonthermali.e., theM independentpart of the tensor which . o
we have computed on the gravity side. Using Eq.(52) between the gravitational parameters and the

According to the AdS/CFT holographic relation, one gauge theo.ry_parameters', and taking the'larg'ﬂmit, one
should define the Casimir energy for the field theory dual togetS a prediction for the field theory quantity:

the Kerr-AdS spacetime as the contribution to the total en- N2a2
ergy of the spacetim@i6) which is independent of the black Ta— _ a [a2/12(3 cod0—2 co20) —cos2]. (57)
hole’s mass. This is given by & 4?8
ml?(@%14+9%) This precisely matches what one obtains by performing di-
- 96GE (52) rectly the trace of the stress tensor defined for the field theory
in Eq. (50).

In the limit a—0 this reduces to the Casimir energy of the ~As a final check, we note that the general form of the
nonrotating black hole discussed in Rgﬂ conformal anomaly in four dimensionéadapted to the

Now we would like to show that the expression in Eg. Present casg29,6)) is given by

(51) exactly matches the energy of thé=4 supersymmetric 5

U(N) Yan_g—M_llls theory defined on a rotating Emstem uni- L ER’”R + iRz , (58)
verse, which is the CFT on the boundary. The relation be- a 472 8 Y\
tween the parameters of the gravity theory in the bulk and
those of the CFT on the boundary/i] where R, and R are the Ricci tensor and scalar for the
) spacetime upon which the field theory resides. Using the
i _ ﬂ (52) boundary metricy,,,, we find that this is precisely the result
G =lI* obtained in Eq(57).
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We find that the stress tensor for the CFT on the rotatingSee Ref.[7] for specific examples in this context-rom
static Einstein universe may be written in the following reading Ref[30], however, one expects that the correspond-

form: ing logarithmic (UV) divergence[log(r/l)] of the action
. should not be present for a spacetime which can be written
TaP=A (4uuP+ 2% +B 2 0® +C o2 0 + D WA WP locally as a product. In support of this, the acti@T) which

we computed does not have a logaritiim contrast to the
(59) examples in Ref[7]), as we have seen, presenting us with a
paradox. This is resolved upon realization thatititegrated
trace actually does vanish, as a computation reveflthis
The unit timelike velocityu® and the accompanying null alone were true, it would provide a counterexamd#,32
vectors are to the often quoted folklore that, in a nontrivial theory, scale
a invariance (preserved hepeimplies conformal invariance,
u®=(1,0,0,0, which is apparently broken hefeeeNote added in proof
Unfortunately, this is not the case. A first clue that a
Za:<1 _ g 0 1 ) manifestly conformally invariant form for the stress tensor
' " 19" cosh)’ can be restored is suggested by the fa@j that the rotating
Einstein universe is conformélip to an identification on the
1 angular coordinatgsto the static Einstein universe after a
}' (60) change of coordinates. Furthermore, a closer examination of

_ o the expression for the trac‘E reveals that it is not only a
while the coefficients are total derivative, but it is in fact proportional fd’R. Since a
term proportional tdJR results from a variation of

1.
+D wWAw® +E zazb+Z Y274,

a_ +
V= (1'0’0’_I cosé

A= m[a“/l“(S cogf—cos 20)+8MG/1%+2A ,— 1], e )
Ale=g -5 LMR , (63
cosé
B= [a%/1*(3 cod §—cos’ 90— cos 20)
32wGl(1-cos6) we can, therefore, supplement the countertei@nsvith such
+20,—1] a term, and define a néwtress tenso®?2” which is actually
’ traceless fork=1/864. Our stress tens®?2® also has the
a2cosf same energy as2” (seeNote added in proof
C=— TSk [a%/1%(3 coS §— cosf— cos 20) This addition of a new counterterm —which amounts to a
new regularization scheme— in order to ensure a manifestly
+1—cosé], conformally invariant form for the stress tengarhich is not
necessary when there is no rotation in AflSs an example
a(l=xall) _ of a fact familiar from field theory: There is an ambiguity of
D.=— 327G1%(1—cos0) [a%/13(cos 20 cos6+ it o) the definition of the trace anomal$8) in four dimensions,
allowing a term proportional td1R to be added, with an
+acosd/l =Ay], undetermined coefficient corresponding to the choice of dif-
ferent schemes for regularizing the field theg2p|. Here,
cosé this corresponds to different choices for boundary counter-
E=- 327GI(1—cosd) EAy. (61)  terms[6]. It is interesting that a new counterterm is needed to

restore manifest conformal invariance after a change of vari-
Notice again, just as we saw in lower dimensions, that th@blesand conformal frame. This merits further i'nves.tiga'tion.
coefficientA of the part of the tensor in standard form is the ~Overall, we see that the gravity computatiomhich is
only one which depends upon the thermal part of the theor§iu@ to a computation istrongly coupledield theory again
—represented by the black hole mass— while the other comatches _the results from the weakly coupled field theory
efficients, referring to the null vectors, are independeriof ~COmputation. In the case of pure AgSthe reason for the
It is also interesting to note that when-0, while C and ~ Precise match, as explained in Rg8J, is that pure Ad$
D* vanish, the terms involving andE cancel each other. r€ceives no stringy corrections because all tenéarserms
The last term in the energy-momentum tengs®) ap-
pears to imply the presence of a conformal anomaly, which
is certainly interesting. General considerati¢see, e.g., Ref.  “we are grateful to R. C. Myers for a crucial discussion, and for
[29] for a discussion in the present confeshow that in the  pointing out the vanishing.
presence of a conformal anomaly, the action has a divergentwe thank P. Townsend for pointing this out, and N. Seiberg and
piece J. Polchinski for discussions of this issue.
®In order to define®2” with a suitably modified version of ex-
4 ~a pression(4), we need to subtract an “improvement term,” in the
Id“’OdOQ(r/I)f d*xV=yTa. (62) sense of Refd.33,32 which we will report on elsewhergs4].
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of which the stringy corrections can be writjethat can  stress tensor for the field theory on the rotating spacetime
modify Einstein’s field equations vanish for that space. Thiscan be neatly written in terms of a sum of a standard trace-
translates into no difference between the results for strongess thermal forntinvolving the mass of the dual black hole
and weak-coupling field theory, because the stringy correcand additional terms involving null vectors. Intriguingly, for
tions are correlated with corrections in field theory coupling,n=3, there are no such additional terms; its stress tensor
as required by the dualityl]. keeps the simple thermal form. This may be an important
That this is also true for the Kerr-AdSase, in the limit  feature of the M2-brane world-volume conformal field
of zero black hole mass —where we have shown full agreetheory [35,36. While the computation for the two-
ment with field theory— follows simply becauskl =0 dimensional conformal field theory and the related AdS
Kerr-AdS; is just AdS in nonstandard coordinaté$7], pa-  spacetime is essentially contained in Réfl, the results for
rametrized bya. It, therefore, shares many of the conformal higher dimensions are new.
properties with Ad§. As the stringy corrections can all be  We expect that these results also follow for Kerr-Adg
written in terms of the Weyl tensor of the spacetime, if theyfor n+1>5. It would be especially interesting to see the

vanish for AdS, they vanish here also. form of the tensor for Kerr-Adgs However, we found that
the computational complexities encountered due to the off-
V. CONCLUDING REMARKS diagonal terms in the metric —and the additional counter-

) ) terms needefi7]— were too severe to allow for an explora-
The counterterm subtraction technique has allowed for thgoy ysing the techniques which we have employed so far.
intrinsic definition of the actionand the quantities which Note added in proofWe noticed that while the new coun-
follow) for the Kerr-AdS,, spacetimes, fon=2,3,4. This  terterm does indeed restore the tracelessness of the stress
is in contrast to the background subtraction technique, whickensor, the new tensor thus defined yields the same energy as
required a reference spacetime in order to compute a finitghe old but a different angular momentum. This appears to
action. In subtracting the contribution from a referencemean that the angular momentum of Kerr black holes does
spacetime to get a finite action, any physics common to bothreak the conformal invariance of the theory, despite the fact
spacetimes is lost. In this paper we have computed examplefat the rotating Einstein universe on the boundary is confor-
of such quantities, the Casimir energies and conformafng) to the Einstein universe. We intend to investigate this

anomaly for field theories residing on even dimensionakyther and report on this matter in a future publication.
spacetimes.

We have shown that the quantities thus compuad
indeed, the full stress-energy-momentum tensor in four di-
mensiong are consistent with a holographic interpretation of
the physics of gravity in AdS in terms of dual conformal  We would like to thank Vijay Balasubramanian, Roberto
field theory. The Casimir energies which we computed forEmparan, Robert C. Myers, Joe Polchinski, Harvey Reall,
the holographically dual two- and four-dimensional confor-Nathan Seiberg, and Paul Townsend for comments and dis-
mal field theories(residing on a rotating cylinder, or the cussions, and especially R.E. and R.C.M. for suggestions and
rotating Einstein univergeexactly matched the contribution comments on a preliminary draft of this paper. C.V.J. would
to the energy computed for the Kerr-AdS spacetime which idike to thank the Relativity group at D.A.M.T.P., Cambridge
not attributable to the black hole. Also, we saw an interestingUK) for hospitality during the early stages of this work.
example of the change in regularization scheme needed fbhis work was supported by an NSF Career Grant No. PHY-
retain a manifestly conformally invariant form in the four 9733173. This paper is report Nos. UK/99-13, IASSNS-
dimensional case. In all cases2,3,4), we found that the HEP-99/88, and DTP/99/71.
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