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Holographic stress tensors for Kerr-AdS black holes
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We use the counterterm subtraction method to calculate the action and the stress-energy-momentum tensor
for ~Kerr! rotating black holes in AdSn11, for n52, 3, and 4. We demonstrate that the expressions for the total
energy for the Kerr-AdS3 and Kerr-AdS5 spacetimes, in the limit of vanishing black hole mass, are equal to the
Casimir energies of the holographically dualn-dimensional conformal field theories. In particular, for Kerr-
AdS5 spacetimes, dual to the case of the four-dimensionalN54 supersymmetric Yang-Mills theory on the
rotating Einstein universe, we explicitly verify the equality of the zero mass stress tensor from the two sides of
the correspondence, and present the result for a general mass as a prediction from gravity. Amusingly, it is
observed in four dimensions that while the trace of the stress tensor defined using the standard counterterms
does not vanish, its integral does, thereby keeping the action free of ultraviolet divergences. Using a different
regularization scheme ‘‘another’’ stress tensor can be defined, which is traceless.

PACS number~s!: 04.62.1v, 04.50.1h, 04.65.1e, 04.70.Dy
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I. INTRODUCTION

The AdS/CFT correspondence relates an (n11)-
dimensional theory of gravity on the anti–de Sitter~AdS!
spacetime~times a compact manifold! to a conformal field
theory ~CFT! in n dimensions. This duality first arose as
result of investigating@1# N parallel D3 branes in the contex
of the low energy~i.e., the limit of zeroa8, the inverse string
tension! classical~weak string coupling,gs) limit of type-IIB
superstring theory on AdS53S5. A precise statement of th
AdS/CFT correspondence@2,3# is the equality of the parti-
tion functions of the two theories:

ZAdS~f i !5ZCFT~f0,i !. ~1!

From the gravity-on-AdS point of view,f i is a bulk field
constrained to the valuesf0,i on the boundary, while from
the CFT point of view,f0,i are sources for pointlike opera
tors Oi in the theory. In the low-energy limit of the theor
one can use the classical gravitational action to calculate
partition function of the CFT on the boundary. This acti
has the form@4#

I bulk1I surf52
1

16pG E
M

dn11xA2g S R1
n~n21!

l 2 D
2

1

8pG E
]M

dnxA2h K. ~2!

*Electronic address: adel@pa.uky.edu
†On leave from the University of Kentucky. Email addres

c.v.johnson@durham.ac.uk
0556-2821/2000/61~8!/084025~9!/$15.00 61 0840
he

The first term is the Einstein-Hilbert action with negativ
cosmological constant@L52n(n21)/2l 2#. The second
term is the Gibbons-Hawking boundary term. Here,hab is
the boundary metric andK is the trace of the extrinsic cur
vatureKab of the boundary.

To deal with the divergences which appear in the gra
tational action~arising from integrating over the infinite vol
ume of spacetime!, two different techniques may be em
ployed. The ‘‘traditional’’ background subtraction techniqu
@4,5# ~which subtracts the contribution from a referen
spacetime to get a finite result! and the ‘‘counterterm sub
traction’’ method@6# ~which regulates the action by the ad
dition of certain boundary counterterms!. As the counter-
terms depend upon the geometrical properties of
boundary of the spacetime, the counterterm subtrac
method provides an intrinsic definition of the action for
particular spacetime. This sidesteps problems which aris
using the other method when the spacetime in question
an ambiguous~or simply unknown! choice of background.

The divergences of the Einstein-Hilbert action~in dimen-
sions less than six! can be canceled by adding the followin
counterterms:

I ct5
1

8pGE
]M

dnxA2hF ~n21!

l
2

lR
2~n21!G . ~3!

HereR is the Ricci scalar for the boundary metrich. Using
these counterterms one can construct a divergence-free s
tensor which is given by (I 5I bulk1I surf1I ct)

Tab5
2

A2h

dI

dhab

5
1

8pG FKab2habK2
~n21!

l
hab1

lGab

~n22!G , ~4!
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where Gab is the Einstein tensor inn dimensions.~Corre-
spondingly, the last term should be omitted forn52.)

~In Ref. @7#, the counterterm subtraction method was stu
ied extensively, with many examples, and a new countert
was presented there which allows the subtraction regular
tion to be performed in dimensionsn1156,7. See also
Refs.@8–14# for related studies, some more applications a
further extensions.!

The prescription~4! gives a definition of the action an
stress tensor on any region~say, of radiusr in the coordinates
that we will choose later! bounding the interior of AdS. The
AdS/CFT holographic relation~in the form which we will
need it here! equates these quantities to a dual conform
field theory residing on the boundary at infinity (r→`). The
theory on the boundary at radiusr can be taken to be a dua
field theory with an ultraviolet cutoff proportional tor. Then
r→` defines the UV fixed-point conformal field theor
This dovetails nicely with the fact that the counterterm
while regulating an infrared divergence coming from t
bulk, have the dual interpretation as regulating UV div
gences in the field theory@15,6#.

Recalling that the metric restricted to the boundaryhab
diverges due to an infinite conformal factorr 2/ l 2, we define
the background metric upon which the dual field theory
sides as

gab5 lim
r→`

l 2

r 2 hab . ~5!

Consequently, the field theory’s stress tensorT̂ab is related to
the one above~4! by the rescaling@16#

A2g gabT̂
bc5 lim

r→`

A2h habT
bc, ~6!

which amounts to multiplying all expressions forTab dis-
played later by (r / l )n22 before taking the limitr→`.

In this paper we apply these techniques to the study of
Kerr-AdSn11 spacetimes,1 for n52, 3, and 4. In particular
we compute the action, stress tensor, and other quant
and consider their implications for the dual field theorie
The dual field theories are defined on the rotating spaceti
located at the boundary of Kerr-AdS, and the results wh
we present are new for the three- and four-dimensional ca

In fact, for the massless case we exactly reproduce
four-dimensional result for the stress tensor using fi
theory. The results for the general mass are offered as
dictions from the gravity side about the strongly coupl
field theory at finite temperature. Along the way, we learn
number of interesting things about the dual field theories
three and four dimensions. In particular, the trace of the fo
dimensional stress tensor obtained using the counterterm~3!
—for the N54 supersymmetric Yang-Mills theory on th
rotating Einstein universe— does not vanish, but nevert

1See Refs.@17–19# for complementary studies of higher dime
sional Kerr-AdS spacetimes and their field theory duals.
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less integrates to zero. However, we can define a new s
tensor which is traceless~however, seeNote added in proof!.
This illustrates the ambiguity of the definition of the tra
anomaly in four dimensions, allowing a term proportional
hR to be added. In the nonrotating case, such a term is
needed@6#, and so we find here that with rotation present
different regularization scheme must be used@20#, corre-
sponding to supplementing the counterterms~3! with a term
proportional to*]MR 2. ~This possibility was noted in Ref
@6#, and we believe that this is the first such example in t
AdS/CFT context.!

II. KERR-AdS 3

As a warm-up and review, we will study the case of Ke
AdS3. The explicit computation of the energy-momentu
tensor and the mass, angular momentum, and Casimir en
using the counterterm subtraction technique has been don
Ref. @6#. Here, we will perform all of those computations
a different choice of coordinates, supplementing the disc
sion and calculations where necessary. This will serve
twin purposes of setting up the notation of the rest of
paper, and illustrating the similarities to~and differences
from! the higher dimensional cases which we later prese

We use the form of Kerr-AdS3 metric in Ref.@17# which
resembles the higher dimensional Kerr-AdS metrics and
be obtained from the Ban˜ados-Teitelboim-Zanelli black hole
by coordinate transformation@21,22#:

ds252
D r

r 2 S dt2
a

J
df D 2

1
r 2

D r
dr2

1
1

r 2 S adt2
~r 21a2!

J
df D 2

, ~7!

where

D r5~r 21a2!S 11
r 2

l 2 D 22MGr2, ~8!

J5S 12
a2

l 2 D . ~9!

Here,a is the rotational parameter. The horizons are the
ros of D r , andr 1 is the outer horizon which is@22#:

r 1
2 5

l 2

2 S 2MG212
a2

l 2 D 1
l 2

2
AS 11

a2

l 2
22MGD 2

24
a2

l 2
.

~10!

If we were to taket→ i t, defining the Euclidean sectio
~putting the theory at finite temperature!, regularity~thermal
equilibrium! requires that the period of Euclidean time (t
5 i t ) —the inverse temperatureb— has the form:

b5
2p~r 1

2 1a2!r 1

~r 1
4 / l 22a2!

. ~11!
5-2
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The angular velocity of the horizon is

V5
aJ

r 1
2 1a2

, ~12!

while the area of the horizon is

A5
2p~r 1

2 1a2!

r 1J
. ~13!

In the Euclidean continuation, where we must also W
rotatea to ia, as the horizon is a bolt of the Killing vecto
]t1 iV]f , the identificationt;t1b results @17# in the
identification f;f1 ibV, in addition to the usualf;f
12p.

The boundary metric of Kerr-AdS3 is, asr→`, given by

ds25
r 2

l 2 F2dt21
2a

J
dtdf1

l 2

J
df2G . ~14!

Removing the conformal factor, our dual field theory is d
fined on the spacetime with metricgab :

@gab#5S 21 a/J

a/J l 2/J D . ~15!

After some computation, the components of the stress te
at larger are found to be

8pGTtt5
1

2
~2MG221J!1OS 1

r D ,

8pGTtf52
a~2MG1J!

2lJ)
1OS 1

r D ,

8pGTff5
@2MG~11a2/ l 2!2J2# l

2J2 1OS 1

r D .

~16!

It is interesting to note that the resulting field theory stre
tensor@obtained using Eq.~6! and the discussion below# can
be written in the following form:2

T̂ab5A~2uaub1gab!1Bvavb, ~17!

where ua5(1,0) is a unit timelike two vector andva

5(1,1/l 2a/ l 2) is a null vector, i.e.,vbvb50. The tensor is
therefore manifestly traceless. The coefficients are

A5
@2MG2~11a/ l !2#

16pGl
, B5

a~11a/ l !2

8pGl2
. ~18!

It is straightforward to check that this tensor is covarian
conserved. Notice that whena50, B vanishes andA

2We thank R. C. Myers for the suggestion thatT̂ab might be
written in this form.
08402
k

-
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s

5(2MG21)/(16pGl), giving a standard form for the stress
energy-momentum tensor of a fluid of massless partic
with some energy density given byT̂00. Notice thatA, in
front of the part of the stress tensor in standard form conta
the black hole parameterM —the thermal part of the field
theory— whileB, the coefficient of the null vector part, re
fers only to rotational parameters. We will find that this for
will persist to higher dimensions.

To calculate the conserved quantities for these spa
times, we use the following definition for a conserved cha
@23#, associated to a symmetry generated by the Killing v
tor jm:

Qj5E
S
dn21xAsumTmnjn, ~19!

whereum52N t,m , while N and s are the lapse function
and the spacelike metric which appear in the Arnow
Deser-Misner~ADM !-like decomposition of the boundar
metric

ds252N2dt21sab~dxa1Nadt!~dxb1Nbdt!. ~20!

Our convention for the Killing vectorsjm is as follows:] t is
the Killing vector conjugate to the timet and]f is the Kill-
ing vector conjugate tof. Using the above definition for the
conserved charge, the mass and the angular momentu
the Kerr-AdS3 spacetime are given by

M5
1

8GJ
~2MG2J!, J5

1

2

Ma

J2 . ~21!

Direct evaluation of the counterterms gives the finite acti

I 35I bulk1I surf1I ct52
1

4G

p~r 1
2 1a2!

r 1J
. ~22!

The action with the other quantities satisfy the followin
thermodynamical relation

S5b~M2VJ!2I n115
A

4G
, ~23!

for n52, which is a nontrivial check of some of our com
putations. We will perform this check in the more comp
cated examples to come.

Comparison to field theory

Our dual field theory resides on the spacetime with me
gmn giving the line element

ds252dt21
2a

J
dtdf1

l 2

J
df2. ~24!

Notice that this can be brought into the form of a metric
a cylinder (R3S1)

ds252dT21R2 dF2, ~25!

with R5 l /AJ, using the following coordinate transforma
tion @17#:
5-3
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T5
t

AJ
, F5f1at/ l 2. ~26!

Our traceless result above@Eqs. ~16! and ~17!#, therefore,
correctly reproduces the result for the trace anomaly, gi
in two dimensions by

T̂a
a52

cR
24p

, ~27!

wherec is the central charge andR is the intrinsic curvature
of spacetime, which is zero for the cylinder.

According to the correspondence, the Casimir energy
the dual field theory3 is the contribution to the mass of spac
time M which is independent of the black hole paramet
M, and is given by

E52
1

8G
. ~28!

Given the standard result@25# for the relationship between
the central charge of the conformal field theory and grav
in AdS3, c53l /2G, we see that this translates into
vacuum energy2c/(12l ) for the theory on the cylinder. This
is consistent with the interpretation@26# of the spacetime~7!,
with M50, as the Neveu-Schwarz–Neveu-Schwarz vacu
of the holographically dual super conformal field theory: T
fermions have antiperiodic boundary conditions as they
once around the cylinder, preventing their zero-point ene
from cancelling that of the bosons, as happens in
Ramond-Ramond sector.

III. KERR-AdS 4

The Kerr-AdS4 metric has the following form@27#:

ds252
D r

r2 S dt2
a sin2u

J
df D 2

1
r2

D r
dr21

r2

Du
du2

1
Dusin2u

r2 S adt2
~r 21a2!

J
df D 2

, ~29!

where

D r5~r 21a2!~11r 2/ l 2!22MrG,

Du512~a2/ l 2!cos2u,

r25r 21a2cos2u. ~30!

The period of Euclidean time is given by

3In higher dimensions, connections between energy of a space
solution and Casimir energy of a dual field theory were first poin
out in Ref.@24#.
08402
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b5
4p~r 1

2 1a2!

r 1~3r 1
2 / l 2111a2/ l 22a2/r 1

2 !
, ~31!

with the angular velocity of the horizon given by Eq.~12!.
Here, r 1 is the location of the horizon, the largest root
D r . Again, after continuinga→ ia, Euclidean regularity
gives f a periodf;f1 ibV, in addition to the usualf
;f12p.

The area of the horizon is

A54pS r 1
2 1a2

J D . ~32!

The nonvanishing components of the Kerr-AdS4 stress tensor
for larger exactly match the components recently compu
for the Kerr-Newman-AdS4 case in Ref.@13# in the limit
where the charges vanish~i.e., theirz→0) and are

8pGTtt5
2M

rl
1OS 1

r 2D , ~33!

8pGTtf52
2aM

rJ l
sin2u1OS 1

r 2D , ~34!

8pGTuu5
Ml

rDu
1OS 1

r 2D , ~35!

8pGTff5
Ml sin2u

rJ2
@3a2sin2u/ l 21J#1OS 1

r 2D . ~36!

The mass and the angular momentum are computed from
as

M5
M

J
; J5

aM

J2 . ~37!

The boundary metric of the Kerr-AdS4 is given by

ds25
r 2

l 2 F2dt21
2a sin2u

J
dtdf1 l 2

du2

Du
1 l 2

sin2u

J
df2G .

~38!

Removing the conformal factor@see Eq.~5!#, our dual field
theory is defined on the spacetime@with coordinates
(t,f,u)] with metric gab :

@gab#5S 21 a sin2u/J 0

a sin2u/J l 2sin2u/J 0

0 0 l 2/Du

D . ~39!

Converting with the conformal factor and taking the lim
r→` @see Eq.~6!#, we find that the stress tensor of the fie
theory has this simple form:

T̂ab5
M

8p l 2 @3uaub1gab#, ~40!

e
d

5-4
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whereua5(1,0,0). This is the standard form for the stre
tensor of the nonrotating theory~211!-dimensional confor-
mal field theory. The tensor is covariantly conserved a
manifestly traceless, the latter result being consistent w
the absence of a conformal anomaly in odd dimensio
spacetime. It is interesting to note that the tensor can
written in such a simple form for this theory, even in th
presence of rotation, in contrast to the case in two dim
sions@see Eq.~17!#, and as we will see, the four-dimension
case.

The action calculation in this case gives the result

I 452
p~r 1

2 1a2!~r 1
2 / l 221!

G~3r 1
4 / l 21r 1

2 1a2r 1
2 / l 22a2!J

, ~41!

which agrees with action calculation using the backgrou
subtraction technique in Ref.@17# ~see also Ref.@9#!, since
the Casimir energy is zero for an odd dimensional fi
theory. Also it agrees with the Kerr-Newmann action@13# in
the limit where the charges vanish. These quantities also
isfy the first law@i.e., Eq.~23! with n53].

IV. KERR-AdS 5

The metric for the Kerr-AdS5 in general has two rotation
parameters since the rotation group is SO(4)>SU(2)L
3SU(2)R . Here we discuss the one-parameter solut
given by @17#

ds252
D r

r2 S dt2
a sin2u

J
df D 2

1r 2cos2udc21
r2

Du
du2

1
r2

D r
dr21

Dusin2u

r2 S adt2
~r 21a2!

J
df D 2

. ~42!

Now we have

D r5~r 21a2!~11r 2/ l 2!22MG, ~43!

and the remaining quantities are as in Eq.~30!. This time the
inverse temperature is

b5
2p~r 1

2 1a2!

r 1~2r 1
2 / l 2111a2/ l 2!

, ~44!

with the angular velocity of the horizon given again by E
~12!. Again,r 1 is the location of the horizon, the largest ro
of D r , and f has periodf;f1 ibV, in addition to the
usualf;f12p.

In Ref. @17# the calculation for the relevant physical qua
tities was carried out using the subtraction technique. T
reference spacetime in those calculations was the space
with M50, i.e., AdS5 in very nonstandard coordinate
Here, we go some steps further, by computing and study
physics intrinsic to the Kerr-AdS5 spacetime with no refer
ence to a background, allowing us to extract physical qu
tities like the Casimir energy and other interesting feature
the stress tensor, as we shall see.
08402
d
th
al
e

-

d

at-

n

.

e
me

g

n-
f

After computation, we get the following nonvanishin
components for the stress tensor at larger:

8pGTtt5
l

8r 2 @24MG/ l 2214a2cos2u/ l 2214a4cos2u/ l 4

115a4cos4u/ l 413~11a2/ l 2!2#1OS 1

r 4D ,

8pGTtf5
al sin2u

8r 2J
@2a2cos2u/ l 227a4cos4u/ l 41J2

110a4cos2u/ l 4224MG/ l 224a4/ l 4#1OS 1

r 4D ,

8pGTff5
l 3sin2u

J2 @7a6cos4/ l 627a4cos4u/ l 413a6/ l 6

28a4cos2u/ l 4232a2MG cos2u/ l 411

210a6cos2u l 623a2/ l 212a2cos2u/ l 2

124a2MG/ l 42a4/ l 418MG/ l 2#1OS 1

r 4D ,

8pGTuu5
l 3

8r 2Du

@8MG/ l 21J223a4cos4u/ l 4

12a2cos2u/ l 212a4cos2u/ l 4#1OS 1

r 4D ,

8pGTcc5
l 3cos2u

8r 2
@2a2cos2u/ l 21J218MG/ l 2

27a4cos4u/ l 412a4cos2u/ l 4#1OS 1

r 4D .

~45!

Using the above definition~19! for a conserved charge, on
can calculate the mass and angular momentum of the s
tion, with the result.

M5
p l 2

96GJ
@a4/ l 419J172GM/ l 2#, J5

pMa

2J2 .

~46!

For the action one gets

I 55
p2l 2~r 1

2 1a2!

48Gr1~2r 1
2 / l 2111a2/ l 2!J

3@a4/ l 4212~r 1
2 a2/ l 41r 1

4 / l 42r 1
2 / l 2!1913a2/ l 2#.

~47!

The area of the horizon is

A52p2
r 1~r 1

2 1a2!

J
. ~48!
5-5
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The above quantities satisfy the first law@i.e., Eq.~23! with
n54].

A. Comparison to field theory

The metric on the boundary is that of a rotating Einst
universe@28#:

ds25
r 2

l 2 F2dt21
2a sin2u

J
dtdf1 l 2

du2

Du
1 l 2

sin2u

J
df2

1 l 2cos2udc2G . ~49!

Removing the factorr 2/ l 2 ~defining the metricgab) gives the
line element of the spacetime@with coordinates (t,f,u,c)]
upon which our conformal field theory resides, and for wh
we must compute the energy-momentum tensor in orde
compare to the gravity computation. This seems at firs
daunting prospect, until one notices by direct computat
that the Weyl tensor vanishes for this spacetime, show
that it is conformally flat. This indeed follows from the fa
@17# that the spacetime~42!, with M50, is actually just
AdS5 in nonstandard coordinates, and so its boundary sh
some of the conformal properties of the boundary of AdS5.

One can, therefore, use the following general express
from Ref. @20# to calculate the stress tensor of a field theo
defined on conformally flat spacetime in four dimensions

^T̂ab
s &52

1

16p2 F1

9
asHab

(1)12bsHab
(3)G , ~50!

where Ha
b(1), Ha

b(3), as, and bs are defined in Ref.@20#
@there, they use spacetime indices (m,n) for the field theory
while here we use (a,b)]. The label sP$0,1/2,1% distin-
guishes the spin of the field for which the labeled coefficie
as andbs are computed. We can now compare this to the
nonthermal~i.e., theM independent! part of the tensor which
we have computed on the gravity side.

According to the AdS/CFT holographic relation, on
should define the Casimir energy for the field theory dua
the Kerr-AdS spacetime as the contribution to the total
ergy of the spacetime~46! which is independent of the blac
hole’s mass. This is given by

E5
p l 2~a4/ l 419J!

96GJ
. ~51!

In the limit a→0 this reduces to the Casimir energy of t
nonrotating black hole discussed in Ref.@6#.

Now we would like to show that the expression in E
~51! exactly matches the energy of theN54 supersymmetric
U(N) Yang-Mills theory defined on a rotating Einstein un
verse, which is the CFT on the boundary. The relation
tween the parameters of the gravity theory in the bulk a
those of the CFT on the boundary is@1#

1

G
5

2N2

p l 3 . ~52!
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Using this relation in Eq.~51! one gets

E5
N2

48lJ
~a4/ l 419J!. ~53!

Since the the gravitational quasilocal stress tensor and
stress tensor of the CFT on the boundary are dual to
another, one can use the following expression for the ene
of the field theory:

E5 (
s50,1/2,1

nsE
S
d3xAsja^T̂s

ab&u
b. ~54!

~Here ja and ua have the same meaning as before.! This
gives

E5
4p2

J (
s50,1/2,1

nsFas

9
~3a4/ l 429J!1

bs

3
~a4/ l 419J!G ,

~55!

where ns is the number of particles with spins in the N
54 super Yang-Mills theory on the boundary. The spin-h
particle is the Weyl fermion. Substituting in the values f
(ns,as,bs), we find that the resulting energy of the CF
exactly matches the prediction~53! for the Casimir energy
from gravity.

B. Conformal anomaly

If we expand the trace of the quasilocal stress tensor
the gravity side in powers of 1/r , the leading contribution is

Ta
a52

a2l

8pGr4 @a2/ l 2~3 cos4u22 cos2u!2cos2u#

1OS 1

r 6D . ~56!

Using Eq.~52! between the gravitational parameters and
gauge theory parameters and taking the large-r limit, one
gets a prediction for the field theory quantity:

T̂a
a52

N2a2

4p2l 6
@a2/ l 2~3 cos4u22 cos2u!2cos2u#. ~57!

This precisely matches what one obtains by performing
rectly the trace of the stress tensor defined for the field the
in Eq. ~50!.

As a final check, we note that the general form of t
conformal anomaly in four dimensions~adapted to the
present case@29,6#! is given by

T̂a
a52

N2

4p2F2
1

8
R mnRmn1

1

24
R 2G , ~58!

where Rab and R are the Ricci tensor and scalar for th
spacetime upon which the field theory resides. Using
boundary metricgab , we find that this is precisely the resu
obtained in Eq.~57!.
5-6
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We find that the stress tensor for the CFT on the rotat
static Einstein universe may be written in the followin
form:

T̂ab5A ~4uaub1gab!1B v1
a v1

b 1C v2
a v2

b 1D1w1
a w1

b

1D2w2
a w2

b 1E zazb1
1

4
gabT̂d

d . ~59!

The unit timelike velocityua and the accompanying nu
vectors are

ua5~1,0,0,0!,

v6
a 5S 1,0,0,6

1

l cosu D , za5S 1,2
2a

l 2 ,0,
1

l cosu D ,

w6
a 5F1,2

1

l S 611
a

l D ,0,
1

l G , ~60!

while the coefficients are

A5
1

64pGl
@a4/ l 4~3 cos4u2cos 2u!18MG/ l 212Du21#,

B5
cosu

32pGl~12cosu!
@a4/ l 4~3 cos4u2cos3u2cos 2u!

12Du21#,

C52
a2cosu

32pGl3
@a2/ l 2~3 cos3u2cosu2cos 2u!

112cosu#,

D652
a~16a/ l !

32pGl2~12cosu!
@a3/ l 3~cos 2u cosu1sin2u!

1a cosu/ l 6Du#,

E52
cosu

32pGl~12cosu!
JDu . ~61!

Notice again, just as we saw in lower dimensions, that
coefficientA of the part of the tensor in standard form is t
only one which depends upon the thermal part of the the
—represented by the black hole mass— while the other
efficients, referring to the null vectors, are independent ofM.
It is also interesting to note that whena→0, while C and
D6 vanish, the terms involvingB andE cancel each other.

The last term in the energy-momentum tensor~59! ap-
pears to imply the presence of a conformal anomaly, wh
is certainly interesting. General considerations~see, e.g., Ref.
@29# for a discussion in the present context! show that in the
presence of a conformal anomaly, the action has a diver
piece

I div} log~r / l !E d4xA2g T̂a
a . ~62!
08402
g

e

ry
o-

h

nt

~See Ref.@7# for specific examples in this context.! From
reading Ref.@30#, however, one expects that the correspon
ing logarithmic ~UV! divergence@ log(r/l)# of the action
should not be present for a spacetime which can be wri
locally as a product. In support of this, the action~47! which
we computed does not have a logarithm~in contrast to the
examples in Ref.@7#!, as we have seen, presenting us with
paradox. This is resolved upon realization that theintegrated
trace actually does vanish, as a computation reveals.4 If this
alone were true, it would provide a counterexample@31,32#
to the often quoted folklore that, in a nontrivial theory, sca
invariance ~preserved here! implies conformal invariance
which is apparently broken here~seeNote added in proof!.5

Unfortunately, this is not the case. A first clue that
manifestly conformally invariant form for the stress tens
can be restored is suggested by the fact@17# that the rotating
Einstein universe is conformal~up to an identification on the
angular coordinates! to the static Einstein universe after
change of coordinates. Furthermore, a closer examinatio
the expression for the traceT̂a

a reveals that it is not only a
total derivative, but it is in fact proportional tohR. Since a
term proportional tohR results from a variation of

DI ct5
k l 3

8pGE
]M

R2, ~63!

we can, therefore, supplement the counterterms~3! with such
a term, and define a new6 stress tensorQab which is actually
traceless fork51/864. Our stress tensorQab also has the
same energy asT̂ab ~seeNote added in proof!.

This addition of a new counterterm —which amounts to
new regularization scheme— in order to ensure a manife
conformally invariant form for the stress tensor~which is not
necessary when there is no rotation in AdS5), is an example
of a fact familiar from field theory: There is an ambiguity o
the definition of the trace anomaly~58! in four dimensions,
allowing a term proportional tohR to be added, with an
undetermined coefficient corresponding to the choice of
ferent schemes for regularizing the field theory@20#. Here,
this corresponds to different choices for boundary coun
terms@6#. It is interesting that a new counterterm is needed
restore manifest conformal invariance after a change of v
ablesandconformal frame. This merits further investigatio

Overall, we see that the gravity computation~which is
dual to a computation instrongly coupledfield theory! again
matches the results from the weakly coupled field the
computation. In the case of pure AdS5, the reason for the
precise match, as explained in Ref.@6#, is that pure AdS5
receives no stringy corrections because all tensors~in terms

4We are grateful to R. C. Myers for a crucial discussion, and
pointing out the vanishing.

5We thank P. Townsend for pointing this out, and N. Seiberg a
J. Polchinski for discussions of this issue.

6In order to defineQab with a suitably modified version of ex
pression~4!, we need to subtract an ‘‘improvement term,’’ in th
sense of Refs.@33,32# which we will report on elsewhere@34#.
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of which the stringy corrections can be written! that can
modify Einstein’s field equations vanish for that space. T
translates into no difference between the results for stro
and weak-coupling field theory, because the stringy corr
tions are correlated with corrections in field theory couplin
as required by the duality@1#.

That this is also true for the Kerr-AdS5 case, in the limit
of zero black hole mass —where we have shown full agr
ment with field theory— follows simply becauseM50
Kerr-AdS5 is just AdS5 in nonstandard coordinates@17#, pa-
rametrized bya. It, therefore, shares many of the conform
properties with AdS5. As the stringy corrections can all b
written in terms of the Weyl tensor of the spacetime, if th
vanish for AdS5, they vanish here also.

V. CONCLUDING REMARKS

The counterterm subtraction technique has allowed for
intrinsic definition of the action~and the quantities which
follow! for the Kerr-AdSn11 spacetimes, forn52,3,4. This
is in contrast to the background subtraction technique, wh
required a reference spacetime in order to compute a fi
action. In subtracting the contribution from a referen
spacetime to get a finite action, any physics common to b
spacetimes is lost. In this paper we have computed exam
of such quantities, the Casimir energies and conform
anomaly for field theories residing on even dimensio
spacetimes.

We have shown that the quantities thus computed~and
indeed, the full stress-energy-momentum tensor in four
mensions! are consistent with a holographic interpretation
the physics of gravity in AdS in terms of dual conform
field theory. The Casimir energies which we computed
the holographically dual two- and four-dimensional confo
mal field theories~residing on a rotating cylinder, or th
rotating Einstein universe! exactly matched the contributio
to the energy computed for the Kerr-AdS spacetime whic
not attributable to the black hole. Also, we saw an interest
example of the change in regularization scheme neede
retain a manifestly conformally invariant form in the fou
dimensional case. In all cases (n52,3,4), we found that the
tt
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stress tensor for the field theory on the rotating spacet
can be neatly written in terms of a sum of a standard tra
less thermal form~involving the mass of the dual black hole!
and additional terms involving null vectors. Intriguingly, fo
n53, there are no such additional terms; its stress ten
keeps the simple thermal form. This may be an import
feature of the M2-brane world-volume conformal fie
theory @35,36#. While the computation for the two
dimensional conformal field theory and the related Ad3
spacetime is essentially contained in Ref.@6#, the results for
higher dimensions are new.

We expect that these results also follow for Kerr-AdSn11,
for n11.5. It would be especially interesting to see th
form of the tensor for Kerr-AdS7. However, we found that
the computational complexities encountered due to the
diagonal terms in the metric —and the additional count
terms needed@7#— were too severe to allow for an explora
tion using the techniques which we have employed so fa

Note added in proof.We noticed that while the new coun
terterm does indeed restore the tracelessness of the s
tensor, the new tensor thus defined yields the same energ
the old but a different angular momentum. This appears
mean that the angular momentum of Kerr black holes d
break the conformal invariance of the theory, despite the
that the rotating Einstein universe on the boundary is con
mal to the Einstein universe. We intend to investigate t
further and report on this matter in a future publication.
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