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Semiclassical charged black holes with a quantized massive scalar field
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Semiclassical perturbations to the Reissner-Nordstreetric caused by the presence of a quantized massive
scalar field with arbitrary curvature coupling are found to first ordeeinz/M?2. The DeWitt-Schwinger
approximation is used to determine the vacuum stress-energy tensor of the massive scalar field. When the
semiclassical perturbation are taken into account, we find extreme black holes will have a charge-to-mass ratio
that exceeds unity, as measured at infinity. The effects of the perturbations on the black hole temperature
(surface gravity are studied in detail, with particular emphasis on near extreme “bare” states that might
become precisely zero temperature “dressed” semiclassical black hole states. We find that for minimally or
conformally coupled scalar fields there ar@zero temperature solutions among the perturbed black holes.

PACS numbes): 04.70.Dy

[. INTRODUCTION which possessed nonzero mass, these could be potential end-
point “remnants” of black hole evaporation.

The back reaction of quantized fields on the spacetime To date the linearized semiclassical back-reaction equa-
geometry of a black hole can have very significant and imtions have only been solved in the case of an initially
portant imp|ications_ For examp|e back reaction from theSChwal’ZSCh”d black hole in thermal equilibrium with mass-
particle production that occurs in the Hawking effdaf less radiation in a cavity. York considered the perturbation
causes the black hole to gradually become smaller in size. Adue to a conformally coupled quantized scalar fig.
it does so its temperature becomes higher and its entropyiochberg, Kephart, and York extended this work to include
lower. If a black hole is placed in thermal equilibrium with the effects of massless quantized spinor and vector figlds
radiation in a cavity, the back reaction of quantized fields carfinderson et al. [4] studied the perturbations due to the
again alter its temperature and entrdgy-4). vacuum stress-energy of a quantized massless scalar field

Because of the difficulty in computing the stress-energywith arbitrary curvature coupling. In all these cases, the
tensor for quantized fields in black hole spacetimes, varioustress-energy tensor of the quantized field was treated using
approximations have been used for all back-reaction calcula@nalytic approximations developed by Page, Brown, and Ot-
tions that have been done so far. One extremely useful agewill [5—7] and Anderson, Hiscock, and Sam{ig].
proximation is to calculatdeither exactly or within some ~ In this paper we investigate charged and uncharged black
approximation schemegT#,) in a classical black hole ge- holes which interact with an uncharged quantized massive
ometry, and then compute semiclassical corrections to thecalar field of arbitrary curvature coupling. The general
metric as linear perturbations. This works particularly well “bare” spacetime is described by the Reissner-Nordstro
for static solutions such as occur for a zero temperature blacRetric
hole or a black hole in thermal equilibrium with radiation in

a cavity. The fact that the solutions are static makes the oM Q2 M Q? ~1
problem much more tractable. An advantage of this approach g&?=—|{1— — + —|dt?+| 1— — + —| dr?

is that it gives direct information about how semiclassical ( r r? r r?

effects alter the geometry from that of the corresonding clas- 12402 B

sical solution to Einstein’s equations. Even though such
models have so far only been applied to the static case, they
are relevant to the issue of the end point of black hole evapowhereQ is the charge on the black hole aMlis its mass.
ration, because the perturbations give information about howVe treat the vacuum stress-energy of the quantized massive
quantum effects alter the temperature of a black hole. Foscalar field as a perturbation on the “bare” Reissner-
example, if uncharged zero temperature solutions were founNordstran spacetime, solving the semiclassical Einstein
equations to find the first-order-i-semiclassical correc-
tions to the Reissner-Nordstrometric. We consider a situ-
*Present address: Department of Chemistry and Physics, Radfoation analogous to that of Rd#], where the black hole is in
University, —Radford, VA 24142. Electronic address: thermal equilibrium with the quantized field, imposing mi-

brett@peloton.runet.edu crocanonical boundary conditions on a spherical boundary
Electronic address: billh@orion.physics.montana.edu surface surrounding the black hole. The vacuum stress-
*Electronic address: paul@planck.phy.wfu.edu energy is analytically approximated using the DeWitt-
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Schwinger approximation; previous exact, numerical work The exact calculation of the expectation value for the
by Anderson, Hiscock, and Samué] (AHS) has demon- stress-energy of a quantized field in a curved spacetime is a
strated that the DeWitt-Schwinger approximation to thenon-trivial exercise. Anderson, Hiscock, and Sam{®]
vacuum stress-energy is quite goGtPo or bettey in the  have developed a method for numerically calculating the
Reissner-Nordstra spacetime whemM=2. vacuum stress-energy tensor of both massive and massless
The perturbation caused by the quantized field willquantized scalar fields with arbitrary curvature coupling in a
change the temperature of the black hole; we examine igeneral static, spherically symmetric spacetime. As part of
detail the sign and size of this effect. We are particularlythis method, they also developed an analytic approximation
interested in situations where the perturbed black hole hag, (T*,) for massive scalar fields based on the DeWitt-
precisely zero temperature. Within the context of a perturbagchwinger expansion in inverse powers of the field mass.
tive approach, this means the unperturbed Reissnefrhis approximation is state independent and entirely local,
Nordstran spacetime must be nearly extreme. The “bare” yepending at each point only on the values of the curvature
Reissner-Nordstra spacetime that results in a “dressed” gpq jts derivatives. One expectspriori, the approximation
zero temperature black hole could be either a nearly extremg, hecome increasingly accurate as the ratio of the Compton
Reissner-Nordstra black hole or possibly a Reissner- yayelength of the field to the local radius of curvature ap-
Nordstran naked singularity, witHQ| slightly greater than proaches zero, i.e., in the limiims1.
M. We are able to handle the case of “bare” naked singu- They then applied these techniques to the Reissner-
larities because the DeWitt-Schwinger approximation fornordstran spacetime, obtaining exact numerical values for
(T*#,) is purely local. the vacuum stress-energy for both massive and massless
Section |l describes the approximate vacuum stressfig|ds. Comparing the exact values 6F#,) to those pro-
energy tensor and the semiclassical linearized Einstein equgiged by the DeWitt-Schwinger approximation, they showed
tions. The mgtric per_turbations are also derived and disthat in the Reissner-Nordstro spacetime, the approximate
played in this section. In Sec. Il the temperatureyajyes are quite goodwithin a few percent of the exact
perturbations are determined, and we search for zero temyjyeg near the horizon if the field mass is chosen to satisfy
perature solutions. We find that there are no zero temperatuig p=2. One might expect the DeWitt-Schwinger approxi-
solutions for plausible values of the scalar field’s curvatureqation to also fail to be adequate for black holes with non-
coupling; specifically, there are none for minimally or con- ,orq temperature, at large values rofvhere temperature-
formally coupled scalar fields. Section IV summarizes OUrdependenthence, state-dependgtgrms associated with the
conclusions. Throughout this paper we use units such th%}as of produced particles dominat&#,). However, for a
h=G=c=kg=1. The sign conventions are those of Misner, massive field, there will be essentially no particles created by
Thorne, and Wheel¢9)]. the hole if the temperature is substantially less than the mass
of the field, T<m. For any Reissner-Nordstroblack hole,
the temperature satisfiés<(47M) ™1, so the temperature
Il. SEMICLASSICAL PERTURBATION METHOD will be substantially less than the field mass as long as
) . ) . _ (4m)"'<Mm. This condition is adequately satisfied when
In semiclassical gravity, one quantizes the matter fieldghe previously mentioned criterion for the validity of the
but not the spacetime geometry. This modifies the right ha”@eWitt-Schwinger approximationmMs2, holds. Hence,
side of the Einstein field equations, replacing the classicaj,, any Reissner-Nordstno black hole and massive scalar
stress-energy tensor with the expectation value of the qualie|g combination satisfyingnM>2, we will assume the
tum stress-energy operator. The semiclassical Einstein eqUeWitt-Schwinger approximation is valid throughout the re-

tions then take the form gion exterior to the horizoh.
Using the results of AHS for the case of a quantized mas-
GH,=8m(TH). ) sive scalar field in the Reissner-Nordstrepacetime the fol-

lowing values for the expectation value of the stress-energy

o . . _ . tensor are obtained:
In examining the semiclassical perturbations of the Reissner-

Nordstran metric caused by the vacuum energy of a quan
tized scalar field, we will continue to consider the electro-
magnetic field to be classical; for the Reissner-Norastro
geometry, then, the semiclassical equations will contain bot
classical and quantum stress-energy contributions:

Istrictly speaking the expectation value of the stress-energy tensor
I]‘1or a massive field in a thermal state must approach a nonzero
constant in the limitr —«~. However, in the case whemM> 1
there will be very few “realizations” of the quantum field theory in
which any particles are present. Another way to think about this is

GH,=8a[(TH)+TH,]. (3) that in a nons_tatic_state it would take a very long time on average
before a particle is produced. Thus to a good approximation it
should be adequate to use the DeWitt-Schwinger approximation out

The classical stress-energy term on the right-hand side of Ep arbitrarily large values of. Of course for the zero temperature
(3) represents the electromagnetic field's stress-energy in thease one expects the DeWitt-Schwinger approximation to be valid
Reissner-Nordstra geometry; it will vanish in the throughout the region exterior to the event horizon as long as
Schwarzschild limit a€)— 0. mM>1 is satisfied.
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wherer , =M+ M?—Q? is the radius of the unperturbed oM Q2
event horizon,e=1/M? is our expansion parameter for the ds?=—|1- —+ =
perturbation(in conventional unitse= M3, /M?) and¢ is rr

th? cur\f/a_lt_L;re cou.[t)hnq[ for tdhe df|held. V'Ze dol ':jOt dISfrilr;’:Iy ttheThe components of the expectation value of the stress-energy
value of(T%), as it not needed here. Knowledge of the two, "5 "th e coordinates are

components shown above is sufficient to completely solve

dv2+2dvdr+r2dQ2. (10

the perturbed semiclassical Einstein equations. (T°,)=(TY), (11)
The semiclassical Einstein equations may be more easily
solved if a coordinate transformation is made to ingoing <T7~)=<Tr) (12)
Eddington-Finklestein coordinates. The transformation is de- ' v
scribed by o\ -1
v. 2M Q r t
(T =|1-=+=] KT')—(Tyl
at r r
oL (6) (13
. Settingr =r, one can write the metric for a general static
at_ 1 ﬂ +Q_2) @ spherically symmetric spacetime as
i T sy O
m(r
dszz—ez‘ﬂ(r)(l— +— dv2+2&Ndudr+r2dQ2.
ar r
£=0, (8) (14
The perturbations to the Reissner-Nordstraetric can be
ar introduced by an expansion of th& andm(r) metric func-
== 1. (9)  tions to first order in the parameter
e’ N=1+ep(r), (15a
The Reissner-Nordstno metric takes the following form in
ingoing Eddington-Finklestein coordinates: m(r)=M[1+eu(r)]. (15b
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The components of the Einstein tensor can now be calculated du A7r?

in the metric given by Eq(14) with the expansions given in G Me (T, (16)
Egs.(159,(15b). These can be substituted into E&) along

with the classical background stress-energy and the approxi- do 4 oM o\ —1

mate stress-energy of the quantized field from H44)— Gp_amri, M O [(T") = (T4
(13). This yields two first order differential equations for dr € r r2 ' v
u(r) andp(r): 17

Here(T') and(T",) are given by Eq(4) and Eq.(5). The € factors in the denominator of the leading terms in both @)
and Eq.(17) are exactly canceled by the overall factoredih the expressions faiT';) and(T",). These differential equations
can be integrated to find the general solutionsgoandp. They are
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The integration constants for bothandp have been chosen €. This physical, or dressed, maddg,, is a function of
so thatu(r,)=C, andp(r .)=C,. The perturbed spacetime the bare, and unmeasurable mads,plus a small perturba-
is now defined to first order ia to within the two integration  tion:
constantC,; andC,.

The horizon radius is no longer locatedrat due to the Mgy=M+eMC;. (22
perturbation from the presence of the quantized field. Its ra-

dius is now defined implicitly as the solution to the equationThe horizon radius is then expressed in terms of the dressed
mass of the black hole:

Fh=m(rp)+ym(r,)*— Q. (20)
_ M2 _ 2
We can utilize the horizon location to define the perturbed =Mgn+ VMg, = Q" (23

mass of the black hole,
The bare masdyl, and the mass perturbatiofiyi, cannot be
Mgu=m(r,)=M[1+eu(r,)], (21)  measured independently; only the dressed nidgg has
physical meaning. We will hereafter only refer to the dressed
to first order ine; r, has been changed to. in the final massMgy, defined implicitly in Eq.(23). The arbitrary but
expression on the right, as the difference would be of ordephysically unmeasureable integration const@pis then ab-
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sorbed into the definition d1, as in Ref[4]. The perturbed ll. RESULTS

metric’'s mass function now takes the form . . . L
In this section we will concentrate on the examination of

_ ~ two properties of the perturbed black hole metric: first, the
m(r)=Mep[1+en(n)], (24) relation of the mas$/ defined by the horizon radius to the
where mass that would be measured at infinity by a Keplerian orbit,
M., ; second, the effect of the semiclassical perturbation on
:’«(r)zﬂ(rﬂcl:o- (25)  the temperature of the black hole.

With the integration constanC,; absorbed into the
The metric can now be rewritten in terms of the dressed mag3orizon-defined mashl as described in E¢24) above, the

Mgy and 72(r). Because these quantities are those that cafOrizon radius keeps its simple, Reissner-Nordstform, as
be physically measured, thgH subscript and the tilde will S€en in Eq.(23). However, the price paid is that now the

now be dropped, writing onlf and u respectively. In ad- massM is not the mass that would be_m_egsured for the
dition, we will denoter,, by r, henceforth, since they have Perturbed black hole by an observer at infinity, say by ob-

the same definition once the mass has been renormalized.S¢™Ving the properties of an orbiting test mass at largene
is now convenient to transform from Eddington-FinklesteinMass of the black hole at infinity will be
coordinates back tot{r,6,¢) coordinates. Doing so one

finds that the perturbed metric takes the form Mo=M[1+eu(r)|_.]=M+ M. (29
2m(r) 2 ) The difference between the mass measured at infinity and the
ds’=—[1+2ep(r)]| 1- —+ 2 dt horizon defined mass is then

om(r) Q2| ' eM | 4160M*  46IM°  660M2
+| 1- +—| dr?+r2dQ% (260 OM=—|— st 5 2
r2 m 158760- 66157 1058407
The remaining integration constai@,, was fixed in the . 3007 . 4M4 11M3 . 41IM2  13M
case of the_massles_s field s_tudleq in FEQ}.by enclqsmg the 15876@‘1 4&3 45ri 1801 180& '
black hole in a cavity and imposing microcanonical bound-
ary conditions. However, as discussed above there is no gas (30
of massive scalar particles surrounding the black hole, be-
cause the DeWitt-Schwinger approximation is stéad Depending on the value of the scalar field's curvature

hence temperaturendependent. In the domain where the coupling, £, M., can be either largerM>0) or smaller
DeWitt-Schwinger approximation is valiile., Mm>2), the (M <0) thanM. Examination of Eq(30) shows that for a
temperature of the hole is so low that it creates a negligibleonformally coupled field §=1/6), §M >0 for all values of
number of such particles. The stress-energy associated witQ?/M?=<0.954463, while for a minimally coupled field (
the massive scalar field in this limit is essentially the result of=0), M >0 for all Q2/M?<0.998701. Interestingly, in the
vacuum polarization, not particle production. Hence, placingextreme Reissner-Nordstro limit, for which Q%/M?=1,
the hole in a cavity to allow thermal equilibrium is neither §M becomes negative and independentof

appropriate nor necessary.

Instead, the integration consta@t may be fixed by re- —17e
quiring thatgy; in the perturbed metric of Eq26) approach Mernv=—— 5 (31
the usual value of- 1 asr—. This implies thaC, simply 31752Grm°M

determines the normalization of the time coordinate at infin-
ity. For g, to approach—1 as a limiting value requires that This implies that an extreme black hole, perturbed semiclas-

p(*)=0, and therefore that sically by a massive quantized scalar field, will have a
B charge-to-mass ratitas measured at infinitygreater than
Co=—p(N)|i—, (27)  unity.
In order to determine the effect the presence of the quan-
where tized scalar field has on the temperature, the surface gravity
- of the black hole must be calculated. For the perturbed met-
p(r)=p(rlc,=o- (28 ric in Eq. (26) the surface gravity to first order iais
It is worth noting that this C(_)l_"nditi_on is iQer_lticaI to the m_i- IM2=Q?
crocanonical boundary condition in the limit that the cavity k=——F—(1+ €C,)+4mr (T}, (32
radius approaches infinity. With the fixing &, the per- rs

turbed spacetime is now completely defin€]; andC, no

longer appear in the perturbed metric, having been fixed; thevhich reduces to the usual Reissner-Nordstsurface grav-
massM now refers to the “dressed” black hole mass, de-ity as e—0. The perturbation in the surface gravity is given
fined implicitly by the horizon radius through E®3). by
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1.00 ' L which is positive for both the minimal and conformally
i Sre<0 coupled field, as well as for any field wih<5/14. Thus, for

050 B a Reissner-Nordstro black hole with a semiclassical pertur-
g i bation provided by a massive quantized scalar field, unless
0.00 7] the curvature coupling takes on apparently unnatural values

i (£>5/14), there will beno zero temperature solution. The

0.0 7 extreme black holgnow defined as the black hole with
Loo | | maximum possible charge-to-mass ratio, beyond which are

0.0 0.2 04 0.6 0.8 1.0 naked singularity solutionsvill have a nonzero temperature.
3 2 Given the somewhat surprising result that zero tempera-
oM ture solutions to the linearized semiclassical back-reaction
FIG. 1. The curves represent semiclassical black hole solution€duations do not exist for realistic values of the curvature
for which the change in temperature is zero for particular values ofOUPIiNg constant, it is perhaps useful to ask whether zero

the charge and curvature coupling constant. temperature solutions to the full nonlinear semiclassical
back-reaction equations exist. Although it is difficult to find

IMZ=Q? solutions to the nonlinear equations everywh_ere outs_ide the
Sk=Kk———F—— (33)  event horizon(even with the use of the DeWitt-Schwinger

Iy approximation it is possible to solve the equations near the

event horizon. To do so one can simply expand the metric

or, explicitly, functions, the Einstein tensor, and the stress-energy tensor in
2 powers of ¢ —r,) and solve the equations order by order in
_ [ 2458\ 3_576aM2r . (.r —rp). Utilizing this approach with the full nonIingar equa-
35280rm?rS tions, we have found that zero temperature solutions of the
5 3 5 5 extreme Reissner-Nordstroform near the event horizon ex-
+461Mr% — 12397 + £(—9408M°+22736M “r . ist. These solutions have a slightly different ratio between
—1862(0Mr% +5096%)]. 34 the chargeQ and the radius,, of the event horizon than do

the classical Reissner-Nordstnosolutions.

The perturbation in the surface gravity depends on the value HOWever, the existence of zero temperature local solu-
of the curvature coupling constart, which appears in both tions to the. full ngnlmea_r equations is p.robably wrelevapt
the expression fof, and . In addition the surface gravity T0M @ physical point of view. The reason is that the DeWitt-
will also depend on the field mass and the overall size of SChwinger approximation contains terms with up to six de-
the perturbatione. Both of these are multiplicative factors vatives of the metric. These higher derivatives lead to many
that only affect the overall size of the perturbation to thelocally (i-e., near the horizarsensible solutions to the equa-
surface gravity. Our attention here is focused(nthe sign tions that are an artifact of @he approxmauon since the exact
of Sk for various combinations of black hole state and fieldSIFéSS-€nergy tensor contains terms with up to only four de-
curvature coupling, ant®) which black holes states can con- rivatives of the metric. Even in the case when the exact

ceivably have the total surface gravity,(in the perturbed stress-energy tensor s used in the semlcla§S|caI b"’!Ck'
state, and hence temperature, equal to zero. reaction equations it has been argued that the higher deriva-

Since the expression fafx is linear in&, it is a simple tives here also I_ead to_phy;ica_dly unacceptable sollulﬂibﬁ]s
matter to find the value of for each value oQ%M? that Thug the most Ilkely situation is tha}t the only solutions to the
will result in §xk=0. The domain of allowed black hole nonhnear equations that are phys'lcally acceptable when the
states may then be divided into regions wheve>0 and DeWitt-Schwinger approximation is used are those that re-

regions whereSk<<0. Figure 1 illustrates the sign dk as a g]ul\je_:cgo tr:?] fr(])igjté(;gse t\?v;hr?al:/ge:[rlzzg eggg::ot?;nzgg lt'énn':
function of Q?/M? and &. ' y

In the Schwarzschild limitgx simplifies to the form perature solutions do not exist for reasonable value& of

—37+168¢
645120rm°M3

’ (35) IV. DISCUSSION

OKsch™ 6(
We have investigated the effect the vacuum stress-energy
which is negative for both the minimal and conformally of a quantized massive scalar field has on the geometry of a
. X ) -7 charged black hole, within the context of linear perturbation
coupled massive sca_lar field, as well as for any field with theory. We have found the metric functions that describe
<37/168. Thus, the likely effect of a semiclassical p(':‘rturb""'such a semiclassically perturbed black hole, to first order in

tlo_n from a massive quantl_zed scalar field on a Schwarzsé:ﬁ/Mz_ We have shown that the mass of such a black
child black hole is to lower its temperature.

. AR hole, as measured at infinity, will differ from the mass de-
In the extreme Reissner-Nordstdimit, 5« becomes fined in terms of the horizon radius. For an extreme black

5.1 hole, the mass at infinity will always be less than the mass
SKerN= E(—46 ’ (36)  defined by the horizon radius. The charge-to-mass ratio of an
2520mm*M?3 extreme black hole, as measured at infinity, will exceed unity
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for all values of the massive field scalar curvature couplingblack holes semiclassically perturbed by the vacuum energy
We have also examined the effect of the semiclassical peef a massive scalar field, there are no plausible zero-
turbation on the surface gravity of the black hole. For reatemperature solutions.

sonable values of the scalar field curvature coupling, the per-
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