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Semiclassical charged black holes with a quantized massive scalar field
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Semiclassical perturbations to the Reissner-Nordstro¨m metric caused by the presence of a quantized massive
scalar field with arbitrary curvature coupling are found to first order ine5\/M2. The DeWitt-Schwinger
approximation is used to determine the vacuum stress-energy tensor of the massive scalar field. When the
semiclassical perturbation are taken into account, we find extreme black holes will have a charge-to-mass ratio
that exceeds unity, as measured at infinity. The effects of the perturbations on the black hole temperature
~surface gravity! are studied in detail, with particular emphasis on near extreme ‘‘bare’’ states that might
become precisely zero temperature ‘‘dressed’’ semiclassical black hole states. We find that for minimally or
conformally coupled scalar fields there areno zero temperature solutions among the perturbed black holes.

PACS number~s!: 04.70.Dy
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I. INTRODUCTION

The back reaction of quantized fields on the spacet
geometry of a black hole can have very significant and
portant implications. For example back reaction from t
particle production that occurs in the Hawking effect@1#
causes the black hole to gradually become smaller in size
it does so its temperature becomes higher and its ent
lower. If a black hole is placed in thermal equilibrium wit
radiation in a cavity, the back reaction of quantized fields c
again alter its temperature and entropy@2–4#.

Because of the difficulty in computing the stress-ene
tensor for quantized fields in black hole spacetimes, vari
approximations have been used for all back-reaction calc
tions that have been done so far. One extremely useful
proximation is to calculate~either exactly or within some
approximation scheme! ^Tm

n& in a classical black hole ge
ometry, and then compute semiclassical corrections to
metric as linear perturbations. This works particularly w
for static solutions such as occur for a zero temperature b
hole or a black hole in thermal equilibrium with radiation
a cavity. The fact that the solutions are static makes
problem much more tractable. An advantage of this appro
is that it gives direct information about how semiclassi
effects alter the geometry from that of the corresonding c
sical solution to Einstein’s equations. Even though su
models have so far only been applied to the static case,
are relevant to the issue of the end point of black hole eva
ration, because the perturbations give information about h
quantum effects alter the temperature of a black hole.
example, if uncharged zero temperature solutions were fo
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which possessed nonzero mass, these could be potential
point ‘‘remnants’’ of black hole evaporation.

To date the linearized semiclassical back-reaction eq
tions have only been solved in the case of an initia
Schwarzschild black hole in thermal equilibrium with mas
less radiation in a cavity. York considered the perturbat
due to a conformally coupled quantized scalar field@2#.
Hochberg, Kephart, and York extended this work to inclu
the effects of massless quantized spinor and vector fields@3#.
Anderson et al. @4# studied the perturbations due to th
vacuum stress-energy of a quantized massless scalar
with arbitrary curvature coupling. In all these cases,
stress-energy tensor of the quantized field was treated u
analytic approximations developed by Page, Brown, and
tewill @5–7# and Anderson, Hiscock, and Samuel@8#.

In this paper we investigate charged and uncharged b
holes which interact with an uncharged quantized mass
scalar field of arbitrary curvature coupling. The gene
‘‘bare’’ spacetime is described by the Reissner-Nordstr¨m
metric

ds252S 12
2M

r
1

Q2

r 2 D dt21S 12
2M

r
1

Q2

r 2 D 21

dr2

1r 2dV2, ~1!

whereQ is the charge on the black hole andM is its mass.
We treat the vacuum stress-energy of the quantized mas
scalar field as a perturbation on the ‘‘bare’’ Reissn
Nordström spacetime, solving the semiclassical Einste
equations to find the first-order-in-\ semiclassical correc
tions to the Reissner-Nordstro¨m metric. We consider a situ
ation analogous to that of Ref.@4#, where the black hole is in
thermal equilibrium with the quantized field, imposing m
crocanonical boundary conditions on a spherical bound
surface surrounding the black hole. The vacuum stre
energy is analytically approximated using the DeWi

rd
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TAYLOR, HISCOCK, AND ANDERSON PHYSICAL REVIEW D61 084021
Schwinger approximation; previous exact, numerical wo
by Anderson, Hiscock, and Samuel@8# ~AHS! has demon-
strated that the DeWitt-Schwinger approximation to t
vacuum stress-energy is quite good~1% or better! in the
Reissner-Nordstro¨m spacetime whenmM>2.

The perturbation caused by the quantized field w
change the temperature of the black hole; we examine
detail the sign and size of this effect. We are particula
interested in situations where the perturbed black hole
precisely zero temperature. Within the context of a pertur
tive approach, this means the unperturbed Reiss
Nordström spacetime must be nearly extreme. The ‘‘bar
Reissner-Nordstro¨m spacetime that results in a ‘‘dressed
zero temperature black hole could be either a nearly extr
Reissner-Nordstro¨m black hole or possibly a Reissne
Nordström naked singularity, withuQu slightly greater than
M. We are able to handle the case of ‘‘bare’’ naked sing
larities because the DeWitt-Schwinger approximation
^Tm

n& is purely local.
Section II describes the approximate vacuum stre

energy tensor and the semiclassical linearized Einstein e
tions. The metric perturbations are also derived and
played in this section. In Sec. III the temperatu
perturbations are determined, and we search for zero t
perature solutions. We find that there are no zero tempera
solutions for plausible values of the scalar field’s curvat
coupling; specifically, there are none for minimally or co
formally coupled scalar fields. Section IV summarizes o
conclusions. Throughout this paper we use units such
\5G5c5kB51. The sign conventions are those of Misn
Thorne, and Wheeler@9#.

II. SEMICLASSICAL PERTURBATION METHOD

In semiclassical gravity, one quantizes the matter fie
but not the spacetime geometry. This modifies the right h
side of the Einstein field equations, replacing the class
stress-energy tensor with the expectation value of the qu
tum stress-energy operator. The semiclassical Einstein e
tions then take the form

Gm
n58p^Tn

m&. ~2!

In examining the semiclassical perturbations of the Reiss
Nordström metric caused by the vacuum energy of a qu
tized scalar field, we will continue to consider the elect
magnetic field to be classical; for the Reissner-Nordstr¨m
geometry, then, the semiclassical equations will contain b
classical and quantum stress-energy contributions:

Gm
n58p@^Tm

n&1Tm
n#. ~3!

The classical stress-energy term on the right-hand side of
~3! represents the electromagnetic field’s stress-energy in
Reissner-Nordstro¨m geometry; it will vanish in the
Schwarzschild limit asQ→0.
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The exact calculation of the expectation value for t
stress-energy of a quantized field in a curved spacetime
non-trivial exercise. Anderson, Hiscock, and Samuel@8#
have developed a method for numerically calculating
vacuum stress-energy tensor of both massive and mas
quantized scalar fields with arbitrary curvature coupling in
general static, spherically symmetric spacetime. As par
this method, they also developed an analytic approxima
to ^Tm

n& for massive scalar fields based on the DeW
Schwinger expansion in inverse powers of the field ma
This approximation is state independent and entirely loc
depending at each point only on the values of the curva
and its derivatives. One expects,a priori, the approximation
to become increasingly accurate as the ratio of the Comp
wavelength of the field to the local radius of curvature a
proaches zero, i.e., in the limitMm@1.

They then applied these techniques to the Reiss
Nordström spacetime, obtaining exact numerical values
the vacuum stress-energy for both massive and mass
fields. Comparing the exact values of^Tm

n& to those pro-
vided by the DeWitt-Schwinger approximation, they show
that in the Reissner-Nordstro¨m spacetime, the approximat
values are quite good~within a few percent of the exac
values! near the horizon if the field mass is chosen to sati
mM>2. One might expect the DeWitt-Schwinger approx
mation to also fail to be adequate for black holes with no
zero temperature, at large values ofr where temperature
dependent~hence, state-dependent! terms associated with th
gas of produced particles dominate^Tm

n&. However, for a
massive field, there will be essentially no particles created
the hole if the temperature is substantially less than the m
of the field,T!m. For any Reissner-Nordstro¨m black hole,
the temperature satisfiesT,(4pM )21, so the temperature
will be substantially less than the field mass as long
(4p)21!Mm. This condition is adequately satisfied whe
the previously mentioned criterion for the validity of th
DeWitt-Schwinger approximation,mM@2, holds. Hence,
for any Reissner-Nordstro¨m black hole and massive scala
field combination satisfyingmM@2, we will assume the
DeWitt-Schwinger approximation is valid throughout the r
gion exterior to the horizon.1

Using the results of AHS for the case of a quantized m
sive scalar field in the Reissner-Nordstro¨m spacetime the fol-
lowing values for the expectation value of the stress-ene
tensor are obtained:

1Strictly speaking the expectation value of the stress-energy te
for a massive field in a thermal state must approach a non
constant in the limitr→`. However, in the case whenmM@1
there will be very few ‘‘realizations’’ of the quantum field theory i
which any particles are present. Another way to think about thi
that in a nonstatic state it would take a very long time on aver
before a particle is produced. Thus to a good approximation
should be adequate to use the DeWitt-Schwinger approximation
to arbitrarily large values ofr. Of course for the zero temperatur
case one expects the DeWitt-Schwinger approximation to be v
throughout the region exterior to the event horizon as long
mM@1 is satisfied.
1-2
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^Tt
t&5

e

p2m2 F1237M5

5040r 9
2

25M4

224r 8
2

1369M5r 1

1008r 10
1

41M4r 1

105r 9
1

3M3r 1

56r 8
1

613M5r 1
2

210r 11
2

73M4r 1
2

3360r 10
2

41M3r 1
2

210r 9
2

3M2r 1
2

112r 8

2
2327M5r 1

3

1260r 12
2

613M4r 1
3

210r 11
1

883M3r 1
3

1260r 10
1

2327M4r 1
4

840r 12
1

613M3r 1
4

840r 11
2

883M2r 1
4

5040r 10
2

2327M3r 1
5

1680r 12
1

2327M2r 1
6

10080r 12

1jS 211M5

10r 9
1

M4

2r 8
1

217M5r 1

30r 10
2

14M4r 1

5r 9
2

226M5r 1
2

15r 11
1

77M4r 1
2

180r 10
1

7M3r 1
2

5r 9
1

91M5r 1
3

10r 12
1

226M4r 1
3

15r 11

2
182M3r 1

3

45r 10
2

273M4r 1
4

20r 12
2

113M3r 1
4

30r 11
1

91M2r 1
4

90r 10
1

273M3r 1
5

40r 12
2

91M2r 1
6

80r 12 D G , ~4!

^Tr
r&5

e

p2m2 F247M5

720r 9
1

7M4

160r 4
1

2081M5r 1

5040r 10
2

16M4r 1

63r 9
1

3M3r 1

280r 8
2

13M5r 1
2

18r 11
1

983M4r 1
2

10080r 10
1

8M3r 1
2

63r 9
2

3M2r 1
2

560r 8

1
421M5r 1

3

1260r 12
1

13M4r 1
3

18r 11
2

383M3r 1
3

1260r 10
2

421M4r 1
4

840r 12
2

13M3r 1
4

72r 11
1

383M2r 1
4

5040r 10
1

421M3r 1
5

1680r 12
2

421M2r 1
6

10080r 12

1jS 3M5

10r 9
2

M4

5r 8
2

49M5r 1

30r 10
1

14M4r 1

15r 9
1

14M5r 1
2

5r 11
2

61M4r 1
2

180r 10
2

7M3r 1
2

15r 9
2

13M5r 1
3

10r 12
2

14M4r 1
3

5r 11

1
52M3r 1

3

45r 10
1

39M4r 1
4

20r 12
1

7M3r 1
4

10r 11
2

13M2r 1
4

45r 10
2

39M3r 1
5

40r 12
1
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6
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where r 15M1AM22Q2 is the radius of the unperturbe
event horizon,e51/M2 is our expansion parameter for th
perturbation~in conventional units,e5MPlanck

2 /M2) andj is
the curvature coupling for the field. We do not display t
value of^Tu

u&, as it not needed here. Knowledge of the tw
components shown above is sufficient to completely so
the perturbed semiclassical Einstein equations.

The semiclassical Einstein equations may be more ea
solved if a coordinate transformation is made to ingo
Eddington-Finklestein coordinates. The transformation is
scribed by

]t

]v
51, ~6!

]t

] r̃
52S 12

2M

r̃
1

Q2

r̃ 2 D 21

, ~7!

]r

]v
50, ~8!

]r

] r̃
51. ~9!

The Reissner-Nordstro¨m metric takes the following form in
ingoing Eddington-Finklestein coordinates:
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ds252S 12
2M

r̃
1

Q2

r̃ 2 D dv212dvdr̃1 r̃ 2dV2. ~10!

The components of the expectation value of the stress-en
tensor in these coordinates are

^Tv
v&5^Tt

t&, ~11!

^Tr̃
r̃&5^Tr

r&, ~12!

^Tv
r̃&5S 12

2M

r̃
1

Q2

r̃ 2 D 21

@^Tr
r&2^Tt

t&#.

~13!

Settingr̃ 5r , one can write the metric for a general sta
spherically symmetric spacetime as

ds252e2c(r )S 12
2m~r !

r
1

Q2

r 2 D dv212ec(r )dvdr1r 2dV2.

~14!

The perturbations to the Reissner-Nordstro¨m metric can be
introduced by an expansion of the ec andm(r ) metric func-
tions to first order in the parametere:

ec(r )511er~r !, ~15a!

m~r !5M @11em~r !#. ~15b!
1-3
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The components of the Einstein tensor can now be calcul
in the metric given by Eq.~14! with the expansions given in
Eqs.~15a!,~15b!. These can be substituted into Eq.~2! along
with the classical background stress-energy and the app
mate stress-energy of the quantized field from Eqs.~11!–
~13!. This yields two first order differential equations fo
m(r ) andr(r ):
n
e

ra
on

e

de

08402
ed

xi-

dm

dr
52

4pr 2

Me
^Tt

t&, ~16!

dr

dr
5

4pr

e S 12
2M

r
1

Q2

r 2 D 21

@^Tr
r&2^Tt

t&#.

~17!
s

Here^Tt

t& and^Tr
r& are given by Eq.~4! and Eq.~5!. Thee factors in the denominator of the leading terms in both Eq.~16!

and Eq.~17! are exactly canceled by the overall factor ofe in the expressions for̂Tt
t& and^Tr

r&. These differential equation
can be integrated to find the general solutions form andr. They are

m5C11
1

pm2 F1237M4

7560r 6
2

5M3

56r 5
2

4169M4

158760r 1
6

1
461M3

6615r 1
5

2
6607M2

105840r 1
4

1
3007M

158760r 1
3

2
1369M4r 1

1764r 7
1

82M3r 1

315r 6

1
3M2r 1

70r 5
1

613M4r 1
2

420r 8
2

73M3r 1
2

5880r 7
2

41M2r 1
2

315r 6
2

3Mr 1
2

140r 5
2

2327M4r 1
3

2835r 9
2

613M3r 1
3

420r 8
1

883M2r 1
3

2205r 7

1
2327M3r 1

4

1890r 9
1

613M2r 1
4

1680r 8
2

883Mr 1
4

8820r 7
2

2327M2r 1
5

3780r 9
1

2327Mr 1
6

22680r 9
1jS 2

11M4

15r 6
1

2M3

5r 5
1

4M4

45r 1
6

2
11M3

45r 1
5

1
41M2

180r 1
4

2
13M

180r 1
3

1
62M4r 1

15r 7
2

28M3r 1

15r 6
2

113M4r 1
2

15r 8
1

11M3r 1
2

45r 7
1

14M2r 1
2

15r 6
1

182M4r 1
3

45r 9
1

113M3r 1
3

15r 8

2
104M2r 1

3

45r 7
2

91M3r 1
4

15r 9
2

113M2r 1
4

60r 8
1

26Mr 1
4

45r 7
1

91M2r 1
5

30r 9
2

91Mr 1
6

180r 9 D G , ~18!

and

r5C21
1

pm2 F2
29M4

280r 6
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817M4
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6

2
3221M3

8820r 1
5

1
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1680r 1
4

1
184M4r 1
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1

M3r 1

35r 6
2

229M4r 1
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420r 8
2

92M3r 1
2

441r 7
2

M2r 1
2

70r 6
1

229M3r 1
3

420r 8

2
229M2r 1

4

1680r 8
1jS 7M4

15r 6
2

14M4

15r 1
6

1
23M3

15r 1
5

2
13M2

20r 1
4

2
32M4r 1

15r 7
1

13M4r 1
2

5r 8
1

16M3r 1
2

15r 7
2

13M3r 1
3

5r 8
1

13M2r 1
4

20r 8 D G . ~19!
sed

ed
The integration constants for bothm andr have been chose
so thatm(r 1)5C1 andr(r 1)5C2. The perturbed spacetim
is now defined to first order ine to within the two integration
constantsC1 andC2.

The horizon radius is no longer located atr 1 due to the
perturbation from the presence of the quantized field. Its
dius is now defined implicitly as the solution to the equati

r h5m~r h!1Am~r h!22Q2. ~20!

We can utilize the horizon location to define the perturb
mass of the black hole,

MBH5m~r h!5M @11em~r 1!#, ~21!

to first order ine; r h has been changed tor 1 in the final
expression on the right, as the difference would be of or
-

d

r

e2. This physical, or dressed, mass,MBH , is a function of
the bare, and unmeasurable mass,M, plus a small perturba-
tion:

MBH5M1eMC1 . ~22!

The horizon radius is then expressed in terms of the dres
mass of the black hole:

r h5MBH1AMBH
2 2Q2. ~23!

The bare mass,M, and the mass perturbation,dM , cannot be
measured independently; only the dressed massMBH has
physical meaning. We will hereafter only refer to the dress
mass,MBH , defined implicitly in Eq.~23!. The arbitrary but
physically unmeasureable integration constantC1 is then ab-
1-4
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sorbed into the definition ofM, as in Ref.@4#. The perturbed
metric’s mass function now takes the form

m~r !5MBH@11em̃~r !#, ~24!

where

m̃~r !5m~r !uC150 . ~25!

The metric can now be rewritten in terms of the dressed m
MBH and m̃(r ). Because these quantities are those that
be physically measured, theBH subscript and the tilde will
now be dropped, writing onlyM andm respectively. In ad-
dition, we will denoter h by r 1 henceforth, since they hav
the same definition once the mass has been renormalize
is now convenient to transform from Eddington-Finkleste
coordinates back to (t,r ,u,f) coordinates. Doing so on
finds that the perturbed metric takes the form

ds252@112er~r !#S 12
2m~r !

r
1

Q2

r 2 D dt2

1S 12
2m~r !

r
1

Q2

r 2 D 21

dr21r 2dV2. ~26!

The remaining integration constant,C2, was fixed in the
case of the massless field studied in Ref.@4# by enclosing the
black hole in a cavity and imposing microcanonical boun
ary conditions. However, as discussed above there is no
of massive scalar particles surrounding the black hole,
cause the DeWitt-Schwinger approximation is state~and
hence temperature! independent. In the domain where th
DeWitt-Schwinger approximation is valid~i.e., Mm.2), the
temperature of the hole is so low that it creates a neglig
number of such particles. The stress-energy associated
the massive scalar field in this limit is essentially the resul
vacuum polarization, not particle production. Hence, plac
the hole in a cavity to allow thermal equilibrium is neith
appropriate nor necessary.

Instead, the integration constantC2 may be fixed by re-
quiring thatgtt in the perturbed metric of Eq.~26! approach
the usual value of21 asr→`. This implies thatC2 simply
determines the normalization of the time coordinate at in
ity. For gtt to approach21 as a limiting value requires tha
r(`)50, and therefore that

C252 r̃~r !ur→` , ~27!

where

r̃~r !5r~r !uC250 . ~28!

It is worth noting that this condition is identical to the m
crocanonical boundary condition in the limit that the cav
radius approaches infinity. With the fixing ofC2 the per-
turbed spacetime is now completely defined;C1 andC2 no
longer appear in the perturbed metric, having been fixed;
massM now refers to the ‘‘dressed’’ black hole mass, d
fined implicitly by the horizon radius through Eq.~23!.
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III. RESULTS

In this section we will concentrate on the examination
two properties of the perturbed black hole metric: first, t
relation of the massM defined by the horizon radius to th
mass that would be measured at infinity by a Keplerian or
M` ; second, the effect of the semiclassical perturbation
the temperature of the black hole.

With the integration constantC1 absorbed into the
horizon-defined massM as described in Eq.~24! above, the
horizon radius keeps its simple, Reissner-Nordstro¨m form, as
seen in Eq.~23!. However, the price paid is that now th
massM is not the mass that would be measured for
perturbed black hole by an observer at infinity, say by o
serving the properties of an orbiting test mass at larger. The
mass of the black hole at infinity will be

M`5M @11em~r !ur→`#5M1dM . ~29!

The difference between the mass measured at infinity and
horizon defined mass is then

dM5
eM

pm2 F2
4169M4

158760r 1
6

1
461M3

6615r 1
5

2
6607M2

105840r 1
4

1
3007M

158760r 1
3

1jS 4M4

45r 1
6

2
11M3

45r 1
5

1
41M2

180r 1
4

2
13M

180r 1
3 D G .

~30!

Depending on the value of the scalar field’s curvatu
coupling, j, M` can be either larger (dM.0) or smaller
(dM,0) thanM. Examination of Eq.~30! shows that for a
conformally coupled field (j51/6), dM.0 for all values of
Q2/M2&0.954463, while for a minimally coupled field (j
50), dM.0 for all Q2/M2&0.998701. Interestingly, in the
extreme Reissner-Nordstro¨m limit, for which Q2/M251,
dM becomes negative and independent ofj:

dMERN5
217e

317520pm2M
. ~31!

This implies that an extreme black hole, perturbed semic
sically by a massive quantized scalar field, will have
charge-to-mass ratio~as measured at infinity! greater than
unity.

In order to determine the effect the presence of the qu
tized scalar field has on the temperature, the surface gra
of the black hole must be calculated. For the perturbed m
ric in Eq. ~26! the surface gravity to first order ine is

k5
AM22Q2

r 1
2 ~11eC2!14pr 1^Tt

t&, ~32!

which reduces to the usual Reissner-Nordstro¨m surface grav-
ity as e→0. The perturbation in the surface gravity is give
by
1-5
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dk5k2
AM22Q2

r 1
2

~33!

or, explicitly,

dk5
eM2

35280pm2r 1
8 @2458M325766M2r 1

14617Mr 1
2 21239r 1

3 1j~29408M3122736M2r 1

218620Mr 1
2 15096r 1

3 !#. ~34!

The perturbation in the surface gravity depends on the va
of the curvature coupling constant,j, which appears in both
the expression forC2 andm. In addition the surface gravity
will also depend on the field massm and the overall size o
the perturbation,e. Both of these are multiplicative factor
that only affect the overall size of the perturbation to t
surface gravity. Our attention here is focused on~1! the sign
of dk for various combinations of black hole state and fie
curvature coupling, and~2! which black holes states can co
ceivably have the total surface gravity (k, in the perturbed
state!, and hence temperature, equal to zero.

Since the expression fordk is linear in j, it is a simple
matter to find the value ofj for each value ofQ2/M2 that
will result in dk50. The domain of allowed black hol
states may then be divided into regions wheredk.0 and
regions wheredk,0. Figure 1 illustrates the sign ofdk as a
function of Q2/M2 andj.

In the Schwarzschild limit,dk simplifies to the form

dkSch5eS 2371168j

645120pm2M3D , ~35!

which is negative for both the minimal and conforma
coupled massive scalar field, as well as for any field withj
,37/168. Thus, the likely effect of a semiclassical pertur
tion from a massive quantized scalar field on a Schwa
child black hole is to lower its temperature.

In the extreme Reissner-Nordstro¨m limit, dk becomes

dkERN5eS 5214j

2520pm2M3D , ~36!

FIG. 1. The curves represent semiclassical black hole solut
for which the change in temperature is zero for particular value
the charge and curvature coupling constant.
08402
e

-
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which is positive for both the minimal and conformal
coupled field, as well as for any field withj,5/14. Thus, for
a Reissner-Nordstro¨m black hole with a semiclassical pertu
bation provided by a massive quantized scalar field, un
the curvature coupling takes on apparently unnatural va
(j.5/14), there will beno zero temperature solution. Th
extreme black hole~now defined as the black hole wit
maximum possible charge-to-mass ratio, beyond which
naked singularity solutions! will have a nonzero temperature

Given the somewhat surprising result that zero tempe
ture solutions to the linearized semiclassical back-reac
equations do not exist for realistic values of the curvat
coupling constantj, it is perhaps useful to ask whether ze
temperature solutions to the full nonlinear semiclassi
back-reaction equations exist. Although it is difficult to fin
solutions to the nonlinear equations everywhere outside
event horizon~even with the use of the DeWitt-Schwinge
approximation! it is possible to solve the equations near t
event horizon. To do so one can simply expand the me
functions, the Einstein tensor, and the stress-energy tens
powers of (r 2r h) and solve the equations order by order
(r 2r h). Utilizing this approach with the full nonlinear equa
tions, we have found that zero temperature solutions of
extreme Reissner-Nordstro¨m form near the event horizon ex
ist. These solutions have a slightly different ratio betwe
the chargeQ and the radiusr h of the event horizon than do
the classical Reissner-Nordstro¨m solutions.

However, the existence of zero temperature local so
tions to the full nonlinear equations is probably irreleva
from a physical point of view. The reason is that the DeW
Schwinger approximation contains terms with up to six d
rivatives of the metric. These higher derivatives lead to ma
locally ~i.e., near the horizon! sensible solutions to the equa
tions that are an artifact of the approximation since the ex
stress-energy tensor contains terms with up to only four
rivatives of the metric. Even in the case when the ex
stress-energy tensor is used in the semiclassical b
reaction equations it has been argued that the higher de
tives here also lead to physically unacceptable solutions@10#.
Thus the most likely situation is that the only solutions to t
nonlinear equations that are physically acceptable when
DeWitt-Schwinger approximation is used are those that
duce to the solutions to the linearized equations in the li
mM→`. In this case we have already seen that zero te
perature solutions do not exist for reasonable values ofj.

IV. DISCUSSION

We have investigated the effect the vacuum stress-en
of a quantized massive scalar field has on the geometry
charged black hole, within the context of linear perturbati
theory. We have found the metric functions that descr
such a semiclassically perturbed black hole, to first orde
e5\/M2. We have shown that the mass of such a bla
hole, as measured at infinity, will differ from the mass d
fined in terms of the horizon radius. For an extreme bla
hole, the mass at infinity will always be less than the m
defined by the horizon radius. The charge-to-mass ratio o
extreme black hole, as measured at infinity, will exceed un

ns
f
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for all values of the massive field scalar curvature coupli
We have also examined the effect of the semiclassical
turbation on the surface gravity of the black hole. For re
sonable values of the scalar field curvature coupling, the
turbation lowers the temperature of a Schwarzschild bl
hole. For an extreme black hole, the temperature is raise
the perturbation for any scalar field withj,5/14, including
the physically interesting cases of minimal and conform
coupling. Thus, within the context of Reissner-Nordstro¨m
. D

rk,

08402
.
r-
-
r-
k
by

l

black holes semiclassically perturbed by the vacuum ene
of a massive scalar field, there are no plausible ze
temperature solutions.
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