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Plane waves in quantum gravity: Breakdown of the classical spacetime
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Starting with the Hamiltonian formulation for spacetimes with two commuting spacelike Killing vectors, we
construct a midisuperspace model for linearly polarized plane waves in vacuum gravity. This model has no
constraints and its degrees of freedom can be interpreted as an infinite and continuous set of annihilation and
creation like variables. We also consider a simplified version of the model, in which the number of modes is
restricted to a discrete set. In both cases, the quantization is achieved by introducing a Fock representation. We
find regularized operators to represent the metric and discuss whether the coherent states of the quantum theory
are peaked around classical spacetimes. It is shown that, although the expectation value of the metric on Killing
orbits coincides with a classical solution, its relative fluctuations become significant when one approaches a
region where null geodesics are focused. In that region, the spacetimes described by coherent states fail to
admit an approximate classical description. This result applies as well to the vacuum of the theory.

PACS number~s!: 04.60.Ds, 04.30.2w
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I. INTRODUCTION

The quantization of spacetimes that possess two comm
ing spacelike Killing vector fields has received considera
attention@1–7#. One of the main motivations for the study o
these types of spacetimes is that they generally describe
ations of interest in astrophysics and cosmology@8#. Actu-
ally, most of the families of spacetimes with two Killin
vectors that have been quantized in the literature can be
terpreted as gravitational waves that propagate eithe
Minkowski spacetime or in cosmological universes@1–4#.
This is the case, e.g., of linearly polarized gravitation
waves in cylindrically symmetric spacetimes, which we
first analyzed quantum mechanically by Kucharˇ and Allen
@5#. A consistent quantization of this gravitational syste
was achieved by Ashtekar and Pierri@1#, while the most
general model of cylindrical waves in vacuum gravity w
quantized by Korotkin and Samtleben@2#. Preliminary dis-
cussions on the quantization of gravitational waves in spa
times with planar symmetry can be found in Ref.@6#. A
systematic analysis of purely gravitational plane waves
quantum geometrodynamics was recently carried out by
authors@3#. Finally, the quantization of the Gowdy cosmol
gies with the spatial topology of a three-torus was addres
in Refs.@4,7#. These Gowdy spacetimes can be thought o
inhomogeneous universes with compact sections of cons
time that are filled with gravitational waves@9#.

Another important motivation for the quantization
spacetimes with two commuting spacelike Killing vecto
comes from their ability to provide a suitable arena wh
conceptual issues in quantum gravity can be advantageo
discussed. To date, most of the gravitational systems
have been quantized to completion are minisuperspace m
els @10#. Such gravitational systems are too simple to capt
the quantum field structure of general relativity. In the pr
ence of two commuting Killing vectors, however, Einste
gravity reduces to midisuperspace models, namely, grav
0556-2821/2000/61~8!/084019~10!/$15.00 61 0840
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tional models with an infinite number of degrees of freedo
It is a common belief that these models might mimic t
complexity that should be present in a quantum field the
of general relativity.

In this context, the existence of quantum gravitation
states that admit a classical description, or a semiclass
one if quantum matter is present@11#, has been recently ad
dressed@12,13#. By considering a model for linearly polar
ized gravitational waves with cylindrical symmetry, Ash
tekar has discussed whether it is possible that quantum s
are strongly peaked around classical spacetimes, assu
that the matter content is given by the expectation value
the energy-momentum tensor of the matter fields. Afte
dimensional reduction, cylindrical waves with linear pola
ization adopt the same formulation as axi-symmet
Einstein-Maxwell gravity in three dimensions@1,12#. For the
coherent states of the Maxwell field, it has then been pro
that the quantum fluctuations in the three-dimensional me
are relatively small only if the coherent state contains neit
too many photons nor photons of high frequency@12#. In
particular, the three-dimensional metric of the ground stat
strongly peaked around Minkowski spacetime. At least fro
this three-dimensional point of view, one can say that
spacetime foam around the vacuum is smooth. In additio
has been shown that, although one can construct states
diminish the uncertainty in the three-dimensional metr
they induce a loss of coherence in the Maxwell field@14#.

The above considerations seem to indicate that, in a
tain sector of quantum gravity, large quantum effects m
preclude an approximate classical description of the spa
time. However, several points remain obscure in this ten
tive conclusion. On the one hand, the discussion in R
@12,14# has been carried out from a three-dimensional p
spective. Although axi-symmetric Einstein-Maxwell theo
in three dimensions is equivalent to four-dimensional, cyl
drical gravitational waves with linear polarization, some
sues concerning the interpretation of physical quanti
©2000 The American Physical Society19-1



ch
e
us
th

lly
b

v
f

he
ity
l
se
g
ll
v

rs
w
av

iv
ds

n

et
n

he
e
o
w
tr
a

e
rn
e
n
g
as
it
m

t
ng
fl

ra

ro

a
f

ave
tes

-

ant

glo-
he

ed

per-

id

the
m
ve
tric

eal

res-

by
at,

-

in-

lin-
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~e.g., the metric! may depend on the particular approa
adopted. On the other hand, the results obtained could b
artifact of the particular system studied. In order to disc
the relevance of these results, one would like to analyze
classical limit of other midisuperspace models. Actua
large gravitational fluctuations similar to those described
Ashtekar @12# have also been found~again from a three-
dimensional perspective! in a model with toroidal symmetry
@15#. In the present work, we will study the quantum beha
ior of the four-dimensional metric in another family o
spacetimes with two commuting Killing vectors, namely, t
model for linearly polarized plane waves in vacuum grav
that was discussed in Ref.@3#. The analysis of the classica
limit for plane waves is particularly interesting, becau
these spacetimes show the remarkable feature of focusin
null cones@16#. In the neighborhood of the points where nu
cones are focused, one should expect that quantum gra
effects could be especially important.

The rest of the paper is organized as follows. We fi
present our midisuperspace model in Sec. II, where
briefly summarize the reduction of source-free Einstein gr
ity carried out in Ref.@3# for the case of linearly polarized
plane waves. The degrees of freedom of this model are g
by a metric functionY that, on classical solutions, depen
only on one of the spacetime coordinates,u. In Sec. III we
show that, when the fieldY corresponds to a flat solutio
outside a bounded, fixed interval for the coordinateu, it can
be described in terms of an infinite number of discr
modes. The most general case in which the spacetime is
restricted to be flat in any region is studied in Sec. IV. T
field Y can then be expanded in a continuous set of mod
The quantization of these two models, with either discrete
continuous modes, is discussed in Sec. V. In particular,
introduce regularized operators that represent the me
functions. In Sec. VI we define coherent states for the qu
tum operator associated with the fieldY. At least on the
orbits of the two spacelike Killing vectors of the model, th
expectation value of the metric in any coherent state tu
out to coincide with a classical plane-wave solution. We th
study the fluctuations in the metric on such solutions a
prove that they become large when one approaches a re
where null cones are focused. As a consequence, the cl
cal description of the spacetime breaks down in the vicin
of that region for all coherent states, including the vacuu
Finally, we discuss our results in Sec. VII.

II. LINEARLY POLARIZED PLANE WAVES

Purely gravitational plane waves are vacuum solutions
the Einstein equations that are characterized by possessi
much symmetry as do plane electromagnetic waves in
spacetime, namely, a five dimensional group of motions@17#.
These spacetimes are a particular type of plane-fronted g
tational waves with parallel rays (pp waves@18#! and were
first considered by Baldwin and Jeffrey@19#. One can inter-
pret these waves as describing the gravitational field p
duced by a radiating body at great distances@18,19#.

Although there exists a system of coordinates, called h
monics, which allows one to cover each of the spacetimes
08401
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plane waves with a single chart, the symmetries of the w
are much more clearly displayed by using group coordina
@8,18#. The metric can then be written

ds252dUdV1hab~U !dxadxb. ~2.1!

Here, a,b51,2 and the coordinatesxa and V run over the
real line. The coordinateU, on the other hand, has a re
stricted domain of definition. It is possible to show that, asU
decreases~with a suitable choice of orientation! from any
fixed initial value, a point is reached where the determin
of the two-metric hab vanishes @8# ~except in purely
Minkowski spacetime!. This pointU f is a coordinate singu-
larity. As a consequence, group coordinates cannot be
bally employed to describe the whole of the spacetime. T
existence of this coordinate singularity is intimately relat
to the focusing effect produced by plane waves@16#. Actu-
ally, one can prove that null cones are focused on the hy
surfaceU5U f .

If the metric functionh12 vanishes, the plane wave is sa
to be linearly polarized@18#. We will restrict our discussion
to this subfamily of plane waves from now on.

In addition, it can be seen that, modulo a reversal of
coordinatesU andV and a scale transformation of the for
xa→Axa, with A a constant, every gravitational plane wa
presents a region where the determinant of the two-me
hab increases withU from zero to the unity@3#. In that re-
gion, one can perform a change of coordinates fromU to a
new coordinate that, in principle, runs over the whole r
axis:

u52 lnS 2
1

2
ln@dethab~U !# D . ~2.2!

The metric in the considered region adopts then the exp
sion @3#

ds252z08~u!ez0(u)/2eF(u)dudV

1ez0(u)@e2y(u)~dx1!21ey(u)~dx2!2#, ~2.3!

with

F~u!5E
uc

u dr

2z08~r !
@y8~r !#2, z0~u!52e2u. ~2.4!

Here,z08(u) andy8(u) are the derivatives ofz0(u) andy(u),
respectively, anduc is a constant. In terms ofu, the coordi-
nate singularity that reflects the focusing effect exerted
the wave has been driven to minus infinity. Notice also th
from Eqs. ~2.1! and ~2.3!, the explicit expression of the
group coordinateU as a function ofu can be obtained, in-
stead of by inverting relation~2.2!, by integrating the equa
tion

dU5z08~u!ez0(u)/2eF(u)du. ~2.5!

The metric given above is a solution to the vacuum E
stein equations for any choice of the arbitrary functiony. It
describes the most general gravitational plane wave with
9-2
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PLANE WAVES IN QUANTUM GRAVITY: BREAKDOWN . . . PHYSICAL REVIEW D 61 084019
ear polarization, except that it does not represent the wh
of the spacetime that can be covered with harmonic coo
nates, but only a part of it. Apart from neatly displaying t
symmetries of plane waves, the system of coordina
adopted has an important advantage. After the cha
V52t2u, metric ~2.3! can be interpreted by its own as co
responding to a globally hyperbolic spacetime which p
sesses two commuting spacelike Killing vector field
namely,]xa. Therefore, in order to analyze the quantizati
of our gravitational system, one can start with the Ham
tonian formulation of general relativity for spacetimes w
two commuting Killing vectors. Moreover, for this kind o
spacetime one can consistently restrict all consideration
the case that the surface with coordinatest andu is orthogo-
nal to the group orbits spanned by the Killing vectors,
happens for plane waves. This orthogonality condition
moves all the gauge freedom related to diffeomorphisms
the coordinatesxa @3#.

To eliminate all the non-physical degrees of freedom a
arrive at a midisuperspace model that describes only line
polarized plane waves in source-free gravity, one must in
duce additional gauge-fixing and symmetry conditions, a
explained in Ref.@3#. The reduced system that one attains
this way is totally free of constraints, has vanishing reduc
Hamiltonian@3# and its only degrees of freedom are given
a single fieldY(u). In principle, this field may also depen
on the time coordinatet; however, since the dynamical evo
lution of our reduced model is trivial in the system of coo
dinates adopted,Y remains time independent for all classic
solutions. The metric of the model reproduces express
~2.3! after the replacementsV52t2u and

y~u!5A2e2z0(u)/2Y~u!. ~2.6!

Hence, the~time independent! classical solutions of ou
midisuperspace model are precisely the purely gravitatio
plane waves with linear polarization. On the other hand,
reduced action of the system and the symplectic structure
any section of constant time are@3#

S5E
t0

t f
dtE

S
du Y8Ẏ, V5E

S
du dY8`dY. ~2.7!

Here,t0 andt f denote the initial and final values of the tim
coordinate, the prime stands for the derivative with respec
the coordinateu, and the overdot represents the time deriv
tive ~which vanishes only on classical solutions!. In these
expressions, surface contributions to the action coming fr
sections of constant time have been neglected, and an ov
constant factor has been set equal to the unity by a suit
choice of the~effective! Newton constant@3#. In addition,S
denotes the domain of definition of the coordinateu. In prin-
ciple, this domain is the real axis. Nevertheless, it is eas
check that the reduction process performed in Ref.@3# can be
straightforwardly generalized to the case thatS is any fixed
interval of the real line.
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III. A MODEL WITH DISCRETE MODES

Let us now analyze the case in which the spacetime is
outside a fixed regionuPI L[@2L,L#, whereL is a positive
constant. To be more precise, we assume that the func
y(u) of the line element~2.3! takes on constant values in th
region u.L and in u,2L. As a consequence, the sam
must happen with the metric functionF(u) in Eq. ~2.4!. One
can then easily check that, foruuu.L, the spacetime is fla
@17#. Inside the intervalI L , on the other hand, the functio
y(u) @and hence the fieldY(u)] is left arbitrary. The metrics
considered can be interpreted as describing a kind of sa
wich waves@17#. For all practical purposes, one can th
obviate the flat regionsuuu.L and replaceS with I L in the
expressions of the reduced action and symplectic struc
~2.7!.

We will further assume that the plane-wave solutions c
sidered are sufficiently smooth. In particular, the restrict
of Y(u) to the intervalI L is continuous. The fieldY has then
a well-defined limit asu approaches the endpoints of th
interval from its interior~namely, whenu tends toL2 and
2L1). The following argument shows that one can th
restrict the discussion to solutions that satisfy

lim
u→L2

Y~u!5 lim
u→2L1

Y~u!. ~3.1!

Suppose that the fieldY(u) does not verify this condition.
By adding toY a suitable function of the formCez0(u)/2,
whereC is a real constant, we can always obtain a new fi
Ȳ(u) that satisfies Eq.~3.1!. Moreover, it is easily checked
that the plane-wave metrics obtained with the fieldsY(u)
and Ȳ(u) differ only by the scale transformationx1→Ax1

and x2→x2/A, where the constantA equalse2C/A2. Since
this scale transformation leaves invariant the domains
definition of the coordinatesxa, which are the real line, the
geometries described by the fieldsY(u) and Ȳ(u) can be
considered equivalent. The boundary condition~3.1! re-
moves then the corresponding overcounting of equivalent
ometries.

Condition ~3.1! allows us to extend the fieldY(u), re-
stricted toI L , to a periodic function over the entire real lin
its period being equal to 2L. Since this periodic function
coincides with our field in the whole interval of interest,I L ,
we will denote it also byY(u), to keep the notation as
simple as possible. The periodicity~and smoothness! of
Y(u) guarantees that it can be expanded in the follow
Fourier series:

Y~u!5a01 (
n51

`
1

2Apn
~ane2 inpu/L1an

!einpu/L!. ~3.2!

In order forY(u) to be real,an
! must be the complex conju

gate ofan , anda0 must be real. The Fourier coefficients
this expression may, in principle, depend on the coordinat,
although they become time independent on classical s
tions ~recall that the reduced Hamiltonian vanishes!.

Employing condition~3.1! and Eq.~2.7!, it is not difficult
to show that the Fourier coefficienta0 disappears from the
9-3
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expressions of the reduced action and symplectic structur
the model. Therefore, the zero mode decouples from
other degrees of freedom of the system. In particular,
implies that we can consistently restrict all considerations
the case in whicha0 takes a specific value, independent
the coordinateu. We can take advantage of this fact to d
mand that the fieldY vanish at a certain pointu0 of the
interval I L . In other words, we can seta052Y(u0). Note
that, with this choice, we are selecting the value ofY at u0 as
the reference value with respect to which the fieldY is going
to be measured. The Fourier series~3.2! becomes then

Y~uuu0!5 (
n51

`
1

2Apn
@an~e2 inpu/L2e2 inpu0 /L!

1an
!~einpu/L2einpu0 /L!#, ~3.3!

which can be interpreted as a bilocal field~i.e., the difference
between the values of a field at two points!. In the above
equation, we have made explicit the dependence on the p
u0. On the other hand, substituting the above series in
reduced symplectic structure and recalling that the z
mode decouples from the system, we obtain t
V52 i (n51

` dan`dan
! . Hence, the only non-vanishing Poi

son brackets are$an ,am
! %52 idn

m , whered denotes the Kro-
necker delta. Since the coefficientsan (n>1) are generally
complex and conjugate toan

! , the degrees of freedom of ou
model can then be interpreted as an infinite and discrete
of annihilation and creation like variables.

The quantization of the model can be achieved by int
ducing a Fock representation, as we discuss in Sec. V
order to avoid ultraviolet divergences in that quantizatio
the operator that represents the fieldY needs to be regular
ized. From a physical point of view, such a regularizati
can be justified as follows. In any real measurement of
~bilocal! field Y(uuu0), the positions of the pointsu andu0
will not be determined with total accuracy. One rather e
pects that the measurement will be performed over a sm
neighborhood of each of these points; the result will be
average of the form

YR~uuu0!5E
R
dūg~u2ū!E

R
dū0g~u02ū0!Y~ ūuū0!,

~3.4!

whereg(u) is a smooth@C`(R)# test function of small com-
pact support and unit integral,*Rdug(u)51.

Some comments are in order concerning this formu
Since the original fieldY ~which is the physically relevan
one! coincides with its periodic extension only in the interv
I L , the same applies to the bilocal fieldY(uuu0) with respect
to its two arguments. As a consequence, the bilocal field
expression~3.4! can be substituted by the Fourier series~3.3!
only if the integrals in that expression can be restricted to
interval I L . Let thenI e[@2e,e# be the support ofg, where,
according to our previous discussion,e!L. This last condi-
tion guarantees that our measurements are good enough
differentiate a huge number of regions inI L . It is then easy
to check that, as far as the pointsu and u0 belong to the
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interval I L2e[@2L1e,L2e#, the integrals in Eq.~3.4! do
not receive contributions from regions outsideI L .

Substituting then the Fourier expansion ofY(uuu0) and
recalling the properties of the functiong, one obtains

YR~uuu0!5
1

A2
(
n51

`

@ f n
!~uuu0!an1 f n~uuu0!an

!#, ~3.5!

f n~uuu0!5
einpu/L2einpu0 /L

An
g̃S np

L D , ~3.6!

f n
! being the complex conjugate off n and g̃ denoting the

Fourier transform ofg @20#. For pointsu or u0 whose abso-
lute value lies betweenL2e andL, Eqs.~3.5! and~3.6! must
be modified. In the following, however, we will only con
sider the caseu,u0PI L2e ; i.e., we will assume that all mea
surements of the field are made in the interior of the inter
I L and sufficiently far from its endpoints.

On the other hand, sinceg(u) is a smooth function of
compact support, its Fourier transform belongs toS(R), the
Schwartz space of smooth test functions of rapid decre
@20#. Using this property, it is not difficult to prove that th
sequencef [$ f n ;n>1% is square summable,f P l 2. This fact
will be employed in Sec. V to introduce a well-defined o
erator that represents the measured fieldYR(uuu0). Let us
finally comment that, if we had not performed an avera
over the positions ofu and u0, expressions~3.5! and ~3.6!
would still have been valid for the bilocal fieldY(uuu0), but
with the functiong̃ replaced with the unit function divided
by A2p. In that case, the resulting sequencef would have
not belonged to the Hilbert spacel 2, owing to the divergent
contribution of the high-frequency modes (n@1).

IV. CONTINUOUS MODE EXPANSION

We now return to the general case in which the fieldY(u)
describes an arbitrary plane wave with linear polarization.
a boundary condition, we will demand the field to be of ord
unity at plus and minus infinity@we will say that a function
f (u) is of order g(u) at u0, and write f (u)5O„g(u)… as
u→u0, if the limit of f /g exists atu0]. In this situation,
similar arguments to those presented for the model with
crete modes show that, in order to avoid overcounting
equivalent geometries, one can restrict all consideration
fields that satisfy

lim
u→`

Y~u!5 lim
u→2`

Y~u!. ~4.1!

Let us next extract fromY its value at infinity. This value
can be regarded as a function of the coordinatet that, like the
field Y, remains constant on classical solutions. Employ
condition ~4.1!, one can check that this function has a va
ishing contribution to the reduced action and symplec
structure of the system, as happened with the Fourier co
cient a0 in the model of Sec. III. Thanks to this decouplin
one can consistently analyze any sector of the space of s
tions where the considered function takes a specific va
9-4
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PLANE WAVES IN QUANTUM GRAVITY: BREAKDOWN . . . PHYSICAL REVIEW D 61 084019
We will benefit from this fact and limit our discussion t
fields Y(uuu0) that vanish at a given point,u0, as we did in
the previous section. This restriction can again be interpre
as the choice of a reference value for the fieldY.

We will finally assume that, apart from its constant val
at infinity, the fieldY can be expressed as a Fourier tra
form. This assumption is the analogue of the expansion oY
in a Fourier series employed in Sec. III. Recalling the rest
tion to fields that vanish atu0, we can then write

Y~uuu0!5
1

2Ap
E

0

` dk

Ak
@a~k!~e2 iku2e2 iku0!

1a!~k!~eiku2eiku0!#. ~4.2!

SinceY(uuu0) is real, the functionsa(k) anda!(k) must be
complex conjugate to each other. On the other hand,
boundary condition~4.1! can now be translated into cond
tions on the functiona(k). Let us define

b~k!5u~k!a~k!1u~2k!a!~ uku!, c~k!5
b~k!

A2uku
,

~4.3!

where u is the Heaviside step function. It is then easy
check thatY(uuu0) equalsc̃(u)2 c̃(u0), wherec̃ is the Fou-
rier transform ofc. Therefore, it suffices thatc is absolutely
integrable@cPL1(R)# to guarantee that condition~4.1! is
satisfied, because in that casec̃ is a continuous function tha
vanishes at infinity@20#. In particular, one can prove thatc
belongs toL1(R) provided thata(k) is square integrable
over the positive real axis@aPL2(R1)# and there exist con
stantsa.1/2 andb,1/2 such that

a~k!5O~k2a! as k→`, a~k!5O~k2b! as k→0.

All these requirements are satisfied, e.g., if the funct
b(k), defined above, belongs to the Schwartz spaceS(R).

We can regard the complex conjugate functionsa(k) and
a!(k) as the degrees of freedom of our model. In princip
these functions might depend on the time coordinatet; how-
ever, since the fieldY remains constant on classical solution
they are classically time independent. In addition, replac
expression~4.2! in the symplectic structure@and recalling
condition ~4.1!#, one obtains

V52 i E
0

`

dk da~k!`da!~k!, ~4.4!

so that the only non-vanishing Poisson brackets between
variables are$a(k),a!( k̄)%52 id(k2 k̄). The degrees of
freedom for linearly polarized plane waves can thus be in
preted as a continuous set of annihilation and creation
variables, whose quantization can be carried out by introd
ing a Fock representation.

As we argued in Sec. III, any physical measurement of
~bilocal! field Y(uuu0) would imply an average of the form
~3.4! over the positions ofu and u0. Employing Eq.~4.2!,
this average leads to
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YR~uuu0!5E
0

` dk

A2
@ f !~k,uuu0!a~k!1 f ~k,uuu0!a!~k!#,

~4.5!

where, fork.0,

f ~k,uuu0!5
eiku2eiku0

Ak
g̃~k!. ~4.6!

It is worth noting that the above expressions can be obtai
from Eqs.~3.5! and~3.6! in the continuum limit~whenL and
n tend to infinity, keepingk5np/L finite!, a fact that sup-
ports our conclusions. Notice also that, in the limitL→`,
the region where the spacetime is flat for the model of S
III is driven to infinity, whereas the intervalI L2e @namely,
the region where formulas~3.5! and~3.6! are valid# becomes
the real line. On the other hand, sinceg is a smooth test
function of compact support, its Fourier transformg̃ belongs
to the Schwartz spaceS(R). It then follows thatf (k,uuu0) is
a square integrable function over the positive real line for
finite values ofu and u0. This property will be used in the
next section to attain a well-defined operator that repres
the fieldYR quantum mechanically.

To close this section, let us comment that, under
change of coordinatesu5x1t, the fieldY(uuu0) can actu-
ally be interpreted as a bilocal field constructed from t
left-mover part of a massless scalar field in two dimensio
~those corresponding to the coordinatesx and t) @21#. It is
well known that such a scalar field presents infrared a
ultraviolet divergences@21#. In our model, however, the in
frared divergences have been eliminated by considering b
cal fields, while the average over positions has taken car
the ultraviolet divergences. This explains why the functi
f (k,uuu0) is square integrable: the convergence neark50
has been achieved by subtracting contributions from
point u0, whereas the convergence at infinity is ensured
the decay ofg̃.

V. QUANTUM THEORY

We have argued that, for the two models considered
this work, a measurement of the fieldY ~assumed to vanish a
the pointu0) should lead to a result of the form

YR~uuu0!5
1

A2
@^a, f ~uuu0!&1^a!, f !~uuu0!&#. ~5.1!

Here, f and f ! are two vectors of a complex Hilbert spac
H, which are complex conjugate to each other and dep
on the pointsu and u0. In addition, ^,& denotes the inner
product onH, defined as an antilinear mapping of its seco
argument. For the discrete model analyzed in Sec. III,H is
the Hilbert spacel 2 of square summable sequences,f (uuu0)
denotes the sequence$ f n(uuu0); n>1% given in Eq.~3.6!,
and a and a! stand for the discrete set of annihilation an
creation like variables$an ; n>1% and $an

! ; n>1%, re-
spectively. For the general case of linearly polarized pla
waves, on the other hand,H is the Hilbert space
9-5
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GUILLERMO A. MENA MARUGÁN AND MANUEL MONTEJO PHYSICAL REVIEW D 61 084019
L2(R1), f (uuu0) is the function ofkPR1 defined in Eq.
~4.6!, anda anda! denote the continuous set of annihilatio
and creation like variablesa(k) anda!(k).

The quantization of the~bilocal! field YR(uuu0) can then
be achieved by constructing a Fock representation of the
nihilation and creation like variables. We will callH (n) the
tensor product̂ m51

n H. Let alsoSn be the symmetrization
operator defined onH (n) by its action on states of the form
f (n)[f1^ •••^ fn :

Snf (n)5(
s

1

n!
fs(1)^ •••^ fs(n)[fs

(n) , ~5.2!

where the summation is over all permutationss. The sym-
metric Fock space overH is Fs(H)5 % n50

` H s
(n) , where

H s
(n)5SnH (n) is called thenth particle subspace@20#. Let

finally F0,Fs(H) be the dense subspace of finite partic
vectors, i.e., the subspace of vectorsfs[$fs

(n) ; n>0% such
thatfs

(n) vanishes for all but a finite set of indicesn. We can

then define an annihilation operatorâ( f ) on Fs(H), with
domainF0, via its action on vectors of the type~5.2!:

â~ f !fs
(n)5(

s

An

n!
^fs(1) , f &fs(2)^ •••^ fs(n)

with n>1, whereasâ( f ) vanishes onH s
(0) @20#. This opera-

tor represents the classical quantity^a, f & and is closable for
any f PH. Its adjoint is the creation operatorâ!( f ), which
represents the variable^a!, f !&. Its restriction to the subspac
of finite particle vectors can be obtained from the formu
@20#

â!~ f !fs
(n)5An11Sn11~ f ^ fs

(n)!. ~5.3!

Notice that, from our definitions,â!( f ) is linear inf, whereas
â( f ) is antilinear.

It is possible to understand each vectorfs
(n) in H s

(n) as a
quantum stateufs

(n)& obtained from a vacuumu0& by the
action ofn creation operators. For vectors given by formu
~5.2!, e.g., one has

ufs
(n)&5

1

An!
â!~f1!•••â!~fn!u0&. ~5.4!

The constant overall factor is a normalization constant in
duced for convenience. The vacuumu0& is characterized as
the only state that is destroyed by all annihilation operat
and has unit norm. It corresponds to the vectorfs

(0)51.
For any vectorf in H, let us next introduce the Segal fie

operatorŶR on F0 @20#, defined by

ŶR@ f #5
1

A2
@ â~ f !1â!~ f !#. ~5.5!
08401
n-

-

s

In particular, the operatorŶR@ f (uuu0)# represents the biloca
field ~5.1!. The Segal field operator onF0 satisfies the com-
mutation relations

†ŶR@ f #,ŶR@g#‡5 i Im^g, f &, ~5.6!

where Im denotes the imaginary part and we have
\51. This operator has a self-adjoint closure@20#, which we
will also call ŶR . The spectral theorem@22# ensures then tha
exp(AŶR@f#) is a well-defined, self-adjoint, and positive op
erator for all vectorsf PH, whereA is any realc number.

Therefore, after replacing the fieldY(u) with its bilocal
versionYR(uuu0), we can represent the diagonal compone
haa(u) (a51 or 2! for the plane-wave metrics~2.3! by the
regularized, positive operators

ĥaa
R ~uuu0!5exp$z0~u!%exp$2e2z0(u)uu f ~uuu0!uu2/2%

3exp$~21!aA2e2z0(u)/2ŶR@ f ~uuu0!#%.

~5.7!

Here, uu f uu is the norm off PH and we have displayed th
dependence on the pointsu and u0. We recall that, for the
discrete model discussed in Sec. III, the pointsu andu0 have
been restricted to lie in the intervalI L2e , while for the gen-
eral case of linearly polarized waves analyzed in Sec. IVu
and u0 can take any real value. The second factor on
right-hand side~RHS! of this expression can be understoo
as follows. We choose to normal order the exponential
ŶR@ f (uuu0)#, so that the vacuum expectation value of t
operators~5.7! reproduces the classical value of the tw
metric hab when the fieldY vanishes, i.e., in flat spacetime
Employing then that~on F0)

@ â~ f !,â!~g!#5^g, f & ~5.8!

and the Campbell-Baker-Hausdorff~CBH! formula eb̂eĉ

5e[ b̂,ĉ]/2e(b̂1 ĉ), valid for operatorsb̂ and ĉ whose commu-
tator is ac number@23#, we finally arrive at the above ex
pression forĥaa

R .
We will not analyze in detail the introduction of an op

erator that represents the other independent component o
metric ~2.3!, which ~after the changeV52t2u) can be writ-
ten in the formhuu5z08(u)ez0(u)/2eF(u), the functionF(u)
being given by Eq.~2.4!. As we will see in the next section
the discussion about the existence of large quantum eff
that invalidate the classical description of the metric can
carried out without relying on a particular definition for th
operator. Let us simply comment that

F̂R~uuu0!5E
uc

u dr

z08~r !
:$„e2z0(r )/2ŶR@ f ~r uu0!#…8%2:

~5.9!

can be proved to be a densely defined operator on the s
metric Fock spaceFs(H). Therefore, ifF̂R(uuu0) is essen-
tially self-adjoint, its exponential@multiplied by the function
9-6
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PLANE WAVES IN QUANTUM GRAVITY: BREAKDOWN . . . PHYSICAL REVIEW D 61 084019
z08(u)ez0(u)/2] provides a well-defined, positive operator th
could be interpreted as a quantum counterpart ofhuu . Notice
that F̂R(uuu0) has been obtained from the expression
F(u) by replacing the classical fieldY(u) with the Segal
field operatorŶR@ f (uuu0)# and taking normal ordering.

VI. METRIC FLUCTUATIONS

In this section, we will discuss whether there exist qua
tum states in our model that admit a classical description
the spacetime. It seems natural to consider as candidate
coherent states@23# of the basic field operatorŶR@ f #, since
all these states are strongly peaked around classical field
lutions. Actually, most of the analysis of large quantum gra
ity effects presented in the literature has been carried ou
investigating the geometry fluctuations on states of this t
@1,12,15#. In the models that have been considered, howe
the geometry studied was obtained by a Killing reduction
three dimensions. Here, we will study the quantum beha
of linearly polarized plane waves from a purely fou
dimensional point of view. We are particularly interested
discussing the metric fluctuations on the vacuum, which
the coherent state that should represent flat spacetime.

Given any vectorc in the Hilbert spaceH @whereH is l 2

for the model of Sec. III andL2(R1) in the general case o
linearly polarized waves#, we define the coherent stateuc& by

uc&5exp~2uucuu2/2!exp$â!~c!%u0&. ~6.1!

The overall numerical factor guarantees thatuc& has unit
norm. Using formula~5.8! and recalling that the vacuum i
destroyed by all annihilation operators, it is not difficult
see that, for anyf PH, the expectation value of the Seg
field on any coherent state is

^ŶR@ f #&c5
1

A2
~^c, f &1^ f ,c&!. ~6.2!

Regardless of the value off, this expectation value coincide
with the classical field obtained by replacing the annihilat
variablesa with the vectorcPH ~and a! with its complex
conjugate,c!). On the other hand, for every fixed vect
f PH, let us call ŶR@ i f # the canonical momentum of th
field ŶR@ f #. Notice that, from Eq.~5.6!, the commutator of
these two operators is the imaginaryc numberi uu f uu2. One
can then check that all coherent states have the same u
tainty in the field ŶR@ f # and in its canonical momentum
Furthermore, for all vectorsf PH, the product of these un
certainties attains its minimum value@24#, namely,uu f uu2/2.

Let us now analyze the quantum fluctuations in the m
ric. We will restrict our consideration to the operators~5.7!,
which describe the metric on the Killing orbits of ou
midisuperspace model. Our conclusions will be independ
of the quantum behavior ofhuu , i.e., the other non-trivial
component of the metric for plane waves with linear pol
ization. By defining

F~u!5ez0(u), Aa~u!5~21!aA2F~u!21/2 ~6.3!
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~with a51,2) and suppressing from our notation the expli
dependence on the pointsu andu0, we can write Eq.~5.7! in
the compact form

ĥaa
R 5F:exp~AaŶR@ f # !:, ~6.4!

where the dots denote normal ordering. Employing the C
formula and Eq.~5.8!, one finds that

^F:exp~AaŶR@ f # !:&c5F exp~A2AaRê c, f &!. ~6.5!

Here, we have used thatAa is a realc number, and Re stand
for the real part. We therefore see that the expectation va
of ĥaa

R on a coherent state reproduces the classical va
obtained from the field solution~6.2!. In particular, for the
vacuum state one gets the flat value^ĥaa

R &05Fda
a .

From Eq.~6.5!, it is straightforward to conclude that

S Dcĥaa
R

^ĥaa
R &c

D 2

5expS Aa
2uu f uu2

2 D 21. ~6.6!

For any observableb̂, the symbolDcb̂ denotes the uncer
tainty of the stateuc&, namely, the square root of the diffe
ence between̂b̂2&c and (̂ b̂&c)

2. It is worth remarking that,
from the above expression, the relative fluctuations in
two-metric ĥaa

R turn out to be independent of the particul
coherent state considered. Note also that there will gener
exist large fluctuations in the geometry whenever the exp
tation value of the metricĥaa

R is large. However, approximat
ing this metric by the classical value~6.5! will still be ac-
ceptable provided that the relative fluctuations inĥaa

R are
small. According to Eqs.~6.3! and~6.6!, this will be the case
if and only if

e2z0(u)uu f ~uuu0!uu2!1. ~6.7!

Before continuing our discussion, we would like to com
ment on the implications that the uncertainty principle m
have for operators of the formĥaa

R , which are given by the
normal ordered exponential of a Segal field multiplied by
positive c number. Remember thatĥaa

R denotes a different
operator for each pair of pointsu and u0. Let then
b̂5F:eŶR[ f ] : and ĉ5G:eŶR[g] : be two such operators. W
know that the uncertainty product inb̂ and ĉ is always
greater than half the norm of the expectation value of@ b̂,ĉ#

@24#. In our case, the commutator@ b̂,ĉ# is a quantum opera
tor proportional to FG:eŶR[ f 1g] : Hence, its expectation
value will depend on the state analyzed. As a consequenc
is not clear which is the minimum value allowed for th
product of uncertainties inb̂ andĉ. In this situation, it seems
more natural to consider, for instance, the uncertainty pr
uct divided by the expectation value ofFG:eŶR[ f 1g] : This
quantity turns out to be bounded by thec number
ue^g, f &/22e^ f ,g&)/2u/2 and, on coherent states, coincides w
the product of the relative fluctuations inb̂ and ĉ, as can be
checked by employing Eq.~6.5!. Using techniques explaine
9-7
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in Ref. @24#, one can then prove that the considered quan
is not minimized by the coherent states for generic vec
f ,gPH.

Let us now return to the analysis of the metric fluctu
tions. For the whole family of coherent states, we have s
that the classical description of the spacetime may be acc
able only if condition~6.7! is satisfied at all pointsu. Recall
that u0 is a conveniently chosen point where the diago
components of the metric in thexa-directions (a51,2) are
set equal toez0(u0) by convention, both classical and qua
tum mechanically. For the discrete model of Sec. III, t
vector f (uuu0) denotes the sequence~3.6! in l 2, and for the
model of Sec. IV,f (uuu0) is the function~4.6!, which be-
longs to L2(R1). In general, inequality~6.7! will not be
satisfied if the norm of the vectorf (uuu0) or the function
e2z0(u) becomes considerably large at a certain pointu. Since
the form of f (uuu0) ~and hence its norm! may depend on the
regularization adopted in the quantization, we will conce
trate our discussion on the possibility thate2z0(u) is signifi-
cantly large, a possibility that is insensitive to the ambig
ities found in the construction of the quantum theory. Giv
the definition ofz0 in Eq. ~2.4!, the functione2z0(u) is the
double exponential of2u. This exponential becomes un
bounded from above whenu approaches2`, which is pre-
cisely the region where null cones are focused by the pl
wave, as we commented on in Sec. II. We hence expect
quantum spacetime to radically differ from its classical a
proximation close to this focusing region.

In order to prove this statement, we only have to sh
that the norm of f (uuu0) remains strictly positive when
u→2`. It then follows thatuu f (uuu0)uu22 is bounded as a
function of u away from u0 because, for every possibl
choice of the smearing functiong employed in our regular-
ization, the vectorf (uuu0) is normalizable and different from
zero at all finite pointsuÞu0. As a consequence, conditio
~6.7! will not be satisfied whenu becomes large and negativ
@25#.

Let us first analyze the model with discrete modes. We
u050 and u52L/3 for convenience. In particular, i
L@e, the pointsu andu0 belong to@2L1e,L2e# ~interval
to which we restricted our considerations in Sec. II!.
Using expression~3.6!, it is not difficult to check that
uu f (2L/3 u0)uu.ug̃(p/L)u. Sinceg̃ is the Fourier transform
of a smooth function with unit integral, we have thatg̃(0)
51/A2p. In the limit L→`, when the pointu52L/3 ap-
proaches the region where null geodesics are focused
norm of f (2L/3 u0) is then bounded from below by 1/A2p.
Therefore, in the case with discrete modes studied in Sec
and assuming that the value ofL is sufficiently large, the
relative fluctuations in the metric turn out to be huge wh
u!0, regardless of the specific form taken by the funct
g̃. Thus, the classical spacetime breaks down for all cohe
states in the region 0@u.2L1e.

In the general model of plane waves with linear polariz
tion, one can also show that, in the limitu→2`, the norm
of the functionf (uuu0) is bounded from below by a strictly
positive number@25,26# for every possible choice of th
function g used in the regularization. Hence, we conclu
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again that the relative uncertainty in the metricĥaa
R is large

close to the hypersurface where null cones are focused,
for large and negative values of the coordinateu. In that
region at least, the classical description of the spacetime,
plane wave withxa components of the classical metric give
by Eq. ~6.5!, is not acceptable for any of the coherent stat
Notice that this breakdown of the classical spacetime w
one approaches the focusing region is regulator independ
because it occurs for all of the admissible choices of sme
ing functiong. Finally, let us emphasize that our results a
ply as well to the vacuum, which is the quantum state t
should describe flat spacetime. So quantum gravitationa
fects around the vacuum cannot be neglected in the vici
of the region where null geodesics are focused by linea
polarized plane waves.

VII. SUMMARY AND DISCUSSION

Linearly polarized plane waves in source-free grav
have been described by a midisuperspace model that is
of constraints and whose reduced Hamiltonian vanishes. T
model was obtained in Ref.@3#, starting with the Hamil-
tonian formulation of general relativity for spacetimes wi
two commuting spacelike Killing vectors and introducin
gauge-fixing and symmetry conditions. The degrees of fr
dom of the model are given by a fieldY that ~on classical
solutions! depends only on one of the spacetime coordina
namely, the coordinateu. We have shown that one can co
sistently restrict all considerations to fields that vanish a
given pointu0. Furthermore, after a Fourier expansion, th
field can be expressed in terms of an infinite collection
annihilation and creation like variables. In the general cas
linearly polarized waves, these variables form a continu
set, but we have also considered a simplified version of
model in which the fieldY describes flat spacetime outside
fixed region. If one is only interested in studying that regio
the Fourier expansion of the field can be restricted to a
crete set of modes. Finally, we have argued that the posi
of the pointsu andu0 cannot be determined with total accu
racy in any physical measurement. As a consequence,
field measured,YR(uuu0), would result from an average ove
some small neighborhood of those points.

In order to quantize the system, we have introduce
Fock representation and described the fieldYR(uuu0) by a
Segal field operator. This Segal quantization has been ca
out over the Hilbert space of square summable sequence
the model with discrete modes and over the space of sq
integrable functions on the positive real line for the gene
case of plane waves with linear polarization. In this way,
have been able to construct regularized operators that re
sent the spacetime metric for plane waves. At least for
two-metric on Killing orbits ~i.e., the sections of constan
coordinatest andu), we have proved that these regulariz
operators are self-adjoint and positive. We have then conc
trated our discussion on the analysis of the coherent state
the quantum theory. These states are characterized by m
mizing the uncertainty product in any Segal field and
conjugate momentum. We have checked that the expecta
value of the metric~on Killing orbits! reproduces in fact the
9-8
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PLANE WAVES IN QUANTUM GRAVITY: BREAKDOWN . . . PHYSICAL REVIEW D 61 084019
classical solution that one would obtain from the expectat
value of the Segal field. However, the relative fluctuations
this metric become huge for all coherent states when
coordinateu gets large and negative. Such values ofu de-
scribe the vicinity of a region where null cones are focus
by the plane wave@16#. Therefore, the quantum geometri
represented by coherent states do not admit an approxi
classical description in that region and classical spacet
breaks down.

It is worth remarking that this result applies as well to t
vacuum of the model, which should correspond to flat spa
time. In this sense, the spacetime foam around the vac
turns out to be quite significant, at least close to the focus
region. This fact casts serious doubts on the possibility t
after introducing matter fields in the system, a quantum fi
theory around the flat-spacetime solution of our model co
provide a good semiclassical approximation@11# to the full
quantum theory.

It would be interesting to analyze the metric fluctuatio
for families of quantum states other than coherent sta
Obviously, this analysis would not affect our conclusio
about the vacuum. In addition, note that, even if it we
possible to find states with smaller metric uncertainties,
would be done at the cost of losing coherence in the Se
field.

On the other hand, the results attained might well dep
on several choices that have been made either in the
struction of the model or in the quantization process. Amo
such choices, let us briefly comment on the representa
selected for the quantum theory, on the mode decompos
and regularization adopted for the basic fieldY, and on the
system of coordinates employed to describe the plane wa

The commutation relations~5.8! admit representation
other than that discussed in Sec. V. For instance, one c
have made a different choice of creation and annihilat
operators that led to a unitarily equivalent Fock represe
tion but with a different vacuum. In this sense, the quest
that is physically important is the correct identification of t
state represented by the vacuum in our quantum theory.
vacuum is the only normalized state with minimum unc
tainty in the Segal fieldŶR@ f # and its canonical momentum
~for all vectorsf ) that is peaked around the zero field. Sin
spacetime is flat when the classical fieldY vanishes, it seems
reasonable to identify our vacuum as the state correspon
to the flat solution in the constructed quantum theory.

One can also find representations of our commutation
lations that are unitarily inequivalent to that employed
Sec. V. It then could happen that our conclusions were
valid for some of such representations. It is worth noticin
nevertheless, that the Fock representation adopted guara
that the Segal fieldŶR@ f # ~i.e., the basic field of the theory!
is a self-adjoint operator for all vectorsf. In addition, the
existence of a cyclic@20# vacuum that describes the classic
flat solution obtained when the fieldY vanishes makes ou
choice of representation a natural selection. In any case
aim of this work is not to show that a classical description
the spacetime is precluded in quantum gravity for all p
sible representations, but that the existence of such an
08401
n
n
e

d

ate
e

e-
m
g
t,
d
d

s.

is
al

d
n-
g
n

on

es.

ld
n
a-
n

is
-

ng

e-

ot
,
ees

l

he
f
-
p-

proximate description cannot be taken for granted until
quantum theory is known.

On the other hand, in terms of the coordinateu, the ex-
pansion in modes employed for our basic fieldY(u) is most
natural, since it is its standard Fourier expansion. Never
less, one might have chosen to expand the field in the Fou

modes associated with another coordinateūPR, related tou
by means of a ~differentiable! bijective transformation

u5H(ū) @so thatH8(ū)Þ0]. One can always setH8(ū) to
be positive, e.g., by using the invariance of the geome

under a reversal of the null coordinatesV andū. In addition,
the considered change of coordinate amounts in fact t
different selection of functionz0 in the second equation in

~2.4!, namely, z̄0(u)[z0@H(u)#. Remarkably, it turns out
that the gauge fixing and symmetry reduction carried ou
Ref. @3#, as well as the analysis and quantization perform
in the present work@except for definition~2.2!#, continue to

be valid with the replacement ofz0(u) with z̄0(u), provided
that the latter is a strictly increasing function that ranges o
the whole negative axis. One can easily see that the func
z̄0(u) analyzed here satisfies these conditions. As a con
quence, adopting a Fourier expansion in terms of the coo
nateū can be considered equivalent to the introduction o
different gauge fixing for theu-coordinate diffeomorphisms
and leads just to an alternative representation of our com
tation relations that is carried by a~possibly! different Fock
space. Actually, it is not difficult to show that such a repr
sentation is related to that introduced in Sec. V by a Bo
liubov transformation of the creation and annihilation ope
tors. Moreover, one can check that all the coherent state
the quantum theory that is obtained with this alternative
pansion in modes present also large relative fluctuation
the metric when one approaches the focusing region.

As for the regularization of our basic field, we recall th
the infrared divergences have been eliminated by impos
that the field vanish atu0, both classical and quantum me
chanically, whereas the ultraviolet divergences have been
moved by averaging the field around the pointsu andu0 with
a smooth functiong of compact support, an average th
amounts to a smearing of the field. The choice of the po
u0 can be made on physical grounds: the value of the fiel
that point is taken as a reference value for all measureme
On the other hand, it seems reasonable to assume tha
support of the functiong is of the order of the Planck length
The form of this function, however, remains quite arbitra
This introduces an ambiguity in the quantization proce
which is similar to that encountered in Ref.@1# when defin-
ing the regularized metric for~the dimensional reduction of!
cylindrical waves with linear polarization. The conclusio
that the metric fluctuations become large for coherent st
when one approaches the region where null cones are
cused is nevertheless regularization independent, as we
gued in Sec. VI, and is basically due to the fact that
metric on the two-dimensional Killing orbits degenerates
the focusing region@so thatez0 vanishes in Eq.~6.7!#.

Our last comments refer to the system of coordinates
ployed. This system does not cover the totality of the spa
9-9
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time that can be described with harmonic coordinates. Mo
over, the region where the metric uncertainty explod
(u52`) corresponds to a coordinate singularity in gro
coordinates, and this singularity can be removed by introd
ing harmonic coordinates@8#. One might then wonde
whether the huge quantum fluctuations detected could h
been avoided by adopting harmonic coordinates.

We recall, nonetheless, that the spacetimes describe
those coordinates are not globally hyperbolic@16#. Since the
canonical formulation of general relativity can only be a
plied to spacetimes which can be foliated in time slices,
quantization of gravitational plane waves using harmonic
ordinates cannot be achieved by standard methods. Ou
sults will be relevant for the whole of the spacetime cove
with a single chart in harmonic coordinates provided that o
can neglect the effect of the regions that are not describe
our system of coordinates. One expects this to be the cas
least, for sandwich waves that leave the spacetime fla
those regions. More importantly, one might have expec
that the quantization process would actually smooth out
t.
,

nd
,

08401
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s
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d
e
by
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strong gravitational effects exerted by the plane wave in
region where null cones are focused~i.e., in the vicinity of
the coordinate singularity in group coordinates!, in a similar
way as it is usually expected that spacetime singularities
appear in quantum gravity. On the contrary, and at least
the spacetimes described by coherent states, our results p
that such strong effects are in fact enlarged in the quan
theory.
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