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Plane waves in quantum gravity: Breakdown of the classical spacetime
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Starting with the Hamiltonian formulation for spacetimes with two commuting spacelike Killing vectors, we
construct a midisuperspace model for linearly polarized plane waves in vacuum gravity. This model has no
constraints and its degrees of freedom can be interpreted as an infinite and continuous set of annihilation and
creation like variables. We also consider a simplified version of the model, in which the number of modes is
restricted to a discrete set. In both cases, the quantization is achieved by introducing a Fock representation. We
find regularized operators to represent the metric and discuss whether the coherent states of the quantum theory
are peaked around classical spacetimes. It is shown that, although the expectation value of the metric on Killing
orbits coincides with a classical solution, its relative fluctuations become significant when one approaches a
region where null geodesics are focused. In that region, the spacetimes described by coherent states fail to
admit an approximate classical description. This result applies as well to the vacuum of the theory.

PACS numbd(s): 04.60.Ds, 04.36-w

[. INTRODUCTION tional models with an infinite number of degrees of freedom.
It is a common belief that these models might mimic the
The quantization of spacetimes that possess two commutomplexity that should be present in a quantum field theory
ing spacelike Killing vector fields has received considerableof general relativity.
attention[1—7]. One of the main motivations for the study of  In this context, the existence of quantum gravitational
these types of spacetimes is that they generally describe sitgtates that admit a classical description, or a semiclassical
ations of interest in astrophysics and cosmol¢gl Actu-  one if quantum matter is preseitl], has been recently ad-
ally, most of the families of spacetimes with two Killing dressed12,13. By considering a model for linearly polar-
vectors that have been quantized in the literature can be inzed gravitational waves with cylindrical symmetry, Ash-
terpreted as gravitational waves that propagate either itekar has discussed whether it is possible that quantum states
Minkowski spacetime or in cosmological universds-4]. are strongly peaked around classical spacetimes, assuming
This is the case, e.g., of linearly polarized gravitationalthat the matter content is given by the expectation value of
waves in cylindrically symmetric spacetimes, which werethe energy-momentum tensor of the matter fields. After a
first analyzed quantum mechanically by Kucteard Allen  dimensional reduction, cylindrical waves with linear polar-
[5]. A consistent quantization of this gravitational systemization adopt the same formulation as axi-symmetric
was achieved by Ashtekar and Piefdi], while the most Einstein-Maxwell gravity in three dimensioh%,12]. For the
general model of cylindrical waves in vacuum gravity wascoherent states of the Maxwell field, it has then been proved
quantized by Korotkin and Samtleb¢®]. Preliminary dis- that the quantum fluctuations in the three-dimensional metric
cussions on the quantization of gravitational waves in spaceare relatively small only if the coherent state contains neither
times with planar symmetry can be found in RE8]. A too many photons nor photons of high frequerdg]. In
systematic analysis of purely gravitational plane waves irparticular, the three-dimensional metric of the ground state is
guantum geometrodynamics was recently carried out by thetrongly peaked around Minkowski spacetime. At least from
authorg 3]. Finally, the quantization of the Gowdy cosmolo- this three-dimensional point of view, one can say that the
gies with the spatial topology of a three-torus was addressespacetime foam around the vacuum is smooth. In addition, it
in Refs.[4,7]. These Gowdy spacetimes can be thought of ahias been shown that, although one can construct states that
inhomogeneous universes with compact sections of constadiminish the uncertainty in the three-dimensional metric,
time that are filled with gravitational wavé¢9]. they induce a loss of coherence in the Maxwell figld].
Another important motivation for the quantization of = The above considerations seem to indicate that, in a cer-
spacetimes with two commuting spacelike Killing vectorstain sector of quantum gravity, large quantum effects may
comes from their ability to provide a suitable arena wherepreclude an approximate classical description of the space-
conceptual issues in quantum gravity can be advantageousilyne. However, several points remain obscure in this tenta-
discussed. To date, most of the gravitational systems thdive conclusion. On the one hand, the discussion in Refs.
have been quantized to completion are minisuperspace mofit2,14 has been carried out from a three-dimensional per-
els[10]. Such gravitational systems are too simple to capturepective. Although axi-symmetric Einstein-Maxwell theory
the quantum field structure of general relativity. In the pres-in three dimensions is equivalent to four-dimensional, cylin-
ence of two commuting Killing vectors, however, Einstein drical gravitational waves with linear polarization, some is-
gravity reduces to midisuperspace models, namely, gravitasues concerning the interpretation of physical quantities
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(e.g., the metric may depend on the particular approach plane waves with a single chart, the symmetries of the wave
adopted. On the other hand, the results obtained could be ame much more clearly displayed by using group coordinates
artifact of the particular system studied. In order to discus$8,18]. The metric can then be written

the relevance of these results, one would like to analyze the

classical limit of other midisuperspace models. Actually, ds*= —dUdV+h,p(U)dxdx°. (2.9)
large gravitational fluctuations similar to those described by .
Ashtekar[12] have also been founéagain from a three- €re ab=12 and the coordinates andV run over the

dimensional perspectiyén a model with toroidal symmetry re::_xl line. Thg coordir_1a;¢J, on_the ot_her hand, has a re-
[15]. In the present work, we will study the quantum behav_strlcted domain of definition. It is possible to show thatlas

ior of the four-dimensional metric in another family of decreaseswith a suitable choice of orientatiprfrom any
spacetimes with two commuting Killing vectors, namely thefixed initial value, a point is reached where the determinant
model for linearly polarized plane waves in vacuum gravity®f the two-metric h, vanishes[8] (except in purely
that was discussed in RdB]. The analysis of the classical Minkowski spacetime This pointU; is a coordinate singu-
limit for plane waves is particularly interesting, because/@ty- As @ consequence, group coordinates cannot be glo-
these spacetimes show the remarkable feature of focusing tf&!ly émployed to describe the whole of the spacetime. The
null coneg16]. In the neighborhood of the points where null existence of this coordinate singularity is intimately related

cones are focused, one should expect that quantum gravil§) the focusing effect produced by plane way&]. Actu-
effects could be especially important. lly, one can prove that null cones are focused on the hyper-

The rest of the paper is organized as follows. We firsSurfaceu=Us. _ _ L
present our midisuperspace model in Sec. I, where we If thg metric fun(j,tlonh12 vanlshgs, the_plane wave |s'sa|d
briefly summarize the reduction of source-free Einstein graviC Pe linearly polarized18]. We will restrict our discussion
ity carried out in Ref[3] for the case of linearly polarized O this subfamily of plane waves from now on.

plane waves. The degrees of freedom of this model are given !N addition, it can be seen that, modulo a reversal of the
by a metric functionY that, on classical solutions, depends coordinatedJ andV and a scale transformation of the form

only on one of the spacetime coordinatasjn Sec. Ill we X —Ax", with A a constant, every gravitational plane wave
show that, when the fiel®Y corresponds to a flat solution Présents a region where the determinant of the two-metric
outside a bounded, fixed interval for the coordinatét can  Dab increases withJ from zero to the unity3]. In that re-

be described in terms of an infinite number of discretedion. one can perform a change of coordinates ftdrto a
modes. The most general case in which the spacetime is nBeW coordinate that, in principle, runs over the whole real
restricted to be flat in any region is studied in Sec. IV. The@XIS:

field Y can then be expanded in a continuous set of modes. 1

The quantization of these two models, with either discrete or u=—In| — =In[deth,,(U)]]|. (2.2)
continuous modes, is discussed in Sec. V. In particular, we 2
introduce regularized operators that represent the metri$ o . .
functions. In Sec. VI we define coherent states for the quan—_he metric in the considered region adopts then the expres-
tum operator associated with the fie¥d At least on the S'ON (3]
orbits of the two spacelike Killing vectors of the model, the
expectation value of the metric in any coherent state turns

out to coincide with a classical plane-wave solution. We then + W YW (dx1)2+ YW (dx?)?], (2.3
study the fluctuations in the metric on such solutions and

prove that they become large when one approaches a regiavith

where null cones are focused. As a consequence, the classi-

cal description of the spacetime breaks down in the vicinity u dr
of that region for all coherent states, including the vacuum. cp(u):f p
Finally, we discuss our results in Sec. VII. 4:2Zo(r)

ds?= — zg(u)e®2e®Mdudv

[y' (D% zw=-e". (249

Here,z,(u) andy’(u) are the derivatives dofy(u) andy(u),
Il. LINEARLY POLARIZED PLANE WAVES respectively, andi; is a constant. In terms af, the coordi-
o _ nate singularity that reflects the focusing effect exerted by
Purely gravitational plane waves are vacuum solutions t@he wave has been driven to minus infinity. Notice also that,
the Einstein equations that are characterized by possessing@gm Egs. (2.1 and (2.3, the explicit expression of the
much symmetry as do plane electromagnetic waves in flagroup coordinatdJ as a function ofu can be obtained, in-

spacetime, namely, a five dimensional group of motid®.  stead of by inverting relatiof2.2), by integrating the equa-
These spacetimes are a particular type of plane-fronted gravjipn

tational waves with parallel raypp waves[18]) and were

first considered by Baldwin and Jeffr€¥9]. One can inter- dU=z{(u)e®WZe®Wgy, (2.5
pret these waves as describing the gravitational field pro-
duced by a radiating body at great distangks,19. The metric given above is a solution to the vacuum Ein-

Although there exists a system of coordinates, called harstein equations for any choice of the arbitrary functiorit
monics, which allows one to cover each of the spacetimes fodescribes the most general gravitational plane wave with lin-
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ear polarization, except that it does not represent the whole Ill. A MODEL WITH DISCRETE MODES
of the spacetime that can be covered with harmonic coordi-

nates, but only a part of it. Apart from neatly displaying thegutside a fixed regione | =[—L,L], whereL is a positive

mmetri f plane wav h m of rdin ; .
symmetries of plane waves, the system of coord ate(éonstant. To be more precise, we assume that the function

adopted has an important advantage. After the chan X .
: . : u) of the line element2.3) takes on constant values in the
V=2t—u, metric(2.3) can be interpreted by its own as Cor_g)r/égi)on u>L and in u<(— L) As a consequence, the same

responding to a globally hyperbolic spacetime which pos- ) ; . .
sesses two commuting spacelike Killing vector ﬁelds,mustﬂ?appen _\Ilv'thhthekr?ﬁtrt'cfmg'?%) n Eq.(t2_.4). _Onﬂe ‘
namely,d,a. Therefore, in order to analyze the quantizationCan en easily check that, , (€ Spacetime Is Tia
of our gravitational system, one can start with the Hamil—[17]' Inside the mterv_aIL, on _the other_hand, the func_t|on
tonian formulation of general relativity for spacetimes with y(u) _[and hence the_ fieldf (u)] is left arblt_ra_ry. The_ metrics
two commuting Killing vectors. Moreover, for this kind of co_nS|dered can be mterpreteq as describing a kind of sand-
spacetime one can consistently restrict all considerations tW'Ch waves([17]. Fpr all practical purposes, one can then
the case that the surface with coordinatesdu is orthogo- obviate _the flat regionfu| > L ano_l replace with IL.'n the
nal to the group orbits spanned by the Killing vectors, aexpressions of the reduced action and symplectic structure
happens for plane waves. This orthogonality condition re—(z'ev' il furth hat the ol luti
moves all the gauge freedom related to diffeomorphisms of e will further assume that the plane-wave solutions con-
the coordinates® [3]. sidered are su_ff|C|entIy _smooth. In partlcula_r, the restriction
To eliminate all the non-physical degrees of freedom and’f Y(u) to the intervall is continuous. The fiel® has then

arrive at a midisuperspace model that describes only linears weII-Id;afmeq limit asu approlache; the er;jdpowllt_s of (;h|s
polarized plane waves in source-free gravity, one must intro-meiva rom its m;enor(name y, wheru tends tol. = an
L™). The following argument shows that one can then

duce additional gauge-fixing and symmetry conditions, as is - . k X ) :
explained in Ref[3]. The reduced system that one attains in"Strict the discussion to solutions that satisfy
this way is totally free of constraints, has vanishing reduced ; o

Hamilto¥1ian[3] a)r/1d its only degrees of freedom areggiven by I'm_Y(“) = lim Y(u). (3.2

a single fieldY(u). In principle, this field may also depend

on the time coordinatg however, since the dynamical evo- Suppose that the fieltf(u) does not verify this condition.
lution of our reduced model is trivial in the system of coor- By adding toY a suitable function of the fornCe?(")?,
dinates adoptedy remains time independent for all classical whereC is a real constant, we can always obtain a new field

solutions. The metric of the model reproduces expressioW(u) that satisfies Eq(3.1). Moreover, it is easily checked

Let us now analyze the case in which the spacetime is flat

u—L u——L*

(2.3 after the replacementé=2t—u and that the plane-wave metrics obtained with the fiek{si)
and Y(u) differ only by the scale transformationt— Ax!
y(u)=2e" 22y (y). (2.6 andx?’—x?/A, where the constam equalse™“*2. Since

this scale transformation leaves invariant the domains of
definition of the coordinates?, which are the real line, the

Hence, the(time independentclassical solutions of our eometries described by the fieldtgu) and V(U) can be

midisuperspace model are precisely the purely gravitationgl,cigered equivalent. The boundary conditi®1l) re-

plane waves with linear polarization. On the other hand, they,\es then the corresponding overcounting of equivalent ge-
reduced action of the system and the symplectic structure of\atries.
any section of constant time 8] Condition (3.1) allows us to extend the field(u), re-
stricted tol | , to a periodic function over the entire real line,
tf . its period being equal tol2 Since this periodic function
S=f dtf duY'y, sz dudY'AdY. (2.7  coincides with our field in the whole interval of interekt,
to * = we will denote it also byY(u), to keep the notation as
simple as possible. The periodicittand smoothnegsof

Here,t, andt; denote the initial and final values of the time Y(U) guarantees that it can be expanded in the following

coordinate, the prime stands for the derivative with respect t&OUrier series:

the coordinates, and the overdot represents the time deriva- o 1

tive (which vanishes only on classical solutignén these _ —inmu/l | A% qinmull
expressions, surface contributions to the action coming from Y(w a°+n§=:1 2\/%(ane Tane )- (3.2
sections of constant time have been neglected, and an overall

constant factor has been set equal to the unity by a suitable order forY(u) to be reala; must be the complex conju-
choice of the(effective Newton constan{3]. In addition,, gate ofa,, anday must be real. The Fourier coefficients in
denotes the domain of definition of the coordinatén prin-  this expression may, in principle, depend on the coordihate
ciple, this domain is the real axis. Nevertheless, it is easy talthough they become time independent on classical solu-
check that the reduction process performed in R&fcan be  tions (recall that the reduced Hamiltonian vanishes
straightforwardly generalized to the case thais any fixed Employing condition(3.1) and Eq.(2.7), it is not difficult
interval of the real line. to show that the Fourier coefficiea disappears from the
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expressions of the reduced action and symplectic structure dafiterval || _ .=[ —L+¢,L— €], the integrals in Eq(3.4) do
the model. Therefore, the zero mode decouples from theot receive contributions from regions outside

other degrees of freedom of the system. In particular, this Substituting then the Fourier expansion Yofu|u,) and
implies that we can consistently restrict all considerations taecalling the properties of the functiap one obtains

the case in whicla, takes a specific value, independent of

the coordinatau. We can take advantage of this fact to de-

mand that the fieldy vanish at a certain pointiy of the Yr(ulug) =
interval I . In other words, we can sei;= —Y(ug). Note
that, with this choice, we are selecting the value¥ait uy as
the reference value with respect to which the fi€lid going
to be measured. The Fourier ser{8s2) becomes then

ngl [fa(ulug)a,+fa(ulug)as], (3.5

ol

2
einv-ru/L_ einwuo/L~ nm
fn(u|uo):_ \/ﬁ g(T), (3.6

[

Y(ulug) = E 1 a (e~ inmulL _ g-inmuglLy f} being the complex conjugate df, anda denoting the

A=1 2\ mn Fourier transform ofy [20]. For pointsu or uy whose abso-

) , lute value lies betweeh— € andL, Egs.(3.5 and(3.6) must
+ap(enmt—ginmo/l)], (3.3 be modified. In the following, however, we will only con-

. . . . . sider the case,ugel, _.; i.e., we will assume that all mea-
which can be interpreted as a bilocal fiele., the difference  g;rements of the field are made in the interior of the interval
between the values of a field at two pointtn the above | 4n4 sufficiently far from its endpoints.
equation, we have made explicit the dependence on the point 5 the other hand, sincg(u) is a smooth function of
Ug. On the other hand, substituting the apove series in th@ompact support, its Fourier transform belongsSt®), the
reduced symplectic structure and recalling that the zer@cpart; space of smooth test functions of rapid decrease
mode decouples from the system, we obtain thafag) ysing this property, it is not difficult to prove that the
O=-i%,_,da,/\da;,. Hence, the only non-vanishing Pois- sequencé={f,;n=1 is square summablée 2. This fact
son brackets arfa, ,an}=—i4dy', wheres denotes the Kro-  will be employed in Sec. V to introduce a well-defined op-
necker delta. Since the coefficiersts (n=1) are generally erator that represents the measured fiéjdu|ug). Let us
complex and conjugate &), , the degrees of freedom of our finally comment that, if we had not performed an average
model can then be interpreted as an infinite and discrete sever the positions ofi and u,, expressiong3.5) and (3.6)
of annihilation and creation like variables. ~would still have been valid for the bilocal fieM(u|uo), but

The quantization of the model can be achieved by introyyit the functiong replaced with the unit function divided
ducing a Fock representation, as we discuss in Sec. V. IBy J27. In that case, the resulting sequerfoeould have

ohrder to avm?h utltrawolet ?'V?r:gefr.‘ng md thtat Suannz?tmn,not belonged to the Hilbert spat& owing to the divergent
F € operator tha represents tne fialmeeds 1o be reguiar- ., winution of the high-frequency modess¢ 1).
ized. From a physical point of view, such a regularization

can be justified as follows. In any real measurement of the
(bilocal) field Y (ulup), the positions of the points andu
will not be determined with total accuracy. One rather ex- e now return to the general case in which the fié{d)
pects that the measurement will be performed over a smafjescripes an arbitrary plane wave with linear polarization. As
neighborhood of each of these points; the result will be ary houndary condition, we will demand the field to be of order

IV. CONTINUOUS MODE EXPANSION

average of the form unity at plus and minus infinitjwe will say that a function
f(u) is of orderg(u) at ug, and write f(u)=0(g(u)) as
YR(U|UO):J dUg(u—U)J duog(Uo—Ug) Y(ulug), u—uo, if the limit of f/g exists atug]. In this situation,
R R similar arguments to those presented for the model with dis-

(3.4 crete modes show that, in order to avoid overcounting of
equivalent geometries, one can restrict all considerations to

whereg(u) is a smooth C*(R)] test function of small com- fields that satisfy

pact support and unit integrafzdug(u)=1.

Some comments are in order concerning this formula. lim Y(u)= lim Y(u). (4.2)
Since the original fieldY (which is the physically relevant U—oo U——oo
one coincides with its periodic extension only in the interval
I, the same applies to the bilocal fietqu|ug) with respect Let us next extract fronY its value at infinity. This value

to its two arguments. As a consequence, the bilocal field irtan be regarded as a function of the coordindhbat, like the
expressiorn(3.4) can be substituted by the Fourier seri@s3)  field Y, remains constant on classical solutions. Employing
only if the integrals in that expression can be restricted to theondition (4.1), one can check that this function has a van-
intervall_. Let thenl .=[ — ¢, €] be the support of, where, ishing contribution to the reduced action and symplectic
according to our previous discussiar€L. This last condi-  structure of the system, as happened with the Fourier coeffi-
tion guarantees that our measurements are good enough asctenta, in the model of Sec. Ill. Thanks to this decoupling,
differentiate a huge number of regionslin. It is then easy one can consistently analyze any sector of the space of solu-
to check that, as far as the pointsand uy belong to the tions where the considered function takes a specific value.
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We will benefit from this fact and limit our discussion to = dk

fields Y(u|up) that vanish at a given pointy,, as we did in YR(u|uo)=f —[f*(k,ulug)a(k)+ f(k,ulug)a*(k)],

the previous section. This restriction can again be interpreted 02

as the choice of a reference value for the figld (4.5
We will finally assume that, apart from its constant value -

at infinity, the fieldY can be expressed as a Fourier trans-Where’ fork>0,

form. This assumption is the analogue of the expansiovi of elku_ gikug
in a Fourier series employed in Sec. Ill. Recalling the restric- f(k,ulug)= —ﬁ(k)_ (4.6)
tion to fields that vanish at,, we can then write Vk
1 (=dk A A It is worth noting that the above expressions can be obtained
Y (ulug)= —f —[a(k)(e ku—gikuo) from Egs.(3.5 and(3.6) in the continuum limitwhenL and
2\/; 0 \/E n tend to infinity, keepingk=nm/L finite), a fact that sup-
* iku__ qikug ports our conclusions. Notice also that, in the liits oo,
+ar(kie el (4.2 the region where the spacetime is flat for the model of Sec.
SinceY(u|ug) is real, the functions(k) anda*(k) must be Il is driven to infinity, whereas the intervai _. [namely,

complex conjugate to each other. On the other hand, thée region where formula.5) and(3.6) are valid becomes
boundary condition(4.1) can now be translated into condi- the real line. On the other hand, singeis a smooth test

tions on the functiora(k). Let us define function of compact support, its Fourier transfognbelongs
to the Schwartz spacg(R). It then follows thatf (k,u|up) is
) b(k) a square integrable function over the positive real line for all
b(k) = 6(k)a(k) + o(—kja*([k[), c(k)= I finite values ofu andu,. This property will be used in the

4.3 next section to attain a well-defined operator that represents
the field Yg quantum mechanically.

where ¢ is the Heaviside step function. It is then easy to To close this section, let us comment that, under the
check thaty (u|ug) equalsc(u) —c(ug), wheret is the Fou-  change of coordinates=x+t, the_fieIdY(u|uo) can actu-
rier transform ofc. Therefore, it suffices that is absolutely ~ ally be interpreted as a bilocal field constructed from the
integrable[ce L1(R)] to guarantee that conditiopt.1) is  left-mover part of a massless scalar field in two dimensions
satisfied, because in that casés a continuous function that (those corresponding to the coor_dmateand N [2.1]' Itis
vanishes at infinitf20]. In particular, one can prove that well known that such a scalar field presents infrared and

1 : . . ultraviolet divergence§21]. In our model, however, the in-
belongs tOL.(.R) p“’V'd?d thazta(lf) IS square mt_egrable frared divergences have been eliminated by considering bilo-
over the positive real axime L<(R™)] and there exist con-

cal fields, while the average over positions has taken care of
stantsa>1/2 andf<1/2 such that the ultraviolet divergences. This explains why the function
a(k)=0(k™ ) as k—x=, a(k)=0(k #) as k—0. f(k,u|up) is square integrable: the convergence nieai0
has been achieved by subtracting contributions from the
All these requirements are satisfied, e.g., if the functiorpoint us, whereas the convergence at infinity is ensured by
b(k), defined above, belongs to the Schwartz spgde). the decay of.
We can regard the complex conjugate functiafk) and
a*(k) as the degrees of freedom of our model. In principle, V. QUANTUM THEORY
these functions might depend on the time coordinatew-
ever, since the fielf remains constant on classical solutions, ~We have argued that, for the two models considered in
they are classically time independent. In addition, replacinghis work, a measurement of the fiefdassumed to vanish at
expression(4.2) in the symplectic structurgand recalling the pointug) should lead to a result of the form
condition(4.1)], one obtains

1
- Yr(Ulug)=—=

Q:—if dkda(k)/Ada*(k), 4.9 Y2
0

Here,f and f* are two vectors of a complex Hilbert space,
so that the only non-vanishing Poisson brackets between od#, which are complex conjugate to each other and depend
variables are{a(k),a*(k)}=—i8(k—k). The degrees of on the pointsu and u,. In addition,(,) denotes the inner
freedom for linearly polarized plane waves can thus be interproduct on’, defined as an antilinear mapping of its second
preted as a continuous set of annihilation and creation lik@rgument. For the discrete model analyzed in SecHlis
variables, whose quantization can be carried out by introdudthe Hilbert spacé? of square summable sequenci@)|up)
ing a Fock representation. denotes the sequenéé,(u|uy); n=1} given in Eq.(3.6),

As we argued in Sec. lll, any physical measurement of theind a and a* stand for the discrete set of annihilation and
(bilocal) field Y(u|up) would imply an average of the form creation like variablega,; n=1} and{a;; n=1}, re-
(3.4) over the positions ofi anduy. Employing Eq.(4.2),  spectively. For the general case of linearly polarized plane
this average leads to waves, on the other handH is the Hilbert space

[{(a,f(ulug)y+{a* f*(ulug))]. (5.1
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L2(R™), f(u|ug) is the function ofke R* defined in Eq.
(4.6), anda anda* denote the continuous set of annihilation
and creation like variablea(k) anda*(k).

The quantization of thébilocal) field Yg(u|ug) can then

be achieved by constructing a Fock representation of the an-

nihilation and creation like variables. We will catt (™ the
tensor productx|_,H. Let alsoS, be the symmetrization
operator defined oft{ (" by its action on states of the form

V=@ @ by

1

n!

(n)

S

(5.2)

Sngp(" = 20: Do(1)® - @ Dy(n)=

where the summation is over all permutatians The sym-
metric Fock space oveH is Fy(H)=a;_oH", where
HMW=5H®™ is called thenth particle subspacf20]. Let
finally FyC Fs(H) be the dense subspace of finite particle
vectors, i.e., the subspace of vectgrs={ 4" ; n=0} such
that " vanishes for all but a finite set of indicesWe can
then define an annihilation operata¢f) on F,(#), with
domainF,, via its action on vectors of the typg®.2):

5 Vn
At =2 o) ) bu@® - © ot

with n=1, whereas(f) vanishes or ”) [20]. This opera-
tor represents the classical quantigy,f) and is closable for
any f e H. Its adjoint is the creation operatar(f), which
represents the variab{@*,f*). Its restriction to the subspace

PHYSICAL REVIEW D 61 084019

In particular, the operatd?‘R[f(u|uo)] represents the bilocal
field (5.1). The Segal field operator af, satisfies the com-
mutation relations
where Im denotes the imaginary part and we have set
fi=1. This operator has a self-adjoint clos{i26], which we
will also call \A(R. The spectral theoref22] ensures then that
expAYLf]) is a well-defined, self-adjoint, and positive op-
erator for all vectord e H, whereA is any realc number.
Therefore, after replacing the field(u) with its bilocal
versionYg(u|ug), we can represent the diagonal components
haa(u) (a=1 or 2 for the plane-wave metric®.3) by the
regularized, positive operators

hR,(uug) = exp{zo(u)exp{— e~ 2| |f(u|ug)| |2}

X exp(—1)2y2e " 20M2Y [ f(ufug) T}
(5.7

Here,||f|| is the norm off e H and we have displayed the
dependence on the pointsand uy. We recall that, for the
discrete model discussed in Sec. Ill, the pounendug have
been restricted to lie in the intervgl_ ., while for the gen-
eral case of linearly polarized waves analyzed in Sec.ulV,
and uy can take any real value. The second factor on the
right-hand sidgRHS) of this expression can be understood
as follows. We choose to normal order the exponential of

YR f(ulug)], so that the vacuum expectation value of the
operators(5.7) reproduces the classical value of the two-

of finite particle vectors can be obtained from the formulametric h,, when the fieldY vanishes, i.e., in flat spacetime.

[20]

a*(H)pW=yn+1S, (fo V). (5.3

Notice that, from our definitiong*(f) is linear inf, whereas
a(f) is antilinear.

It is possible to understand each veciif’ in H{" as a
quantum statd${™) obtained from a vacuuni0) by the

action ofn creation operators. For vectors given by formula
(5.2, e.g., one has

1 . ~
|6")= & (B0 -2 (400, (5.4

The constant overall factor is a normalization constant intro
duced for convenience. The vacuuf) is characterized as

the only state that is destroyed by all annihilation operators

and has unit norm. It corresponds to the veat@P=1.
For any vectof in H, let us next introduce the Segal field

operatorYg on F, [20], defined by
[a(f)+a*(h)]. (5.5
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Employing then thaton Fy)

[a(f),a*(g9)]=(g,f) (5.9

and the Campbell-Baker-HausdorfCBH) formula ePe®
=elb:cl2g(+) valid for operatordh andc whose commu-
tator is ac number[23], we finally arrive at the above ex-
pression forh?, .

We will not analyze in detail the introduction of an op-
erator that represents the other independent component of the
metric (2.3), which (after the chang® =2t —u) can be writ-
ten in the formh,,=z)(u)e®W2e®W  the functiond (u)
being given by Eq(2.4). As we will see in the next section,
the discussion about the existence of large quantum effects
that invalidate the classical description of the metric can be
carried out without relying on a particular definition for this

operator. Let us simply comment that

dr

detulug = [ g O 1(r]ug) )Y

Ue

!

z4(1)

0
(5.9

can be proved to be a densely defined operator on the sym-

metric Fock spaceF¢(H). Therefore, if<i>R(u|u0) is essen-
tially self-adjoint, its exponentidimultiplied by the function
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z{(u)e®W’2] provides a well-defined, positive operator that (with a=1,2) and suppressing from our notation the explicit
could be interpreted as a quantum counterpalt,gf Notice  dependence on the poinisandug, we can write Eq(5.7) in

that dg(u|u,) has been obtained from the expression ofth® compact form
®(u) by replacing the classical fieldf(u) with the Segal AR _E. AT IF1): 6.4
field operator?R[f(u|uo)] and taking normal ordering. aa= FreXpAYRLT]):, 6.4

where the dots denote normal ordering. Employing the CBH
VI. METRIC FLUCTUATIONS formula and Eq(5.9), one finds that

In this section, we will discuss whether there exist quan- ) S N
tum states in our model that admit a classical description of (Fiexp( ARl 1]):)c=F exp(V2A.Re(c,f). (6.5

the spacetime. It seems natural to consider as candidates the e we have used thAt, is a realc number, and Re stands
coherent state23] of the basic field operatoYR[f],. sinq:e for the real part. We therefore see that the expectation value
all these states are strongly peaked around classical field sg¢ AR on a coherent state reproduces the classical value

lutions. Actually, most of the analysis of large quantum grav-gpained from the field solutiof6.2). In particular, for the
ity effects presented in the literature has been carried out b

investigating the geometry fluctuations on states of this typg a(I::uum sétateeone_tg_ets tth(_a I:?ft Vam§at> 0~ F‘Sgl' de that
[1,12,15. In the models that have been considered, however, rom Eq.(6.9), it is straightforward to conclude tha

the geometry studied was obtained by a Killing reduction to ARR )2 INIEGIE
three dimensions. Here, we will study the quantum behavior ¢ aa =exp< a_) —1. (6.6)
of linearly polarized plane waves from a purely four- (hR). 2

dimensional point of view. We are particularly interested in

discussing the metric fluctuations on the vacuum, which isor any observabl®, the symboIAcB denotes the uncer-

the coherent state that should represent flat spacetime.  tainty of the statéc), namely, the square root of the differ-
Given any vectoc in the Hilbert spacé{ [where™ is |2 ence betwee|<162>c and (<6>c)2- It is worth remarking that,

2 .
T_or thf molde_l odeec. I andé $B+)r']” thehgeneral casbe of from the above expression, the relative fluctuations in the
inearly polarized wavdswe define the coherent stite) by two-metric ﬁga turn out to be independent of the particular

_ _ 2 A coherent state considered. Note also that there will generally
) =exp—|[cl[*/2)expta’(c)}|0). €1 exist large fluctuations in the geometry whenever the expec-
The overall numerical factor guarantees ta} has unit tation value of the metrib?, is large. However, approximat-
norm. Using formula5.8) and recalling that the vacuum is ing this metric by the classical valu@.5) will still be ac-

destroyed by all annihilation operators, it is not difficult to ceptable provided that the relative fluctuationshi, are
see that, for anyf e H, the expectation value of the Segal small. According to Eqg6.3) and(6.6), this will be the case

field on any coherent state is if and only if
. 1 e 2| (u|ug)||?><1. (6.7)
(YR[f])czﬁ«c,fH(f,c)). (6.2

Before continuing our discussion, we would like to com-

Regardless of the value §fthis expectation value coincides ment on the implications that tRhe uncertainty principle may

with the classical field obtained by replacing the annihilationh@ve for operators of the forim,,, which are given by the
variablesa with the vectorc e H (anda* with its complex normal ordered exponential of a Segal field multiplied by a

conjugate,c*). On the other hand, for every fixed vector positive c number. Remember th&t, denotes a different
fe™M, let us call Yg[if] the canonical momentum of the Operator for each pair of pointsi and uo. Let then
field Yo[f]. Notice that, from Eq(5.6), the commutator of b=F:e"’l: andc=G:e"=9): be two such operators. We
these two operators is the imaginarynumberi||f||2. One  know that the uncertainty product ib and c is always
can then check that all coherent states have the same uncefeater than half the norm of the expectation valug¢mt]
tainty in the field Yg[f] and in its canonical momentum. [24]. In our case, the commutatpb,c] is a quantum opera-
Furthermore, for all vectorée H, the product of these un- ., proportional toFG:e\?R[Hg}: Hence, its expectation

certainties attains its minimum vali24], namely,| |_f||2/2- value will depend on the state analyzed. As a consequence, it
Let us now analyze the quantum fluctuations in the metis not clear which is the minimum value allowed for the

ric. We will restrict our consideration 1o the operat¢usy), product of uncertainties ib andc. In this situation, it seems

which describe the metric on the Killing orbits of our more natural to consider, for instance, the uncertainty prod-
midisuperspace model. Our conclusions will be independent ' ' S yp

of the quantum behavior dfy,, i.e., the other non-trivial Uct divided by the expectation value BiG:e"=I"*9l: This

component of the metric for plane waves with linear polar-q”a?t/izty rns out to be bounded by the number
ization. By defining (02— e{f.9)/2/2 and, on coherent states, coincides with

the product of the relative fluctuations imandc, as can be
F(uy=e®W, A (u)=(—-1)22F(u)"¥2 (6.3  checked by employing E¢6.5). Using techniques explained
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in Ref.[24], one can then prove that the considered quantityagain that the relative uncertainty in the mefi, is large
is not minimized by the coherent states for generic vectorgjose to the hypersurface where null cones are focused, i.e.,
f,geH. for large and negative values of the coordinateln that

Let us now return to the analysis of the metric fluctua-region at least, the classical description of the spacetime, as a
tions. For the whole family of coherent states, we have seeplane wave withx? components of the classical metric given
that the classical description of the spacetime may be accepby Eq.(6.5), is not acceptable for any of the coherent states.
able only if condition(6.7) is satisfied at all points. Recall  Notice that this breakdown of the classical spacetime when
that ugy is a conveniently chosen point where the diagonalone approaches the focusing region is regulator independent,
components of the metric in theé®-directions @=1,2) are  because it occurs for all of the admissible choices of smear-
set equal tae?(U0) by convention, both classical and quan- ing functiong. Finally, let us emphasize that our results ap-
tum mechanically. For the discrete model of Sec. lll, theply as well to the vacuum, which is the quantum state that
vector f(u|ug) denotes the sequen¢g.6) in 12, and for the  should describe flat spacetime. So quantum gravitational ef-
model of Sec. IV,f(u|ug) is the function(4.6), which be- fects around the vacuum cannot be neglected in the vicinity
longs to L?(R*). In general, inequality(6.7) will not be  of the region where null geodesics are focused by linearly
satisfied if the norm of the vectdi(u|ug) or the function polarized plane waves.
e~ %) hecomes considerably large at a certain poir8ince

the form off(u|ug) (and hence its norjrmay depend on the VIl. SUMMARY AND DISCUSSION
regularization adopted in the quantization, we will concen-
trate our discussion on the possibility thet?) is signifi- Linearly polarized plane waves in source-free gravity

cantly large, a possibility that is insensitive to the ambigu-have been described by a midisuperspace model that is free
ities found in the construction of the quantum theory. Givenof constraints and whose reduced Hamiltonian vanishes. This
the definition ofz, in Eq. (2.4), the functione %\ js the  model was obtained in Ref3], starting with the Hamil-
double exponential of-u. This exponential becomes un- tonian formulation of general relativity for spacetimes with
bounded from above whemapproaches- <, which is pre- two commuting spacelike Killing vectors and introducing
cisely the region where null cones are focused by the plangauge-fixing and symmetry conditions. The degrees of free-
wave, as we commented on in Sec. Il. We hence expect théom of the model are given by a fieM that (on classical
quantum spacetime to radically differ from its classical ap-solutiong depends only on one of the spacetime coordinates,
proximation close to this focusing region. namely, the coordinata. We have shown that one can con-
In order to prove this statement, we only have to showsistently restrict all considerations to fields that vanish at a
that the norm off(uluy) remains strictly positive when given pointu,. Furthermore, after a Fourier expansion, this
u— —oo. It then follows that]|f(ulug)|| "2 is bounded as a field can be expressed in terms of an infinite collection of
function of u away from u, because, for every possible annihilation and creation like variables. In the general case of
choice of the smearing functiom employed in our regular- linearly polarized waves, these variables form a continuous
ization, the vectof (u|u,) is normalizable and different from Set, but we have also considered a simplified version of the
zero at all finite pointsi#u,. As a consequence, condition model in which the field¥ describes flat spacetime outside a

(6.7) will not be satisfied when becomes large and negative fixed region. If one is only interested in studying that region,
[25]. the Fourier expansion of the field can be restricted to a dis-

Let us first analyze the model with discrete modes. We segrete set of modes. Finally, we have argued that the position
Up=0 and u=—L/3 for convenience. In particular, if Of the pointsu andu, cannot be determined with total accu-
L> ¢, the pointsu andu, belong tof —L +¢,L— €] (interval ~ racy in any physical measurement. As a consequence, the
to which we restricted our considerations in Sec).lll field measuredyg(uluo), would result from an average over
Using expression(3.6), it is not difficult to check that Some small neighborhood of those points. .
I1f(—L/3|0)||>[g(m/L)|. Sinceg is the Fourier transform In order to quantize the system, we have introduced a

. . . ~ Fock representation and described the figlgu|uy) by a
of a smooth fungthn with unit integral, we have (D) Segal field operator. This Segal quantization has been carried
=1N2m. In the limit L—o0, when the poinu=—L/3 ap- ot gver the Hilbert space of square summable sequences for
proaches the region where null geodesics are focused, thge model with discrete modes and over the space of square
norm of f(—L/3|0) is then bounded from below_by\jz_qr. integrable functions on the positive real line for the general
Therefore, in the case with discrete modes studied in Sec. Iil3se of plane waves with linear polarization. In this way, we
and assuming that the value bfis sufficiently large, the paye peen able to construct regularized operators that repre-
relative fluctuations in the metric turn out to be huge whengent the spacetime metric for plane waves. At least for the
u<0, regardless of the specific form taken by the functionyyo-metric on Killing orbits (i.e., the sections of constant
g. Thus, the classical spacetime breaks down for all cohererjoordinateg andu), we have proved that these regularized
states in the region®®u>—L +e. operators are self-adjoint and positive. We have then concen-

In the general model of plane waves with linear polariza-trated our discussion on the analysis of the coherent states of
tion, one can also show that, in the limit- —o, the norm  the quantum theory. These states are characterized by mini-
of the functionf(u|ug) is bounded from below by a strictly mizing the uncertainty product in any Segal field and its
positive number[25,26 for every possible choice of the conjugate momentum. We have checked that the expectation
function g used in the regularization. Hence, we concludevalue of the metridon Killing orbits) reproduces in fact the
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classical solution that one would obtain from the expectatiorproximate description cannot be taken for granted until the
value of the Segal field. However, the relative fluctuations inquantum theory is known.

this metric become huge for all coherent states when the On the other hand, in terms of the coordinatethe ex-
coordinateu gets large and negative. Such valuesuafe-  pansion in modes employed for our basic fi¥lfl) is most
scribe the vicinity of a region where null cones are focusechatural, since it is its standard Fourier expansion. Neverthe-
by the plane wav¢l16]. Therefore, the quantum geometries less, one might have chosen to expand the field in the Fourier

represented by coherent states do not admit an approximaifodes associated with another coordinateR, related tou
classical description in that region and classical spacetimgy means of a(differentiable bijective transformation
breaks down. u=H(u) [so thatH'(u)#0]. One can always séi’(u) to

It is worth remarking that this result applies as well to theb o ; ; ;
. e positive, e.g., by using the invariance of the geometr
vacuum of the model, which should correspond to flat space- P g- by g g y

time. In this sense, the spacetime foam around the vacuu _ . .
turns out to be quite significant, at least close to the focusin 1€ con3|dered. change Of, coor_dlnate amounts n flact.to a
region. This fact casts serious doubts on the possibility tha ’|fferent select_lon of functiorz, in the second equation in
after introducing matter fields in the system, a quantum field2.4), namely, zo(u)=2o[H(u)]. Remarkably, it tuns out
theory around the flat-spacetime solution of our model couldhat the gauge fixing and symmetry reduction carried out in
provide a good semiclassical approximatidri] to the full ~ Ref.[3], as well as the analysis and quantization performed
guantum theory. in the present workexcept for definition2.2)], continue to

It would be interesting to analyze the metric fluctuationsbe valid with the replacement af(u) with zy(u), provided
for families of quantum states other than coherent stateshat the latter is a strictly increasing function that ranges over
Obviously, this analysis would not affect our conclusionsthe whole negative axis. One can easily see that the function

about the vacuum. In addition, note that, even if it werezy(u) analyzed here satisfies these conditions. As a conse-
possible to find states with smaller metric uncertainties, thiQ]uence, adopting a Fourier expansion in terms of the coordi-

would be done at the cost of losing coherence in the Sega|ate can be considered equivalent to the introduction of a
field. ) ) different gauge fixing for the-coordinate diffeomorphisms,
On the other hand, the results attained might well depend,q |eads just to an alternative representation of our commu-
on several choices that have been made either in the CORs(ion relations that is carried by(possibly different Fock
struction of the model or in the quantization process. Amongspace. Actually, it is not difficult to show that such a repre-
such choices, let us briefly comment on the representatiogenation s related to that introduced in Sec. V by a Bogo-
selected for the quantum theory, on the mode decompositiof, oy transformation of the creation and annihilation opera-
and regularization adopted for the basic fidldand on the o5 Moreover, one can check that all the coherent states of

system of coordinates employed to describe the plane waveg,e quantum theory that is obtained with this alternative ex-
The commutation relation$5.8) admit representations pansion in modes present also large relative fluctuations in
other than that discussed in Sec. V. For instance, one coulgle metric when one approaches the focusing region.

have made a different choice of creation and annihilation  ag for the regularization of our basic field, we recall that

operators that led to a unitarily equivalent Fock representag,q infrared divergences have been eliminated by imposing
tion but with a different vacuum. In this sense, the question, 4+ the field vanish al,, both classical and quantum me-
that is physically important is the correct identification of the chanically, whereas the ultraviolet divergences have been re-
state represented by the vacuum in our quantum theory. Thig, e by averaging the field around the poimendug with
vacuum is the only no[mallzed state with minimum uncer-5 ¢ 00th functiong of compact support, an average that
tainty in the Segal field’g[ f] and its canonical momentum amounts to a smearing of the field. The choice of the point
(fOf all VectOfo) that is peaked around the zero field. Sinceuo can be made on physica| grounds: the value of the field at
spacetime is flat when the classical fidlanishes, it seems that point is taken as a reference value for all measurements.
reasonable to identify our vacuum as the state correspondingn the other hand, it seems reasonable to assume that the
to the flat solution in the constructed quantum theory. support of the functiony is of the order of the Planck length.
One can also find representations of our commutation rethe form of this function, however, remains quite arbitrary.
lations that are unitarily inequivalent to that employed inThis introduces an ambiguity in the quantization process,
Sec. V. It then could happen that our conclusions were nojhich is similar to that encountered in RéL] when defin-
valid for some of such representations. It is worth noticing,ing the regularized metric faithe dimensional reduction of
nevertheless, that the Fock representation adopted guaranteggindrical waves with linear polarization. The conclusion
that the Segal field 5[ f] (i.e., the basic field of the theory that the metric fluctuations become large for coherent states
is a self-adjoint operator for all vectoffs In addition, the when one approaches the region where null cones are fo-
existence of a cycli€20] vacuum that describes the classical cused is nevertheless regularization independent, as we ar-
flat solution obtained when the fieM vanishes makes our gued in Sec. VI, and is basically due to the fact that the
choice of representation a natural selection. In any case, thaetric on the two-dimensional Killing orbits degenerates in
aim of this work is not to show that a classical description ofthe focusing regiofiso thate* vanishes in Eq(6.7)].
the spacetime is precluded in quantum gravity for all pos- Our last comments refer to the system of coordinates em-
sible representations, but that the existence of such an aployed. This system does not cover the totality of the space-

der a reversal of the null coordinatésindu. In addition,
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time that can be described with harmonic coordinates. Morestrong gravitational effects exerted by the plane wave in the
over, the region where the metric uncertainty explodesegion where null cones are focuséc., in the vicinity of
(u=—<) corresponds to a coordinate singularity in groupthe coordinate singularity in group coordinatea a similar
coordinates, and this singularity can be removed by introducway as it is usually expected that spacetime singularities dis-
ing harmonic coordinateg8]. One might then wonder appear in quantum gravity. On the contrary, and at least for
whether the huge quantum fluctuations detected could haue spacetimes described by coherent states, our results prove

been avoided by adopting harmonic coordinates. ~ that such strong effects are in fact enlarged in the quantum
We recall, nonetheless, that the spacetimes described Rieory.

those coordinates are not globally hyperb¢lié]. Since the
canonical formulation of general relativity can only be ap-
plied to spacetimes which can be foliated in time slices, the
guantization of gravitational plane waves using harmonic co-
ordinates cannot be achieved by standard methods. Our re- The authors are grateful to P. F. GolezaDiaz for valu-
sults will be relevant for the whole of the spacetime coveredable discussions and comments. They are also thankful to A.
with a single chart in harmonic coordinates provided that ondRoura and E. Verdaguer for discussions. G.A.M.M. ac-
can neglect the effect of the regions that are not described ynowledges DGESIC for financial support under the Re-
our system of coordinates. One expects this to be the case, starch Projects No. PB97-1218 and No. HP1988-0040.
least, for sandwich waves that leave the spacetime flat iM.M. was supported by CICYT under the Research Project
those regions. More importantly, one might have expectedNo. AEN98-04031 and by funds provided by a Basque Gov-
that the quantization process would actually smooth out thernment FPI grant.
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