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Massless scalar fields and topological black holes

Tekin Dereli and Yuri N. ObukhdVv
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The exact static solutions in the higher dimensional Einstein-Maxwell-Klein-Gordon theory are investigated.
With the help of the methods developed for the effective dilaton type gauge gravity models in two dimensions,
we find new spherically and hyperbolically symmetric solutions which generalize the four dimensional con-
figurations of Dereli and Eriswe show that, like in four dimensions, the nontrivial scalar field yields, in
general, a naked singularity. The new solutions are compared with the higher dimensional Brans-Dicke black
hole type solutions.

PACS numbse(s): 04.50:+h, 03.50.Kk, 04.20.Jb

I. INTRODUCTION Il. KALUZA-KLEIN SCHEME

The studv of t soluti . £ th ¢ Let us consider the Kaluza-Klein reduction of a
. € study o _e>,<ac solutions remains one ot the cen rathrn)-dimensional manifold to the physicdidimensional
issues of Einstein’s gravitational theory and its generaliza

) h the higher-di ional and | i 29Rjemannian spacetim®? with an n-dimensional internal
tions. Both the higher-dimensional and lower-dimensionaln,ce of constant curvature. Denote the components of the
gravity models(see, e.g.[1]) have attracted considerable higher dimensional curvature two-fori*B with respect to

attention recently. This interest was partly motivated by the, |ocal orthonormal fram&, . The dual coframe one-forms
idea that the geometrical structures not confined to four dixre genoteds?, and the indices rum\,B, ...=0.1,...d
mensions may be helpful in understanding four-dimensional, y— 1 The general Kaluza-Klein reduction of an
physics, and partly was due to the development of 4+ n)-dimensional manifold with a compactification on an
(supejunification approaches. n-torus involvesn 1-forms A® andn? scalar fieldsbP?2. Here
Topological black holes possess horizons with nontriviakhye will consider a simplified scheme without the Kaluza-

topology. They naturally arise in a number of gravitationalKlein 1-forms (gauge fields Then the consistent decompo-
models[2-5] (in particular, as black strings, black branes, sition of the metric reads

etc) and have rather different properties from the usual black
holes with spherical horizons. Higher dimensional generali-
zations of these objects were considered recent|,.

As is well known, the nontrivial scalar field may, in gen- Here is the Kaluza-Klein scalar fieltbnly one scalar sur-
eral, destroy a horizon and produce a naked singularity ingjves in absence oA?) which depends only on the coordi-
stead. This fact, first noticed in four dimensions,[8, was  nates ofv9, and

later confirmed also for higher dimensiof&10], although
for certain types of dilaton couplings the higher-dimensional

(d+n) (d) (n)
g =g+e Wty (2.2

(d)

- @ B
black holes with scalar fields do ex|dt1,12. For a compre- 9 =0apt @9, 22
hensive recent review s¢#&3]. )
It seems interesting to consider Einstein’s gravity with all g =0g.p02® 9%, (2.3

the three above mentioned features combined: i.e., in an ar-

bitrary dimensional spacetime, with a scalar field, and possidescribe, respectively, the metric of the physical spacetime
bly with nontrivial topology of horizons. This problem is [with g,z=diag(—1,1,...,1) as a@-dimensional Minkowski
studied in the present paper. Technically, we use the methodsetric] and the internal spadevith g,,= &,,] of a constant
developed previously for the two-dimensional gauge gravitycurvature R%°= —\92/\9°. The constant\=+1 for an
models[17,18. For this purpose, in Sec. Il, the original n-sphere of a unit radius\=0 for flat space(e.g., hyper-
problem is reduced fromd(n) dimensions to an effective plane, cylinder orn-torug, and A=—1 for a hyperbolic
d-dimensional model by means of the Kaluza-Klein schemespace.

with an “internal” n-dimensional space of constant curva- The (local frame indices clearly run: «,B,...
ture (positive, negative, or zeyoThen, in Sec. lll, the case =0,1,...d—1, anda,b,...=1,...n.

d=2 is analyzed in detail with the help of the technique The Einstein-Maxwell-Klein-Gordon theory with a cos-
developed if17,18. The new exact solutions are derived in mological term ind+n dimensions reads

Sec. IV, and we discuss their properties and make conclu-

T 1 1
sions in Sec. V. L=— ERAB/\ TAB— EF/\#F

* ; ; 1
Qn Igave from Department of Theoretlcal Physics, Moscow State — = (dpN\#dop+ m2¢#¢) —A7. (2.4)
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HereF =dA is the Maxwell field strength two-form and is n—1
the scalar field. We are using the general notations and con- FP)= Ee—ch, 9(¢)=2<T
ventions of[16]. In particular, the Trautman’g;-basis of

exterior forms is defined by the Hodge duals of the products N

of coframe one-forms)*: given the volume ¢+ n)-form 7, U(®)=zn(n— 1)e 2(-2me, (3.9

one hasypa=#9,=Ep|n, nag=#(3a/\Og)=E,|7ng, €tc.

Same notation is used for the lower-dimensional counterpartSorrespondingly, one finds the Lagrangian of the equivalent

e 20

in MY, Einstein-Cartan theory:

We will consider a massless Klein-Gordon field, so that
m2=0. _ 1 a a 1 ap

Assuming that the Maxwell and scalar fields are indepen- Lec=— 5 &(®)T AT 2 O PIRT U7,
dent of the internal space coordinates, we straightforwardly (3.2
obtain from Eq.(2.4) a dimensionally reduced Lagrangian:

where
1 n—1 w=e?® ¢= —)ezq’. (3.3
L=e 2? —ERQ‘B/\naB-FZqu)/\*dq) n-1

Here T¢ is the torsion two-form and the curvature is also
constructed from the Lorentz connection with torsion. In two
dimensions, the Hodge dutf=+*T“ is a (covector-valuel
scalar. The torsion trace one-forin:=e,|T*=—1t%y, to-
(29 gether with=T form a basis of the cotangent space when
t?:=t%t, is non-zero. As a consequence, the two-metric
arises as

1 1 1
+5ReNTy—SEAYE—SdgA*dg— A7),

n
Here (R)=)\n(n—1) is the curvature scalar of the internal
space, and from now on denotes the voluméd-form and*
is the d-dimensional Hodge operator ¢,
It seems worthwhile to note that Kaluza-Klein reduction
from (d+n) dimensions in the limit oh—c yields exactly ~[Note thatt? is a negative quantity.The gravitational field

the low-energy string model in an arbitrary dimensibf23].  equations, which arise from the variations of the action with
respect to the coframe and connection one-foffalatini

principle), after some rearrangements can be written as

(2) 1
9= —(ﬁ°)2+(ﬁl)2=_—t2[(T)2—(*T)2]- (3.4

Ill. CASE OF d=2: EFFECTIVE

202\ (242 + .
TWO-DIMENSIONAL THEORY d() = (17— 28T+ 285, (3.5
Let us putd=2. The above compactification obviously d(&xT)=2Un+9*N%,, (3.6
describes the general {2n)-dimensional metric configura-
tions with spherical X=1), plane § =0) and “hyperboloi- _2( n—1 db=T (3.7
dal” (A=-—1) symmetry. The reduced syste(®.5 gives n ' '

the dynamics of the “radial” variables in terms of a dilaton .

type gravity theory in two dimensions. HereS:=t“% ,, and as usual the source is represented by the
Recently there was an increasing interest in the so-calle@nergy-momentum one form which is obtained as a varia-

topological black holes which are defined as solutions ofional derivative of the matter Lagrangigsecond line in Eq.

Einstein field equations fox=0,—1. (2.9] with respect to the coframe:
We will look for the exact solutions of the Einstein- 1
Maxwell-scalar field equations using the methods developed S.=—e 2PAp, + e 2P, |F)*F
for the general two-dimensional Poincayauge gravity 17], 2
see the revieWl8] which contains also a list of references to
other approaches. In particular, as it is demonstrate¢d8h 12
pp -Inp , + >€ [(edp)*dp+de(e,]xdep)]. (3.8

any two-dimensional dilaton type model with a Lagrangian

- ) _
N F(P)R+G(P)(d,P)"+U(P)] can be recasted into a py,y Eqs(3.4) and(3.7) we conclude thath can be taken

fprm of an effectlve.th(_aory n the R|em_ann—Cartan SPaceys o locakpatial coordinate, and one can construct a second
time, and the gravitational field equations then can bqeg of the coframe as

straightforwardly integrated. The key role in this approach is

played by the two-dimensional torsion trace one-folm &T=Bdr, (3.9

which, together with the Hodge duall’, provides a natural

coframe basis in the spacetime. wherer is the localtimecoordinate, an@®=B(7,®) is some
For the Lagrangiarni2.5) we have yet unknown function.
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The Maxwell equationd(e ?**F)=0 and the Klein- where Q and ¢, are integration constants. Hereafter the
Gordon equationd(e ?**d¢)=0 are easily integrated, prime denotes the derivative with respectdio

yielding Substituting Eqs(3.9) and (3.10, (3.11) into Eq. (3.8),
*F=Qe??, (3.10  and subsequently into Eg8.5), (3.6), one finds a system of
two differential equations for the unknown function&(?)
B¢’ =cy, (3.1) andB:
|
n—1 ca &4t?
(2t?)' = —2(7) 2+ 2xn(n—1)e (=DM _gp e~ 4P _2Q%+ > BT (3.12
2\7 _ —4((n—1)/n)® _ —4d_ 52
(B9) :2)\n(n 1le 4Ae 20Q . (313
ZBZ §2t2
|
It seems worthwhile to note that although most of the inter- 1 dB? 2E-202
mediate derivations were, strictly speaking, inapplicable to —_ = (3.20
the case oh=1, the final system is meaningful also when 2B do (£%1?)
n=1, yielding correct solutions.
Consider at first the case=2 and A=1. Then ¢ Thus, all the solutions for the Einstein-Maxwell-scalar
=2e ?® and the systen(3.12), (3.13 becomes system in arbitrary dimension that are either spherically sym-
metric A\ =1) or “hyperbolically” symmetric A = —1) are
d(£%t?) - ) ) cl £4t? generated from the spherically symmetric solutions in four
g - SUH2E-AE-2Q% 5 57 (3.14  dimensions by reversing the transformati@16—(3.18).
1 dB2 2§—A§2—2Q2 IV. EXACT SOLUTIONS FOR ARBITRARY
— = o = (3.15 DIMENSION AND A
2B° do &t

The general solution for the=2, \=1, i.e., for spheri-

All the n+ 2 solutions can be generated from the solutions off@lly symmetric four-dimensional Einstein-Maxwell-scalar
Egs. (3.14, (3.19 for the vanishing cosmological constant field equations is well knowfl9]. In our formalism, it reads
A=0. Indeed, in the general case let us introduce the new?S follows:

rescaled, variables and constants: )

7 242 1/dh B2 242

£=2h, (&t )=—§ 9/ B =—(&19f, (4.0

n 1) @:{é: 2e‘25’= 2~ 4(n—1)me
n

b=2
(3.16 where the functiong="f(r),g=g(r),h=h(r) are given by

—  1/(2\? 2\? f=M =D?2,  h=D?? (4.2
(§2t2)=—(—) (£22), EZ:(_) B2, (317 pz 0 97 : :
Ain n
Here the function
~, 2 Q¥ ., 2
=——"—, C°= Co-
n(n—=1) x n(n—1) K2(x+1)%—(x—1)2#
(318 D)= 4.3
Clearly, we assume that# 0, the case.=0 will be consid- d q ia th i iabl
ered separately. Note that the quantities with tilde rmoé epends ofm via the auxiliary variable
necessarily positive and this is an essential difference be- M
tween the cases of=*1. Substituting Eqs(3.16—(3.18 Xi=— — (4.4)
into Egs.(3.12, (3.13, we get r
42 <2 (72 and M, k?, and w are arbitrary integration constants. The
(§~ ): —‘(52—t2)+2'é—262+c— (éi ) . (31 main properties of the functio®(x) can be seen from the
2 B? differential identities it satisfies
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)‘ D7 (-1

)2 (1 1dDp
_|_
(4.6)

( x D dx
Using Eqgs.(4.1)—(4.6) in Egs.(3.19, (3.20, we find ex-
plicitly the integration constants for a general solution with
an arbitraryn and\:

,d
dx

1dD
D dx

1dD
D dx

2_ 16/.L2k2

DZ

4(1—u?)
- (x3-1%’
4.

1dD

D dx

4x

x2—1

C16u’k? 41— u?)

Q?=16n(n—1)M2u2k?\, 4.7

ci=16n(n—1)M?(1— u?). 4.9
Substituting Eq(4.1) into Egs.(3.7), (3.9), (3.4), and(2.1),
one obtains the metric

h~(n=2)/(n=1))

9 -
s—dr?+ht "1 do?,

g=—-\fdr?+
AN(n—1)

4.9

wheredQ? is the line element on the-dimensional space of
constant curvatura.

It is worthwhile to note that Eq4.7) demands that for the
spherical symmetryN=1) we takek’=0, whereas for the
“hyperboloidal” symmetry \=—1) one should takek?

<0.

The scalar field is obtained after some algebra from the

first integral(3.11),

/ n
b= (1—M2)(m)|09

As for the Maxwell field, the electromagnetic potential,
=Aqdr, is obtained from Eq(3.10 in the form

|

for the case whef®# 1. Whenk?=1, we have

Xx—1

Xx+1

(4.10

1 (x+1)%#—(x—1)%*
1—Kk? K?(x+1)2*—(x— 1)+’
(4.

n
n—1

Ao

- xkz(
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n
__ 2
A=\

However, both potentials give rise to the same Maxwell field
strength two-form

n
— dA=4M u /K ——
F=dA=4Mu\/\k n—l)

which is valid for all possible values &f. A straightforward

(n) (n)
check shows that B=—-Q »n, where » is the volume

n-form of the internal space. Thus indeed the integration
constantQ is the electric charge of the solution.
For completeness, let us give the dilaton field explicitly:

|

V. DISCUSSION

(x+1)%#
(X+1)°#—(x—1)°*"

(4.12

x2—1
h

dr/\dr, (4.13

oot
C 4

n

— )Iog h. (4.19

It is instructive to compare our solutions to the higher-
dimensional black holes in the Brans-Dicke-Maxwell theory.
The corresponding Lagrangian can be writtaith the help
of a suitable conformal transformation and field redefini-
tions) as

L

1 1 1
- ERAB/\ Nag— Ee‘bq’F/\#F— Sde/\#d,
(5.2)

with some constanb. Whenb=0, this reduces to the La-
grangian(2.4). The direct investigation shows that the con-
dition b#0 is crucial for the existence of nontrivial black
hole solutions: the exact configurations were found in
[11,14). They, however, cannot be used for obtaining the
solutions of Eq.(2.4) from that of Eq.(5.1) by taking the
limit b—0 in these configurations. The resulting solutions
have trivial (constank scalar field. In contrast, our solutions
are characterized by the nontrivial scalar field, in general.

Rather lengthy calculation yields the curvature quadratic
invariant:

e [Mn=1)2) %020 2n 42 16u2k3x2 2
Rag/\#R "= hU(—1) 7 -1 M+(M_1)(X2_1)2 D2 —uP

n ) (x?>+1)% 16u?k®x? 2

+—z(n_1) M +M(1_M)(X2_l)2_ Dz T MP

2( 2n—1) 1602252 [ n \[ , . (x2+1)? )2

+ o1 >y ey IVt M)m wP
n (x>+1)% 16u?k®x? 2

+ (n—1)3( _MZ"'(M_1)2()(2_1)2+ D2 +2uP| |, (5.2
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where we have denoted

pu—1 u—1

x—1

L (X*+1)
B x+1

D

x+1
x—1

2

(5.3

This shows that a generic solution has curvature singularitie
atx==*1 andD=0. The metric function$,g,h either van-
ish or diverge at these points.

In order to analyze the physical meaning of the constan
parametersu, M, andk?, it is convenient to replace the
radial coordinate by a new variable

1
p=M| x+—|. (5.9
X
Then the solution is rewritten in the form:
h~(n=2)/(n-1)
g=—Afdr2+ dp?+h¥0=1dn2,
An—1)>2f
(5.9
o[ N 1
_J@=p [ 1-y|
=N |n=1/9 1y 69
Heref=1(y) andh=h(y) are given by
1-y?)#
(1-y?) 5.9

f=
[K2(1+y)“—(1—y)*]?’

h=p?(1=y*) K (1+y)* = (1-y)*T%,
(5.9

in terms of the variableg=2M/p.

Unfortunately, whem>2 it is impossible to find a trans-
formation, in a closed analytic form, to the Schwarzschild
type coordinates. The above transformatiém) brings the

metric most closely to the Schwarzschild form and it is suit-

able for the analysis of asymptotic behavior of the metric
Expanding the functiongs.8), (5.9) and Eqgs«(5.5), (5.6) in
the asymptotic spatial region in powersfi.e., p~ 1), we
find for the metric

AMu(K2+1)\ -
p
IMu(k®+1)\ . -
A 1+% dp2+752d02, (510
p

and for the Maxwell and scalar fields

08401
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- AM pNkn(n—1
~n

d7/\dp, (5.11)
p
n \2M(k?*-1)
. p~— (1_M2)(n_1) —
(5.12

Fere we accompanied the expansion by the change of the
asymptotic coordinates

p=[(k?=1)p]¥n=1),

(k2_1) ’ (513)

Recall thatp! " is a fundamental solution of the Laplace

equation in a (¥ n)-dimensional spacéwe consider the
(2+n)-dimensional spat¢ine]. Equations (5.10, (5.11)
demonstrate that total massand electric charg® are con-
structed fromu,M,k? as follows:

Q=4MpuAk?n(n—1).
(5.14

The latter relation is in complete agreement with 7).
Note that for the spherical symmetry the electric charge and
the mass always satisfy the inequali@/ m=n(n—1).
Equality corresponds to the extremal charged solution.
For obvious reasons, the combinatioor=—2M (k?
—1)yJ(1—x?)[n/(n—1)] can be called a scalar charge of
the solution. This interpretation conforms with E4¢.98).

As one notices, the above identifications of integration
constants are only valid whekf+# 1. Besides that, there are
several other special cases to which our general solutions
reduce for particular values of the constant parameieaad
k?. These cases should be considered separately. In particu-
lar, from Egs.(5.5—(5.9) it is straightforward to see that the
choiceu= *1 vyields the charged black hole configurations
which extend the Reissner-Nistrom solution to a
(2+n)-dimensional spacetime. The scalar field vanishes for
these solutions. One more transformation of the radial coor-
dinate, R=h20"1 " or explicitly, R=[(k?—1)p+2M (k?
+1)1¥0=1) brings the gravitational and Maxwell fields to

m=2M u\(K2+1),

~, dR?
g=—fdr+——+R?dO},

. 2m Q?
with f=\— + ,
R n(n—1)R*"?
(5.19
Q -~
F=ﬁd7/\dR. (5.1@

Herem and Q are given by Eq(5.14, and7 is defined by
Eqg. (5.13. This is the higher dimensional and topological
generalization of the standard Reissnerdgtrom solution
[15,6].
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As we already repeatedly mentioned, the ck&e 1 re-  According to the above analysis, this solution has no mass
quires special analysis. Fef=1 andu=*1, in the case of and electric charge, see E.14), but the scalar charge is
the spherical symmetryA(=1), we find from Eq.(5.5 a nontrivial. Such a configuration represents a higher dimen-
higher dimensional generalization of the Bertotti-Robinsonsional generalization of the static Roberts solufiaf]. Re-
solution[20]. It is described by the constant electromagneticcently an interesting studi22] of nonstatic extensions of the
field F=(4M) 1yn/(n—1)d7/\dp and the metric Roberts solution revealed, in any dimensignthe continu-

—2ln— ously self-similar solutions which describe collapse of scalar
9= (p*~4M%)d7*+ (4M) " EOD) field with critical behavior. P
dp? ) As is well known, topological black holes with nonspheri-
X (n—1)%(p?—aM?) +dQj (5.17  cal horizons do not exist under the assumption of asymptoti-
cal flatness and positivity of matter energy. A possible way
of a direct product of the two-dimensional de Sitter spaceto obtain topological black holes is to replace the asymptotic
time and ann-sphere. Such a configuration is everywhereflatness condition by an asymptotiant)—de Sitter condi-
regular. The situation is however more complicated whertion. The nontrivial cosmological constant is needed then,
k?=1 but u# =1. Then the electromagnetic field and the see[2,3]. Our new solutions witth =—1 are no black holes
metric are only approaching the constant Bertotti-Robinsoror all values of the parameters. The=1 family contains
configuration(5.17) in the limit of larger —cc. But both the  higher-dimensional black hole configurations= 1) with
curvature and the electromagnetic invariants have singularbanishing scalar field. The?=1 configurations form a sub-
ties atp=*2M and at finite values op for whichh=0.  ¢|ass of non-asymptotically flat solutions which generalize
This is a direct consequence of the presence of the nontrivighe Bertotti-Robinson metrics. As further evidence for the
scalar field. Such solutions can be called higher dimensionajajidity of the no-hair conjecture we find that the nontrivial
asymptotically Bertotti-Robinson spacetimes. scalar field prevents the formation of horizons, and the rel-

Another special case which deserves being mentioned, isyant solution always contains naked singularities.
w=0. Then from Eqs(5.9), (5.9 one findsf=(k?—1)?
and h=(k?—1)%p%(1—y?) (thus one has to tak&’+1),

and the metric reduces fdenotingpy,=2M (k*—1)] ACKNOWLEDGMENTS
(PP pp) =21
g=—dr?+ dp? The authors are grateful to TUBITAK for the support of
(n—1)2 this research. Y.N.O. is also grateful to the Department of
~ 1) a2 Physics, Middle East Technical University, for the warm
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