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Massless scalar fields and topological black holes
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Department of Physics, Middle East Technical University, 06531 Ankara, Turkey

~Received 27 September 1999; published 24 March 2000!

The exact static solutions in the higher dimensional Einstein-Maxwell-Klein-Gordon theory are investigated.
With the help of the methods developed for the effective dilaton type gauge gravity models in two dimensions,
we find new spherically and hyperbolically symmetric solutions which generalize the four dimensional con-
figurations of Dereli and Eris¸. We show that, like in four dimensions, the nontrivial scalar field yields, in
general, a naked singularity. The new solutions are compared with the higher dimensional Brans-Dicke black
hole type solutions.

PACS number~s!: 04.50.1h, 03.50.Kk, 04.20.Jb
tra
za
na
le
th
d
n
o

ia
a
s

ac
al

n-
in

na

al
a

ss
s
o
it
l

m
a-

ue
in
cl

a

the

s

n
n

a-
-

i-

ime

-

ta
I. INTRODUCTION

The study of exact solutions remains one of the cen
issues of Einstein’s gravitational theory and its generali
tions. Both the higher-dimensional and lower-dimensio
gravity models~see, e.g.,@1#! have attracted considerab
attention recently. This interest was partly motivated by
idea that the geometrical structures not confined to four
mensions may be helpful in understanding four-dimensio
physics, and partly was due to the development
~super!unification approaches.

Topological black holes possess horizons with nontriv
topology. They naturally arise in a number of gravitation
models@2–5# ~in particular, as black strings, black brane
etc.! and have rather different properties from the usual bl
holes with spherical horizons. Higher dimensional gener
zations of these objects were considered recently in@6,7#.

As is well known, the nontrivial scalar field may, in ge
eral, destroy a horizon and produce a naked singularity
stead. This fact, first noticed in four dimensions, cf.@8#, was
later confirmed also for higher dimensions@9,10#, although
for certain types of dilaton couplings the higher-dimensio
black holes with scalar fields do exist@11,12#. For a compre-
hensive recent review see@13#.

It seems interesting to consider Einstein’s gravity with
the three above mentioned features combined: i.e., in an
bitrary dimensional spacetime, with a scalar field, and po
bly with nontrivial topology of horizons. This problem i
studied in the present paper. Technically, we use the meth
developed previously for the two-dimensional gauge grav
models @17,18#. For this purpose, in Sec. II, the origina
problem is reduced from (d1n) dimensions to an effective
d-dimensional model by means of the Kaluza-Klein sche
with an ‘‘internal’’ n-dimensional space of constant curv
ture ~positive, negative, or zero!. Then, in Sec. III, the case
d52 is analyzed in detail with the help of the techniq
developed in@17,18#. The new exact solutions are derived
Sec. IV, and we discuss their properties and make con
sions in Sec. V.

*On leave from Department of Theoretical Physics, Moscow S
University, 117234 Moscow, Russia.
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II. KALUZA-KLEIN SCHEME

Let us consider the Kaluza-Klein reduction of
(d1n)-dimensional manifold to the physicald-dimensional
Riemannian spacetimeMd with an n-dimensional internal
space of constant curvature. Denote the components of
higher dimensional curvature two-formR AB with respect to
a local orthonormal frameEA . The dual coframe one-form
are denotedqA, and the indices runA,B, . . . 50,1, . . . ,d
1n21. The general Kaluza-Klein reduction of a
(d1n)-dimensional manifold with a compactification on a
n-torus involvesn 1-formsAa andn2 scalar fieldsFb

a . Here
we will consider a simplified scheme without the Kaluz
Klein 1-forms ~gauge fields!. Then the consistent decompo
sition of the metric reads

g
~d1n!

5 g
~d!

1e2(4/n)F g
~n!

. ~2.1!

HereF is the Kaluza-Klein scalar field~only one scalar sur-
vives in absence ofAa) which depends only on the coord
nates ofMd, and

g
~d!

5gabqa
^ qb, ~2.2!

g
~n!

5gabq
a

^ qb, ~2.3!

describe, respectively, the metric of the physical spacet
@with gab5diag(21,1, . . . ,1) as ad-dimensional Minkowski
metric# and the internal space@with gab5dab# of a constant
curvature Rab52lqa`qb. The constantl511 for an
n-sphere of a unit radius,l50 for flat space~e.g., hyper-
plane, cylinder orn-torus!, and l521 for a hyperbolic
space.

The ~local frame! indices clearly run: a,b, . . .
50,1, . . . ,d21, anda,b, . . .51, . . . ,n.

The Einstein-Maxwell-Klein-Gordon theory with a cos
mological term ind1n dimensions reads

L52
1

2
R AB`hAB2

1

2
F`#F

2
1

2
~df`#df1m2f#f!2Lh. ~2.4!te
©2000 The American Physical Society15-1
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HereF5dA is the Maxwell field strength two-form andf is
the scalar field. We are using the general notations and
ventions of @16#. In particular, the Trautman’sh-basis of
exterior forms is defined by the Hodge duals of the produ
of coframe one-formsqA: given the volume (d1n)-form h,
one hashA5#qA5EAch, hAB5#(qA`qB)5EAchB , etc.
Same notation is used for the lower-dimensional counterp
in Md.

We will consider a massless Klein-Gordon field, so th
m250.

Assuming that the Maxwell and scalar fields are indep
dent of the internal space coordinates, we straightforwa
obtain from Eq.~2.4! a dimensionally reduced Lagrangian

L5e22FS 2
1

2
Rab`hab12

n21

n
dF`* dF

1
1

2
R
~n!

e(4/n)Fh2
1

2
F`* F2

1

2
df`* df2Lh D .

~2.5!

Here R
(n)

5ln(n21) is the curvature scalar of the intern
space, and from now onh denotes the volumed-form and*
is thed-dimensional Hodge operator onMd.

It seems worthwhile to note that Kaluza-Klein reducti
from (d1n) dimensions in the limit ofn→` yields exactly
the low-energy string model in an arbitrary dimensiond @23#.

III. CASE OF dÄ2: EFFECTIVE
TWO-DIMENSIONAL THEORY

Let us putd52. The above compactification obvious
describes the general (21n)-dimensional metric configura
tions with spherical (l51), plane (l50) and ‘‘hyperboloi-
dal’’ ( l521) symmetry. The reduced system~2.5! gives
the dynamics of the ‘‘radial’’ variables in terms of a dilato
type gravity theory in two dimensions.

Recently there was an increasing interest in the so-ca
topological black holes which are defined as solutions
Einstein field equations forl50,21.

We will look for the exact solutions of the Einstein
Maxwell-scalar field equations using the methods develo
for the general two-dimensional Poincare´ gauge gravity@17#,
see the review@18# which contains also a list of references
other approaches. In particular, as it is demonstrated in@18#,
any two-dimensional dilaton type model with a Lagrangi
h@F(F)R̃1G(F)(]aF)21U(F)# can be recasted into
form of an effective theory in the Riemann-Cartan spa
time, and the gravitational field equations then can
straightforwardly integrated. The key role in this approach
played by the two-dimensional torsion trace one-formT
which, together with the Hodge dual* T, provides a natura
coframe basis in the spacetime.

For the Lagrangian~2.5! we have
08401
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F~F!5
1

2
e22F, G~F!52S n21

n De22F,

U~F!5
l

2
n~n21!e22„(n22)/n…F. ~3.1!

Correspondingly, one finds the Lagrangian of the equival
Einstein-Cartan theory:

LEC52
1

2
j~F!Ta`* Ta2

1

2
v~F!Rabhab1U~F!h,

~3.2!

where

v5e22F, j5S n

n21De22F. ~3.3!

Here Ta is the torsion two-form and the curvature is al
constructed from the Lorentz connection with torsion. In tw
dimensions, the Hodge dualta5* Ta is a ~covector-valued!
scalar. The torsion trace one-formTªeacTa52taha to-
gether with* T form a basis of the cotangent space wh
t2
ªtata is non-zero. As a consequence, the two-me

arises as

g
~2!

52~q0!21~q1!25
1

2t2 @~T!22~* T!2#. ~3.4!

@Note thatt2 is a negative quantity.# The gravitational field
equations, which arise from the variations of the action w
respect to the coframe and connection one-forms~Palatini
principle!, after some rearrangements can be written as

d~j2t2!5~j2t222jU!T12jS, ~3.5!

d~j* T!52Uh1qa`Sa , ~3.6!

22S n21

n DdF5T. ~3.7!

HereSªtaSa , and as usual the source is represented by
energy-momentum one form which is obtained as a va
tional derivative of the matter Lagrangian@second line in Eq.
~2.5!# with respect to the coframe:

Sa52e22FLha1
1

2
e22F~eacF !* F

1
1

2
e22F@~eacdf!* df1df~eac* df!#. ~3.8!

From Eqs.~3.4! and ~3.7! we conclude thatF can be taken
as a localspatialcoordinate, and one can construct a seco
leg of the coframe as

j* T5Bdt, ~3.9!

wheret is the localtimecoordinate, andB5B(t,F) is some
yet unknown function.
5-2
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The Maxwell equationd(e22F* F)50 and the Klein-
Gordon equationd(e22F* df)50 are easily integrated
yielding

* F5Qe2F, ~3.10!

Bf85c0 , ~3.11!
er
t
n

o
nt
e

b
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where Q and c0 are integration constants. Hereafter t
prime denotes the derivative with respect toF.

Substituting Eqs.~3.9! and ~3.10!, ~3.11! into Eq. ~3.8!,
and subsequently into Eqs.~3.5!, ~3.6!, one finds a system o
two differential equations for the unknown functions (j2t2)
andB:
~j2t2!8522S n21

n D j2t212ln~n21!e24„(n21)/n…F24Le24F22Q21
c0

2

2

j2t2

B2 , ~3.12!

~B2!8

2B2
5

2ln~n21!e24„(n21)/n…F24Le24F22Q2

j2t2
. ~3.13!
ar
m-

ur

ar

e

It seems worthwhile to note that although most of the int
mediate derivations were, strictly speaking, inapplicable
the case ofn51, the final system is meaningful also whe
n51, yielding correct solutions.

Consider at first the casen52 and l51. Then j
52e22F and the system~3.12!, ~3.13! becomes

d~j2t2!

dF
52j2t212j2Lj222Q21

c0
2

2

j2t2

B2 , ~3.14!

1

2B2

dB2

dF
5

2j2Lj222Q2

j2t2 . ~3.15!

All the nÞ2 solutions can be generated from the solutions
Eqs. ~3.14!, ~3.15! for the vanishing cosmological consta
L50. Indeed, in the general case let us introduce the n
rescaled, variables and constants:

F̃52S n21

n DF⇒ j̃52e22F̃52e24„(n21)/n…F,

~3.16!

~j2t 2̃!5
1

l S 2

nD 2

~j2t2!, B̃25S 2

nD 2

B2, ~3.17!

Q̃25
2

n~n21!

Q2

l
, c̃25

2

n~n21!
c0

2 .

~3.18!

Clearly, we assume thatlÞ0, the casel50 will be consid-
ered separately. Note that the quantities with tilde arenot
necessarily positive and this is an essential difference
tween the cases ofl561. Substituting Eqs.~3.16!–~3.18!
into Eqs.~3.12!, ~3.13!, we get

d~j2t 2̃!

dF̃
52~j2t 2̃!12j̃22Q̃21

c̃2

2

~j2t 2̃!

B̃2
, ~3.19!
-
o

f

w,

e-

1

2B̃2

dB̃2

dF̃
5

2j̃22Q̃2

~j2 t̃ 2̃!
. ~3.20!

Thus, all the solutions for the Einstein-Maxwell-scal
system in arbitrary dimension that are either spherically sy
metric (l51) or ‘‘hyperbolically’’ symmetric (l521) are
generated from the spherically symmetric solutions in fo
dimensions by reversing the transformation~3.16!–~3.18!.

IV. EXACT SOLUTIONS FOR ARBITRARY
DIMENSION AND l

The general solution for then52, l51, i.e., for spheri-
cally symmetric four-dimensional Einstein-Maxwell-scal
field equations is well known@19#. In our formalism, it reads
as follows:

j̃52h, ~j2t 2̃!52
1

gS dh

dr D
2

, B̃252~j2t 2̃! f , ~4.1!

where the functionsf 5 f (r ),g5g(r ),h5h(r ) are given by

f 5
~x221!2

D 2
, g5D 2, h5D 2r 2. ~4.2!

Here the function

D~x!ª
k2~x11!2m2~x21!2m

~x221!m21
~4.3!

depends onr via the auxiliary variable

x:52
M

r
, ~4.4!

and M, k2, and m are arbitrary integration constants. Th
main properties of the functionD(x) can be seen from the
differential identities it satisfies
5-3
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2
d

dx S 1

D
dD
dx D1S 1

D
dD
dx D 2

52
16m2k2

D 2 2
4~12m2!

~x221!2 ,

~4.5!

S 1

D
dD
dx D 2

1
4x

x221S 1

x
2

1

D
dD
dx D5

16m2k2

D 2 2
4~12m2!

~x221!2 .

~4.6!

Using Eqs.~4.1!–~4.6! in Eqs.~3.19!, ~3.20!, we find ex-
plicitly the integration constants for a general solution w
an arbitraryn andl:

Q2516n~n21!M2m2k2l, ~4.7!

c0
2516n~n21!M2~12m2!. ~4.8!

Substituting Eq.~4.1! into Eqs.~3.7!, ~3.9!, ~3.4!, and~2.1!,
one obtains the metric

g52l f dt21
gh2„(n22)/(n21)…

l~n21!2
dr21h1/(n21) dVl

2 ,

~4.9!

wheredVl
2 is the line element on then-dimensional space o

constant curvaturel.
It is worthwhile to note that Eq.~4.7! demands that for the

spherical symmetry (l51) we takek2>0, whereas for the
‘‘hyperboloidal’’ symmetry (l521) one should takek2

<0.
The scalar field is obtained after some algebra from

first integral~3.11!,

f5A~12m2!S n

n21D logUx21

x11U. ~4.10!

As for the Maxwell field, the electromagnetic potential,A
5A0 dt, is obtained from Eq.~3.10! in the form

A052Alk2S n

n21D 1

12k2

~x11!2m2~x21!2m

k2~x11!2m2~x21!2m ,

~4.11!

for the case whenk2Þ1. Whenk251, we have
08401
e

A052Alk2S n

n21D ~x11!2m

~x11!2m2~x21!2m . ~4.12!

However, both potentials give rise to the same Maxwell fie
strength two-form

F5dA54MmAlk2S n

n21D x221

h
dt`dr, ~4.13!

which is valid for all possible values ofk2. A straightforward

check shows that #F52Q h
(n)

, where h
(n)

is the volume
n-form of the internal space. Thus indeed the integrat
constantQ is the electric charge of the solution.

For completeness, let us give the dilaton field explicitl

F52
1

4 S n

n21D logh. ~4.14!

V. DISCUSSION

It is instructive to compare our solutions to the highe
dimensional black holes in the Brans-Dicke-Maxwell theo
The corresponding Lagrangian can be written~with the help
of a suitable conformal transformation and field redefi
tions! as

L52
1

2
R AB`hAB2

1

2
e2bfF`#F2

1

2
df`#df,

~5.1!

with some constantb. When b50, this reduces to the La
grangian~2.4!. The direct investigation shows that the co
dition bÞ0 is crucial for the existence of nontrivial blac
hole solutions: the exact configurations were found
@11,14#. They, however, cannot be used for obtaining t
solutions of Eq.~2.4! from that of Eq.~5.1! by taking the
limit b→0 in these configurations. The resulting solutio
have trivial ~constant! scalar field. In contrast, our solution
are characterized by the nontrivial scalar field, in genera

Rather lengthy calculation yields the curvature quadra
invariant:
RAB`#R AB5S l~n21!2

h1/(n21) D 2

h
~n12!H 2n

~n21!2 S m1~m21!
4x2

~x221!22
16m2k2x2

D 2 2mPD 2

1
2n

~n21!2 S m21m~12m!
~x211!2

~x221!22
16m2k2x2

D 2 2mPD 2

12X2S 2n21

n21 D 16m2k2x2

D 2 1S n

n21D Fm21m~12m!
~x211!2

~x221!2 2mPGC2

1
n

~n21!3 S 2m21~m21!2
~x211!2

~x221!21
16m2k2x2

D 2 12mPD 2J , ~5.2!
5-4
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where we have denoted

P5
~x211!

D Fk2S x11

x21D m21

2S x21

x11D m21G . ~5.3!

This shows that a generic solution has curvature singular
at x561 andD50. The metric functionsf ,g,h either van-
ish or diverge at these points.

In order to analyze the physical meaning of the const
parametersm, M , and k2, it is convenient to replace th
radial coordinater by a new variable

r5M S x1
1

xD . ~5.4!

Then the solution is rewritten in the form:

g52l f dt21
h2„(n22)/(n21)…

l~n21!2f
dr21h1/(n21) dVl

2 ,

~5.5!

F54MmAlk2S n

n21D 1

h
dt`dr, ~5.6!

f5A~12m2!

4 S n

n21D logU12y

11yU. ~5.7!

Here f 5 f (y) andh5h(y) are given by

f 5
~12y2!m

@k2~11y!m2~12y!m#2
, ~5.8!

h5r2~12y2!12m@k2~11y!m2~12y!m#2,
~5.9!

in terms of the variabley52M /r.
Unfortunately, whenn.2 it is impossible to find a trans

formation, in a closed analytic form, to the Schwarzsch
type coordinates. The above transformation~5.4! brings the
metric most closely to the Schwarzschild form and it is su
able for the analysis of asymptotic behavior of the met
Expanding the functions~5.8!, ~5.9! and Eqs.~5.5!, ~5.6! in
the asymptotic spatial region in powers ofy ~i.e., r21), we
find for the metric

g'2lS 12
4Mm~k211!

r̃n21 D dt̃2

1lS 11
4Mm~k211!

r̃n21 D dr̃21 r̃2 dVl
2 , ~5.10!

and for the Maxwell and scalar fields
08401
s

t

-
.

F'
4MmAlk2n~n21!

r̃n
dt̃`dr̃, ~5.11!

f'2A~12m2!S n

n21D2M ~k221!

r̃n21
.

~5.12!

Here we accompanied the expansion by the change of
asymptotic coordinates

t̃5
t

~k221!
, r̃5@~k221!r#1/(n21). ~5.13!

Recall thatr̃12n is a fundamental solution of the Laplac
equation in a (11n)-dimensional space@we consider the
(21n)-dimensional spacetime#. Equations ~5.10!, ~5.11!
demonstrate that total massm and electric chargeQ are con-
structed fromm,M ,k2 as follows:

m52Mml~k211!, Q54MmAlk2n~n21!.
~5.14!

The latter relation is in complete agreement with Eq.~4.7!.
Note that for the spherical symmetry the electric charge
the mass always satisfy the inequalityQ/m<An(n21).
Equality corresponds to the extremal charged soluti
For obvious reasons, the combinations522M (k2

21)A(12m2)@n/(n21)# can be called a scalar charge
the solution. This interpretation conforms with Eq.~4.8!.

As one notices, the above identifications of integrati
constants are only valid whenk2Þ1. Besides that, there ar
several other special cases to which our general solut
reduce for particular values of the constant parametersm and
k2. These cases should be considered separately. In par
lar, from Eqs.~5.5!–~5.9! it is straightforward to see that th
choicem561 yields the charged black hole configuratio
which extend the Reissner-No¨rdstrom solution to a
(21n)-dimensional spacetime. The scalar field vanishes
these solutions. One more transformation of the radial co
dinate, R5h1/2(n21), or explicitly, R5@(k221)r12M (k2

11)#1/(n21), brings the gravitational and Maxwell fields to

g52 f dt̃21
dR2

f
1R2 dVl

2 ,

with f 5l2
2m

Rn21
1

Q2

n~n21!R2n22
,

~5.15!

F5
Q

Rn dt̃`dR. ~5.16!

Herem andQ are given by Eq.~5.14!, and t̃ is defined by
Eq. ~5.13!. This is the higher dimensional and topologic
generalization of the standard Reissner-No¨rdstrom solution
@15,6#.
5-5
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As we already repeatedly mentioned, the casek251 re-
quires special analysis. Fork251 andm561, in the case of
the spherical symmetry (l51), we find from Eq.~5.5! a
higher dimensional generalization of the Bertotti-Robins
solution@20#. It is described by the constant electromagne
field F5(4M )21An/(n21)dt`dr and the metric

g52~r224M2!dt21~4M !2„2/(n21)…

3S dr2

~n21!2~r224M2!
1dVl

2D ~5.17!

of a direct product of the two-dimensional de Sitter spa
time and ann-sphere. Such a configuration is everywhe
regular. The situation is however more complicated wh
k251 but mÞ61. Then the electromagnetic field and th
metric are only approaching the constant Bertotti-Robin
configuration~5.17! in the limit of larger→`. But both the
curvature and the electromagnetic invariants have singu
ties atr562M and at finite values ofr for which h50.
This is a direct consequence of the presence of the nontr
scalar field. Such solutions can be called higher dimensio
asymptotically Bertotti-Robinson spacetimes.

Another special case which deserves being mentione
m50. Then from Eqs.~5.8!, ~5.9! one findsf 5(k221)22

and h5(k221)2r2(12y2) ~thus one has to takek2Þ1),
and the metric reduces to@denotingr052M (k221)#

g52dt̃21
~ r̃22r0

2!2„(n22)/(n21)…

~n21!2
dr̃2

1~ r̃22r0
2!1/(n21)dVl

2 . ~5.18!
-

al

tt

08401
n
c
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According to the above analysis, this solution has no m
and electric charge, see Eq.~5.14!, but the scalar charge i
nontrivial. Such a configuration represents a higher dim
sional generalization of the static Roberts solution@21#. Re-
cently an interesting study@22# of nonstatic extensions of th
Roberts solution revealed, in any dimensionn, the continu-
ously self-similar solutions which describe collapse of sca
field with critical behavior.

As is well known, topological black holes with nonsphe
cal horizons do not exist under the assumption of asympt
cal flatness and positivity of matter energy. A possible w
to obtain topological black holes is to replace the asympto
flatness condition by an asymptotic~anti!–de Sitter condi-
tion. The nontrivial cosmological constant is needed th
see@2,3#. Our new solutions withl521 are no black holes
for all values of the parameters. Thel51 family contains
higher-dimensional black hole configurations (m561) with
vanishing scalar field. Thek251 configurations form a sub
class of non-asymptotically flat solutions which general
the Bertotti-Robinson metrics. As further evidence for t
validity of the no-hair conjecture we find that the nontrivi
scalar field prevents the formation of horizons, and the
evant solution always contains naked singularities.
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