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Self-force on a static scalar test charge outside a Schwarzschild black hole

Alan G. Wiseman*
Enrico Fermi Institute, University of Chicago, 5640 Ellis Avenue, Chicago, Illinois 60637-1433

~Received 8 July 1998; published 24 March 2000!

The finite part of the self-force on a static scalar test charge outside a Schwarzschild black hole is zero. By
direct construction of Hadamard’s elementary solution, we obtain a closed-form expression for the minimally
coupled scalar field produced by a test-charge held fixed in Schwarzschild spacetime. Using the closed-form
expression, we compute the necessary external force required to hold the charge stationary. Although the
energy associated with the scalar field contributes to the renormalized mass of the particle~and thereby its
weight!, we find there is no additional self-force acting on the charge. This result is unlike the analogous
electrostatic result, where, after a similar mass renormalization, there remains a finite repulsive self-force
acting on a static electric test-charge outside a Schwarzschild black hole. We confirm our force calculation
using Carter’s mass-variation theorem for black holes. The primary motivation for this calculation is to develop
techniques and formalism for computing all forces—dissipative and non-dissipative—acting on charges and
masses moving in a black-hole spacetime. In the Appendix we recap the derivation of the closed-form elec-
trostatic potential. We also show how the closed-form expressions for the fields are related to the infinite series
solutions.

PACS number~s!: 04.40.Nr, 04.70.Bw, 97.60.Lf
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I. INTRODUCTION

In order to gain deeper quantitative understanding
highly relativistic binary star systems spiraling toward co
lescence, a number of authors have used perturbation th
to study the motion of test-particles orbiting black hole
~See, e.g.,@1–4#.! The basic idea is to solve the linearize
field equations with out-going radiation boundary conditio
on a Schwarzschild or Kerr black-hole background. T
source of the perturbing field is generally chosen to be a
particle~endowed with a small scalar charge, electric char
or mass charge! moving on a bound geodesic orbit, e.g.,
circle. Once the perturbing field~scalar, electromagnetic, o
gravitational! is calculated, the energy radiated per orbit~i.e.,
the time-averaged energy flux! can be computed by a pe
forming a surface integral over a distant sphere surround
the system. The rate energy carried away by the radiatio
then equated to a loss of orbital energy of the particle; t
one can compute the rate of orbital decay.1 In effect, this
energy-balance argument gives thetime-averagedradiation-
reaction force associated with imposing out-going radiat
boundary conditions@6#. This method has been used succe
fully to compute the inspiral rate of coalescing binaries
very high relativistic order, and it has been used to ch
analogous post-Newtonian calculation of the inspiral@7#.
These perturbation calculations also add insight into effe
such as wave ‘‘tails.’’~See@1# and @8# for post-Newtonian
and perturbation-theory discussions of tails.! However, in
spite of the success of the perturbation approach, the met
as it has been applied, has a drawback: it has only been

*Email address: agw@gravity.phys.uwm.edu
1Finding a gravitational-wave signal in noisy detector data

quires an accurate prediction of the orbital decay rate. See Th
@5#.
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to computetime-averaged, dissipativeforces on the particle.
The time-averaging is problematic for two reasons:~1!

During the late stages of inspiral the orbit will be decayi
swiftly, and there will not be many orbits left before the fin
splat to average over.~2! In the curved spacetime near
black hole, the self-forces experienced by the particle are
instantaneous forces. Rather these forces arise becaus
fields produced by the particle at one instant travel aw
from the particle, encounter the curvature of the spaceti
and then scatter back and interact with the particle at a l
time. ~See DeWitt and DeWitt@9# for an illuminating discus-
sion of this point.! Thus the fields produced when the partic
moves through, say, periastron, and suffers the maxim
coordinate acceleration, will not come back to interact w
the particle until later in the orbit when the coordinate acc
eration will be more gentle. In other words, the state of m
tion that produced the fields will not be the state of moti
affected by the fields. Although it is unlikely that taking int
account the non-local nature of the self-forces will quali
tively change any of the results found by the ‘‘averaging
technique, the issue has never been rigorously addre
with perturbation theory.

In addition to the dissipative forces, the perturbing fiel
will produce other non-dissipative—conservative—se
forces on the particle, and these forces have not been stu
by the conventional perturbation-theory approach@1–4#. ~As
DeWitt and DeWitt@9# have demonstrated, these forces c
be computed using a different perturbative approach.! For
example, suppose we have an electric charge in a circ
orbit around a Schwarzschild black hole. Even if we negl
the dissipative effects of the radiation reaction, which caus
secular decay of the orbit, the charged particle still does
travel on an exact geodesic of the spacetime. The par
will feel an additional conservative force—proportional
square of the charge—that pushes it slightly off the geode

-
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ALAN G. WISEMAN PHYSICAL REVIEW D 61 084014
As this force is not radiative in nature, the portion of the fie
that produces it is explicitly discarded in the convention
perturbation approach because it falls off faster thanO@1/r #,
and therefore any effect it might have on the motion
missed by a technique that uses a surface integral on a di
sphere to determine the back-reaction effect.~2! Another
perturbation calculation by Gal’tsov@10# has used the ‘‘half-
retarded–minus–half-advanced’’ Green’s function to fi
the radiation reaction forces. But these calculations also m
the conservative~i.e., time symmetric! parts of the force, be-
cause they simply cancel when the two parts of the Gree
function are subtracted. In other words, the Gal’tsov res
differs from the DeWitt-DeWitt@9# result in that it misses the
conservative part of the force.

We can try~but as we will see, fail! to understand the
origin of the conservative forces by considering a static e
tric test-charge@11# held fixed by some non-conducting m
chanical struts outside a Schwarzschild black hole. T
charge experiences a self-force~which is clearly not a
radiation-reaction force in any conventional sense! propor-
tional to the square of the electric charge. A physical ori
of such a force might be naively described as follows:
surface of the uncharged black hole will act as a conduc
and therefore the presence of the external charge will ind
a dipolar charge distribution on the horizon@12#. The mag-
nitude of the induced dipole moment will depend on the s
of the dipole~in this case, the massM of the Schwarzschild
black hole! and the magnitudee of the external charge. Thi
leads one to believe that the charge will experience an att
tive dipolar force scaling asbs

25 , wherebs is the Schwarzs-
child radial coordinate of the charge. This force will be
addition to the natural attractive force~the weight of the
particle! which, according to Newton, should scale asbs

22 .
Thus our naive suspicion is that, in addition to the weig
the strut holding the charge fixed will have to counteract
attractive self-force of the form

F (naive);
e2M

bs
5 . ~1.1!

Smith and Will ~SW! @13# have calculated the force re
quired to hold an electric charge fixed outside a Schwa
child black hole. They find the total force exerted by t
mechanical strut holding the charge fixed must be

F (strut)5
Mm ren

bs
2 S 12

2M

bs
D 21/2

2
e2M

bs
3 . ~1.2!

Here m ren is the renormalized mass of the test-charge.
use units in whichG5c51. As expected, the first term
scales asO@bs

22#, and shows that the strut must support t
weight of the particle; such a term would be present whet
or not the particle is electrically charged. The second te
shows—contrary to the ‘‘physical intuition’’ presente
above— that the black hole tries torepel the charged particle
08401
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and the repulsion scales asO@bs
23#.2 SW show for almost

any choice of variables in Eq.~1.2! the first term dominates
and the second term only lightens the load a small amou

The fact that our naive physical intuition led to both th
wrong direction and the wrong scaling of the force sugge
such calculations should be carried out in detail before c
clusions are drawn. In this paper we carry out the analog
calculation for a scalar charge in the presence of a Schwa
child black hole, i.e., we compute the force required to h
a scalar charge fixed. The primary result of this paper is
show that, although the scalar field does contribute to
renormalized mass, there is no force analogous to the se
term in Eq.~1.2! for a scalar charged particle. The prima
motivation for this calculation is much broader: to begin
develop techniques and formalism for tackling a sequenc
problems, namely, calculating all the forces, linear in t
fields ~dissipative and non-dissipative!, that act on test
charges and masses moving in the proximity of a black h

As the implicit underlying motivation for this work is
calculating the forces onmovingcharges, we can ask: doe
our no–self-force–on–a–static–scalar–charge result carr
over to the case of a moving charge? Not directly. Howev
we can gain some intuition about extending our static res
to dynamic results for scalar charges by examining the st
and dynamic cases for electric charges. Although the
force calculation is only valid in the static limit, DeWitt an
DeWitt @9# show that when the electric charge is in slo
motion around the black hole, in addition to the conventio
radiation reaction force, there is a conservative repuls
force acting on the charge. This force is independent of
velocity, and clearly corresponds to the force found in t
static calculation, i.e., the second term in Eq.~1.2!.3 There-
fore, it seems reasonable to expect a correspondence bet
the static case and the slow-motion case for scalar char
For scalar charges, this means the absence of a self-forc
a static charge should imply there is no conservative~repul-
sive or attractive! force on a slowly orbiting charge. This
however, does not rule out the presence of a higher-or
conservative force that scales as, say, thesquareof the or-
bital velocity. ~This issue is under vigorous investigatio
@16#.! As a consequence, although both electric and sc
charges will spiral inward due to radiation reaction force
scalar charges will not suffer the same persistent, veloc
independent, conservative force trying to hold them off t
geodesic.

As a matter of principle, many of the delicate issues
radiation reaction forces in curved spacetime we will
dealing with in this paper have already been addresse

2Although the second term in Eq.~1.2! appears only to be accurat
to leading order inM, the result is exact for static charges; th
appearance is only a beautiful artifact of Schwarzschild coordina
Switching to harmonic or isotropic coordinates@14,15# makes the
second term appear as an infinite series inM. See Eq.~4.2b!.

3DeWitt and DeWitt only compute the force to leading order
the mass of the hole and their result appears to agree exactly
the second term in Eq.~1.2!. However, the agreement is really on
at leading order inM. See the previous footnote.
4-2
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SELF-FORCE ON A STATIC SCALAR TEST CHARGE . . . PHYSICAL REVIEW D 61 084014
quite a general context by DeWitt and Brehme@17# ~using a
world-tube calculation!, by Quinn and Wald@18# ~using an
axiomatic approach!, and Mino, Sasaki and Tanaka@19# ~us-
ing matched asymptotic expansions!. However, in practice,
the results presented in these papers have never been ap
to give even simple results like Eq.~1.2!, nor did they work
out the general expressions for forces on scalar charges

We begin in Sec. II by calculating the scalar field pr
duced by a static scalar charge in Schwarzschild spacet
The standard method for solving the field equations o
black-hole background is to use separation of variables
decompose the solution into Fourier, radial and angu
modes~spherical harmonics!. ~See Appendix B for an ex
ample.! The result is an infinite-series solution for the fiel
This method works well for computing the far-zone prop
ties of the field~e.g., the energy flux! where the field is weak
and can be accurately described by the first few terms in
series. However, when computing a force, such as Eq.~1.2!
~or its scalar analogue, as we are doing here!, the behavior of
the field on a distant sphere will not suffice; we need to kn
the detailed behavior of the field up close to the particle.
this it will not be sufficient to describe the field by a fe
multipoles. Describing the singular nature of the field ne
the charge requires an infinite number of multipoles@20,21#;
therefore it is not surprising that SW did not use the stand
multipolar expansion of the electrostatic field~e.g.,@22,23#!
in their force calculation. Rather, when embarking on th
electrostatic force calculation SW comment: ‘‘ . . . an exact
calculation is made possible by the fortuitous existence o
previously discovered analytic solution to the@static# curved-
space Maxwell’s equations.’’ The exact solution to whi
they refer is an old result due to Copson and modified
Linet @24# which gives a closed-form expression for the ele
trostatic potential of a fixed charge residing in Schwarzsch
spacetime.@See Eq.~B5!.# The Copson-Linet formula has th
advantage that the singular nature of the field near the e
tric charge is manifest, thus allowing simple calculations
the close proximity of the particle. We begin by constructi
the scalar-field analogue of the Copson-Linet result:
closed-form expression for the field of a fixed scalar cha
in Schwarzschild spacetime. Our derivation is similar
Copson’s, and is based on constructing the Hadamard
ementary solution’’@25# of the scalar-static field equation
As in the Copson-Linet electrostatic solution, our soluti
will clearly show the divergent behavior of the field near t
particle. In Appendix A, we outline Copson’s derivation
the closed-form expression for the electrostatic field with
Hadamard formalism. In Appendix B, we generate some
teresting summation formulas by equating the closed-fo
solutions with the infinite series solutions@22,23#.

As a historical note, we mention that Copson@26# ob-
tained his solution for a static electric charge in a Schwa
child spacetime in 1928. This is approximately 40 years
fore the term ‘‘black hole’’ was coined@27# and researcher
began formulating theno-hair theorem. However, Copso
was probably the first to note one of the important feature
the no-hair theorem: ‘‘ . . . the potential of an electron on
the boundary sphereR5a @on the horizon# is independent of
its position on the sphere, a rather curious result.’’
08401
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Our force calculation in Sec. III closely follows the SW
calculation of the electrostatic force. We use the exact
pression for the scalar-static field found in Sec. II to comp
the stress-energy tensor and the force density in a lo
freely-falling frame near the fixed scalar charge. By integr
ing the force density over a small spherical volume of rad
ē centered on the charge~spherical in the freely-falling
frame! we compute the total force the strut must supply
hold the charge fixed. In the limit where the radius of t
spherical region of integration shrinks to zero, there rema
a formally divergent piece of the force scaling
(charge)2/ ē. This factor multiplies an acceleration that
identical to the acceleration in the first term in Eq.~1.2!;
therefore the infinite term is simply absorbed into the defi
tion of the mass of the particle, i.e., in Eq.~3.30! we define

m ren[mbare1
1

2
lim
ē→0

q2

ē
, ~1.3!

whereq is the scalar charge of the particle, andmbare is the
bare mass of the particle. In this way, the scalar charge d
contribute to the renormalized mass of the particle in exa
the same way as the electric charge contributes to the re
malized mass in Eq.~1.2!. The form of classical mass reno
malization depicted in Eq.~1.3! is seen in all calculations o
this type~e.g.,@13,28,17#!. The main conclusion of this pape
is that, after the formally infinite piece is absorbed into t
renormalized mass, there remains no scalar counterpart t
second term in Eq.~1.2!. Also in Sec. III, we verify this
answer using conservation of energy.

Neither the charge’s contribution to the renormalize
mass term or to the repulsive term in Eq.~1.2! should be
confused with the contribution to the gravitational force
the particle due the stress energy of the electric field pertu
ing the metric of the spacetime. Such a force would scale
me2. In this calculation we are explicitly ignoring correction
to the metric. See the discussion following Eq.~4.2e!.

In Sec. IV, we discuss a number of alternative metho
for solving similar problems, as well as similarities and d
ferences in the scalar-static and electrostatic results. We
collect what is known about the forces on static charg
~mass, electric and scalar! in Schwarzschild spacetime. Thi
gives a clear indication of what future research is neede

II. SOLUTION OF THE SCALAR FIELD FOR A FIXED
CHARGE IN SCHWARZSCHILD SPACETIME

In order to find the self-force acting on the scalar char
we first solve the massless scalar field equation

hV[~1/A2g!~A2ggabV,a! ,b54pr ~2.1!

in Schwarzschild spacetime. Here commas denote partial
ferentiation, Greek indices run 0 to 3, and Latin indices w
4-3
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ALAN G. WISEMAN PHYSICAL REVIEW D 61 084014
run 1 to 3.4 The sourcer for our field will be a point-like
@29# scalar charge which can be described by

r~ t,x!5qE
2`

`

~1/A2g!d4
„xa2ba~t!…dt

5
q

ut~ t !

d3
„x2b~ t !…

A2g
, ~2.2!

where ba(t) is the spacetime trajectory of the charg
body, t is the proper time measured along the pa
and ut5db0/dt5dt/dt. @Notice, *rd(proper volume)
5*rutA2gd3x5q in a frame comoving with the charge#
We will later restrict our attention to a static field and a fix
source charge atb5bẑ, but, for the present, we will leave th
time-dependence in the equations.

We use isotropic coordinates@14# to describe the
Schwarzschild geometry. The line element is

ds252
~2r 2M !2

~2r 1M !2 dt21S 11
M

2r D
4

~dx21dy21dz2!.

~2.3!

In these coordinates Eq.~2.1! can be written

Ci j Ṽ,i j ~v,x!1CjṼ, j~v,x!1CṼ~v,x!

54p~11M /2r !4r̃~v,x!, ~2.4!

where

Ci j 5diag~1,1,1!, ~2.5a!

Cj5h~r !
xj

r
5

d

dr
@ ln„12~M /2r !2

…#
xj

r
,

~2.5b!

C5v2
~11M /2r !6

~12M /2r !2 , ~2.5c!

and we have used the Fourier transform

V~ t,x!5E
2`

`

Ṽ~v,x!e2 ivtdv ~2.6!

to eliminate the time variable. We can also write Eq.~2.4! in
the more compact form

¹2Ṽ1h~r !Ṽ,r1C~r ,v!Ṽ54p~11M /2r !4r̃~v,x!,
~2.48!

4Since the Ricci scalar curvatureR vanishes in the Schwarzschil
spacetime, it would seem that including coupling to the curvat
~e.g., a conformally invariant term 1/6RV) in Eq. ~2.1! would have
no effect on our results. However, if we include coupling to t
curvature, the stress-energy that enters the force calculation@Eq.
~3.9a!# would have to be modified also. Therefore, we make
claim that our results hold for nonminimally coupled fields.
08401
,

where¹2 is the flat-space Laplacian. Our primary attenti
will be focused on the static—zero frequency—case (v5C
50), but the formalism we are developing is valid for th
‘‘Helmholtz’’-type equation in Eqs.~2.4! and (2.48). Follow-
ing Hadamard~pp. 92–107!, the elementary solution~i.e.,
the Green’s function@30#! for Eq. ~2.4! takes the form

Uelem5G21/2~U01U1G1U2G21••• !, ~2.7!

whereG is the square of the geodesic distance~in the sense
of the ‘‘metric’’ Ci j 5d i j ) from the source pointx8 to the
field point x, i.e.,

G5~x2x8!21~y2y8!21~z2z8!2. ~2.8!

Since we are working in three dimensions~an odd number of
dimensions!, there is no natural-log term (lnG) in the el-
ementary solution. TheUn’s are non-singular functions ev
erywhere outside the horizon. Recall, in isotropic coordina
@14# the horizon is atr 5M /2. The simple form ofG in Eq.
~2.8! is a consequence of the isotropic coordinates we
using; therefore the technique we are developing canno
easily extended to geometries that do not have spatially
tropic coordinates, e.g., Kerr geometry.

The formula for the leading order behavior of the series
given byHadamard~p. 94!:

U0~x,x8!5
1

AdetCi j
expH 2E

0

l

@Ci j G ,i j 1CjG , j26#
dl

4lJ ,

~2.9!

wherel is the arc length measured along the geodesic c
necting the source and field points. Lettingu denote the
angle between the two spatial vectorsx and x8 and using
Eqs.~2.5! and ~2.8! we have

U0~x,x8!5expH 2E
0

l

@h~r !~r 2r 8 cosu!#
dl

2lJ ,

~2.10a!

5expH 2E
r 8

r

h~r 9!
dr9

2 J , ~2.10b!

5A12~M /2r 8!2

12~M /2r !2
, ~2.10c!

wherer 5uxu, r 85ux8u, andr 9 is the dummy integration vari-
able overr. We have also used the geometric relations
(r 2r 8 cosu )dl5ldr.

Because we are looking for an axially symmetric solutio
we may assume theUn’s are functions of only the radia
variables@e.g., noticeU05U0(r ,r 8)#. We now substitute Eq
~2.7! into Eq. ~2.4!, use relations such asd i j G ,iG , j54G, and
collect powers ofG. The result is

e

o

4-4
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2~2U0,r1hU0!S r 22r 82

2r DG23/21 (
n50

F ~2n11!~2Un11,r

1hUn11!S r 22r 82

2r D12~2n21n21!Un11

1
1

r
~rU n! ,rr 1hUn,r1

2n21

2r
~2Un,r1hUn!

1C~r ,v!UnGGn21/250. ~2.11!

SinceUelem is a solution to the homogeneous equation
erywhere~except at the source point! the coefficients of each
power ofG must vanish independently. The first term giv
an equation forU0

2U0,r1hU050. ~2.12!

Notice that our Eq.~2.9! has already given us a particula
solution@Eq. ~2.10c!# to this equation. Setting the coefficien
of Gn21/2 to zero and using an integrating factor, we obtain
recursion relation for theUn’s

Un11~r ,r 8!

U0
5

21

~r 22r 82!n11Er 8

r ~r 922r 82!n

2n11 F ~r 9Un! ,r 9r 9
U0

2
2r 9U0,r 9Un,r 9r 9

U0
2

1~2n21!~Un /U0! ,r 9

1r 9C~r 9,v!~Un /U0!Gdr9. ~2.13!

In the integrand theUn’s are functions of the dummy inte
gration variable r 9 and the source pointr 8, i.e., Un
5Un(r 9,r 8). This recursion relation allows us to construc
series solution for the Green’s function for th
Schwarzschild-Helmholtz equation Eqs.~2.4! or ~2.48!.5

We now explicitly assume that the charge and the field
static, i.e., we assume thatv5C(r ,v)50 in Eq.~2.13!. Be-
ginning with U0 from Eq. ~2.10c! we can construct

5We can gain confidence in the recursion relation Eq.~2.13! by
applying it to the true Helmholtz equation in flat spacetime@Eq.
~2.4! with M50, but C[v2Þ0#. In this case, Eq.~2.9! givesU0

51, and the recursion relation Eq.~2.13! givesU152v2/2, U2

5v4/24, . . . , Un5(21)nv2n/(2n!). Summing the series give
the Green’s function for the Helmholtz equation

Uelem5
cos~vux2x8u!

ux2x8u
.

Now compute the inverse Fourier transform and we have

G~x,x8!5
1

8p H d@ t82~ t2ux2x8u!#
ux2x8u

1
d@ t82~ t1ux2x8u!#

ux2x8u J .

This is the half-advancedplus half-retarded Green’s function. Se
@21#, Eq. ~6.61!.
08401
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U1

U0
52

1

2

~2M !2

~4r 822M2!~4r 22M2!
[2

1

2
g, ~2.14a!

U2

U0
5

3

8

~2M !4

~4r 822M2!2~4r 22M2!2
5

3

8
g, ~2.14b!

U3

U0
52

5

16

~2M !6

~4r 822M2!3~4r 22M2!3
52

5

16
g.

~2.14c!

Substituting these into Eq.~2.7!, the pattern is immediately
clear and the summation is elementary

Uelem~x,x8!5
U0

AG
S 12

1

2
gG1

3

8
~gG!22

5

16
~gG!31••• D

~2.15a!

5
U0

AG

1

A11Gg
~2.15b!

5
1

AG

r ~4r 822M2!

r 8A~4r 822M2!~4r 22M2!14M2G
.

~2.15c!

Equation~2.15c! is a closed-form expression for the Green
function for Eq.~2.4! ~with C50!. In the limit M50 it re-
duces toux2x8u21, the Green’s function for Poisson’s equ
tion in flat space. We use Eq.~2.15c! in precisely the same
manner we would use the Green’s function for Poisso
equation: we integrate it against the source to obtain a
ticular solution to the inhomogeneous equation. In our c
the source is the static scalar test-charge held fixed at
spatial positionb, and we have

Vpart~x,b!52E F q

ut~b!A2g~b!
S 11

M

2bD 4

d3~x82b!G
3Uelem~x,x8!d3x8 ~2.16a!

52q
2b2M

2b1M

1

AG~x,b!

3
4rb

A~4b22M2!~4r 22M2!14M2G~x,b!

~2.16b!

52qAbh2M

bh1M

3
1

Ar h
222r hbh cosu1bh

22M2 sin2u
. ~2.16c!

In the last two steps we have explicitly include
the factor 1/ut(b)5A2g00(b)5(2b2M )/(2b1M )
5A(bh2M )/(bh1M ); in the last step we have converted
4-5
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ALAN G. WISEMAN PHYSICAL REVIEW D 61 084014
harmonic coordinates@14#. The leading minus sign in Eq
~2.16! is a consequence of the source term in Eq.~2.1!; our
source is ‘‘1 ’’ 4 pr and not the familiar ‘‘2 ’’ 4 pr of elec-
trostatics.~Like scalar charges attract.! As we are now deal-
ing strictly with a static solution, we have also dropped t
twiddle denoting the Fourier transform in Eq.~2.4!.

Equation~2.16! is aparticular solution to the scalar-stati
field equation, but is it the desired solution to the equatio
In other words, does it satisfy all the boundary condition
First, the field and its derivatives are well behaved outsid
and on—the horizon; thus our solution has no unphys
regions of infinite energy~save, of course, at the location o
the charge!. For r @b.M /2 we see from Eq.~2.16b!

Vpart~r→`!'2
q

r S 2b2M

2b1M D . ~2.17!

As the charge is lowered toward the horizon, the fac
(2b2M )/(2b1M ) extinguishes the field measured by
distant observer. Notice if the charge is lowered to the h
zon (b5M /2) the field completely disappears.~See, e.g.,
@31# for discussion.! Thus, it is the extinction factor—which
had its origin in the factor of 1/ut(t) in Eq. ~2.2! and has
survived throughout the calculation—that enforcesno scalar
hair on the black hole.6

Equation~2.17! is the appropriate asymptotic form of th
scalar field; therefore the particular solution Eq.~2.16! is the
desired solution which satisfies all the boundary conditio
@32,33#

V~x,b!5Vpart~x,b!. ~2.18!

Before embarking on the force calculation, we note a
markable feature of the closed-form solution we have fou
Despite the fact that every term in the Hadamard serie
divergent at the horizon@Eqs. ~2.14!#, the closed-form ex-
pression for the elementary solution is well behaved on
horizon. The easiest way to see this is with the harmon
coordinate expression Eq.~2.16c! evaluated on the horizon
(r h5M )

VHorizon52
q

bh2M cosu
Abh2M

bh1M
. ~2.19!

It is also interesting to note that the horizon is not a surf
of constant ‘‘potential.’’ In Sec. I our~flawed! intuition
about the self-force on a static electric charge was predic
on the horizon acting as conducting surface; therefore
should not be surprised that the force on the static sc
charge will be different.

6The factor 1/ut is present even in a special relativity. Notice it
just the inverse of the Lorentz factorg5dt/dt51/A12v2. As a
mnemonic, the strength of the ‘‘charge’’ depends on the spin of
field: for masses~spin 2! we havem5g1mrest, for electric charges
~spin 1! we havee5g0erest, and clearly, by induction, for scala
charges~spin 0! we haveq5g21qrest.
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III. SELF-FORCE ON A STATIC SCALAR CHARGE

A. Local method

We begin our calculation of the self-force with a pictu
esque description~Gedankenexperiment! of how such a mea-
surement could be made. We imagine a test-charge with
mass mbare and scalar chargeq held fixed by a non-
conducting system of mechanical struts outside the hori
of a Schwarzschild black hole. A non-conducting expe
menter at the apex of a vertical, ballistic trajectory mome
tarily comes to rest with respect to the fixed charge. At t
moment, she reaches out and measures the force requir
hold the charge fixed, i.e., she measures the force neede
just lift the charge off the strut. The spacetime eventB
where/when the force is measured will be taken as the or

of the free-falling observer’s coordinatesxā. ~The over-bar
denotes coordinates in the local, freely-falling frame of t
observer@14#.! Clearly, by symmetry, we can choose o
coordinate system such that the particle is located on
z-axis, and the freely-falling coordinate system is aligned

that thez̄-axis coincides with thez-axis. Thus the only com-
ponent of the force for the freely-falling observer to meas

will be Fz̄. Although this is an elaborate scheme to define
force measurement, working in the freely-falling fram
where the charge is momentarily at rest is the surest wa
establish unambiguously how the scalar field of the part
contributes to the renormalized mass.

As no scalar charges have ever been observed, nor s
fields measured, our assumption that the scalar field does
interact with the experimental apparatus~the struts! and the
experimenter seems to be quite plausible.

In order to compute the force in the free-falling frame
the observer, we need to be able to convert quantities f
the isotropic coordinates of Eq.~2.16! to the coordinates of
the observer. The defining feature of the free-falling frame
the metric is locally flat: i.e.,

~gāb̄!B5diag~21,1,1,1![hāb̄ , ~3.1a!

~gāb̄,ḡ !B50, ~3.1b!

gāb̄~xḡ !5hāb̄1O@~xḡ !2#. ~3.1c!

In particular, the Christoffel symbols,Gb̄ḡ
ā

5(1/2)gās̄@gs̄ḡ,b̄

1gs̄b̄,ḡ2gb̄ḡ,s̄#;O@ x̄s̄# near the eventB . Fortunately, SW
have done the difficult work in finding the transformatio
from isotropic coordinates~un-barred! to the free-falling co-
ordinates~barred!. They are given by

t̄ 5
12M /2b

11M /2b
t1

M

b2

1

~11m/2b!2 t~z2b!1O@~xm2bm!3#

~3.2a!

e

4-6
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SELF-FORCE ON A STATIC SCALAR TEST CHARGE . . . PHYSICAL REVIEW D 61 084014
xj̄ 5~11M /2b!2~xj2bj !1
M

2b2

12M /2b

~11M /2b!5d j̄ 3̄t2

2
M

2b2 ~11m/2b!@2~xj2bj !~z2b!2d j̄ 3̄ux2bu2#

1O@~xm2bm!3#. ~3.2b!

These can be used to find

1

AG~x,b!
5

1

ux2bu

5
1

ux̄2X̄~ t̄ !u
~11M /2b!2

3F12
M

2b2

1

~11M /2b!3z̄1O@~xā!2#G ,
~3.2c!

where X̄( t̄ ) is the position of the charge as viewed in t
freely-falling frame

Xj̄ 5
1

2
agd 3̄ j̄ t̄ 21O@ t̄ 3#, ~3.2d!

andag is the acceleration of the fixed charge as measure
the freely falling frame at the moment the experimen
comes to rest at the apex of her geodesic trajectory

ag[
M

b2

1

~11M /2b!3~12M /2b!
~3.2e!

5
M

bs
2S 12

2M

bs
D 21/2

. ~3.2f!

In the second line we have converted to Schwarzschild
ordinates. Notice this is the same as the acceleration app
ing in Eq. ~1.2!. We can use Eqs.~3.2! to evaluate the scala
field and its derivatives in the free-falling frame

V~ t̄ ,x̄!52
q

ux̄2X̄~ t̄ !u
F12

1

2
agz̄1O@~xā!2#G , ~3.3a!

V~ t̄ 50,x̄!52qF1

r̄
2

ag

2
n3̄

1O@ r̄ 3even number of~nl̄ !8s#G , ~3.3b!

V, t̄~ t̄ 50,x̄!52qO@ r̄ 03odd number of~nl̄ !8s#, ~3.3c!

V,k̄~ t̄ 50,x̄!52qF2
nk̄

r̄ 2
1

ag

2r̄
~nk̄n3̄2d 3̄k̄!

1nk̄O@ r̄ 03even number of~nl̄ !8s#G ,

~3.3d!
08401
in
r

o-
ar-

V, t̄ t̄~ t̄ 50,x̄!52qFag

r̄ 2
2

ag
2

2

n3̄

r̄

1O@ r̄ 213even number of~nl̄ !8s#G ,

~3.3e!

V,k̄ t̄~ t̄ 50,x̄!52
q

r̄
†nk̄O@ r̄ 03odd number of~nl̄ !8s#‡,

~3.3f!

wherer̄ 5ux̄u andnk̄5xk̄/ r̄ . The spatial indices can be freel
raised and lowered withd i j .

Notice the extinction factor present in Eq.~2.16! does not
extinguish the charge in the freely-falling frame Eq.~3.3a!,
that is, in the freely-falling frame the dominant behavior
the field is simply (charge/distance), independent of h
deep the charge is in the Schwarzschild potential.

We will compute the force required to hold the char
fixed by integrating the force density@13,34#

f z̄5Tz̄b̄
;b̄ ~3.4!

over the physical extent of the charged body at the instan
time (t̄ 50) when the measurement is made. More precis
since we are describing the particle as a Diracd-function, we
will integrate over an infinitesimal sphere of radiusē cen-
tered on the particle and take the limit asē→0. The stress-
energy tensorTz̄b̄ will have contributions from the bare mas
of the particle and the scalar field; thus we have

F (strut)
z̄ 5 lim

ē→0

E
r̄<ē

@ f z̄# t̄ 50d3x̄

5 lim
ē→0

E
r̄<ē

@Tz̄b̄
;b̄# t̄ 50d3x̄ ~3.5a!

5 lim
ē→0

E
r̄<ē

@T(bare);b̄
z̄b̄

# t̄ 50d3x̄

1 lim
ē→0

E
r̄<ē

@T(SF);b̄
z̄b̄

# t̄ 50d3x̄. ~3.5b!

The first term in the Eq.~3.5b! shows that the strut mus
support the bare weight of the particle. This term is pres
whether or not the particle is charged. Using the stre
energy tensor for the bare mass of a point particle locate
b5bẑ

T(bare)
ab 5mbare

ḃa~b!ḃb~b!

A2g~b!ut~b!
d3~x2b!, ~3.6!
4-7



u

-
us
is

m

nd
le.

lu-

the
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SW found the necessary force the strut must supply to s
port the bare weight of the particle to be

F (bare)
z̄ 5 lim

ē→0

E
r̄<ē

@T(bare);b̄
z̄b̄

# t̄ 50d3x̄

5
Mmbare

b2

1

~11M /2b!3

1

12M /2b
5mbareag .

~3.7!

The second term in Eq.~3.5b! involves the stress-energy ten
sor of the scalar field. In evaluating this integral we make
of Eq. ~3.1! and note that the connection coefficients in th
frame areO@xā#; thus we can write

F (SF)
z̄ 5 lim

ē→0

E
r̄<ē

@T(SF);b̄
z̄ b̄

# t̄ 50d3x̄

5 lim
ē→0

H E
r̄<ē

†T(SF),k̄
z̄ k̄

1T(SF),t̄
z̄t̄

1O@xāTb̄ḡ#‡ t̄ 50d3x̄J .

~3.8!

We will denote the three contributions to Eq.~3.8! asF (SF1)
z̄ ,

F (SF2)
z̄ andF (SF3)

z̄ respectively. We also make use of Eq.~3.1!
in writing the stress-energy tensor for the scalar field

Tb̄ḡ[
1

4p Fgās̄gb̄ t̄V,s̄V,t̄2
1

2
gāb̄gs̄ t̄V,s̄V,t̄G ~3.9a!

5
1

4p Fhās̄hb̄t̄V,s̄V,t̄2
1

2
hāb̄hs̄t̄V,s̄V,t̄

1O@~xā!2V,s̄V,t̄#G . ~3.9b!

We now substitute Eq.~3.9b! into Eq. ~3.8! and treat the
terms in reverse order. The third term in Eq.~3.8! gives a
contribution of the form

F (SF3)
z̄ 5

1

4p
lim
ē→0

E
r̄<ē

†O@xāT(SF)
z̄ t̄ #‡ t̄ 50d3x̄

5
1

4p
lim
ē→0

E
r̄<ē

†O@xāV,b̄V,ḡ#

1O@~xā!3V,b̄V,ḡ#‡ t̄ 50d3x̄. ~3.10!

Using Eqs.~3.3!, we see the most singular terms come fro
(V,k̄V, l̄ ); therefore we have

F (SF3)
z̄ ; lim

ē→0

E
r̄<ē

F1

r̄
3@ term with odd number of~nl̄ !8s#

1 r̄ 03@ term with even number of~nl̄ !8s#Gdr̄dV̄.

~3.11!
08401
p-

e

The first term contains an odd number of unit vectors, a
therefore will vanish when we integrate over the solid ang
The second term vanishes asē→0, and similarly for higher
powers ofr̄ . These two tricks are used repeatedly in eva
ating the remaining integrals in Eq.~3.8!. Thus we have

F (SF3)50. ~3.12!

We now evaluate the second term in Eq.~3.8! using Eq.
~3.3! and ruthlessly discarding terms that do not survive
limit or the angular integration:

F (SF2)
z̄ 52 lim

ē→0

1

4pEr̄<ē
@V,z̄V,z̄ t̄# r̄

2dr̄dV̄ ~3.13a!

5
1

4p
q2ag lim

ē→0

E
0

ē 1

r̄ 2
dr̄ R nz̄nz̄dV̄

~3.13b!

5
1

3
q2ag lim

ē→0

E
0

ē 1

r̄ 2
dr̄. ~3.13c!

Using the divergence theorem and Eq.~3.9b!, the first
term in Eq.~3.8! can be written

F (SF1)
z̄ 5

1

4p
lim
ē→0

E
r̄<ē

@T(SF),k̄
z̄k̄

# t̄ 50d3x̄

5 lim
ē→0

R
r̄ 5 ē

@T(SF)
z̄k̄ # t̄ 50nk̄r̄ 2dV̄

5
1

4p
lim
ē→0

R
r̄ 5 ē

FV,z̄V,k̄2
1

2
d z̄k̄~2V, t̄V, t̄1d l̄ m̄V, l̄ V,m̄!

1O@~xā!2V,b̄V,ḡ#G
t̄ 50

r̄ 2nk̄dV̄. ~3.14!

All the terms except the first vanish either byr•••dV̄50, or
lim ē→0•••50. Using Eq.~3.3! and integrating the first term
in Eq. ~3.14! over the solid angle, we are left with

F (SF1)
z̄ 5

1

3
ag lim

ē→0

q2

ē
. ~3.15!

Combining the results in Eqs.~3.5b!, ~3.7!, ~3.12!,
~3.13c!, and~3.15! we have

F (strut)
z̄ 5Fmbare1

q2

3
lim
ē→0

S 1

ē
1E

0

ē 1

r̄ 2
dr̄ D Gag ~3.16a!

5Fmbare1
q2

3 E
0

` 1

r̄ 2
dr̄Gag ~3.16b!

5m renag , ~3.16c!
4-8
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where we have defined the leading factor in the bracke
the ‘‘renormalized’’ massm ren . The renormalized mass ha
the same functional form as the renormalized mass for
electric charge in the SW calculation. Converting
Schwarzschild coordinates@14#, we get

F (strut)5
Mm ren

bs
2 S 12

2M

bs
D 21/2

1$nothing depending onq%.

~3.17!

There is no self-forceof the form seen in the second term
Eq. ~1.2!.

B. Global method

We verify our no-self-force result by means of a glob
energy-conservation calculation. Suppose, instead of mea
ing the force on the charge while the charge is in place~as
we did in the last subsection!, the free-falling observer low-
ers the charge a small amountdb̄. The work done on the
experimenter will be

dW̄52Fz̄db̄52Fz̄~11M /2b!2db, ~3.18!

where we have used Eq.~2.3! to convert the free-falling dis-
placementdb̄ to an isotropic coordinate displacementdb.
The experimenter then converts this energy into a photon
fires the photon to asymptotic infinity. The energy receiv
at infinity will be red-shifted

dEreceived5A2g00~b!dW̄. ~3.19!

By conservation of energy this change in the system will
manifested by a change in asymptotic massM of the system

dM52dEreceived5@12~M /2b!2#Fz̄db. ~3.20!

Thus we have

Fz̄5
1

12~M /2b!2

dM
db

. ~3.21!

We now use thetotal mass variation lawof Carter@35#,
which shows how the asymptotic mass will differ betwe
two situations where the gravitational and matter status
the spacetime is slightly altered. In our case we compute
difference in asymptotic mass before and after we make
small displacement of the charge. The relationship is gi
by

dM2
k

8p
dA5

1

8p
dE G0

0A2gd3x

1
1

16pE GmnhmnA2gd3x. ~3.22!

Herek is the surface gravity of the black hole,A is the area
of black hole,Gmn is the Einstein tensor, andhmn is the
difference in the metric between the two configurations.
Eq. ~3.22! we have neglected terms involving the spin of t
08401
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black hole. Throughout this paper we have assumed tha
metric is unperturbed by the presence of the charge; th
fore the last term in Eq.~3.22! vanishes. For a Schwarzschil
black hole thearea term in Eq.~3.22! is just the change in
the mass of the black hole. During our slow displacement
will assume that no matter or radiation goes down the ho
and therefore this term will vanish.~We revisit this point at
the end of the section.! Using Einstein’s equation to write
G0

058pT0
0 all that remains of Eq.~3.22! is

dM5dE T0
0A2gd3x

5dE T(bare)0
0 A2gd3x

1dE T(SF)0
0 A2gd3x. ~3.23!

The first integral can be computed by Eq.~3.6!. SW give the
result

Ebare[E T(bare)0
0 A2gd3x5mbareS 12M /2b

11M /2bD . ~3.24!

Noting that the metric is diagonal, the scalar field is sta
and employing the definition of the stress tensor for a sc
field Eq. ~3.9a!, we can write the second integral in E
~3.23! as

ESF[E T(SF)0
0 A2gd3x5

1

8pE @gjkV, jV,k#A2gd3x

5
1

8pE @~gjkV, jVA2g! ,k2V~gjkV, jA2g! ,k#d
3x.

~3.25!

The first term in Eq.~3.25! can be converted to two surfac
integrals: one over the horizon, the other over a spherer
→`. The field and its derivatives are well behaved on t
horizon, butgjkA2g vanishes there; therefore the integral
the horizon vanishes. The other surface integral vanishe
the limit r→`. Using the original field equation Eq.~2.1!,
we have

~A2ggjkV, j ! ,k54pA2gr. ~3.26!

Thus we can write

ESF52
1

2E rVA2gd3x52
q

2ut~b!
E Vd3~x2b!d3x.

~3.27!

Unfortunately, the scalar field is divergent at the source po
b; therefore we must renormalize. We do so by modeling
source as a charged, spherical shell of radiuse, i.e.,

d3~x2b!

A2g
→ lim

e→0

d1~ ux2bu2e!

4pe2
. ~3.28!

Performing the integration and using the metric to conv
the radius of the ball to free-falling coordinatesē5(1
1M /2b)2e, we have
4-9
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ALAN G. WISEMAN PHYSICAL REVIEW D 61 084014
ESF5
1

2 S 12M /2b

11M /2bD lim
ē→0

q2

ē
. ~3.29!

As expected the functional form is the same here as in
~3.24!.

Combining Eq.~3.24! and Eq.~3.29! defining the renor-
malized mass

m̄ ren5mbare1
1

2
lim
ē→0

q2

ē
, ~3.30!

and using Eq.~3.21! and Eq.~3.2e!, we have

Fz̄5m̄ renag . ~3.31!

This agrees exactly with our previous calculation E
~3.16c!: no finite part of the self-force.

We close this section with a pedagogical comment on
global energy conservation method for computing the for
We note that the calculation was predicated on the assu
tion that thearea term in Eq.~3.22! vanished, i.e.,

k

8p
dA5d~mass of the hole!50. ~3.32!

In terms of modern black hole theory, this is a valid assum
tion: No particles were dropped into the hole. The cha
was displaced slowly, so no transverse fields~i.e., radiation!
heated the horizon. Therefore, the area remains unchan
However, in Sec. III A we gave a primitive derivation of th
force which did not appear to explicitly rely on any soph
ticated properties of black holes.~Implicitly, we did assume
that the mass of the hole remained constant when the
server wiggled the charge to measure the force.! An interest-
ing interpretation of the two force calculations is to acce
the primitive derivation in Sec. III A as the correct forc
Then, when we evaluate the right hand side of Eq.~3.23! and
show that it is the same as our local~primitive! force calcu-
lation, we haveverifiedthat the area of the black hole did n
change when we lowered the charge. This tells us, in spit
the fact that energy of the scalar-static field~or the electric
field for an electric charge! extends clear down to the hor
zon, that none of the energy near the horizon is pus
across the horizon when we lower the charge.

IV. CONCLUSIONS AND DISCUSSION

We have developed a formalism for constructing the H
amard elementary solution for the Schwarzschild-Helmho
equation~2.4!. This formalism was chosen because it e
presses the singular nature of field in the near proximity
the charge. In the case of a static charge, we are able to
a closed-form expression for the field. We have used
expression to show~after mass renormalization! there is no
self-force on a static scalar charge outside a Schwarzsc
black hole

Although we have patterned our discussion after Cop
@26# and SW@13#, there are alternative methods for compu
ing the scalar field and the self-force. For example, in
08401
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static limit, Linet @36# has usedgeneralized axially symmet
ric potential ~GASP! theory@37# to derive the Green’s func
tion for the scalar field. However, this type of constructi
has not been extended to the Helmholtz-type equation
picted in Eq.~2.4!. Lohiya @38# has demonstrated a concis
method for determining the force on a static electric char
Lohiya’s method also uses the Copson-Linet closed-form
pression for the electrostatic potential; however it is uncl
how to extend Lohiya’s method to moving particles. T
formalism we have developed can be extended to mov
charges. The recursion relation, Eq.~2.13!, can be integrated
with vÞ0. Although it may be hard to find a simple sum
mation of the results as in Eq.~2.15b!, it is possible to obtain
the Green’s function to the first several orders inG.

Now that we have computed the~absence of! forces act-
ing on a static scalar charge, let us assemble what is kn
about all the forces on a static charge outside a Schwa
child black hole. In order to express this, let us sligh
change the thought experiment. We will give the test cha
a massm, an electric chargee, and a scalar chargeq. We will
support the charge on a strut as before, but, instead of m
suring the force supplied by the strut at some momentt̄ 50,
we kick the strut out from under the charge and find t
instantaneous acceleration of the falling charge in harmo
coordinates. After the particle begins to move there will a
be a radiation-reaction force, so we must make the meas
ment at the moment we remove the strut. The metric can
used to convert quantities from free-falling~proper! coordi-
nates to harmonic coordinates@14#. The result is

Fm
d2r h

dth
2 G

t̄ 50

5S r h2m

r h1mD 3/2

F (strut)
z̄ . ~4.1!

Using this to convert Eqs.~1.2! and~3.17!, and expanding in
the post-Newtonian quantityM /r h , we have

Fm
d2r h

dth
2 G

t̄ 50

5
M

r h
2H mF2114S M

r h
D29S M

r h
D 2

116S M

r h
D 3

1known termsG ~4.2a!

1
e2

M F S M

r h
D26S M

r h
D 2

1
39

2 S M

r h
D 3

1known termsG ~4.2b!

1
q2

M
@all terms are known to be zero#

~4.2c!

1
m2

M F2S M

r h
D2

87

4 S M

r h
D 2

1unknown termsG ~4.2d!

1O@e2m#1O@q2m#1O@m3#J .

~4.2e!
4-10
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Here r h denotes the radial position of the particle in ha
monic coordinates. In line~4.2a! we have recovered the ve
locity independent terms of the geodesic equation of mo
expressed in harmonic coordinates. Since this is just a Ta
expansion of the first term in Eq.~1.2!, we know these terms
to all orders inM /r h . Thankfully, the first three terms are i
agreement with the second post-Newtonian equations of
tions. ~See e.g.,@39,40#.! Line ~4.2b! is just the expansion o
the second term in Eq.~1.2!, and thus we know these term
to all orders inM /r h . Line ~4.2c! is the scalar-charge par
which we have shown to vanish for all orders inM /r h . For
moving charges, there will very likely be non-zero terms.
line ~4.2d!, only the first two terms are known from secon
post-Newtonian calculations.~See e.g.,@39,40#.! The ques-
tion remains, can the unknown terms in line~4.2d! be ob-
tained by methods similar to those used to find the elec
and scalar forces, that is, by looking at the field~metric!
perturbations produced by the mass of the test particle?
viously there are a number of conceptual issues to tackl
answering this question. For example, when the metric it
is the perturbed field, can we define a freely falling obser
in the same way as we did in the scalar-charge force ca
lation? When solving for the metric perturbation, how do t
stresses in the strut affect the solution? This is currently
der vigorous investigation@41#. Line ~4.2e! represents highe
order effects, such as additional forces on the particle du
the change in the metric produced by the electric field of
particle. Such terms will also arise from a gauge change,
r→r 1O@m#. These terms are clearly second order in
perturbations.
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APPENDIX A: RECAP OF ELECTROSTATIC CHARGE
IN SCHWARZSCHILD SPACETIME

In this section we summarize the results of Copson@26#
and obtain the closed-form solution for the electrostatic
tential using our Hadamard construction. Using isotropic
ordinates and assuming the field is strictly static, Maxwe
equations for the electrostatic potential can be written

Ci j A0,i j ~x!1CjA0,j~x!5216pe
b2~2b2M !

~2b1M !3 d3~x2b!,

~A1!

where

Cj5h~r !
xj

r
5

d

dr H lnF ~11M /2r !3

12M /2r G J xj

r
. ~A2!

Equation~A1! is in the same form as Eq.~2.4!; therefore we
proceed using Eq.~2.9! and we get
08401
n
or

o-

ic

b-
in
lf
r
u-

-

to
e
y,

e

d

y
-

-
-

s

U0
(el)5

r

r 8
S 2r 81M

2r 1M D 3/2S 2r 2M

2r 82M
D 1/2

. ~A3!

The superscript (el) denotes that these are parts of the e
trostatic solution. Using the recursion relation Eq.~2.13!, we
have

U1
(el)~r ,r 8!5

3

2
U0

(el)g, ~A4a!

U2
(el)~r ,r 8!52

5

8
U0

(el)g2, ~A4b!

U3
(el)~r ,r 8!5

7

16
U0

(el)g3, ~A4c!

U4
(el)~r ,r 8!52

45

128
U0

(el)g4, ~A4d!

whereg is the same as in Eq.~2.14a!. Once again the sum
mation is elementary:

Uelem
(el) ~r ,r 8!5

U0
(el)

AG

~112gG!

A11Gg
. ~A5!

As in the scalar case, we integrate the elementary solu
against the source and obtain a particular solution to elec
static field Eq.~A1!

A0
part~x,b!5

e

~bh1M !~r h1M !

3
bhr h2M2 cosu

Ar h
222r hbh cosu1bh

22M2 sin2u
,

~A6!

where we have switched to harmonic coordinates@14#. This
is Copson’s@26# 1928 solution ‘‘for the potential of an elec
tron in the Schwarzschild field.’’ As in the scalar case w
must ask: does the particular solution satisfy the bound
conditions? It is well behaved at the horizon, so there is
problem there. However, asr h→` the potential does no
give the correct value

A0
part~r h→`!;

e

r h

bh

bh1M
Þ

e

r h
. ~A7!

The fact that the field does not behave ase/r h for large r h
suggests by Gauss’s law that we have found a solution w
some additional charge lying around. However, our solut
satisfies the homogeneous~source-free! equation everywhere
outside the horizon except at the source point where ther
a chargee. We must conclude that we found a solution wi
some charge on the horizon. In order to fix the bound
condition, we need to add a monopolar solution of the h
mogeneous equation, that is, we need to add an im
charge. It is easy to see what is needed,
4-11
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A0
homog5

eM

~r h1M !~bh1M !
, ~A8!

and check that this satisfies the homogeneous equation
side the horizon. Linet@24# noticed the discrepancy in Eq
~A7! and added this piece to Copson’s result. Combining
two pieces gives the final result: the electrostatic potential
a fixed charge outside a Schwarzschild black hole

A0~x,b!5
e

~bh1M !~r h1M !

3H bhr h2M2 cosu

Ar h
222r hbh cosu1bh

22M2 sin2u
1M J .

~A9!

The potentialA0
part in Eq. ~A6! is the particular solution

constructed directly from the Hadamard elementary solut
If the Hadamard potentialA0

part is taken to be the actual po
tential and the force calculation is carried out~i.e., repeat the
SW calculation using the method similar to Sec. III A!, the
resulting force is zero. This means that although our c
struction of the Hadamard solution was strictly a local c
culation, when we summed the series we found a solu
with just enough charge on the horizon to cancel the rep
sive force in Eq.~1.2!. This also means that the repulsiv
force that SW found for the electric charge is due solely
the part of the potentialA0

homog which is tacked on to satisfy
the boundary conditions. In other words, the second term
Eq. ~1.2! is simply the force produced by the image char
on the horizon, and the force can be computed from Eq.~A8!
directly:

Fself5eF d

drh
A0

homog~r h ,bh!G
r h5bh

52
e2M

~bh1M !3 52
e2M

bs
3 .

~A10!

This gives a physical interpretation of the repulsive force;
charge outside the black hole is repelled by an image ch
inside the horizon.

APPENDIX B: COMPARING CLOSED-FORM SOLUTIONS
WITH SERIES SOLUTIONS

Equating our closed-form solutions for the scalar-sta
and electrostatic fields with the conventional infinite ser
solutions, we can obtain some interesting summation form
08401
ut-

e
r

n.

-
-
n
l-

o

in

e
ge

c
s
u-

las that do not appear in the standard references@42–44#.
For a fixed point source Eq.~2.1! is easily solved by sepa

ration of variables. The angular dependence is expresse
Legendre polynomials, and the resulting radial equation
also Legendre’s equation. Equating the series solution to
close-form solution Eq.~2.16c! we have

V~xh,bh!52qAbh2M

bh1M

1

Ar h
222r hbh cosu1bh

22M2 sin2u
~B1a!

52
q

M
Abh2M

bh1M(
l 50

`

~2l 11!Pl~cosu!

3H Pl~r h /M !Ql~bh /M !, if r h,bh

Pl~bh /M !Ql~r h /M !, if r h.bh
J . ~B1b!

Here thePl andQl are the Legendre functions. This summ
tion is a special case of Eq. 28 in MacRobert@45#.

If the field point is located on the horizon (M5r h,b) or
on the axis (u50) we can verify this formula using the
standard summation formula@42–44#

(
n50

`

~2n11!Qn~x!Pn~y!

5
1

x2y
uxu.1 and uxu.uyu. ~B2!

Applying this summation formula to Eq.~B1!, we get

V~horizon!52
q

bh2M cosu
Abh2M

bh1M
. ~B3!

Clearly the horizon is not a surface of constant ‘‘potentia
This is in contrast with the electrostatic case where the h
zon is a surface of constant potential.@See Eq.~A9!.# On the
axis of symmetry@i.e., u50, soPl(cosu)51 for all values
of l # we can also use Eq.~B2! to sum Eq.~B1!

V~axis!52
q

ur h2bhuA
bh2M

bh1M
. ~B4!

In the electrostatic case, the series solution can be s
larly obtained by separation of variables. The radial fun
tions are derivatives of Legendre functions. Equating
analytic expression with the series solution gives an inter
ing summation formula
A0~x,b!5
e

~bh1M !~r h1M !H bhr h2M2 cosu

Ar h
222r hbh cosu1bh

22M2 sin2u
1M J ~B5a!

52
e

M3 (
l 50

`
2l 11

l ~ l 11!
Pl~cosu!H ~r h2M !~bh2M !Pl8~r h /M !Ql8~bh /M !, if r h,bh

~r h2M !~bh2M !Pl8~bh /M !Ql8~r h /M !, if r h.bh
J . ~B5b!
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Here it is understood whenl 50 we make the replacement

~r h2M !

l
Pl8~r h /M !→M ~when l 50!. ~B6!

Notice that the horizon (r h5M ) is a surface of constan
potential. The closed-form expression@modulo the homoge-
neous piece in Eq.~A8!# was computed in 1928 by Copso
@26#, who expanded the result in terms of radial functio
and discovered the summation formula. The series result
rederived by Cohen and Wald@22#, and Hanni and Ruffini
e
y i
i

tly

al
a

ge
th
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b

rc

th
hil
at
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at
-
ce

08401
s
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@23#. The asymptotic form of the solution can be seen imm
diately from the closed-form result, or from the series
noting thatQ0(x→`)'1/x. We see that

A0~r→`!'
e

r
, ~B7!

which is the correct behavior. Equation~B1! can also be
obtained from Eq.~B5! by differentiating and using Legend
re’s equation.
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