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Self-force on a static scalar test charge outside a Schwarzschild black hole
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The finite part of the self-force on a static scalar test charge outside a Schwarzschild black hole is zero. By
direct construction of Hadamard’s elementary solution, we obtain a closed-form expression for the minimally
coupled scalar field produced by a test-charge held fixed in Schwarzschild spacetime. Using the closed-form
expression, we compute the necessary external force required to hold the charge stationary. Although the
energy associated with the scalar field contributes to the renormalized mass of the pantictbereby its
weight), we find there is no additional self-force acting on the chargkis result is unlike the analogous
electrostatic result, where, after a similar mass renormalization, there remains a finite repulsive self-force
acting on a static electric test-charge outside a Schwarzschild black hole. We confirm our force calculation
using Carter’'s mass-variation theorem for black holes. The primary motivation for this calculation is to develop
techniques and formalism for computing all forces—dissipative and non-dissipative—acting on charges and
masses moving in a black-hole spacetime. In the Appendix we recap the derivation of the closed-form elec-
trostatic potential. We also show how the closed-form expressions for the fields are related to the infinite series
solutions.

PACS numbg(s): 04.40.Nr, 04.70.Bw, 97.60.Lf

[. INTRODUCTION to computetime-averageddissipativeforces on the particle.
The time-averaging is problematic for two reasofib:

In order to gain deeper quantitative understanding oDuring the late stages of inspiral the orbit will be decaying
highly relativistic binary star systems spiraling toward coa-swiftly, and there will not be many orbits left before the final
lescence, a number of authors have used perturbation theosplat to average ovef2) In the curved spacetime near a
to study the motion of test-particles orbiting black holes.black hole, the self-forces experienced by the particle are not
(See, e.g.[1-4].) The basic idea is to solve the linearized instantaneous forces. Rather these forces arise because the
field equations with out-going radiation boundary conditionsfields produced by the particle at one instant travel away
on a Schwarzschild or Kerr black-hole background. Thefrom the particle, encounter the curvature of the spacetime,
source of the perturbing field is generally chosen to be a tesind then scatter back and interact with the particle at a later
particle(endowed with a small scalar charge, electric chargetime. (See DeWitt and DeWift9] for an illuminating discus-
or mass chargemoving on a bound geodesic orbit, e.g., asion of this point. Thus the fields produced when the particle
circle. Once the perturbing fiel@scalar, electromagnetic, or moves through, say, periastron, and suffers the maximum
gravitational is calculated, the energy radiated per otb&.,  coordinate acceleration, will not come back to interact with
the time-averaged energy flugan be computed by a per- the particle until later in the orbit when the coordinate accel-
forming a surface integral over a distant sphere surroundingation will be more gentle. In other words, the state of mo-
the system. The rate energy carried away by the radiation igo that produced the fields will not be the state of motion

then equated tota '&SS Oft Orb]jta' eneray é’f theﬁparttict'ﬁ} tUStfected by the fields. Although it is unlikely that taking into
one can compute the rate of orbital decaly effect, this account the non-local nature of the self-forces will qualita-

energy-balance argument gives titee-averagedadiation- tively change any of the results found by the “averaging”

reaction force associated with imposing out-going radiatior{echni Ue. the issue has never been rigorously addressed
boundary conditionf5]. This method has been used success- que, 9 y

fully to compute the inspiral rate of coalescing binaries toWIth pertl.Jr_batlon theory._ . L
very high relativistic order, and it has been used to check In addition to the dISSIpatI'Ve.forc.:es, the perturp|ng fields
analogous post-Newtonian calculation of the inspira). will produce other non-d|SS|patlve—conservatlve—self-.
These perturbation calculations also add insight into effectforces on the particle, and these forces have not been studied
such as wave “tails.”(See[1] and[8] for post-Newtonian by the conventional perturbation-theory approgth4]. (As
and perturbation_theory discussions of ta“s{owever, in DeWitt and DeW|tt[g] have demonstrated, these forces can
spite of the success of the perturbation approach, the methoble computed using a different perturbative approaior
as it has been applied, has a drawback: it has only been usédample, suppose we have an electric charge in a circular
orbit around a Schwarzschild black hole. Even if we neglect
the dissipative effects of the radiation reaction, which cause a
*Email address: agw@gravity.phys.uwm.edu secular decay of the orbit, the charged particle still does not
Finding a gravitational-wave signal in noisy detector data re-travel on an exact geodesic of the spacetime. The particle
quires an accurate prediction of the orbital decay rate. See Thorngill feel an additional conservative force—proportional to
[5]. square of the charge—that pushes it slightly off the geodesic.
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As this force is not radiative in nature, the portion of the fieldand the repulsion scales & b_ >].2 SW show for almost
that produces it is explicitly discarded in the conventionalany choice of variables in E@1.2) the first term dominates,
perturbation approach because it falls off faster t9gd/r ],  and the second term only lightens the load a small amount.
and therefore any effect it might have on the motion is  The fact that our naive physical intuition led to both the
missed by a technique that uses a surface integral on a distafjfong direction and the wrong scaling of the force suggests
sphere to determine the back-reaction effé@. Another  sych calculations should be carried out in detail before con-
perturbation calculation by Gal'tsd\0] has used the “half-  clusions are drawn. In this paper we carry out the analogous
retarded—minus—half-advanced” Green's function to findcalculation for a scalar charge in the presence of a Schwarzs-
the radiation reaction forces. But these calculations also misghild black hole, i.e., we compute the force required to hold
the conservativéi.e., time symmetricparts of the force, be- 3 scalar charge fixed. The primary result of this paper is to
cause they simply cancel when the two parts of the Green’show that, although the scalar field does contribute to the
function are subtracted. In other words, the Gal'tsov resultenormalized mass, there is no force analogous to the second
differs from the DeWIIt-DeWIt[Q] result in that it misses the term in Eq(12) for a scalar Charged particie_ The primary
conservative part of the force. motivation for this calculation is much broader: to begin to
We can try(but as we will see, fajlto understand the develop techniques and formalism for tackling a sequence of
origin of the conservative forces by considering a static elecproblems, namely, calculating all the forces, linear in the
tric test-charg¢11] held fixed by some non-conducting me- fields (dissipative and non-dissipativethat act on test
chanical struts outside a Schwarzschild black hole. Th%harges and masses moving in the proximity of a black hole.
charge experiences a self-for¢evhich is clearly not a As the implicit underlying motivation for this work is
radiation-reaction force in any conventional sensmpor-  calculating the forces omovingcharges, we can ask: does
tional to the square of the electric Charge. A phySicaI Originour no_seif_force_on_aatic_scajar_charge result carry
of such a force might be naively described as follows: thepyer to the case of a moving charge? Not directly. However,
surface of the uncharged black hole will act as a conductofye can gain some intuition about extending our static results
and therefore the presence of the external charge will inducgy dynamic results for scalar charges by examining the static
a dipolar charge distribution on the horizpt?]. The mag-  and dynamic cases for electric charges. Although the SW
nitude of the induced dipole moment will depend on the sizeorce calculation is only valid in the static limit, DeWitt and
of the dipole(in this case, the madd of the Schwarzschild pewitt [9] show that when the electric charge is in slow
black holg and the magnitude of the external charge. This motion around the black hole, in addition to the conventional
leads one to believe that the charge will experience an attragadiation reaction force, there is a conservative repulsive
tive dipolar force scaling asg °, wherebs is the Schwarzs- force acting on the charge. This force is independent of the
child radial coordinate of the charge. This force will be in velocity, and clearly corresponds to the force found in the
addition to the natural attractive fordghe weight of the static calculation, i.e., the second term in Et2).3 There-
particle which, according to Newton, should scaletas®.  fore, it seems reasonable to expect a correspondence between
Thus our naive suspicion is that, in addition to the weightthe static case and the slow-motion case for scalar charges.
the strut holding the charge fixed will have to counteract arFor scalar charges, this means the absence of a self-force on
attractive self-force of the form a static charge should imply there is no conservatiepul-
sive or attractive force on a slowly orbiting charge. This,
however, does not rule out the presence of a higher-order,
conservative force that scales as, say, dfjgareof the or-
bital velocity. (This issue is under vigorous investigation
[16].) As a consequence, although both electric and scalar
) ) charges will spiral inward due to radiation reaction forces,
Smith and Will (SW) [13] have calculated the force re- gcajar charges will not suffer the same persistent, velocity-

quired to hold an electric charge fixed outside a SChWﬁrZSrndependent, conservative force trying to hold them off the

child black hole. They find the total force exerted by thegeodesic.

mechanical strut holding the charge fixed must be As a matter of principle, many of the delicate issues of

radiation reaction forces in curved spacetime we will be

dealing with in this paper have already been addressed in

e’M
I:(naive)'\' b5 . (1.0
s

- M ptren L 2M\ "2 e2Mm
(strut)_7 b_s bg .

S

(1.2)

2Although the second term in E€[L.2) appears only to be accurate

. . to leading order inM, the result is exact for static charges; the
Here e, is the renormalized mass of the test-charge. We,,hearance is only a beautiful artifact of Schwarzschild coordinates.
use units in whichG=c=1. As expected, the first term gyjtching to harmonic or isotropic coordinatiss,15 makes the
scales a©[ b ?], and shows that the strut must support thesecond term appear as an infinite serieMinSee Eq(4.2b).
weight of the particle; such a term would be present whether 3pewitt and DeWitt only compute the force to leading order in
or not the particle is electrically charged. The second termhe mass of the hole and their result appears to agree exactly with
shows—contrary to the “physical intuition” presented the second term in Eq1.2). However, the agreement is really only
above— that the black hole tries tepelthe charged particle at leading order irM. See the previous footnote.
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quite a general context by DeWitt and Brehfl€] (using a Our force calculation in Sec. Il closely follows the SW
world-tube calculatiop by Quinn and Wald 18] (using an  calculation of the electrostatic force. We use the exact ex-
axiomatic approadhand Mino, Sasaki and Tanak&9] (us-  pression for the scalar-static field found in Sec. Il to compute
ing matched asymptotic expansignslowever, in practice, the stress-energy tensor and the force density in a local,
the results presented in these papers have never been applfegely-falling frame near the fixed scalar charge. By integrat-
to give even simple results like E€L.2), nor did they work i_ng the force density over a small spherical volume of radius
out the general expressions for forces on scalar charges. e centered on the chargéspherical in the freely-falling
We begin in Sec. Il by calculating the scalar field pro-frame we compute the total force the strut must supply to
duced by a static scalar charge in Schwarzschild spacetimbold the charge fixed. In the limit where the radius of the
The standard method for solving the field equations on &pherical region of integration shrinks to zero, there remains
black-hole background is to use separation of variables and formally divergent piece of the force scaling as
decompose the solution into Fourier, radial and angula(chargef/e. This factor multiplies an acceleration that is
modes (spherical harmonigs (See Appendix B for an ex- identical to the acceleration in the first term in H4.2);
ample) The result is an infinite-series solution for the field. therefore the infinite term is simply absorbed into the defini-
This method works well for computing the far-zone proper-tion of the mass of the particle, i.e., in EQ.30 we define
ties of the field(e.qg., the energy fluxwhere the field is weak
and can be accurately described by the first few terms in the
series. However, when computing a force, such as(E®) )
(or its scalar analogue, as we are doing hettee behavior of Mren= Mbaret 2 Em > 1.3
the field on a distant sphere will not suffice; we need to know 0 €
the detailed behavior of the field up close to the particle. For
e e e e e o e hrea s the scla charge of the paricte, o s e
the chargé requires an infinite number of multipdi28 21 bare mass of the particle.lln this way, the scala_lr charge does
therefore it is not surprising that SW did not use the standar ontribute to the renormalized mass of the particle in exactly

: - o e same way as the electric charge contributes to the renor-
multipolar expansion of the electrostatic fieelg., [22,23) . malized mas;lin Eql.2). The formgof classical mass renor-

g};?tfgszgzﬁ:efocigu;ﬁméﬁoar:hg\r/’vV(V:r;?:meen;f_) a}rk;r:]geggctthe'rmalization depicted in Eq1.3) is seen in all calculations of
" this type(e.g.,[13,28,17). The main conclusion of this paper

caICL_JIation i_s made possible_ by the_ fortuitous _existence of % that, after the formally infinite piece is absorbed into the
previously discovered analytic solution to ffaatid curved- renormalized mass, there remains no scalar counterpart to the

space Maxwell’s equations.” The exact solution to which . : . .
they refer is an old result due to Copson and modified bysecond term in Eq(1.2. Also in Sec. Ill, we verify this

. . X . answer using conservation of energy.
Linet[24] which gives a closed-form expression for the elec- Neither tk?e charge’s contributic?rﬁl to the renormalized-
trostatic potential of a fixed charge residing in Schwarzschilqn

) X ass term or to the repulsive term in Ed.2) should be
spacetime[See Eq(B$).] The Copson-Linet _formula has the confused with the contribution to the gravitational force on
advantage that the singular nature of the field near the ele

the particle due the stress energy of the electric field perturb-

:L'g (C:Irl)asgerlsxinr:]ailplfg::'h;huzrsglzwilr:/% %';nﬁ)rl]ebcaé%l:]lgttxgtsir:ning the metric of the spacetime. Such a force would scale as
P y P ' gin by 9,.€2. In this calculation we are explicitly ignoring corrections

g;e sdc_?la;;flel(d rana;lor?;ler t?]f ;reld C?psﬁ)?'lami;l r?s%lt:r o the metric. See the discussion following E4.26.
osed-Torm expression Tor the Tield of a Tixed scalar charge In Sec. IV, we discuss a number of alternative methods

in Schwarzschild spacetime. Our derivation is similar to . - L -
P for solving similar problems, as well as similarities and dif-

Copson’s, and IS E?ased on constructing _the. Hadama(d Sferences in the scalar-static and electrostatic results. We also
ementary solution”[25] of the scalar-static field equation.

As in the Copson-Linet electrostatic solution, our squtionCO"eCt what is known about the forces on static charges

will clearly show the divergent behavior of the field near the(r_nass, electrlt_: a_nd ;ca]an Schwarzschild space_tlme. This
) ; ) , o gives a clear indication of what future research is needed.

particle. In Appendix A, we outline Copson’s derivation of
the closed-form expression for the electrostatic field with the
Hadamard formalism. In Appendix B, we generate some in-
teresting summation formulas by equating the closed-form
solutions with the infinite series solutiof2,23).

As a historical note, we mention that Copsfit6| ob- In order to find the self-force acting on the scalar charge,
tained his solution for a static electric charge in a Schwarzswe first solve the massless scalar field equation
child spacetime in 1928. This is approximately 40 years be-
fore the term “black hole” was coinef27] and researchers
began formulating theo-hair theorem. However, Copson OV=(1N-g)(V—g9g9*#V ,) g=4mp (2.
was probably the first to note one of the important features of
the no-hair theorem: “. .. the potential of an electron on
the boundary sphef®= « [on the horizonis independent of in Schwarzschild spacetime. Here commas denote partial dif-
its position on the sphere, a rather curious result.” ferentiation, Greek indices run O to 3, and Latin indices will

2

II. SOLUTION OF THE SCALAR FIELD FOR A FIXED
CHARGE IN SCHWARZSCHILD SPACETIME
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run 1 to 3% The sourcep for our field will be a point-ike ~whereV? is the flat-space Laplacian. Our primary attention

[29] scalar charge which can be described by will be focused on the static—zero frequency—case=C
=0), but the formalism we are developing is valid for the
* o ha “Helmholtz”-type equation in Eqs(2.4) and (2.4). Follow-
p(t,x)—qfix(ll\/—_g) 54 (x*=b*(n))dr ing Hadamar()j”(app. q92—10)?, thg ((alen)1entar(y sglutioﬁ.e.,
the Green’s function30]) for Eq. (2.4) takes the form
g P(x=h(1)) -
Suiy) =g 2.2 Uglen=T " YAUp+U T +U,T2+--4), 2.7

where b?(7) is the spacetime trajectory of the chargedhereT is the square of the geodesic distaficethe sense
body, = is the proper time measured along the pathf the “metric’ Cll=6'l) from the source poink’ to the
and u'=db%dr=dt/dr. [Notice, [pd(proper volume) field pointx, i.e.
=[puly—gd®x=q in a frame comoving with the charde. Y
We will later restrict our attention to a static field and a fixed
source charge dt= bz, but, for the present, we will leave the
time-dependence in the equations.

We use isotropic coordinate§l4] to describe the
Schwarzschild geometry. The line element is

I'=(x—x")?+(y—y")?+(z—2")2. (2.8

Since we are working in three dimensidias odd number of
dimensiong there is no natural-log term (D in the el-
ementary solution. ThéJ,’'s are non-singular functions ev-

(2r—M)? M\ 4 erywhere outside the horizon. Recall, in isotropic coordinates
ds*=— 2r ™M) dt*+| 1+ >r (dx*+dy*+dZ). [14] the horizon is at =M/2. The simple form of in Eq.
2.3 (2.8) is a consequence of the isotropic coordinates we are
' using; therefore the technique we are developing cannot be
In these coordinates E¢R.1) can be written easily extended to geometries that do not have spatially iso-
tropic coordinates, e.g., Kerr geometry.
C”\N/,ij(w,x)Jr ij,j(w,x)+CV(w,X) The formula for the leading order behavior of the series is
_ given byHadamard(p. 94:
=47(1+M/2r)*p(w,X), (2.9
where N _ 1 " i . irT. — d_)‘
) Uo(x,x") = \/mexpl jO[C I;+CT; 6]4)\ ,
C'=diag1,1,1), (2.59 (2.9
j j
Cizh(r)x_z i[ln(l—(M/Zr)Z)]X—, where\ is the arc length measured along the geodesic con-
roodr r necting the source and field points. Lettiggdenote the
(2.5b angle between the two spatial vectorsand x’ and using
) 2(1+M/2r)6 - Egs.(2.5 and (2.8 we have
~ (2:50 X 0
) Uo(x,x")=ex —j h(r)(r—r' cos®) —]
and we have used the Fourier transform 0 p[ 0 [ ]2)\
(2.10a9
V(t,x):f V(w,x)e "“'dw (2.6 ar
—o0 r r
:exp[—f,h(r”)T], (210b
to eliminate the time variable. We can also write Ej4) in '
the more compact form
- - - ~ 1—(M/2r")?
VA +h(r)V ,+C(r,0)V=4m(1+M/2r)*p(w,X), =N (2.100
' (2.4) 1-(M/2r)

wherer =|x|, r'=|x’|, andr” is the dummy integration vari-

“Since the Ricci scalar curvatuRevanishes in the Schwarzschild able f)verr. We have also used the geometric relationship
spacetime, it would seem that including coupling to the curvature(r_r cosf)d\=Adr. . . . .
(e.g., a conformally invariant term 18/) in Eq. (2.1) would have Because we are looking for an a?<|ally symmetric squyon,
no effect on our results. However, if we include coupling to theWe may assume th&l,’s are functions of only the radial
curvature, the stress-energy that enters the force calculgign ~ variablege.g., noticdJo=Uq(r,r")]. We now substitute Eq.
(3.93] would have to be modified also. Therefore, we make no(2.7) into Eq.(2.4), use relations such a¥'I" ;I" ;=4TI", and
claim that our results hold for nonminimally coupled fields. collect powers ofl". The result is
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(2Uq,+hU )(rz_ 12)r-3/2+2 (2n+1)(2U V.1 (2M)” ! (2.143
— n _—— - = =—=v, .
Ort RO 2 =0 e Uo  2(ar2-myari-m?) 27
o U, 3 (2M)* 3
2 _
+hUn+1)( or +2(2n“+n—-21)U, .4 Z2_° . s 5= (2.14h
Uo 8 (4r'2-M?%(4r2—-m?2 8
ey ehu 22 o0 bh
F(r n),rr n,r or ( n,r n) U3 5 (ZM)G ~ 5
Up  16(4r2-M?)%4ar2-M?)° 167
+C(r,w)U,|[T""2=0. (2.11 (2.149

. . . . ituti h i Ed2. h isi iatel
SinceU, . iS a solution to the homogeneous equation ev-SUbSt'tu'[Ing these into Eq2.7), the pattern is immediately

e clear and the summation is elementar
erywhere(except at the source pojrthe coefficients of each y
power ofI" must vanish independently. The first term gives

an equation fotJ n_ Yo 1 3 2o 3
q 0 Uelem(xlx)zﬁ 1=5P+ gD = () "+
2Ug,+hUy=0. (2.12 (2.159
Notice that our Eq(2.9) has already given us a particular Uy 1
solution[Eq. (2.109] to this equation. Setting the coefficient =\/—— (2.15h
of I'""2t0 zero and using an integrating factor, we obtain a I' vi+ly
recursion relation for th&J,/’s
1 r(4r'?—M?)
Un+1(|’,r’): -1 fl’(f”z_r,z)n (r”Un),I’”r” \/fr/\/(4r/2_M2)(4r2_M2)+4M2F'
Uo (r2—p'n+ifr 2n+1 Uy (2.159
20"U e nU e o Equation(2.159 is a closed-form expression for the Green’s
— R (20— 1)(U, /U)o function for Eq.(2.4) (with C=0). In the limit M=0 it re-
Uo duces tgx—x’'| "1, the Green’s function for Poisson’s equa-

tion in flat space. We use EQR.159 in precisely the same
manner we would use the Green’s function for Poisson’s
equation: we integrate it against the source to obtain a par-
ticular solution to the inhomogeneous equation. In our case
In the integrand theJ,’s are functions of the dummy inte- the source is the static scalar test-charge held fixed at the
gration variabler” and the source point’, i.e., U, Spatial positiorb, and we have

=U,(r",r"). This recursion relation allows us to construct a

+1"C(r",w)(U,/Ug) |dr". (2.13

series solution for the Green’'s function for the Vv b)— q 1 M 453 b
Schwarzschild-Helmholtz equation Ed8.4) or (2.4').° part(X,0) =~ u'(b)V—g(b) + 2b (x'=b)
We now explicitly assume that the charge and the field are

static, i.e., we assume that= C(r,w)=0 in Eq.(2.13. Be- X Uglem( %, Xx")d3x’ (2.163
ginning with U, from Eq. (2.109 we can construct
2b—M 1

= — q —_—
2b+M JL(x,b)
SWe can gain confidence in the recursion relation &q13 by
applying it to the true Helmholtz equation in flat spacetipie. 4rb
(2.4 with M=0, butC=w?+#0]. In this case, Eq(2.9 givesU, X > > > > >
=1, and the recursion relation E€.13 givesU;=—w?/2, U, V(4b?=M?)(4r*=M?)+4M?T (x,b)

=w*24,..., U,=(—1)"w?"/(2n!). Summing the series gives (2.16b
the Green'’s function for the Helmholtz equation _ g b,—M
cogwx—x'|) bh+M
Uelen=—To -
= .
Now compute the inverse Fourier transform and we have . (2.160

X
\Jra—2r,b, cosf+bi—M?sirte
1 (o[t/—(t—|x=x']D] ot —(t+|x—x]]

G(x,x")= — ~ 7 . . .
8w [x—x'| [x—x'] In the last two steps we have explicitly included
This is the half-advanceglus half-retarded Green’s function. See the factor 1'(b) = —goo(b) =(2b—M)/(2b+ M)
[21], Eq. (6.61). =/(b,—M)/(b,+M); in the last step we have converted to
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harmonic coordinatefl4]. The leading minus sign in Eq. lll. SELF-FORCE ON A STATIC SCALAR CHARGE
(2.16) is a consequence of the source term in &jl); our

. - A. Local method
source is “+" 4 p and not the familiar =" 4 7rp of elec-

trostatics.(Like scalar charges attractAs we are now deal- We begin our calculation of the self-force with a pictur-
ing strictly with a static solution, we have also dropped theesque descriptiofGedankenexperimensf how such a mea-
twiddle denoting the Fourier transform in E(.4). surement could be made. We imagine a test-charge with bare

Equation(2.16) is aparticular solution to the scalar-static mass w,,. and scalar chargey held fixed by a non-
field equation, but is it the desired solution to the equationTonducting system of mechanical struts outside the horizon
In other words, does it satisfy all the boundary conditions?f a Schwarzschild black hole. A non-conducting experi-
First, the field and its derivatives are well behaved OUtSide—menter at the apex of a VerticaL ballistic trajectory momen-
and on—the horizon; thus our solution has no unphysicatarily comes to rest with respect to the fixed charge. At this
regions of infinite energysave, of course, at the location of moment, she reaches out and measures the force required to
the chargge Forr>b>M/2 we see from Eq(2.16h hold the charge fixed, i.e., she measures the force needed to

just lift the charge off the strut. The spacetime evéht

. (2.17) where/when the force is measured will be taken as the origin

of the free-falling observer's coordinate$. (The over-bar

) . denotes coordinates in the local, freely-falling frame of the
As the charge is Iow_ered_ toward thg horizon, the faCtorobserver[14].) Clearly, by symmetry, we can choose our
(2b—M)/(2b+M) extinguishes the field measured by a .qqrginate system such that the particle is located on the

distant observer. Notice if the charge is lowered to the ho”'z—axis, and the freely-falling coordinate system is aligned so
that thez-axis coincides with the-axis. Thus the only com-

zon (b=M/2) the field completely disappeartSee, e.g.,
[31] for discussion. Thus, it is the extinction factor—which X
had its origin in the factor of L (t) in EqQ. (2.2) and has ponent of the force for the freely-falling observer to measure
survived throughout the calculation—that enforoesscalar ~ will be FZ. Although this is an elaborate scheme to define the
hair on the black hol& force measurement, working in the freely-falling frame
Equation(2.17) is the appropriate asymptotic form of the where the charge is momentarily at rest is the surest way to
scalar field; therefore the particular solution E2.16) is the  establish unambiguously how the scalar field of the particle
desired solution which satisfies all the boundary conditiongontributes to the renormalized mass.
[32,33 As no scalar charges have ever been observed, nor scalar
fields measured, our assumption that the scalar field does not
V(X,b)=Vyan(X,b). (2.18  interact with the experimental appara(ise strut$ and the
experimenter seems to be quite plausible.
Before embarking on the force calculation, we note a re- |n order to compute the force in the free-falling frame of
markable feature of the closed-form solution we have fOUndthe observer, we need to be able to convert quantities from
Despite the fact that every term in the Hadamard series ighe isotropic coordinates of E2.16 to the coordinates of

divergent at the horizofiEgs. (2.14)], the closed-form ex- he ghserver. The defining feature of the free-falling frame is
pression for the elementary solution is well behaved on thene metric is locally flat: i.e.,

horizon. The easiest way to see this is with the harmonic-

2b—M
2b+M

9
.

Vpart(r_”c)% -

coordinate expression ER.169 evaluated on the horizon (Jap)p=diag —1,1,1,1=7,54, (3.1a
(rh=M)
B q bp—M (9ap)5=0, (3.1b
VHorizon™ b,—M cosé N b,+M" (219
It is also interesting to note that the horizon is not a surface gﬁ(x;)z Napt O[(x;)z]. (3.10

of constant “potential.” In Sec. | our(flawed intuition
about the self-force on a static electric charge was predicated
on the horizon acting as conducting surface; therefore w . . « P
should not be surprised that the force on the static scaljrn particular, the Christoffel symbold, ;= (1/2)3*1g,,5
charge will be different. +9557 945,01~ O[x?] near the evenB . Fortunately, SW
have done the difficult work in finding the transformations
from isotropic coordinate&un-barred to the free-falling co-
ordinates(barred. They are given by

5The factor 14! is present even in a special relativity. Notice it is
just the inverse of the Lorentz factgr=dt/dr=1/J1—0v2. As a
mnemonic, the strength of the “charge” depends on the spin of the

field: for massegspin 2 we havem= y'm,.q, for electric charges T= 1- M/ZbH_ M t(z—Db)+Of (x*— b“)3]
(spin 1 we havee=y%e., and clearly, by induction, for scalar 1+M/2b" " b? (1+m/2b)?
chargeg(spin 0 we haveq= 7y~ 10 eq- (3.29
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— 0 i : M  1-M/2b T
XJ:(1+M/2b) (Xj_b])dl_ﬁméj t

M o .
~5p2 (1t m/2b)[2(x) —b’)(z—b) — 6 3|x—b|?]

+O[(x*—b*)3]. (3.2b

These can be used to find

1 1
VT(x,b)  [x=b]
1
Z:(l‘l' M/Zb)z
X=X(1)]
M 1 —

_ a2
X1 302 memrapye oL,

(3.29

PHYSICAL REVIEW D 61 084014

[ — a a

2
Vi(t=0x)=—q r__g_ §

2

~1 =

+O[r !X even number of(n')'s] |,

(3.3¢

Vig(t=0x)=— i[n?O[rox odd number of(n')'s]],
r
(3.3f)

wherer =|x| andnk=x"/r. The spatial indices can be freely
raised and lowered witld" .

Notice the extinction factor present in EQ.16) does not
extinguish the charge in the freely-falling frame Eg§.33,
that is, in the freely-falling frame the dominant behavior of
the field is simply (charge/distance), independent of how

where X(t) is the position of the charge as viewed in the deep the charge is in the Schwarzschild potential.

freely-falling frame

~ 1 =
XJ:EagaGJt2+0[t3], (3.20

We will compute the force required to hold the charge
fixed by integrating the force densif{3,34]

fe=T2 5 (3.4

andag is the acceleration of the fixed charge as measured in
the freely falling frame at the moment the experimenterover the physical extent of the charged body at the instant of

comes to rest at the apex of her geodesic trajectory

M 1
8= 12 (14 M/2b)3(1— M/2b) (3.29
M 2M —1/2
Ff( o 820

time (t=0) when the measurement is made. More precisely,
since we are describing the particle as a Difatinction, we

will integrate over an infinitesimal sphere of radigscen-
tered on the particle and take the limit @as-0. The stress-

energy tensof 2 will have contributions from the bare mass
of the particle and the scalar field; thus we have

In the second line we have converted to Schwarzschild co-

ordinates. Notice this is the same as the acceleration appear-
ing in Eq.(1.2). We can use Eq$3.2) to evaluate the scalar

field and its derivatives in the free-falling frame

_ q [ 1 ~
V(t,X)=— —=———|1— za,2+O[ (x“ , (3.3
(t,x) X0 539 [(x9)7]], (3.3a
- 1 ay 7
V(t=0x)=—q|=— —n3
2
+0O[r X even number of(nT)’s] ,  (3.3b
V1(t=0x)=—qO[r°x odd number of(nh)’s], (3.30
~ o7 A g oo
Vi(t=0x)=—q| — =+ =(n‘n®- %)
r 2r
+nkO[ %% even number of( n'_)’s]l ,
(3.30

F ?strut): Em —

r<
e—0

£ od%x

=lim |_ _[T% 5] od% (3.59
:—>O r<e
:Em j—<—[T§§are)§]t_: 0d3;

e—0” =€

+ lim - iT?ﬁF);E];O&I (3.5p

e—0

The first term in the Eq(3.5b shows that the strut must

support the bare weight of the particle. This term is present
whether or not the particle is charged. Using the stress-
energy tensor for the bare mass of a point particle located at

b=bz

b(b)bA(b)

TeB = ——————— 5%(x—b),
(bare)— Mbare —g(b)u‘(b) ( )

(3.6
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SW found the necessary force the strut must supply to supFhe first term contains an odd number of unit vectors, and

port the bare weight of the particle to be
I:(bare) Ilm f —[T(bare)'g]t_zodax

_ M Lbare 1 1 _
b2 (1+M/2b)3 1—M/2p Hbardly:

3.7

The second term in E@3.5b) involves the stress-energy ten-

therefore will vanish when we integrate over the solid angle.
The second term vanishes as-0, and similarly for higher

powers ofr. These two tricks are used repeatedly in evalu-
ating the remaining integrals in E¢3.8). Thus we have

(3.12

We now evaluate the second term in KE8§.8) using Eq.
(3.3) and ruthlessly discarding terms that do not survive the
limit or the angular integration:

F(SF3): 0.

sor of the scalar field. In evaluating this integral we make use

of Eg. (3.1) and note that the connection coefficients in this

frame areO[ x“]; thus we can write

F(SF) |'mf «[T(SF)B]t od3x

—||m{f _[T(SF)k (SF)t O[xaTﬁy]]— Odej
e—0
(3.9

We will denote the three contributions to E£§.8) asF%SFl),

F{sr2 andF (g3 respectively. We also make use of E8.1)
in writing the stress-energy tensor for the scalar field

TAr=7—19"9PV oV - 59™gTVV o (3.99
I Vet ey
_E non oV a3mn T AN
+O[(x1)2V 3V, (3.9

We now substitute Eq(3.9b into Eq. (3.8) and treat the
terms in reverse order. The third term in H8.8) gives a
contribution of the form

1 _
F(SF3) A Z2-im r;[O[XQT(SF)]T:odSX
-1 O[X“V 3V 5,
_E:m:) r_s;[ [ A '7]
+O[ (x*)*V 3V 31T ot (3.10

Using EQgs.(3.3), we see the most singular terms come from

(VkV1D); therefore we have

— 1 —
Flsrg™ lim fr_;[F_x [ term with odd number of(n')’s]

+F’><[term with even number o(n'_)’s] drdQ.

(3.1)

Ff_SFZ)= lim m _[Vvdrdiad (3133
=iq2a lim f:_id?f# n?n?dQ
am g?ﬁo or?
(3.13H
1, el —
S q%a,lim for_—zdr. (3.139

e—0

Using the divergence theorem and EH.9b), the first
term in Eq.(3.8) can be written

F = im0 e %
SF)™ 47— Jio (SPKIt=0
e—0 =

= lim _[T(SF)]t n<r2dQ

e—0

=—||m 35 «[Vﬂ/k——ﬁz"( th+5mvwm)
e~>0

+O[(x)2V V5] r2nkdQ.
t=0

(3.19

All the terms except the first vanish either §y- -dQ =0, or
lim_.,---=0. Using Eq.(3.3 and integrating the first term
in Eq. (3.14 over the solid angle, we are left with

2

(3.19

F(SFl) 3 33glim=
e-0€

Combining the results in Egs(3.5b, (3.7), (3.12,
(3.130, and(3.15 we have

- 2 1 1
(strut)— Mbaret ||m :Zdr ag (3.16a
3- < ot
_ q2 .
=| Mbare™ ?J;) r__2 I'iag (3.160
= Mren@q (3.160
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where we have defined the leading factor in the bracket ablack hole. Throughout this paper we have assumed that the
the “renormalized” massu,.,. The renormalized mass has metric is unperturbed by the presence of the charge; there-
the same functional form as the renormalized mass for théore the last term in E¢(3.22) vanishes. For a Schwarzschild
electric charge in the SW calculation. Converting toblack hole theareaterm in Eq.(3.22 is just the change in

Schwarzschild coordinaté44], we get the mass of the black hole. During our slow displacement we
will assume that no matter or radiation goes down the hole,
M L en oM\ ~112 and therefore this term will vanisliWe revisit this point at
F (struy= —(l b +{nothing depending org}. the end of the sectionUsing Einstein’s equation to write
s s Go=8mT, all that remains of Eq(3.22 is
(3.17
There is no self-forcef the form seen in the second term of M= 5f Tov—gd®

Eq. (1.2

_ 0 !
B. Global method 5J TbareyoV ~ 90X

We verify our no-self-force result by means of a global, 0 3
energy-conservation calculation. Suppose, instead of measur- + 5f T(sp)ov—gd X. (3.23
ing the force on the charge while the charge is in plas o )
we did in the last subsectiprthe free-falling observer low- The first integral can be computed by E8.6). SW give the

ers the charge a small amoudb. The work done on the result
experimenter will be 1-M/2b
_ - — gbareEf T?bare)o\/__gdgle-”bare< m) (3.29

SW=—F%5b=—F%1+M/2b)?6b, (3.18
Noting that the metric is diagonal, the scalar field is static,
where we have used E(.3) to convert the free-falling dis-  and employing the definition of the stress tensor for a scalar
placementsb to an isotropic coordinate displacemesth.  field Eq. (3.93, we can write the second integral in Eg.
The experimenter then converts this energy into a photon an®.23 as

fires the photon to asymptotic infinity. The energy received

e . - 1 )
at infinity will be red-shifted ESFEI T?sp)o [~ gdix= %f [g*V V] [—gdx
OE received™ \/_goo(b)gv_v- (3.19 1 ” " .
=_— kv Vy=0) = V(g*V Y —g) Jd3x.
By conservation of energy this change in the system will be 87Tf g™V, D VGV V=0
manifested by a change in asymptotic madsof the system (3.29

SM=— 5Ereceived:[1_(M/2b)z]F;5b- (3.20  The first term in Eq(3.29 can be converted to two surface
integrals: one over the horizon, the other over a sphere at

Thus we have —oo, The field and its derivatives are well behaved on the
horizon, butg!®\/— g vanishes there; therefore the integral on
7 1 oM the horizon vanishes. The other surface integral vanishes in
F T1—(M/2b)2 Sb (32D the limit r—ce. Using the original field equation Eq2.1),
we have

We now use theotal mass variation lawof Carter[35], "
which shows how the asymptotic mass will differ between (V=99 V,i),k:‘l”\/__gp- (3.2
two situations where the gravitational and matter status ofn,s we can write
the spacetime is slightly altered. In our case we compute the

difference in asymptotic mass before and after we make the 1 — 3 q 3 3
small displacement of the charge. The relationship is given EsF=— Ef pVyV—gd 2ut(b)f V& (x=b)dx.
by (3.27)
0 5 Unfortunately, the scalar field is divergent at the source point
oM~ —5«4— —5f oV —gdx b; therefore we must renormalize. We do so by modeling our
source as a charged, spherical shell of radiuse.,
+ Tom G*"h,,V—gdx. (3.22 B(x—b)  8|x—b|—¢€)
— lim . (3.28
v—0 e—0 41re?

Here k is the surface gravity of the black hold, is the area
of black hole,G*" is the Einstein tensor, and,, is the Performing the integration and using the metric to convert

difference in the metric between the two conflguratlons Inthe radius of the ball to free-falling coordinates=(1
Eq. (3.22 we have neglected terms involving the spin of the + M/2b)?e, we have
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1/1-M/2b\  ¢? static limit, Linet[36] has usedyeneralized axially symmet-
55F:§ 1M/ lim=. (38.29  ric potential (GASP) theory[37] to derive the Green’s func-
€0 € tion for the scalar field. However, this type of construction

. . ) has not been extended to the Helmholtz-type equation de-
As expected the functional form is the same here as in Ec‘picted in Eq.(2.4). Lohiya[38] has demonstrated a concise

3.24. . method for determining the force on a static electric charge.
Combining Eq.(3.24 and Eq.(3.29 defining the renor- | ghiya’s method also uses the Copson-Linet closed-form ex-
malized mass pression for the electrostatic potential; however it is unclear

how to extend Lohiya’s method to moving particles. The
(3.30 formalism we have developed can be extended to moving
' charges. The recursion relation, Eg.13), can be integrated

2
Mren= Mbaret Eﬂm =,

€
0 with w# 0. Although it may be hard to find a simple sum-
and using Eq(3.21) and Eq.(3.28, we have mation of the results as in E(R.15b), it is possible to obtain
B the Green’s function to the first several orderd’in
Fi= e Bg- (3.30 Now that we have computed tl{absence offorces act-

ing on a static scalar charge, let us assemble what is known
This agrees exactly with our previous calculation Eq.about all the forces on a static charge outside a Schwarzs-
(3.160: no finite part of the self-force. child black hole. In order to express this, let us slightly
We close this section with a pedagogical comment on th&€hange the thought experiment. We will give the test charge
global energy conservation method for computing the force® Massu, an electric charge, and a scalar charge We will
We note that the calculation was predicated on the assumPUPPOrt the charge on a strut as before, but, instead of mea-

tion that theareaterm in Eq.(3.22 vanished, i.e., suring the force supplied by the strut at some monten®,
we kick the strut out from under the charge and find the
K instantaneous acceleration of the falling charge in harmonic
g, 0A= d(mass of the hole=0. (38.32  coordinates. After the particle begins to move there will also

be a radiation-reaction force, so we must make the measure-
In terms of modern black hole theory, this is a valid assumpMent at the moment we remove the strut. The metric can be

tion: No particles were dropped into the hole. The charge/Sed to convert quantities from free-falliigrope) coordi-
was displaced slowly, so no transverse figlids., radiation  hates to harmonic coordinatgk4]. The result is

heated the horizon. Therefore, the area remains unchanged. dr,, r,—m)|32 —
However, in Sec. lll A we gave a primitive derivation of the i T) F{struy- 4.1
force which did not appear to explicitly rely on any sophis- th o 1M

ticated properties of black holedmplicitly, we did assume
that the mass of the hole remained constant when the o

|[%Using this to convert Eq41.2) and(3.17), and expanding in
server wiggled the charge to measure the forée. interest-

he post-Newtonian quantityl/ry,, we have

ing interpretation of the two force calculations is to accept dry, M M M\ 2 M\3
the primitive derivation in Sec. IllA as the correct force.  |u—g=| :r—z[,u —1+4(r—)—9<r— +16 r_)
Then, when we evaluate the right hand side of B3 and hli=o 'h h h h
show that it is the same as our logatimitive) force calcu-
lation, we haveverifiedthat the area of the black hole did not +known terms (4.29
change when we lowered the charge. This tells us, in spite of
the fact that energy of the scalar-static figtd the electric e?[ (M M\2 39/M\3
field for an electric chargeextends clear down to the hori- + v r_) —6(r—) + ?(r_)
zon, that none of the energy near the horizon is pushed h h h
across the horizon when we lower the charge.

+known terms (4.2b

IV. CONCLUSIONS AND DISCUSSION )

We have developed a formalism for constructing the Had- + qM[all terms are known to be zefo
amard elementary solution for the Schwarzschild-Helmholtz (4.20
equation(2.4). This formalism was chosen because it ex- '
presses the singular nature of field in the near proximity of w’[ (M) 87(M)\2
the charge. In the case of a static charge, we are able to find + M 2 r_> - Z(r_)

a closed-form expression for the field. We have used this h h

expression to showafter mass renormalizatipithere is no

self-force on a static scalar charge outside a Schwarzschild +unknown term% (4.2d
black hole

Although we have patterned our discussion after Copson
[26] and SW[13], there are alternative methods for comput- + O[e2,u]+0[q2,u]+0[,u3]}.
ing the scalar field and the self-force. For example, in the (4.2
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3/2 1/2

Herer, denotes the radial position of the particle in har- T (2 4M 2r—M
monic coordinates. In liné4.29 we have recovered the ve- ug”:—, CTEY - (A3)
locity independent terms of the geodesic equation of motion r r 2r'=M

expressed in harmonic coordinates. Since this is just a Taylo_lth . N d hat th f the el
expansion of the first term in E¢L.2), we know these terms | N superscript (el) denotes that these are parts of the elec-

to all orders inM/ry,. Thankfully, the first three terms are in trostatic solution. Using the recursion relation 213, we

agreement with the second post-Newtonian equations of md!2Ve

tions. (See e.9.[39,40.) Line (4.2b is just the expansion of 3

the second term in Eq1.2), and thus we know these terms U (r,r)y=-suiy, (A4a)
to all orders inM/ry,. Line (4.29 is the scalar-charge part, 2

which we have shown to vanish for all ordersMyr,,. For

moving charges, there will very likely be non-zero terms. In Ue(rry=— Eu(el)yz (A4b)
line (4.20), only the first two terms are known from second 2 g0 7
post-Newtonian calculationgSee e.g.[39,40.) The ques-
tion remains, can the unknown terms in litke2d be ob-
tained by methods similar to those used to find the electric
and scalar forces, that is, by looking at the fig€idetric
perturbations produced by the mass of the test particle? Ob- @) (o) _4

viously there are a number of conceptual issues to tackle in Vg (rr)=—=15gY0 v" (Add)
answering this question. For example, when the metric itself

is the perturbed field, can we define a freely falling observeiyherey is the same as in E¢2.143. Once again the sum-
in the same way as we did in the scalar-charge force calcumation is elementary:

lation? When solving for the metric perturbation, how do the

7
U (rr)=15UE" Y, (Ado)

stresses in the strut affect the solution? This is currently un- - UE (1429T)
der vigorous investigatiofd1]. Line (4.26 represents higher U (rr')y=— ———. (Ab)

order effects, such as additional forces on the particle due to
the change in the metric produced by the electric field of the
particle. Such terms will also arise from a gauge change, sa)é

r—r+O[u]. These terms are clearly second order in thestatic field Eq.(A1)

s in the scalar case, we integrate the elementary solution
gainst the source and obtain a particular solution to electro-

perturbations.
e
pa —
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versity of Chicago. where we have switched to harmonic coordindte. This

is Copson’q26] 1928 solution “for the potential of an elec-
APPENDIX A: RECAP OF ELECTROSTATIC CHARGE tron in the Schwarzschild field.” As in the scalar case we
IN SCHWARZSCHILD SPACETIME must ask: does the particular solution satisfy the boundary

In this section we summarize the results of CopE2é conditions? It is well behaved at the horizon, so there is no
and obtain the closed-form solution for the electrostatic poProblem there. However, as,— the potential does not

tential using our Hadamard construction. Using isotropic co9ive the correct value
ordinates and assuming the field is strictly static, Maxwell's

equations for the electrostatic potential can be written AP, —o0)~ e _bn + (A7)
0 Mh bh+ M M
. . b?(2b—M)
CAjj(X)+Cl Ay (x)=— 167Te(2b+—M)3 8%(x—b), The fact that the field does not behaveeds, for larger,

(A1) suggests by Gauss’s law that we have found a solution with
some additional charge lying around. However, our solution

where satisfies the homogeneo(source-fregequation everywhere
_ ) outside the horizon except at the source point where there is
Ci=h(r)X—J= i( In (1+M/2r)3 ] X_J (A2) a chargee. We must conclude that we found a solution with
rodr 1—M/2r r some charge on the horizon. In order to fix the boundary

condition, we need to add a monopolar solution of the ho-
Equation(Al) is in the same form as E2.4); therefore we mogeneous equation, that is, we need to add an image
proceed using E¢2.9) and we get charge. It is easy to see what is needed,
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. eM las that do not appear in the standard referefid@s-44|.
AP IR (A8) For a fixed point source EqR.1) is easily solved by sepa-

h h ration of variables. The angular dependence is expressed by
and check that this satisfies the homogeneous equation odt€gendre polynomials, and the resulting radial equation is
side the horizon. Linef24] noticed the discrepancy in Eq. also Legendre’s equation. Equating the series solution to our
(A7) and added this piece to Copson’s result. Combining th&lose-form solution Eq(2.160 we have
two pieces gives the final result: the electrostatic potential for

a fixed charge outside a Schwarzschild black hole V(X br) = —q b,—M 1
e Ph+M {rZ—2r.b, cosf+b>—M?2sir? 6
Ao(x,b)= ° (Bla
O (by M) (rp+ M)

q [bp—M -
—M2 -1
byr,—M<cosé vl M bh+M|:§o (21+1)P(cosh)

X +
Vr&—2r,by, cosf+b2— M2 sir?6

(A9)

{ P,(rp/M)Q(b, /M), if rp<by
(B1b)

% P|(bh/M)Q|(rh/M), if rh>bh '
The potentialAl*" in Eq. (A6) is the particular solution ) )

constructed directly from the Hadamard elementary solutiont1€r€ thePy andQ, are the Legendre functions. This summa-

If the Hadamard potentigh)®" is taken to be the actual po- tion is a special case of Eq. 28 in MaCROb[%]'

tential and the force calculation is carried dué., repeat the If the f'e_ld paint is located on_the h_orlzorM(= rh<.b) of

SW calculation using the method similar to Sec. I)j she 0N the axis §=0) we can verify this formula using the

resulting force is zero. This means that although our conStandard summation formul&2-44

struction of the Hadamard solution was strictly a local cal- %

cglati_on, when we summed the series we found a solution > (2n+1)Q,(X)Py(Y)

with just enough charge on the horizon to cancel the repul- n=0

sive force in Eqg.(1.2). This also means that the repulsive 1

force that SW found for the electric charge is due solely to =——|x|>1 and |x|>]y|. (B2)

the part of the potentiahj®™*?which is tacked on to satisfy X=y

the boundary conditions. In other words, the second term irA lvina this summation formula to EdB1). we get
Eq. (1.2) is simply the force produced by the image charge pplying this su ! u @B1), we g

on the horizon, and the force can be computed from(&§) _ q b,—M
directly: V(horizon = — by—M cosd Vb, + M’ (B3)
2 2
F o—o iAhomo%r b )} __ M eM Clearly the horizon is not a surface of constant “potential.”
sel™ = dr,, "0 h»*h (bp+M)3 b3 This is in contrast with the electrostatic case where the hori-

= On (A10) zon is a surface of constant potent{@ee Eq(A9).] On the
axis of symmetnfi.e., 6=0, soP,(cosf)=1 for all values
This gives a physical interpretation of the repulsive force; theof | ] we can also use E4B2) to sum Eq.(B1)
charge outside the black hole is repelled by an image charge
inside the horizon. V(axis = q bp—M
|rh_ bh| bh+ M’

(B4)
APPENDIX B: COMPARING CLOSED-FORM SOLUTIONS . . . -
WITH SERIES SOLUTIONS In the glectrostanc case, the series solution can be simi-
larly obtained by separation of variables. The radial func-
Equating our closed-form solutions for the scalar-statictions are derivatives of Legendre functions. Equating the
and electrostatic fields with the conventional infinite seriesanalytic expression with the series solution gives an interest-
solutions, we can obtain some interesting summation formuing summation formula

A b= e J bprn— M? cosé M (59
ol )_(bh+M)(rh+M)l Jr2—2r,by, cosf+b2— M2 sir? o
: i 21+1 5 ) (rh=M)(bp—=M)P[(ry/M)Q/ (b, /M), if rp<by, BED
ST T D T (1 M) (b= M)P{ (b, M)Q] (M), if ry>by) (85D
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[23]. The asymptotic form of the solution can be seen imme-
diately from the closed-form result, or from the series by
noting thatQq(x— )~ 1/x. We see that

Here it is understood wheln=0 we make the replacement

(rh,—M)

P (rn/M)—M

(when |=0). (B6)

e
Ag(r—o)~— (B7)

Notice that the horizonri,=M) is a surface of constant ,
p

potential. The closed-form expressifmodulo the homoge-
neous piece in EqA8)] was computed in 1928 by Copson
[26], who expanded the result in terms of radial functionswhich is the correct behavior. EquatidBl) can also be
and discovered the summation formula. The series result wazbtained from Eq(B5) by differentiating and using Legend-
rederived by Cohen and Wal@2], and Hanni and Ruffini re’s equation.
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