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Entropy of rotating Misner string spacetimes

R. B. Mann*
Institute for Theoretical Physics, Department of Physics, University of California Santa Barbara, Santa Barbara, California 931

~Received 22 April 1999; published 23 March 2000!

Using a boundary counterterm prescription motivated by the AdS-CFT conjecture, I evaluate the energy,
entropy and angular momentum of the class of Kerr-NUT-bolt-AdS spacetimes. As in the non-rotating case,
when the NUT charge is nonzero the entropy is no longer equal to one-quarter of the area due to the presence
of the Misner string. When the cosmological constant is also non-zero, the entropy is bounded from above.

PACS number~s!: 04.70.Dy, 04.20.2q
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The thermodynamic properties of gravity have for lo
appeared to be inextricably connected with the presenc
black holes@1,2#. A physical entropySand temperatureb21

can be ascribed to a given black hole configuration, wh
these quantities are respectively proportional to the area
surface gravity of the event horizon~s!.

Recently it has been demonstrated that entropy can
associated with a broader and qualitatively different grav
tional system, one containing Misner strings@3#. These ob-
jects are the gravitational analogues of Dirac strings,
arise whenever the gravitational field in the Euclidean
gime has a U~1! isometry group~generated by a Killing vec-
tor j which is timelike in the Lorentzian regime! with a fixed
point set of co-dimensiondf,d22 ~called a ‘‘nut’’ @4#!.
The existence of any fixed point set makes it impossible
everywhere foliate the spacetime with surfaces of constant,
leading to a difference between the total energy (H`) and
free energy of the gravitational system, which thermod
namically is proportional to its entropy. In general a spa
time can contain both black holes~for which
df5d22—called a ‘‘bolt’’! and Misner strings, and the tota
gravitational entropy will receive contributions from both
these objects.

Explicit demonstration of these ideas has been given
number of cases, for spacetimes with and without cosmol
cal constant. Since the Misner string contribution to the
tropy is divergent, at first only the relative entropy~and en-
ergy! between a spacetime with a bolt/nut configuration a
its asymptotically matched pure nut counterpart was ca
lated@3,5,6#. However it has more recently been shown th
the entropy of Misner strings can be intrinsically defin
@7,9#, even if no bolts are present. By adding to the action
additional boundary term which is a functional of the intri
sic curvature invariants on the boundary, the equations
motion are unaffected and the gravitational entropy~and to-
tal and free energies! is finite whether or not there is a bol
The inclusion of this boundary term is motivated from rece
work @10,11# on the conjectured AdS-CFT duality, whic
equates the bulk gravitational action of an asymptotica
AdS spacetime with the quantum effective action of a c
formal field theory~CFT! defined on the AdS boundary. Th
coefficients in the additional term may be uniquely fixed

*On leave from Dept. of Physics, University of Waterloo, Wate
loo Ont. Canada N2L 3G1. Email address: rbmann@itp.ucsb.e
0556-2821/2000/61~8!/084013~6!/$15.00 61 0840
of

re
nd

be
-

d
-

o

-
-

a
i-
-

d
-

t

n

of

t

y
-

demanding that it be finite for Schwarzchild-AdS spacetim
However the spacetime need not be locally A
asymptotically—locally asymptotically flat cases may al
be included@7#.

The purpose of this paper is to extend these consid
ations to include rotation. Specifically I consider the class
Euclidean Kerr and Kerr-AdS solutions with and witho
NUT charge in four dimensions. This class of spacetim
forms an important test case for the counterterm prescrip
and has received relatively little attention in the literatu
@12,13#. Even for Kerr spacetimes with zero nut charge a
cosmological constant the problem of computing quasilo
energy is very difficult and has only been carried out in t
slow-rotating limit @14#. The counterterm prescription give
in Ref. @7# extends to the full Kerr-NUT class, reproducin
the values of the mass and angular momentum without
background spacetime subtractions. When the nut charg
non-vanishing, I find that the presence of rotation does
admit the existence of regular spacetime solutions unle
bolt is also present. Furthermore the rotation parameter
no upper bound when the nut charge and cosmological c
stant are nonzero. The entropies for these spacetimes are
computed and are not proportional to their horizon areas
to the Misner strings. This is the first calculation of the e
tropy of rotating spacetimes with nut charge.

Consider a Euclidean manifoldM with metricgmn , cova-
riant derivative¹m , and time coordinatet which foliatesM
into non-singular hypersurfacesSt with unit normal um .
Qmn ~whose trace isQ) denotes the extrinsic curvature o
any boundary~ies! ]M of the manifoldM ~internal and/or at
infinity!, with induced metric~s! g. The path-integral formu-
lation of quantum gravity implies that the Euclidean acti
I 52 logZ to lowest order in\, whereZ is the partition func-
tion of an ensemble

Z5E @Dg#@DF#exp@2I ~g,F!# ~1!

with the path integral taken over all metricsg and matter
fieldsF that are appropriately indentified under the periodb
of t. The thermodynamic definition logZ5S2bH` then im-
plies that the entropy of a given spacetime is

S5bH`2I 5b~E1V•J!2I ~2!
©2000 The American Physical Society13-1
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whereE andJ are respectively the energy and angular m
mentum of the spacetime at infinity andV the angular ve-
locity at the event horizon. The entropy is then the differen
between the value the action would have (bH` , the total
energy! if there were no breakdown of foliation and its actu
value ~proportional to the free energy!.

One could compute this difference by removing sm
neighborhoodsNe

i of the fixed point sets and strings so th
I 5I M

e
i 2( i I N

e
i . Rewriting the I M

e
i into Hamiltonian form

~taking care to include the additional surface terms due
these new boundaries!, one finds that the only non-zero con
tributions to the Hamiltonian are from the boundaries at
finity and along the strings. When the contributionsI N

e
i from

the small neighborhoods of the fixed point sets are
inserted, their surface terms are non-vanishing and yield
one-quarter of the areas of the neighborhoods removed
of the bolts and the strings.

The action is generally taken to be a linear combination
a volume~or bulk! term

I v52
1

16pEM
ddxAg„R12L1L~F!… ~3!

and a boundary term

I b52
1

8pE]M
dd21xAgQ~g! ~4!

~chosen to yield a well-defined variational principle!, where
L(F) is the matter Lagrangian andL the cosmological con-
stant. When evaluated on solutions bothI v and I b are typi-
cally divergent, yielding divergent values for both the stri
area and Hamiltonian terms and hence for the entropy.
method of dealing with this difficulty is to compute ever
thing relative to some chosen reference background sp
time ~suitably matched in its asymptotic and topologic
properties! whose boundary~ies! have the same induced me
ric~s! as those in the original spacetime@15–17#; the refer-
ence spacetime is then interpreted as the vacuum for
sector of the quantum theory. Such a choice is not alw
unique@18#, nor is it always possible to embed a bounda
with a given induced metric into the reference backgrou
Indeed, for Kerr spacetimes this latter problem forms a s
ous obstruction towards calculating the subtraction ene
and calcuations have only been performed in the slo
rotating regime@14#.
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The counterterm proposal involves adding a termI ct to
the action, where@7#

I ct5
2

l

1

8pE]M`

d3xAgA11
l 2

2
R~g! ~5!

with l 5A3/uLu ~a slight variant of this prescription wa
given by Lau@8#!. The coefficients of theR(g) term and the
overall action are determined by demanding that
Schwarzchild-AdS solution have finite total actionI T5I v
1I b1I ct . The prescription~5! has been shown to be suffi
cient for evaluating the actions, entropies and total energ
for the Schwarzchild, Taub-bolt, and Taub-NUT~Newman-
Unti-Tamburino! spacetimes, along with their AdS and top
logical extensions without the use of any background s
tractions@7,9#. It is motivated by the conjectured AdS-CF
correspondence: divergences appearing in the stress-en
tensor of the boundary CFT are just the standard ultravi
divergences of quantum field theory and may be removed
adding counterterms to the action which depend only on
intrinsic geometry of the boundary. Quantities such as
ergy, entropy and~as will be shown! angular momentum are
then intrinsically defined for a given spacetime, rather th
with respect to a reference background. Furthermore, Eq~5!
applies even in thel→` limit, thereby including asymptoti-
cally locally flat cases, unlike the prescriptions in Re
@10,11# to which Eq.~5! reduces for largel.

Using Eq.~5! the entropy is

S5bH`2~ I v1I b1I ct! ~6!

where all quantities are evaluated on a given solution,
where H`5M1VJ, with M5Q@]/]t# and J5Q@]/]f#
being the conserved charges associated with the Killing v
tors ]/]t and ]/]f where V5a/(r 1

2 2a22N2), with r 1

defined below. These conserved charges are given by@16,19#

Q@j#5
1

8pE]M`ùSt
FQmn2Qgmn1

2

Ag

dI ct

dgmn
Gumjn ~7!

which may be shown by taking the variation of the acti
with respect to the boundary metricgmn at infinity .

The class of Euclidean Kerr-NUT-AdS spacetimes has
metric form
ds25
V~r !„dt2@2N cos~u!2a sin2~u!#df…

21H~u!sin~u!2@adt2~r 22N22a2!df#2

x4
„r 22@N1a cos~u!#2

…

1„r 22@N1a cos~u!#2
…S dr2

V~r !
1

du2

H~u! D ~8!

where the Einstein field equations imply
3-2
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qN2

l 2
1

@2N1a cos~u!#2

l 2

~9!

V~r !5
r 4

l 2
1

@~q22!N22a21 l 2#r 2

l 2

22mr2
~a1N!~a2N!~qN21 l 21N2!

l 2

and where the periodicity int and the parametersq andx are
chosen so that conical singularities are avoided. There
string singularities at both the north and the south poles
this metric whenNÞ0.

In the (u,f) section these considerations may be imp
mented as follows. Writing the metric as

ds25gttS dt1
gtf

gtt
df D 2

1grr dr21guudu2

1S gff2
gtf

2

gtt
Ddf2,

conical singularities in the (u,f) section will be absent pro
vided the metric in this section is conformal todu2

1u2df2 nearu50, and todu21(u2p)2df2 nearu5p.
Expanding the (u,f) part of the metric about these respe
tive points yieldsx25H(0) andx25H(p). For NÞ0 these
relations cannot be simultaneously satisfied. However for
form of the metric given above there are string singularit
for each of these values ofu whenNÞ0, so this is a moot
point. Transformingt→t62Nf respectively removes the
string singularities atu50,p; one can then use two non
singular coordinate patches at each of the poles and
match them elsewhere via a simple coordinate transfor
tion. Rather than do that I shall takex5A11a2/ l 2 so that
conical singularities are manifestly removed whenN50.
Further requiring that the conformal factor be unity wh
a50 yieldsq524.

The periodicity int is more subtle. The location of th
nut is at r 5Aa21N2[r N , where the area of surfaces o
thogonal to the (r ,t) section vanishes. The Misner strin
singularity runs along the postive and negative z axes fr
the nut to infinity. Regularity along the z axes then impli
that t has period 8pN. However regularity in the (r ,t) sec-
tion implies that t also has period 2p/k where k
5A2¹mzn¹mzn/2, with z5]/]t1V(]/]f) being the Kill-
ing field normal to the horizon, and whereV5a/„r 1

2 2(a
1N)2

… is the angular velocity of the horizon. Explicitly

k5
V8~r 1!

4x2~r 1
2 2r N

2 !
~10!

where V(r 1)50, r 1 being the location of the foliation
breakdown. Interpreting this latter equation as determininm
3-3



R. B. MANN PHYSICAL REVIEW D 61 084013
FIG. 1. The entropy as a function ofx5a/N
in the Kerr-bolt case.

FIG. 2. The entropy~solid line! and l 2/N2

~dashed line! as a function ofx5a/N for K54 in
the Kerr-bolt-AdS case.

FIG. 3. The same plot as Fig. 2, but forK
51.01.
084013-4
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ENTROPY OF ROTATING MISNER STRING SPACETIMES PHYSICAL REVIEW D61 084013
in terms ofr 1 , and then equating these two periods yield
quartic constraint~cubic if l→`) on r 1 in terms ofa, N and
l

K42
1

6

~y21x2!K3

A11x2
2

1

3

~x2162y2!K2

11x2
1

1

6

~y21x2!K

A11x2

1
1

3

~y223!~x21!~x11!

~11x2!2
50 ~11!

where K5r 1 /r N , x5a/N and y5 l /N. Solutions to this
equation for the parameterK constitute a valid Kerr-bolt-
AdS metric that is free of singularities. Solutions to they
→` limit of this equation furnishes the allowed parame
space for the Kerr-bolt solutions.

A more careful treatment is required ifr 15r N ; in this
case regularity of the solutions demands thatV(r ) have a
double root there. However this requirement turns out to
incompatible with thet-periodicity constraints unlessa50.
Hencer 1.r N , and there are no regular Kerr-NUT or Ker
NUT-AdS solutions~the former observation was made
Ref. @12#!.

Denoting the unit radial normal to]M ~with induced met-
ric gmn) by nn, the quasilocal mass and angular momenta
given by the expressions

M5E d2xAsjn~kun1 j n! ~12!

J5E d2xAscn~kun1 j n! ~13!

wherej5]/]t, c5]/]f, andk is the trace of the extrinsic
curvaturekmn5sm

asn
b ¹anb is the extrinsic curvature o

the 2-boundary which is the intersection of]M andSt , with
metric smn5gmn2nmnn . The vectorj n is

j n5sn
bna¹bua ~14!

is the angular momentum vector of the 2-boundary. Us
the formulas~7!, I find after somewhat lengthy and tediou
calculation

M5
m

x4
, J5

ma

x4
~15!

for each of the Kerr, Kerr-AdS, Kerr-bolt and Kerr-bolt-Ad
solutions, the parameterm obeying the constraints mentione
in the previous paragraph in the bolt case. The actio
Hamiltonians, and entropies for each case are finite. The
sults are given in Table I; omitted is the Hamiltonian f
each case, which is simplyH`5(m/x4)(11aV). After sub-
08401
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s,
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stituing the solutions form and r 1 , the action in the Kerr-
bolt case is 4pNm, in agreement with Ref.@12#. Note that
for the bolt solutions the entropy is not one-quarter of t
area, due to the presence of the Misner string.

One of the more unusual results which follows fro
Table I is that in the Kerr-bolt-AdS solution the entropy
not positive for all values of the parameters. The entropy
this case is most easily analyzed by using Eq.~11! to write
y2 in terms ofK andx. For given values ofK one then can
numerically search for regions wherey2.0 ~i.e. a real cos-
mological constant! as a function ofx. The entropy can then
be determined for these same values in the allowed regi
It is always positive for any values ofa and l provided
19K6278K413K218.0, or K.Km52.02282556 . . . .
However for 1,K,Km there exist ranges of values ofa/N
for which the entropy is negative, and for certain values oa
the entropy diverges to2`. Similar properties have bee
noted in the non-rotating AdS NUT and bolt solutions@7,9#.
The entropys5S/N2 as a function ofx5a/N is plotted in
Fig. 1 for the Kerr-bolt solution – for smallx s'5p
1O(x2), and for largex, s→4px. The parameterm is an
everywhere defined increasing function ofx, and approaches
2N for large x. The behavior is quite different in the th
Kerr-bolt-AdS solution. For a givenK.Km , s reaches a
maximum somewhere betweenx50 and x5xm ; for x
.xm , the parameterl 2,0 and so there are no allowed s
lutions. ForK,Km , the entropy~andm) will be negative in
some allowed region ofx ~i.e. wherel 2.0). Figures 2 and 3
show typical cases. Note that the entropy is bounded ab
in the K54 case.

To summarize, the prescription~5! has been shown to
apply to spacetimes with non-zero angular momentum,
so removes the troublesome aspects of evaluating phy
quantities in gravity relative to some chosen backgrou
@14,18#. Indeed, the expressions forM, J andS could all be
given quasilocally at finite radiusR, although I have omitted
them here for the sake of brevity. As with the non-rotati
case, these results must be carefully interpreted. ForNÞ0
the boundary at infinity is not a direct productS13S2 but
instead is a squashedS3. Consequently continuation to th
Lorentzian regime is not straightfoward the way it is in t
N50 cases. The most promising possibility is that of inte
preting the path integral over all metrics as the partiti
function for an ensemble of spacetimes with fixed NU
charge@3,5#. A more complete understanding of the therm
dynamics of these solutions~and how to interpret the nega
tive values of the entropy in the AdS case!, as well as the
relationship between these results and the behavior of a
formal field theory on the boundary remain interesting qu
tions for further study.

The work was supported by a National Science Foun
tion grant PHY94-07194 and by the Natural Sciences a
Engineering Research Council of Canada. I am gratefu
the ITP and to the Physics Department at UCSB for th
hospitality.
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