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Entropy of rotating Misner string spacetimes

R. B. Manrt
Institute for Theoretical Physics, Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106
(Received 22 April 1999; published 23 March 2000

Using a boundary counterterm prescription motivated by the AdS-CFT conjecture, | evaluate the energy,
entropy and angular momentum of the class of Kerr-NUT-bolt-AdS spacetimes. As in the non-rotating case,
when the NUT charge is nonzero the entropy is no longer equal to one-quarter of the area due to the presence
of the Misner string. When the cosmological constant is also non-zero, the entropy is bounded from above.

PACS numbegs): 04.70.Dy, 04.20-q

The thermodynamic properties of gravity have for longdemanding that it be finite for Schwarzchild-AdS spacetime.
appeared to be inextricably connected with the presence dfiowever the spacetime need not be locally AdS
black holeg1,2]. A physical entropySand temperatur@~!  asymptotically—locally asymptotically flat cases may also
can be ascribed to a given black hole configuration, wher®e included7].
these quantities are respectively proportional to the area and The purpose of this paper is to extend these consider-
surface gravity of the event horiz. ations to include rotation. Specifically | consider the class of

Recently it has been demonstrated that entropy can beuclidean Kerr and Kerr-AdS solutions with and without
associated with a broader and qualitatively different gravitaNUT charge in four dimensions. This class of spacetimes
tional system, one containing Misner strin@. These ob- forms an important test case for the counterterm prescription
jects are the gravitational analogues of Dirac strings, ané@nd has received relatively little attention in the literature
arise whenever the gravitational field in the Euclidean re{12,13. Even for Kerr spacetimes with zero nut charge and
gime has a (1) isometry groug(generated by a Killing vec- cosmological constant the problem of computing quasilocal
tor £ which is timelike in the Lorentzian regimevith a fixed ~ energy is very difficult and has only been carried out in the
point set of co-dimensiom;<d—2 (called a “nut” [4]). slow-rotating limit[14]. The counterterm prescription given
The existence of any fixed point set makes it impossible tdn Ref.[7] extends to the full Kerr-NUT class, reproducing
everywhere foliate the spacetime with surfaces of constant the values of the mass and angular momentum without any
leading to a difference between the total energl.) and background spacetime subtractions. When the nut charge is
free energy of the gravitational system, which thermody-non-vanishing, | find that the presence of rotation does not
namically is proportional to its entropy. In general a space@dmit the existence of regular spacetime solutions unless a
time can contain both black holes(for which bolt is also present. Furthermore the rotation parameter has
di=d—2—called a “bolt”) and Misner strings, and the total No upper bound when the nut charge and cosmological con-
gravitational entropy will receive contributions from both of stant are nonzero. The entropies for these spacetimes are also
these objects. computed and are not proportional to their horizon areas due

Explicit demonstration of these ideas has been given in & the Misner strings. This is the first calculation of the en-
number of cases, for spacetimes with and without cosmologitropy of rotating spacetimes with nut charge.
cal constant. Since the Misner string contribution to the en- Consider a Euclidean manifold with metricg,,, , cova-
tropy is divergent, at first only the relative entroand en-  riant derivativeV ,, and time coordinate which foliatesM
ergy) between a spacetime with a bolt/nut configuration andnto non-singular hypersurfaces, with unit normalu,, .
its asymptotically matched pure nut counterpart was calcu®”” (whose trace i®9) denotes the extrinsic curvature of
lated[3,5,6]. However it has more recently been shown thatany boundarfies) /M of the manifoldM (internal and/or at
the entropy of Misner strings can be intrinsically definedinfinity), with induced metrits) y. The path-integral formu-
[7,9], even if no bolts are present. By adding to the action aration of quantum gravity implies that the Euclidean action
additional boundary term which is a functional of the intrin- | = —10gZ to lowest order i, whereZ is the partition func-
sic curvature invariants on the boundary, the equations dfion of an ensemble
motion are unaffected and the gravitational entr¢gyd to-
tal and free energigss finite whether or not there is a bolt.

The inclusion of this boundary term is motivated from recent 7= f [Dg][D®exd —1(g,d)] (1
work [10,17 on the conjectured AdS-CFT duality, which

equates the bulk gravitational action of an asymptotically

AdS spacetime with the quantum effective action of a conyith the path integral taken over all metrigsand matter
formal field theory(CFT) defined on the AdS boundary. The fie|4sq that are appropriately indentified under the perod
coefficients in the additional term may be uniquely fixed by ¢ . The thermodynamic definition l@g=S— BH., then im-

plies that the entropy of a given spacetime is
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whereE andJ are respectively the energy and angular mo- The counterterm proposal involves adding a tdgnto

mentum of the spacetime at infinity af¥l the angular ve- the action, wheré7]

locity at the event horizon. The entropy is then the difference

between the value the action would haveH_., the total -

energy if there were no breakdown of foliation and its actual _ 3

value (proportional to the free enerpy lee=T QLde Xy \[1+ ZR() )
One could compute this difference by removing small

neighborhoodd\. of t_h_e fixed poin.t sets anq stri_ngs so that yith |:\/m (a slight variant of this prescription was
I=lyi—Zilyi. Rewriting thelyi into Hamiltonian form  given by Lau[8]). The coefficients of th&(y) term and the
(taking care to include the additional surface terms due tmverall action are determined by demanding that the
these new boundarigsone finds that the only non-zero con- Schwarzchild-AdS solution have finite total actibp=1,
tributions to the Hamiltonian are from the boundaries at in-+1,+1.;. The prescription5) has been shown to be suffi-
finity and along the strings. When the contributidr,qus from  cient for evaluating the actions, entropies and total energies
the small neighborhoods of the fixed point sets are refor the Schwarzchild, Taub-bolt, and Taub-NUNewman-

inserted, their surface terms are non-vanishing and yield the/nti-Tamburing spacetimes, along with their AdS and topo-
one-quarter of the areas of the neighborhoods removed, i.&29ical extensions without the use of any background sub-

of the bolts and the strings. tractions[7,9]. It is motivated by the conjectured AdS-CFT
The action is generally taken to be a linear combination of°'réspondence: divergences appearing in the stress-energy
a volume(or bulk) term tensor of the boundary CFT are just the standard ultraviolet

divergences of quantum field theory and may be removed by
1 adding counterterms to the action which depend only on the
_ d intrinsic geometry of the boundary. Quantities such as en-
o= 16 Md X@(R+2A+£(¢)) ©® ergy, entropy andas will be showi angular momentum are
then intrinsically defined for a given spacetime, rather than
and a boundary term with respect to a reference background. Furthermore(Hq.
applies even in thé—« limit, thereby including asymptoti-
1 cally locally flat cases, unlike the prescriptions in Refs.
lp=— S_I d91x\/y0 () (4)  [10,17 to which Eq.(5) reduces for largé.
I M Using Eq.(5) the entropy is

(chosen to yield a well-defined variational principlevhere
L(®P) is the matter Lagrangian ant the cosmological con- S=BH.—(1,+1p+1¢) (6)
stant. When evaluated on solutions béthand |, are typi-

cally divergent, yielding divergent values for both the string,yhere all quantities are evaluated on a given solution, and
area and Hamiltonian terms and hence for the entropy. Ongnere H. =M +0J, with M =Q[a/d7] and I=Q[d/d¢p]

method of dealing with this difficulty is to compute every- peing the conserved charges associated with the Killing vec-
thing relative to some chosen reference background spacgs.s 5/5+ and d9lad where Q=al(r2 —a?—N?), with r,

time (suitably matched in its asymptotic and topological
propertie$ whose boundaryes) have the same induced met-
ric(s) as those in the original spacetirie5—17; the refer-
ence spacetime is then interpreted as the vacuum for that 2 Sl
sector of the quantum theory. Such a choice is not always Q[¢]= —f [@ﬂ"—@yﬂ“ur -
unique[18], nor is it always possible to embed a boundary 8mJom..ns, VY Y
with a given induced metric into the reference background.

Indeed, for Kerr spacetimes this latter problem forms a seriwhich may be shown by taking the variation of the action
ous obstruction towards calculating the subtraction energywith respect to the boundary metrig,, at infinity .

and calcuations have only been performed in the slow- The class of Euclidean Kerr-NUT-AdS spacetimes has the
rotating regimeg 14]. metric form

defined below. These conserved charges are giveaa9

u.é, (7)

~ V(r)(d7—[2N cog #) —asin(6)Jd¢)*+ H(6)sin( 6)’[adr— (r?—N>—a®)d¢]?
- X*(r*—[N+acog 6)]?)
dr2  de? )

ds?

®

+(r2_[N+a0039)]2)(W+H(9)

where the Einstein field equations imply
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TABLE I. Action and entropy for rotating black holes with NUT charge.
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qN? [2N-+acog6)]?

H:l+|—2+ |2

(€)

4 —2)N2—a2+1?21r2
V(f)=:—2+[(q )N|2a+ Ir

(a+N)(a—N)(gN?+12+N?)
r—
|2

and where the periodicity in and the parametetsand y are
chosen so that conical singularities are avoided. There are
string singularities at both the north and the south poles in
this metric wherN+#0.

In the (6,¢) section these considerations may be imple-
mented as follows. Writing the metric as

g'rqS

ds’=g,,| dr+

2
d‘f’) +0 dri+ggy,de?

TT

conical singularities in thed, ¢) section will be absent pro-
vided the metric in this section is conformal t96?

+ 6%d¢? near =0, and tod#?+ (60— 7)?dp? near 6= 1.
Expanding the ¢, ¢) part of the metric about these respec-
tive points yieldsy?="H(0) andy?="H(). ForN+0 these
relations cannot be simultaneously satisfied. However for the
form of the metric given above there are string singularities
for each of these values &f whenN+#0, so this is a moot
point. Transformingr— 7==2N¢ respectively removes the
string singularities at#=0,7; one can then use two non-
singular coordinate patches at each of the poles and then
match them elsewhere via a simple coordinate transforma-
tion. Rather than do that | shall take=\1+a?/1? so that
conical singularities are manifestly removed whir=0.
Further requiring that the conformal factor be unity when
a=0 yieldsq=—4.

The periodicity in7 is more subtle. The location of the
nut is atr=+a?+N?=ry, where the area of surfaces or-
thogonal to the I(,7) section vanishes. The Misner string
singularity runs along the postive and negative z axes from
the nut to infinity. Regularity along the z axes then implies
that  has period 8-N. However regularity in ther(7) sec-
tion implies that r also has period 2/« where
=V—=V ., VHI2, with (=0l 97+ Q. (9] d¢) being the Kill-
ing field normal to the horizon, and whe(é=a/(ri—(a
+N)?) is the angular velocity of the horizon. Explicitly

Vi(ry)

K=———F—"F7+ 10
Ax2(r5 =) 1o

where V(r,)=0, r, being the location of the foliation
breakdown. Interpreting this latter equation as determining
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FIG. 1. The entropy as a function af=a/N
in the Kerr-bolt case.

FIG. 2. The entropy(solid line and I2/N?
(dashed lingas a function ok=a/N for K=4 in
the Kerr-bolt-AdS case.

FIG. 3. The same plot as Fig. 2, but f&r
=1.01.
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in terms ofr ., and then equating these two periods yields astituing the solutions fom andr ., the action in the Kerr-
quartic constraintcubic if | —=) onr in terms ofa, Nand  bolt case is 4Nm, in agreement with Ref12]. Note that
I for the bolt solutions the entropy is not one-quarter of the
area, due to the presence of the Misner string.
One of the more unusual results which follows from

o LXK 10¢+6-y)K? 1 (y*+x7)K Table | is that in the Kerr-bolt-AdS solution the entropy is
K*= 6 J1+x2 3 1+ x2 "6 J1+x2 not positive for all values of the parameters. The entropy in
this case is most easily analyzed by using Bd) to write
1 (y?—3)(x—1)(x+1) y? in terms ofK andx. For given values oK one then can
3 (1+x2)2 =0 (1D numerically search for regions wheyd>0 (i.e. a real cos-

mological constantas a function ok. The entropy can then
where K=r, /ry, x=a/N and y=I/N. Solutions to this be determined for these same values in the allowed regions.

equation for the parameté¢ constitute a valid Kerr-bolt- It is always positive for any values i and | provided
AdS metric that is free of singularities. Solutions to the 19K°—78K*+3K?+8>0, or K>K;=2.0228256... .
—oo limit of this equation furnishes the allowed parameterHowever for I<K<K, there exist ranges of values afN
space for the Kerr-bolt solutions. for which the entropy is negative, and for certain valuea of
A more careful treatment is required iif. =ry; in this  the entropy diverges te-c. Similar properties have been
case regularity of the solutions demands thigt) have a noted in the non-rotating AdS NUT and bolt solutidis9].
double root there. However this requirement turns out to bd he entropys=S/N® as a function ofk=a/N is plotted in
incompatible with ther-periodicity constraints unless=0.  Fig. 1 for the Kerr-bolt solution — for smalk s~5m
Hencer , >r, and there are no regular Kerr-NUT or Kerr- TO(x?), and for largex, s—4mx. The parametem is an
NUT-AdS solutions(the former observation was made in €verywhere defined increasing functionxofand approaches
Ref.[12]). 2N for large x. The behavior is quite different in the the
Denoting the unit radial normal M (with induced met-  Kerr-bolt-AdS solution. For a givelK>K,,, s reaches a

ric y,,,) by n”, the quasilocal mass and angular momenta aréaximum somewhere betweex=0 and x=xp; for x
given by the expressions >Xn,, the parametef><0 and so there are no allowed so-

lutions. ForK <K,,, the entropyandm) will be negative in
some allowed region of (i.e. wherel>>0). Figures 2 and 3
M =f d2x\Joe"(ku,+j,) (12)  show typical cases. Note that the entropy is bounded above
in the K=4 case.
To summarize, the prescriptiofb) has been shown to
apply to spacetimes with non-zero angular momentum, and
J=J dZX\/;zﬁV(ku,,+j,,) (13 so removes the troublesome aspects of evaluating physical
quantities in gravity relative to some chosen background
where&=alar, =0ld¢, andk is the trace of the extrinsic [14,18. Indeed, the expressions fbt, J and S could all be
curvaturek,,,= o “UVﬁVan;; is the extrinsic curvature of 9iven quasilocally at finite radiug, although I have omitted

the 2-boundary which is the intersectiondfl and3. ., with them here for the sake of brevity. As yvith the non-rotating
metric o', = 7,,,~N,N,. The vectorj, is case, these results must be carefully interpreted.NFs1I0

the boundary at infinity is not a direct produstx S? but
instead is a squashesf. Consequently continuation to the
j,=0,/nVu, (14 Lorentzian regime is not straightfoward the way it is in the
N=0 cases. The most promising possibility is that of inter-
%reting the path integral over all metrics as the partition
function for an ensemble of spacetimes with fixed NUT
charge[3,5]. A more complete understanding of the thermo-
dynamics of these solutioiand how to interpret the nega-

is the angular momentum vector of the 2-boundary. Usin
the formulas(7), | find after somewhat lengthy and tedious
calculation

m ma tive values of the entropy in the AdS casas well as the
M=—, J=— (15 relationship between these results and the behavior of a con-
X X formal field theory on the boundary remain interesting ques-

for each of the Kerr, Kerr-AdS, Kerr-bolt and Kerr-bolt-AdS tions for further study.

solutions, the parameter obeying the constraints mentioned  The work was supported by a National Science Founda-
in the previous paragraph in the bolt case. The actiongjon grant PHY94-07194 and by the Natural Sciences and
Hamiltonians, and entropies for each case are finite. The ré&=ngineering Research Council of Canada. | am grateful to
sults are given in Table I; omitted is the Hamiltonian for the ITP and to the Physics Department at UCSB for their
each case, which is simph,.=(m/x*)(1+aQ). After sub-  hospitality.
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