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Two-dimensional effective action for matter fields coupled to the dilaton
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We revise the calculation of the one-loop effective action for scalar and spinor fields coupled to the dilaton
in two dimensions. Applying the method of covariant perturbation theory for the heat kernel we derive the
effective action in an explicitly covariant form that produces both the conformally invariant and the confor-
mally anomalous terms. For scalar fields the conformally invariant part of the action is nonlocal. The obtained
effective action is proved to be infrared finite. We also compute the one-loop effective action for scalar fields
at finite temperature.

PACS numbdps): 04.60.Kz, 04.62+v, 11.10.Lm, 11.25.Db

I. INTRODUCTION Il. HEAT KERNEL FOR SCALAR FIELDS COUPLED TO
THE DILATON IN TWO DIMENSIONS

The effective action and conformal anomaly of quantum Let us begin with the classical action for the scalar matter

fields coupled to the dilaton in two dimensions have been the, 4 7 coupled to the background metigg,, and the back-
subject of a number of recent papers. The main mOtivatiO'bround dilaton fields v

for the study of quantum field models in two-dimensional

(2D) dilaton-gravity backgrounds comes from the fact that 1

such models naturally arise after the spheri@l dimen- S=- Ef d’x g% 20V 49V 9. (1)
siona) reduction from higher-dimensional field theories and

gravity. For a description of the spherical reduction proce4ye do not specify here the functios, which can be an
dure leading to dilaton gravity in two dimensions, we refer togrpjtrary smooth function. Following the procedure] 4f12]

[1.2]. ) ] ) we redefine field variables and rewrite the actithin terms
Two dimensional models seem to be easy to quantize, an

. . . : cgf new scalar fields;=e~ ?7. Then the action takes the form
in some cases they admit exact solutions at classical an
guantum levels. Black hole physics is one of the most inter- 1 o
esting applications of such mod¢ls3]. Seemingly, the two- ~ S=— Ef d?x gV4VHRY =0 — (V) (VEh)]}.
dimensional results could provide information about higher- @)
dimensional quantum physics. The question of the effective
action for 2D dilaton gravity and its relation to Hawking The gne-loop effective action for this model is defined as
radiation is addressed in many papéfg—7], to mention a
few). For the history and contemporary state of this problem
see a recent review by Kummer and Vassile\iish How- W=3TrinF(V), 3
ever, the applicability of these two-dimensional consider-
ations to the Hawking effect in four dimensions is hamperedyhere the differential operator corresponding to the action
by serious problem$6,9,10 (some of these problems are (9) reads
related to the dimensional-reduction anomalies and may be
resolved via their thorough analygi1]). F(V)=0+0¢—(V,0) (V). (4)
We study here only two-dimensional models, so, we are
not concerned with problems related to the dimensional re- The widely accepted technique to compute the effective
duction or higher-dimensional quantum physics. Specificallyaction is to use the trace anomaly of the energy-momentum
in this paper we focus on the one-loop effective action fortensor (Weyl anomaly, T=2g*"(sW/ég#”). Combined
quantum matter fields interacting with the background dila-with the proper boundary conditions it provides enough in-
ton and gravity in two dimensions, and related infrared probformation to derive unambiguously the one-loop effective
lems. Surprisingly, there is no consensus in the literaturection in the absence of the dilaton, the Polyakov adtic.
even about this relatively simple problem. We derive theA similar method was applied to the system of quantum
one-loop effective action, which, in our opinion, corrects andscalar fields coupled to the dilat¢4,12,14—16. The opera-
supplements other known results on this subject. tor (4) describes a 2D conformal model, and, in this cafe,
is also restored by the integration of the conformal anomaly.
Such an effective action is known as the anomaly-induced
*Email address: ygusev@phys.ualberta.ca action. Because this action is completely defined by T, the
"Email address: zelnikov@phys.ualberta.ca main subject of calculations and controversies in the existing
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literature was the computation of the anomaly itself. Unfor-for the generic field operator

tunately, unlike the Polyakov action, the anomaly-induced

action is incomplete because it may contain conformally in-

variant terms that cannot be fixed by knowledge of the A R 1 R

anomaly alone. These missing terms are important, for they F(V)=10- ER(x)+ P(x). (8
lead to a non-zer¢though tracelegsenergy-momentum ten-
sor. This ambiguity is an artifact of the method, and its origin
is obvious. The integral of the Weyl anomaly is, in fact, the
difference between the effective actions in a physical spac
time and in a reference ofé&7]. Without a dilaton the ref-

Here R is the Ricci scalar, and® is an arbitrary potential
eterm, which depends on the background fields and curva-

erence spacetime is implicitly assumed to be flat with th ures. In Eq.(7) we introduced th(?, collect|ve” notation
same topology as the physical 2D manifold. The presence barikgroy nd _f'e"?' strengths (“curvatures”), %
the dilaton leads to a nontrivial conformally invariant effec- = (R, R, ,P), which includes the commutator curvature,
tive action in the reference spacetime. As we will show ex-
plicitly, this action is generically nonlocal; hence, it can con- A
';]rit?ute to the Hawking radiation from the 2D dilaton black [V..V.I7=R,.7. 9)
oles.
In order to obtain the complete effective action we use a
method, which is different from the one we just described. The form factorsf; andF; in Eq. (7) are analytic func-
Our approach to this problem has two important featugBs: tions of the dimensionless argumesif] that act on tensor
it is manifestly covariant throughout all calculatior(®) it invariants constructed from the field strengths. It is assumed
does not make use of the trace anomaly, thus, both anomal{hat the operator argumerits; in the form factors are acting
producing and conformally invariant terms come from theon the curvatures at the corresponding spacetime paits,
same calculation. =9R(X;), and after that all spacetime points are made coin-
We begin with the heat kernel for the operatdj and  cident,x;=X,=Xz=X.
express the one-loop effective action as an integral over the For straightforward applications of this result, the differ-

proper times, [18,19, ential operator for a field model should be of the foi@n It
was already showf23,24] that the heat kern€l7) correctly
1(=ds reproduces the Polyakov action, where the operator is just
W= — Efo 5 TTK(S). (5  F(V)=0. The operatot4) also belongs to the class of mod-

els (8) with the following specifications,
In coordinate representation Tr denotes the functional trace,
Tr K(s)zdextrR(s|x,x) in arbitrary dimension®, where 1
tr denotes the matrix trace over any internal degrees of free- tri=1P=|-R+0O¢—(V, ) (V¢e) |1 (10)
. . ’ 6 Y23 .
dom that may be present in a field theory. The heat kernel

K(s) is defined as a solution of the problem

Furthermore, the basis of 29 tensor structures in the third

d. . A - - i [ identi-
gK(s|x,y)=F(VX)K(s|x,y), R(0|x,y)=18(x—y). order[23,25 can be considerably reduced using the identi

ties
(6)
For the computation of the heat kernel we employ the 1
covariant perturbation theory of Barvinsky and Vilkovisky kﬂvzo, RMZEQMR_ (1)

[20-23. As a basis for our calculations we use a general
expression for the trace of the heat kernel in arbitrary space-
time dimensions obtained in Ref23-25 up to the third

. It is useful to express the heat kerr@) in terms of two
order in curvatures,

background field objects, the Ricci scaRrand the dilaton
field ¢, instead ofR andP. Integrating by parts and discard-
Do 12 ing total derivatives we represent the first local term of Eq.

Tr K(S):mf d“xg (7) in the form

5 29
x[1+s|5+522 fi(—s) MR Mo(i)+8°>, F
=1 i=1 f d2X gllz P(X): f dZX gl/2 ¢D ¢ (12)
X(_SDL_SDZv_SDS)mlm2m3(i)+o[m4]}a
The expression for the trace of the heat kernel for operator

(7) (4) reads
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1 1 1(f(-sO,) -1
5 (=000 (Do) + 3—2f<—smz)—§(T2)

1
Tr K(S)ZRJ d?x gl’z{ 1+s¢p¢p+s?

1 1 f(—s,)—1 ,
Zf(—SDQ)_ 27 S0, (Oé1=(Vo1)IR,

3(f(—=s0y)—1- gsO,
+_

8 (s,)?
+s3[My(—s;,—s0,,—s3)RiRyR3+My(— sy, — S0y, — SH3) R Ry( ¢pg) + Mg(— sy, — s,

)R1R2+

—s03)Ry(O o) (O epz) +My(—sOy, —sO,, —sO3) (D) (Do) (O ps) ]+ O[ R ¢ (13

In any expression, which depends érandR, like Eq. (13), tum averages. For example, the trace anomaly in two dimen-
we assuméi=(¢,R). All second-order form factors are ex- sions is completely defined by the first Schwinger-DeWitt

pressed via the basic one coefficient,a;(x) =tr P(x) [the potential term figures here in
the form(10), rather than in the integrated forth2)]. This is
1 . a local expression, and any derivations of the one-loop effec-
f(—sl)= Jo dae(7 @50, (149 tive action based just on the coefficiemt ignore complex
conformally invariant, nonlocal structures of the heat kernel.
The third-order form factors/; fori=1 ... 4 arefunctions ~ Such methods work well in the case of pure 2D gravity and
of the dimensionless argumendg= —s,, k=1...3 and  9ive the Polyakov effective action, but they fail in the case of

are listed in Appendix A. They are formed with the basicdilaton gravity models. However, these procedures still
form factors(14) and might be valid for another field modgb,8] discussed in the

closing section of this paper.
In two dimensions, even after subtracting the ultraviolet

F(=sy, =sMz, —sls) divergences, the resulting one-loop renormalized effective

action is not generally defined because of bad behavior of the
If _ day daydag (1~ ay—az—as) heat kernel trace in the large proper time liriitfrared di-
a=0 vergence[21]. However, in our mode{2)—(4) we can con-
X exp(s( ayaz0+ agasl,+ ajaslls)). trol the infrared behavior using the asymptotic behavior of
the form factorq 24],
(15
The form factors in Eq4.7) and(13) are analytical functions 12 1
of the proper time, that can be exhibited, for example, by f(—sd)=—— _+o( _), S (17
rewriting the following form factor: st S
_ _f(— F(—sO4,—s,,—sl,)
—(f(—s f(—sO 1 2 3
S(Dl_Dz)( ( l) ( 2))
L L 1 ( 1 N 1 N 1 )+O 1
= IEYE S—)OO,
=j daa(l—a)f dg s2\hp D03 Llolls s®
0 0
(18)

Xexpsa(l-a)((1-p)U;+ ). (16)

- . . .__and prove the infrared finiteness \f Indeed, we find that
Local coefficients of the Schwinger-DeWitt expansion
[18,19, which is often used in quantum field theory, can be
easily obtained from the nonlocal expressiof by the 1
simple expansion of all form factors in powers of the proper gTr K(s)=0
time [24].

, S—® (19

S2

and, hence, the proper time integral is convergent at the up-
per limit.
In order to compute the integrdb) we apply the tech-
nique of Ref.[24]. Let us reproduce here some differential
The trace of the heat kernel is a classical object, whichequations that basic form factors of the nonlocal heat kernel
nevertheless, contains complete information about all quarsatisfy

IIl. ONE-LOOP EFFECTIVE ACTION FOR SCALAR
FIELDS COUPLED TO THE DILATON IN TWO
DIMENSIONS
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0,003 d O (0s+0,—0y)
- TF(—sﬂl,—SDZ,—sD3)=d—s(sF(—sD1,—sD2,—sD3))+ D f(—sl,)

a0 +Hs—03) Ua(0+ 02— Us)
fesh=1_df 20 o)+ 2—so 21
g0 g\ glst)|F5i(=sh), (21)
f(—sD)—l—%sD_d 2 f(-sO)—-1 1f - 1f . -
02 ds| 30 so zort SHrppftesh) 22

whereD is the expression

D=0,%+ 0,2+ 02— 20,0, 20,0;— 20,5. (23

Applying these relations to the heat kerri#B) we can present some part of it in the form of a total derivative over the

proper time:

lTK
S (s)

1
12
477,[ dxg

d
&[fl(smlz)Rle‘Ffz(5||:|2)(D 1~ (V)R +Ny(s|0;,0,,03)RiRR3

+Ny(s|0y,0,,03)RiRa(O ¢p3) + N3(s| 04,05, 03) Ry (C ) (L p3) + Ny(s| 01,05, 03) (O py) (O )

1 1
X(Les) ]+ ?+(D¢)E(D¢)+h(SIDz)(D¢1)(D¢2)+H(S|Dlﬂz,Ds)Rl(D%)(D(ﬁs)+O[9‘i4] ,

where

11 1f(—sdy)—-1

f1(3|Dz)=D—2 §f(_SD2)_ZT2 , (29
1
f2(5|Dz):D—2f(—SDZ), (26)
and
1
h(S|DZ):§f(_SD2)1 (27)
1

H(S|D1,D2,D3)=—ﬁm(mzf(_smz)

—O4f(—s3)). (29)

The third-order form factorsN;(s|(J;,0,,003) may be
found in Appendix B. As can be seen from E@g4), not all

of the terms in TiK(s) admit the form of a total derivative.
As a result, in contrast to the Polyakov actifB,24], the
effective action(5) in two dimensions depends on the ultra-
violet cutoff parametej.

For the sake of convenience we split the total renormal-

ized effective action into two part8V,e,=Wsn+W,, . Wy, is
a part defined by the total derivative terms of E2¢) while

(249

W, is defined by the regincluding any higher order terms
The calculation of the finite terms becomes ftrivial as we
perform the proper time integration. Using Eq20), (21)
again we can check that the form factérsandN; vanish at
the upper limit,s—o. Thus,

Wy _ 1 d?x g¥2{f1(s=0)R;R,+ f5(s=0)
in 8 1 12 2

X (@1~ (V1))R+NPM(s=0)R;R,R3
+N"(s=0)R;R,(0 ¢b3)
+NFM(s=0)Ry (O hy)(Ch3)

+NPMs=0)(0 1) (O p2) (D b3}, (29

whereNY™i=1, ... 4) aresymmetrized in their arguments,
1,,0,,0;, according to the symmetries of the tensor struc-
tures they are acting on. All of the third-ordeRY) contri-
butions to the heat kernel trace vanish, leaving the expres-
sion

1 2y ql/2 1 2 1
Win=gg— | *x g"?|R5R-12V)*5R+124R.
(30)
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This part coincides with the usual form of the one-loop ef-where 1/(m?—[) is the massive Euclidean Green function

fective action derived by the integration of the trace anomalywith zero boundary conditions at spacetime infinity.

[2,4,12,14. Combining the two piecedV;, andW,,, we get the final
To treat the remaining terms of the effective actiaien  result for the renormalized effective action

the zeroth order term is already subtradi2él]) we apply the

proper time cutoff regularization,

1 1 1
—__ /  R— —
) L Wren—%wf d2x912|RDR 12(V¢)2DR+12¢R
Wﬂz_ﬁj Fx g 2% it - By n02/0) 1
1 A0 é)n| = ¢ (O,—03) Dl
X{§¢D¢+h(SIDz)(D¢1)(D¢z)
XRy(O ) (O p3) +O[ R} (36)
+H(S|D11D21D3)R1(D¢2)(D¢3)+O[m4]}-

Equation(36) is one of the main results of this paper. This
(31 : g ) . i

effective action is covariant by construction. It evidently re-
roproduces the conformally anomalous gdartand unambigu-
he ously fixes new conformally invariant terms that were not
derlved previously in the literature. It can be seen explicitly

Eq. (36) that, with an exception for the anomaloRg

rm, terms of the first and third orders in the dilaton field are
absent from the conformally invariant part of this one-loop
effective action. This plausibly indicates that all higher-order
terms are even in powers of the dilaton. This conjecture can
be tested using the higher-order perturbation expansions for
the heat kernel in flat space found in R€f27,2§.

where infrared and ultraviolet cutoff parameters are int
duced correspondingly at the upper and lower limits of t
proper time integral in order to single out terms of this inte-
gral that are apparently divergent. However, the integral asg
whole appeared to be infrared finite and independent of th &
parameteL, as will be demonstrated in a moment. As far as
ultraviolet divergences are concerned, only the first, local
term of integral(31) is divergent whernw— . Then, the key
element of our computations is the integral:

er(1-alO_ g In agreement with Ref$7,29], we see that the)? terms
f dsf(—sO)= f da of the effective action are nonlocal, and do not have the local
a(l-a)ld form derived in[5,8]. We should stress that these terms are
5 infrared finite. Only the ultraviolet regularization parameter
=——(n(-LO)+C), (32)  m enters the answer, and not the infrared cutoff as was sug-
U gested in7].

The form of the last term in Eq36) is different from the
whereC is the Euler constant. The dependence on the infraone in Ref.[7] because the covariantization procedure of
red cutoff parametet in first two terms of integral31)  nonlocal terms used there is incorrect. To check our result
cancels, as does thedependence in the form factt8) of  we can perform the opposite operation, namely, to sum the
the third term. The resulting expression reads series of the terms quadratic in the dilaton into a flat space

object. To do so we take the expressi@3) in a flat space

1 assuming that the original metric is related to the flat space
=— | ox g1/2 (O¢)In| — — — . —a 204
8 “ oneg,, via a conformal factorg,,=e “’g,,, . To return to
the original metric we have to use the equation for the varia-
In(0,/05) 1 tion of the effective action form factdB0],
_ﬁD_Rl(D¢2)(D¢3)+O[m4] . o
( 2 3) 1
2 112 O
(33 dx g6\ In _F RNR,
It should be emphasized that the nonlocal form factors of Eq. In(0J,/00,)
(33) can be used for physical applications only when ex- —f X gl’zﬁ (O2)R R+ O[ R3],
1 2

pressed in terms of the Green function, e.g., after converting
them into the mass spectral integrf®d,22, (37)

=, 1 1 where[ is defined for the flat-space met@w. Equation
—In| == |= fo dm O ) (34 (37) follows directly from the rule of variation of the Euclid-
M M ean Green functiof18],
In(D /D 2) f 1 1 1 1
—_— dm 2— 35 =
L= m?—0ym?—0,’ %9 5”m2—D mz—Dg”(D)mz—D’ 38
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and Egs.(34), (35. We know that s, (00)=—2(d0)0, 1
where §o= o, and upon substituting the nonlocal curvature W, =8—j d®x (O¢) In
expression for the conformal factar(g) = — 3 (1/0J)R, into ™
Eq. (37) one can see that it becomes nothing but the secondh
term of Eq.(33). As a result, it is possible to rewrite the where
terms quadratic in the dilaton field in a flat spacetime form,

O
- —2) ¢, (44)
)y

1
¢(x)=—|n<1—D+PP . (45)

O
2 ¢+O[¢4]]- 39 Thus, we obtain a partially summed form of the one-loop
- effective action. This summation is partial, because not all
gigher-order terms are included in Eqd4), (45) but only
those containing the form factor r(J/u?). Such a summa-
tion with help of a new auxiliary scalar field, which is ex-
pressed in a nonlocal way through the perturbaticurva-
IV. PARTIAL SUMMATION OF THE DILATON ture) [31], is very similar to the summation of the Ricci
EFFECTIVE ACTION scalar terms in the 4D covariant effective action performed

In the previous sections we have derived the one-loop Ref-[32]. _ _ _ _
effective action as a perturbation series in powers of the di- 10 reproduce the perturbation series we first obtain the
laton field ¢. So far no explicit form of the dilaton field was €*Pansion of,
assumed, and we could rewrite this expansion in terms of the 1 1
potential P(¢). But instead of doing a perturbative expan- Q(x)=1- =P+ =
sion using the potential as a small parameter, we perform a O O
partial summation of the effective action and obtain a result
which is nonperturbative in terms &. To simplify calcula-

1 J—
W#Z%f dZX{(D¢)In

When expanded in powers of the curvatures, the effectiv
action (39) again becomes an infinite series.

1
P-P

=P+ o[ P3], (46)

tvhich gives us an approximation for the dilaton

tions we work in a flat spacetime in the present and follow- 1 1 1 1 1
ing sections. In other words, we perform all operations only  ¢(x)= EP+ > EP) EP) - E( PEP +0O[P3].
with the conformal part oW,¢,, Eq.(39), and we can restore @7

the whole covariant result, expressed in termKaidP, at
the end of the derivations. For the sake of convenience, Wehjs series obviously coincides with an iterative solution of

keep here the covariant notatian instead of the flat-space Eq. (40). The perturbative expansion of E@4) reads

onel.
Let us begin with the equation for the potentigl 1 O 1
WM:S_WJ d2X PlIn - EP
P=0¢—(V,¢) (V). (40 "
1 1 1
We rewrite this equation as a linear differential equation by +=PlIn| — — ((—P) (—P))
substituting the following ansatz for the dilaton fig: 2 M O O
¢=—In Q. (41) L ((i 1 ) _Oyr
+ > O 5 P 5 Pl]In ,uz 0 P
The solution of the resulting equation éh,
1 O 1
(O0+P)Q=0, (42) —-|PFP In _E 5P
reads 1 1
_ I - 4
Pin 2 D(PDP +O[P*]¢. (48
0=1-5.5P. (43

The leading term of this expansion is apparently similar to
the expression obtained in R¢7] with the reservation of a

where the boundary conditioff =1 at|x|—c is assumed. gifferent meaning for the regularization parameter
In principle, more general solutions containing zero modes,

00 ¢=0, are allowed, but the requirement of covariant per-
turbation theony21] that all background fields including the
dilaton field (41) vanish at spacetime infinity puf3,=1.

The effective action, which is known up to the third order  An obvious use for the obtained one-loop effective action
in the dilaton field, now can be written in a nonperturbativeis its application to the calculation of the stress tensor. So far
form by inserting Eqs(41) and(43) into Eq.(39). The result we have worked in a Euclidean spacetime. According to
reads rules of covariant perturbation theory, one makes the transi-

V. DILATON EFFECTIVE ACTION AT FINITE
TEMPERATURE
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tion to Minkowski spacetime only after deriving quantum heat kernel at finite temperature as an infinite sum of the zero

averages and currents from the Euclidean effective actiotemperature heat kernels at separated poirssdx’,

[20]. Similarly, in the calculation of the energy-momentum

tensor for quantum fields in a black hole background bound- *

ary conditions corresponding to the Unruh, Boulware, or KA(s|7,x;7" ") = E K(s|7,x;7"+Bn,x"), (52

Hartle-Hawking vacua are to be specified after the variation n=-e

over the metric. Authors off6,9] completed this procedure

by making the effective action local by introducing auxiliary where 7 is the Euclidean time ang are the spatial coordi-

fields and imposing the proper boundary conditions on themnates. Then, the two-dimensional ¥ can be found via the
The other way to introduce boundary conditions corre-heat kernel in one dimension,

sponding to the Hartle-Hawking vacuum is to consider the

field system at some fixed temperatdre 1/8. This is rela- B

tively easy to do, because the Killing vector always exists in  TrK£(s)= 4(0,e £°/%) f d'x tr K®(s|x,x),
two dimensions, in contrast to higher dimensi¢d88—335. (4ms)t?

Therefore, without losing generality, we can make a confor- (53

mal transformation to a flat space where the Euclidean time
is periodic, i.e., the flat spacetime has the topology of a cylwhere we have introduced the Jacobi theta function,
inder. In our new flat space the anomaly-generating part of

the effective actior(30) vanishes, so we deal only with the n=c -
conformally invariant part33). This is what one would ex- 05(a,b)= > eapn”, (54
pect, because the anomalous part does not depend on tem- n=-=

perature. In our treatment of the finite-temperature effective

action for scalar fields coupled to the dilation we will follow  The zeroth-order term of the effective action requires spe-
the computational scheme of Ref84,35. For general no- cial treatment. First of all, it is removed by the renormaliza-
tions of finite temperature field theory we refer[88], and tion procedure in the zero temperature quantum field theory

references on some earlier works can be founfBHj. (QFT) [see Eq.(51)], which amounts to subtracting the
Let us start with the flat-space limit of the trace of the heat=0 term from the sunt52). Straightforward computation of
kernel (7), the proper time integrabl) with the subsequent summation

over n gives us a numerical coefficient in front of thegl/

1 term, which figures in the final expressi@g) below.
Tr K(S):—D/zf dPx The dilaton-dependent part &%, can be computed after
(4ms) the Poisson re-summation,
1
X{1+sP+s’=Pf(—sO)P+O[P%];. ® s
2 ( ) [ ] 2 e—(32/4s)n2:ﬂ 2 e—(47-rzs/,62)k2. (55)
(49) n== Bk

Here we restrict our consideration to terms of the second’he termk=0 of a new sum ovek corresponds to the high

order, because it gives the first nonlocal contribution to theemperature limifT—o (B=0), and it is ultraviolet finite.

finite-temperature effective actio”. Using the form(10)  The rest of thek-sum corresponds to a single term

for the potential term we rewrite this heat kernel in terms of=0 (T=0) of the originaln-sum, thus, it needs to be regu-

the dilaton field, larized. All of this follows from the fact that ultraviolet coun-
terterms introduced in a field theory at zero temperature are
sufficient for renormalization of the finite temperature field

1l+s¢lle theory. Here we use the zeta function regularization,

Tr K(s) ! JdD
rK(s)=—— X
(47s)P"

2e
o’ = ds
~ | = B
F(E)fo SlfeTr K |k¢0(s)‘| )

e=0

(56)

+823(D¢)f(—85)(5¢)+0[¢3] (50 WE, = L7
2 : k0= 75 72

We are calculatingV? in a way similar to the zero tem-

ratur . " .
perature caseb), where e is a small positive parameter ahdis the gamma

1 r=ds function. o N _
Wh= — _f —(Tr KA(s)=Tr K(8)| y=0), (51) On the other hand, the sum oveis infrared finite, with
2Jo s an exception for th&=0 term. Infrared divergences appear-
ing in different orders of the perturbation theoryRrare, in
where we subtract the zeroth-order term of the zerofact, artificial and disappear in the final result expressed in
temperature TK(s) from the heat kernel at some finite tem- terms of ¢, but we need to introduce an auxiliary mass to
perature 18. It is well known[33] that one can express the treat them at intermediate stages,
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1(=ds _. Restoring the effective action to the original two-
szo:— Ef ;e_s (Tr KA(8)|k=0 dimensional spacetime form one can see that the leading,
0 temperature independent, term of this expansion is\js
—Tr K(8)| g=0)|mz=o0- (57)  at zero temperatur€s3).

In curved spacetime the total result will be the sum of the
anomalous part of the effective acti@0), and Eq.(58) with
all flat quantities, metric and derivatives, being expressed in
terms of physicalcurved spacetimeones. We are not aware
of similar results in the literature to which one could make
any comparisons.

One can observe that the infrared polesViff_,, which
come from the locaP and nonlocaP? contributions, mutu-
ally cancel.

The final result reads

a
WE = _f dx{@+£(m¢) 2|n(§_:) VI. DISCUSSION
We have calculated the one-loop effective action for sca-
igy—0 igy—0 3 lar fields interacting with a background dilaton field in
- A -V - A ¢+0L¢7]), curved spacetime. The main results are E86). and(44) for

the zero-temperature case and EH®S8) for the finite-
temperature one. Strictly speaking, these results are obtained
for a generic dilaton field as long as the corresponding po-

where is the psi function. The obtained finite temperaturetential P has the form(10), and decreases sufficiently rapidly
effective action is infrared finite but depends on the ultravio-a¢ infinity. These results are applicable to arbitrary two-

let regularization parametgr. Even though arguments of the dimensional spacetimes with the topology of either a disk or
psi functions are imaginary, the combination®fs in Eq. 3 cylinder, because in two dimensions there is always a Kill-
(58) is equivalent to the real part oF. The thermal form jng vector, and using nonsingular conformal transformations
factor found is a smooth function of the inverse temperaturgne problem can be reduced to one for a flat spacetime with
B, and its different asymptotics can be easily analyzed.  the corresponding topology.

We emphasize that expressi@8) is valid for arbitrary The difference between our approach and a similar at-
temperature, and high and low temperature asymptotics ca@mpt to use perturbation theory made in the interesting pa-
be derived from it. The most popular expansion in thermakher[7] is that we are able to control the infrared divergences
field theory is the high temperature ong—~0. We found  that appear in two-dimensional calculations. We computed
that this expansion admits a local form, the one-loop effective action as an expansion in powers of
the dilaton field rather than in the potential term of a differ-
ential operator, and proved the infrared finiteness of the ef-

(58)

Wf;en: _f dx| 77 +i In(,B_,u +ClpOe fective action order by order. The resulting covariant nonlo-
B 12/32 4qr 4 cal effective action does not depend on the infrared cutoff,
and is proved to be valid up to the third order in the space-
£(3) {5 4 ) time curvature and the dilaton. For one particular field model
+ 6473 B (D) + Mﬁ (L) (D7) in a two-dimensional flat spacetime infrared finiteness of the
one-loop two-point functions was demonstrated in [R&8).
) Lombardo, Mazzitelli and Rusd@] found, using results of
+———B%(0¢) (%) +O[¢°]+0[B%] |, Ref.[36], the nonlocal form factor entering the conformally
16384 invariant part of the 2D effective action. Unfortunately, their
generalization of this result to curved spacetifoevarianti-
zation was not correct. The correct form of the covarianti-
B—0. (59

zation procedure makes use of Eg7). By applying it to the
_ _ o _ ~ terms quadratic in the dilaton we summed them up into a
This series has a form similar to high temperature expansionsingle flat-space terrt89). Then, the dilaton field could be

in four dimen;ions{33,33 o expressed in terms of the potential term, E44), and, if
The other important limit is, of course, the low tempera-necessary, be expanded in powers of the potential and/or
ture asymptotic, curvatures.

Equation(36) demonstrates that the effective action for
scalars interacting with the dilaton does not admit the exact

WA 1 O 1 levich i
[ x| = (O)in| — — ¢__1(1+4¢2) form proposed b'y' Kummer and Va_ssne\_/lch in R4f5,8],
B 8 w? B2 12 but contains additional conformally invariant terms that are
nonlocal. Here we would like to explain the origin of this
1 87° 3 6 discrepancy. In order to calculate the one-loop effective ac-
- EE F¢|+Ole"1+OUB [, B tion corresponding to the bosonic operatdf they substi-

tuted the fermionic representation of the determinant of the
(600  operator
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E(V)=g*"(D,D,+13,d,0) (61) invariant terms in that effective action can be obtained from
pov e Eq. (65) by covariantization, while the anomalous part is

in a flat spacetime for an original bosonic representationProved to be exads].

Note that we work in the Euclidean signature and the deriva- A few remarks are in order about the applicability of the

tive D, is defined(for the casep= )= ¢ in the notation of perturbative expansion to physically interesting cases. The

[5]) as covariant perturbation theory works well when derivatives of
the background fields are much bigger than powers of these

) fields [21],
D,=d,— Y€\, 62 felds[2]]

Here v° belongs to the algebra of gamma matrices and has

the property ¢°)2=1. This is an absolutely legitimate pro- VVR>R2, (66)
cedure as long as one deals with formal definitions of the

operator determinants in flat spacetit@g But the renormal-

ization procedure generically breaks the identity of these tw&ince the anomalous pafB0) is exact, we are concerned
representations, hence, the corresponding renormalized enly about the conformal termé33) or (39). For instance, if
fective actions do not coincide. To check this fact by anone wants to use the results above to study black hole phys-
explicit calculation, one can note that the operd@) also  ics and consider the 2D dilaton gravity inspired by the
belongs to the class of operators of the type Therefore, spherical reduction from four dimensions, then the dilaton
one can directly apply the covariant perturbation theory tde|q is defined asp=—Inr (where 4rr? is the area of a
this model. Let us write down the corresponding potentialg rface of the constant radius). At infinity the 2D

term, Schwarzschild metric is asymptotically flat, and the 2D cur-
vature and potential obviously satisfy the conditi@). As
ﬁ>=15¢, (63) for the vicinity of the horizon, note that/, in Eq._(39) is
expressed in terms of the flat spacetime operaiorThis
and the commutator curvature, means that all quantities in E@6) should also be defined in

the flat metricgw. One can check that the conditiaHv P
7‘3/”: YS(E#aﬁyé,aqs_ €,%0,00h). (64) > RZ (in the.“tortoise” coordinatesis also satisfied near the
horizon. This means that our results should be valid both at

We performed the computation of the one-loop effective acinfinity and at the horizon of the 2D dilaton black hole.

tion along the lines of the calculational scheme of Secs. Il Kummer and Vassilevicfi2,5,8| considered the case of a

and Il and using the tables of form factors of Rg#3]. We ~ more general differential operator, with the dilaton coupling
found that the terms of third order i, which in this case is being defined in terms of two arbitrary functions of the dila-
equivalent to ordefR®, vanishes, and the? terms have no 10N, ¢(¢) and#(¢). The results of this paper are obtained
infrared singularity. The final answer for the effective actionfor the simplest caser(¢)= ()= ¢. Strong reasons to

corresponding to the operat@1) is local and finite: study more general models are discussed in F8if.here,
we just would like to note that such nontrivial dilaton cou-

1 plings can be incorporated into our computational method.
I - 4 This is possible to do, because such models correspond to the
Wren= 87TJ’ X ¢Lo+ 0L (65) minimal second-order operator when expressed in terms of
new redefined metric and covariant derivati&, but we
Indeed, this expression is in good agreement with Eq. 42 oeave this generalization for some other publication.
Ref. [5] (the opposite sign is attributed to the Euclidean In conclusion, we would like to make some general com-
spacetime signatureHowever, as one can see, it is com- ments on the validity of the anomaly-induced effective ac-
pletely different from the effective action for the original tions. Such effective actions are very attractive, because they
bosonic model found in Sec. Il above. Technically, thisare relatively easy to derive, and they have rather simple
stems from the fact that in order to remove the ultravioletstructures. However, as was shown above, the anomaly-
divergences one should subtract the first two terms of thénduced effective actions are incomplete even for simple
Schwinger-DeWitt expansion of the heat kernels. But thewo-dimensional field models. This is also true for four di-
Schwinger-DeWitt coefficients for the operators in questionmensions, and an interesting recent wgk| would be a
are absolutely different, because their heat kernels are diffegood illustration. The authors applied the nonlocal effective
ent. Nevertheless, the remarkable result of RBf.is the  action obtained by integration of the four-dimensional trace
exact expression for the effective action for the spinor modeanomaly(the generalized Riegert actipto the study of the
(61). This two-dimensional one-loop effective action is local, Hawking radiation. Indeed, this action is nonlocal, therefore,
infrared finite, and does not depend on a regularization pait captures some essential features of the energy-momentum
rameter. In principle, we could start with a covariant versiontensor in curved spacetime. Nevertheless, as correctly noted
of the differential operato(61) and derive the covariant ef- in [37], further applications of the Riegert action encounter
fective action, but it not necessary because all conformallyserious obstacles, because it is ill-defined at infif88]. The
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four-dimensional nonlocal effective action of Barvinsky and
Vilkovisky [21,23 is the only known action with the right
properties[38]. There are many ways to split this effective
action into anomalous and conformal paf89], and only
one of them gives the Riegert action.
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APPENDIX A: THIRD-ORDER FORM FACTORS FOR THE TRACE OF THE HEAT KERNEL

Below we display form factors of the third order in EQ.3) of Sec. Il. They are expressed in terms of dimensionless

argumentst; = —sl;, i=1,...,3, and thelenominator,

A=E2+ &P+ E5—2616,— 28,83~ 26565, (A1)
- 515253 6 5 5 4 342 4g 2
Mi1(é1,€2,63) = —F(&1,62.80) 537 —T(6) 5 (87— 46,°6,— 4860763+ 3617 6,85+ 246,76, 83 156173
32A%¢,
+ 248138857 — 2607 6,° 857 + 8261 £,°E5° — 2561765 85° — B6E1£,°E5° + 58,768~ 56,7857 — 96,765 H 44, £5°
f(é)—1
+5§2§35—§36)—( (‘f; )SAZ (61— 28,383 126176583~ 1061 6,763+ 88162857 — 28,765+ 261 65°
f(é)-1-5&)| 3 ¢
+3§2§33—§34)—( 1(51)2 : l)8D§2<§12+4§1§2+§2§3—§32) £ 3 (@ 1)
1 & (f(gz)—l f(§3)—1> 1 3g2(f<§2>—1—é§2 f(&)-1-§ &
=2 - =2 - , A2
Ye68E & & |Te88E T (5 &) 42)
515253 1 4 3 24 2 242 3 2 2
M2(€1.62.63) =F(£1.62.63) _f(gl)lzng (2617 = 581783+ 38,767+ 36,7657+ €165+ 1161 6,657+ 1161 6,765
2

FE163—BEPESPHAES P Ea+ 48,858 — 6,0~

F 281 £,£53 4+ 1781 £,£4°

&M+ (&) !
1

(— &M £8P 38,267 -58,%¢E,

2D%¢,

—128,28,£3— 6,38, + 176, £,% €3+ 46,%857)

Cfé)-1 ¢ f(&)—1 1
i apg -G f)r— — pp e (BT hik 360k b))
1 2§6,+¢&; & [(f(E)—1 f(&3)—1
g 12, V@@ | Ty & | (A3)
&xé3
M3(61,62,83)=—F(&1,65,63)—— A +f(§1)2D(253 &)— f(§2)2§ D(2§1§3+§2 —&2-§,2)
&
f £ 25, 5 (F(&) —1(&3)), (A4)
1 1 &
M4(§1,§21§3):§F(§1,§2-§3)_f(§1)(§—3_@)- (A5)
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APPENDIX B: THIRD-ORDER FORM FACTORS FOR COMPUTATION OF THE EFFECTIVE ACTION
Here is the list of third-order form factors in E@Q4) of Sec. Il with D defined by Eq(23):

010203 4 3 3 4
Nl(S|D1,D2,D3)=SF(—SD1,—SDZ,—SD:;)T+f(—SD1)8DT1E|2(D1 —2\:|1 D3+2D1D3 —D3
—20,°0,+30,0,%—80,20,0,+ 80, 0,052— 100, 0,20, — 20,2,?)
MO 1 G oy 40,0,+0,0,-02) + — 22
s, 4DD1D2( ! 102+ D0s = Hs") 0,-05 04
1/ 1 ; O 1 ; o +1 1 f(—-sd,)—1 1 f(—sO3)—1 B1
| Telg TS g s gl e, e, TE, T sm, ) (B1)
g P
N2(S|D1,D2,D3):_SF(_SD]_,_Sljz,_Slja)_‘i‘ f(—SDl)
D DO,
0,0,—-0,%+ 30,05+ 0,0, 1 0O,/ 1 1 )
+ D|:|2|:|3 f(—Smg)—mD—Z D—lf(—SD1)—D—3f(—SD3) ,
(B2
1
N3(S|D1,D2,D3)=SF(—SD1,—SDZ,—SD3)D—, (B3)
1
N4(S|D1,D2,D3):—SF(—SD1,—SD2,—SD3)m. (B4)
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