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Two-dimensional effective action for matter fields coupled to the dilaton
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We revise the calculation of the one-loop effective action for scalar and spinor fields coupled to the dilaton
in two dimensions. Applying the method of covariant perturbation theory for the heat kernel we derive the
effective action in an explicitly covariant form that produces both the conformally invariant and the confor-
mally anomalous terms. For scalar fields the conformally invariant part of the action is nonlocal. The obtained
effective action is proved to be infrared finite. We also compute the one-loop effective action for scalar fields
at finite temperature.
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I. INTRODUCTION

The effective action and conformal anomaly of quantu
fields coupled to the dilaton in two dimensions have been
subject of a number of recent papers. The main motiva
for the study of quantum field models in two-dimension
~2D! dilaton-gravity backgrounds comes from the fact th
such models naturally arise after the spherical~or dimen-
sional! reduction from higher-dimensional field theories a
gravity. For a description of the spherical reduction pro
dure leading to dilaton gravity in two dimensions, we refer
@1,2#.

Two dimensional models seem to be easy to quantize,
in some cases they admit exact solutions at classical
quantum levels. Black hole physics is one of the most in
esting applications of such models@1,3#. Seemingly, the two-
dimensional results could provide information about high
dimensional quantum physics. The question of the effec
action for 2D dilaton gravity and its relation to Hawkin
radiation is addressed in many papers~ @4–7#, to mention a
few!. For the history and contemporary state of this probl
see a recent review by Kummer and Vassilevich@8#. How-
ever, the applicability of these two-dimensional consid
ations to the Hawking effect in four dimensions is hampe
by serious problems@6,9,10# ~some of these problems ar
related to the dimensional-reduction anomalies and may
resolved via their thorough analysis@11#!.

We study here only two-dimensional models, so, we
not concerned with problems related to the dimensional
duction or higher-dimensional quantum physics. Specifica
in this paper we focus on the one-loop effective action
quantum matter fields interacting with the background d
ton and gravity in two dimensions, and related infrared pr
lems. Surprisingly, there is no consensus in the literat
even about this relatively simple problem. We derive t
one-loop effective action, which, in our opinion, corrects a
supplements other known results on this subject.

*Email address: ygusev@phys.ualberta.ca
†Email address: zelnikov@phys.ualberta.ca
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II. HEAT KERNEL FOR SCALAR FIELDS COUPLED TO
THE DILATON IN TWO DIMENSIONS

Let us begin with the classical action for the scalar ma
field h coupled to the background metricgmn and the back-
ground dilaton fieldf,

S52
1

2E d2x g1/2e22f¹mh¹mh. ~1!

We do not specify here the functionf, which can be an
arbitrary smooth function. Following the procedure of@4,12#
we redefine field variables and rewrite the action~1! in terms
of new scalar fieldsh̃5e2fh. Then the action takes the form

S52
1

2E d2x g1/2$¹mh̃¹mh̃2h̃2@hf2~¹mf!~¹mf!#%.

~2!

The one-loop effective action for this model is defined as

W5
1

2
Tr ln F~¹!, ~3!

where the differential operator corresponding to the act
~2! reads

F~¹!5h1hf2~¹mf!~¹mf!. ~4!

The widely accepted technique to compute the effect
action is to use the trace anomaly of the energy-momen
tensor ~Weyl anomaly!, T52gmn(dW/dgmn). Combined
with the proper boundary conditions it provides enough
formation to derive unambiguously the one-loop effecti
action in the absence of the dilaton, the Polyakov action@13#.
A similar method was applied to the system of quantu
scalar fields coupled to the dilaton@4,12,14–16#. The opera-
tor ~4! describes a 2D conformal model, and, in this caseW
is also restored by the integration of the conformal anoma
Such an effective action is known as the anomaly-indu
action. Because this action is completely defined by T,
main subject of calculations and controversies in the exis
©2000 The American Physical Society10-1
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literature was the computation of the anomaly itself. Unf
tunately, unlike the Polyakov action, the anomaly-induc
action is incomplete because it may contain conformally
variant terms that cannot be fixed by knowledge of
anomaly alone. These missing terms are important, for t
lead to a non-zero~though traceless! energy-momentum ten
sor. This ambiguity is an artifact of the method, and its orig
is obvious. The integral of the Weyl anomaly is, in fact, t
difference between the effective actions in a physical spa
time and in a reference one@17#. Without a dilaton the ref-
erence spacetime is implicitly assumed to be flat with
same topology as the physical 2D manifold. The presenc
the dilaton leads to a nontrivial conformally invariant effe
tive action in the reference spacetime. As we will show e
plicitly, this action is generically nonlocal; hence, it can co
tribute to the Hawking radiation from the 2D dilaton blac
holes.

In order to obtain the complete effective action we us
method, which is different from the one we just describ
Our approach to this problem has two important features:~1!
it is manifestly covariant throughout all calculations;~2! it
does not make use of the trace anomaly, thus, both anom
producing and conformally invariant terms come from t
same calculation.

We begin with the heat kernel for the operator~4! and
express the one-loop effective action as an integral over
proper times, @18,19#,

W52
1

2E0

` ds

s
Tr K~s!. ~5!

In coordinate representation Tr denotes the functional tra
Tr K(s)5*dDx trK̂(sux,x) in arbitrary dimensionsD, where
tr denotes the matrix trace over any internal degrees of f
dom that may be present in a field theory. The heat ke
K̂(s) is defined as a solution of the problem

d

ds
K̂~sux,y!5F̂~¹x!K̂~sux,y!, K̂~0ux,y!51̂d~x2y!.

~6!

For the computation of the heat kernel we employ
covariant perturbation theory of Barvinsky and Vilkovisk
@20–23#. As a basis for our calculations we use a gene
expression for the trace of the heat kernel in arbitrary spa
time dimensions obtained in Refs.@23–25# up to the third
order in curvatures,

Tr K~s!5
1

~4ps!D/2E dDx g1/2

3H 11sP̂1s2(
i 51

5

f i~2sh2!R1R2~ i !1s3(
i 51

29

Fi

3~2sh1 ,2sh2 ,2sh3!R1R2R3~ i !1O@R4#J ,

~7!
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for the generic field operator

F̂~¹!51̂h2
1̂

6
R~x!1 P̂~x!. ~8!

Here R is the Ricci scalar, andP̂ is an arbitrary potential
term, which depends on the background fields and cur
tures. In Eq. ~7! we introduced the collective notatio
for background field strengths ~‘‘curvatures’’!, R

5(Rmn ,R̂mn ,P̂), which includes the commutator curvatur

@¹m ,¹n#h5R̂mnh. ~9!

The form factorsf i and Fi in Eq. ~7! are analytic func-
tions of the dimensionless argumentsh that act on tensor
invariants constructed from the field strengths. It is assum
that the operator argumentsh i in the form factors are acting
on the curvatures at the corresponding spacetime pointsRi
5R(xi), and after that all spacetime points are made co
cident,x15x25x35x.

For straightforward applications of this result, the diffe
ential operator for a field model should be of the form~8!. It
was already shown@23,24# that the heat kernel~7! correctly
reproduces the Polyakov action, where the operator is
F(¹)5h. The operator~4! also belongs to the class of mod
els ~8! with the following specifications,

tr1̂51,P̂5S 1

6
R1hf2~¹mf!~¹mf! D 1̂. ~10!

Furthermore, the basis of 29 tensor structures in the th
order @23,25# can be considerably reduced using the iden
ties

R̂mn50, Rmn5
1

2
gmnR. ~11!

It is useful to express the heat kernel~7! in terms of two
background field objects, the Ricci scalarR and the dilaton
field f, instead ofR andP. Integrating by parts and discard
ing total derivatives we represent the first local term of E
~7! in the form

E d2x g1/2 P~x!5E d2x g1/2fhf. ~12!

The expression for the trace of the heat kernel for opera
~4! reads
0-2
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Tr K~s!5
1

4psE d2x g1/2 H 11sfhf1s2F1

2
f ~2sh2!~hf1!~hf2!1X 1

32
f ~2sh2!2

1

8 S f ~2sh2!21

sh2
D

1
3

8 S f ~2sh2!212 1
6 sh2

~sh2!2 D CR1R21S 1

4
f ~2sh2!2

1

2

f ~2sh2!21

sh2
D ~hf12~¹f1!2!R2G

1s3@M1~2sh1 ,2sh2 ,2sh3!R1R2R31M2~2sh1 ,2sh2 ,2sh3!R1R2~hf3!1M3~2sh1 ,2sh2 ,

2sh3!R1~hf2!~hf3!1M4~2sh1 ,2sh2 ,2sh3!~hf1!~hf2!~hf3!#1O@R4#J . ~13!
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In any expression, which depends onf andR, like Eq. ~13!,
we assumeR5(f,R). All second-order form factors are ex
pressed via the basic one

f ~2sh !5E
0

1

daea(12a)sh. ~14!

The third-order form factorsMi for i 51 . . . 4 arefunctions
of the dimensionless argumentsjk52shk , k51 . . . 3 and
are listed in Appendix A. They are formed with the bas
form factors~14! and

F~2sh1 ,2sh2 ,2sh3!

5E
a>0

da1 da2 da3 d~12a12a22a3!

3exp„s~a2a3h11a1a3h21a1a2h3!….

~15!

The form factors in Eqs.~7! and~13! are analytical functions
of the proper time, that can be exhibited, for example,
rewriting the following form factor:

1

s~h12h2!
„f ~2sh1!2 f ~2sh2!…

5E
0

1

daa~12a!E
0

1

db

3exp„sa~12a!~~12b!h11bh2!…. ~16!

Local coefficients of the Schwinger-DeWitt expansi
@18,19#, which is often used in quantum field theory, can
easily obtained from the nonlocal expression~7! by the
simple expansion of all form factors in powers of the prop
time @24#.

III. ONE-LOOP EFFECTIVE ACTION FOR SCALAR
FIELDS COUPLED TO THE DILATON IN TWO

DIMENSIONS

The trace of the heat kernel is a classical object, wh
nevertheless, contains complete information about all qu
08401
y

r

,
n-

tum averages. For example, the trace anomaly in two dim
sions is completely defined by the first Schwinger-DeW
coefficient,a1(x)5tr P̂(x) @the potential term figures here i
the form~10!, rather than in the integrated form~12!#. This is
a local expression, and any derivations of the one-loop ef
tive action based just on the coefficienta1 ignore complex
conformally invariant, nonlocal structures of the heat kern
Such methods work well in the case of pure 2D gravity a
give the Polyakov effective action, but they fail in the case
dilaton gravity models. However, these procedures s
might be valid for another field model@5,8# discussed in the
closing section of this paper.

In two dimensions, even after subtracting the ultravio
divergences, the resulting one-loop renormalized effec
action is not generally defined because of bad behavior of
heat kernel trace in the large proper time limit~infrared di-
vergence! @21#. However, in our model~2!–~4! we can con-
trol the infrared behavior using the asymptotic behavior
the form factors@24#,

f ~2sh !52
1

s

2

h
1OS 1

s2D , s→` ~17!

F~2sh1 ,2sh2 ,2sh3!

5
1

s2 S 1

h1h2
1

1

h1h3
1

1

h2h3
D1OS 1

s3D , s→`,

~18!

and prove the infrared finiteness ofW. Indeed, we find that

1

s
Tr K~s!5OS 1

s2D , s→` ~19!

and, hence, the proper time integral is convergent at the
per limit.

In order to compute the integral~5! we apply the tech-
nique of Ref.@24#. Let us reproduce here some differenti
equations that basic form factors of the nonlocal heat ke
satisfy
0-3
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2s
h1h2h3

D
F~2sh1 ,2sh2 ,2sh3!5

d

ds
„sF~2sh1 ,2sh2 ,2sh3!…1

h1~h31h22h1!

2D
f ~2sh1!

1
h2~h11h32h2!

2D
f ~2sh2!1

h3~h11h22h3!

2D
f ~2sh3!, ~20!

f ~2sh !21

sh
5

d

ds S 2
2

h
f ~2sh ! D1

1

2
f ~2sh !, ~21!

f ~2sh !212 1
6 sh

~sh !2
5

d

ds S 2
2

3h

f ~2sh !21

sh
2

1

3h
f ~2sh ! D1

1

12
f ~2sh !, ~22!

whereD is the expression

D5h1
21h2

21h3
222h1h222h1h322h2h3 . ~23!

Applying these relations to the heat kernel~13! we can present some part of it in the form of a total derivative over
proper time:

1

s
Tr K~s!5

1

4pE dx g1/2 H d

ds
@ f 1~suh2!R1R21 f 2~suh2!„hf12~¹f1!2

…R21N1~suh1 ,h2 ,h3!R1R2R3

1N2~suh1 ,h2 ,h3!R1R2~hf3!1N3~suh1 ,h2 ,h3!R1~hf2!~hf3!1N4~suh1 ,h2 ,h3!~hf1!~hf2!

3~hf3!#1
1

s2
1~hf!

1

sh
~hf!1h~suh2!~hf1!~hf2!1H~suh1 ,h2 ,h3!R1~hf2!~hf3!1O@R4#J ,

~24!
.

a-

a

we

,
c-

res-
where

f 1~suh2!5
1

h2
S 1

8
f ~2sh2!2

1

4

f ~2sh2!21

sh2
D , ~25!

f 2~suh2!5
1

h2
f ~2sh2!, ~26!

and

h~suh2!5
1

2
f ~2sh2!, ~27!

H~suh1 ,h2 ,h3!52
1

2h1

1

h22h3
„h2f ~2sh2!

2h3f ~2sh3!…. ~28!

The third-order form factorsNi(suh1 ,h2 ,h3) may be
found in Appendix B. As can be seen from Eq.~24!, not all
of the terms in TrK(s) admit the form of a total derivative
As a result, in contrast to the Polyakov action@13,24#, the
effective action~5! in two dimensions depends on the ultr
violet cutoff parameterm.

For the sake of convenience we split the total renorm
ized effective action into two parts,Wren5Wfin1Wm . Wfin is
a part defined by the total derivative terms of Eq.~24! while
08401
l-

Wm is defined by the rest~including any higher order terms!.
The calculation of the finite terms becomes trivial as
perform the proper time integration. Using Eqs.~20!, ~21!
again we can check that the form factorsf i andNi vanish at
the upper limit,s→`. Thus,

Wfin5
1

8pE d2x g1/2$ f 1~s50!R1R21 f 2~s50!

3„hf12~¹f1!2
…R21N1

sym~s50!R1R2R3

1N2
sym~s50!R1R2~hf3!

1N3
sym~s50!R1~hf2!~hf3!

1N4
sym~s50!~hf1!~hf2!~hf3!%, ~29!

whereNi
sym( i 51, . . . 4) aresymmetrized in their arguments

h1 ,h2 ,h3, according to the symmetries of the tensor stru
tures they are acting on. All of the third-order (R3) contri-
butions to the heat kernel trace vanish, leaving the exp
sion

Wfin5
1

96pE d2x g1/2 H R
1

h
R212~¹f!2

1

h
R112fRJ .

~30!
0-4
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TWO-DIMENSIONAL EFFECTIVE ACTION FOR MATTER . . . PHYSICAL REVIEW D61 084010
This part coincides with the usual form of the one-loop
fective action derived by the integration of the trace anom
@2,4,12,14#.

To treat the remaining terms of the effective action~when
the zeroth order term is already subtracted@26#! we apply the
proper time cutoff regularization,

Wm52
1

8pE d2x g1/2E
1/m2

L

ds

3H 1

s
fhf1h~suh2!~hf1!~hf2!

1H~suh1 ,h2 ,h3!R1~hf2!~hf3!1O@R4#J ,

~31!

where infrared and ultraviolet cutoff parameters are int
duced correspondingly at the upper and lower limits of
proper time integral in order to single out terms of this in
gral that are apparently divergent. However, the integral a
whole appeared to be infrared finite and independent of
parameterL, as will be demonstrated in a moment. As far
ultraviolet divergences are concerned, only the first, loc
term of integral~31! is divergent whenm→`. Then, the key
element of our computations is the integral:

E
0

L

ds f~2sh !5E
0

1

da
ea(12a)Lh21

a~12a!h

52
2

h
„ln~2Lh !1C…, ~32!

whereC is the Euler constant. The dependence on the in
red cutoff parameterL in first two terms of integral~31!
cancels, as does theL dependence in the form factor~28! of
the third term. The resulting expression reads

Wm5
1

8pE d2x g1/2 H ~hf!lnS 2
h

m2D
3f2

ln~h2 /h3!

~h22h3!

1

h1
R1~hf2!~hf3!1O@R4#J .

~33!

It should be emphasized that the nonlocal form factors of
~33! can be used for physical applications only when e
pressed in terms of the Green function, e.g., after conver
them into the mass spectral integrals@21,22#,

2 lnS 2
h

m2D 5E
0

`

dm2S 1

m22h
2

1

m22m2D , ~34!

2
ln~h1 /h2!

h12h2
5E

0

`

dm2
1

m22h1

1

m22h2

, ~35!
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where 1/(m22h) is the massive Euclidean Green functio
with zero boundary conditions at spacetime infinity.

Combining the two pieces,Wfin andWm , we get the final
result for the renormalized effective action

Wren5
1

96pE d2x g1/2 H R
1

h
R212~¹f!2

1

h
R112fR

112~hf!lnS 2
h

m2D f212
ln~h2 /h3!

~h22h3!

1

h1

3R1~hf2!~hf3!1O@R4#J . ~36!

Equation~36! is one of the main results of this paper. Th
effective action is covariant by construction. It evidently r
produces the conformally anomalous part@4# and unambigu-
ously fixes new conformally invariant terms that were n
derived previously in the literature. It can be seen explici
from Eq. ~36! that, with an exception for the anomalousRf
term, terms of the first and third orders in the dilaton field a
absent from the conformally invariant part of this one-lo
effective action. This plausibly indicates that all higher-ord
terms are even in powers of the dilaton. This conjecture
be tested using the higher-order perturbation expansions
the heat kernel in flat space found in Refs.@27,28#.

In agreement with Refs.@7,29#, we see that thef2 terms
of the effective action are nonlocal, and do not have the lo
form derived in@5,8#. We should stress that these terms a
infrared finite. Only the ultraviolet regularization paramet
m enters the answer, and not the infrared cutoff as was s
gested in@7#.

The form of the last term in Eq.~36! is different from the
one in Ref. @7# because the covariantization procedure
nonlocal terms used there is incorrect. To check our re
we can perform the opposite operation, namely, to sum
series of the terms quadratic in the dilaton into a flat sp
object. To do so we take the expression~33! in a flat space
assuming that the original metric is related to the flat sp
oneḡmn via a conformal factor:gmn5e22sḡmn . To return to
the original metric we have to use the equation for the va
tion of the effective action form factor@30#,

E d2x g1/2dsXlnS 2
h̄2

m2 D CR1R2

5E d2x g1/2
ln~h1 /h2!

h12h2
ds~h2!R1R21O@R3#,

~37!

whereh̄ is defined for the flat-space metricḡmn . Equation
~37! follows directly from the rule of variation of the Euclid
ean Green function@18#,

ds

1

m22h
5

1

m22h
ds~h !

1

m22h
, ~38!
0-5
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YU. V. GUSEV AND A. I. ZELNIKOV PHYSICAL REVIEW D 61 084010
and Eqs.~34!, ~35!. We know that ds(h)522(ds)h,
whereds5s, and upon substituting the nonlocal curvatu
expression for the conformal factor,s(g)52 1

2 (1/h)R, into
Eq. ~37! one can see that it becomes nothing but the sec
term of Eq. ~33!. As a result, it is possible to rewrite th
terms quadratic in the dilaton field in a flat spacetime for

Wm5
1

8pE d2x H ~h̄f!lnS 2
h̄

m2D f1O@f4#J . ~39!

When expanded in powers of the curvatures, the effec
action ~39! again becomes an infinite series.

IV. PARTIAL SUMMATION OF THE DILATON
EFFECTIVE ACTION

In the previous sections we have derived the one-lo
effective action as a perturbation series in powers of the
laton fieldf. So far no explicit form of the dilaton field wa
assumed, and we could rewrite this expansion in terms of
potential P(f). But instead of doing a perturbative expa
sion using the potential as a small parameter, we perfor
partial summation of the effective action and obtain a res
which is nonperturbative in terms ofP. To simplify calcula-
tions we work in a flat spacetime in the present and follo
ing sections. In other words, we perform all operations o
with the conformal part ofWren, Eq.~39!, and we can restore
the whole covariant result, expressed in terms ofR andP, at
the end of the derivations. For the sake of convenience,
keep here the covariant notationh instead of the flat-spac
oneh̄.

Let us begin with the equation for the potentialP,

P5hf2~¹mf!~¹mf!. ~40!

We rewrite this equation as a linear differential equation
substituting the following ansatz for the dilaton field@4#:

f52 ln V. ~41!

The solution of the resulting equation onV,

~h1P!V50, ~42!

reads

V512
1

h1P
P, ~43!

where the boundary conditionV51 at uxu→` is assumed.
In principle, more general solutions containing zero mod
hV050, are allowed, but the requirement of covariant p
turbation theory@21# that all background fields including th
dilaton field ~41! vanish at spacetime infinity putsV051.

The effective action, which is known up to the third ord
in the dilaton field, now can be written in a nonperturbati
form by inserting Eqs.~41! and~43! into Eq.~39!. The result
reads
08401
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Wm 5
1

8pE d2x ~hf! lnS 2
h

m2D f, ~44!

where

f~x!52 lnS 12
1

h1P
PD . ~45!

Thus, we obtain a partially summed form of the one-lo
effective action. This summation is partial, because not
higher-order terms are included in Eqs.~44!, ~45! but only
those containing the form factor ln(2h/m2). Such a summa-
tion with help of a new auxiliary scalar field, which is ex
pressed in a nonlocal way through the perturbation~curva-
ture! @31#, is very similar to the summation of the Ricc
scalar terms in the 4D covariant effective action perform
in Ref. @32#.

To reproduce the perturbation series we first obtain
expansion ofV,

V~x!512
1

h
P1

1

h
S P

1

h
PD1O@P3#, ~46!

which gives us an approximation for the dilaton

f~x!5
1

h
P1

1

2 S 1

h
PD S 1

h
PD2

1

h
S P

1

h
PD1O@P3#.

~47!

This series obviously coincides with an iterative solution
Eq. ~40!. The perturbative expansion of Eq.~44! reads

Wm 5
1

8pE d2x H P lnS 2
h

m2D S 1

h
PD

1
1

2
P lnS 2

h

m2D XS 1

h
PD S 1

h
PD C

1
1

2
hXS 1

h
PD S 1

h
PD C lnS 2

h

m2D S 1

h
PD

2S P
1

h
PD lnS 2

h

m2D S 1

h
PD

2P lnS 2
h

m2D 1

h
S P

1

h
PD1O@P4#J . ~48!

The leading term of this expansion is apparently similar
the expression obtained in Ref.@7# with the reservation of a
different meaning for the regularization parameterm.

V. DILATON EFFECTIVE ACTION AT FINITE
TEMPERATURE

An obvious use for the obtained one-loop effective act
is its application to the calculation of the stress tensor. So
we have worked in a Euclidean spacetime. According
rules of covariant perturbation theory, one makes the tra
0-6



m
tio
m
nd
o
io
e
ry
em
re
th

i

or
im
y

t
e

te
tiv
w

ea

on
th

o

-

ro
-

e

ero

pe-
a-
ory

f
n

r

-
-
are
ld

r-

in
to

TWO-DIMENSIONAL EFFECTIVE ACTION FOR MATTER . . . PHYSICAL REVIEW D61 084010
tion to Minkowski spacetime only after deriving quantu
averages and currents from the Euclidean effective ac
@20#. Similarly, in the calculation of the energy-momentu
tensor for quantum fields in a black hole background bou
ary conditions corresponding to the Unruh, Boulware,
Hartle-Hawking vacua are to be specified after the variat
over the metric. Authors of@6,9# completed this procedur
by making the effective action local by introducing auxilia
fields and imposing the proper boundary conditions on th

The other way to introduce boundary conditions cor
sponding to the Hartle-Hawking vacuum is to consider
field system at some fixed temperatureT51/b. This is rela-
tively easy to do, because the Killing vector always exists
two dimensions, in contrast to higher dimensions@33–35#.
Therefore, without losing generality, we can make a conf
mal transformation to a flat space where the Euclidean t
is periodic, i.e., the flat spacetime has the topology of a c
inder. In our new flat space the anomaly-generating par
the effective action~30! vanishes, so we deal only with th
conformally invariant part~33!. This is what one would ex-
pect, because the anomalous part does not depend on
perature. In our treatment of the finite-temperature effec
action for scalar fields coupled to the dilation we will follo
the computational scheme of Refs.@34,35#. For general no-
tions of finite temperature field theory we refer to@33#, and
references on some earlier works can be found in@35#.

Let us start with the flat-space limit of the trace of the h
kernel ~7!,

Tr K~s!5
1

~4ps!D/2E dDx

3H 11sP1s2
1

2
P f~2sh !P1O@P3#J .

~49!

Here we restrict our consideration to terms of the sec
order, because it gives the first nonlocal contribution to
finite-temperature effective actionWb. Using the form~10!
for the potential term we rewrite this heat kernel in terms
the dilaton field,

Tr K~s!5
1

~4ps!D/2E dDxH 11sfhf

1s2
1

2
~hf! f ~2sh !~hf!1O@f3#J . ~50!

We are calculatingWb in a way similar to the zero tem
perature case~5!,

Wb52
1

2E0

`ds

s
„Tr Kb~s!2Tr K~s!uf50…, ~51!

where we subtract the zeroth-order term of the ze
temperature TrK(s) from the heat kernel at some finite tem
perature 1/b. It is well known @33# that one can express th
08401
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heat kernel at finite temperature as an infinite sum of the z
temperature heat kernels at separated pointsx andx8,

Kb~sut,x;t8,x8!5 (
n52`

`

K~sut,x;t81bn,x8!, ~52!

wheret is the Euclidean time andx are the spatial coordi-
nates. Then, the two-dimensional TrKb can be found via the
heat kernel in one dimension,

Tr Kb~s!5u3~0,e2b2/4s!
b

~4ps!1/2E d1x tr K (1)~sux,x!,

~53!

where we have introduced the Jacobi theta function,

u3~a,b![ (
n52`

n5`

e2naibn2
. ~54!

The zeroth-order term of the effective action requires s
cial treatment. First of all, it is removed by the renormaliz
tion procedure in the zero temperature quantum field the
~QFT! @see Eq.~51!#, which amounts to subtracting then
50 term from the sum~52!. Straightforward computation o
the proper time integral~51! with the subsequent summatio
over n gives us a numerical coefficient in front of the 1/b
term, which figures in the final expression~58! below.

The dilaton-dependent part ofWb can be computed afte
the Poisson re-summation,

(
n52`

`

e2(b2/4s)n2
5

A4ps

b (
k52`

`

e2(4p2s/b2)k2
. ~55!

The termk50 of a new sum overk corresponds to the high
temperature limitT→` (b50), and it is ultraviolet finite.
The rest of thek-sum corresponds to a single termn
50 (T50) of the originaln-sum, thus, it needs to be regu
larized. All of this follows from the fact that ultraviolet coun
terterms introduced in a field theory at zero temperature
sufficient for renormalization of the finite temperature fie
theory. Here we use the zeta function regularization,

WkÞ0
b 52

1

2

]

]e F m2e

G~e!
E

0

` ds

s12e
Tr KbukÞ0~s!G

e50

,

~56!

wheree is a small positive parameter andG is the gamma
function.

On the other hand, the sum overk is infrared finite, with
an exception for thek50 term. Infrared divergences appea
ing in different orders of the perturbation theory inP are, in
fact, artificial and disappear in the final result expressed
terms off, but we need to introduce an auxiliary mass
treat them at intermediate stages,
0-7
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Wk50
b 52

1

2E0

` ds

s
e2sm2

„Tr Kb~s!uk50

2Tr K~s!uf50…um250 . ~57!

One can observe that the infrared poles inWk50
b , which

come from the localP and nonlocalP2 contributions, mutu-
ally cancel.

The final result reads

Wren
b 52E dx H p

12b
1

b

8p
~hf!F2lnS bm

4p D
2CS ibA2h

4p D 2CS 2
ibA2h

4p D Gf1O@f3#J ,

~58!

whereC is the psi function. The obtained finite temperatu
effective action is infrared finite but depends on the ultrav
let regularization parameterm. Even though arguments of th
psi functions are imaginary, the combination ofC ’s in Eq.
~58! is equivalent to the real part ofC. The thermal form
factor found is a smooth function of the inverse temperat
b, and its different asymptotics can be easily analyzed.

We emphasize that expression~58! is valid for arbitrary
temperature, and high and low temperature asymptotics
be derived from it. The most popular expansion in therm
field theory is the high temperature one,b→0. We found
that this expansion admits a local form,

Wren
b

b
52E dx H p

12b2
1

1

4p F lnS bm

4p D1CGfhf

1
z~3!

64p3
b~hf!~hf!1

z~5!

1024p5
b3~hf!~h2f!

1
z~7!

16384p5
b5~hf!~h3f!1O@f3#1O@b8#J ,

b→0. ~59!

This series has a form similar to high temperature expans
in four dimensions@33,35#.

The other important limit is, of course, the low temper
ture asymptotic,

Wren
b

b
5E dx H 1

8p
~hf!lnS 2

h

m2D f2
1

b2

p

12
~114f2!

2
1

b4

8p3

15
fS 1

h
f D1O@f3#1O@1/b6#J , b→`.

~60!
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Restoring the effective action to the original two
dimensional spacetime form one can see that the lead
temperature independent, term of this expansion is justWren
at zero temperature~33!.

In curved spacetime the total result will be the sum of t
anomalous part of the effective action~30!, and Eq.~58! with
all flat quantities, metric and derivatives, being expressed
terms of physical~curved spacetime! ones. We are not awar
of similar results in the literature to which one could ma
any comparisons.

VI. DISCUSSION

We have calculated the one-loop effective action for s
lar fields interacting with a background dilaton field
curved spacetime. The main results are Eqs.~36! and~44! for
the zero-temperature case and Eq.~58! for the finite-
temperature one. Strictly speaking, these results are obta
for a generic dilaton field as long as the corresponding
tentialP has the form~10!, and decreases sufficiently rapid
at infinity. These results are applicable to arbitrary tw
dimensional spacetimes with the topology of either a disk
a cylinder, because in two dimensions there is always a K
ing vector, and using nonsingular conformal transformatio
the problem can be reduced to one for a flat spacetime w
the corresponding topology.

The difference between our approach and a similar
tempt to use perturbation theory made in the interesting
per @7# is that we are able to control the infrared divergenc
that appear in two-dimensional calculations. We compu
the one-loop effective action as an expansion in powers
the dilaton field rather than in the potential term of a diffe
ential operator, and proved the infrared finiteness of the
fective action order by order. The resulting covariant non
cal effective action does not depend on the infrared cut
and is proved to be valid up to the third order in the spa
time curvature and the dilaton. For one particular field mo
in a two-dimensional flat spacetime infrared finiteness of
one-loop two-point functions was demonstrated in Ref.@36#.
Lombardo, Mazzitelli and Russo@7# found, using results of
Ref. @36#, the nonlocal form factor entering the conformal
invariant part of the 2D effective action. Unfortunately, the
generalization of this result to curved spacetime~covarianti-
zation! was not correct. The correct form of the covarian
zation procedure makes use of Eq.~37!. By applying it to the
terms quadratic in the dilaton we summed them up into
single flat-space term~39!. Then, the dilaton field could be
expressed in terms of the potential term, Eq.~44!, and, if
necessary, be expanded in powers of the potential an
curvatures.

Equation~36! demonstrates that the effective action f
scalars interacting with the dilaton does not admit the ex
form proposed by Kummer and Vassilevich in Refs.@5,8#,
but contains additional conformally invariant terms that a
nonlocal. Here we would like to explain the origin of th
discrepancy. In order to calculate the one-loop effective
tion corresponding to the bosonic operator~4! they substi-
tuted the fermionic representation of the determinant of
operator
0-8



on
iva

ha
-
th

tw

an

t
tia

ac
.

on

an
-

al
is
le
th
th
io
ffe

de
al
p

ion
-
al

om
is

e
The
of
ese

d

hys-
he
on

ur-

e
at

a
ng
a-
d

u-
od.
o the
s of

m-
c-

they
ple
aly-
ple
i-

ive
ce

re,
tum

oted
ter

TWO-DIMENSIONAL EFFECTIVE ACTION FOR MATTER . . . PHYSICAL REVIEW D61 084010
F̂~¹!5ḡmn~DmDn11̂]m]nf!, ~61!

in a flat spacetime for an original bosonic representati
Note that we work in the Euclidean signature and the der
tive Dm is defined~for the casew5c5f in the notation of
@5#! as

Dm5]m2g5em
n ]nf. ~62!

Hereg5 belongs to the algebra of gamma matrices and
the property (g5)251̂. This is an absolutely legitimate pro
cedure as long as one deals with formal definitions of
operator determinants in flat spacetime~3!. But the renormal-
ization procedure generically breaks the identity of these
representations, hence, the corresponding renormalized
fective actions do not coincide. To check this fact by
explicit calculation, one can note that the operator~61! also
belongs to the class of operators of the type~8!. Therefore,
one can directly apply the covariant perturbation theory
this model. Let us write down the corresponding poten
term,

P̂51̂h̄f, ~63!

and the commutator curvature,

R̂mn5g5~em
a]n]af2en

a]m]af!. ~64!

We performed the computation of the one-loop effective
tion along the lines of the calculational scheme of Secs
and III and using the tables of form factors of Ref.@23#. We
found that the terms of third order inf, which in this case is
equivalent to orderR3, vanishes, and thef2 terms have no
infrared singularity. The final answer for the effective acti
corresponding to the operator~61! is local and finite:

Wren52
1

8pE d2x fh̄f1O@f4#. ~65!

Indeed, this expression is in good agreement with Eq. 42
Ref. @5# ~the opposite sign is attributed to the Euclide
spacetime signature!. However, as one can see, it is com
pletely different from the effective action for the origin
bosonic model found in Sec. III above. Technically, th
stems from the fact that in order to remove the ultravio
divergences one should subtract the first two terms of
Schwinger-DeWitt expansion of the heat kernels. But
Schwinger-DeWitt coefficients for the operators in quest
are absolutely different, because their heat kernels are di
ent. Nevertheless, the remarkable result of Ref.@5# is the
exact expression for the effective action for the spinor mo
~61!. This two-dimensional one-loop effective action is loc
infrared finite, and does not depend on a regularization
rameter. In principle, we could start with a covariant vers
of the differential operator~61! and derive the covariant ef
fective action, but it not necessary because all conform
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invariant terms in that effective action can be obtained fr
Eq. ~65! by covariantization, while the anomalous part
proved to be exact@5#.

A few remarks are in order about the applicability of th
perturbative expansion to physically interesting cases.
covariant perturbation theory works well when derivatives
the background fields are much bigger than powers of th
fields @21#,

¹¹R@R2. ~66!

Since the anomalous part~30! is exact, we are concerne
only about the conformal terms,~33! or ~39!. For instance, if
one wants to use the results above to study black hole p
ics and consider the 2D dilaton gravity inspired by t
spherical reduction from four dimensions, then the dilat
field is defined asf52 ln r ~where 4pr 2 is the area of a
surface of the constant radiusr ). At infinity the 2D
Schwarzschild metric is asymptotically flat, and the 2D c
vature and potential obviously satisfy the condition~66!. As
for the vicinity of the horizon, note thatWm in Eq. ~39! is

expressed in terms of the flat spacetime operatorh̄. This
means that all quantities in Eq.~66! should also be defined in

the flat metricḡmn . One can check that the condition¹̄¹̄P
@P2 ~in the ‘‘tortoise’’ coordinates! is also satisfied near th
horizon. This means that our results should be valid both
infinity and at the horizon of the 2D dilaton black hole.

Kummer and Vassilevich@2,5,8# considered the case of
more general differential operator, with the dilaton coupli
being defined in terms of two arbitrary functions of the dil
ton, w(f) andc(f). The results of this paper are obtaine
for the simplest casew(f)5c(f)5f. Strong reasons to
study more general models are discussed in Ref.@8#; here,
we just would like to note that such nontrivial dilaton co
plings can be incorporated into our computational meth
This is possible to do, because such models correspond t
minimal second-order operator when expressed in term
new redefined metric and covariant derivative@2#, but we
leave this generalization for some other publication.

In conclusion, we would like to make some general co
ments on the validity of the anomaly-induced effective a
tions. Such effective actions are very attractive, because
are relatively easy to derive, and they have rather sim
structures. However, as was shown above, the anom
induced effective actions are incomplete even for sim
two-dimensional field models. This is also true for four d
mensions, and an interesting recent work@37# would be a
good illustration. The authors applied the nonlocal effect
action obtained by integration of the four-dimensional tra
anomaly~the generalized Riegert action! to the study of the
Hawking radiation. Indeed, this action is nonlocal, therefo
it captures some essential features of the energy-momen
tensor in curved spacetime. Nevertheless, as correctly n
in @37#, further applications of the Riegert action encoun
serious obstacles, because it is ill-defined at infinity@38#. The
0-9
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four-dimensional nonlocal effective action of Barvinsky a
Vilkovisky @21,23# is the only known action with the righ
properties@38#. There are many ways to split this effectiv
action into anomalous and conformal parts@39#, and only
one of them gives the Riegert action. In order to obt
physically consistent results we should always use the en
effective action, not just its anomaly-generating part.
08401
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APPENDIX A: THIRD-ORDER FORM FACTORS FOR THE TRACE OF THE HEAT KERNEL

Below we display form factors of the third order in Eq.~13! of Sec. II. They are expressed in terms of dimensionl
argumentsj i52sh i , i 51, . . . ,3, and thedenominator,

D5j1
21j2

21j3
222j1j222j1j322j2j3 . ~A1!

M1~j1 ,j2 ,j3!52F~j1 ,j2 ,j3!
j1

2j2
2j3

2

3D3 2 f ~j1!
1

32D3j2

~j1
624j1

5j224j1
5j313j1

4j2j3124j1
3j2

2j315j1
4j3

2

124j1
3j2j3

222j1
2j2

2j3
2132j1j2

3j3
2225j1

2j2j3
3236j1j2

2j3
315j2

3j3
325j1

2j3
429j2

2j3
414j1j3

5

15j2j3
52j3

6!2S f ~j1!21

j1
D 1

8D2j2

~j1
422j1

3j3212j1
2j2j3210j1j2

2j318j1j2j3
222j2

2j3
212j1j3

3

13j2j3
32j3

4!2S f ~j1!212 1
6 j1

~j1!2 D 3

8Dj2
~j1

214j1j21j2j32j3
2!1

1

j22j3

j2

32j1
~ f ~j2!2 f ~j3!!

1
1

j22j3

j2

8j1
S f ~j2!21

j2
2

f ~j3!21

j3
D1

1

j22j3

3j2

8j1
S f ~j2!212 1

6 j2

~j2!2
2

f ~j3!212 1
6 j3

~j3!2 D , ~A2!

M2~j1 ,j2 ,j3!5F~j1 ,j2 ,j3!
j1j2j3

2

D2
2 f ~j1!

1

12D2j2

~2j1
425j1

3j313j1
2j2

213j1
2j3

21j1j3
3111j1j2j3

2111j1j2
2j3

1j1j2
326j2

2j3
214j2

3j314j2j3
32j2

42j3
4!1 f ~j3!

1

12D2j2

~2j3
41j1j3

313j1
2j3

225j1
3j3

12j141j2j3
3117j1j2j3

2212j1
2j2j326j1

3j2117j1j2
2j314j1

2j2
2!

2
f ~j1!21

j1

j1

2Dj2
~j12j22j3!1

f ~j3!21

j3

1

2Dj2
~j1

22j1j323j2j32j1j2!

1
1

j22j3

2j21j3

12j1
„f ~j2!2 f ~j3!…1

1

j22j3

j2

2j1
S f ~j2!21

j2
2

f ~j3!21

j3
D , ~A3!

M3~j1 ,j2 ,j3!52F~j1 ,j2 ,j3!
j2j3

D
1 f ~j1!

1

2D
~2j32j1!2 f ~j2!

1

2j1D
~2j1j31j2

22j3
22j1

2!

1
1

j22j3

j2

2j1
„f ~j2!2 f ~j3!…, ~A4!

M4~j1 ,j2 ,j3!5
1

3
F~j1 ,j2 ,j3!2 f ~j1!S 1

j3
2

j1

2j2j3
D . ~A5!
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APPENDIX B: THIRD-ORDER FORM FACTORS FOR COMPUTATION OF THE EFFECTIVE ACTION

Here is the list of third-order form factors in Eq.~24! of Sec. III with D defined by Eq.~23!:

N1~suh1 ,h2 ,h3!5sF~2sh1 ,2sh2 ,2sh3!
h1h2h3

3D2 1 f ~2sh1!
1

8D2h1h2

~h1
422h1

3h312h1h3
32h3

4

22h1
3h213h2h3

328h1
2h2h318h1h2h3

2210h1h2
2h322h2

2h3
2!

2S f ~2sh1!21

sh1
D 1

4Dh1h2
~h1

214h1h21h2h32h3
2!1

1

h22h3

h2

h1

3F2
1

8 S 1

h2
f ~2sh2!2

1

h3
f ~2sh3! D1

1

4 S 1

h2

f ~2sh2!21

sh2
2

1

h3

f ~2sh3!21

sh3
D G , ~B1!

N2~suh1 ,h2 ,h3!52sF~2sh1 ,2sh2 ,2sh3!
h3

D
1

h12h22h3

Dh2
f ~2sh1!

1
h1h32h1

213h2h31h1h2

Dh2h3
f ~2sh3!2

1

h12h3

h1

h2
S 1

h1
f ~2sh1!2

1

h3
f ~2sh3! D ,

~B2!

N3~suh1 ,h2 ,h3!5sF~2sh1 ,2sh2 ,2sh3!
1

h1
, ~B3!

N4~suh1 ,h2 ,h3!52sF~2sh1 ,2sh2 ,2sh3!
D

h1h2h3
. ~B4!
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