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Holographic formulation of quantum general relativity
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We show that there is a sector of quantum general relativity, in the Lorentzian signature case, which may be
expressed in a completely holographic formulation in terms of states and operators defined on a finite bound-
ary. The space of boundary states is built out of the conformal blocks ofSU(2)L % SU(2)R , WZW field theory
on then-punctured sphere, wheren is related to the area of the boundary. The Bekenstein bound is explicitly
satisfied. These results are based on a new Lagrangian and Hamiltonian formulation of general relativity based
on a constrainedSp(4) topological field theory. The Hamiltonian formalism is polynomial, and also left-right
symmetric. The quantization uses balancedSU(2)L % SU(2)R spin networks and so justifies the state sum
model of Barrett and Crane. By extending the formalism toOsp(4/N) a holographic formulation of extended
supergravity is obtained, as will be described in detail in a subsequent paper.

PACS number~s!: 04.60.Ds
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I. INTRODUCTION

There has been recently much interest in holographic
mulations of theories of quantum gravity.1 In addition to the
original argument based on the Bekenstein bound of ’t Ho
@1# and Susskind@2#, there is also a very interesting arg
ment based on results of topological quantum field the
advocated by Crane@3# and others@4–6# that suggests tha
quantum cosmological theories should be based on states
observables living on boundaries inside the universe. Th
two arguments reinforce each other in an interesting way:
Bekenstein bound@13# tells us that there should be a fini
amount of information per unit area of the boundary wh
topological quantum field theories provides a large class
quantum field theories with finite dimensional state spa
associated to boundaries.

For these reasons, several years ago a holographic fo
lation of quantum general relativity was presented@7#. The
theory was holographic in that the physical state space
the explicit form

HB5(
a

Ha , ~1!

wherea are the eigenvalues of the area operatorÂ ~which is
known by both construction@8–10# and general theorem
@11# to have a discrete spectra!. The eigenspaces of definit
area were constructed explicitly in terms of the conform
blocks of SU(2)q Wess-Zumino-Witten~WZW! conformal
field theory on the punctured two sphere. More explicitly, t
areas are expressed in terms of a sums of total quantum
j i associated with the punctures, so that in the largek limit
@12#

a~ j i !5(
i

l Pl
2 Aj i~ j i11!, ~2!

*Electronic address: smolin@phys.psu.edu
1Thanks are due to Yi Ling for discussions during the course

joint work on the supersymmetric extension, to appear@38#.
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Ha( j i )
5Vj i

, ~3!

whereVj i
is the space of conformal blocks~or intertwiners!

on the punctured two sphere.
It then follows from the formula for the dimension o

these spaces that the Bekenstein bound@13# is satisfied, so
that @7#

dim~HA!<ec/4GB\, ~4!

wherec5A3/ln(2) in quantum general relativity andGB is
the ‘‘bare’’ Newton’s constant. Thus, this result implies th
the macroscopic Newton’s constant, which is not so far p
dicted by the theory, should beG5GB /c.

Finally a complete set of boundary observables based
the gravitational fields at the boundary exists that is b
sufficient to make complete measurements of the phys
state and expressed explicitly in terms of operators in
conformal field theory@7#.

Another property of this formulation is that the bulk sta
which describes the physics in the interior of the boundar
the Chern-Simons state of Kodama@14#, which is known to
have a semiclassical interpretation in terms of de Sitter
anti–de Sitter spacetime@14,15#.

These results show that, at least for quantum general r
tivity, completely holographic formulations exist.

Given the recent interest in holographic formulations
M theory @16–20#, it is then very natural to try to extend
these results toN58 supersymmetry, to provide a candida
for a completely background independent formulation ofM
theory. This goal was the impetus of the present work. Ho
ever, in order to accomplish the supersymmetric extens
certain issues had to be addressed, which led to a new
mulation of general relativity at both the classical and qu
tum level. As these may be of independent interest, they
presented here. A subsequent paper will presents an ex
sion of the present results to theories with extended su
symmetry, some of which may be candidate for such a f
mulation of M theory, in a ~311!-dimensional
compactification@21#.

The new formulation presented here is related to the A
tekar formulation@22–24#, but differs from it in that it is
f
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LEE SMOLIN PHYSICAL REVIEW D 61 084007
entirely left-right symmetric. Both self-dual and antiself-du
fields are kept in the theory, although they are in the e
related to each other through constraints that play the rol
the reality conditions. At the same time, the formulation
entirely polynomial.2

This formulation has several features that are of inte
for holographic formulations of the theory. First, because
reality conditions are part of the algebra of constraints,
Lorentzian form of the theory is more easily studied. Seco
the extension to the supersymmetric case is somewhat ea
as will be seen in the subsequent paper. Third, it allow
more transparent treatment of the splitting between kinem
cal and dynamical constraints, in both the bulk and bound
theories.

This last point is the most important and is worth elab
rating on. The basic idea of the formalism is that gene
relativity is expressed as a constrained topological fi
theory, for the groupG5Sp(4). This group, which double
covers the anti–de Sitter group containsH5SU(2)L
% SU(2)R as a subgroup. What is meant by a constrain
topological field theory is that all derivative terms, and hen
the structure of the canonical theory, is the same as a to
logical field theory with no local degrees of freedom. T
local degrees of freedom arise because of the impositio
local, nonderivative constraints, which reduce the expl
gauge symmetry fromG to the subgroupH. The fields in the
cosetG/H become the gravitational degrees of freedom, f
ther, the constraints in the coset become nonlinear and in
become the generators of spacetime diffeomorphisms.

What is interesting is that to extend to the case
N-supersymmetry, all that is needed is to extend the st
ture just described so thatG5Osp(4/N) and the subgroupH
is some supersymmetric extension ofSU(2)L % SU(2)R ,
with at most half the supersymmetry generators ofG. This,
and several related ideas, are discussed in@21#. In this paper
we describe the classical and quantum physics of the no
persymmetric theory.

II. GENERAL RELATIVITY AS A CONSTRAINED TQFT

In this section we introduce new way of writing gener
relativity as a constrained topological quantum field theo
~TQFT!, which we call the ambidextrous formalism.3 For the
nonsupersymmetric case we study here, the theory is b

2Another way of modifying the Ashtekar formalism that uses tw
connections is given in@25#.

3We may note that there is more than one way to represent ge
relativity with a cosmological constant as a constrained topolog
quantum field theory. The earliest such approach to the aut
knowledge is that of Plebanski@26#, studied also in@27#. Alterna-
tively, one can deform a topological field theory of the form
*Tr F`F, as described in@28# ~see also@8#!. What is new in the
present presentation is the representation of general relativity
constrained topological field theory for the de Sitter groupSO(3,2).
For reasons that will be apparent soon, the present formulatio
more suited both to the Lorentzian regime and to the theory w
vanishing cosmological constant.
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on a connection valued in the Lie algebraG5Sp(4) @which
double coversSO(3,2) the anti–de Sitter group#. Thus, this
approach is similar to that of MacDowell and Mansouri,
which general relativity is found as a consequence of bre
ing the SO(3,2) symmetry of a topological quantum fiel
theory down toSO(3,1) @29#. However it differs from that
approach in that the beginning point is a*B`F theory.

The Sp(4) connection is writtenAab where the four di-
mensional indicesa,b,51, . . . ,4will be often broken down
into a pair a5(A,A8)5(0,1,08,18) of SU(2) indices ex-
pressing the fact thatSU(2)L % SU(2)R,Sp(4). Thus, the
connection is

Aab5$AAB ,AA8B8 ,AAA8%. ~5!

The components of the connectionAAA8 which parametrize
the cosetSp(4)/SU(2)L % SU(2)R will be taken to represen
the frame fieldseAA8 so we will take

AAA85
1

l
eAA8 , ~6!

wherel has dimensions of length.
We take for our starting point a modification of th

Sp(4) B`F theory. This is given by

I 05ıE
M

1

g2 ~Ba
b`Fb

gg5g
a !2

e2

2
~Ba

b`Bb
gg5g

a !

1
2ık

4p E
]M

„YCS~AAB!2YCS~AA8B8!…, ~7!

whereBa
b is a two form valued in the adjoint representatio

of Sp(4), YCS is the SU(2) Chern-Simons action,g and e
are dimensionless coupling constants andk is as usual an
integer. The variational principle given by Eq.~7! is well
defined only in the presence of certain boundary conditio
which are the subject of the next section.

g5 is given by

g5a
b 5S dA

B 0

0 2dA8
B8D . ~8!

The inclusion of theg5 is necessary if we want the action t
be parity invariant.4 However, its presence breaks theSP(4)
invariance down toSU(2)L % SU(2)R . To see this we ex-
pand to find

ral
al
rs

a

is
h

4Note that this is not required to reproduce classical general r
tivity, as this can be done with parity asymmetric actions@23#.
However, we insist on it here as we want to develop a form of
quantum theory which is explicitly parity invariant. It is interestin
to note that Eq.~7! remains an action for general relativity if theg5

is replaced byda
b . In this case the action is chiral but theSP(4)

gauge symmetry is broken only by the constraints.
7-2
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I 052ıE
M

1

g2 ~BAB`FAB2BA8B8`FA8B8!2
e2

2
~BAB`BAB

2BA8B8`BA8B8!1
ık

4pE]M
„YCS~AAB!2YCS~AA8B8!….

~9!

Thus we see that we have2ı times the difference betwee
the actions for the*B`F theories forSU(2)L andSU(2)R .
The mixed componentsBAA8 have disappeared from th
theory. The reason for preferring this choice will be cle
shortly.

We now impose two constraints that set t
SU(2)L % SU(2)R components ofBab to be equal to the
self-dual and anti-self-dual two forms constructed fromeAA8.
With constraints that do this the action has the form

I 152ıE
M

1

g2 ~BAB`FAB2BA8B8`FA8B8!2
e2

2
~BAB`BAB

2BA8B8`BA8B8!1lAB`S 1

l 2 eAA8`e A8
B

2BABD
1lA8B8`S 1

l 2 eA8A`e A
B82BA8B8D

1
ık

4pE]M
„YCS~AAB!2YCS~AA8B8!…. ~10!

It is not hard to show that the equations of motion of th
action reproduce those of general relativity with a cosm
logical constant. To see this we note the forms of theSp(4)
curvatures,

FAB5 f AB1
1

l 2 eAA8`e A8
B , ~11!

FAA85DeAA8, ~12!

where f AB is the SU(2)L curvature of the connectionAAB

andD is theSU(2)L % SU(2)R covariant derivative.FAA8 is
the torsion.@The definition ofFA8B8 is the same as Eq.~11!
with primed indices.# The lAB andlA8B8 field equations se

BAB5
1

l 2 eAA8`e A8
B [

1

l 2 SAB, ~13!

BA8B85
1

l 2 eA8A`e A
B8[

1

l 2SA8B8. ~14!

Putting the solutions to these field equations back into
action, we find
08400
r

-

e

I 152ıE
M

1

G
~eAA8`e A8

B ` f AB2eA8A`e A
B8` f A8B8!

1LeAA8`e A8
B `eAB8`eB

B81
ık

4pE]M
„YCS~AAB!

2YCS~AA8B8!…, ~15!

where

G5g2l 2 ~16!

and

L5
2

l 4 S 1

g2 2
e2

2 D . ~17!

This is an action for general relativity in first order form. Th
reason for the funny signs and factors ofı is that

ea`eb`ec`edeabcd5~2ı !~SABSAB2SA8B8SA8B8!,
~18!

with a similar identity holding for the curvature term.
To show the complete correspondence with general r

tivity we may consider theAAB and AA8B8 field equations
which ~ignoring the boundary terms! are

dI 1

dAAB
:D`BAB50, ~19!

dI 1

dAA8B8

:D̄`BA8B850. ~20!

Together with Eqs.~13! and ~14! these give

D`SAB5D`SA8B850, ~21!

which implies that theSU(2)L % SU(2)R connectionsAAB
AA8B8 are the metric compatible torsion free connections
sociated with the frame fieldseAA8. This in turn implies that
the torsion

FAA85¹`eAA850. ~22!

The action is then

I 152ıE
M

1

G
„eAA8`e A8

B ` f AB@A~e!#

2eA8A`e A
B8` f A8B8@A~e!#…

1LeAA8`e A8
B `eAB8`eB

B8

1
ık

4pE]M
„YCS~AAB!2YCS~AA8B8!…, ~23!

which is Einstein’s action with a cosmological constant.
Equivalently, we may plug the solutions to the constrai

into the remaining field equations to find the field equatio
for general relativity. The complete set of field equations
Eqs.~13!, ~14!, ~19!, and~20! together with
7-3
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LEE SMOLIN PHYSICAL REVIEW D 61 084007
dI 1

BAB
5

1

g2 FAB2e2BAB2lAB50, ~24!

its double with primed indices everywhere and

dI 1

eAA8
:e A8

B `S 1

l 2 BAB1lABD1e B8
A `S 1

l 2 BA8B81lA8B8D50.

~25!

Plugging Eq.~24! and its primed double into Eq.~25! we
then find the Einstein equation

1

G
~ f B

A`eBA81 f B8
A8`eAB8!2LeAB8`eB8

B `eB
A850.

~26!

Thus, we have shown how general relativity with a cosm
logical constant may be derived as a constrainedSp(4)
B`F theory.

We may note that because the action contributes
terms to the cosmological constant, there is the possibility
canceling the cosmological constant, while preserving
structure which derives from anSP(4) connection. From Eq
~17! we see thatL50 for

e25
2

g2 . ~27!

This is interesting as it implies that the cosmological co
stant vanishes at a kind of self-dual point.

This derivation has also shown that there is some red
dancy in the field equations that follow from Eq.~10!. As is
known from @23# the left and right handed field equation
decouple so the right handed part of the connection can
gotten instead from the left handed part of the connection
imposing reality conditions,AA8B85ĀAB .

Thus, as far as the bulk equations of motion are co
cernedwe can further constrain theSp(4) symmetry of the
B`F theory down to onlySU(2)L by settingBA8B85BAA8

50 to find the bulk action

I 25
1

g2EM
„BAB`FAB1lAB~eAA8`e A8

B
2BAB!…. ~28!

In the Euclidean case this self-dual action suffices, wh
in the Lorentzian case it must be supplemented by the re
condition,AA8B85ĀAB . It will be important to keep this in
mind when we turn to the study of the boundary theory.

III. THE ROLE OF THE BOUNDARY TERMS IN THE
FIELD EQUATIONS

When we take the boundary conditions into account
must impose some boundary conditions to insure that
action ~10! is functionally differentiable. The equations w
need to worry about are theAAB andAA8B8 field equations.
When we make a variation the boundary contributes a t
of the form
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dI boundary
1 5ıE

]M
FdAAB`S k

4p
f AB2

1

g2l 2 SABD
2dAA8B8`S k

4p
f A8B82

1

g2l 2 SA8B8D G .
~29!

In order for the action to be functionally differentiable w
must then impose a boundary condition that makes Eq.~29!
vanish.

There are several different boundary conditions that mi
be imposed. We will be interested here in a set of bound
conditions that extend the ‘‘self-dual boundary condition
studied, in the case of the Euclidean theory, in@7#. These
were motivated by the fact that they allow de Sitter
anti–de Sitter spacetime to be solutions. In the Lorentz
theory we can impose similar conditions, but the details
different, as we now describe.5

In the Euclidean case we imposed in@7# the condition that
the pullbacks of the fields into the boundary satisfied the p
back of the self-dual equations, expressed on two forms

fWAB5
4p

l 2g2k
SW AB, ~30!

where fW indicates the pull back of the two forms into th
boundary. These are of course satisfied by de Sitter
anti–de Sitter spacetime, as the full two forms satisfy th
conditions. However, in the Euclidean case there are an
finite number of other spacetimes whose two forms pul
back to the boundary satisfy Eq.~30!. This is because the lef
and right handed parts of the curvature are independen
the Euclidean case. As a result, the Euclidean theory w
Eq. ~30! imposed on the boundary has a solution space gi
by one degree of freedom for each point on the bounda
This may be verified explicitly by linearized analysis@7#.

In the Lorentzian case the left and right handed parts
the Weyl curvature are not independent, they are comp
conjugates of each other. Hence we cannot impose Eq.~30!

and havef A8B8 vary independently on the boundary, as in t
Euclidean case. In fact, in that case it can be verified that
result of the reality conditions is to limit the freedom in th
solutions to Eq.~30! to oscillations of the boundary in d
Sitter or anti–de Sitter spacetime. To have an infinite dim
sional space of classical solutions in the Lorentzian case
must relax the boundary conditions.

To see how this may be done, we note first that Eq.~29!
can be made to vanish in two ways. We can either fix
connection on the boundary and require thatdAW vanishes or
we can require that the self-dual conditions~30! be satisfied.
However it is also possible to study mixed conditions
which we choose the first solution for some components oAW
and the second for the other components.

5I am grateful to Abhay Ashtekar, Yi Ling and Roger Penrose
discussions on these conditions.
7-4
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One thing we would like to retain in the Lorentzian ca
is the relationship between the dimension of the state sp
of the boundary theory and the area of the boundary, disc
ered in @7# as this provides a realization of the Bekenste
bound @13#. However, as we will see when we study th
canonical quantization, this only requires that the self-d
boundary conditions~30! be imposed on the pull back of th
two forms into the intersections of the boundary and
spatial slices. For the other components we can relax
boundary conditions. One natural way to do this is t
following.6

First, we fix a time slicing of the boundary]M. We
choose a time coordinate,t, such that these aret5const
slices.t is then fixed up to a one parameter time reparame
zation groupt→t85 f (t). We will then impose the self-dua
condition ~30! on thet5const spatial slices of]M.

We want to weaken the boundary conditions by impos
Eq. ~30! on only some of the mixed space-time compone
of the boundary. We can do this locally by fixing coordinat
s1,s2 on the t5const slices of]M. We then fix the self
dual boundary conditions for the following components:

fWs1s2
AB

5
4p

g2kl2
SW s1s2

AB , ~31!

fWs1s2
A8B85

4p

g2kl2
SW s1s2

A8B8 ~32!

and

fW ts1
AB

5
4p

g2kl2
SW ts1

AB , ~33!

fW ts1
A8B85

4p

g2kl2
SW ts1

A8B8 . ~34!

However, we make the remaining terms in Eq.~29! vanish
by putting

dAs1
AB

5dAs1
A8B850. ~35!

Clearly these conditions are compatible with the reality c
ditions, and they result in a functionally differentiable actio
At the same time the fact that the self-dual conditions~30!
are not imposed on all pull-backs of the two forms on t
boundary means that the solution space is larger. WhileA1 is
fixed, there is now no condition onȦs2. Consequently tha
component of the connection is allowed to evolve, so long
Eqs.~31!,~32! are satisfied.

The rationale for these conditions comes from the qu
tum theory, more particularly from the form of the bounda
Hilbert space, which is constructed as in@7# from the spaces
of intertwiners of the quantum deformed gauge group. In

6For more details concerning the application of these bound
conditions, see@38#.
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quantum theory we define the boundary conditions by a c
dition that the spin networks intersect the boundary at a
crete set of points, called punctures, whose labels do
evolve. This does constrain certain components of the c
nection ~up to local gauge transformations!. The reason is
that the traces of the holonomies around a loopg that sur-
rounds a single puncture are fixed by the quantization of
conditions~31!,~32!. Thus, fixing certain components of th
connection on the boundary is a consequence of fixing
boundary conditions in the quantum theory in such a w
that the labels on the punctures that determine the Hilb
space of the boundary theory are fixed and do not evo
But by doing so we weaken the boundary conditions on ot
components of the connection. This gives the boundary s
more freedom to evolve within those fixed Hilbert spac
We will see how this works when we come to the quantu
theory in Sec. VI.

To complete the specification of the boundary conditio
we will then anticipate the role of the punctures in the qua
tum theory and fix a discrete set of preferred points on
spatial boundary. Each such puncture is surrounded by a
cal region and in each of these we may introduce local
ordinates (r ,u) which are angular coordinates with the pun
ture at the origin. These can then be joined yielding a sin
coordinate patch on the whole punctured sphere, which
duces to an angular coordinate system in the neighborh
of each puncture. Bringing backt we then have a coordinat
system (r ,u,t) on the whole of]M minus the world lines of
the punctures. We then apply the above conditions withu
5s1 and r 5s2. The boundary conditions~35! then imply
that the holonomies of theSU(2)L % SU(2)R connections
around loops in the spatial boundary that surround sin
punctures are fixed.

Finally note that compatibility of Eqs.~31!,~32! with the
field equations requires that

GL5
8p

l 2g2k
, ~36!

which gives us a relation

k5
4p

12
g2e2

2

. ~37!

This is an interesting relation, ask must be an integer. We
see that at the self dual point whereG2L50, k→`.

IV. THE CANONICAL FORMALISM

To understand the relationship between theSp(4) gauge
invariance and diffeomorphism invariance, as well as to p
pare to discuss the quantization we study in this section
canonical formulation of the theory we have just introduce
We do this by making a 311 decomposition of the action
~10! in the usual way@23#, with the spacetime manifold de
composed asM5S3R, with S a three manifold. Here we
ignore boundary terms; their effects are included in the f
lowing section.

ry
7-5
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Before beginning, we must fix a point of view concernin
the relationship between the complex quantities such as
self-dual connections and the real metric of spacetime.
will take here the approach in which all fields are assume
be complex and then set up the canonical formalism for
case. We will then consider the reality conditions to be
restriction on the space of solutions which is imposed a
the canonical formalism is set up. This is natural for cons
erations of the quantization, because it parallels the situa
of the quantum theory in which the operator algebra is
en
n-

a
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ta
ar
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fined over the complexes, while the reality conditions a
imposed by the choice of an inner product. At the level of t
abstract algebra, before the inner product is imposed
makes no sense to restrict to the real sector, as this is don
restricting certain operators to be Hermitian, but this is n
defined in the absence of the inner product.

We now proceed to the 311 decomposition. We write the
action in terms of space and time coordinates separa
with spacetime indexm5(0,a), with a51,2,3, we have
I 52ıE dtE
S
eabcH 1

g2 Bab
ABȦcAB2

1

g2 Bab
A8B8ȦcA8B81

1

g2 A0
AB@DaBbcAB#2

1

g2 A0
A8B8@DaBbcA8B8#1eAA80F 2

g2l
Bab

ABecB
A8

1
2

l 2 lab
ABecB

A82
2

g2l 2 Bab
A8B8ecB8

A
2

2

l 2 lab
A8B8ecB8

A G1B0a
ABF 1

g2 f bcAB1
1

g2l 2 ebA
A8ecBA82e2BbcAB2lbcABG2B0a

A8B8F 1

g2 f bcA8B8

1
1

g2l 2 ebA8
A ecB8A2e2BbcA8B82lbcA8B8G1l0a

ABF 1

l 2 ebA
A8ecBA82BbcABG1l0a

A8B8F 1

l 2 ebA8
A8ecB8A2BbcA8B8G J . ~38!
come
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The canonical momenta for the formsB, l, and e0AA8 all
vanish, as do the canonical momenta of the time compon
A0AB ,A0A8B8 . This gives the primary constraints. The no
vanishing canonical momenta are forAaAB and AaA8B8 are,
respectively,

pAB
a 5

2ı

g2 eabcBbcAB,

pA8B8
a

5
ı

g2 eabcBbcA8B8 . ~39!

The pa’s are, as usual, vector densities.
We now come to the secondary constraints. First there

the SU(2)L % SU(2)R gauge constraints, which are

GAB5D apaAB50, ~40!

GA8B85D apaA8B850. ~41!

These preserve the vanishing of the canonical moment
A0AB andA0A8B8 . The vanishing of the canonical momen
for e0AA8 is more complicated, and gives the four second
constraints,

GAA85
1

l 2 @pcAB2ıl* cAB#ecB
A81

1

l 2 @pcA8B82ıl* cA8B8#ecA
B8

50. ~42!

One might expect that as theSp(4)/(SU(2)L % SU(2)R)
gauge symmetry seems to be explicitly broken by the c
straints in the action, these would become second class
ts

re

of

y

-
n-

straints. Instead, as we shall see, these four equations be
the Hamiltonian and diffeomorphism constraints of t
theory.

From the vanishing of the canonical momenta for t
mixed space-time components of the two formsB0a

AB and

B0a
A8B8 we get two more sets of constraints,

I aAB5eabcF 1

g2f bc
AB1

1

g2l 2 eb
AA8ecA8

B
2e2Bbc

AB2lbc
ABG ,

~43!

I aA8B85eabcF 1

g2f bc
A8B81

1

l 2 eb
A8AecA

B82e2Bbc
A8B81lbc

A8B8G .
~44!

The first pair,I aAB and I aA8B8, may be solved to express th

lab
AB andlab

A8B8 in terms of the other fields. These constrain
are then eliminated with the primary constraints which a
the vanishing of thel ’s momenta.

The preservation of the vanishing of the canonical m

menta for the mixed componentsl0a
AB andl0a

A8B8 results in six

more constraints that show that thepaAB and paA8B8 are
fixed to be the duals of the self-dual two forms construc
from the frame fields:

JaAB5paAB1
ı

g2l 2eabceb
AA8ecA8

B
50, ~45!

JaA8B85paA8B82
ı

g2l 2eabceb
A8AecA

B850.

~46!
7-6
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They can be solved to eliminate theea
AA8 in terms of the

paAB and the quantitiesNAA8 . These are four quantities de
fined by

NAA85tmemAA8 , ~47!

wheretm is the timelike unit normal@23#. They are subject to
the one constraintNAA8NAA852, which follows from tmtm
521. They therefore represent three independent quanti
which together with the ninepaAB allow us to express the

twelve ea
AA8 as

ea
AA85eaA

B NB
A85

1

Aq
eabcp

bBCp C
cANB

A8 . ~48!

We also have the complex conjugate of these relations

ea
A8A5eaA8

B8 NB8
A

5
1

Aq̄
eabcp

bB8C8p C
cA8NB8

A , ~49!

whereq and q̄ are made from the determinants ofpAAB and
paA8B8 in the usual way.

We may note that even for the complex case, thepaAB

and paA8B8 are not independent quantities. This is beca
the pullback of the self-dual and anti-self-dual three forms
a metric define the same metric. As a result there is an a
tional second class constraint, which is

Rab5paABpAB
b 2paA8B8pA8B8

b
50. ~50!

We will come back to the role this plays after we have is
lated the Hamiltonian constraint of the theory.

For completeness we mention also two more sets of c
straints, which express the Lagrange multiplier fields
terms of other quantities. They they play no role in wh
follows as the Lagrange multipliers are in any case elim
nated but we give them for completeness.

The preservation of the vanishing of the momenta for
lab’s result in constraints

Ja
AB5B0a

AB2
2

l 2 e0A8
A ea

A8B50, ~51!

Ja
A8B85B0a

A8B82
2

l 2 e0A
A8eaA8A50. ~52!

Similarly, the preservation of the vanishing of the m
menta for theBab’s result in constraints

I aAB52
1

g2DaA0AB1
1

g2ȦaAB1
1

g2l 2 e0AA8eaB
A822e2B0a

AB

1l0a
AB50, ~53!
08400
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I aA8B852
1

g2DaA0A8B81
1

g2ȦaA8B81
1

g2l 2 e0A8AeaB8
A

22e2B0a
A8B81l0a

A8B850. ~54!

Using all theI andJ constraints, we find thatGAB andGA8B8

are unchanged, and indeed are first class constraints that
erate SU(2)L % SU(2)R internal gauge transformations
However, the components of the Gauss law in the co
Sp(4)/SU(2)L % SU(2)R now become

GAA85
1

l 2 ecB
A8FLg2

l 2
pcAB2

2ı

g2
eabcf bc

ABG
1

1

l 2 ecB8
A FLg2

l 2
pcA8B81

2ı

g2
eabcf bc

A8B8G , ~55!

where the cosmological constant is defined by Eq.~17!.
We now use Eqs.~48! and~49! to write these in terms of

six new constraints,

GAA85
9G

N2E3 S ND
A8

Aq
CAD1

ND8
A

Aq
CA8D8D , ~56!

where

CAD52ıp B
aCp C

bDf ab
AB1

Lg4

l 2
eabcp B

aCp C
bDpcAB, ~57!

CA8D85ıp B8
aC8p C8

bD8 f ab
A8B81

Lg4

l 2
eabcp B8

aC8p C8
bD8pcA8B8.

~58!

These constraints must vanish independently because
transform separately underSU(2)L andSU(2)R transforma-
tions. Thus, from the closure of the constraint algebra
have

$GAB,GCC8%'CAB'0, ~59!

$GA8B8,GCC8%'CA8B8'0. ~60!

Now we must recall that the two conjugate pa
(AaAB ,paAB) and (AaA8B8 ,paA8B8) are mutually commut-
ing, so that

$CAB,CA8B8%50. ~61!

Furthermore, we know from work of Jacobson in@30# that
the four CAB contain the standard Hamiltonian and diffe
morphism constraints of the Ashtekar formalism, and th
make a first class algebra. The same is then true for
CA8B8. It follows that the algebra of the fourGAA8 is first
class and contains the Hamiltonian and diffeomorphism c
straints of the theory. To see this in more detail, consider

four vectorVAA85Vmem
AA8 as a parameter of the constrain
7-7
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G~V!5E VAA8GAA85E WABCAB1WA8B8CA8B8 ,

~62!

where for simplicity we have set

WAB5
9G

N2E3

NB
A8

Aq
VAA8 ~63!

and similarly forWA8B8. We have thus expressedG(V) in
terms of Lagrange multipliers and two copies of the Ashte
constraints. Thus, their algebra is first class. It also follo
that the algebra ofGAA8 with both GAB and GA8B8 is first
class.

FInally, we must deal with the is the remaining constra
Rab given by Eq.~50!. Its Poisson bracket withG(V) gives a
remaining set of constraints, which are

Sab~x![$Rab~x!,G~V!%

5Dc~WA
DpB

cEpD)E
(b !paAB

1Dc~WA8
D8pB8

cE8pD8)E8
(b

!paA8B850. ~64!

This is actually a well known condition, it is the realit
condition for the Ashtekar formalism, which guarantees t
q̇ab is real. Here it is recovered as a constraint, even in
complexified case. It implies a relationship between the r
parts ofAaAB andAaA8B8 .

In fact we can now give a simple interpretation of t
resulting formalism. With all fields complex, what we ha
are two copies of the Ashtekar formalism, one with posit
chirality and one with negative chirality. However, the le
and right sectors are related by the constraintsRab and Sab

that require that all metric quantities constructed from
left and right handed sectors agree. Given that the constra
come in the combinationGAA8 given by Eq.~56! we have
only four spacetime constraints, so the two copies of
Ashtekar formalism evolve together with common lapses
shifts. Thus, as in the Ashtekar formalism, once one sets
constraintsRab and Sab to be zero, they are preserved
time, so that the metric quantities continue to agree, whe
computed from the left or right sector. Finally, even in t
presence of the constraints, the internal gauge constra
are independent, so that the local gauge symmetry
SU(2)L % SU(2)R .

Finally, so far we have not made a restriction to real m
rics. To do so is simple, we restrict to the subspace of
solution space for whichqab and its time derivative are rea
Given the relations just found the equivalence to the A
tekar formalism guarantees that real initial data will evo
to a real spacetime.

V. THE BOUNDARY THEORY IN THE CANONICAL
FORMALISM

We now include in the canonical analysis the effects
the boundary term in the action, proportional to the Che
Simons invariant of the pull back of the connection on t
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boundary. This analysis was first done in the chiral formu
tion in @7#, here we extend it to the ambidextrous formul
tion.

With the boundary terms included, the primary constrai
that define the nonvanishing momenta are

SaAB~x![paAB~x!1
ı

g2B* aAB~x!

2
ık

4pE d2Sab~s!Ab
ABd3

„x,S~s!…50, ~65!

SaA8B8~x![paAB~x!2
ı

g2B* aA8B8~x!

1
ık

4pE d2Sab~s!Ab
A8B8d3

„x,S~s!…50.

~66!

What is important for the construction of the bounda
theory is the interaction of the boundary term in the defi
tion of the momenta~65! and the generalized Gauss’s la
constraints that come from theA0

ab field equations. Recal
that the Gauss’s law forSU(2)L % SU(2)R has the form

GAB[
ı

g2
D aB* aAB, ~67!

GA8B8[
ı

g2
D aB* aA8B8. ~68!

If we use the definition of the momenta from~65!, ~66! in
the Gauss’s law we find, after integrating by parts, that

G~L![E
S
LABGAB5E

S
LAB

ı

g2
D aB* aAB

52E
S
Da~LAB!paAB1E

]S
d2SabLAB

3S ık

4p
f ab

AB2pab* ABD , ~69!

with an identical expression forGA8B8. Thus, in addition to
the bulk constraints we found in the previous section, th
are two boundary constraints given by

GB~l!5E
]S

d2SablABS pab* AB2
ık

4p
f ab

ABD , ~70!

ḠB~ l̄ !5E
]S

d2Sabl̄A8B8S pab* A8B82
ık

4p
f ab

A8B8D .

~71!

These implement Eqs.~31!,~32!, which were the spatial part
of the boundary conditions we imposed to make the act
functionally differentiable.
7-8
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The next thing to notice is that the boundary term in t
primary constraints~65!,~66! have the effect of modifying
the Poisson brackets for fields pulled back into the bound
We can see this by computing their algebra. DefiningS( f )
[*S f aABSaAB, we find

$S~ f !,S~g!%5
ık

2pE]S
d2Sabf aABgb

AB , ~72!

with similar relations holding for the equations with th
primed indices.

We can now characterize the kinematics of the bound
theory classically. The phase space of the boundary the
which we will call G]S can be characterized by fields pulle

back to the spatial boundary, which are writtenAW a
AB ,AW a

A8B8 ,

pW ab* AB and pW ab* A8B8 . ~Note that for these pullback fields th
abstract indicesa,b,c, . . . are two dimensional.! The latter
commute with all other boundary fields and hence label s
tors of the boundary phase space.~They fail to commute with
connection variables normal to the boundary, which are
part of the phase space of the boundary theory.!

By the constraintspab* AB andpab* A8B8 are determined@up
to the SU(2)L % SU(2)R gauge invariance# in terms of the
two metric on the boundary.

The actual degrees of freedom of the boundary ph
space are given by theSU(2)L % SU(2)R connectionAa ,
pulled back into the boundary. To find their Poisson brack
one must construct the Dirac brackets by inverting the s
ond class constraints~72!. This is done in detail in@7#, the
result is

$AW a
AB~s!,AW bCD~s8!%5

2p

k
eabd

2~ss8!dCD
(AB) . ~73!

These are in fact the Poisson brackets of two dimensio
Chern-Simons theory.

However, the curvatures of the boundary connection
determined by the boundary terms in the Gauss’s law~69!.
These require

fWAB5
4p

kl2
eWAC8`eW C8

B ,

fWA8B85
4p

kl2
eWA8C`eWC

B8 . ~74!

There are relations betweenfWAB and fWA8B8. These follow
from the constraints which express the fact that the p
backs of the self-dual and anti-self-dual two forms into t
spatial boundariesS define the same two geometry. The
require that the invariants constructed fromAW AB and AW A8B8

must be equal.
Thus, the phase space of the boundary theory is tha

SU(2)L % SU(2)R Chern-Simons theory, with an extern
field constraining the curvatures.

The Hamiltonian of the theory may be constructed, f
lowing the standard procedure, by extending the Hamilton
constraint by a boundary term so that the expression is fu
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tionally differentiable even when the lapse function is no
vanishing on the boundary. To extract the Hamiltonian
may chooseWAB5teAB and WA8B85teA8B8. The Hamil-
tonian then must have the form

H~t!5E
S
t@eABCAB1eA8B8CA8B8#1E

]S
th, ~75!

where we require that the time coordinatet match the slicing
of the boundary given by the preferredt5const surfaces tha
go into the definition of the boundary conditions. This mea
that continued to the boundaryt must be a function oft
which is constant on thet5const surfaces.

The condition thatH be functionally differentiable re-
quires thath be a functional defined on the boundary, of t
form

E
]S

th54ıE
]S

d2Sat@pA
aBpB

bCAbC
A 2pA8

aB8pB8
bC8AbC8

A8 #.

~76!

When the constraints are satisfied this last expression,
~76!, is the Hamiltonian of the theory. We see that it is
functional on the boundary, which is both as required
diffeomorphism invariance and consistent with the ho
graphic hypothesis.

VI. QUANTIZATION

We may now sketch the quantization of the ambidextro
theory. We only emphasize those aspects which differ fr
the treatment given for the Euclidean signature theory in@7#,
to which the reader may refer for more details. We be
with the bulk theory and then add the boundary degrees
freedom.

We work first in the connection representation. Initial
the configuration space is defined to be the space of c
plexifiedSU(2)L % SU(2)R connections, mod internal gaug
transformations:

C gauge5
~AAB,AA8B8!

GAB3GA8B8
. ~77!

Functionals onC gauge will live in a Hilbert space, subject to
a suitable norm such as that given in@31,11# calledH gauge.

We must now discuss a subtle but important issue, hav
to do with the use of the spin network states to describe
Lorentzian signature theory. For the case that the ga
group is realSU(2)L % SU(2)R the resulting space of state
has a basis given by the spin networks, as discusse
@10,11#. In these states the edges of the spin networks
labeled by pairs of integersj L , j R corresponding to the
finite dimensional representations ofSU(2)L % SU(2)R .
In the present case, where the spacetime is Lorentzian
connections actually live in the complexification o
SU(2)L % SU(2)R . This means that there is additional fre
dom in the choice of states, arising from the fact that
gauge group is noncompact. One might choose, for exam
7-9
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LEE SMOLIN PHYSICAL REVIEW D 61 084007
to label the spin networks with continuous as well as discr
labels, corresponding to the full set of representations of
gauge group.

The strategy guiding the present approach is to set u
quantization of the complexification of general relativity
the kinematical level, and then impose the reality conditio
as operator equations, by realizing Eqs.~50! and ~64! on a
suitable space of states. Thus, in principle we do have
freedom to work within a kinematical state space which
considerably enlarged from that defined in@10,11# by ex-
tending the labels on the spin networks to all representat
of the complexifications ofSU(2)L % SU(2)R . Given that
there are continuous families of representations this gre
expands the state space. This poses a very important i
which is that it may no longer be possible to choose an in
product for the space of diffeomorphism invariant states t
renders it separable.7 This would be a disaster, which mu
be avoided if possible.

In fact, it is possible to avoid this disaster. To do this w
work within the Hilbert space whose basis is labeled by s
networks whose edges are labeled only by pairs of ordin
spins (j L , j R). The reason is that we will be implementin
the Lorentzian signature theory as long as we work in
space of states in which it is possible to express, and so
the operator forms of the reality conditions, Eqs.~50! and
~64!. In this theory the kinematical theory differs from that
the Euclidean theory in that every measure of three ge
etry, such as areas and volumes, has a right value and a
value, which come from the corresponding labels on
states. This extension is the way that the spin network the
can express the fact that it gives a kinematical descriptio
the complexification of geometry, in essence the comp
part of any function of the three metric is the differen
between its left and right value. The reality conditions w
as we will see shortly, be expressed by conditions that
quire the left and right geometries to be equal.

Following the methods developed in@32,10,11# we are
then free to impose the condition that the states are invar
under spatial diffeomorphisms. Given the choice
kinematical inner product onH gauge defined by the
SU(2)L % SU(2)R spin networks we construct in the usu
way a unitary representation of the spatial diffeomorphi
group Diff(S) on H gauge. The gauge invariant states live i
a subspace which is calledH di f f eo. These are by now stan
dard constructions which were done at the heuristic leve
@32,33,8,10# and then treated rigorously in@31,34,11#.

OnceH di f f eo is constructed there remain three more s
of constraints to impose which are the Hamiltonian co
straintC(N)50 and the constraintsRab50 andSab50 that
determines that the left and right handed fields define
same metric geometry.

There are two ways we could handle the constraintsRab

50 and Sab50 that tie the left and right sectors to ea

7There are delicate issues concerning the treatment of the nor
states with high valence nodes, but these may be resolved leadi
separable Hilbert space.
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other. The orthodox Dirac method would require that,
these together make a second class set, that they be s
explicitly and eliminated before the quantization. One way
do this is to eliminate the right handed quantiti

(Aa
A8B8 ,paA8B8) together with theSU(2)R gauge freedom in

favor of the left handed quantities. This would result in t
Ashtekar formalism. However, as the Hamiltonian is a co
straint, there is a second option which can be tried, wh
may preserve the chiral symmetry of the theory. This is
realizeRab as an operator equation on physical states, so
we try to define and solve simultaneously

R̂abuC&50 ~78!

and

C~N!uC&50 ~79!

on states inH di f f eo.
We thendefinethe quantization ofSab by

Ŝab[†Ĉ@N#,R̂ab
‡. ~80!

This is, of course, a formal expression that requires a re
larization procedure to specify completely. It then follow
that physical states that satisfy Eqs.~79! and~78! also satisfy

ŜabuC&50. ~81!

To see how this works, recall that standard constructi
give a normalizable basis forH gauge in terms of spin net-
works for the algebraSU(2)L % SU(2)R . The edges are la
beled by pairs of spins (j L , j R) and the nodes are labeled b
pairs of intertwiners (mL ,mR).

Using this basis it is easy to impose the condition~78! on
states. The reason is thatRab50 is equivalent to the require
ment that all area and volume observables constructed f
paAB and paA8B8 are equal. For general states in the sp
network basis, the areas and volumes constructed frompaAB,
may be called the ‘‘left quantum geometry.’’ These will di
fer from those constructed frompaA8B8, which we may call
the ‘‘right handed geometry.’’ ClassicallyRab50 is equiva-
lent to the statement that the right handed areas and volu
are equal to the left handed ones, for every region of
three manifold.

The states in the spin network basis which are spanne
eigenstates of left and right handed area and volume op
tors, such that the eigenvalues of the left handed areas
ways equal the eigenvalues of the right-handed areas, liv
a subspaceH sym,H gaugewhich is spanned by the subset
spin networks whose labels satisfyj L5 j R and mL5mR .
Representations ofSU(2)L % SU(2)R which satisfy j L5 j R
are calledbalanced.

Such representations have been employed by Barrett
Crane in a proposal for a state sum model to represent q

on
to
7-10
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tum general relativity@35# and have been studied recently
@36,37#. It is quite interesting to find it arising also within th
Hamiltonian framework.8

The restriction to balanced spin networks implements h
the reality conditions. The other half are, as we argu
above, automatically satisfied on states which are solut
to the Hamiltonian constraints. For the purposes of study
the boundary theory, we need be concerned with one clas
solutions to the bulk Hamiltonian constraint, which are tho
that are derived from the Chern-Simons state@14#. We thus
now show that the state can be extended to the present

To do this we show that the loop transform of th
SU(2)L % SU(2)R Chern-Simons state induces, as in@7#
a finite dimensional space of boundary states, all of wh
satisfy the bulk Hamiltonian constraints. These are expres
in terms of arbitrary ~but quantum deformed!
SU(2)L % SU(2)R spin networks. The reality condition~50!
is then implemented on this solution space by restricting
spin networks in the transform to the balanced spin n
works. This restriction commutes with the imposition of t
constraints, so that the result also provides, by the for
argument above, a solution to Eq.~64!.

The Chern-Simons state forSU(2)L % SU(2)R is given by

CCS~A!5e(k8/4p)(SCS[AAB] 2SCS[AA8B8]) . ~82!

It is straightforward to show using the usual methods@14,39#
that this solves independently both the left and right parts
the Hamiltonian constraint~58!. In the spin network basis
suitably quantum deformed@12#, the corresponding solution
space is given in the bulk by

C~G!5E DAe(k8/4p)(SCS[AAB] 2SCS[AA8B8])T@G#. ~83!

Here k856p/G2L. G then refer toSUq(2)L % SUq(2)R

quantum spin networks,q deformed withq5e2p i /(k812) and
T@G# is a suitably framed product of traces of Wilson loo
associated toG. This defines a finite dimensional state spa
parameterized by boundary states we will discuss sho
We may note that the fact that the cosmological constan
common to the left and right sector means that they have
same quantum deformation parameter.

The transform~83! defines a space of physical state
which may be calledH physical. The restriction that define
this may be stated as follows: a functional of quantum
formed spin networksf(G) is in H physical if it is invariant
under the quantum recoupling rules given in@40#. The
boundary theory then consists of equivalence classes

8An alternative approach to deriving the Barrett-Crane balan
states as the quantization of an action similar to Eq.~7! is given by
@27#. In this approach one proceeds from the classical action to
path integral directly by defining a natural discretization of t
So(4) Plebanski action.
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quantum spin networks, under these recoupling relatio
which meet the boundary at a fixed set of punctures.

The reality condition~64! can be imposed on the space
states by requiring that the action of the left handed a
operator, defined frompaAB is equal to the action of the righ
handed area operatorpaA8B8 for every two surface in the
bulk. These actions are defined on the quantum deform
spin network states in@12#. The condition is solved for every
surface when the quantum deformed spin network states
restricted to balanced spin networks.

To show that the Hamiltonian constraint has been sol
in a way that is consistent with the imposition of the real
conditions in this form one must check that the restriction
balanced spin networks commutes with the quantum rec
pling relations, applied separately to the left and right lab
of the spin networks. This is straightforward, as one may
the recoupling relations to express the equivalence class
terms of trivalent spin networks, after which the impositio
of the balanced conditions amount to the trivial requirem
that j L5 j R on all edges. This means that, at least forma
the second reality condition~64! is also solved on this spac
of states.

We may now take into account the details of the constr
tion of the boundary theory. The Chern-Simons state s
becomes a finite dimensional space of states, as describ
@7#, for each set of punctures on the boundary. These
given by the quantum deformed intertwiners on the pu
tured boundary The restriction to balanced representat
extends to the boundary, we also require thatk5k8 so that
there is only one contribution to the cosmological consta
One then constructs a space of physical states that ha
form @7#

H phys5(
n

(
j 1 , . . . ,j n

Hj 1 , . . . ,j n
, ~84!

where

Hj 1 , . . . ,j n
5V j 1 , . . . ,j n

balanced,V j 1 , . . . ,j n

L
^ V j 1 , . . . ,j n

R . ~85!

Here V j 1 , . . . ,j n

balanced is the linear space of balanced intertwine

in V j 1 , . . . ,j n

L
^ V j 1 , . . . ,j n

R , which is the space of conforma

blocks for the punctured sphere, for theSU(2)L % SU(2)R
WZW model. By the balanced condition, the commonj i ’s
label the punctures. The sum extends up to spinsj 5k8, be-
cause of the quantum deformation@7#.

The full set of physical observables for the theory can
described in terms of operators onH phys @7#. Among them is
the area operator@8,9#, which is diagonal in the puncture
and whose eigenvalues are given, in the limit of largek8 @12#
by

a@ j i #5(
i

G\Aj i~ j i11!. ~86!

One then finds that the Bekenstein bound@13# is satisfied, as

ln Dim~V j 1 , . . . ,j n

L
^ V j 1 , . . . ,j n

R !<ca@ j i #, ~87!
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with c52A3/ln(2).
Finally, to realize the dynamics we must implement t

Hamiltonian~76!, which we recall is a boundary term. Th
evolution of the states according to a time defined on
boundary by the function fieldtP]M is then given by the
Schrödinger equation

ı\
d

dt
C5E

]S
tĥC, ~88!

where the Hamiltonian is given by an operator represen
Eq. ~76!. The implementation of the Hamiltonian as a qua
tum operator on the spaceH phys is a nontrivial problem,
which will represent another step in this program.

Thus, as in the classical theory, the gauge invaria
splits up into a kinematical, linear part and a dynamic
nonlinear part, and the splitting affects both the bulk a
the boundary theory. The linear kinematical part has
do with the gauge invariance in the subgroupH5
SU(2)L % SU(2)R , while the nonlinear part has to do wit
the cosetSP(4)/H. In the bulk the nonlinear part of th
gauge invariance turns out to be expressed precisely as
Hamiltonian and diffeomorphism constraints of the theo
In the boundary theory the linear part tells us that the the
has a complete holographic formulation given in terms
’

,’’

ld
.

y

08400
e

g
-

e
l,
d
o

the
.
y
f

states and operators constructed from an ordinary confor
field theory on the two dimensional spatial boundary. T
nonlinear part of the gauge invariance, when extended to
boundary, gives rise to the Hamiltonian, that genera
physical time evolution. This Hamiltonian respects the p
ferred time slicing of the boundary that was used for t
construction of the boundary conditions on the finite boun
ary.

Thus, we have found that general relativity with a cosm
logical constant has, in the Lorentzian case, as well as
Euclidean case studied in@7#, a holographic formulation
when expressed in terms of finite boundaries. The hope
subsequent work will be to extended this to theN58 super-
symmetric case and by doing so obtain results relevant f
holographic formulation ofM theory.
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