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We show that there is a sector of quantum general relativity, in the Lorentzian signature case, which may be
expressed in a completely holographic formulation in terms of states and operators defined on a finite bound-
ary. The space of boundary states is built out of the conformal bloc&J62), ® SU(2)g, WZW field theory
on then-punctured sphere, whereis related to the area of the boundary. The Bekenstein bound is explicitly
satisfied. These results are based on a new Lagrangian and Hamiltonian formulation of general relativity based
on a constraine®p(4) topological field theory. The Hamiltonian formalism is polynomial, and also left-right
symmetric. The quantization uses balan@d(2), ® SU(2)r spin networks and so justifies the state sum
model of Barrett and Crane. By extending the formalisn®®p(4/N) a holographic formulation of extended
supergravity is obtained, as will be described in detail in a subsequent paper.

PACS numbegps): 04.60.Ds

. INTRODUCTION Haiy=Vi» ©)

There has been recently much interest in holographic forwhere, is the space of conformal blocKer intertwiners
mulations of theories of quantum gravityn addition to the on the plunctured two sphere

original argument based on the Bekenstein bound of 't Hooft ', then follows from the formula for the dimension of

[1] and Susskind2], there is also a very interesting argu- yese gpaces that the Bekenstein bo[] is satisfied, so

ment based on results of topological quantum field theor hat[7] ’

advocated by CranE8] and otherd4-6] that suggests that ) JAG et

quantum cosmological theories should be based on states and dim(Fa)<e™=e", )

observables living on boundaries inside the universe. Thesgherec=/3/In(2) in quantum general relativity ar@g is

two arguments reinforce each other in an interesting way: théhe “bare” Newton’s constant. Thus, this result implies that

Bekenstein boundl13] tells us that there should be a finite the macroscopic Newton’s constant, which is not so far pre-

amount of information per unit area of the boundary whiledicted by the theory, should l@=Gg/c.

topological quantum field theories provides a large class of Finally a complete set of boundary observables based on

quantum field theories with finite dimensional state spaceshe gravitational fields at the boundary exists that is both

associated to boundaries. sufficient to make complete measurements of the physical
For these reasons, several years ago a holographic formgtate and expressed explicitly in terms of operators in the

lation of quantum general relativity was presenf&l The  conformal field theory7].

theory was holographic in that the physical state space had Another property of this formulation is that the bulk state

the explicit form which describes the physics in the interior of the boundary is
the Chern-Simons state of Kodarfid], which is known to
HBZE H,, (1) ha\{e a sgmlclasswa[ interpretation in terms of de Sitter or
a anti—de Sitter spacetinid4,15.

R These results show that, at least for quantum general rela-
wherea are the eigenvalues of the area operdtdwhich is  tivity, completely holographic formulations exist.
known by both constructiof8—10] and general theorems Given the recent interest in holographic formulations of
[11] to have a discrete spectrdhe eigenspaces of definite M theory[16—20, it is then very natural to try to extend
area were constructed explicitly in terms of the conformalthese results td/=8 supersymmetry, to provide a candidate
blocks of SU(2), Wess-Zumino-Witte(WZW) conformal  for a completely background independent formulation\df
field theory on the punctured two sphere. More explicitly, thetheory. This goal was the impetus of the present work. How-
areas are expressed in terms of a sums of total quantum spigser, in order to accomplish the supersymmetric extension,
ji associated with the punctures, so that in the ldrdjenit certain issues had to be addressed, which led to a new for-

[12] mulation of general relativity at both the classical and quan-
tum level. As these may be of independent interest, they are
a(ji):Ei Irél i), 2 presented here. A subsequent paper will presents an exten-

sion of the present results to theories with extended super-
symmetry, some of which may be candidate for such a for-
mulation of M theory, in a (3+1)-dimensional

*Electronic address: smolin@phys.psu.edu compactificatior{ 21]. _
Thanks are due to Yi Ling for discussions during the course of The new formulation presented here is related to the Ash-
joint work on the supersymmetric extension, to apd&a. tekar formulation[22—24], but differs from it in that it is
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entirely left-right symmetric. Both self-dual and antiself-dual on a connection valued in the Lie algelfsa= Sp(4) [which
fields are kept in the theory, although they are in the endlouble coversSQ(3,2) the anti—de Sitter grolypThus, this
related to each other through constraints that play the role addpproach is similar to that of MacDowell and Mansouri, in
the reality conditions. At the same time, the formulation iswhich general relativity is found as a consequence of break-
entirely polynomiaf ing the SO(3,2) symmetry of a topological quantum field

This formulation has several features that are of interestheory down toSQ(3,1) [29]. However it differs from that
for holographic formulations of the theory. First, because theapproach in that the beginning point isf8/\F theory.
reality conditions are part of the algebra of constraints, the The Sp(4) connection is writterA,z where the four di-
Lorentzian form of the theory is more easily studied. Secondmensional indices,8,=1, . . . ,4will be often broken down
the extension to the supersymmetric case is somewhat easi@ito a pair a=(A,A’)=(0,1,0/,1") of SU(2) indices ex-
as will be seen in the subsequent paper. Third, it allows @ressing the fact thadU(2), @ SU(2)rCSp(4). Thus, the
more transparent treatment of the splitting between kinematiconnection is
cal and dynamical constraints, in both the bulk and boundary
theories. _

This last point is the most important and is worth elabo- Aap={Ars Aner Aanrh ©
rating on. The basic idea of the formalism is that generalT
relativity is expressed as a constrained topological fielc{
theory, for the grougc=Sp(4). This group, which double
covers the anti—-de Sitter group containd=SU(2),
®SU(2)g as a subgroup. What is meant by a constrained 1
topological field theory is that all derivative terms, and hence Apn =—€an s (6)
the structure of the canonical theory, is the same as a topo- |
logical field theory with no local degrees of freedom. The
local degrees of freedom arise because of the imposition oiherel has dimensions of length.
local, nonderivative constraints, which reduce the explicit We take for our starting point a modification of the
gauge symmetry fron® to the subgroupd. The fields in the  Sp(4) B/\F theory. This is given by
cosetG/H become the gravitational degrees of freedom, fur-
ther, the constraints in the coset become nonlinear and in fact 1 e?
become the generators of spacetime diffeomorphisms. 19= lf —(BIAFJyg) — E(Bf/\Bgy“ysay)

What is interesting is that to extend to the case of M9
N-supersymmetry, all that is needed is to extend the struc- 1k
ture just described so th&=Osp(4/\) and the subgroupl + Ef (Ycs(Ang) — Yes(Anrgr)), (7)
is some supersymmetric extension 8U(2) & SU(2)g, oM
with at most half the supersymmetry generatorssofThis, ) . o )
and several related ideas] are discussd@lﬂl In this paper Whel’er is a two form valued in the adJO|nt representatlon

we describe the classical and quantum physics of the nons@f Sp(4), Ycs is the SU(2) Chern-Simons actiorg ande
persymmetric theory. are dimensionless coupling constants &i$ as usual an

integer. The variational principle given by E(y) is well
defined only in the presence of certain boundary conditions,
which are the subject of the next section.
In this section we introduce new way of writing general s is given by
relativity as a constrained topological quantum field theory,
(TQFT), which we call the ambidextrous formalishior the ( 5AB 0 )
Y5a=

he components of the connectién ,» which parametrize
he coseSp(4)/SU(2) @ SU(2)g will be taken to represent
the frame fieldsee,ar SO We will take

Il. GENERAL RELATIVITY AS A CONSTRAINED TQFT

nonsupersymmetric case we study here, the theory is based

: 8
0 -5y ®

2Another way of modifying the Ashtekar formalism that uses two The inclusion of theys is necessary if we want the action to
connections is given ifi25). be parity invariant. However, its presence breaks tB8&(4)
3We may note that there is more than one way to represent generdivariance down tolSU(2), @ SU(2)r. To see this we ex-
relativity with a cosmological constant as a constrained topologicapand to find
quantum field theory. The earliest such approach to the authors
knowledge is that of Plebansk26], studied also irj27]. Alterna-
tively, one can deform a topological field theory of the form of “4Note that this is not required to reproduce classical general rela-
JTrE/F, as described if28] (see alsd8]). What is new in the tivity, as this can be done with parity asymmetric actid@s].
present presentation is the representation of general relativity astdowever, we insist on it here as we want to develop a form of the
constrained topological field theory for the de Sitter gr&(3,2). quantum theory which is explicitly parity invariant. It is interesting
For reasons that will be apparent soon, the present formulation i® note that Eq(7) remains an action for general relativity if thg
more suited both to the Lorentzian regime and to the theory withis replaced bys?. In this case the action is chiral but tiSeP(4)
vanishing cosmological constant. gauge symmetry is broken only by the constraints.
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1 o, e? 1 , , .
10=— |f — (Bag/\FAB—Bpg//\FAB)— —(Bpp/\B"B |1=— |f — (M NS, N fag— e ANE Afpig)
M9 2 MG
A'B’ 1k AA A B g 1K
- BA!B!/\B )+ _J (YCS(AAB)_YCS(AA’B'))' +Ae /\e A,/\eAB//\eB + _J’ (YCS(AAB)
47T IM 4’7T IM
) —Yes(Aarg)), (15
where

Thus we see that we havel times the difference between
the actions for thg B/\F theories forSU(2),_ andSU(2)x. G=g2?2 (16)

The mixed component8*”" have disappeared from the
theory. The reason for preferring this choice will be clear@"

shortly. 2(1 ¢2

We now impose two constraints that set the A= Aty a7
SU(2),®SU(2)g components of3*? to be equal to the 9
self-dual and anti-self-dual two forms constructed fref’.  This is an action for general relativity in first order form. The
With constraints that do this the action has the form reason for the funny signs and factorsidg that

1 'nt e? ea/\eb/\ec/\edeabcd:(_|)(2ABEAB_2A’B’EA’B’)1
1= —|f ?(BAB/\FAB— BA'®'/\Fargr) = 5 (Bag/\B*® (18
M

with a similar identity holding for the curvature term.

To show the complete correspondence with general rela-
tivity we may consider theA,g and A,/g field equations
which (ignoring the boundary termsre

I’ 1 ’
_BA!B!/\BA B )+)\AB/\(I_26AA /\eBA,_BAB

1 ’ ’ rnt
+)\ArBr/\(_zeA A/\eBA_BA B ) 5'1
I . AB_
5a D/\BY*=0, (19
1k
fa| Ced Ao~ YedAne) (10 gt
it :D/ABA'B' =0, (20)
SAp g

I_t is not hard to show that the equations of motion of th'STogether with Eqs(13) and (14) these give
action reproduce those of general relativity with a cosmo-
logical constant. To see this we note the forms of $p§4) DASAB_DASAB —( (21)

curvatures,
which implies that theSU(2) @ SU(2)g connectionsAg
Aprgr are the metric compatible torsion free connections as-

1 , /
FAB={AB4 I—zeAA Ne%,, (1))  sociated with the frame fields”". This in turn implies that
the torsion

FAA/:DEAA/, (12) FAAr:V/\eAAr:O. (22)

The action is then
where fAB is the SU(2), curvature of the connectioA,g

’ l !
andD is theSU(2), & SU(2)g covariant derivativeFA* is It=— fMa €N, AfaelAle)]
the torsion[The definition ofFA'B" is the same as Eq11)
with primed indices. The A x5z and A 4-g/ field equations set _eA’A/\eBA’/\fA,B,[A(e)])
’ B B/
1, 1 + AP Ne,, Neap/\eg
BAP= M N5 = 34, (13 :
1k
+ Ef (Ycs(Aa) = Yes(Aare)), (23
oM
! ! l ’ ! 1 ’ ’
BAB =S e ANES = I—ZEA B (14 which is Einstein’s action with a cosmological constant.

Equivalently, we may plug the solutions to the constraints
into the remaining field equations to find the field equations
Putting the solutions to these field equations back into théor general relativity. The complete set of field equations are
action, we find Egs.(13), (14), (19), and(20) together with
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sIt 1 )
BAB ?FAB_G Bag—Aag=0, (24)
its double with primed indices everywhere and
st o (1 A (1
F:eA,/\ I—ZBAB+)\AB +eB,/\ I—ZBA/B/+)\A/B/ :0
(25

Plugging Eq.(24) and its primed double into Eq25) we
then find the Einstein equation

l ’ ! ’ ’ ’
a(fé/\eBA +5,/\erP)— AerB Ael, Neh

(26)
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k 1
AB__ AB
5AAB/\(—4Wf s )

o]

(29

1 —
ol boundary— I j
oM

k 1
— __fA'B'_

g2|2

In order for the action to be functionally differentiable we
must then impose a boundary condition that makes(£9).
vanish.

There are several different boundary conditions that might
be imposed. We will be interested here in a set of boundary
conditions that extend the “self-dual boundary conditions”
studied, in the case of the Euclidean theory[Th. These
were motivated by the fact that they allow de Sitter of
anti—de Sitter spacetime to be solutions. In the Lorentzian

Thus, we have shown how general relativity with a cosmo-theory we can impose similar conditions, but the details are

logical constant may be derived as a constrairsg4)
B/\F theory.

different, as we now describe.
In the Euclidean case we imposed i} the condition that

We may note that because the action contributes twadhe pullbacks of the fields into the boundary satisfied the pull
terms to the cosmological constant, there is the possibility oback of the self-dual equations, expressed on two forms as
canceling the cosmological constant, while preserving the

structure which derives from &P(4) connection. From Eq.
(17) we see that\ =0 for

(27)

This is interesting as it implies that the cosmological con-

stant vanishes at a kind of self-dual point.

This derivation has also shown that there is some redu
dancy in the field equations that follow from Ed.0). As is
known from [23] the left and right handed field equations
decouple so the right handed part of the connection can
gotten instead from the left handed part of the connection b
imposing reality conditionsA,: g =Aag-

Thus, as far as the bulk equations of motion are con-
cernedwe can further constrain thep(4) symmetry of the
B/\F theory down to onlySU(2), by settingB”'8'=BA*'
=0 to find the bulk action

12=

1 ,
FIM(BABAFAB+ )\AB(eAA /\e%_\,—BAB)) (28)

b

4
:zziAB'
1“9k

£AB (30)

where f indicates the pull back of the two forms into the

boundary. These are of course satisfied by de Sitter or
anti—de Sitter spacetime, as the full two forms satisfy these
conditions. However, in the Euclidean case there are an in-

r{_i)nite number of other spacetimes whose two forms pulled

ack to the boundary satisfy E@O). This is because the left
and right handed parts of the curvature are independent in

e Euclidean case. As a result, the Euclidean theory with
gq. (30) imposed on the boundary has a solution space given

y one degree of freedom for each point on the boundary.
This may be verified explicitly by linearized analy$ig.

In the Lorentzian case the left and right handed parts of

the Weyl curvature are not independent, they are complex
conjugates of each other. Hence we cannot imposd 3.

and havef”"®’ vary independently on the boundary, as in the
Euclidean case. In fact, in that case it can be verified that the
result of the reality conditions is to limit the freedom in the
solutions to Eq.(30) to oscillations of the boundary in de
Sitter or anti—de Sitter spacetime. To have an infinite dimen-

~Inthe Euclidean case this self-dual action suffices, whilejonal space of classical solutions in the Lorentzian case we
in the Lorentzian case it must be supplemented by the reality, st relax the boundary conditions.

condition,AA/B/:KAB. It will be important to keep this in
mind when we turn to the study of the boundary theory.

Ill. THE ROLE OF THE BOUNDARY TERMS IN THE
FIELD EQUATIONS

To see how this may be done, we note first that @§)
can be made to vanish in two ways. We can either fix the
connection on the boundary and require thAtvanishes or
we can require that the self-dual conditidi3€) be satisfied.
However it is also possible to study mixed conditions in

When we take the boundary conditions into account weavhich we choose the first solution for some component of

must impose some boundary conditions to insure that th
action (10) is functionally differentiable. The equations we
need to worry about are th&,g and A, field equations.

gnd the second for the other components.

When we make a variation the boundary contributes a term?®| am grateful to Abhay Ashtekar, Yi Ling and Roger Penrose for

of the form

08400
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One thing we would like to retain in the Lorentzian casequantum theory we define the boundary conditions by a con-
is the relationship between the dimension of the state spadatition that the spin networks intersect the boundary at a dis-
of the boundary theory and the area of the boundary, discowrete set of points, called punctures, whose labels do not
ered in[7] as this provides a realization of the Bekensteinevolve. This does constrain certain components of the con-
bound[13]. However, as we will see when we study the nection (up to local gauge transformationsThe reason is
canonical quantization, this only requires that the self-duathat the traces of the holonomies around a lgothat sur-
boundary condition$30) be imposed on the pull back of the rounds a single puncture are fixed by the quantization of the
two forms into the intersections of the boundary and theconditions(31),(32). Thus, fixing certain components of the
spatial slices. For the other components we can relax theonnection on the boundary is a consequence of fixing the
boundary conditions. One natural way to do this is theboundary conditions in the quantum theory in such a way
following.® that the labels on the punctures that determine the Hilbert

First, we fix a time slicing of the boundaryM. We  space of the boundary theory are fixed and do not evolve.
choose a time coordinaté, such that these are=const But by doing so we weaken the boundary conditions on other
slices.t is then fixed up to a one parameter time reparametricomponents of the connection. This gives the boundary state
zation groupt—t’ =f(t). We will then impose the self-dual more freedom to evolve within those fixed Hilbert spaces.
condition (30) on thet=const spatial slices af M. We will see how this works when we come to the quantum

We want to weaken the boundary conditions by imposingtheory in Sec. VI.

Eg. (30) on only some of the mixed space-time components To complete the specification of the boundary conditions
of the boundary. We can do this locally by fixing coordinateswe will then anticipate the role of the punctures in the quan-
ot,0? on thet=const slices ofsM. We then fix the self tum theory and fix a discrete set of preferred points on the
dual boundary conditions for the following components:  spatial boundary. Each such puncture is surrounded by a lo-
cal region and in each of these we may introduce local co-
AB ordinates €, ) which are angular coordinates with the punc-
for,e= gzklzzolaz’ @D ture at the origin. These can then be joined yielding a single
coordinate patch on the whole punctured sphere, which re-
duces to an angular coordinate system in the neighborhood

*A;B;: am *AiB; (32) of each puncture. Bringing badkve then have a coordinate
7 g%k T system ¢, 6,t) on the whole oM minus the world lines of
the punctures. We then apply the above conditions with
and =¢! andr=o?. The boundary condition&35) then imply
that the holonomies of th&U(2), @ SU(2)g connections
aB_ AT <pnB around loops in the spatial boundary that surround single
tol 2 tol (33) o
o k|2t punctures are fixed.

Finally note that compatibility of Eq931),(32) with the
field equations requires that

= SYetul (34)
tol gzklz tol 8
=2 (36)
However, we make the remaining terms in Eg9) vanish 1°g°k
by putting which gives us a relation
AB__ o aA'B'_

SA L=6A:" =0. (35 4

y L . k=— 22" (37)
Clearly these conditions are compatible with the reality con- 1— g-e
ditions, and they result in a functionally differentiable action. 2

At the same time the fact that the self-dual conditi¢86) o ) ) . )
are not imposed on all pull-backs of the two forms on theThis is an interesting relation, dsmust be an integer. We
boundary means that the solution space is larger. Whjlss ~ See that at the self dual point wheB#A =0, k—.

fixed, there is now no condition oAUz. Consequently that
component of the connection is allowed to evolve, so long as IV. THE CANONICAL FORMALISM
Egs.(31),(32) are satisfied.

To understand the relationship between 4) gauge
The rationale for these conditions comes from the quan P Sit4) gaug

k invariance and diffeomorphism invariance, as well as to pre-
tum theory, more particularly from the form of the boundary ha6 5 discuss the quantization we study in this section the

Hilbert space, which is constructed ag#] from the spaces  anonical formulation of the theory we have just introduced.
of intertwiners of the quantum deformed gauge group. In th§ye 4o this by making a 81 decomposition of the action
(10) in the usual way 23], with the spacetime manifold de-
composed as\i=2 X R, with %, a three manifold. Here we
SFor more details concerning the application of these boundarygnore boundary terms; their effects are included in the fol-
conditions, se¢38]. lowing section.
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Before beginning, we must fix a point of view concerning fined over the complexes, while the reality conditions are
the relationship between the complex quantities such as thienposed by the choice of an inner product. At the level of the
self-dual connections and the real metric of spacetime. Wabstract algebra, before the inner product is imposed, it
will take here the approach in which all fields are assumed tenakes no sense to restrict to the real sector, as this is done by
be complex and then set up the canonical formalism for thigestricting certain operators to be Hermitian, but this is not
case. We will then consider the reality conditions to be adefined in the absence of the inner product.
restriction on the space of solutions which is imposed after \ye now proceed to the81 decomposition. We write the

the canonical formalism is set up. This is natural for consid—4¢tion in terms of space and time coordinates separately
erations of the quantization, because it parallels the situatiof;i, spacetime index.=(0,a), with a=1,2,3, we have

of the quantum theory in which the operator algebra is de-

1 . 1 .. 1 1 . 2 ,
I = _'j dtJEEabc[?BQEAcAB_;BQbB Acarsrt ?AQB[DaBbcAB]_ yAQ ® [DaBoeas 1+ €ano EBQEecQ

2 1
AB, A’ A'B’' A A'B' A AB A'B’
+|_2)\abecB _92|ZBab ecB'_|_2)\ab CAY +BOa _BOa ?fbcA’B’

A 2
;fbcAB+ _gz|zebA €caa — € Bpcas— AbcaB

1 1
A 2 AB A A’B'
+ng [2€n €A™ € Bycas’ —Mpears’ | T Aoa 72€0A €csa’ — Bpeas| T Noa

] . (38

AV
ﬁebAr €ce'a— Bpears’

The canonical momenta for the fornBs \, and eyaa: all straints. Instead, as we shall see, these four equations become
vanish, as do the canonical momenta of the time componentie Hamiltonian and diffeomorphism constraints of the
Aoag.Aoarg - This gives the primary constraints. The non- theory.

vanishing canonical momenta are fag g and A a5 are, From the vanishing of the canonical momenta for the
respectively, mixed space-time components of the two forB&> and

’ ! .
Bp," We get two more sets of constraints,

—
a _ abc
TaAB™ 92‘5 Bbcas, M1 1
aAB__ _abc| AB AA’ . B 2nAB AB
| =€ ?fchrWeb €. € Bbc_)\bc}'
! ' 43
a
7TArBr = ?eachbcA!B! . (39) ( )
[1 1
’ P 'B' _ A’'B’ A'A B’ A'B’ A'B’
The #®s are, as usual, vector densities. |aA'B = gabc ?fbc +12€b "eca —e?Bp.” +\pe |-

We now come to the secondary constraints. First there are (44)
the SU(2), @ SU(2)g gauge constraints, which are

GAB=D 73R ( (40) ~ The first pair| aAB and2A'B" may be solved to express the
Na2 andM\4.B in terms of the other fields. These constraints
GA'B =D m2A'B =0, (47 are then eliminated with the primary constraints which are

the vanishing of the.’s momenta.

These preserve the vanishing of the canonical momenta of The preservation of the vanishing Oi,tg,e canonical mo-

Aoas andAga s . The vanishing of the canonical momenta Menta for the mixed componentgs and\g,® results in six

for egaar is more complicated, and gives the four secondarymore constraints that show that the*® and mA'B" are

constraints, fixed to be the duals of the self-dual two forms constructed
from the frame fields:

1 1
AA" _ cAB cAB1o A’ cA’B’ cA’'B’ !
G —|2[7T —IN*“Plecs +—|2[’7T —I\* leca

I )
) JaAB= 7aABy e €%} e 2 =0, (45)
=0. 42
One might expect that as th&p(4)/(SU(2) @SU(2)R) JaA'B’ _ _aA’B’ _ ! cabceA'Ag B/
gauge symmetry seems to be explicitly broken by the con- g°l? b FeA
straints in the action, these would become second class con- (46)
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They can be solved to eliminate ted”" in terms of the 1 1. 1 A
72AB and the quantitiedl,» . These are four quantities de- lanre == EZD&AOA’B’+ EzAaA’B’+§2|_fe°A’AeaB’
fined by
—2e?BAB +\A8 =0. (54)
Naa =t e anr, (47)

Using all thel andJ constraints, we find tha®”8 andGA'8’

wheret* is the timelike unit norma23]. They are subject to are unchanged, and indeed are first class constraints that gen-
the one constrainNAA'NAA,zz, which follows fromt#t, erate SU(2), @SU(2)g internal gauge transformations.

= —1. They therefore represent three independent quantitie owever, the components of the Gauss law in the coset

which together with the niner®B allow us to express the P(4)/SU(2) ® SU(2)r now become
twelve e as 2
a GAA’ _i A/ Ag CAB_ aeabCfAB
|2~cB |2 gz bc
’ ! 1 ’
et =e BNy =— € BCmeNg . (48 )
\/a 1 A Ag cA’'B’ 21 abcgA'B’
I—zecB, —2’7T + —26 fbc s (55)

We also have the complex conjugate of these relations
where the cosmological constant is defined by @&Q).

1 We now use Eq948) and(49) to write these in terms of
e,:’A: aB:'-\,’NE;L\’ :_Eabcbi'c’wcé’Né\I , (49)  six new constraints,
Va N
- AA’ _ 9G —D oAby D ADY (56)
whereq andq are made from the determinants #f*E and N2E3\ \q Vg

rn’ .
72~ B"in the usual way.

We may note that even for the complex case, #ié®

and 7®*'B" are not independent quantities. This is because Ag?

the pullback of the self-dual and anti-self-dual three forms of CAD= _, WaBCwbch{:bBJr_g €apcT TR B, (57)
a metric define the same metric. As a result there is an addi- 12

tional second class constraint, which is

where

’ ! A94 ’ ’
D’ _ C' _bD’(A'B’ c' _bD g’
Rab— ,n_aAB,n.RB_ ,n.aA/B/,n.er, =0. (50) CAP = 7TaB mer fab + 12 eachaBr T meA'B
(58)
We will come back to the role this plays after we have iso- i o
lated the Hamiltonian constraint of the theory. These constraints must vanish independently because they

For completeness we mention also two more sets of corffansform separately und&t(2), andSU(2)g transforma-
straints, which express the Lagrange multiplier fields intions. Thus, from the closure of the constraint algebra we
terms of other quantities. They they play no role in whath@ve
follows as the Lagrange multipliers are in any case elimi-

nated but we give them for completeness. {G"8,GC }=C"®~0, (59
The preservation of the vanishing of the momenta for the . ) .
Nap'S result in constraints {GAB GECl=CA B ~0. (60)
A o AB A ag Now we must recall that the two conjugate pairs
Ja =Boa ~2€n€a 0 (B (Auas. 7B and Auap ,mA'B') are mutually commut-
ing, so that
.y rnr 2 AB ~A'B’y _
3P =B ~ Sefieana=0. (52 e =0, (61)

Furthermore, we know from work of Jacobson[B0] that
Similarly, the preservation of the vanishing of the mo- the four CA® contain the standard Hamiltonian and diffeo-

menta for theB,,’s result in constraints morphism constraints of the Ashtekar formalism, and thus
make a first class algebra. The same is then true for the
. 1 A e o AB CA'B’_ It follows that the algebra of the fou*”" is first
laag=— ?DaAOAB—" ;AaABJFWGOAA' €8 —2€°Boy class and contains the Hamiltonian and diffeomorphism con-
straints of the theory. To see this in more detail, consider the
AB__ ’ ’ .
+tA0a=0, (53 four vectorVA* =V#e,”" as a parameter of the constraints

084007-7



LEE SMOLIN PHYSICAL REVIEW D 61 084007

A B . boundary. This analysis was first done in the chiral formula-
G(V):f \Y GAA’:J W?HECpg+ W™ = Cprpr s tion in [7], here we extend it to the ambidextrous formula-
(62) tion.
With the boundary terms included, the primary constraints
where for simplicity we have set that define the nonvanishing momenta are
NA I
po 90 o \aw 63 SHE(x) = mAY(x) + B AE(x)
N2E3 \q 9
.y 1k
and similarly forWw” 8", We have thus expresses(V) in - Ej d?s*(o)ALBS%(x,S(0))=0, (65)

terms of Lagrange multipliers and two copies of the Ashtekar
constraints. Thus, their algebra is first class. It also follows

! ! ! ’ ’ I ’ ’
that the algebra 06" with both G*B and G* ' is first SPAB(x)=m3AB(x) — ?B* aA'B (x)
class.
Finally, we must deal with the is the remaining constraint 1k .
R2 given by Eq.(50). Its Poisson bracket witB(V) gives a + Ef d2S*(g) AL ® 8%(x,S(0))=0.

remaining set of constraints, which are
66
S0 ={R*(x),G(V)} 0
What is important for the construction of the boundary
=D(WRmg miyg) AP theory is the interaction of the boundary term in the defini-
D' cE' (b B tion of the momentd65) and the generalized Gauss'’s law
+D(Wy mgr e )T =0. (64  constraints that come from thes” field equations. Recall

. o . thatthe G 's law faBU(2), @ SU(2)g has the f
This is actually a well known condition, it is the reality atthe Lauss's faw (2 (2)g has the form

condition for the Ashtekar formalism, which guarantees that

q2® is real. Here it is recovered as a constraint, even in the GAB= I—ZDaB*aAB, (67)
complexified case. It implies a relationship between the real g
parts ofAgag andAgarg: -

In fact we can now give a simple interpretation of the GArBrZI_D graA'B’ 68)
resulting formalism. With all fields complex, what we have - g2 a '
are two copies of the Ashtekar formalism, one with positive
chirality and one with negative chirality. However, the left  |f we use the definition of the momenta froi5), (66) in

and right sectors are related by the constraRfts andS*  the Gauss’s law we find, after integrating by parts, that
that require that all metric quantities constructed from the

left and right handed sectors agree. Given that the constraints I

come in the combinatio®**" given by Eq.(56) we have G(A)ELAABGAB= JEAAB_ZDaB*aAB
only four spacetime constraints, so the two copies of the g

Ashtekar formalism evolve together with common lapses and

shifts. Thus, as in the Ashtekar formalism, once one sets the = —f Da(AAB)WaAB+J d?S?A g
constraintsR3® and S?° to be zero, they are preserved in > >
time, so that the metric quantities continue to agree, whether

computed from the left or right sector. Finally, even in the X
presence of the constraints, the internal gauge constraints

are independent, so that the local gauge symmetry
SU(2) ®SU(2)g.

Finally, so far we have not made a restriction to real met
rics. To do so is simple, we restrict to the subspace of th
solution space for whick® and its time derivative are real. 1k
Given the relations just found the equivalence to the Ash- GB()\)zf dZSab)\AB< mEB— —faAk?), (70)
tekar formalism guarantees that real initial data will evolve % am
to a real spacetime.

1k
7 fan— w;,ﬁB), (69

'Kith an identical expression fa®A'®’. Thus, in addition to
the bulk constraints we found in the previous section, there
'glre two boundary constraints given by

LY
Tab _47Tfab

EB(_) = faidzsabrArBr

V. THE BOUNDARY THEORY IN THE CANONICAL
FORMALISM (71

We now include in the canonical analysis the effects ofThese implement Eq$31),(32), which were the spatial parts
the boundary term in the action, proportional to the Chern-of the boundary conditions we imposed to make the action
Simons invariant of the pull back of the connection on thefunctionally differentiable.
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The next thing to notice is that the boundary term in thetionally differentiable even when the lapse function is non-
primary constraintg65),(66) have the effect of modifying vanishing on the boundary. To extract the Hamiltonian we
the Poisson brackets for fields pulled back into the boundarymay choosew”B= 7”8 and WA'® = 7¢~'®’. The Hamil-

We can see this by computing their algebra. DefinB{d) tonian then must have the form
= [+f.asS*E, we find

k - AB ABC
{S<f>,s<g>}=2',—wf 075 fare05”, (72) H(7) Lf[f Cagte" ® Carpr]+ LJ“’ (75)
.

where we require that the time coordinatenatch the slicing
of the boundary given by the preferred const surfaces that
o into the definition of the boundary conditions. This means
hat continued to the boundary must be a function ot
Yhich is constant on the=const surfaces.
The condition thatH be functionally differentiable re-

with similar relations holding for the equations with the
primed indices.

We can now characterize the kinematics of the boundar
theory classically. The phase space of the boundary theor
which we will call'”* can be characterized by fields pulled

back to the spatial boundary, which are wiitlh®, A2 %, quires thath be a functional defined on the boundary, of the
w8 and 7% B . (Note that for these pullback fields the form
abstract indices,b,c, ... are two dimensionalThe latter

commute with all other boundary fields and hence label sec- B 2 aB bCa A aB’ bC , A/

tors of the boundary phase spatEhey fail to commute with Lz h=41 Jazd Sarl ma M5 Apc™ Tar T Apc -
connection variables normal to the boundary, which are not (76)
part of the phase space of the boundary theory.

By the Constraintm;bAB and W;lf'B' are determinedup ~ When the constraints are satisfied this last expression, Eq.
to the SU(2), @ SU(2)r gauge invariancein terms of the  (76), is the Hamiltonian of the theory. We see that it is a
two metric on the boundary. functional on the boundary, which is both as required by

The actual degrees of freedom of the boundary phasgiffeomorphism invariance and consistent with the holo-
space are given by th8U(2), ®SU(2)g connectionA,,  9draphic hypothesis.
pulled back into the boundary. To find their Poisson brackets

one must construct the Dirac brackets by inverting the sec- VI. QUANTIZATION
ond class constraintg2). This is done in detail if7], the o )
result is We may now sketch the quantization of the ambidextrous

theory. We only emphasize those aspects which differ from
- R ’ 2 5 I\ (AB) the treatment given for the Euclidean signature theofyr'|n
1A (0), Apcpl(0')} = —€and™(00")dcp” . (73 to which the reader may refer for more details. We begin
with the bulk theory and then add the boundary degrees of
These are in fact the Poisson brackets of two dimensiondreedom.
Chern-Simons theory. We work first in the connection representation. Initially
However, the curvatures of the boundary connection aréhe configuration space is defined to be the space of com-
determined by the boundary terms in the Gauss's (a9.  plexified SU(2)_ & SU(2)g connections, mod internal gauge

These require transformations:
- Ao, ., . (AAB AA’B’)
FAB— eAC /\eB . gauge_ ’
WZ ¢ C GABX GA'B' ' (77)
fA'B = i_IZé’A’C/\ég’ _ (74y ~ Functionals orC 9249¢will live in a Hilbert space, subject to

a suitable norm such as that given[B1,11] called 7 9249€
. o, We must now discuss a subtle but important issue, having
There are relations betweef® and f ®. These follow to do with the use of the spin network states to describe the
from the constraints which express the fact that the pullorentzian signature theory. For the case that the gauge
backs of the self-dual and anti-self-dual two forms into thegroup is realSU(2), ® SU(2)g the resulting space of states
spatial boundarie¥ define the same two geometry. Thesehas a basis given by the spin networks, as discussed in
require that the invariants constructed fra¥i® and AA'8"  [10,11]. In these states the edges of the spin networks are
must be equal. labeled by pairs of integer$, ,jr corresponding to the
Thus, the phase space of the boundary theory is that dinite dimensional representations @&U(2) ®SU(2)R.
SU(2) ®#SU(2)g Chern-Simons theory, with an external In the present case, where the spacetime is Lorentzian the
field constraining the curvatures. connections actually live in the complexification of
The Hamiltonian of the theory may be constructed, fol-SU(2) @ SU(2)g. This means that there is additional free-
lowing the standard procedure, by extending the Hamiltoniamlom in the choice of states, arising from the fact that the
constraint by a boundary term so that the expression is fun@auge group is noncompact. One might choose, for example,
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to label the spin networks with continuous as well as discret®ther. The orthodox Dirac method would require that, as
labels, corresponding to the full set of representations of théhese together make a second class set, that they be solved
gauge group. explicitly and eliminated before the quantization. One way to
The strategy guiding the present approach is to set up @0 this is to eliminate the right handed quantities
quantization of the complexification of general relativity at (A28 724’8’ together with theSU(2)g gauge freedom in
the kinematical level, and then impose the reality conditiongavor of the left handed quantities. This would result in the
as operator equations, by realizing E¢S0) and (64) on a  Ashtekar formalism. However, as the Hamiltonian is a con-
suitable space of states. Thus, in principle we do have thetraint, there is a second option which can be tried, which
freedom to work within a kinematical state space which ismay preserve the chiral symmetry of the theory. This is to
considerably enlarged from that defined[it0,11 by ex- realizeR?” as an operator equation on physical states, so that
tending the labels on the spin networks to all representationge try to define and solve simultaneously
of the complexifications oSU(2), @ SU(2)r. Given that
there are continuous families of representations this greatly Rab| W) =0 (78)
expands the state space. This poses a very important issue,
which is that it may no longer be possible to choose an inner d
product for the space of diffeomorphism invariant states thaf"
renders it separableThis would be a disaster, which must
be avoided if possible. C(N)|¥)=0 (79
In fact, it is possible to avoid this disaster. To do this we
work within the Hilbert space whose basis is labeled by spiron states irf+ diffe°,
networks whose edges are labeled only by pairs of ordinary We thendefinethe quantization o82° by
spins (. ,jr). The reason is that we will be implementing
the Lorentzian signature theory as long as we work in a
space of states in which it is possible to express, and solve,
the operator forms of the reality conditions, E4S0) and
(64). In this theory the kinematical theory differs from that of This is, of course, a formal expression that requires a regu-
the Euclidean theory in that every measure of three geomlarization procedure to specify completely. It then follows
etry, such as areas and volumes, has a right value and a ldftat physical states that satisfy E¢&9) and(78) also satisfy
value, which come from the corresponding labels on the
states. This extension is the way that the spin network theory
can express the fact that it gives a kinematical description of
the complexification of geometry, in essence the complex
part of any function of the three metric is the difference To see how this works, recall that standard constructions
between its left and right value. The reality conditions will, give a normalizable basis fdx 949 in terms of spin net-
as we will see shortly, be expressed by conditions that reworks for the algebr&&U(2), @ SU(2)g. The edges are la-
quire the left and right geometries to be equal. beled by pairs of spinsj(,jgr) and the nodes are labeled by
Following the methods developed [82,10,1] we are  pairs of intertwiners & ,ug).
then free to impose the condition that the states are invariant Using this basis it is easy to impose the condit{@8) on
under spatial diffeomorphisms. Given the choice ofstates. The reason is tHat®=0 is equivalent to the require-
kinematical inner product onH92Y9¢ defined by the ment that all area and volume observables constructed from
SU(2) @ SU(2)r spin networks we construct in the usual 72AB and 72A®" are equal. For general states in the spin
way a unitary representation of the spatial diffeomorphismetwork basis, the areas and volumes constructed #dff,
group Diff(X) on 7 9819€ Thde_fgf;auge invariant states live in may be called the “left quantum geometry.” These will dif-
a subspace which is called "' These are by NOW stan- fer from those constructed from®A’®’, which we may call
dard constructions which were done at the heuristic level g}, o “right handed geometry.” ClassicalR?°=0 is equiva-

[32'33'8*1%).%? then treated rigorously [81,34,1]. lent to the statement that the right handed areas and volumes
OnceH ™"'¢°is constructed there remain three more sets; o equal to the left handed ones, for every region of the
of constraints to impose which are the Hamiltonian con-y,ree manifold
. _ . b_ b_ -
straintC(N) =0 and the constrain®8*°=0 andS**=0 that The states in the spin network basis which are spanned by
determlnes_ that the left and right handed fields define th%igenstates of left and right handed area and volume opera-
same metric geometry. tors, such that the eigenvalues of the left handed areas al-
There are two ways we could handle the constraRfts ways equal the eigenvalues of the right-handed areas, live in
=0 and $?°=0 that tie the left and right sectors to each a subspace{ $Y™C H 93u9ewhich is spanned by the subset of
spin networks whose labels satisfy=jr and u, = ug.
Representations dbU(2), @ SU(2)gr which satisfyj =g
"There are delicate issues concerning the treatment of the norm gie calledbalanced
states with high valence nodes, but these may be resolved leading to Such representations have been employed by Barrett and
separable Hilbert space. Crane in a proposal for a state sum model to represent quan-

SP=[C[N],R?"]. (80)

§0|w) =0. (81
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tum general relativity35] and have been studied recently in quantum spin networks, under these recoupling relations,
[36,37). It is quite interesting to find it arising also within the which meet the boundary at a fixed set of punctures.
Hamiltonian framework. The reality condition64) can be imposed on the space of
The restriction to balanced spin networks implements halstates by requiring that the action of the left handed area
the reality conditions. The other half are, as we arguedperator, defined from?A8 is equal to the action of the right
above, automatically satisfied on states which are solutionganded area operater®®'®’ for every two surface in the

to the Hamiltonian constraints. For the purposes of studyingylk. These actions are defined on the quantum deformed
the boundary theory, we need be concerned with one class @pin network states ifi.2]. The condition is solved for every

that are derived from the Chern-Simons stétd]. We thus  restricted to balanced spin networks.

now show that the state can be extended to the present case.To show that the Hamiltonian constraint has been solved

To do this we show that the loop transform of thejn a3 way that is consistent with the imposition of the reality
SU(2).®SU(2)r Chern-Simons state induces, as [l  conditions in this form one must check that the restriction to
a finite dimensional space of bOUndary states, all of WhiCI‘ba|anced Spin networks commutes with the quantum recou-
SatiSfy the bulk Hamiltonian constraints. These are eXpressqqing relations, app“ed Separate|y to the left and nght labels
in terms of arbitrary (but quantum deformed of the spin networks. This is straightforward, as one may use
SU(2) ®SU(2)r spin networks. The reality conditio®0)  the recoupling relations to express the equivalence classes in
is then implemented on this solution space by restricting thg@erms of trivalent spin networks, after which the imposition
spin networks in the transform to the balanced spin netof the balanced conditions amount to the trivial requirement
works. This restriction commutes with the imposition of thethathsz on all edges. This means that, at least formally,

constraints, so that the result also provides, by the formae second reality conditiof64) is also solved on this space
argument above, a solution to E@4). of states.

The Chern-Simons state f&U(2)_® SU(2)r is given by We may now take into account the details of the construc-
tion of the boundary theory. The Chern-Simons state state
becomes a finite dimensional space of states, as described in
[7], for each set of punctures on the boundary. These are
given by the quantum deformed intertwiners on the punc-
It is straightforward to show using the usual methfit$,39 ~ tured boundary The restriction to balanced representations
that this solves independently both the left and right parts ofXtends to the boundary, we also require tkatk’ so that
the Hamiltonian constraints8). In the spin network basis, there is only one contribution to the cosmological constant.
suitably quantum deformdd 2], the corresponding solutions One then constructs a space of physical states that has the

\IICS(A):e(k'/4ﬂ)(scs[AAB]*Scs[AA’B’])_ (82)

space is given in the bulk by form [7]
HOW=2 X My, (84)
‘I’(F):fDAe(k’/47T)(SC§AAB]*SCS{AA’B’])T[]__‘]. (83) & = [ ITEE in
where
r— 2
Here k' =6m/G°A. T' then refer 105Uq(2),&SUs(2)r Hi, in:V?ﬁléﬁ.c,?:CViLl ..... in®VjR1 ..... - (89

quantum spin networksj deformed withg=e?™/('+2) and

T[I'] is a suitably framed product of traces of Wilson 100ps pere )y balanced ig the finear space of balanced intertwiners
associated td'. This defines a finite dimensional state space, DL o n hich is th ¢ ¢ |
parameterized by boundary states we will discuss shortl)/.n i which 1S the space of conforma
We may note that the fact that the cosmological constant i§locks for the punctured sphere, for tB&J(2), ©SU(2)r
common to the left and right sector means that they have th&/ZW model. By the balanced condition, the commpls
same quantum deformation parameter. label the punctures. The sum extends up to spik’, be-
The transform(83) defines a space of physical states,cause of the quantum deformatipry.
which may be called physical The restriction that defines The full set of physical observables for the theory can be
this may be stated as follows: a functional of quantum dedescribed in terms of operators &P"*[7]. Among them is
formed spin networkss(I') is in HP"sic@if it is invariant ~ the area operatdi8,9], which is diagonal in the punctures
under the quantum recoupling rules given [i40]. The and whose eigenvalues are given, in the limit of lakg¢12]
boundary theory then consists of equivalence classes &%

alji]=2 Gavii(ji+1). (86)
8An alternative approach to deriving the Barrett-Crane balanced !
states as the quantization of an action similar to |yis given by . . . g

[27]. In this approach one proceeds from the classical action to thfg')ne then finds that the Bekenstein bouid] is satisfied, as
ath integral directly by defining a natural discretization of the .

2 2 Hed ? i=caljil,  (®7

; L
Sa(4) Plebanski action. In Dlm(le ,,,,,,,,,,
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with c=24/3/In(2). states and operators constructed from an ordinary conformal

Finally, to realize the dynamics we must implement thefield theory on the two dimensional spatial boundary. The
Hamiltonian (76), which we recall is a boundary term. The nonlinear part of the gauge invariance, when extended to the
evolution of the states according to a time defined on théoundary, gives rise to the Hamiltonian, that generates
boundary by the function field< 9 M is then given by the physical time evolution. This Hamiltonian respects the pre-
Schralinger equation ferred time slicing of the boundary that was used for the
construction of the boundary conditions on the finite bound-
ary.

Thus, we have found that general relativity with a cosmo-
logical constant has, in the Lorentzian case, as well as the
where the Hamiltonian is given by an operator representingcuclidean case studied if¥], a holographic formulation
Eq. (76). The implementation of the Hamiltonian as a quan-when expressed in terms of finite boundaries. The hope in
tum operator on the spac¥P"YSis a nontrivial problem, subsequent work will be to extended this to te 8 super-
which will represent another step in this program. symmetric case and by doing so obtain results relevant for a

Thus, as in the classical theory, the gauge invarianc@olographic formulation of\1 theory.
splits up into a kinematical, linear part and a dynamical,
nonlinear part, and the splitting affects both the bulk and
the boundary theory. The linear kinematical part has to
do with the gauge invariance in the subgrotp= | am grateful to Abhay Ashtekar, Arivand Asok, Louis
SU(2) ®SU(2)g, while the nonlinear part has to do with Crane, Laurant Friedel, Sameer Gupta, Kirill Krasnov, Fotini
the cosetSP(4)/H. In the bulk the nonlinear part of the Markopoulou, Roger Penrose, Carlo Rovelli, Edward Witten,
gauge invariance turns out to be expressed precisely as tléad especially Yi Ling for conversations during this work.
Hamiltonian and diffeomorphism constraints of the theory.This work was supported by NSF grant PHY-9514240 to
In the boundary theory the linear part tells us that the theoryfhe Pennsylvania State University and the Jesse Phillips

TF\‘I’,
3%

)
1h—V¥=

oT (88)

ACKNOWLEDGMENTS

has a complete holographic formulation given in terms offFoundation.

[1] G. 't Hooft, “Dimensional reduction in quantum gravity,”
gr-qc/9310026.

[2] L. Susskind, J. Math. Phy86, 6377(1995; Phys. Rev. Lett.
71, 2367 (1993; Phys. Rev. D49, 6606 (1994); 50, 2700
(1994; L. Susskind and P. Griffin, “Partons and black holes,”
hep-ph/9410306.

[3] L. Crane, J. Math. Phys36, 6180(1995.

[4] L. Smolin, “The Bekenstein bound, topological quantum field
theory and pluralistic quantum cosmology,” gr-qc/9508064.

[5] L. Smolin, The Life of the Cosmo&xford and Wiedenfeld
and Nicolson, London, 1997

[6] C. Rovelli, Int. J. Theor. Phys36, 1637(1996.

[7] L. Smolin, J. Math. Phys36, 6417(1995.

[8] L. Smolin, in Quantum Gravity and Cosmologgdited by J.
Paez-Mercadeet al. (World Scientific, Singapore, 1992

[9] C. Rovelli and L. Smolin, Nucl. PhysB442 593 (1995;
B456, 734E) (1995.

[10] C. Rovelli and L. Smolin, Phys. Rev. B2, 5743(1995.

[11] A. Ashtekar, J. Lewandowski, D. Marolf, J. Mouraand T.
Thiemann, J. Math. Phy86, 6456(1995; A. Ashtekar and J.
Lewandowski, Class. Quantum Gral4, A55 (1997); J. Le-
wandowski,ibid. 14, 71 (1997.

[12] S. Major and L. Smolin, Nucl. PhyB473 267 (1996; R.
Borissov, S. Major, and L. Smolin, Class. Quantum Grkg.
3183(1996.

[13] J. D. Bekenstein, Lett. Nuovo Cimenth 737 (1972; Phys.
Rev. D7, 2333(1973; 9, 3292(1974.

[14] H. Kodama, Prog. Theor. Phy80, 1024(1988.

[15] L. Smolin and C. Soo, Nucl. Phy8449, 289 (1995.

Rev. D55, 5112(199%; Lubos Motl, “Proposals on nonper-
turbative superstring interactions,” hep-th/9701025; Tom
Banks and Nathan Seiberg, Nucl. Phil97, 41 (1997); R.
Dijkgraaf, E. Verlinde, and H. Verlindehid. B500, 43 (1997.

[17] P. Horava, Phys. Rev. B9, 046004(1999.

[18] Juan M. Maldacena, Adv. Theor. Math. Phs.231 (1998;
Phys. Rev. Lett80, 4859(1998.

[19] E. Witten, Adv. Theor. Math. Phys2, 253 (1998; 2, 505
(1998.

[20] S. S. Gubser, I. R. Klebanov, and A. M. Polyakov, Phys. Lett.
B 428 105(1998.

[21] L. Smolin, “Holographic formulation of extended supergravity
in terms of finite surfaces'(in preparation

[22] A. Ashtekar, Phys. Rev. Leth7, 2244(1986; Phys. Rev. D
36, 1587(1987).

[23] T. Jacobson and L. Smolin, Phys. Lett. 196, 39 (1987);
Class. Quantum Graw, 583(1988.

[24] Joseph Samuel, Pramagg, L429 (1987).

[25] J. F. Barbero, Int. J. Mod. Phys. 8 379(1994.

[26] J. F. Plebanski, J. Math. Phyk2, 2511(1977.

[27] R. De Pietri and L. Freidel, Class. Quantum Gra®, 2187
(1999.

[28] R. Capovilla, J. Dell, and T. Jacobson, Phys. Rev. L&%.
2325(1989; Class. Quantum Gra®g, 59(1991); R. Capovilla,
J. Dell, T. Jacobson, and L. Masahbjd. 8, 41 (1991).

[29] S. Macdowell and F. Mansouri, Phys. Rev. Le®8, 739
(1977; 38, 1376E) (1977.

[30] T. Jacobsoriunpublishegl

[31] D. Rayner, Class. Quantum GraVv, 111 (1990; 7, 651
(1990.

[16] T. Banks, W. Fishler, S. H. Shenker, and L. Susskind, Phys[32] T. Jacobson and L. Smolifunpublishel

084007-12



HOLOGRAPHIC FORMULATION OF QUANTUM . .. PHYSICAL REVIEW D61 084007

[33] C. Rovelli and L. Smolin, Phys. Rev. Letl, 1155(1988); supergravity” and ‘“Holographic formulation of N2 super-
Nucl. Phys.B133 80 (1990. gravity,” reports(in preparation

[34] A. Ashtekar and C. J. Isham, Class. Quantum GE&v1069  [39] B. Bruegmann, R. Gambini, and J. Pullin, Phys. Rev. L&St.
(1992. 431 (1992; R. Gambini and J. Pullinl.oops, Knots, Gauge

[35] J. Barrett and L. Crane, J. Math. Phg®, 3296(1998. Theories and Quantum GravitfCambridge University Press,

[36] J. Baez, Class. Quantum Grahb, 1827(1998. Cambridge, England, 1996

[37] Laurent Freidel and Kirill Krasnov, Class. Quantum Gri6, [40] L. Kauffman and S. L. Lins,Temperley-Lieb Recoupling
351(1999; Adv. Theor. Math. Phys2, 1183(1999. Theory and Invariants of 3-Manifold&Princeton University

[38] Y. Ling and L. Smolin, “Holographic formulation of quantum Press, Princeton, NJ, 1994

084007-13



