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Regular „2¿1…-dimensional black holes within nonlinear electrodynamics
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~211!-regular static black hole solutions with a nonlinear electric field are derived. The source to the
Einstein equations is an energy momentum tensor of nonlinear electrodynamics, which satisfies the weak
energy conditions and in the weak field limit becomes the~211!-Maxwell field tensor. The derived class of
solutions is regular: the metric, curvature invariants, and electric field are regular everywhere. The metric
becomes, for a vanishing parameter, the~211!-static charged BTZ solution. A general procedure to derive
solutions for the static BTZ~211!-spacetime for any nonlinear Lagrangian depending on the electric field is
formulated; for relevant electric fields one requires the fulfillment of the weak energy conditions.

PACS number~s!: 04.20.Jb, 97.60.Lf
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In general relativity the literature on regular black ho
solutions is rather scarce@1,2#. In ~311!-gravity it is well
known that electrovacuum asymptotically flat metrics e
dowed with timelike and spacelike symmetries do not all
for the existence of regular black hole solutions. Nevert
less, in the vacuum plus the cosmological constantL case,
the de Sitter solution@3# with a positive cosmological con
stant is known to be a regular nonasymptotically flat solut
~the scalar curvature is equal to 4L and all the invariants of
the conformal Weyl tensor are zero.! In order to be able to
derive regular~black hole! gravitational-nonlinear electro
magnetic fields one has to enlarge the class of electrodyn
ics to nonlinear ones@2#. On the other hand in~211!-gravity,
which is being intensively studied in these last years@4–7#,
in the vacuum case all solutions are locally Minkowski~the
Riemann tensor is zero!; the extension to the vacuum plu
cosmological constant allows for the existence of the rota
anti-de Sitter regular black hole@4# ~the scalar curvature an
the Ricci square invariants are constants proportional toL
and L2.) The static~211!-charged black hole with cosmo
logical constant@the static charged Banados-Teitelboim
Zenelli ~BTZ! solution# is singular~when r goes to zero the
curvature and the Ricci square invariants blow up!. Similarly
as in the~311!-gravity, one may search for regular solutio
in ~211!-gravity incorporating nonlinear electromagne
fields to which one imposes the weak energy conditions
order to have physically plausible matter fields. One can lo
for regular solutions with nonlinear electromagnetic fields
the Born-Infeld type@8–13# or electrodynamics of wide
spectra.
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In this work, we are using electromagnetic Lagrangi
L(F) depending upon a single invariantF51/4FabFab ,
which we demand in the weak field limit to be equal to t
Maxwell LagrangianL(F)→2F/4p, the corresponding en
ergy momentum tensor has to fulfill the weak energy con
tions: for any timelike vectorua, uaua521 ~we are using
signature211) one requiresTabu

aub>0 and qaqa<0,
whereqa5Tb

aub.
The action of the~211!-Einstein theory coupled with

nonlinear electrodynamics is given by

S5E A2g S 1

16p
~R22L!1L~F ! D d3x, ~1!

with the electromagnetic LagrangianL(F) unspecified ex-
plicitly at this stage. We are using units in whichc5G
51. The ambiguity in the definition of the gravitational co
stant @there is not Newtonian gravitational limit in~211!-
dimensions# allows us to maintain the factor 1/16p in the
action to keep the parallelism with~311!-gravity. Varying
this action with respect to gravitational field gives the E
stein equations

Gab1Lgab58pTab , ~2!

Tab5gabL~F !2FacFb
cL ,F, ~3!

while the variation with respect to the electromagnetic p
tential Aa entering inFab5Ab,a2Aa,b , yields the electro-
magnetic field equations

¹a~FabL ,F!50, ~4!

whereL ,F stands for the derivative ofL(F) with respect to
F.
©2000 The American Physical Society03-1
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Concrete solutions to the dynamical equations above
present for the static metric

ds252 f ~r !dt21
dr2

f ~r !
1r 2 dV2, ~5!

where f (r ) is an unknown function of the variabler. We
restrict the electric field to be

Fab5E~r !~da
t db

r 2da
r db

t !. ~6!

The invariantF then is given by

2F52E2~r !, ~7!

thus the electric field can be expressed in terms of the inv
ant F. Substituting Eqs.~6! and ~7! into the electromagnetic
field equations~4! we arrive at

E~r !L ,F5
e

r
, ~8!

wheree is an integration constant. We choosee52q/4p in
order to obtain the Maxwell limit. Then we have

E~r !L ,F52
q

4pr
. ~9!

Using now Eq.~7! we express the derivativeLF as function
of r, as follows:

L ,r5
q

4pr
E,r . ~10!

We rewrite the Einstein’s equations equivalently as

Rab58p~Tab2Tgab!12Lgab . ~11!

From Eq.~3! using Eqs.~6! and ~7! the trace becomes

T53L~F !12E2~r !L ,F . ~12!

As it was above pointed out, the LagrangianL(F) must sat-
isfy ~i! correspondence to Maxwell theory, i.e.L(F)
→2L/4p, and ~ii ! the weak energy conditions:Tabu

aub

>0 andqaqa<0, whereqa5Tb
aub for any timelike vector

ua; in our case the first inequality requires

2~L1E2L ,F!>0, ~13!

which can be stated equivalently as

L<EL,E→L<
q

4pr
E. ~14!

The norm of the energy fluxqa , occurs to be always less o
equal to zero; for ua along the time coordinate,ua

5d t
a/A2gtt, one has the inequalityqaqa52(L1L ,FE2)2

<0.
Assume now that one were taking into account additi

ally the scalar magnetic fieldBªFfr , then the Maxwell
equations would be
08400
e
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dr
@rEL ,F#50,

d

dr

f

r
BL,F50. ~15!

On the other hand, the Ricci tensor components, evalu
for the BTZ metric~5!, would yield the following relation:

AªRtt1 f 2Rrr 50, ~16!

while the evaluation of the same relation using the elec
magnetic energy-momentum would give

A528pL ,FS f

r
BD 2

. ~17!

Therefore, the scalar magnetic field should be equated
zero,B50, thus the only case to be treated is just the o
with the electric fieldE.

As far as the Einstein equations are concerned,
Rtt(52 f 2Rrr ) and RVV components yield respectively th
equations

f ,rr 1
f ,r

r
524L116p„2L~F !1E2L ,F…, ~18!

f ,r522Lr 116pr „L~F !1E2L ,F…. ~19!

If one replacesf ,r from Eq. ~19! and its derivativef ,rr into
Eq. ~18! one arrives, taking into account Eq.~10!, at an iden-
tity. Therefore one can forget Eq.~18! and integrate the rel-
evant Einstein equation~19!:

f ~r !52M2Lr 2116pE r @L„F~r !…1E2L ,F#dr.

~20!

Summarizing we have obtained a wide class of solutio
depending on a LagrangianL(E), given by the metric

ds252 f ~r !dt21
dr2

f ~r !
1r 2 dV2, ~21!

the structural function

f ~r !52M2~L22C!r 214qE F r E E,r

r
dr2EGdr,

~22!

which is obtained from Eq.~20! by using Eqs.~10! and ~7!,
where C is a constant of integration, and the Lagrangi
L(E) is constrained to

L ,r5
q

4pr
E,r . ~23!

We recall that the Lagrangian and the energy momen
tensor have to fulfill the conditions quoted above.

We present now various particular examples.
The static charged BTZ solution@4# is characterized by

the function
3-2



is

ld

a
a

is

an

lu
e

be-
-
so-
n

r

o

tri-

-

r

-
-
e
use

ns

REGULAR ~211!-DIMENSIONAL BLACK HOLES . . . PHYSICAL REVIEW D 61 084003
2gtt5 f 52M1
r 2

l 2
22q2 ln r , ~24!

the Lagrangian and the electric field

L~E!5
1

8p
E25

1

8p

q2

r 2
, E~r !5

q

r
, ~25!

whereC has been equated to zero andL521/l 2. It is worth-
while to point out that the static charged BTZ black hole
singular atr 50.

Other interesting examples arise in the Born-Infe
electrodynamics—nonlinear charged~211!–black-hole@14#.
In this case the structural function is

2gtt5 f 52M2~L22b2!r 222b2rAr 21q2/b2

22q2ln~r 1Ar 21q2/b2!, ~26!

and the Lagrangian and the electric field are given by

L~F !52
b2

4p SA112
F

b2
21D 52

b2

4p S r

Ar 21q2/b2
21D ,

E~r !5
q

Ar 21q2/b2
, ~27!

whereb is the Born-Infeld parameter, andC5b2. This so-
lution fulfills the weak energy conditions and it is singular
r 50. From the Ricci and Kretschmann scalars it follows th
in this case there is a curvature singularity atr 50 @14#.

A new class of solution, which is regular everywhere,
given by the structural function of the form

f ~r !52M2Lr 22q2 ln~r 21a2! ~28!

whereM, a, q, andL are free parameters. The Lagrangi
and the electric field are given by

L~r !5
q2

8p

~r 22a2!

~r 21a2!2
,

E~r !5
qr3

~r 21a2!2
. ~29!

This Lagrangian requires to setC50. The Lagrangian and
the electric field satisfy the weak energy conditions~14!. To
express the Lagrangian in terms ofF or equivalentlyE, one
has to writer in terms ofE by solving the quartic equation
for r (E), this will give rise to an explicitr containing radi-
cals ofE, which introduced inL(r ), finally will bring L as
function ofE. The expressionL(E) is not quite illuminating,
thus we omit it here.

To establish that this solution is regular one has to eva
ate the curvature invariants@17#. The nonvanishing curvatur
components, which occur to be regular atr 50, are given by
08400
t
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R01105
q2~a22r 2!

~r 21a2!2
1L, ~30!

R020252 f ~r !S q2r 2

r 21a2
1Lr 2D , ~31!

R12125 f ~r !21S q2r 2

r 21a2
1Lr 2D , ~32!

where 0,1,2 stand respectively fort, r, andV.
Evaluating the invariantsR, andRabR

ab one has

R5
2q2~r 213a2!

~r 21a2!2
16L, ~33!

RabR
ab512L214q4

r 412r 2a213a4

~r 21a2!4
1

8Lq2~3a21r 2!

~r 21a2!2
.

~34!

Since the metric, the electric field and these invariants
have regularly for all values ofr, we conclude that this so
lution is curvature regular everywhere. Nevertheless, for
lutions without any horizon or black hole solutions with a
inner and outer horizon, atr 50 a conical singularity may
arise.

At r 50 the function f (r ) becomes f (0)52M
2q2 ln(a2).

Thus for M positive, M.0, and a in the range 0,a
,1, the value of f (0) will be f (0)52M1q2 ln(1/a)2,
which will be positive, sayf (0)ªb2, if ln(1/a)2.M /q2. In
such a case, for 0,b,1 the solutions will show angula
deficit since the angular variableV, which originally runs
0<V,2p will now run 0<V,2bp; the parametera can
be expressed in terms ofb, q, and M as a25exp@2(b2

1M)/q2#. Forb51, there will be no angular deficit, the rati
of the perimeter of a small circle aroundr 50 to its radius, as
this last tends to zero, will be 2p.

If one allows M to be negative,M,0, and a to take
values in the interval 0,a,1, then f (0) will be always
positive, in this case one can adopt the following parame
zation: 2M5b2 cos2 a, q2 ln(1/a)25b2 sin2 a, therefore
f (0)5b2. One will have angular deficit if 0,b,1, and for
b51 the resulting (211) space-time will be free of singu
larities. Another possibility with positivef (0)5b2 arises for
M,0, and a.1, f (0) can be parametrized as2M
5b2 cosh2 a, q2 ln(1/a)25b2 sinh2 a. Again the values
taken byb will govern the existence of angular deficit, fo
b51 the solutions will be regular.

If f (0) is negative,f (0)5:2b2, the character of the co
ordinatest and r changes, the coordinatet becomes space
like, while r is now timelike and one could think of th
singularities, if any, as causal structure singularities beca
they could arise at the ‘‘time’’r 50.

In what follows we shall treat the parametera as a free
one, having in mind the above restrictions to have solutio
free of conical singularities.
3-3
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To establish that this solution represents a black hole,
has to demonstrate the existence of horizons, which req
the vanishing of thegtt component, i.e.,f (r )50. The roots
of this equation give the location of the horizons~inner and
outer in our case!. The roots—at most four—of the equatio
f (r )50 can be expressed in terms of the LambertW(r )
function

r 1,2,3,456FexpXLa22M

q2

2LWF L

q2
expS La22M

q2 D GC2a2G 1/2

. ~35!

There arise various cases which depend upon the value
the parameters: four real roots~two positive and two nega
tive roots, the negative roots have to be ignored!, two com-
plex and two real roots, two complex and one real posit
root ~the extreme case!, and four complex roots~no black
holes solutions!. Although this analytical expression for th
Lambert function can be used in all calculations,@we recall
that Lambert function fulfills the following equation
ln„LW(x)…1LW(x)5 ln(x)], it occurs also useful to extrac
information from the graphical behavior of the ourf (r ) ~see
figures!.

Analytically one can completely treat the extreme bla
hole case; for it, the derivative off (r ) has to be zero,
] r„f (r )…50, at ther extr , this gives

r extr5A2a22
q2

L
.0 ~36!

for L,0. From this expression one concludes that the
lowing inequality holds:a2,2q2/L. Entering now r extr
into f (r )50 one obtains a relation between the parame
involved, which can be solved explicitly for the mass—t
extreme one—

Mextr5a2L1q2S 11 lnF2L

q2 G D , ~37!

this Mextr varies its values depending on the values given
the parametersa, q, andL. We have an extreme black ho
characterized by negative cosmological constant,L,0, and
positive extreme mass,Mextr.0, if the parametera is re-
stricted by the inequalitya2,2„q2@11 ln(2L/q2)#…/L.

For other values of the massM, one distinguishes the
following branches: ifM.Mextr one has a black hole solu
tion, and if M,Mextr there are no horizons.

In Fig. 1 we draw the graph off (r ) which corresponds to
regular solutions for fixed values ofM and changing the
values of the parametersL, q. In Fig. 2 we draw the graph o
f (r ) corresponding to solutions which exhibit a conical s
gularity at r 50, for f (0)51/2, keepingM fixed while L
andq change.
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If one were interested in the thermodynamics of the o
tained solution one would evaluate the temperature of
black hole, which is given in terms of its surface gravity b
@15,16#

kBTH5
\

2p
k. ~38!

In general, for a spherically symmetric@and for circularly
symmetric in (211)-dimensions# system the surface gravit
can be computed via~for our signature!

FIG. 1. Behavior of2gtt for M56.421 and for different values
of q andL corresponding to regular black hole (q56, L5230),
regular extreme black hole (q55, L5225), horizon-free regular
solution (q54, L5220), wherer 250.28 is the inner horizon,
r e50.50 is the extreme horizon, andr 150.86 is the event horizon

FIG. 2. Behavior of2gtt for M54.68 and for different values
of q and L for solutions with angular deficit 0<V,p/A2 corre-
sponding to conical singular black hole (q56, L5230), conical
singular extreme black hole (q55, L5225), and conical naked
singular solution (q54, L5220), wherer 250.21 is the inner
horizon,r e50.43 is the extreme horizon, andr 150.82 is the event
horizon.
3-4
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k52 lim
r→r 1

F1

2

] rgtt

A2gttgrr
G , ~39!

wherer 1 is the outermost horizon. For our solution we ha
from Eqs.~22!, ~38!, and~39! that

kBT5
\

2p S 2Lr 12
q2r 1

r 1
2 1a2D . ~40!

Since in our case there is no an analytical expression ofr 1 in
terms of elementary functions, one cannot give a param
dependent expression of Eq.~40!. It is easy to check tha
whenq50, T in Eq. ~40! reduces to the BTZ temperature.
the extreme case~36!, the temperature vanishes in Eq.~40!.
The entropy can be trivially obtained using the entropy f
’’

08400
er

-

mula S54pr 1. Other thermodynamic quantities such
heat capacity and chemical potential can be computed a
@16#.

To achieve the maximal extension of our regular bla
solutions one has to follow step by step the procedure p
sented in@17# determining first the Kruskal-Szekeres coord
nates, and to proceed further to draw the Penrose diagra
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México 3692P-E9607, 32138E~A.G.! and in part by Dicyt
de la Universidad de Santiago de Chile~M.C., A.G.!.
,

@1# A. Borde, Phys. Rev. D55, 7615~1997!.
@2# E. Ayón-Beato and A. Garcı´a, Phys. Rev. Lett.80, 5056

~1998!.
@3# D. Kramer, H. Stephani, M. MacCallum, and E. Hertl,Exact

Solutions of the Einstein’s Field Equations~Deutsch. Ver. der
Wiss., Berlin, 1980!.
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