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Regular (2+1)-dimensional black holes within nonlinear electrodynamics
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(2+1)-regular static black hole solutions with a nonlinear electric field are derived. The source to the
Einstein equations is an energy momentum tensor of nonlinear electrodynamics, which satisfies the weak
energy conditions and in the weak field limit becomes (e 1)-Maxwell field tensor. The derived class of
solutions is regular: the metric, curvature invariants, and electric field are regular everywhere. The metric
becomes, for a vanishing parameter, {Be-1)-static charged BTZ solution. A general procedure to derive
solutions for the static BTZ2+ 1)-spacetime for any nonlinear Lagrangian depending on the electric field is
formulated; for relevant electric fields one requires the fulfillment of the weak energy conditions.

PACS numbg(s): 04.20.Jb, 97.60.Lf

In general relativity the literature on regular black hole In this work, we are using electromagnetic Lagrangian
solutions is rather scardd,2]. In (3+1)-gravity it is well L(F) depending upon a single invariaft=1/4F3°F
known that electrovacuum asymptotically flat metrics en-which we demand in the weak field limit to be equal to the
dowed with timelike and spacelike symmetries do not allowMaxwell Lagrangiarl (F)— —F/4m, the corresponding en-
for the existence of regular black hole solutions. Neverthe€rgy momentum tensor has to fulfill the weak energy condi-
less, in the vacuum plus the cosmological constantase, tions: for any timelike vectou?, u®u,=—1 (we are using
the de Sitter solutiof3] with a positive cosmological con- signature — ++) one requiresT,,uu"=0 and g,9°<0,
stant is known to be a regular nonasymptotically flat solutionvhereq®=Tpu®.

(the scalar curvature is equal to\dand all the invariants of ~ The action of the(2+1)-Einstein theory coupled with
the conformal Weyl tensor are zerdn order to be able to Nonlinear electrodynamics is given by

derive regular(black holg gravitational-nonlinear electro- 1

magnetic fields one has to enlarge the class of electrodynam- S= f V=g == (R=2A)+L(F) | d3, (1

ics to nonlinear ongl®]. On the other hand if2+1)-gravity, 167

which is being intensively studied in these last yddrs7],

in the vacuum case all solutions are locally Minkowékie ~ With the electromagnetic Lagrangidr(F) unspecified ex-
plicitly at this stage. We are using units in which=G

Riemann tensor is zeypthe extension to the vacuum plus oI C o
cosmological constant allows for the existence of the rotatin%_t;r; t-{tr;]ee;aerqg'%lg:y&gﬂgrﬂgzn't'rgcigtfgﬁa?rﬁ‘r\{q';{ﬁ'(%'lalfon'
anti-dg Sitter regullar b!ack hol@] (the scalar curvat.ure and dimension$ allows us to maint?ain the factor 1/46in the
the Ricci square invariants are constants proportional to action to keep the parallelism wit{8+1)-gravity. Varying

2 : .
anqlA ) The statlc(2+1)-_charged black hole with COSMO~ 4pig action with respect to gravitational field gives the Ein-
logical constant[the static charged Banados-Teitelboim- stein equations

Zenelli (BTZ) solution| is singular(whenr goes to zero the

curvature and the Ricci square invariants blowy. @milarly GaptAQap=87Tyap, 2)
as in the(3+1)-gravity, one may search for regular solutions
in (2+1)-gravity incorporating nonlinear electromagnetic Tab=0Gabl (F)— FacF <L F, 3

fields to which one imposes the weak energy conditions in

order to have physically plausible matter fields. One can lookyhile the variation with respect to the electromagnetic po-
for regular solutions with nonlinear electromagnetic fields oftential A, entering inF,,=A, .— A, Yyields the electro-
the Born-Infeld type[8—13] or electrodynamics of wider magnetic field equations ’ '

spectra.
V. (F3L () =0, (4
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Concrete solutions to the dynamical equations above we

present for the static metric

ds?=—f(r)dt? dr’ 2d0? 5
=—1(r) t+m+r , (5)

where f(r) is an unknown function of the variable We
restrict the electric field to be

Fan=E(1)(8,8,~ 830}). (6)
The invariantF then is given by

2F=—E?(r), (7)
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d f
— -BL=0.

drr (19

d
a[rELYF]:O,
On the other hand, the Ricci tensor components, evaluated
for the BTZ metric(5), would yield the following relation:

A:=R,+f2R, =0, (16)
while the evaluation of the same relation using the electro-
magnetic energy-momentum would give

2
A=—87TL,F(;B) . (17)

thus the electric field can be expressed in terms of the invaritherefore, the scalar magnetic field should be equated to
antF. Substituting Eqs(6) and(7) into the electromagnetic zero, B=0, thus the only case to be treated is just the one

field equationg4) we arrive at
e
E(NLe=". t)

wheree is an integration constant. We choase —qg/44 in
order to obtain the Maxwell limit. Then we have

q
E(I’)L'F——m. (9)
Using now Eq.(7) we express the derivativier as function
of r, as follows:

L =3

T g T

(10

We rewrite the Einstein’s equations equivalently as

Rap=87(Tap—TGap) + 2AJap- 11

From Eq.(3) using Eqgs.(6) and(7) the trace becomes

T=3L(F)+2E%(r)L . (12
As it was above pointed out, the LagrangiafF) must sat-
isfy (i) correspondence to Maxwell theory, i.d.(F)
— —L/4a, and (i) the weak energy conditionst,,uu®
=0 andq,q?<0, whereq®=TauP for any timelike vector
u?; in our case the first inequality requires

—(L+E%L p)=0, (13
which can be stated equivalently as
q
L<ELg—L<-—E. (149

4ar

The norm of the energy flug,, occurs to be always less or

equal to zero; foru* along the time coordinatep?
= 82/\J—gy, one has the inequalitg,q®= —(L+L E?)?

<0.

Assume now that one were taking into account addition-

ally the scalar magnetic fiel®:=F, , then the Maxwell
equations would be

with the electric fieldE.

As far as the Einstein equations are concerned, the
Ri(=—f?R,;) and Ry, components yield respectively the
equations

fr

f o+ S =AA 16m(2L(F)+EL p),

(18)

f=—2Ar+16mr(L(F)+E2L p). (19
If one replaced , from Eq. (19 and its derivativef ,, into
Eq. (18) one arrives, taking into account Ed.0), at an iden-
tity. Therefore one can forget E¢L8) and integrate the rel-
evant Einstein equatio(19):

f(r)=—M—Ar2+ 167Tf r[L(F(r)+E”L g]dr.
(20

Summarizing we have obtained a wide class of solutions,
depending on a Lagrangidr(E), given by the metric

2

dr
ds?’=—f(r)dt®+ — +r?dQ?,

f(r) @D

the structural function

f(r)=—M—(A—2C)r2+4qf {rf?dr—E}dr,
(22

which is obtained from Eq20) by using Eqs(10) and(7),
where C is a constant of integration, and the Lagrangian
L(E) is constrained to

q
L’r_4’7Tl' E,. (23
We recall that the Lagrangian and the energy momentum
tensor have to fulfill the conditions quoted above.
We present now various particular examples.
The static charged BTZ solutio] is characterized by
the function
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VNP (24) Rossm LB Ly (30)
—gu=f=—M+—— nr, =———— "+ A,
Ot 2 q 0110 (124 22)2
the Lagrangian and the electric field q2r2
Rozoz=—f(r)| 5 —— +Ar?|, (3D
1 1 q2 q r<+a
L(E)= g=E?=¢——, E(r)=-, (25)
8w 8w 2 r o2r?
. R1212=f(r)‘1( S HAr? ], (32)
whereC has been equated to zero ake — 1/12. It is worth- r‘+a
while to point out that the static charged BTZ black hole is
singular atr=0. where 0,1,2 stand respectively forr, and ().
Other interesting examples arise in the Born-Infeld Evaluating the invariant® andR,,R*" one has
electrodynamics—nonlinear chargétt1)—black-holg 14]. s ,
In this case the structural function is R 2g°(r<+3a%) A 33
(r?+a?? '
—gu=f=—M—(A—2b?)r2-2b% \r2+q?b?
4 2,2 4 2 2 2
—2¢2In(r + /r2+q2/b2), (26) RabRab=12A2+4q4r +2r“a‘+3a N 8AQ“(3a“+r ).
. . . (r’+a?)? (r’+a??
and the Lagrangian and the electric field are given by (34)

b2 ( E ) b2 ( r ) Since the metric, the electric field and these invariants be-
L(F)==——| \/1+25-1|=—-—| === —1|,  have regularly for all values af, we conclude that this so-
4 2 4 21 a2/p2 Ve )
m b TANre+a%b lution is curvature regular everywhere. Nevertheless, for so-
lutions without any horizon or black hole solutions with an

E(r)= q @27 inner and outer horizon, at=0 a conical singularity may
2+ g2/b2’ arise.
a At r=0 the function f(r) becomes f(0)=—M
whereb is the Born-Infeld parameter, ar@=b?. This so- —g?In(&).

lution fulfills the weak energy conditions and it is singular at  Thus for M positive, M>0, anda in the range &-a
r=0. From the Ricci and Kretschmann scalars it follows that<1, the value off(0) will be f(0)=—-M+q“In(1/a)%,

in this case there is a curvature singularityr a0 [14]. which will be positive, sayf(0):=?, if In(1/a)*>>M/qg?. In
A new class of solution, which is regular everywhere, issuch a case, for 48<1 the solutions will show angular

given by the structural function of the form deficit since the angular variabl®, which originally runs

0=<Q <27 will now run 0= <2B; the parametea can

f(r)=—M—Ar?2—g?In(r?+a?) (28)  be expressed in terms @8, g, and M as a’=exd —(8°

+M)/¢?]. For =1, there will be no angular deficit, the ratio
whereM, a, g, and A are free parameters. The Lagrangianof the perimeter of a small circle aroune- O to its radius, as

and the electric field are given by this last tends to zero, will be2
If one allows M to be negativeM <0, anda to take
9> (r’-a’ values in the interval &a<1, thenf(0) will be always
L(r)= 8 m’ positive, in this case one can adopt the following parametri-
zation: —M=pB2coga, g?In(1/a)?>=B%sir’a, therefore
qr3 f(0)= B2. One will have angular deficit if & 8<1, and for

(29) B=1 the resulting (2-1) space-time will be free of singu-
larities. Another possibility with positivé(0)= B2 arises for
M<0, and a>1, f(0) can be parametrized asM

This Lagrangian requires to s€t=0. The Lagrangian and =p?cosfa, g?In(1/a)’°=pB%sinffa. Again the values

the electric field satisfy the weak energy conditidhd). To  taken byg will govern the existence of angular deficit, for

express the Lagrangian in termsfor equivalentlyg, one  B=1 the solutions will be regular.

has to writer in terms ofE by solving the quartic equation If f(0) is negativef(0)=:— B2, the character of the co-

for r(E), this will give rise to an explicit containing radi- ordinatest andr changes, the coordinatebecomes space-

cals of E, which introduced in_L(r), finally will bring L as  like, while r is now timelike and one could think of the

function of E. The expressioh (E) is not quite illuminating,  singularities, if any, as causal structure singularities because

thus we omit it here. they could arise at the “time’'t =0.

To establish that this solution is regular one has to evalu- In what follows we shall treat the parametems a free
ate the curvature invariant$7]. The nonvanishing curvature one, having in mind the above restrictions to have solutions
components, which occur to be regularatO, are given by free of conical singularities.

E(r)

(r2+a?)?
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To establish that this solution represents a black hole, ond
has to demonstrate the existence of horizons, which requirg
the vanishing of the,, component, i.e.f(r)=0. The roots
of this equation give the location of the horizofsner and
outer in our case The roots—at most four—of the equation
f(r)=0 can be expressed in terms of the Lambaftr)
function

12

—LW (39

o

There arise various cases which depend upon the values of
the parameters: four real roofsvo positive and two nega- FIG. 1. Behavior of-g,; for M=6.421 and for different values
tive roots, the negative roots have to be igndrédo com-  of g and A corresponding to regular black holg£6, A= —30),
plex and two real roots, two complex and one real positiveegular extreme black holeggE&S, A=—25), horizon-free regular
root (the extreme cageand four complex root¢no black  solution @=4, A=—20), wherer _=0.28 is the inner horizon,
holes solutions Although this analytical expression for the r=0.50 is the extreme horizon, and = 0.86 is the event horizon.
Lambert function can be used in all calculatiohse recall
that Lambert function fulfills the following equation: If one were interested in the thermodynamics of the ob-
IN(LW(x))+LW(x)=In(x)], it occurs also useful to extract tained solution one would evaluate the temperature of the
information from the graphical behavior of the di(r) (see  black hole, which is given in terms of its surface gravity by
figures. [15,16

Analytically one can completely treat the extreme black
hole case; for it, the derivative of(r) has to be zero,

e f
d,(f(r))=0, at therg,,,, this gives kgTy= Ek' (38

2
Foxr= \/ —a°— qX>o (36)  In general, for a spherically symmetrjand for circularly

symmetric in (2+ 1)-dimension$system the surface gravity
can be computed vi€or our signaturg
for A<0. From this expression one concludes that the fol-
lowing inequality holds:a?<—q?/ A. Entering NOWT gy,
into f(r)=0 one obtains a relation between the parameterg
involved, which can be solved explicitly for the mass—the
extreme one— f

A p(AaZ—M
q? q?

_A .
Mexir=a°A+q?| 1+In| —-| |, 37 3
q

this My, Varies its values depending on the values given to
the parameters, g, andA. We have an extreme black hole
characterized by negative cosmological constanrt,0, and
positive extreme masdl.,,>0, if the parameten is re-
stricted by the inequalit@®< — (q[ 1+ In(—A/g?)])/A.

For other values of the madd, one distinguishes the
following branches: ifM >M.,;, one has a black hole solu-

tion, and ifM <M, there are no horizons. FIG. 2. Behavior of— g, for M=4.68 and for different values

In Fig. 1 we draw the graph df(r) which corresponds t0 ot g and A for solutions with angular deficit € Q< /2 corre-
regular solutions for fixed valugs dfl and changing the sponding to conical singular black holg£6, A = —30), conical
values of the parameters, . In Fig. 2 we draw the graph of = gingular extreme black holege5, A=—25), and conical naked
f(r) corresponding to solutions which exhibit a conical sin-singular solution §=4, A=—20), wherer _=0.21 is the inner
gularity atr=0, for f(0)=1/2, keepingM fixed while A horizon,r,=0.43 is the extreme horizon, and=0.82 is the event
andq change. horizon.
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1 4,49 mula S=4=r .. Other thermodynamic quantities such as

. rytt . . . .

k=—lim > T (39 heat capacity and chemical potential can be computed as in
r—ry V= 0ty [16].

To achieve the maximal extension of our regular black
solutions one has to follow step by step the procedure pre-
sented i 17] determining first the Kruskal-Szekeres coordi-
nates, and to proceed further to draw the Penrose diagrams.

wherer . is the outermost horizon. For our solution we have

from Egs.(22), (38), and(39) that

o°r

r2+a?)’
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kBTz—( — AT, — (40)

2 Informative discussions with Jorge Zanelli, Ricardo Tron-
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