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Magnetohydrodynamics in the inflationary universe
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Magnetohydrodynami¢MHD) waves are analyzed in the early Universe, in the inflationary era, assuming
the Universe to be filled with a nonviscous fluid of the Zel’dovich type-(p) in a metric of the de Sitter form.
A spatially uniform, time dependent, magnetic fiflg is assumed to be present. The Einstein equations are
first solved to give the time dependence of the scale factor, assuming that the matter density, but not the
magnetic field, contributes as source terms. The various modes are thereafter analyzed; they turn out to be
essentially of the same kind as those encountered in conventional nongravitational MHD, although the longi-
tudinal magnetosonic wave is not interpretable as a physical energy-transporting wave as the group velocity
becomes superluminal. We determine the phase speed of the various modes; they turn out to be scale factor
independent. The Alfue velocity of the transverse magnetohydrodynamic wave becomes extremely small in
the inflationary era, showing that the wave is in practice “frozen in.”

PACS numbegs): 98.80.Hw, 98.80.Bp

[. INTRODUCTION monly assumed, this era took place fram10 % s to't
~10 %% s. The Universe was then in a state of violent ex-
There exists the possibility that a primordial magneticpansion, with a cosmological scale factor being determined
field was created at some early stage in the early Universessentially from the cosmological constakt If the influ-
This topic has attracted considerable attention in the recemnce from matter was negligible, as one often assumes, the
past. The important point is that such a field may have left ametric was a pure de Sitter metric with scale factor propor-
observable imprint in galaxies. Our Galaxy, as well as manyional to exji(\/A/3)t]. During the inflationary period the
other spiral galaxies, is endowed with coherent magneti¢niverse was subject to a large increase in size — one often
fields, ordered on scales larger than about 10 kpc, with assumes an increase of the orde?’10- but the expansion
typical strength of G (=3x10° G) [1,2]. This corre-  might actually have been much larger. The temperature cor-
sponds to a magnetic field energy den&@f/8= which is of  respondingly fell fromT~10?” K to T~10?2 K. The Uni-
the same order of magnitude as the observed energy densif¢rse consisted during this era of a vacuum “fluid” with
p, of the microwave backgroungs,~ (4 uG)?/8x [3]. energy densityp,,.=A/87G and extreme tensile stress
There are two plausible explanations for the existence of, ,.=—A/87G (this negative pressure giving rise to the
these large scale galactic fields. The most popular explangepulsive gravitation
tion is that such fields are the result of a dynamo amplifica- Brandenburget al.[10] investigated, on the basis of a flat
tion [4] of a weak seed field5], created some time in the Friedman-Robertson-WalkéERW) fluid model, whether a
early Universe, for instance at the electroweak phase transprimordial magnetic field decreases or increases with time.
tion [6,7]. This transition took place at the instart10"°s,  This work was related to prior work of Gailist al. [11]. In
corresponding to a temperature Bf~10" K (100 GeVl.  the following, we will instead assume that there was a fluid
The size of the event horizon was at this insteiaii~10  of the Zel'dovich type in the early Universe. This means that
cm. If the galactic dynamo is efficient at amplification, onethe equation of state of the fluid was= p, corresponding to
estimates the magnetic seed fidd..4t0 be lying in the a velocity of sound being equal to the velocity of light. There
range between 16" G and 10 1° G [3,8]. Another plausible are reasons to expect that this extreme kind of fluid was
explanation for the existence of the present magnetic fields igresent in the beginning, and at the end, of the inflationary
that they could have originated from a relatively large pri-era[12]. Here, bothp andp are taken to act as sources in the
mordial seed field amplified by the collapse of a galf8}y  Einstein equations. In addition, we assume that there was a
Generally speaking, the magnetohydrodynar(MHD) primordial magnetic field, present. Since the magnitude of
theory in curved spacetime is a relatively new developmenB, was so small, the magnetic field energy was too small to
in astrophysics. We may mention, therefore, that useful rehave any appreciable influence on the metric. We therefore
cent review articles are given by Olinf8] and Enqvis{9].  examine simply MHD effects on a fixed metric, the metric
Whereas in previous works it has often been assumed théieing determined by, p, andp. Note that because of the
the seed magnetic field is created in the electroweak transinatter, the scale factor does no longer have the simple form
tion region, we will in the present paper go further back inexp(y/A/3)t] mentioned above.
time and consider instead theflationary era As is com- Our main purpose in the following is to establish the gov-
erning equations of the combined system, matter plus field.
As far as we know, this has not been done before. We will
*Email address: iver.h.brevik@mtf.ntnu.no establish the plane, linear, MHD wave modes on the spatially
"Email address: h.sandvik@ic.ac.uk uniform de Sitter background. A characteristic property of
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this kind of system is thapR®= const R being the scale
facton, instead of the conventional relationshifR*= const
found in the radiation dominated FRW caseBJfis perpen-
dicular tok, we find that there is a longitudinal magnetosonic — =
wave whose phase velocity is superluminal. Since this wave R?
is nondispersive, its group velocity becomes accordingly also i i
superluminal, so that this wave is not physically acceptablgyhereas the “pressure” equatid®:=87GT- becomes
as an energy-transporting wave. NextBif is parallel tok, ' '
there is a simple luminal pressure wave, and there is also a

The “energy” equationGg=87rG7'g now becomes

RZ2 87G.
3 P 7)

L
transverse magnetohydrodynamic wave propagating with the Z_R + R_ - —87Gp. (8)
characteristic de Sitter variant of the Alivevelocity given R R?

by Eqg.(50) below. In the inflationary era, the magnitude of

the Alfven velocity is extremely small. These are the field equations. We have also the energy con-

Numerical investigations of the time development of aservation equation which for the de Sitter — Zel'dovich fluid
primordial magnetic field, along the lines [df0], will not be  leads to the behaviop=R™ 8, instead of the behaviop

undertaken in this paper. «R~* that is characteristic for the radiation dominated era.
We adopt in the following Heaviside-Lorentz, instead of Let us now determin®(t), by first making the substitu-
Gaussian, electromagnetic units. tion
IIl. de SITTER — ZEL’'DOVICH SCALE FACTOR P _ (E e )
Po Ro

We use the convention in which the Minkowski metric is
7,,=(—+++), Greek indices are summed from O to 3
and Latin indices are summed from 1 to 3. We lgt
=(U° U") designate the four-velocity of the cosmic fluid.

When the cosmological constani>0) is included, it is
convenient to write Einstein’s equations in the form

' HereRy and pg refer to an initial instant=ty, which marks
the beginning of the inflationary period. The first order equa-
tion (7) becomes

R? 877Gp0( R)“‘ A R)Z
—= — == . (10
B 1 - R2 3 Ry 3\ Ry
G#,,=RMV—§RQM,,=87TGTM, (1)
Solving this equation fodt and integrating front=t, to t,
whereT ,, is the modified energy-momentum tensor: \(;voe”ge:fonding to an increase of the scale factor fRyto R,
- A
T,uV:T/.LV_ mguvi (2) it): e\e‘ﬁ(t*to)_'_ 87TGp0/A
Ro 1+\1+87Gpy/A
with T,,,=(p+ p)UMUV+ng being the ordi_nary energy- s
momentum tensor of an ide@hon-viscous fluid. Defining )
the modified energy densify and pressur@ by X sinf 3A(t=to)] (1D
F=P+ L 5: p— L 3) This exp.ressfion gives the de Sitter - Zel’dpvich scale fac_tor.
87G 87G At first sight it may appear as if the Zel'dovich state equation
p=p plays no role in Eq(11) at all, since in the derivation
we can write Eq(2) as of this equation we integrated the “energy” equatién
5 o 5 which in itself makes no reference to the fluid’s state equa-
T,=(p+pU,U,+pg,,. (4) tion. However, in the derivation we made explicit use of Eq.

(9), which is characteristic for a Zel'dovich fluid. Therefore,
Consider now the line element having the de Sitter form  Eq. (11) implicitly relies upon the Zel'dovich property.
) We see that for empty spacey=0) the expression re-
ds’=—dt?+RA(O)[dr?+r3(d6*+side®)].  (5)  duces toR(t)/Ry=exd(VA3)(t—to)], which is the con-

) ) ) ) ventional de Sitter form. Far=t,, R(tg) =Ry, as it should.
This form refers to comoving coordinatesié constant for a

fixed matter elemeintWe consider the Einstein equations in
the orthonormal framédesignated by caretsWe need the
following components of the Einstein tensor:

IIl. MAGNETOHYDRODYNAMICS
IN THE EARLY UNIVERSE

A. Maxwell’'s equations

= - (6) As an introductory step, before embarking upon the
R? ' R R? energy-momentum conservation problem it is instructive to
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consider Maxwell’s equations themselves, formulated in a ds?’= —dt?+ R3(t)(dx?+dy?+d 7). (20)
curvilinear basis which we will choose in the present subsec-
tion to be the spherical basis.

Let the spatial coordinates be numeratedk'as(r, 6, ¢), The Christoffel symbols become SImplE” RRS, 0j

(JI

corresponding to the basis vectoes ,,e,). The determi- = 1'jo=(R/R)§jj . Sincegoo=—1 andgy =0, the Lorentz
nant of the spatial metric is, according to Eg), factor takes the same form as in special relativitf, Sec.
10.3in[13)):
Y:dE(gij):R6r4Sir\20. (12)
y=(1-u?)~12 (21)

We introduce the electromagnetic field tenfb8—16

0 —E, -E, -E, where u'=dx/dt are the curvilinear components of the
J7B¢ [7B¢ three-dimensional coordinate velocitywhose square is?
E: 0 vBY  —VyB =gj;u'ul. The four-velocity of the fluid i$J#=y(1u'). The

Fun™ E, —\yB¢ 0 JyB' (13 energy-momentum balance equations for the mechanical
0 r subsystem areT,.,=f,, where T*” is the energy-

E, ‘/;B ‘/;B 0 momentum tensor of the fluid as given above, &pds the
and the dual tensor densify**= \/__gF,uv: electromagnetic four-force density:

0 JyE" JyE? JyE® f,=F,,0"=(—E-J, peEi+(IXB)), (22)

- \/;Er 0 Bcp —By . - . . .

Frv= (14) the vector product in curvilinear coordinates being defined as

—VyE’ -B, 0 B,

-JyE* B, -—B 0 (JXB);= €' B, (23
Three-dimensional indices are raised and lowered by meanghe energy-momentum balance equations for the fluid me-
of the antisymmetric pseudotensor of rank 3: chanical subsystem are

€ijk= 71/25”'( ’ Eijk: ,)/—1/25”k , (15) ) .
Sijx being the antisymmetric Levi-Civitaymbol with 8,53 _\/_—gav( V=gT,)— 5(%%3)1—%:‘:#- (29)

=1. Asggo= — 1, the gravitational permittivity and perme-
ability are e=u=(—go9 Y?>=1, and we do not have to
distinguish between the electric fieEl and the electric in-
ductionD or between the magnetic field and the magnetic
induction B.

With J#=(p,J) being the electromagnetic four-current
density, the four-dimensional Maxwell equations

We assume the fluid to be an ideal MHD fluid, implying that
the electrical conductivityp—oe. It corresponds to a zero
electric fieldE' =0 in a frame of reference moving with the
fluid volume element considered. Ass finite, we then have
that E= —uXxB, and the volume force densitly becomes
equal toJXB. For u=0 we get from Eq.(24), with the

F 0, (—g) Y2Fmr —gw (16)  definition S=(p+p)y?u,

uvpl =

can be expressed in three-dimensional form as 1 R
L §ao[ R3(p+p)y?]—dop+ V-S+ gSU=EJ. (25)
(VXE)'=——=d5(\yB"), V-B=0,  (17)

Vy

For w=i we obtain, analogously from E¢24),

(VXB) =3+ ——3o(\7E), V-E=pe, (18 1
Vy SI(R*S)+a(Su9+ap=(IxB). (20

the curl and divergence operators being defined as

Consider next the electromagnetic subsystem. In the present
coordinate system the field tensor schemes analogous to Egs.
(13) and(14) are

(VXE)'=€lkgE,, V-B=y Y25(JyB). (19

B. Energy-momentum balance equations

After having given above the general scheme for Max- 0 -EK -E; —Es
well's equations in curvilinear coordinates, we shall in the E, 0 R3B3 _R%B2
following simplify the formalism by using “Cartesian” co- Fu= E. _Reg3 0 Rgl | (27)
ordinatesx,y,z, whereby the position four-vector becomes 2
expressible ag“=(t,x,y,z). The line element is written as E; RB? -R3B! 0
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0 R3E! R3E2 R3ES IV. MAGNETOHYDRODYNAMIC WAVES
-RE! 0 B; —B, We will now consider plane, linear MHD waves on the
FHr= “RE2 -B 0 B : spatially uniform background in the inflationary universe.
a3 3 ! The background is specified by the magnetic fiBlg fluid
-R°E®> B, -B; O densityp,, and pressurp,. These quantities are time depen-

(28)  dent. We shall need the proportionalities

With S*” denoting the electromagnetic energy-momentum 1
tensor the balance equations for this subsystem can be writ- po(t)oc , Bio(t)oc
ten as—S;.,=f,, where R(t)

R (35

1 The first of these proportionalities follows from E®). The
S, =Fu.F""— ZgZFa/;F“B- (290 second follows, in the zeroth order approximation, from Eq.
(34) when both sides of this equation are expanded around

In the present case where only the magnetic field contributet‘l;1e background. Generally, we expand as follows:

we have p=po+op, B=BL+5B (36)
fi=(BX9,)B;— E(;i B2, (30)  Wwith 6p and 5B' being small quantities.
2 From Maxwell’s equatiorV X B=J+ R 39,(R3E) it fol-

. . lows that
So far, the equation of state for the fluid has not been used.

We now insert the Zel'dovich equatiop=p, and assume 1
small bulk velocities whereby?~1. The term containing J=VX 6B+ —do[R3(UuxBy)], (37)
S-u in the u=0 equation(25) is of orderu? and is negli- R
gible. We obtain the approximate equation
which shows thafl is a first order quantity. A& is also of

1 first order, it is seen that the tertJ on the right hand side
—6(3’0(R6p)+2V°(pU)=E°J. (31 of Eq. (31) is negligible. We obtain, from Eq$31), (32),
R and (34),
The u=i equation(26) becomes, analogously, 1
E&O(R65p)+2pov-u=0, (39
2 1
— do(R3pu;) + dip= (B ) B;— 5 6;B%. (32)
R® 2 6R
2poU;i+ — poUi + d; p=(ByV) 6B, — By- 9;6B, (39
When expressed in vector form PO R PoRi T aiop (BorV) 9By~ Bo-d @9
2 3 1 2 1 3
%&O(R pu)+Vp=(B-V)B— EVB , (33 VX (UuXxBg)= E&O(R éB) (40
this equation holds in an orthonormal basis as well. [recall that we are using curvilinear coordinates for which

Equations(31) and(32) are starting points for the pertur- the curl and vector product operators are as given by Egs.
bative theory below. In addition we shall need also the first(19) and (23)].
of Maxwell's equations(17), written as a vector equation. We now expand the wave quantities as follows:
Observing again thdE= —uxB, we have

o o . .
1 u'=upe'®, sp=—e? oB'=—¢€° (4]
VX (UxB)= E(90(R3B). (34) R

where® is the phase,
It should be noted that when writing Maxwell's equations, _
we have not restricted the magnetic field to be weak. As far 0 =k, x*=kix'+ kot=Kk-r — wt, (42
as the magnetic field is concerned, the only restriction made . A
on it is that it be not so strong that it contributes as a sourcand uy,C,bg are constants(We thus let the frequency
term in Einstein’s equations. Our remaining physical as+efer to thecoordinatetime t, not to theconformaltime.)
sumptions, to summarize, are the presence of an infinite eleGubstitution into Eqs(38) and (39) yields
trical conductivity, nonrelativistic fluid velocities, and the
Zel'dovich state equation. 2poR%k-Ug=Cuw, (43
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have to conclude that the Zel'dovich fluid model, being a
Ugi — —5 ki= (bo*Bo)ki — (k-Bo)bg; - maximally rigid model, does not permit the longitudinal
R magnetosonic wave to propagate as a physical wave, trans-
(44 porting energy. This result is not so unexpected, after all.
» The Zel'dovich model is very simple, and has in practice to
be modified so as to take into account dispersive effects.
Next, letB, be parallel to k. There are two types of wave
motion possible in this case. There is an ordinary longitudi-
nal wave (15,=Ug3=0, by=0) with contravariant phase ve-
locity component equal to B/and phase speed accordingly
equal to 1. There is alsoteansversewave (Ugy;=0), where
b, is antiparallel(if k-By,>0) to the transverse velocity:

2wpoR®

1+3i R
'Ro

Since we are here considering waves moving on a “slowly
varying background(in complete analogy with surface
waves travelling on slowly varying currents or slowly vary-
ing topology in ordinary hydrodynamigswe can assume
that w is much larger than the time derivative of the loga-
rithmic scale factorw>(d/dt)InR. The second term in the
first set of parentheses in E@4) is thus negligible, and we
get

R3

bo= (k+Bo) Ug- (59

(O]

C
2wpoR3ugi— %ki =(bg*Bo)ki—(k-Bg)bg; . (49

_ _ _ The dispersion relation becomes in this case
The third governing equation follows from Maxwell's equa-

tion (40): aﬂ:%(k-Bo)z, (52
0

i N
(k-Bo)ug=(k-ug)Bo— %bo' (46) so that the contravariant component of the transverse phase
velocity becomes

We now take the vectdt to lie along thex axis, and distin-

guish between two cases: - 1 Bl (53)
Let B, be perpendicularto k. From Eq.(45) it follows " 2pe

that ug,=ugz=0, so that the fluid velocityu, is a purely
longitudinal vector. From Eq(46) it then follows thatbyis ~ The speed of the transverse wave is thus
transverse, collinear witB,. The condition that the system

determinant of the governing equations be equal to zero Bo
yields the dispersion relation V= o (54)
2po
2
w?=|1+ B_O)kz (47) again an expression that is independent of the scale factor.
2pg We see that Eq54) actually agrees with the expressi@0)

for the Alfven velocity; as noted above, this correspondence

2_ l - -
(k"=kk;). From expressior42) for the phase it follows s necessary in order to preserve the same formal relationship

that the contravariant component of the longitudinal phase _ /= : L
L ) =./s?+v2 as in nonrelativistic theory.
velocity is v j,,s=dx"/dt=w/k;. We obtain Plong A y

To obtain a feeling of the order of magnitudes involved,
1 B let us estimate the value pf to be inserted in the expression
Ullong:—‘ [14 =2 (48) (50) for the Alfven velocity. Recall thap, is the density of

R 2po matter and radiation; it does not include the vacuum energy

prac=AI87G. We estimatep, by considering the instarit

The longitudinal phase speed is thus =t,=1.4x 10 3 s just after the termination of the inflation-

B2 ary era, when the Universe leaves the de Sitter phase and
v|ong=\/9110|10ng= 1+ 5, (490 returns to the standard FRW radiation dominated form.
Po Whenk=0, the density is equal to the critical density
This expression is independent of the scale fagtolt has 3 H2

the same structure as the standard expressiqpg
=s’+ vA2 for the longitudinal magnetosonic wave in non-
gravitational MHD[17], s denoting the sound velocity, if we
define the Alfve velocity as

Pcrzg G- (55)

[It is noteworthy that this critical density follows from Ein-
stein’s equations directly, for any metric that is expressible

_ o in the form (5); the expression does not rely upon a specific
Va=Bo/\N2po. 0 siate equatiof. Thus py=p, at t=t;. Taking the Hubble
In the present cass=1. factor H=R/R during the inflationary era to bed=

The following property of the dispersion relatigd7) is 5x10** s! [18], we obtain, from Eq. (55), pe=
however striking: the expression is nondispersive, which im4.5x10° g/cnt. This is an enormous mass density. The
plies that thegroup velocitydw/dk in this case becomes magnitude of the Alfva velocity (50) becomes accordingly
superluminal This is physically non-acceptable. We thus extremely small:
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va=3%X103B, (T) m/s=3x10 3B, (G) cmis. sisting of expanding vacuurfcosmological constant only
(56)  there would be no charge carriers from which a magnetic

field could be generated. Even if we imagine that there was
The transverse Alfuewave(a purely magnetohydrodynamic for some reason a magnetic field present at some instant of
phenomenon thus does not propagate appreciably undettime, this field would disappear quickly due to the expansion.
these extraordinary circumstances, unless the vallg, @ It gives no physical meaning to consider MHD in an empty,
extremely high. And, as far as we know, this is not the casgurely vacuum, universe.

in the early Universe. (5) It has recently come to our attention that Subramanian
and Barrow have published a detailed styd@] of conse-
V. SUMMARY AND FINAL REMARKS quences of MHD in the early FRW universe. They discuss
various aspects of the damping problem and also the possi-
We may summarize as follows: bility of observational detection of the magnetic fluctuations.

(1) Our basic assumption is the presence of a Zel'doviclCf. also the related referen§20].
fluid, satisfyingp=p, in a de Sitter universe whose metric is
given by Eq.(5). The scale factor is given by E¢L1). There ACKNOWLEDGMENTS
is a uniform background magnetic fid} present. The mag-
netic field energy is taken to be not so high that it contributes We thank Professor @ind Grfn and Professor John D.
appreciably as a source term in Einstein’s equations. ThBarrow for valuable discussions and information.
electrical conductivity is assumed to be infinite. The fluid
velocities in the comoving reference system are taken to be APPENDIX: REMARKS ON THE FRW CASE
nonrelativistic. The most actual example of application is the
inflationary era, ranging from,=10"% s tot;=10 3 s
after the big bang.

(2) For a de Sitter universe, energy conservation consi
erations lead to the properpR®= const, instead of the con-
ventional propertyR*= const holding for a radiation domi-
nated FRW universe. Considering plane, linear, MHD Wave%
on the uniform de Sitter background, we find that the longi-
tudinal magnetosonic waveBglL k) implies a superluminal R(t) (327 |
group velocity and accordingly does not correspond to a — ( ) 12
physical, energy-transporting wave. Of the two remaining Ro
fundamental modesB(| k), the ordinary longitudinal wave
(with vanishing perturbed magnetic figldan exist as a lu-
minal wave, and there is a third kind of wave of magnetohy- 1
drodynamic type propagating with the characteristic Affve p= 3P (A2)
velocity given by Eq(50).

(3) Estimating the value op, to be equal to the critical The governing equations are the=0 equation(25), the
mass density of a flat FRW universe, E§5), we find that  _; equation(26), and the Maxwell equatiofB4), as before.

the Alfven velocity becomes extremely small, E§6). The Taking Eq.(A2) into account, we obtain, for the=0 equa-
magnetohydrodynamic wave in practice does not propagatg;,,

it is “frozen” in the fluid.

(4) The following remark ought to be made, concerning 1 4
the physical meaning of the present theory. Our adopted state —4(90(R4p) + §V~ (pu)=E-J, (A3)
equation,p=p, refers to the content ahatterandradiation R
in the early Universe. One may ask, is not the early Universe . .
after all dominated byacuumeffects, corresponding to the whereas the.=i equation becomes
state equatior’pva‘cz—pvac’? _The point here.is that both 4 1 1
these state equations can exist at the same time; they refer to — 35(R3pU) + = dip=(BX9)B;— = 9,B2.  (A4)
two different subsystems. The properties of the vacuum fluid 3R3 3 2
are described entirely by the term in the modified energy-

momentum tensoﬁ'w in Eqg. (2); as mentioned earlier it
corresponds to a vacuum energy,,.=A/87G and a
vacuum pressur@, .= — A/87G. In addition to this, the
matter-radiation fluid forms a separate subsystem.

The point that we wish to stress is, although the present
theory in itself does not make a definite prediction about the
relative energy fraction residing in the matter componentWe expand the wave quantities analogously to @4) (for
some amount of matter has always to be present, in order wimplicity keeping the same symbols as previously for the
support the magnetic field. In a pure de Sitter universe coneonstants

We will give a brief account of the analogous theory for a
radiation dominated flat FRW universe, both to put our
d<_31bove results into perpective, and also because our results for
the dispersion equations for the modes differ partly from

those obtained in10].
The line element still has the for(®), but the scale factor
now become$18]

=| 3P0 (A1)

The equation of state for the radiation dominated fluid is

Considering plane, linear, MHD waves on a uniform back-
ground in this universe we now have, instead of %),

1 4
po(t)= Bo(t) (AS)

RYD) R
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_ c [ This equation, contrary to E@47), describes a physical dis-
u'=uye'®, p= —4e‘®, 5Bi=—gei®_ (A6)  turbance, since both phase velocity and group velocity are
R R subluminal.
If By is parallel to k, there is an ordinary longitudinal
nondispersive luminal wave, as before. Moreover, there is a
transverse wave whose dispersion relation is

We obtain the conservation equations

4 4
§poR k'UOZ C(,l), (A?)

3
w?=—(k-Bp)2. (A10)
3 C 4p0
wpoR Ug — 55 Kj=(bg'Bo)Ki — (k*Bg)bg; ,  (A8)
Comparison between Eqgel7) and (A9), and between Egs.
which together with Maxwell’'s equatio6) determine the (52) and (A10), shows how the de Sitter—Zel'dovich case
dispersion relations. We distinguish between the same casdsfers from the radiation dominated FRW case. Whereas the

as above: longitudinal wave(A9) agrees with Eq(31) in [10], there
If By is perpendicularto k, then there is a longitudinal appears to be a deviation in the case of the transverse wave,
wave (Ug,=Ugz=0) with dispersion relation Eqg.(A10). It is also noteworthy that EA9) is in agreement
) with the relationshipu|0ng=\/sz+ UAZ, where nows=/1/3
wi= (l + 3Bg )kz_ (A9) andv,=\/3/4p, B, is the FRW Alfven velocity correspond-
3 4pg ing to Eq.(A10).
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