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Magnetohydrodynamics in the inflationary universe
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Magnetohydrodynamic~MHD! waves are analyzed in the early Universe, in the inflationary era, assuming
the Universe to be filled with a nonviscous fluid of the Zel’dovich type (p5r) in a metric of the de Sitter form.
A spatially uniform, time dependent, magnetic fieldB0 is assumed to be present. The Einstein equations are
first solved to give the time dependence of the scale factor, assuming that the matter density, but not the
magnetic field, contributes as source terms. The various modes are thereafter analyzed; they turn out to be
essentially of the same kind as those encountered in conventional nongravitational MHD, although the longi-
tudinal magnetosonic wave is not interpretable as a physical energy-transporting wave as the group velocity
becomes superluminal. We determine the phase speed of the various modes; they turn out to be scale factor
independent. The Alfve´n velocity of the transverse magnetohydrodynamic wave becomes extremely small in
the inflationary era, showing that the wave is in practice ‘‘frozen in.’’

PACS number~s!: 98.80.Hw, 98.80.Bp
tic
rs
ce
t a
n

et
h

ns

o
n

ca
e
n

ne

s
ri

en
re

th
n
in

x-
ed

, the
or-

ften

cor-

h
s
e

t

e.

id
at

re
as

ary
e
s a
f

l to
fore
ic

e
orm

v-
eld.
will
ally
of
I. INTRODUCTION

There exists the possibility that a primordial magne
field was created at some early stage in the early Unive
This topic has attracted considerable attention in the re
past. The important point is that such a field may have lef
observable imprint in galaxies. Our Galaxy, as well as ma
other spiral galaxies, is endowed with coherent magn
fields, ordered on scales larger than about 10 kpc, wit
typical strength of 3mG (5331026 G! @1,2#. This corre-
sponds to a magnetic field energy densityB2/8p which is of
the same order of magnitude as the observed energy de
rg of the microwave background:rg;(4 mG)2/8p @3#.

There are two plausible explanations for the existence
these large scale galactic fields. The most popular expla
tion is that such fields are the result of a dynamo amplifi
tion @4# of a weak seed field@5#, created some time in th
early Universe, for instance at the electroweak phase tra
tion @6,7#. This transition took place at the instantt;10210 s,
corresponding to a temperature ofTc;1015 K ~100 GeV!.
The size of the event horizon was at this instantHew

21;10
cm. If the galactic dynamo is efficient at amplification, o
estimates the magnetic seed fieldBseed to be lying in the
range between 10223 G and 10219 G @3,8#. Another plausible
explanation for the existence of the present magnetic field
that they could have originated from a relatively large p
mordial seed field amplified by the collapse of a galaxy@3#.

Generally speaking, the magnetohydrodynamic~MHD!
theory in curved spacetime is a relatively new developm
in astrophysics. We may mention, therefore, that useful
cent review articles are given by Olinto@3# and Enqvist@9#.

Whereas in previous works it has often been assumed
the seed magnetic field is created in the electroweak tra
tion region, we will in the present paper go further back
time and consider instead theinflationary era. As is com-
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monly assumed, this era took place fromt;10235 s to t
;10233 s. The Universe was then in a state of violent e
pansion, with a cosmological scale factor being determin
essentially from the cosmological constantL. If the influ-
ence from matter was negligible, as one often assumes
metric was a pure de Sitter metric with scale factor prop
tional to exp@(AL/3)t#. During the inflationary period the
Universe was subject to a large increase in size — one o
assumes an increase of the order 1050 — but the expansion
might actually have been much larger. The temperature
respondingly fell fromT;1027 K to T;1022 K. The Uni-
verse consisted during this era of a vacuum ‘‘fluid’’ wit
energy densityrvac5L/8pG and extreme tensile stres
pvac52L/8pG ~this negative pressure giving rise to th
repulsive gravitation!.

Brandenburget al. @10# investigated, on the basis of a fla
Friedman-Robertson-Walker~FRW! fluid model, whether a
primordial magnetic field decreases or increases with tim
This work was related to prior work of Gailiset al. @11#. In
the following, we will instead assume that there was a flu
of the Zel’dovich type in the early Universe. This means th
the equation of state of the fluid wasp5r, corresponding to
a velocity of sound being equal to the velocity of light. The
are reasons to expect that this extreme kind of fluid w
present in the beginning, and at the end, of the inflation
era@12#. Here, bothr andp are taken to act as sources in th
Einstein equations. In addition, we assume that there wa
primordial magnetic fieldB0 present. Since the magnitude o
B0 was so small, the magnetic field energy was too smal
have any appreciable influence on the metric. We there
examine simply MHD effects on a fixed metric, the metr
being determined byL, r, andp. Note that because of th
matter, the scale factor does no longer have the simple f
exp@(AL/3)t# mentioned above.

Our main purpose in the following is to establish the go
erning equations of the combined system, matter plus fi
As far as we know, this has not been done before. We
establish the plane, linear, MHD wave modes on the spati
uniform de Sitter background. A characteristic property
©2000 The American Physical Society05-1
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this kind of system is thatrR65 const (R being the scale
factor!, instead of the conventional relationshiprR45const
found in the radiation dominated FRW case. IfB0 is perpen-
dicular tok, we find that there is a longitudinal magnetoson
wave whose phase velocity is superluminal. Since this w
is nondispersive, its group velocity becomes accordingly a
superluminal, so that this wave is not physically accepta
as an energy-transporting wave. Next, ifB0 is parallel tok,
there is a simple luminal pressure wave, and there is al
transverse magnetohydrodynamic wave propagating with
characteristic de Sitter variant of the Alfve´n velocity given
by Eq. ~50! below. In the inflationary era, the magnitude
the Alfvén velocity is extremely small.

Numerical investigations of the time development of
primordial magnetic field, along the lines of@10#, will not be
undertaken in this paper.

We adopt in the following Heaviside-Lorentz, instead
Gaussian, electromagnetic units.

II. de SITTER – ZEL’DOVICH SCALE FACTOR

We use the convention in which the Minkowski metric
hmn5(2111), Greek indices are summed from 0 to
and Latin indices are summed from 1 to 3. We letUm

5(U0,Ui) designate the four-velocity of the cosmic fluid.
When the cosmological constantL(.0) is included, it is

convenient to write Einstein’s equations in the form

Gmn[Rmn2
1

2
Rgmn58pGT̃mn , ~1!

whereT̃mn is the modified energy-momentum tensor:

T̃mn5Tmn2
L

8pG
gmn , ~2!

with Tmn5(r1p)UmUn1pgmn being the ordinary energy
momentum tensor of an ideal~non-viscous! fluid. Defining
the modified energy densityr̃ and pressurep̃ by

r̃5r1
L

8pG
, p̃5p2

L

8pG
, ~3!

we can write Eq.~2! as

T̃mn5~ r̃1 p̃!UmUn1 p̃gmn . ~4!

Consider now the line element having the de Sitter form

ds252dt21R2~ t !@dr21r 2~du21sin2udw2!#. ~5!

This form refers to comoving coordinates (r is constant for a
fixed matter element!. We consider the Einstein equations
the orthonormal frame~designated by carets!. We need the
following components of the Einstein tensor:

G0̂
0̂
52

3Ṙ2

R2
, Gr̂

r̂
52

2R̈

R
2

Ṙ2

R2
. ~6!
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The ‘‘energy’’ equationG0̂
0̂
58pGT̃0̂

0̂ now becomes

Ṙ2

R2
5

8pG

3
r̃, ~7!

whereas the ‘‘pressure’’ equationGr̂
r̂
58pGT̃r̂

r̂ becomes

2R̈

R
1

Ṙ2

R2
528pGp̃. ~8!

These are the field equations. We have also the energy
servation equation which for the de Sitter – Zel’dovich flu
leads to the behaviorr}R26, instead of the behaviorr
}R24 that is characteristic for the radiation dominated er

Let us now determineR(t), by first making the substitu-
tion

r

r0
5S R

R0
D 26

. ~9!

HereR0 andr0 refer to an initial instantt5t0, which marks
the beginning of the inflationary period. The first order equ
tion ~7! becomes

Ṙ2

R0
2

5
8pGr0

3 S R

R0
D 24

1
L

3 S R

R0
D 2

. ~10!

Solving this equation fordt and integrating fromt5t0 to t,
corresponding to an increase of the scale factor fromR0 to R,
we get

R~ t !

R0
5FeA3L(t2t0)1

8pGr0 /L

11A118pGr0 /L

3sinh@A3L~ t2t0!#G 1/3

. ~11!

This expression gives the de Sitter – Zel’dovich scale fac
At first sight it may appear as if the Zel’dovich state equati
p5r plays no role in Eq.~11! at all, since in the derivation
of this equation we integrated the ‘‘energy’’ equation~7!
which in itself makes no reference to the fluid’s state eq
tion. However, in the derivation we made explicit use of E
~9!, which is characteristic for a Zel’dovich fluid. Therefor
Eq. ~11! implicitly relies upon the Zel’dovich property.

We see that for empty space (r050) the expression re
duces toR(t)/R05exp@(AL/3)(t2t0)#, which is the con-
ventional de Sitter form. Fort5t0 , R(t0)5R0, as it should.

III. MAGNETOHYDRODYNAMICS
IN THE EARLY UNIVERSE

A. Maxwell’s equations

As an introductory step, before embarking upon t
energy-momentum conservation problem it is instructive
5-2
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consider Maxwell’s equations themselves, formulated in
curvilinear basis which we will choose in the present subs
tion to be the spherical basis.

Let the spatial coordinates be numerated asxi5(r ,u,w),
corresponding to the basis vectors (er ,eu ,ew). The determi-
nant of the spatial metric is, according to Eq.~5!,

g5det~gi j !5R6r 4sin2u. ~12!

We introduce the electromagnetic field tensor@13–16#

Fmn5S 0 2Er 2Eu 2Ew

Er 0 AgBw 2AgBu

Eu 2AgBw 0 AgBr

Ew AgBu 2AgBr 0

D ~13!

and the dual tensor densityF mn5A2gFmn:

F mn5S 0 AgEr AgEu AgEw

2AgEr 0 Bw 2Bu

2AgEu 2Bw 0 Br

2AgEw Bu 2Br 0

D . ~14!

Three-dimensional indices are raised and lowered by me
of the antisymmetric pseudotensor of rank 3:

e i jk5g1/2d i jk , e i jk5g21/2d i jk , ~15!

d i jk being the antisymmetric Levi-Civita` symbol with d123
51. As g00521, the gravitational permittivity and perme
ability are «5m5(2g00)

21/251, and we do not have to
distinguish between the electric fieldE and the electric in-
ductionD or between the magnetic fieldH and the magnetic
inductionB.

With Jm5(r,J) being the electromagnetic four-curre
density, the four-dimensional Maxwell equations

F [mn,r]50, ~2g!21/2F mn
,n5Jm ~16!

can be expressed in three-dimensional form as

~¹3E! i52
1

Ag
]0~AgBi !, ¹•B50, ~17!

~¹3B! i5Ji1
1

Ag
]0~Ag Ei !, ¹•E5re , ~18!

the curl and divergence operators being defined as

~¹3E! i5e i jk] jEk , ¹•B5g21/2] i~Ag Bi !. ~19!

B. Energy-momentum balance equations

After having given above the general scheme for Ma
well’s equations in curvilinear coordinates, we shall in t
following simplify the formalism by using ‘‘Cartesian’’ co
ordinatesx,y,z, whereby the position four-vector becom
expressible asxm5(t,x,y,z). The line element is written as
08350
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ds252dt21R2~ t !~dx21dy21dz2!. ~20!

The Christoffel symbols become simple:G i j
0 5RṘd i j , G0 j

i

5G j 0
i 5(Ṙ/R)d i j . Sinceg00521 and g0i50, the Lorentz

factor takes the same form as in special relativity~cf. Sec.
10.3 in @13#!:

g5~12u2!21/2, ~21!

where ui5dxi /dt are the curvilinear components of th
three-dimensional coordinate velocityu whose square isu2

5gi j u
iuj . The four-velocity of the fluid isUm5g(1,ui). The

energy-momentum balance equations for the mechan
subsystem areTm;n

n 5 f m , where Tmn is the energy-
momentum tensor of the fluid as given above, andf m is the
electromagnetic four-force density:

f m5FmnJn5„2E"J, reEi1~J3B! i…, ~22!

the vector product in curvilinear coordinates being defined

~J3B! i5e i jkJjBk. ~23!

The energy-momentum balance equations for the fluid m
chanical subsystem are

1

A2g
]n~A2gTm

n !2
1

2
~]mgab!Tab5 f m . ~24!

We assume the fluid to be an ideal MHD fluid, implying th
the electrical conductivitys→`. It corresponds to a zero
electric fieldE850 in a frame of reference moving with th
fluid volume element considered. AsJ is finite, we then have
that E52u3B, and the volume force densityf becomes
equal toJ3B. For m50 we get from Eq.~24!, with the
definition S5(r1p)g2u,

1

R3
]0@R3~r1p!g2#2]0p1¹"S1

Ṙ

R
S"u5E"J. ~25!

For m5 i we obtain, analogously from Eq.~24!,

1

R3
]0~R3Si !1]k~Siu

k!1] i p5~J3B! i . ~26!

Consider next the electromagnetic subsystem. In the pre
coordinate system the field tensor schemes analogous to
~13! and ~14! are

Fmn5S 0 2E1 2E2 2E3

E1 0 R3B3 2R3B2

E2 2R3B3 0 R3B1

E3 R3B2 2R3B1 0

D , ~27!
5-3
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F mn5S 0 R3E1 R3E2 R3E3

2R3E1 0 B3 2B2

2R3E2 2B3 0 B1

2R3E3 B2 2B1 0

D .

~28!

With Smn denoting the electromagnetic energy-moment
tensor the balance equations for this subsystem can be
ten as2Sm;n

n 5 f m , where

Sm
n 5FmaFna2

1

4
gm

n FabFab. ~29!

In the present case where only the magnetic field contrib
we have

f i5~Bk]k!Bi2
1

2
] iB

2. ~30!

So far, the equation of state for the fluid has not been u
We now insert the Zel’dovich equationp5r, and assume
small bulk velocities wherebyg2'1. The term containing
S"u in the m50 equation~25! is of orderu2 and is negli-
gible. We obtain the approximate equation

1

R6
]0~R6r!12¹"„ru…5E"J. ~31!

The m5 i equation~26! becomes, analogously,

2

R3
]0~R3rui !1] ir5~Bk]k!Bi2

1

2
] iB

2. ~32!

When expressed in vector form

2

R3
]0~R3ru!1¹r5„B"¹…B2

1

2
¹B2, ~33!

this equation holds in an orthonormal basis as well.
Equations~31! and~32! are starting points for the pertur

bative theory below. In addition we shall need also the fi
of Maxwell’s equations~17!, written as a vector equation
Observing again thatE52u3B, we have

“3„u3B…5
1

R3
]0~R3B!. ~34!

It should be noted that when writing Maxwell’s equation
we have not restricted the magnetic field to be weak. As
as the magnetic field is concerned, the only restriction m
on it is that it be not so strong that it contributes as a sou
term in Einstein’s equations. Our remaining physical
sumptions, to summarize, are the presence of an infinite e
trical conductivity, nonrelativistic fluid velocities, and th
Zel’dovich state equation.
08350
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IV. MAGNETOHYDRODYNAMIC WAVES

We will now consider plane, linear MHD waves on th
spatially uniform background in the inflationary univers
The background is specified by the magnetic fieldB0, fluid
densityr0, and pressurep0. These quantities are time depe
dent. We shall need the proportionalities

r0~ t !}
1

R6~ t !
, B0

i ~ t !}
1

R3~ t !
. ~35!

The first of these proportionalities follows from Eq.~9!. The
second follows, in the zeroth order approximation, from E
~34! when both sides of this equation are expanded aro
the background. Generally, we expand as follows:

r5r01dr, Bi5B0
i 1dBi , ~36!

with dr anddBi being small quantities.
From Maxwell’s equation“3B5J1R23]0(R3E) it fol-

lows that

J5“3dB1
1

R3
]0@R3~u3B0!#, ~37!

which shows thatJ is a first order quantity. AsE is also of
first order, it is seen that the termE"J on the right hand side
of Eq. ~31! is negligible. We obtain, from Eqs.~31!, ~32!,
and ~34!,

1

R6
]0~R6dr!12r0¹"u50, ~38!

2r0u̇i1
6Ṙ

R
r0ui1] idr5~B0"¹…dBi2B0•] idB, ~39!

“3„u3B0)5
1

R3
]0~R3dB! ~40!

@recall that we are using curvilinear coordinates for whi
the curl and vector product operators are as given by E
~19! and ~23!#.

We now expand the wave quantities as follows:

ui5u0
i eiQ, dr5

C

R6
eiQ, dBi5

b0
i

R3
eiQ, ~41!

whereQ is the phase,

Q5kmxm5kix
i1k0t5k"r2vt, ~42!

and u0
i ,C,b0

i are constants.~We thus let the frequencyv
refer to thecoordinate time t, not to theconformal time.!
Substitution into Eqs.~38! and ~39! yields

2r0R6k"u05Cv, ~43!
5-4
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2vr0R3S 113i
Ṙ

Rv
D u0i2

C

R3
ki5~b0"B0…ki2~k"B0!b0i .

~44!

Since we are here considering waves moving on a ‘‘slow
varying background~in complete analogy with surfac
waves travelling on slowly varying currents or slowly var
ing topology in ordinary hydrodynamics!, we can assume
that v is much larger than the time derivative of the log
rithmic scale factor:v@(d/dt)lnR. The second term in the
first set of parentheses in Eq.~44! is thus negligible, and we
get

2vr0R3u0i2
C

R3
ki5~b0"B0!ki2~k"B0!b0i . ~45!

The third governing equation follows from Maxwell’s equ
tion ~40!:

~k"B0!u0
i 5~k"u0!B0

i 2
v

R3
b0

i . ~46!

We now take the vectork to lie along thex axis, and distin-
guish between two cases:

Let B0 be perpendicularto k. From Eq.~45! it follows
that u025u0350, so that the fluid velocityu0 is a purely
longitudinal vector. From Eq.~46! it then follows thatb0 is
transverse, collinear withB0. The condition that the system
determinant of the governing equations be equal to z
yields the dispersion relation

v25S 11
B0

2

2r0
D k2 ~47!

(k25k1k1). From expression~42! for the phase it follows
that the contravariant component of the longitudinal ph
velocity is v long

1 [dx1/dt5v/k1. We obtain

v long
1 5

1

R
A11

B0
2

2r0
. ~48!

The longitudinal phase speed is thus

v long5Ag11v long
1 5A11

B0
2

2r0
. ~49!

This expression is independent of the scale factorR. It has
the same structure as the standard expressionv long

5As21vA
2 for the longitudinal magnetosonic wave in no

gravitational MHD@17#, s denoting the sound velocity, if we
define the Alfvén velocity as

vA5B0 /A2r0. ~50!

In the present case,s51.
The following property of the dispersion relation~47! is

however striking: the expression is nondispersive, which
plies that thegroup velocity]v/]k in this case become
superluminal. This is physically non-acceptable. We th
08350
’
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have to conclude that the Zel’dovich fluid model, being
maximally rigid model, does not permit the longitudin
magnetosonic wave to propagate as a physical wave, tr
porting energy. This result is not so unexpected, after
The Zel’dovich model is very simple, and has in practice
be modified so as to take into account dispersive effects

Next, letB0 beparallel to k. There are two types of wave
motion possible in this case. There is an ordinary longitu
nal wave (u025u0350, b050) with contravariant phase ve
locity component equal to 1/R and phase speed according
equal to 1. There is also atransversewave (u0150), where
b0 is antiparallel~if k"B0.0) to the transverse velocityu0:

b052
R3

v
~k"B0!u0. ~51!

The dispersion relation becomes in this case

v25
1

2r0
~k"B0!

2, ~52!

so that the contravariant component of the transverse p
velocity becomes

v tr
1 5

1

A2r0

B0
1 . ~53!

The speed of the transverse wave is thus

v tr5
B0

A2r0

, ~54!

again an expression that is independent of the scale fa
We see that Eq.~54! actually agrees with the expression~50!
for the Alfvén velocity; as noted above, this corresponden
is necessary in order to preserve the same formal relation
v long5As21vA

2 as in nonrelativistic theory.
To obtain a feeling of the order of magnitudes involve

let us estimate the value ofr0 to be inserted in the expressio
~50! for the Alfvén velocity. Recall thatr0 is the density of
matter and radiation; it does not include the vacuum ene
rvac5L/8pG. We estimater0 by considering the instantt
5t151.4310233 s just after the termination of the inflation
ary era, when the Universe leaves the de Sitter phase
returns to the standard FRW radiation dominated for
Whenk50, the density is equal to the critical density

rcr5
3

8p

H2

G
. ~55!

@It is noteworthy that this critical density follows from Ein
stein’s equations directly, for any metric that is expressi
in the form~5!; the expression does not rely upon a spec
state equation.# Thus r05rcr at t5t1. Taking the Hubble
factor H[Ṙ/R during the inflationary era to beH5
531034 s21 @18#, we obtain, from Eq. ~55!, rcr5
4.531075 g/cm3. This is an enormous mass density. T
magnitude of the Alfve´n velocity ~50! becomes accordingly
extremely small:
5-5
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I. BREVIK AND H. B. SANDVIK PHYSICAL REVIEW D 61 083505
vA53310237B0 ~T! m/s53310231B0 ~G! cm/s.
~56!

The transverse Alfve´n wave~a purely magnetohydrodynami
phenomenon! thus does not propagate appreciably un
these extraordinary circumstances, unless the value ofB0 is
extremely high. And, as far as we know, this is not the c
in the early Universe.

V. SUMMARY AND FINAL REMARKS

We may summarize as follows:
~1! Our basic assumption is the presence of a Zel’dov

fluid, satisfyingp5r, in a de Sitter universe whose metric
given by Eq.~5!. The scale factor is given by Eq.~11!. There
is a uniform background magnetic fieldB0 present. The mag
netic field energy is taken to be not so high that it contribu
appreciably as a source term in Einstein’s equations.
electrical conductivity is assumed to be infinite. The flu
velocities in the comoving reference system are taken to
nonrelativistic. The most actual example of application is
inflationary era, ranging fromt0510235 s to t1510233 s
after the big bang.

~2! For a de Sitter universe, energy conservation con
erations lead to the propertyrR65const, instead of the con
ventional propertyrR45const holding for a radiation domi
nated FRW universe. Considering plane, linear, MHD wa
on the uniform de Sitter background, we find that the lon
tudinal magnetosonic wave (B0'k) implies a superlumina
group velocity and accordingly does not correspond to
physical, energy-transporting wave. Of the two remain
fundamental modes (B0ik), the ordinary longitudinal wave
~with vanishing perturbed magnetic field! can exist as a lu-
minal wave, and there is a third kind of wave of magnetoh
drodynamic type propagating with the characteristic Alfv´n
velocity given by Eq.~50!.

~3! Estimating the value ofr0 to be equal to the critica
mass density of a flat FRW universe, Eq.~55!, we find that
the Alfvén velocity becomes extremely small, Eq.~56!. The
magnetohydrodynamic wave in practice does not propag
it is ‘‘frozen’’ in the fluid.

~4! The following remark ought to be made, concerni
the physical meaning of the present theory. Our adopted s
equation,p5r, refers to the content ofmatterandradiation
in the early Universe. One may ask, is not the early Unive
after all dominated byvacuumeffects, corresponding to th
state equationpvac52rvac? The point here is that bot
these state equations can exist at the same time; they re
two different subsystems. The properties of the vacuum fl
are described entirely by theL term in the modified energy
momentum tensorT̃mn in Eq. ~2!; as mentioned earlier i
corresponds to a vacuum energyrvac5L/8pG and a
vacuum pressurepvac52L/8pG. In addition to this, the
matter-radiation fluid forms a separate subsystem.

The point that we wish to stress is, although the pres
theory in itself does not make a definite prediction about
relative energy fraction residing in the matter compone
some amount of matter has always to be present, in orde
support the magnetic field. In a pure de Sitter universe c
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sisting of expanding vacuum~cosmological constant only!
there would be no charge carriers from which a magne
field could be generated. Even if we imagine that there w
for some reason a magnetic field present at some instan
time, this field would disappear quickly due to the expansi
It gives no physical meaning to consider MHD in an emp
purely vacuum, universe.

~5! It has recently come to our attention that Subraman
and Barrow have published a detailed study@19# of conse-
quences of MHD in the early FRW universe. They discu
various aspects of the damping problem and also the po
bility of observational detection of the magnetic fluctuation
Cf. also the related reference@20#.
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APPENDIX: REMARKS ON THE FRW CASE

We will give a brief account of the analogous theory for
radiation dominated flat FRW universe, both to put o
above results into perpective, and also because our result
the dispersion equations for the modes differ partly fro
those obtained in@10#.

The line element still has the form~5!, but the scale factor
R now becomes@18#

R~ t !

R0
5S 32p

3
r0D 1/4

t1/2. ~A1!

The equation of state for the radiation dominated fluid is

p5
1

3
r. ~A2!

The governing equations are them50 equation~25!, the m
5 i equation~26!, and the Maxwell equation~34!, as before.
Taking Eq.~A2! into account, we obtain, for them50 equa-
tion,

1

R4
]0~R4r!1

4

3
¹•~ru!5E"J, ~A3!

whereas them5 i equation becomes

4

3R3
]0~R3rui !1

1

3
] ir5~Bk]k!Bi2

1

2
] iB

2. ~A4!

Considering plane, linear, MHD waves on a uniform bac
ground in this universe we now have, instead of Eq.~35!,

r0~ t !}
1

R4~ t !
, B0

i ~ t !}
1

R3~ t !
. ~A5!

We expand the wave quantities analogously to Eq.~41! ~for
simplicity keeping the same symbols as previously for
constants!:
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ui5u0
i eiQ, dr5

C

R4
eiQ, dBi5

b0
i

R3
eiQ. ~A6!

We obtain the conservation equations

4

3
r0R4k"u05Cv, ~A7!

4

3
vr0R3u0i2

C

3R
ki5~b0"B0!ki2~k"B0!b0i , ~A8!

which together with Maxwell’s equation~46! determine the
dispersion relations. We distinguish between the same c
as above:

If B0 is perpendicularto k, then there is a longitudina
wave (u025u0350) with dispersion relation

v25S 1

3
1

3B0
2

4r0
D k2. ~A9!
s-

3r
T

-

’

08350
es

This equation, contrary to Eq.~47!, describes a physical dis
turbance, since both phase velocity and group velocity
subluminal.

If B0 is parallel to k, there is an ordinary longitudina
nondispersive luminal wave, as before. Moreover, there
transverse wave whose dispersion relation is

v25
3

4r0
~k"B0!

2. ~A10!

Comparison between Eqs.~47! and ~A9!, and between Eqs
~52! and ~A10!, shows how the de Sitter–Zel’dovich cas
differs from the radiation dominated FRW case. Whereas
longitudinal wave~A9! agrees with Eq.~31! in @10#, there
appears to be a deviation in the case of the transverse w
Eq. ~A10!. It is also noteworthy that Eq.~A9! is in agreement
with the relationshipv long5As21vA

2, where nows5A1/3
andvA5A3/4r0 B0 is the FRW Alfvén velocity correspond-
ing to Eq.~A10!.
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