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We investigate spatially flat isotropic cosmological models which contain a scalar field with an exponential
potential and a perfect fluid with a linear equation of state. We include an interaction term, through which the
energy of the scalar field is transferred to the matter fields, consistent with a term that arises from scalar-tensor
theory under a conformal transformation and field redefinition. The governing ordinary differential equations
reduce to a dynamical system when appropriate normalized variables are defined. We analyze the dynamical
system and find that the interaction term can significantly affect the qualitative behavior of the models. The
late-time behavior of these models may be of cosmological interest. In particular, for a specific range of values
for the model parameters there are late-time attracting solutions, corresponding to a novel attracting equilib-
rium point, which are inflationary and in which the scalar field’s energy-density remains a fixed fraction of the
matter field’s energy density. These scalar field models may be of interest as late-time cosmologies, particu-
larly in view of the recent observations of the current accelerated cosmic expansion. For appropriate values of
the interaction coupling parameter, this equilibrium point is an attracting focus, and hence as inflating solutions
approach this late-time attractor the scalar field oscillates. Hence these models may also be of importance in the
study of inflation in the early universe.

PACS numbds): 98.80.Cq

[. INTRODUCTION A number of authors have studied scalar field cosmologi-
cal models with an exponential potential within general rela-
A variety of theories of fundamental physics predict thetivity. Homogeneous and isotropic Friedmann-Robertson-
existence of scalar fieldd—3], motivating the study of the Walker (FRW) models were studied by HalliwellL1] using
dynamical properties of scalar fields in cosmology. Indeedphase-plane methods. Homogeneous but anisotropic models
scalar field cosmological models are of great importance imf Bianchi types | and lli(and Kantowski-Sachs modgls
the study of the early universe, particularly in the investiga-were studied by Burd and BarroM 2], Bianchi type | mod-
tion of inflation [4,2]. Recently there has also been greatels were studied by Lidsef13] and Aguirregabiriaet al.
interest in the late-time evolution of scalar field models.[14], and Bianchi models of types Ill and VI were studied by
“Quintessential” scalar field modelgor slowly decaying Feinstein and 1@z [15]. A qualitative analysis of Bianchi
cosmological constant modgIE5,6] give rise to a residual models with k?<2 (including standard matter satisfying
scalar field which contributes to the present energy-densitgtandard energy conditionsvas completed by Kitada and
of the universe that may alleviate the dark matter problenMaeda[16]. The governing differential equations in spatially
and can predict an effective cosmological constant which iflomogeneous Bianchi cosmologies containing a scalar field
consistent with observations of the present accelerated cog4th an exponential potential reduce to a dynamical system

mic expansior{7,8]. when appropriate expansion- normalized variables are de-
Models with a self-interaction potential with an exponen-fined. This dynamical system was studied in detai[ 1]
tial dependence on the scalar field of the form (where matter terms were not considered

One particular solution that is of great interest is the flat,
isotropic power-law inflationary solution which occurs for
k?<2. This power-law inflationary solution is known to be
an attractor for all initially expanding Bianchi modelex-
where A andk are positive constants, have been the subjecgept a subclass of the Bianchi type IX models which will
of much interest and arise naturally from theories of gravityrecollaps¢[16,17]. Therefore, all of these models inflate for-
such as scalar-tensor theories or string thegB8gsRecently, ever; there is no exit from inflation and no conditions for
it has been argued that a scalar field with an exponentigtonventional reheating.
potential is a strong candidate for dark matter in spiral gal- Recently cosmological models which contain both a sca-
axies[9] and is consistent with observations of current ac-lar field with an exponential potential and a barotropic per-

V=Aek?, (1)

celerated expansion of the univefdd)]. fect fluid with an equation of state
p=(y=—Du, 2
*Email address: jaf@mscs.dal.ca where vy is in the physically relevant range 2(3<2, have
"Email address: aac@mscs.dal.ca come under heavy analysis. One class of exact solutions
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found for these models has the property that the energy detthe scalar field is continually transferred to the matter content
sity due to the scalar field is proportional to the energy denthroughout inflation and the matter contentnist driven to
sity of the perfect fluid, and hence these models have beexero.
labeled matter scaling cosmologi€s8—20. These matter Several examples of interaction terms appear in the litera-
scaling solutions are spatially flat isotropic models and ardure for models with a variety of self-interaction potentials.
known to be late-time attractofge., stablg¢ in the subclass In particular, potentials which have a global minimum have
of flat isotropic model§18—2Q and are clearly of physical attracted much attention. For example, Albreehtal. [31]
interest. In addition to the matter scaling solutions, curvatureonsidereds=ag¢%¢° 24 (wherea is a constant derived
scaling solutiong21] and anisotropic scaling solutiof2]  from dimensional arguments, in the reheating context after
are also possible. A comprehensive analysis of spatially honflation [with potentials derived from Georgi-Glashow
mogeneous models with a perfect fluid and a scalar field witfs(5) modeld. In a similar context, Bererf32] considered
an e>.<p(.)nential potential has regently_ begn undertaR8h interaction terms of the fornd=a¢?. Quadratic potentials

Within the standard model of inflatiofvith, for example, . . 2 22

and interaction terms of the forli=a¢- and §=a¢“¢

a quadratic or quartic self-interaction potentiah the early ) N
universe the microphysics of the scalar field leads to an acere considered by de Oliveira and Rani88] and a grace-

celerated expansion essentially driven by the potential er{-UI exit from inflation was demonstrated ngmerlce}lly. Simi-
ergy (or vacuum energythat arises when the scalar field is arI_y, kaoyamget al. [3.4] showed that an interaction term,
displaced from its potential energy minimum. Provided thatWh'C.h is negligible during .the ;Iow—roll inflationary phasez
the potential is sufficiently flat, the universe undergoes mangiominates at the end of inflation when the scalar field is

e-folds of expansion and the matter content is driven to zer@Scillating about its minimum; during this reheating phase it
[24—24. As the scalar field nears its minimum, the vacuum's assumed that the energy transferred from the scalar field is

energy is converted to coherent oscillations of the scalar fiel§°!€ly converted into particles. ,
(which corresponds to non-relativistic scalar particles Within the context of exponential potenpals, Y_okoyama
Eventually, since the scalar field is coupled to otffermi- ~ and Maedd35] and Wandset al. [19] considered interac-
onic and bosonic matter fields, these particles decay into tions of the formé=aV. The main goal in both these pa-
lighter particles and their thermalization results in the “re- PErs was to show that power-law inflation can occurkor
heating” of the universéthereby accounting for the current =2, thereby showing that inflation can exist for steeper po-
entropy in the universe today tentials. 'I_'he main motivation fpr this work is the fact that
Although the exponential models are interesting mode|5e_xponent|al potentials whlch arise natur_ally from other t_heo—
for a variety of reasons, they have some shortcomings a4®S S‘é'Ch as supergravity or superstring models, typically
inflationary models. While Bianchi models generically as-have k“>2. Wetterich [36] considered interaction terms
ymptote towards the power-law inflationary model in which containing a matter dependence, namé&yadu, in which
the matter terms are driven to zero fef<2, there is no perturbation analysis showed that the matter scaling solu-
graceful exit from this inflationary phase. Furthermore, thetions were stable solutions when such interaction terms are
scalar field cannot oscillate and so reheating cannot occur bycluded. In[36], it was shown that the age of the universe is
the conventional scenario. Clearly, these models need to b@der whend is included and that the scalar field can still
augmented in an attempt to alleviate these problems. Faignificantly contribute to the energy density of models at
example, exponential potentials are only believed to be atate times. In[3], certain string theories in which the energy
approximation, and so the theory could include more comsources are separately conserved in the Jordan frame natu-
plicated potentialgalthough it is not clear what these other rally lead to interaction terms in the Einstein frame, although
potentials should be this is not specific to string cosmologies; any scalar-tensor
The goal of this paper is to examine how interactiontheory with matter terms and a power-law potential will yield
terms, through which the energy of the scalar field is transthe same results36].
ferred to the matter fields, can affect the qualitative behavior The scalar field in scalar-tensor theory can be related to
of models containing matter and a scalar field with an expothe scalar field in the general relativistic scalar field theory
nential potential. Such an interaction term, denotedspy Via a conformal transformation. If the matter terms are sepa-

arises in the conservation equations, via rately conserved in the scalar-tensor the@igrdan framg
then they lead to the following conservation equation in the
H(Pp+3HP+kV)=—5 (33  Einstein frame:
w+3yHu=34. (3b) oo : (4=3y) .
$(p+3HPp+kV)=——F=—=du (4)
The form of such a term has been discussed in the literature o\ wt 3

within the context of inflation and reheating. An alternative
to the conventional reheating model, in which the scalar
field’s energy is transferred to the matter due to scalar field )
oscillations, is the warm inflationary modg20,29,3Q in  (and a similar equation for), wherew is the coupling pa-
which an interaction term is significant throughout the infla-rameter in the scalar-tensor theor)_/. This therefore leads to an
tionary regime(not just after slow-ro)l and so the energy of interaction term of the fornd= —a¢u, where

2
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(4—3%) (an overdot denotes ordinary differentiation with respect to
a=————. (5) timet). Note that the total energy density of the scalar field is
5 w+§ given byM¢=%¢2+V. The deceleration parameter for this
2 system is given by
. 1 . 1
Holden and Wand$46] have recently performed a qualita- q= §H*2 $*—V+ 53y 2|, (8)

tive analysis for such a system. Similarly, in string theory

(w=—1), a similar interaction term arises in the Einstein and isindependendf the interaction term.

frame which depends on the energy density of the matter Defining

(axion) field anda is of order unity. Finally, a term of the

form §=auH might be motivated by analogy with dissipa- ) W

tion. For example, a fluid with bulk viscosity may give rise X=——, y=—, 9
to a term of this form in the conservation equat[&T]. J6H V3H

If 6 does not depend on the matter energy-density, then . .
unphysical situations may arise. For conventional interactim‘?nd the new logarithmic time variableby
terms withoutu, we have found numerically that is driven d
to zero in a finite time and subsequently the matter energy-
density becomes negativeee| 3] for detaily. Thus, we shall
include a factoru in the interaction term in order to ensure
thatu=0. In[36] it was shown that i5<0 at the equilibrium

points, then static solutior§e. ¢=0) arenot possible. Fur-

thermore, we require that the sign éfbe positive at equi- 3 3

librium points representing inflationary phases; otherwise the X' = —3X— \/;ky2+ EX[2X2+ Y(1-x*=y?)]

matter fields will be “feeding” the scalar field and will red-

shift to zero even faster than in the absence of the interaction S

terms. —&(1—x2—y2), (119
This paper examines interaction terms of the general form

5= SuH [where 5= 8(¢,V,H)] in the context of flat FRW

3 2
models with emphasis on determining the asymptotic prop- y'= 5y \[gkx+ 2X%+ y(1—x%—y?)|, (11b
erties of these models. In particular, it will be determined

Whetherl these models can asymptote toyvards inflationa.rg(,here a prime denotes differentiation with respect-{].
models in which the matter terms are not driven to zero. Thigte thaty=0 is an invariant set, corresponding o=0.

would partially alleviate the need for reheating; since theThe equations are invariant under> —y andt— —t and so
matter content tracks that of scalar fi¢id this contex}, it is the regiony<0 is a time-reversed mirror of the regign
never driven to zergunless both are driven to zero in which ~0; therefore, only>0 will be considered. Similarly, only

case the solution is not inflationartowever, a more com- k>0 will be considered since the equations for the interac-

prehensive reheating _model would still be necessary. Thﬁon terms to be considered are invariant unkies —k and
structure of the paper is as follows. In Sec. Il, the governing, ~

equations are defined and the ca®e0 studied in[38] is

reviewed. In Sec. IlI, the casé=ad¢u is studied, motivated
by the conformal relationships between the Jordan and Ein- Q+Q,=1,
stein frames in string theory, and extends the work36j. In

Sec. IV we shall discuss the results of the analysis and iivhere
Sec. V we shall examine an interaction term of the fa¥m

=auH. The paper ends with conclusions in Sec. VI.

T

EEH’ (10)

the governing differential equations can be written as the
plane-autonomous system

Equation(7) can be written as

Ay

Q 1
3H?

_ Mo _ 2 2
Q,= =X“+Vy*°, 12
¢ 3H2 Y 12
Il. GOVERNING EQUATIONS o 5. o
which implies that G&=x“+y“<1 for =0 so that the phase

The governing field equations are given by E@.and space is bounded. The deceleration parameter is now written

. 1 . 2 3 2_\2
H:—E(%UﬂLd)z), (6) q=—1+3x +§’y(l—X —-y9). (13
subject to the Friedmann constraint A. Comments on arbitrary &
The fact thatg is independent of the interaction term im-
H2=1 et 1¢2+V 7) plies that the region of phase space which represents infla-
3 2 tionary models is the same for all of the models considered.
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Namely, q=0 occurs along the ellipseyy?=(2— y)x? (3y—Kk?3)—
+3(3y—2). For any value ofy, the lines intersect the ,:—5|]-'51
boundary of the phase spacexat . 3‘/6k7

It is possible to make some qualitative comments about

the system(11) for arbitrary 8. First, the location of equilib- y'=0. (16D
rium pointson the boundark?+y?=1 (Q=0) is indepen-
dent of the choice of such interaction terms; the three equiHlence, the matter scaling solutions will be represented by an
librium points(and their associated eigenvalu@gich exist  equilibrium point only if5|f5:0 (or in the special caseyd
on the boundary for any are =k?, which is typically a bifurcation valye For the simple
i forms for 6 given in the literature and those used in this
K7 (xy)=(+1,0 paper, this condition will not be satisfied and so the matter
scaling solutions cannot be asymptotic attracting solutions.
However, an analogous situation does arise. In particular,
' any equilibrium point within the boundary of the phase space
(148  will satisfy

(163

1— 3
()\11)\2):(3(2_ y)+ §5|/c+- \/; [V6+k]

K~ (x,y)=(—1,0 , (2=vy) ,

X5, 1
Yo s 0 (17)

1 3
(}\1,)\2)2(3(2—7)+§5|,C,\/;[\/g—k]), . . _— . .
in which the scalar field is equivalent to a perfect fluid of the
(14D form Ps=(7v4—L)uy, but wherey,#vy. Consequently,
. any attracting equilibrium point within the phase space will
] — represent models in which neither the matter field nor the
Ps (x,y)=( B T 1_k2/6) scalar field is negligible and the scalar field mimics a baro-
tropic fluid different from the matter field and therefore
could still constitute a possible dark matter candidate.
)_ Finally, it can be shown that any equilibrium point within
(but not on the boundary will occur fokg<<0. Fory+0 and
(140  Q#0, Eqg.(11b), which does not depend af) yields

1 ) ) 1—
(A,Np)= _5[6_k 1.—|3y—k _§5|PS

The pointsk * represent the isotropic subcases of Jacobs’ 5

Bianchi type | solutiong39] (subcases of the Kasner mod- 2_ .0 \ﬁ (2= %2

els), generalized to include a massless scalar field. These W=y 3kX (2= 7%, (18)
solutions are non-inflationaryg& 2). The pointPg, which

exists only fork’<6, represents the FRW power-law model 4 relationship any such equilibrium point must satisfy. Now,
[11,17 and is inflationary fork’<2 (q=3[k*-2]). Al ,(y2+x?) <y since y>+x2<1 inside the boundary, and
though these three points exist for afiythe interaction term  hence Eq(18) yields
doesaffect the stability of these solutions, as is evident from

the eigenvalues in Eq$14). In particular, fork?<3y the K
point P5 can become a saddle point if x( X+ —

V6

which cannot be satisfied for>0 (sincek>0).

Hence, if the interaction term is significant, solutions will

spend an indefinite period of time near this power-law infla- B. Review of the cases=0

tionary model, but will then evolve away and typically be .

attracted to another equilibrium point in some other region of, CoPelandet al. [38] performed a phase-plane analysis of

the phase space. the system(11) f(_)r §=0, apd found five equilibrium points.
Matter scaling solutiongi.e. those solutions in which One of the gqU|I!br|um pointédenoted here *{’5") represents

4= 7), denoted by in [23], exist only in special circum- a flat, non-inflating FRW moddl38], for which Q=1. For

stances when such interaction terms are present, and occur26{§< y<2 this poir_1t Is a sgddle in the phase space. The flat
the point FRW matter scaling solutionHs) was found to exist for

k?>3y and was shown to be a sink. The equilibrium point

K+ was shown to be a source for &land X ~ a source for

Xp.=— \ﬁz Yr= /37(2_ 7)_ (15) k?<6. The FRW power-law modelRs) was shown to be a
s 2k’ TS 2k? sink for k?< 3y, and was shown to represent an inflationary

model fork?<2. The results found ifi38] are summarized
Substituting these solutions into Eq4l) yields in Table I.

<0, (19)

8lp >3(3y—Kk?).
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TABLE I. The equilibrium points ford=0 and their stability for
various values ofk. The label “(NI)” denotes non-inflationary
models whereas ()" represents inflationary models, and “DNE”
is used when an equilibrium point does not exist.

o<k?®<2 2<k?<6 k?>6
k?<3y k?>3y
P Saddle Saddle Saddle
(NI) (NI) (NI)
K+ Source Source Source
(NI) (NI) (NI)
K~ Source Source Saddle
(NI) (NI (NI
Ps Sink Sink Saddle DNE
(1) (for k?<2) (NI) (NI)
Fs DNE DNE Sink Sink
(NI) (NI)

lll. INTERACTION TERM OF THE FORM  é=—adu

In this section, an interaction term of the form

=—a¢u (and hences=—ag/H) shall be considered.

Again, it will be assumed thdt>0. The explicit sign choice

for &8, with the assumption that>0, is to guarantee that all
equilibrium points within the phase space will represent

PHYSICAL REVIEW D61 083503

This equilibrium point is a source fa< \/§(2— v) and a
saddle otherwise.

@K (xy)=(-10), Q=0 g=2.

The eigenvalues for this equilibrium point are

3
(xl,x2>=(3<2— y)+6a, \@[ﬁ—k]), (22

and sok ~ is a source fok?<6 and a saddle otherwise.
() Ps:

k K 1
(x,y)=(—%, 1—g>, 0=0, q=§(k2—2).

The eigenvalues for this equilibrium point are

. (23

1
(?\1,)\2)=( 516~ k?],—[3y—k*—ka]

This point exists only fokk’<6 (whenk?=6, Pg merges
with the equilibrium pointK 7). Here, P is a sink fora
<(3y—k?/k and a saddle otherwise.

(4) N:

\/g'y 3y(2—y)+2aA
xy)=| —V33 VT

kA—3
0= L4
AZ

3

 3yk-24
] q_ A ]

models in which energy is being transferred from the scalar
field to the perfect fluid, since it was shown that all equilib- whereA=k+a>0. Note that this solution is physicéle.,

rium points within the phase space occur %6t 0 (¢<0).

Indeed, this is even true for the equilibrium polt on the
boundaryQ2=0, since it is located at<0. With this particu-
lar choice foré, Eqs.(11) become

x’=—3x(1—x2)—\ﬁkyz+ §7x+ \ﬁa (1-x*—y?)
2 2 2 '

(20
3 2
y' =3y \[gkx+2x2+ y(l—xz—yz)}. (20b)
There are five equilibrium points for this system:
(DK™ (xy)=(+1,0), Q=0, g=2.
The eigenvalues for this equilibrium point are
3
(M1 h2)=| 3(2=7)—V6a, \/5 [V6+K]|.  (21)

Q=0) either fork?>3vy or for k?’<3y and
a=(3y—k?)/k. (24)

These solutions were discussed 86] for a<k and are re-
lated to similar power-law solutions discussed 118]. This
model inflates if

a=

3

27 1) k (25
(since onlya<k was considered if36] the solutions therein
were not inflationary). For k?<2, if condition (24) is satis-
fied, then Eq.(25) is automatically satisfied and so these
models inflate fok?< 2. For 2<k?< 3y, if condition (25) is
satisfied, then Eq24) is automatically satisfied and there-

fore models can inflate fok?>2 if a=(3y—1)k. For k?

>3y there is no constraint oa for the point to exist and
therefore whether this models inflates is solely determined
by Eg.(25). The eigenvalues for this equilibrium point are

_ —3[(2—y)k+2a] O[(2—y)k+2a]’~243y(2— y) +2aA][kA 3]

. 4A -

4A ' (26)

083503-5



ANDREW P. BILLYARD AND ALAN A. COLEY PHYSICAL REVIEW D 61 083503

TABLE II. The equilibrium points for the model with= —adu and their stability for various values of
k anda. Note thatC,=(3y—k?)/k andC,=(3y—2)k/2. The symbol ‘R” denotes when the equilibrium
point is a sourcédrepellon, “s” for when it is a saddle, ‘A” for when it is a sink (attractoy, and “DNE”
when it does not exist within the particular parameter space. The laipdl)™ denotes non-inflationary
models whereas (I)” represents inflationary models.

0<k?<2 2<k?®<3y 3y<k?<6 k?>6
a<C; | a>C; | a<C; | Ci<a<C, | a>C, | a<C, | a>C, | a<C, | a>C,
Kt R for 2a?<3(2—v)?
(NI) s for 2a2>3(2— y)?
K~ R s
(NI)
Ps A s A s DNE
M ) (NI) (NI)
N DNE A DNE A A A A A A
0] (ND) 0] (ND) 0] (ND) 0]
N, s for 2a2<3(2— y)?
(NI) DNE for 2a?>3(2— v)?
and soN is always a sink when it exists. Note that the scalar IV. DISCUSSION

field a_cts as a perfect fluid with an equation of state param- A Inflation
eter given by
We first note that we can obtain inflationary solutions
whenk?>2, unlike the case in which there is no interaction
Y term. Moreover, we see from Table Il that these inflationary
<. (27 i . oo .
solutions, corresponding to the equilibrium poiNt and
3y which occur fora>21(3y—2)k, are sinks(attractor$. This
result complements the results [df9,35], which looked for
inflationary solutions for steeper potentials. Whér<2 and
0<a<(3y—k?)/2 the power-law inflationary solution cor-
responding to the equilibrium pois is again a global at-

(5) N:

> a 232 tracting solution.
(X,y)z( \ﬁ_o) Q=1-—- Of particular interest is the case whéf<2 and a
3(2=) 3(2-9%) > (3y—k?)/k>0, whenPg is no longer a sink. Therefore,
trajectories approach this equilibrium poi@nd the models
inflate for a definite but arbitrarily large period of timand
1 a? eventually asymptote towards thewinflating model corre-
q=5By=2)+ W>0- sponding toN. For a~(3y—k?)/k, the eigenvalues foN,
Eq. (26), are real and negative and so the attracting solution
is represented by an attracting node. However,a&ar(3y
This equilibrium exists for< \/3(2— y) and is a saddle, as —k°)/2 this equilibrium point is @piral node i.e., trajecto-
determined from its eigenvalues: ries exhibit adecaying oscillatory behavioss they asymp-
tote towardsN. [For example, for larga, Eqg. (26) becomes
N ~— 32+ /—3ak, leading to complex eigenvalugs.

Example
2
(7\13\2):( — §[2_ vl 1- 2 ,§7+M> _ To illustrate this oscillatory nature, an explicit example is
2 32—y)%]'2° (2—) chosen withk=1 and y=4/3 (radiation. The equilibrium
(28 points and their respective eigenvalues are
Table Il lists the equilibrium points and their stability for K= ()\1,)\2):( +6a+ 2\ﬁ) (299
the ranges ok and a. As is evident, the presence of the 2

interaction term can substantially change the dynamics of
these models. We note that all equilibrium points correspond

to self-similar model$40]. Ps: (A.h2)=

5
a—3,— 5), (29b)
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FIG. 2. A magnification of the attracting region of the phase
space depicted in Fig. 1. See also caption to Fig. 1.

K~ K*
—2)k/2 these models represent non-inflating models whereas
the corresponding models inflate far-(3y— 2)k/2.

In the absence of an interaction term, matter scaling solu-
dot represents the sini.e., the pointN) and small black dots tions gre repre;ented by equilibrium points of the Cprre-
represent saddle points. The region above the grey dashed line ref)pondlr!g dynamical sys_tem. We have shown that for Slmple
resents the inflationary portion of the phase space. Arrows on thiteraction terms found in the literature, these matter scaling

FIG. 1. Phase diagram of the systéirl) when 5= —a¢u for
the choice of parameteks=1, y=4/3 anda=8. In this figure, the
black dot represents the sour@ee., the pointC 7), the large grey

trajectory indicate the direction of time. solutionscannotbe represented by equilibrium points. How-
ever, new equilibrium points arise which represent solutions
—(3a+1) +49+26a+33a2—12a° in which the energy densities of the matter and scalar field
N: A.= + remain a fixed proportion to one another and ohgy< vy;

= 2(a+l) ~ 2(a+1) :

(299 these solutions are analogues of the matter scaling solutions

in which y,=y [36]. N -
wherea>3 in order forN to exist and to be a sink and for " [41] @ large class of non-minimally coupled scalar field
P, to be a saddle. Note that far>3, N, does not existiC * models with a perfect fluid m_atter component were investi-
is a saddle andC ~ is a source. Numerical analysis shows 9at€d. These models contain scalar-tensor theory models
that N is a spiral source foa=3.65. Figure 1 depicts this and, in particular, Brans-Dicke theory models with a power-
phase space for a typical value @fin this range(for illus-  law potentlal. On performlng a conformal rescaling of the
trative purposes the valle=8 is taken, and the attracting Metric, the governing equations of these models reduce to
region therein is magnified in Fig. 2. These figures are typiihe equations for a scalar field in general relativity with an
cal for other values o (this comment is important since we €xponential potential and an extra coupling to the ordinary
note that in the context of conformally transformed scalar-matter, and are equivalent mathematically to the equations
tensor theories, strictly speakinty0 for y=4/3). studies heré¢as was noted ifi3]). Amendola[41] performed
a phase space analysis of these models and obtained similar
results to those obtained hergSince Amendola assumed
0<vy<2, he obtained a wider range of possible behaviors;
The late-time behavior of these models, both inflationaryhowever, these additional results are of lesser interest in the
and non-inflationary, may also be of cosmological interestcontext of our work. In particular, values gf>4/3 lead to
For 2<k?<3y & a<(3y—k?)/k the late-time attracting negative values for the coupling constant
equilibrium point isP ¢ which represents a power-law non-  The main aim if41] was to express the solutions back in
inflationary model. As a result of recent observations of acthe original “Jordan” frame and study the cosmological
celerated expansidi7,8], models that are presently inflating consequences of the underlying scalar-tensor theory models.
are also of interest. Fd?<2 anda<(3y—k?)/k the late- In particular, “decaying cosmological constant”’ solutions
time attracting equilibrium point i$s which represents a were considered which are inflationary and such that the sca-
power-law inflationary model. However, in both of these lar field component is asymptotically non-negligible. Models
cases the matter contribution is negligible and so these moaonsistent with the observations of accelerated expansion
els are not of physical interest. F&?<2 and a>(3y [7,8] and in which a physically acceptable fraction of the
—k?)/k the late-time attracting equilibrium point g which  energy-density is in the scalar field were found to be severely
represents a power-law inflationary model in which both theconstrained by the upper limits on the variability of the
matter and the scalar field are non-negligible and their engravitational constant42] and by nucleosynthesis observa-
ergy densities are proportional to one another. These modet®ns. In further work Amendol§43] considered a quintes-
are potentially of great significance, and they have been dissential scalar field coupled to matter with an additional ra-
cussed recently within the scalar-tensor theory conegé  diation matter component, and studied the effect of density
below). Finally, for k?>2 anda>(3y—k?)/k the only late- perturbations on the cosmic microwave background in these
time attracting equilibrium point isN; when a<(3y  so-called “coupled quintessence” models.

B. Late-time behavior
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<

TABLE I1ll. The equilibrium points for the model with5=

—aé;S,u and their stability for various values &fanda with y=2.
T Note thatC,=(6—k?)/k. See caption for Table Il for notation.

0<k?®<2 2<k?<6 k?>6
a<C,;|a>C;|a<C,|Ci<a<2k|a>2k|a<2k|a>2k

Kt s
(NI)
K- R S
(NI)

x Ps| A s A s DNE

'S Kt 0] 0] (NI) (NI)

FIG. 3. Phase diagram of the syst¢hi) whens=—a¢u for N [ DNE | A | DNE A A A A
the choice of parameterg=2 andk> /6. Note that the past attrac- 0 (NI) M | (NH |
tor is a heteroclinic cycle. See also caption to Fig. 1.

C. Early-time behavior P is a source foa<(6—k?)/k and a saddle otherwise.

From Table Il we can see that the only early-time attrac—(4) N:

tors arelC * for certain values ok anda, which correspond 6 a KA—6 2[2k—a]
to massless scalar field modéishich are analogues of Ja- (X,y)z( — \ﬁ \ﬁ) O=—, q=——,
cob’s vacuum solutiong39]). However, in Table Il we see A" VA A? A
that for k>>6 anda> \/g(z—y) there are no equilibrium
points which represent sources and the trajectories cons
guently asymptote into the past towards a heteroclinic cycl
In this cycle, orbits quickly shadow the invariant set
+y?=1 (Q=0), spend a period of time near the sadille,
quickly shadow the ling=0 (V=0, Q+0), and then spend —3a \9a?—12aA[kA—6]
a period of time neaiC * after which the cycle is repeated. A= oA + oA ,
During each cycle the orbits pass through the inflationary

portion of phase space. We stress here that this motioatis 54 soN is always a sink when it exists and is a spiral sink

periodic; on each successive cycle orbits will spend a longey,,, a>[8k] [ 27— 8K2+ 729-48Z] or a<[8k] [27
time near the saddles * . This past-asymptotic qualitative —8Kk2— 729~ 48K%] (and is a spiral sink for alk?>6)

behZX'or’.tVr\]'h'ctrr‘] IS dep;ct::xd ]'cn 't:'.g' 3,1s S|m||Iar Fotrt]hat_ fountd Note that the scalar field acts as a perfect fluid with an equa-
in [44] within the context of string cosmology; this is no éion of state parameter given by

surprising due to the conformal relationship between thes

whereA=k+a>0. Note that this solution is physicéle.,
€1=0) either for k2>6 or for k2<6 and a=(6—k?)/k.
®rhese models inflate fk?<2 as well as fokk?>2 anda
=2k. The eigenvalues for this equilibrium point are

(30

string models and the models under investigation higte 2
Vo= <7 (32)
D. Casey=2 1+ gaA

When y=2, corresponding to a stiff perfect fluid, the
models is equivalent to a model containing a scalar field witiNote that the equilibrium poinlN, does not existor y=2.
an exponential potential and a second interacting massle§sble Il summarizes the stability analysis for=2. The
scalar field. We also note that=2 is a bifurcation value. qualitative behavior is similar to that of the cage?2, except
The equilibrium points and their eigenvalues in this case ar¢hat there is no region corresponding tg8k’<6 when
3 v=2. Note a?/@i” that there exists a heteroclinic cycle at early
+. _ times fork> /6 (see Fig. 3, unlike the general casg+2,
(1) K ()‘1’)‘2)_( ~Vea, \[E [V6+k] this heteroclinic cycle exists for ati>0.

Sincea>0 this equilibrium point is a saddle. V. INTERACTION TERM OF THE FORM  é=apH
B 3 This section provides a second example to demonstrate
(2) K70 (MAp)= V6a, \[5[\/6_ k])- that other types of interaction terms can also lead to similar
behavior; i.e., that there will be a range of parameters for
K~ is a source fok?<6 and a saddle otherwise. which the inflationary models which drive the matter fields
to zero arenot late-time attractors and for which the trajec-
(3) Ps: (N N\p)=(—3[6—K?],—[6—k2—Kka]). tories exhibit an oscillatory behavior as they asymptote to-
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ward the late-time attracting solution. Specifically, the inter- 3
action termé=auH is chosen, whera>0. (N,N2)=|3[2—y]+a,— §+3
With this choice, Eqs(11) become

3 3 a
X'=—3x(1-x%— \ékszr 57X ﬂ) (1-x2—y?),
(32a

. (39

K~ is a source fok?<6 and a saddle otherwise.
(3) Ps: Eigenvalues for this equilibrium point are

1
3 (xl,x2)=(—5[6—k2],—[5—k27—k2]), (35)
y'=3y

2
\[gkx+ 2x%+ y(l—xz—yz)}. (32b)

) . ) ] whereE=3y—a. This point exists only fok?<6, and is a
For physical reasons we are not interested in early-time besoyrce fork?<3y anda<3y—k? (saddle otherwise
havior, and hence the line=0 will not be considered. Con-

sequently, a full phase-plane analysis is not possible using . \/
xy)=| ——-,
(x,y) ( ok

these variables. However, it is still possible to determine th?4) N
equilibrium points withx=0 for the system and determine L
their local stability.

There are four equilibrium points for this system for

a 2—y) B?
a (@yE" ,
3y Y 6k?

==
70 L . . . Q=M, q=-1+3E,
(1) K ™: Eigenvalues for this equilibrium point are 3yk?
3 Note that this solution is only physic&{)=0) for [3y
()‘1’7\2):(3[2_7]+a1 \[5\/€+3 (83  _k?]<a<3y and k?<3y, and represents an inflationary
model fora>(3y—2) (consequently, this model will always

This equilibrium point is a source. inflate fork?<2 and can inflate for 2k?<3y). The eigen-
(2) K ~: Eigenvalues for this equilibrium point are values for this equilibrium point are

_ [2a(2E-K)+(2-yE?]  [2a2E-K)+(2— 9 EXK*—8yEX(K* - E)[2aK + (2 7)E]
= 4vyE - 4yEK® ,

(36)

and soN; is a sink fora<3y—1k?. Note that the scalar VI. CONCLUSIONS
field acts as a perfect fluid with an equation of state param-

eter given by Without an interaction term, it is known that faf<2 the

global late-time attractor for the systehl) is a power-law
inflationary model in which the matter is driven to z¢&8].

Yo Y <. (377 The purpose of this paper was to sh_ow that .this behayior
ak could be altered qualitatively with the introduction of an in-
1+ =2 teraction term. In particular, for models with an interaction

term of the formé= —adu there are values in the parameter

Table IV lists the equilibrium points and their stability for space for which the equilibrium pois, corresponding to
the ranges ok anda. Again, for the rang&®<2 and (3y  this particular power-law inflationary model, becomes a
—1k?)<a<(3y—1ik?, the power-law modelPs is no saddle, and so while the models may spend an arbitrarily
longer a sink and\; is a source. Therefore, solutions ap- long period of time inflating withQ—0, they eventually
proach the equilibrium point which is represented By evolve away from this solution. The late-time attractors
(thereby inflating for an indefinite period of time, but even- within the same parameter space, corresponding to the new
tually evolve away. It can be shown numerically that within attracting equilibrium poinN,, are also inflationary but with
this range fork and a, the equilibrium pointN, is a spiral  the matter field’s energy density remaining a fixed fraction of
node (for instance, fok=1 andy=4/3, Ny is a sink for 3 the scalar field’s energy-density and wihy<y. These are
<a<3.5 and a spiral sink for 3.24a<3.5); therefore the analogues of the matter scaling solutions in Wh‘;QJ’F v.
scalar field exhibits oscillatory motion as the solutions as- For an appropriate parameter range, the equilibrium point
ymptote towardN. Care must be taken in interpreting the N, is an attracting focus, and hence as solutions approach
analysis and obtaining global results since this system is nghis late-time attractor the scalar field oscillates. Although
well defined forx=0 (¢=0) for this particular example. the late-time behavigicorresponding tN,) is still inflation-
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TABLE IV. The equilibrium points for the model witd=auH and their stability for various values of
k anda. Note thatC;=3y—k? andC,=3y— %kz. The symbol ‘R” denotes when the equilibrium point is
a sourcerepellop, “s” for when it is a saddle, ‘A” for when it is a sink(attractoy, and “DNE” when it
does not exist within the particular parameter space. The lakiél)” denotes non-inflationary models
whereas (1)” represents inflationary models. F&*>6 the only equilibrium points to exist are the points
K=; K*isasource and ~ is a saddléi.e., there is no sink Recall that the system is not well defined for
x=0 and therefore a global analysis is not possible.

0<k?<?2 2<k®<3y 3y<k?<6
a<Cjy a>Cjy a<Cs, a>C,
a<C, a>C, a<C, a>C,
K* R
(NI)
Ps A S A S
0 0 (NI (NI
N A S A S
DNE (M () DNE (1) for (1) for DNE
a>3y—2 a>3y—2

ary, the oscillatory behavior provides a possible mechanismenergy transfer, for physical reasons it might be expected
for inflation to stop and for conventional reheating to ensughata must be small; i.e2<0.1[36] (see alsd45]). On the
(indeed this is similar to the mechanism for reheating inother hand, in the context of scalar-tensor theogds of
scalar field models with a potential containing a global mini-order unity and can certainly attain values large enough to
mum [24-28). To study reheating properly, more compli- produce the behavior described abdsee Eq.(4)]; this is
cated physics needs to be included in which the oscillatinglso the situation in the context of string theories.

scalar field is coupled to both fermionic and bosonic fields. It is also of interest to study the cosmological conse-
This contrasts with the situation for exponential models forduences of the “decaying cosmological constant” or “quint-
k2<2 with no interaction term which have no graceful exit €SSéntial” cosmological models, since they may be consis-

from inflation and in which there is no conventional reheat-{€nt With the observations of accelerated expanbio8l and
ing mechanism. may lead to a physically interesting current residual scalar

Therefore, we have shown that there are general relati\/‘—i(ald energy-density. These _issues have recently been ad-
istic scalar field models with an exponential potential whichdressecj by Amendolgd1,43 in the context of the confor-

evolve towards an inflationary state in which the matter ismally related scalar-tensor theories of gravity.

not driven to zero and which exhibit late-time oscillatory
behavior; these models may constitute a first step towards a
more realistic model. There is the question of how physical A.P.B. is supported by Dalhousie University and A.A.C.
these models are, since they correspond to relatively largis supported by the Natural Sciences and Engineering Re-
values ofa. In the context that the interaction term representssearch Council of Canada.
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