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Interactions in scalar field cosmology
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We investigate spatially flat isotropic cosmological models which contain a scalar field with an exponential
potential and a perfect fluid with a linear equation of state. We include an interaction term, through which the
energy of the scalar field is transferred to the matter fields, consistent with a term that arises from scalar-tensor
theory under a conformal transformation and field redefinition. The governing ordinary differential equations
reduce to a dynamical system when appropriate normalized variables are defined. We analyze the dynamical
system and find that the interaction term can significantly affect the qualitative behavior of the models. The
late-time behavior of these models may be of cosmological interest. In particular, for a specific range of values
for the model parameters there are late-time attracting solutions, corresponding to a novel attracting equilib-
rium point, which are inflationary and in which the scalar field’s energy-density remains a fixed fraction of the
matter field’s energy density. These scalar field models may be of interest as late-time cosmologies, particu-
larly in view of the recent observations of the current accelerated cosmic expansion. For appropriate values of
the interaction coupling parameter, this equilibrium point is an attracting focus, and hence as inflating solutions
approach this late-time attractor the scalar field oscillates. Hence these models may also be of importance in the
study of inflation in the early universe.
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I. INTRODUCTION

A variety of theories of fundamental physics predict t
existence of scalar fields@1–3#, motivating the study of the
dynamical properties of scalar fields in cosmology. Inde
scalar field cosmological models are of great importance
the study of the early universe, particularly in the investig
tion of inflation @4,2#. Recently there has also been gre
interest in the late-time evolution of scalar field mode
‘‘Quintessential’’ scalar field models~or slowly decaying
cosmological constant models! @5,6# give rise to a residua
scalar field which contributes to the present energy-den
of the universe that may alleviate the dark matter probl
and can predict an effective cosmological constant whic
consistent with observations of the present accelerated
mic expansion@7,8#.

Models with a self-interaction potential with an expone
tial dependence on the scalar field of the form

V5Lekf, ~1!

whereL andk are positive constants, have been the sub
of much interest and arise naturally from theories of grav
such as scalar-tensor theories or string theories@3#. Recently,
it has been argued that a scalar field with an exponen
potential is a strong candidate for dark matter in spiral g
axies @9# and is consistent with observations of current a
celerated expansion of the universe@10#.
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A number of authors have studied scalar field cosmolo
cal models with an exponential potential within general re
tivity. Homogeneous and isotropic Friedmann-Roberts
Walker ~FRW! models were studied by Halliwell@11# using
phase-plane methods. Homogeneous but anisotropic mo
of Bianchi types I and III~and Kantowski-Sachs models!
were studied by Burd and Barrow@12#, Bianchi type I mod-
els were studied by Lidsey@13# and Aguirregabiriaet al.
@14#, and Bianchi models of types III and VI were studied b
Feinstein and Iba´ñez @15#. A qualitative analysis of Bianch
models with k2,2 ~including standard matter satisfyin
standard energy conditions! was completed by Kitada an
Maeda@16#. The governing differential equations in spatial
homogeneous Bianchi cosmologies containing a scalar fi
with an exponential potential reduce to a dynamical syst
when appropriate expansion- normalized variables are
fined. This dynamical system was studied in detail in@17#
~where matter terms were not considered!.

One particular solution that is of great interest is the fl
isotropic power-law inflationary solution which occurs fo
k2,2. This power-law inflationary solution is known to b
an attractor for all initially expanding Bianchi models~ex-
cept a subclass of the Bianchi type IX models which w
recollapse! @16,17#. Therefore, all of these models inflate fo
ever; there is no exit from inflation and no conditions f
conventional reheating.

Recently cosmological models which contain both a s
lar field with an exponential potential and a barotropic p
fect fluid with an equation of state

p5~g21!m, ~2!

whereg is in the physically relevant range 2/3,g<2, have
come under heavy analysis. One class of exact solut
©2000 The American Physical Society03-1
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ANDREW P. BILLYARD AND ALAN A. COLEY PHYSICAL REVIEW D 61 083503
found for these models has the property that the energy
sity due to the scalar field is proportional to the energy d
sity of the perfect fluid, and hence these models have b
labeled matter scaling cosmologies@18–20#. These matter
scaling solutions are spatially flat isotropic models and
known to be late-time attractors~i.e., stable! in the subclass
of flat isotropic models@18–20# and are clearly of physica
interest. In addition to the matter scaling solutions, curvat
scaling solutions@21# and anisotropic scaling solutions@22#
are also possible. A comprehensive analysis of spatially
mogeneous models with a perfect fluid and a scalar field w
an exponential potential has recently been undertaken@23#.

Within the standard model of inflation~with, for example,
a quadratic or quartic self-interaction potential!, in the early
universe the microphysics of the scalar field leads to an
celerated expansion essentially driven by the potential
ergy ~or vacuum energy! that arises when the scalar field
displaced from its potential energy minimum. Provided th
the potential is sufficiently flat, the universe undergoes m
e-folds of expansion and the matter content is driven to z
@24–28#. As the scalar field nears its minimum, the vacuu
energy is converted to coherent oscillations of the scalar fi
~which corresponds to non-relativistic scalar particle!.
Eventually, since the scalar field is coupled to other~fermi-
onic and bosonic! matter fields, these particles decay in
lighter particles and their thermalization results in the ‘‘r
heating’’ of the universe~thereby accounting for the curren
entropy in the universe today!.

Although the exponential models are interesting mod
for a variety of reasons, they have some shortcomings
inflationary models. While Bianchi models generically a
ymptote towards the power-law inflationary model in whi
the matter terms are driven to zero fork2,2, there is no
graceful exit from this inflationary phase. Furthermore,
scalar field cannot oscillate and so reheating cannot occu
the conventional scenario. Clearly, these models need t
augmented in an attempt to alleviate these problems.
example, exponential potentials are only believed to be
approximation, and so the theory could include more co
plicated potentials~although it is not clear what these oth
potentials should be!.

The goal of this paper is to examine how interacti
terms, through which the energy of the scalar field is tra
ferred to the matter fields, can affect the qualitative behav
of models containing matter and a scalar field with an ex
nential potential. Such an interaction term, denoted byd,
arises in the conservation equations, via

ḟ~f̈13Hḟ1kV!52d ~3a!

ṁ13gHm5d. ~3b!

The form of such a term has been discussed in the litera
within the context of inflation and reheating. An alternati
to the conventional reheating model, in which the sca
field’s energy is transferred to the matter due to scalar fi
oscillations, is the warm inflationary model@20,29,30# in
which an interaction term is significant throughout the infl
tionary regime~not just after slow-roll! and so the energy o
08350
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the scalar field is continually transferred to the matter cont
throughout inflation and the matter content isnot driven to
zero.

Several examples of interaction terms appear in the lite
ture for models with a variety of self-interaction potentia
In particular, potentials which have a global minimum ha
attracted much attention. For example, Albrechtet al. @31#

consideredd5aḟdf522d ~where a is a constant!, derived
from dimensional arguments, in the reheating context a
inflation @with potentials derived from Georgi-Glasho
SU~5! models#. In a similar context, Berera@32# considered
interaction terms of the formd5aḟ2 . Quadratic potentials
and interaction terms of the formd5aḟ2 and d5af2ḟ2

were considered by de Oliveira and Ramos@33# and a grace-
ful exit from inflation was demonstrated numerically. Sim
larly, Yokoyamaet al. @34# showed that an interaction term
which is negligible during the slow-roll inflationary phas
dominates at the end of inflation when the scalar field
oscillating about its minimum; during this reheating phase
is assumed that the energy transferred from the scalar fie
solely converted into particles.

Within the context of exponential potentials, Yokoyam
and Maeda@35# and Wandset al. @19# considered interac-
tions of the formd5aAV. The main goal in both these pa
pers was to show that power-law inflation can occur fork2

.2, thereby showing that inflation can exist for steeper p
tentials. The main motivation for this work is the fact th
exponential potentials which arise naturally from other the
ries, such as supergravity or superstring models, typic
have k2.2. Wetterich @36# considered interaction term
containing a matter dependence, namelyd5aḟm, in which
perturbation analysis showed that the matter scaling s
tions were stable solutions when such interaction terms
included. In@36#, it was shown that the age of the universe
older whend is included and that the scalar field can st
significantly contribute to the energy density of models
late times. In@3#, certain string theories in which the energ
sources are separately conserved in the Jordan frame
rally lead to interaction terms in the Einstein frame, althou
this is not specific to string cosmologies; any scalar-tens
theory with matter terms and a power-law potential will yie
the same results@36#.

The scalar field in scalar-tensor theory can be related
the scalar field in the general relativistic scalar field theo
via a conformal transformation. If the matter terms are se
rately conserved in the scalar-tensor theory~Jordan frame!,
then they lead to the following conservation equation in
Einstein frame:

ḟ~f̈13Hḟ1kV!5
~423g!

2Av1
3

2

ḟm ~4!

~and a similar equation forṁ), wherev is the coupling pa-
rameter in the scalar-tensor theory. This therefore leads t
interaction term of the formd52aḟm, where
3-2
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a5
~423g!

2Av1
3

2

. ~5!

Holden and Wands@46# have recently performed a qualita
tive analysis for such a system. Similarly, in string theo
~v521!, a similar interaction term arises in the Einste
frame which depends on the energy density of the ma
~axion! field anda is of order unity. Finally, a term of the
form d5amH might be motivated by analogy with dissipa
tion. For example, a fluid with bulk viscosity may give ris
to a term of this form in the conservation equation@37#.

If d does not depend on the matter energy-density, t
unphysical situations may arise. For conventional interac
terms withoutm, we have found numerically thatm is driven
to zero in a finite time and subsequently the matter ene
density becomes negative~see@3# for details!. Thus, we shall
include a factorm in the interaction term in order to ensu
thatm>0. In @36# it was shown that ifd,0 at the equilibrium
points, then static solutions~i.e. ḟ50) arenot possible. Fur-
thermore, we require that the sign ofd be positive at equi-
librium points representing inflationary phases; otherwise
matter fields will be ‘‘feeding’’ the scalar field and will red
shift to zero even faster than in the absence of the interac
terms.

This paper examines interaction terms of the general fo
d5 d̄mH @whered̄5 d̄(ḟ,V,H)] in the context of flat FRW
models with emphasis on determining the asymptotic pr
erties of these models. In particular, it will be determin
whether these models can asymptote towards inflation
models in which the matter terms are not driven to zero. T
would partially alleviate the need for reheating; since
matter content tracks that of scalar field~in this context!, it is
never driven to zero~unless both are driven to zero in whic
case the solution is not inflationary!. However, a more com
prehensive reheating model would still be necessary.
structure of the paper is as follows. In Sec. II, the govern
equations are defined and the cased50 studied in@38# is
reviewed. In Sec. III, the cased5aḟm is studied, motivated
by the conformal relationships between the Jordan and
stein frames in string theory, and extends the work of@36#. In
Sec. IV we shall discuss the results of the analysis and
Sec. V we shall examine an interaction term of the formd
5amH. The paper ends with conclusions in Sec. VI.

II. GOVERNING EQUATIONS

The governing field equations are given by Eqs.~3! and

Ḣ52
1

2
~gm1ḟ2!, ~6!

subject to the Friedmann constraint

H25
1

3 S m1
1

2
ḟ21VD ~7!
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~an overdot denotes ordinary differentiation with respect
time t!. Note that the total energy density of the scalar field
given bymf5 1

2 ḟ21V. The deceleration parameter for th
system is given by

q5
1

3
H22F ḟ22V1

1

2
~3g22!mG , ~8!

and isindependentof the interaction term.
Defining

x[
ḟ

A6H
, y[

AV

A3H
, ~9!

and the new logarithmic time variablet by

dt

dt
[H, ~10!

the governing differential equations can be written as
plane-autonomous system

x8523x2A3

2
ky21

3

2
x@2x21g~12x22y2!#

2
d̄

6x
~12x22y2!, ~11a!

y85
3

2
yFA2

3
kx12x21g~12x22y2!G , ~11b!

where a prime denotes differentiation with respect tot @3#.
Note thaty50 is an invariant set, corresponding toV50.
The equations are invariant undery→2y andt→2t and so
the regiony,0 is a time-reversed mirror of the regiony
.0; therefore, onlyy.0 will be considered. Similarly, only
k.0 will be considered since the equations for the inter
tion terms to be considered are invariant underk→2k and
x→2x.

Equation~7! can be written as

V1Vf51,

where

V[
mg

3H2
, Vf[

mf

3H2
5x21y2, ~12!

which implies that 0<x21y2<1 for V>0 so that the phase
space is bounded. The deceleration parameter is now wr

q52113x21
3

2
g~12x22y2!. ~13!

A. Comments on arbitrary d̄

The fact thatq is independent of the interaction term im
plies that the region of phase space which represents in
tionary models is the same for all of the models consider
3-3
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Namely, q50 occurs along the ellipsegy25(22g)x2

1 1
3 (3g22). For any value ofg, the lines intersect the

boundary of the phase space atx25 1
3 .

It is possible to make some qualitative comments ab
the system~11! for arbitraryd̄. First, the location of equilib-
rium pointson the boundaryx21y251 ~V50! is indepen-
dent of the choice of such interaction terms; the three e
librium points~and their associated eigenvalues! which exist
on the boundary for anyd̄ are

K 1: ~x,y!5~11,0!

~l1 ,l2!5S 3~22g!1
1

3
d̄uK 1,A3

2
@A61k# D ,

~14a!

K 2: ~x,y!5~21,0!

~l1 ,l2!5S 3~22g!1
1

3
d̄uK 2,A3

2
@A62k# D ,

~14b!

PS: ~x,y!5S 2
k

A6
,A12k2/6D

~l1 ,l2!5S 2
1

2
@62k2#,2F3g2k22

1

3
d̄uPSG D .

~14c!

The pointsK 6 represent the isotropic subcases of Jaco
Bianchi type I solutions@39# ~subcases of the Kasner mo
els!, generalized to include a massless scalar field. Th
solutions are non-inflationary (q52). The pointPS , which
exists only fork2,6, represents the FRW power-law mod
@11,17# and is inflationary fork2,2 (q5 1

2 @k222#). Al-
though these three points exist for anyd̄, the interaction term
doesaffect the stability of these solutions, as is evident fro
the eigenvalues in Eqs.~14!. In particular, fork2,3g the
point PS can become a saddle point if

d̄uPS.3~3g2k2!.

Hence, if the interaction term is significant, solutions w
spend an indefinite period of time near this power-law infl
tionary model, but will then evolve away and typically b
attracted to another equilibrium point in some other region
the phase space.

Matter scaling solutions~i.e. those solutions in which
gf5g), denoted byFS in @23#, exist only in special circum-
stances when such interaction terms are present, and occ
the point

xFS52A3

2

g

k
, yFS5A3g~22g!

2k2
. ~15!

Substituting these solutions into Eqs.~11! yields
08350
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x85
~3g2k2!

3A6kg
d̄uFS, ~16a!

y850. ~16b!

Hence, the matter scaling solutions will be represented by
equilibrium point only if d̄uFS50 ~or in the special case 3g

5k2, which is typically a bifurcation value!. For the simple
forms for d given in the literature and those used in th
paper, this condition will not be satisfied and so the ma
scaling solutions cannot be asymptotic attracting solution

However, an analogous situation does arise. In particu
any equilibrium point within the boundary of the phase spa
will satisfy

y0
25

~22gf!

gf
x0

2 , ~17!

in which the scalar field is equivalent to a perfect fluid of t
form pf5(gf21)mf , but where gfÞg. Consequently,
any attracting equilibrium point within the phase space w
represent models in which neither the matter field nor
scalar field is negligible and the scalar field mimics a ba
tropic fluid different from the matter field and therefo
could still constitute a possible dark matter candidate.

Finally, it can be shown that any equilibrium point withi
~but not on! the boundary will occur forx0,0. ForyÞ0 and
VÞ0, Eq. ~11b!, which does not depend ond, yields

gy25g1A2

3
kx1~22g!x2, ~18!

a relationship any such equilibrium point must satisfy. No
g(y21x2),g since y21x2,1 inside the boundary, and
hence Eq.~18! yields

xS x1
k

A6
D ,0, ~19!

which cannot be satisfied forx.0 ~sincek.0).

B. Review of the casedÄ0

Copelandet al. @38# performed a phase-plane analysis
the system~11! for d50, and found five equilibrium points
One of the equilibrium points~denoted here byP! represents
a flat, non-inflating FRW model@38#, for which V51. For
2/3,g,2 this point is a saddle in the phase space. The
FRW matter scaling solution (FS) was found to exist for
k2.3g and was shown to be a sink. The equilibrium po
K 1 was shown to be a source for allk andK 2 a source for
k2,6. The FRW power-law model (PS) was shown to be a
sink for k2,3g, and was shown to represent an inflationa
model fork2,2. The results found in@38# are summarized
in Table I.
3-4



.

ll
n
la

b-

se

-

ed

’

INTERACTIONS IN SCALAR FIELD COSMOLOGY PHYSICAL REVIEW D61 083503
III. INTERACTION TERM OF THE FORM dÄÀaḟµ

In this section, an interaction term of the formd
52aḟm ~and henced̄52aḟ/H) shall be considered
Again, it will be assumed thatk.0. The explicit sign choice
for d, with the assumption thata.0, is to guarantee that a
equilibrium points within the phase space will represe
models in which energy is being transferred from the sca
field to the perfect fluid, since it was shown that all equili
rium points within the phase space occur forx,0 (ḟ,0).
Indeed, this is even true for the equilibrium pointPS on the
boundaryV50, since it is located atx,0. With this particu-
lar choice ford, Eqs.~11! become

x8523x~12x2!2A3

2
ky21S 3

2
gx1A3

2
aD ~12x22y2!,

~20a!

y85
3

2
yFA2

3
kx12x21g~12x22y2!G . ~20b!

There are five equilibrium points for this system:
~1! K 1: (x,y)5(11,0), V50, q52.
The eigenvalues for this equilibrium point are

~l1 ,l2!5S 3~22g!2A6a,A3

2
@A61k# D . ~21!

TABLE I. The equilibrium points ford50 and their stability for
various values ofk. The label ‘‘~NI!’’ denotes non-inflationary
models whereas ‘‘~I!’’ represents inflationary models, and ‘‘DNE’
is used when an equilibrium point does not exist.

0<k2<2 2,k2,6 k2.6

k2,3g k2.3g

P Saddle Saddle Saddle
~NI! ~NI! ~NI!

K 1 Source Source Source
~NI! ~NI! ~NI!

K 2 Source Source Saddle
~NI! ~NI! ~NI!

PS Sink Sink Saddle DNE
~I! ~for k2,2) ~NI! ~NI!

FS DNE DNE Sink Sink
~NI! ~NI!
08350
t
r

This equilibrium point is a source fora,A3
2 (22g) and a

saddle otherwise.
~2! K 2: (x,y)5(21,0), V50, q52.
The eigenvalues for this equilibrium point are

~l1 ,l2!5S 3~22g!1A6a,A3

2
@A62k# D , ~22!

and soK 2 is a source fork2,6 and a saddle otherwise.
~3! PS :

~x,y!5S 2
k

A6
,A12

k2

6 D , V50, q5
1

2
~k222!.

The eigenvalues for this equilibrium point are

~l1 ,l2!5S 2
1

2
@62k2#,2@3g2k22ka# D . ~23!

This point exists only fork2,6 ~when k256, PS merges
with the equilibrium pointK 2). Here, PS is a sink for a
,(3g2k2)/k and a saddle otherwise.
(4) N:

~x,y!5S 2A3

2

g

D
,A3g~22g!12aD

2D2 D ,

V5
kD23g

D2
, q5

3gk22D

D
,

whereD[k1a.0. Note that this solution is physical~i.e.,
V>0! either fork2.3g or for k2,3g and

a>~3g2k2!/k. ~24!

These solutions were discussed in@36# for a,k and are re-
lated to similar power-law solutions discussed in@19#. This
model inflates if

a>S 3

2
g21D k ~25!

~since onlya,k was considered in@36# the solutions therein
were not inflationary!. For k2,2, if condition ~24! is satis-
fied, then Eq.~25! is automatically satisfied and so the
models inflate fork2,2. For 2,k2,3g, if condition ~25! is
satisfied, then Eq.~24! is automatically satisfied and there

fore models can inflate fork2.2 if a>( 3
2 g21)k. For k2

.3g there is no constraint ona for the point to exist and
therefore whether this models inflates is solely determin
by Eq. ~25!. The eigenvalues for this equilibrium point are
l65
23@~22g!k12a#

4D
6

A9@~22g!k12a#2224@3g~22g!12aD#@kD23g#

4D
, ~26!
3-5
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TABLE II. The equilibrium points for the model withd52aḟm and their stability for various values o
k anda. Note thatC1[(3g2k2)/k andC2[(3g22)k/2. The symbol ‘‘R’’ denotes when the equilibrium
point is a source~repellor!, ‘‘s’’ for when it is a saddle, ‘‘A’’ for when it is a sink ~attractor!, and ‘‘DNE’’
when it does not exist within the particular parameter space. The label ‘‘~NI!’’ denotes non-inflationary
models whereas ‘‘~I!’’ represents inflationary models.

0,k2,2 2,k2,3g 3g,k2,6 k2.6

a,C1 a.C1 a,C1 C1,a,C2 a.C2 a,C2 a.C2 a,C2 a.C2

K 1 R for 2a2,3(22g)2

~NI! s for 2a2.3(22g)2

K 2 R s
~NI!

PS A s A s DNE
~I! ~I! ~NI! ~NI!

N DNE A DNE A A A A A A
~I! ~NI! ~I! ~NI! ~I! ~NI! ~I!

N2 s for 2a2,3(22g)2

~NI! DNE for 2a2.3(22g)2
la
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and soN is always a sink when it exists. Note that the sca
field acts as a perfect fluid with an equation of state para
eter given by

gf5
g

11
aD

3g

,g. ~27!

~5! N2:

~x,y!5SA2

3

a

~22g!
,0D , V512

2a2

3~22g2!
,

q5
1

2
~3g22!1

a2

~22g!
.0.

This equilibrium exists fora,A3
2 (22g) and is a saddle, a

determined from its eigenvalues:

~l1 ,l2!5S 2
3

2
@22g#F12

2a2

3~22g!2G ,
3

2
g1

a~k1a!

~22g! D .

~28!

Table II lists the equilibrium points and their stability fo
the ranges ofk and a. As is evident, the presence of th
interaction term can substantially change the dynamics
these models. We note that all equilibrium points corresp
to self-similar models@40#.
08350
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IV. DISCUSSION

A. Inflation

We first note that we can obtain inflationary solutio
whenk2.2, unlike the case in which there is no interactio
term. Moreover, we see from Table II that these inflationa
solutions, corresponding to the equilibrium pointN and
which occur fora. 1

2 (3g22)k, are sinks~attractors!. This
result complements the results of@19,35#, which looked for
inflationary solutions for steeper potentials. Whenk2,2 and
0,a,(3g2k2)/2 the power-law inflationary solution cor
responding to the equilibrium pointPS is again a global at-
tracting solution.

Of particular interest is the case whenk2,2 and a
.(3g2k2)/k.0, whenPS is no longer a sink. Therefore
trajectories approach this equilibrium point~and the models
inflate for a definite but arbitrarily large period of time! and
eventually asymptote towards thenew inflating model corre-
sponding toN. For a'(3g2k2)/k, the eigenvalues forN,
Eq. ~26!, are real and negative and so the attracting solut
is represented by an attracting node. However, fora*(3g
2k2)/2 this equilibrium point is aspiral node; i.e., trajecto-
ries exhibit adecaying oscillatory behavioras they asymp-
tote towardsN. @For example, for largea, Eq. ~26! becomes
l6'2 3

2 6A23ak, leading to complex eigenvalues.#
Example
To illustrate this oscillatory nature, an explicit example

chosen withk51 and g54/3 ~radiation!. The equilibrium
points and their respective eigenvalues are

K 6: ~l1 ,l2!5S 6A6a12,A3

2D , ~29a!

PS: ~l1 ,l2!5S a23,2
5

2D , ~29b!
3-6
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N: l65
2~3a11!

2~a11!
6

A49126a133a2212a3

2~a11!
,

~29c!

wherea.3 in order forN to exist and to be a sink and fo
PS to be a saddle. Note that fora.3, N2 does not exist,K 1

is a saddle andK 2 is a source. Numerical analysis show
that N is a spiral source fora*3.65. Figure 1 depicts this
phase space for a typical value ofa in this range~for illus-
trative purposes the valuea58 is taken!, and the attracting
region therein is magnified in Fig. 2. These figures are ty
cal for other values ofg ~this comment is important since w
note that in the context of conformally transformed scal
tensor theories, strictly speakingd50 for g54/3!.

B. Late-time behavior

The late-time behavior of these models, both inflation
and non-inflationary, may also be of cosmological intere
For 2,k2,3g & a,(3g2k2)/k the late-time attracting
equilibrium point isPS which represents a power-law non
inflationary model. As a result of recent observations of
celerated expansion@7,8#, models that are presently inflatin
are also of interest. Fork2,2 anda,(3g2k2)/k the late-
time attracting equilibrium point isPS which represents a
power-law inflationary model. However, in both of the
cases the matter contribution is negligible and so these m
els are not of physical interest. Fork2,2 and a.(3g
2k2)/k the late-time attracting equilibrium point isN, which
represents a power-law inflationary model in which both
matter and the scalar field are non-negligible and their
ergy densities are proportional to one another. These mo
are potentially of great significance, and they have been
cussed recently within the scalar-tensor theory context~see
below!. Finally, for k2.2 anda.(3g2k2)/k the only late-
time attracting equilibrium point isN; when a,(3g

FIG. 1. Phase diagram of the system~11! whend52aḟm for
the choice of parametersk51, g54/3 anda58. In this figure, the
black dot represents the source~i.e., the pointK 2), the large grey
dot represents the sink~i.e., the pointN) and small black dots
represent saddle points. The region above the grey dashed line
resents the inflationary portion of the phase space. Arrows on
trajectory indicate the direction of time.
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22)k/2 these models represent non-inflating models wher
the corresponding models inflate fora.(3g22)k/2.

In the absence of an interaction term, matter scaling so
tions are represented by equilibrium points of the cor
sponding dynamical system. We have shown that for sim
interaction terms found in the literature, these matter sca
solutionscannotbe represented by equilibrium points. How
ever, new equilibrium points arise which represent solutio
in which the energy densities of the matter and scalar fi
remain a fixed proportion to one another and obeygf,g;
these solutions are analogues of the matter scaling solut
in which gf5g @36#.

In @41# a large class of non-minimally coupled scalar fie
models with a perfect fluid matter component were inve
gated. These models contain scalar-tensor theory mo
and, in particular, Brans-Dicke theory models with a pow
law potential. On performing a conformal rescaling of t
metric, the governing equations of these models reduce
the equations for a scalar field in general relativity with
exponential potential and an extra coupling to the ordin
matter, and are equivalent mathematically to the equati
studies here~as was noted in@3#!. Amendola@41# performed
a phase space analysis of these models and obtained si
results to those obtained here.~Since Amendola assume
0,g,2, he obtained a wider range of possible behavio
however, these additional results are of lesser interest in
context of our work. In particular, values ofg.4/3 lead to
negative values for the coupling constanta.!

The main aim in@41# was to express the solutions back
the original ‘‘Jordan’’ frame and study the cosmologic
consequences of the underlying scalar-tensor theory mod
In particular, ‘‘decaying cosmological constant’’ solution
were considered which are inflationary and such that the
lar field component is asymptotically non-negligible. Mode
consistent with the observations of accelerated expan
@7,8# and in which a physically acceptable fraction of th
energy-density is in the scalar field were found to be seve
constrained by the upper limits on the variability of th
gravitational constant@42# and by nucleosynthesis observ
tions. In further work Amendola@43# considered a quintes
sential scalar field coupled to matter with an additional
diation matter component, and studied the effect of den
perturbations on the cosmic microwave background in th
so-called ‘‘coupled quintessence’’ models.

ep-
e

FIG. 2. A magnification of the attracting region of the pha
space depicted in Fig. 1. See also caption to Fig. 1.
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C. Early-time behavior

From Table II we can see that the only early-time attr
tors areK 6 for certain values ofk anda, which correspond
to massless scalar field models~which are analogues of Ja
cob’s vacuum solutions@39#!. However, in Table II we see

that for k2.6 anda.A 3
2 (22g) there are no equilibrium

points which represent sources and the trajectories co
quently asymptote into the past towards a heteroclinic cy
In this cycle, orbits quickly shadow the invariant setx2

1y251 ~V50!, spend a period of time near the saddleK 2,
quickly shadow the liney50 (V50, VÞ0!, and then spend
a period of time nearK 1 after which the cycle is repeated
During each cycle the orbits pass through the inflation
portion of phase space. We stress here that this motion isnot
periodic; on each successive cycle orbits will spend a lon
time near the saddlesK 6 . This past-asymptotic qualitativ
behavior, which is depicted in Fig. 3, is similar to that fou
in @44# within the context of string cosmology; this is no
surprising due to the conformal relationship between th
string models and the models under investigation here@3#.

D. CasegÄ2

When g52, corresponding to a stiff perfect fluid, th
models is equivalent to a model containing a scalar field w
an exponential potential and a second interacting mass
scalar field. We also note thatg52 is a bifurcation value.
The equilibrium points and their eigenvalues in this case

~1! K 1: ~l1 ,l2!5S 2A6a,A3

2
@A61k# D .

Sincea.0 this equilibrium point is a saddle.

~2! K 2: ~l1 ,l2!5SA6a,A3

2
@A62k# D .

K 2 is a source fork2,6 and a saddle otherwise.

~3! PS : ~l1 ,l2!5~2 1
2 @62k2#,2@62k22ka# !.

FIG. 3. Phase diagram of the system~11! whend52aḟm for
the choice of parametersg52 andk.A6. Note that the past attrac
tor is a heteroclinic cycle. See also caption to Fig. 1.
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PS is a source fora,(62k2)/k and a saddle otherwise.
~4! N:

~x,y!5S 2A6

D
,Aa

D D , V5
kD26

D2
, q5

2@2k2a#

D
,

whereD[k1a.0. Note that this solution is physical~i.e.,
V>0! either for k2.6 or for k2,6 and a>(62k2)/k.
These models inflate fork2,2 as well as fork2.2 anda
>2k. The eigenvalues for this equilibrium point are

l65
23a

2D
6

A9a2212aD@kD26#

2D
, ~30!

and soN is always a sink when it exists and is a spiral si
for a.@8k#21@2728k21A729248k2# or a,@8k#21@27
28k22A729248k2# ~and is a spiral sink for allk2.6).
Note that the scalar field acts as a perfect fluid with an eq
tion of state parameter given by

gf5
2

11
1

6
aD

,g. ~31!

Note that the equilibrium pointN2 does not existfor g52.
Table III summarizes the stability analysis forg52. The
qualitative behavior is similar to that of the casegÞ2, except
that there is no region corresponding to 3g,k2,6 when
g52. Note again that there exists a heteroclinic cycle at ea
times for k.A6 ~see Fig. 3!; unlike the general casegÞ2,
this heteroclinic cycle exists for alla.0.

V. INTERACTION TERM OF THE FORM dÄaµH

This section provides a second example to demonst
that other types of interaction terms can also lead to sim
behavior; i.e., that there will be a range of parameters
which the inflationary models which drive the matter fiel
to zero arenot late-time attractors and for which the traje
tories exhibit an oscillatory behavior as they asymptote

TABLE III. The equilibrium points for the model withd5

2aḟm and their stability for various values ofk anda with g52.
Note thatC1[(62k2)/k. See caption for Table II for notation.

0,k2,2 2,k2,6 k2.6

a,C1 a.C1 a,C1 C1,a,2k a.2k a,2k a.2k

K 1 s
~NI!

K 2 R s
~NI!

PS A s A s DNE
~I! ~I! ~NI! ~NI!

N DNE A DNE A A A A
~I! ~NI! ~I! ~NI! ~I!
3-8
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ward the late-time attracting solution. Specifically, the int
action termd5amH is chosen, wherea.0.

With this choice, Eqs.~11! become

x8523x~12x2!2A3

2
ky21S 3

2
gx2

a

2xD ~12x22y2!,

~32a!

y85
3

2
yFA2

3
kx12x21g~12x22y2!G . ~32b!

For physical reasons we are not interested in early-time
havior, and hence the linex50 will not be considered. Con
sequently, a full phase-plane analysis is not possible u
these variables. However, it is still possible to determine
equilibrium points withxÞ0 for the system and determin
their local stability.

There are four equilibrium points for this system forx
Þ0:
~1! K 1: Eigenvalues for this equilibrium point are

~l1 ,l2!5S 3@22g#1a,A3

2
A613D ~33!

This equilibrium point is a source.
~2! K 2: Eigenvalues for this equilibrium point are
r
m

r

p-

-
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e
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08350
-

e-

g
e

~l1 ,l2!5S 3@22g#1a,2A3

2
13D . ~34!

K 2 is a source fork2,6 and a saddle otherwise.
~3! PS : Eigenvalues for this equilibrium point are

~l1 ,l2!5S 2
1

2
@62k2#,2@J2k2g2k2# D , ~35!

whereJ[3g2a. This point exists only fork2,6, and is a
source fork2,3g anda,3g2k2 ~saddle otherwise!.

~4! N1: ~x,y!5S 2
J

A6k
,A a

3g
1

~22g!

g

J2

6k2D ,

V5
J~k22J!

3gk2
, q5211 1

2 J,

Note that this solution is only physical~V>0! for @3g
2k2#,a,3g and k2,3g, and represents an inflationar
model fora.(3g22) ~consequently, this model will alway
inflate fork2,2 and can inflate for 2,k2,3g). The eigen-
values for this equilibrium point are
l652
@2a~2J2k2!1~22g!J2#

4gJ
6

A@2a~2J2k2!1~22g!J2#2k228gJ2~k22J!@2ak21~22g!J#

4gJk2 , ~36!
vior
n-
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er
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new
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gh
and soN1 is a sink fora,3g2 1
2 k2 . Note that the scala

field acts as a perfect fluid with an equation of state para
eter given by

gf5
g

11
ak2

J2

,g. ~37!

Table IV lists the equilibrium points and their stability fo
the ranges ofk and a. Again, for the rangek2,2 and (3g
2 1

2 k2),a,(3g2 1
2 k2), the power-law modelPS is no

longer a sink andN1 is a source. Therefore, solutions a
proach the equilibrium point which is represented byPS
~thereby inflating! for an indefinite period of time, but even
tually evolve away. It can be shown numerically that with
this range fork and a, the equilibrium pointN1 is a spiral
node~for instance, fork51 andg54/3, N1 is a sink for 3
,a,3.5 and a spiral sink for 3.24&a,3.5); therefore the
scalar field exhibits oscillatory motion as the solutions
ymptote towardN. Care must be taken in interpreting th
analysis and obtaining global results since this system is
well defined forx50 (ḟ50) for this particular example.
-

-

ot

VI. CONCLUSIONS

Without an interaction term, it is known that fork2,2 the
global late-time attractor for the system~11! is a power-law
inflationary model in which the matter is driven to zero@38#.
The purpose of this paper was to show that this beha
could be altered qualitatively with the introduction of an i
teraction term. In particular, for models with an interacti

term of the formd52aḟm there are values in the paramet
space for which the equilibrium pointPS , corresponding to
this particular power-law inflationary model, becomes
saddle, and so while the models may spend an arbitra
long period of time inflating withV→0, they eventually
evolve away from this solution. The late-time attracto
within the same parameter space, corresponding to the
attracting equilibrium pointN1, are also inflationary but with
the matter field’s energy density remaining a fixed fraction
the scalar field’s energy-density and withgf,g. These are
analogues of the matter scaling solutions in whichgf5g.

For an appropriate parameter range, the equilibrium po
N1 is an attracting focus, and hence as solutions appro
this late-time attractor the scalar field oscillates. Althou
the late-time behavior~corresponding toN1) is still inflation-
3-9
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TABLE IV. The equilibrium points for the model withd5amH and their stability for various values o
k anda. Note thatC3[3g2k2 andC4[3g2

1
2 k2 . The symbol ‘‘R’’ denotes when the equilibrium point is

a source~repellor!, ‘‘s’’ for when it is a saddle, ‘‘A’’ for when it is a sink ~attractor!, and ‘‘DNE’’ when it
does not exist within the particular parameter space. The label ‘‘~NI!’’ denotes non-inflationary models
whereas ‘‘~I!’’ represents inflationary models. Fork2.6 the only equilibrium points to exist are the poin
K 6; K 1 is a source andK 2 is a saddle~i.e., there is no sink!. Recall that the system is not well defined fo
x50 and therefore a global analysis is not possible.

0,k2,2 2,k2,3g 3g,k2,6

a,C3 a.C3 a,C3 a.C3

a,C4 a.C4 a,C4 a.C4

K 6 R
~NI!

PS A s A s
~I! ~I! ~NI! ~NI!

N A s A s
DNE ~I! ~I! DNE ~I! for ~I! for DNE

a.3g22 a.3g22
is
u
in

ni
li-
tin
ds
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C.
Re-
ary, the oscillatory behavior provides a possible mechan
for inflation to stop and for conventional reheating to ens
~indeed this is similar to the mechanism for reheating
scalar field models with a potential containing a global mi
mum @24–28#!. To study reheating properly, more comp
cated physics needs to be included in which the oscilla
scalar field is coupled to both fermionic and bosonic fiel
This contrasts with the situation for exponential models
k2,2 with no interaction term which have no graceful e
from inflation and in which there is no conventional rehe
ing mechanism.

Therefore, we have shown that there are general rela
istic scalar field models with an exponential potential wh
evolve towards an inflationary state in which the matter
not driven to zero and which exhibit late-time oscillato
behavior; these models may constitute a first step towar
more realistic model. There is the question of how physi
these models are, since they correspond to relatively la
values ofa. In the context that the interaction term represe
et

rd

ic
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energy transfer, for physical reasons it might be expec
thata must be small; i.e.,a,0.1 @36# ~see also@45#!. On the
other hand, in the context of scalar-tensor theoriesa is of
order unity and can certainly attain values large enough
produce the behavior described above@see Eq.~4!#; this is
also the situation in the context of string theories.

It is also of interest to study the cosmological cons
quences of the ‘‘decaying cosmological constant’’ or ‘‘quin
essential’’ cosmological models, since they may be con
tent with the observations of accelerated expansion@7,8# and
may lead to a physically interesting current residual sca
field energy-density. These issues have recently been
dressed by Amendola@41,43# in the context of the confor-
mally related scalar-tensor theories of gravity.
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