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We discuss models in which the smallness of the effective vacuum energy depsityd the coincidence
of the time of its dominancg, with the epoch of galaxy formatioty, are due to anthropic selection effects. In
such models, the probability distribution fpr, is a product of ama priori distribution P, (p,) and of the
number density of galaxies at a giveR (which is proportional to the number of observers who will detect that
value ofp,). To determineP, , we consider inflationary models in which the role of the vacuum energy is
played by a slowly varying potential of some scalar field. We show that the resulting distribution depends on
the shape of the potential and generally has a non-trivial dependencg,cven in the narrow anthropically
allowed range. This is contrary to Weinberg’s earlier conjecture thaa wéori distribution should be nearly
flat in the range of interest. We calculate tfiimal) probability distributions forp,, and fortg/t, in simple
models with power-law potentials. For some of these models, the agreement with the observationally suggested
values ofp, is better than with a flaa priori distribution. We also discuss a quantum-cosmological approach
in which p, takes different values in different disconnected universes and argue that Weinberg’s conjecture is
not valid in this case as well. Finally, we extend our analysis to models of quintessence, with similar
conclusions.

PACS numbds): 98.80.Cq

[. INTRODUCTION wheret, is the present time ant, is the time when the
cosmological constant starts to dominate. Observers living at
The cosmological constart presents us with a number t<t, would find py,>p,, while observers living at>t,
of perplexing problemsseeg[1] for a recent review Particle  would find pyy<<p, .

physics models suggest that the natural valueXfas set by The only explanation of these puzzles that we are aware
the Planck scale,mp|~1019 GeV. The corresponding of attributes them to anthropic selection effects. In this ap-
vacuum energy density is proach, the cosmological constant is assumed to be a free

parameter that can take different values in defferent parts of
the universe, or perhaps in different disconnected universes.
pA~m;‘| , (1)  Weinberg[3] was the first to point out that not all values of
A are consistent with the existence of conscious observers
[4]. In a spatially flat universe with a cosmological constant,
which is some 120 orders of magnitude greater than the okgravitational clustering effectively stops at-t,, corre-
servational bounds. This is what is usually called “the cos-sponding to the redshift (£z,)~(p,/pmo)Y At later
mological constant problem.” The discrepancy between thdimes, the vacuum energy dominates and the universe enters
expected and observed values is so large that until recently & de Sitter stage of exponential expansion. An anthropic
was almost universally believed that the cosmological conbound onp, can be obtained by requiring that it does not
stant must vanish. However, no convincing mechanism hagominate before the redshif,,, when the earliest galaxies

yet been found that would sét to zero. are formed:
It came as a total surprise when recent observati@hs
provided strong evidence that the universe is accelerating, PA=(1+ Zman >Pmo- 3

rather than decelerating, suggesting a non-zero cosmological

constant. While there was still hope to explain a vanishing/Veinberg tookz,,,,~4, which gives

A, a small non-zero value appeared totally incomprehen-

sible. pA=100p 0. (4)

The observationally suggested valueshotorrespond to

pA~ Pmo, Wherepy o is the present density of matter. This This is a dramatic improvement over E@), but it still falls

brings yet another puzzle. It is difficult to understand why weshort of the observational bound by a factor of about 30.

happen to live at the epoch wheg,~p, . That is why The anthropic bound4) specifies the value gé, which
makes galaxy formation barely possible. However, as it was
pointed out in5,6], the observers are where the galaxies are,

to~th, (2 and thus most of the observers will detect not these marginal
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values, but rather the values that maximize the number ofhe latter coincidence is not difficult to understand if we

galaxies. More precisely, the probability distribution for
can be written a$5]

(5

Here, P, (pA)dp, is thea priori distribution, which is pro-

dP(pa) =P (pa)v(pr)dpy .

note that regions of the universe where<ts do not form
any galaxies at all.

The “coincidence”(8) can be expressed quantitatively by
calculating the probability distribution fdg /t,, . With a flat
a priori distribution (6), one finds[12] that it has a broad
peak in the range 03tg/t,=5 with a median atg/t,

portional to the volume of those parts of the universe where=1.5. Thus, most observers will find themselves living in

p, takes values in the intervalp, , andv(p,) is the aver-

galaxies formed atg~t, .

age number of galaxies that form per unit volume with a The probability distributions fop, andtg/t, were cal-

given value ofp, . The calculation ofv(p,) is a standard

culated in Refs[8,12] by using Weinberg’s conjecture. That

astrophysical problem; it can be done, for example, using th&s, without recourse to any particular model that would allow

Press-Schechter formalisif¥]. The a priori distribution

P, (pa) should be determined from the theory of initial con-

A to vary and simply assuming the flat distributi). This
is the beauty of the conjecture: if true, it would make the

ditions, e.g., from an inflationary model or from quantumresults independent of one®ecessarily speculatiyeas-

cosmology.
Martel, Shapiro and Weinbef@] (see alsd9]) presented
a detailed calculation odP(p,). They first noted that

sumptions about the very early universe, and therefore it
would make the theory more predictive. It is important, how-
ever, to consider specific models with a variable vacuum

P, (ps) can be expected to vary on some characteristic parenergy and to check whether or not the conjecture is actually

ticle physics scaleAp,~ #*. The energy scale could be

valid. This is one of our goals in the present paper.

anywhere between the Planck scale and the electroweak In the next section we discuss models in which the role of
scale, ngw~10> GeV. For any reasonable choice of the cosmological constant is played by a very slowly varying

7, Ap, exceeds the anthropically allowed ran@d by

potential V(¢) of some scalar fieldb. We find that, unfor-

many orders of magnitude. Also, in the absence of a mechaunately, Weinberg's conjecture is not generally valid in such
nism that sets the cosmological constant to zero, we may naohodels, and that tha priori distribution P, (p,) can be
expect any pronounced features in the probability distribuexpected to be a non-trivial function ef, in the range of

tion at low values ofp, . This suggests that we can set

P.(pp)=const (6)

interestihere,p ,=V(¢)]. We give some examples of poten-
tials which do and do not satisfy the conjecture.

In Sec. lll, we use simple models with power-law poten-
tials, V()= ¢", to study the effect of a non-trivia priori

in the range of interest. This argument is originally due todistribution on the final probability distribution far, and on

Weinberg[3], and we shall refer to Eq6) as Weinberg's

the cosmic time coincidence. For some of these models, we

conjecture. Once it is accepted, the problem reduces to thind that the agreement with the observationally suggested

calculation ofv(p,). Martel et.al. found that the resulting

values ofp,, is better than what one gets from the calcula-

probability distribution is peaked at somewhat larger valuesions based on the flat distributid8).

of p, than observationally suggested. For the probability of

In Sec. IV we discuss models in which does not change

pa being smaller or equal than the values indicated by thehroughout the universe but may take a range of values in
supernova data, it gives 5—-10%. In absolute terms, this is different disconnected universes. Once again, we argue that
not a very large probability. However, the mere fact that it isweinberg’s conjecture is not likely to be valid in this case.

non-negligible is rather impressive, in view of the large dis-

crepancy in orders of magnitude between theriori ex-
pected range fop, and its measured value.

Going back to the issue of the cosmic time coincidence,

In Sec. V we extend our approach to models of quintes-
sence. Our conclusions are briefly summarized in Sec. VI.

Il. SLOWLY VARYING POTENTIALS

Eqg. (2), this can also be explained by anthropic selection

effects. Here is a sketch of the argumgb®—13. One first
notes that the present tintg is bounded by
teStostg+t,, (7)
wheret is the time of galaxy formatiofwhich is also the
time when most of the stars are formexhdt, is the char-
acteristic lifetime of habitable stars,~5—20 Gyr. Obser-
vationally, giant galaxies were assembledzatl—3, ortg
~1t/3—14/8, that is, within an order of magnitude o§.
Sincetg~t,, it follows from Eq.(7) that most observers live
at the epoch whet~tg, and the problem of explaining the
coincidencety~t, is reduced to explaining why

®)

tGNtA .

Suppose that what we perceive as a cosmological constant
is in fact a potential/(¢) of some fieldé(x). Observations
will not distinguish betweerV(¢) and a true cosmological
constant, provided that the kinetic energy¢ofs small com-
pared toV(¢),

P*2<V( ). 9)

The evolution of¢ is then described by the slow roll equa-
tion

3Hp~—V'(¢), (10)
and Eq.(9) gives

V'2<18H?V. (11
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We want to require that this condition still applies at the time Some examples
whenV(¢) is about to dominate. Then We first consider a scalar field with a quadratic potential,
H2~87V(¢)/3m?), (12 2
V($)=pr+ 5 ¢, (20
and Eq.(11) yields
V' ()| <12V( )/ my,. (13  Wherep, is a “true” cosmological constant, which is as-

sumed to be large. We assume also thatand u? have
The dynamics of the field during inflation are strongly Opposite signs, so that the two terms in ERO) partially
influenced by quantum fluctuations, causing different region§ancel one another in some parts of the universe.
of the universe to thermalize with different valuesdfSpa- The cancellation occurs fop~\p,/u, and Eqgs.(13),
tial variation of ¢ is thus a natural outcome of inflation. If (12) give the condition M<H§mp/\/p_, where H,
V(¢) is sufficiently small, its back reaction on the rate of ~10*6]mp, is the present Hubble rate. Wit,hA~mg, this
inflationary expansion is negligible, and all values¢ofare  gives
equally probable,
|u|<10"1%m,,. (21)

dPy (¢)cde. (14
Thus, an exceedingly small mass scale must be introduced.

The condition for negligible back reaction [i$4] On the other hand, the conditiafl5) for negligible back
221 dn g3 reaction imposes
mg Vv 2HY V3> 1, (15

s H3H-2._10-16
where hereH is the Hubble rate during inflation. |l HoH 10 9mp,, 22

Let us now recall that Weinberg's conjecture was moti-
vated by the fact that the anthropically allowed range gf n
is very small compared to the natural range of variation of
ps- One could expect that in this small rangé#) can be
approximated by a linear function. With an appropriate
choice for the origin ofe,

where we have usdd ~ 10‘7mp| , corresponding to a grand
ified theory(GUT) scale of inflation.

A critical reader may wonder at this point if anything is
going to be achieved by explaining a cosmological constant
pa~10""4m, in terms of a scalar field with a small mass of
order|u|<10 '#m,,. However, potentials with very small
V(d)=kd. (16) masses or couplings could be generated through instanton
effects. Suppose that we have a figldvith a flat potential,

Then Eq.(14) implies a flat distribution for the vacuum en- V(¢)=const, and that the radiative correctiona/@p) van-

ergy densityp ,=V(), ish to all orders of perturbation theory, due to some symme-
try. (For example¢ could be a Goldstone bosorSuppose
dPy,(py)=dpy. (17)  further that the symmetry is violated by instanton effects.

Then ¢ will acquire a mass of the order?~e~m?, where
However, in our case Eq13) applied to the present time  Ss the instanton action. In order to haje|<10 *?’m,,,
requires that the slope &f(¢) should be extremely small. one need$=560, which is not unreasonable.
The present Hubble rate id,~10*'m,, so using Egs. The critic may still be unsatisfied and ask why the same
(13) and (12) we havex=10"'#m . As a result, a small kind of argument cannot be applied directly to the cosmo-
range ofV(¢) may correspond to a very large rangedf logical constant. One could imagine that=0 to all orders

Indeed, it follows from Eq(13) that of perturbation theory, due to some approximate symmetry,
) and that a smalb ,« exp(—9) is induced by instantons. The
Ap~VIV'>my,. (18 problem with this scenario is that it does not explain the

] ] ) ] cosmic time coincidencé&). The instanton actioi$ should
The natural range ot in particle physics models i8¢ pe fine-tuned so that starts dominating at the present time.

=mp, and there seems to be no reason to expect the sloRgodels with p, replaced by(¢) are therefore preferred.
of V(¢) to remain constant over the super-Planckian range The potential20) can be rewritten as

(18).
Thus, we conclude th&t) models with variablg, can be u?

easily constructed in the framework of inflationary cosmol- V(p)=py=x(d— do)+ 7(¢— ¢0)2, (23

ogy and thatii) Weinberg’s conjecturés) will not generally

apply in this class of models. In the general case, assumi

n 2_ 2 _ 2 :
negligible back reaction, Eq14) yields Where $0=—2p,/u” and k= p"¢o. Then, using Eq(19)

in the vicinity of ¢= ¢5 we have

d'P*(p¢)m[V’(¢)]7ldp¢ (19) 2 ~1/2
We now discuss some examples of potentials that do and dodp*(p“’)oc( 1+27P‘*‘) dpy=[110(py/pr)]dpy.
not satisfy the conjecture. (24
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Sincep,,/p,<1 in the anthropically allowed range, we con- somewhat tighter bounds. Again, the small masses and cou-
clude that Weinberg's conjecture applies to very good applings can be induced by instanton effects.

proximation in this case. The reason is that the cancellation In what follows we shall assume that back-reaction effects
of the two terms in Eq(20) occurs at a very large value of are negligible(Otherwise,P, (¢) can be calculated by solv-
¢$>m;, and the characteristic range of variation of a power-ing the Fokker-Planck equation of stochastic inflation; see
law potential isA ¢~ ¢. For the same reason, potentials of Ref.[15].) Then, substituting Eq(28) in Eq. (19) we have

the form 1)

d xp " Ndp 31
V()= py - A" (25 Pulpg)=py Py (31)

can also be expected to satisfy the conjecture.
To give an example of a potential for which Weinberg’s
conjecture is not satisfied, consider a “washboard” potentia

Forn>1, the probability density grows towards smaller val-
ues ofp, and has an integrable singularity @f=0. Forn
=1, the distribution is flat, as in Weinberg'’s conjectué.
or 0<n<1, it grows towards large values pf,. Finally,
V($)=p,+Ad+Bsin(¢p/M), (26)  for n<0 the distribution has a non-integrable singularity at
ps=0; in this casep ,=0 with a 100% probability. As we
whereM=m,, is some particle physics scale and the con-mentioned in the Introduction, for a flatpriori distribution
stantsA andB are small enough to satisfy the conditiciB). P« (p4) =const (n=1), the full probability distribution(5)

In this case, Eq(19) gives a distribution is peaked at a somewhat larger valuggfthan observation-
ally indicated. The agreement with observations may be im-
P, <[ A+(B/M)cog ¢/M)] 1, (27)  proved if P, (py) grows towards smaller values as for
>1. We shall therefore concentrate on this case.
which is not flat, unles8/AM<1. Following [12], we introduce the variable
lil. POWER-LAW POTENTIALS Q, ( t )
x= —>=sink| —|, (32
We shall now consider a different situation, where the O ty

true cosmological constant has been set equal to zero by ) »

some unspecified mechanism, but the potential energy of WhereQy andQ, are, respectively, the densities of maiter
scalar field(whose minimum is aV=0) induces a small and of the scalar potential in units of the critical density, and
effective cosmological constant. Since the minimum of thets iS the time of #-domination. For convenience, we have
potential is atp ,=0, Weinberg’s conjecture is not expected defined t, as the time at which Q,=sinkf(1)Qy

to apply in this case. ~1.38 ), . At the time of recombination, for values pf;

To illustrate the effects of a non-trivia priori distribu- ~ Within the anthropic rangexec=py/prec<1, where the

tion P, (p,), we shall calculate the probability distributions Matter density at recombinatiop,ec, is independent of.

for p,, andtg /t,, in the simple case of a power-law potential, We can therefore express the probability distribution dgr
as a distribution fox, e,
V()= g™ (28)

Familiar examples of such potentials are

dP(Xrec) * V(Xrec)xrléncd INXrec, (33

where v(X,ec) is the number of galaxies formed per unit
V(¢)= Emzd)z (29) volume in regions with a given value af... Forn=1 the
2 calculation of the distributioi33) was discussed in detail by
Martelet al.[8]. In[12] we gave a simplified version of their
and calculation, which we generalize here to the casel.
In a universe where the effective cosmological constant is
V(g)= E?\df‘- (30) non-vanishing, a primordial overdensity will eventually col-
4 lapse provided that its value at the time of recombination
exceeds a certain critical valdE®®. In the spherical collapse

They can be suitable for our purposes only if the parameterg,gdel this is estimated ag€¢=1.13xY3 (see e.g.[16]).
mand\ are very small. Indeed, Eq&l2) and (13) require y ot

Hence, the fraction of matter that eventually clusters in gal-
¢>my /6, m<3H, for Eq. (29 and ¢>mp/3, N axjes can be roughly approximated [ds16]
<40Hg/mg, for Eq. (30). Thus, we obtain the constraints
m<10®m,; and\<10"**° The condition(15) for negli- rec W13
gible back reaction will impose lower bounds on these pa- ,,(Xrec)merfc( ;> %erfc( i) (34)
rameters. For the quadratic potential it requires V20 6d(My) Trec(Mg)
>10'%m,, and for the quartic it gives >103°. Here, as
in the previous section, we have usdd=10"'m,, corre-  Here, erfc is the complementary error function and(My)
sponding to a GUT-scale inflation, arM~m§|H§, with is the dispersion in the density contrast at the time of recom-
Ho~10%m,, . Inflation at a lower energy scale will impose bination on the relevant galactic mass sddlg~10"M .
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dP/d(log Xsec ) dp/d[log( t . /ty )]

0.0001 0.001 0.01 0.1 1 10 100
3 . .
XreC/Grec 0.01 0.05 0.1 0.5 1 5 10
FIG. 1. The probability distributiori33) for the effective cos- tG ft (0]
mological constanp,, for different values oh. As explained in
the text, an observed value ﬁqﬁm'? corresponds to{recla'?ec FIG. 2. Probability distribution fOtG/t¢, Eq. (36), for different

~.1. There is at present some uncertainty in this estimate, becaus@lues ofn. The round beads indicate the median of each distribu-
a number of assumptions must be made in order to infer the valution. Note that the time coincidendg~t, is not unexpected for

of o,ec from observations. Notice, however, that this value lies atl<n=10.

the tail of then=1 curve, corresponding to Weinberg’s conjecture

(a flat a priori distribution. On the other hand, for€2n=<5 the logarithmic probability density is about an order of magni-
value X,ec/ e~ 1 is well within the broad peak of the distribu- tude smaller than at the peak. Although this is still a signifi-
tion. Thus, it is possible that a departure from Weinberg's conjeccant probability, it is unfortunately somewhat low.

ture may actually fit the observations bettarore so if it turns out For a potentia(28) with n>1, the peak in the distribution
that the cosmological constant is smaller than The median of  ghifts to lower values of the effective cosmological constant,
each distribution is indicated by a round bead. and therefore a measured value @f, o=.7 (which corre-

sponds tOXrchr_esé“-l) becomes much better positioned.

The logarithmic distributiond/d In Xec=Xiec¥(Xrec) IS From Fig. 1, it is clear that for 2n=<5 this value lies well
plotted in Fig. 1 for several values of Forn=1 it has a jthin the broad peak of the distribution. Thus we conclude
rather broad peak which spans two orders of magnitude ifhat the violation of Weinberg’s conjecture by a power-law

Xrec, With a maximum at potential withn>1 may actually lead to a better agreement
with observations.
ngcag2_4&§eC. (35) Let us now co!’lsider the i;sue of the time coincidence.
Following our earlier computatiofi2] for the casen=1, we

As noted by Martelet al. [8], the parameterr,q. can be find that the probability distribution fors /t,, is given by

inferred from observations of the cosmic microwave back-
ground anisotropies, although its value depends on the as- X
sumed value of the effective cosmological constant in our dP(tG/t¢)0<[F(x)]3’“‘1F’(X)WdIn(tG/t¢),
part of the universe today. For instance, assuming that the N(te/ty) (36)
present cosmological constant(k, ,=.8, and the relevant
galactic co-moving scale is in the ranfe=(1-2) Mpc, | here herex=sint(ts/t,) and
Martel et al. found o~ (2.3— 1.7)x 10" 3. In this estimate, ’ Gl
they also assumed a scale invariant spectrum of density per-

1+x mfx do 3

0 (1)1/6(14'(1))3/2. ( 7)

X

turbations, a value of 70 km'$ Mpc ! for the present 5
Hubble rate, and they defined recombination to be at redshift FX=5%
Z,ec~1000 (this definition is conventional, since the prob-
ability distribution for the cosmological constant does not

depend on the choice of reference tmehus, taking into Forn=1 it has a broad peak which almost vanishes outside

account thak scales like (3 z) 2 in Eq. (35), one finds that . o
the peak of the distribution for the cosmological constantOf the range .£(tg /14)=10. The maximum of the distribu-

. peak_ . tion is attg/t,~1.7 and the median value is &4/t~ 1.5.
today is abx . 2.9'8__12' The yalue .co.rrespondlng to the Thus, most observers will find that their galaxies formed at
assumed) , o= .8 is Xo=4, certainly within the broad peak ; . . L

o0 . . t~t, , which explains the time coincidence
of the distribution and not far from its maximum.
However, if we assume instead that the measured value is
Q4 0=.7, wWhich corresponds ta,=2.3, the new inferred tg~ta- (38
values foro,e.~(3.3—2.4)x 10 % correspond to the peak
valuex§®*~ (88— 34). In this case, fon=1, the measured As shown in Fig. 2, smaller values 6§/t become more
value would be at the outskirts of the broad peak, where thékely as we increas&. However, values oh=<10 do not

This distribution is shown in Fig. 2 for various values rof
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really spoil the coincidencé38), and even fon as large as  verses, all volume¥, become infinite in the limit—o, and

30, there is stila 5 % probability for havingts/t,=>1. Eq. (42) becomes meaningless.
It appears reasonable, in this case, to look not at the total
IV. QUANTUM COSMOLOGY volume V, but at the rate of its growttiwhich generally

depends om,). With a cutoff at timet,
Let us now consider models with a true cosmological con-

stant, p, = const, which takes the same value in the entire

universe but may have different values in other disconnected Vi (pa t)eexd y(pa)tl], (43
universes. One exampld9] is given by a four-index field

F .vo- Whose value is undetermined by the field equationsand the most probable valmé(‘) is found from([5,24-29
d\F .,+-=0, and which gives a constant contribution to the

vacuum energy, "
y(px ') =max. (44)
pa=—(HABF,,, o R, B9 As time goes on, the volume of the universes with this pre-

. o , o ferred value ofp, gets larger than the competition by an
The a priori probability distribution forp, in this kind of arbitrarily large factor, and thus in the limit>c the prob-
models can be found in the framework of quantum cosmol-ability for o= o) is equal to 1
ogy [18]. One should calculate the cosmological wave func- PA=PA '
tion ¥(p,) which gives an amplitude for an inflationary uni-
verse to nucleate with a given value g¢f,. In the Py(pr)=8(py—pS)). (45)

semiclassical approximation,

This is in a sharp contrast with Weinberg’s conject(6g
yret 52, (40) There seems to be no reason to expect that the valpg of
selected by the conditiod4) will fall into the anthropic
where S is the action of the corresponding instanton. Thef@nge. This approach is therefore unlikely to explain the
upper sign in Eq(40) is for the tunneling wave function and Smallness op, or the cosmic time coincidence. ,
the lower sign for the Hartle-Hawking wave function. This e also mention some alternative approaches. Hawking
choice of sign is a matter of some controvefdy], but it ~ [19] suggested that the probability distribution for the ob-
will not be important for our discussion here. The nucleationServed values of, is given by Eq(41) with a minus sign in

probability corresponding to E@40) is the exponential and witB(p,) = —3/8p, , corresponding to
a de Sitter instanton of energy density,

Pruci(pa)= exd =S(py)]. (41)
P exp(3/8p,). (46)

The instanton in Eq(41) is a solution of Euclidean Ein-
stein’s equationgpossibly with quadratic and higher-order Since the Lorentzian continuation of this instanton describes
curvature correctionswith a cosmological constapt, and a ~ an empty universe dominated by the cosmological constant,
high-energy inflaton potential as a source. For small value§ cannot be used to describe the nucleation of the universe,
of p, , one can expect the instanton action to be independer® Ed.(46) is hard to justify.
of py, S(py)=~const. We note, however, that different ~Coleman[20] suggested that the Euclidean path integral
universes in the ensemble described by the wave fungtion of quantum gravity is dominated by the lowest-energy de
will generally have very different numbers of galaxies and,Sitter instantons connected by Planck-size wormholes. The
therefore, of observers. To take this into account, one has tggsulting probability distribution is
use Eq.(5) with

P ex exp(3/8p,)]. 47
Py (PA) “Pruci(pa) Vi (pa), (42)

Both expression$46),(47) have non-integrable peaks @t
whereV, (p,) is the volume of the universe at the end of =0 and thus do not satisfy Weinberg's conjecture.
inflation, when the vacuum energy is thermalizEthe fac-
tor v(p,) in Eq. (5) should then be understood as the number
of gaIaXI_es formed per unit thermalized volurpe. i . 1In fact this conclusion seems to apply even if the inflaton poten-
~ The right-hand side of Eq42) would be well defined if 5| goes not drive eternal inflation. After a finite period of inflation
inflation had a finite duration, so tha (p,)<w. Itis well  he cosmological constant will eventually dominate, driving a de
known, however, that inflation is generically eterf@l,22:  siiter—like phase. Recycling everf@3] that create new regions of
at any time there are parts of the universe that are still inflatthe inflating phase will then occur at a constant rate per unit space-
ing, and both inflating and thermalized volumes grow expo-+ime volume, making the total thermalized volume an exponentially
nentially with time. In an ensemble of eternally inflating uni- growing function of time.
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V. QUINTESSENCE dP, (pg)*pgq " MMdpg, (51)

We finally comment on models of quintessence with
“tracking” solutions which are now being extensively dis-
cussed in the literature80]. These models require a scalar ] - )
field Q with a potential/(Q) approaching zero at large val- *(Pq) cannot be used in this case, because the evolution of
ues ofQ. Note that this assumes that the cosmological condensity perturbations is different in models with an evolving

stant problem has been solved by some mechanism, so thae @nd withp, =const. Press-Schechter formalism has been
the true cosmological constant is set equal to Zemin the applied to structure formation in quintessence models by

case of power-law potentials discussed in Segd. Al popu- Wang and Steinhardt33], and their results can be easily

lar example of quintessence is an inverse power-law poterfda@pted to the calculation {po) in a specific quintessence
tial of the form model. The cutoff of the growth of density perturbations at

t~tg in quintessence models is milder than that in models
V(Q)=AM*+FQ A (48) with a constant vacuum energy density, and we expect the
peak of the probabilty distribution fopy to be shifted
dowards larger values. The qualitative character of the dis-
tribution is expected to be unchanged, and in particular the
cosmic time coincidence) is likely to hold for a wide range
of model parameters.

as in Eq.(31). The full distribution can be obtained as before
using Eq.(5). Note, however, that the expressi¢dd) for

with a constantM<m,,. The quintessence fiel@ ap-
proaches an attractor “tracking” solution and evolves to-
wards larger values on a cosmological time s¢a@henQ
becomes comparable t,;, the universe gets dominated by
V(Q), and the parameters of the model can be adjusted so
that this happens at the present epoch. VI. CONCLUSIONS

It has been argueﬁ_Bl]_that quintessence models do not The results of our analysis include some bad news and
suffer from the cosmic time coincidence problem, because . . : :

. S o .~~~ some good news. The bad news is that Weinberg's conjec-

the timety of Q-domination is not sensitive to the initial tire (a flat a priori probability distribution®, (p,)) is not
conditions. This time, however, does depend on the details of! P b y * PA

the potentiaV(Q), and observers should be surprised to findgenerally valid. This conclusion applies both to models with

L\ . ; Flowly varying potentials and to models with an ensemble of
themselves living at the epoch when quintessence is about o . : .
Isconnected universes having differéoonstant values of

dominate. More satisfactory would be a model in which the W d thi bad b ithout Wei
potential depends on two fields, s@yand ¢, with ¢ slowly py. Ve regar IS as bad news because, without vvein-

e X > A " berg’s conjecture, the anthropic approach becomes less pre-
varying in space, making the time @domination position-

dependent. We could choose, for example dictive. .
' ' ' In the quantum-cosmological approadh, (p,) tends to

A\ MAHB-N AN - B select a single value gf, . One can hope that this approach
V(Q,¢)=AM ¢°Q (49 may provide an explanation for a vanishing true cosmologi-
cal constant, but one would still have to find another mecha-
nism to explain a small but nonzero effective cosmological

. . . ) constant. In the case of a slowly varying potentiét), the
¢ andQ at the end of inflation should be differegi:should 5 o1 gistribution?, depends on the shape of the poten-

be spread over a range¢>m,, as before, whileQ should i3 "\which is of course highly uncertaitThere is, however,

be concentrated at small valués<m,,, so thatitcan getto 5 yige class of potentials for which the conjecture does ap-
the tracking solution. This can be arrangedithas a non- Iy.)

minimal coupling to the curvaturg,¢éRQ?. ThenQ acquires The good news is that the cosmic time coincidef®es

an effective masmé= 12£H? during inflation, and its values ot very sensitive to the shape Wi ). For a power-law
immediately after inflation are concentrated in the ra@ge potential, V()= ¢", one finds that the probability distribu-
<H?/¢ (bounds on on the time variation of the gravitational tjon, for te/t, is peaked atg/ty~1 in the wide range 1
constant at late times requiges 102 [32]). The field¢ is  <p<10. Moreover, for values ofi in the range Z=n=<5,
assumed to be minimally coupled to the curvatufg<0),  the peak of the probability distribution fer, is closer to the
and its values are randomized by quantum fluctuations dufspservationally suggested values than it isfier1 (corre-
ing inflation. This results in a flat distributioii4), provided sponding to the Weinberg’s conjectiire
that\ andM are sufficiently small. _ . We have also suggested an extension of quintessence
With these assumptions, a typical region of the universgnogels in which the time of quintessence domination is de-
after inflation will haveQ<m,, and ¢>mp,. In all such  termined by a slowly varying scalar field. The above conclu-
regions, ¢ will remain nearly constant, whil® will evolve  sjons apply to this class of models, with minor modifications.

for Q>M andV(Q,$)~AM* "¢" for Q=M.
For this model to work, the initial conditions for the fields

along t_he trackin_g solution, until the potent{@b) domingtes A common objection to anthropic arguments is that they
the universe. This happens@t-my, . The energy density at are not testable. It is therefore worth pointing out that models
the time ofQ-domination is with a scalar field potential playing the role of the cosmo-
logical constant are falsifiable, at least in principle. Such
po~AM**A=m B gphoc (500 models predict the existence of a nearly massless, minimally
coupled scalar field. Fluctuations of this field are produced
and thea priori distribution forpg is during inflation with the same spectrum as gravit¢gaad
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with half the energy density Thus, for instance, if the en- ACKNOWLEDGMENTS
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