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How much energy do closed timelike curves in 2¿1 spacetimes need?
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By noticing that, in open 211 gravity, polarized surfaces cannot converge in the presence of timelike total
energy momentum~except for a rotation of 2p), we give a simple argument which shows that, quite generally,
closed timelike curves cannot exist in the presence of such an energy condition.

PACS number~s!: 04.20.Gz, 04.20.Cv, 98.80.Cq, 98.80.Hw
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I. ENERGY CONDITIONS AND POLARIZED SURFACES

There exist different types of causality violations in ge
eral relativity ~GR!. One of them corresponds to spacetim
such as Go¨del’s universe, where there are closed timeli
curves~CTC! passing through each point of spacetime. T
causality violation set is not a result of the evolution of c
tain initial data, but rather it has existed ‘‘forever.’’ There
certain evidence, provided by the fact that ‘‘we are not be
invaded by hordes of tourists coming from the future,’’ th
our universe is not of this kind.

Nevertheless, GR allows for causality violations th
‘‘have not existed forever,’’ but, instead, are genera
through spacetime evolution. In these cases there exis
Cauchy horizonH ~we shall always refer to, say, futur
Cauchy horizons; the case of past Cauchy horizons is
course, identical!, that can be compactly generated or not.H
is said to be compactly generated~CGCH! if its generators,
when directed to the past, always enter a compact region
remain there forever. A spacetime with a CGCH is a poss
characterization of time machines for the following two re
sons: If an otherwise causally well behaved spacetime
changed in a compact region such that a Cauchy horizoH
appears as a result, thenH is compactly generated@1#; con-
versely, a CGCH violates strong causality@2#.

For obvious reasons, it is interesting to know under w
conditionsH can be nonempty. It can be seen that the we
energy condition~WEC! must be violated in an open spac
time with a CGCH@1#. In this sense, the construction of th
kind of time machine needs ‘‘quantum matter’’~or the si-
multaneous creation of a singularity!. There is a large
amount of semiclassical work in this direction, which we
not intend to review here.

Spacetimes with noncompactly generated Cauchy h
zons are allowed by classical GR~as opposed to compactl
generated ones!, but it is not clear under which condition
they should or should not exist.

We can make progress along these lines working in s
metric models, such that we can reduce the problem to on
211 gravity. Thus, in what follows we shall restrict ou
selves to these low dimensional models, moreover to o
ones, i.e., with noncompact~and simply connected! spatial
sections~typically, R 2). A possible definition of energy mo
mentum~EM! in these spacetimes is via holonomies. In th
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way, the total EM is timelike, spacelike, or null, according
whether parallel transport of vectors around loops that
close all the matter is defined by a rotation, a boost, or a
rotation, respectively. The following results can be obtain
in 211 @3#: Under quite general conditions, a CGCH n
only violates strong causality, but also stable causality, si
there exists at least one closed null geodesic~this does not
necessarily occur in 311, as emphasized in Ref.@4#!. Even
if one allows for WEC violations, under certain condition
on the relationship between positive and negative masse
CGCH cannot exist if the total EM is timelike~except when
it is a rotation of 2p).

The aim of this paper is to give a result similar to the la
one mentioned above, but for positive masses and nonc
pactly generated horizons. Namely, the original calculatio
of Gott @5# showed that in the spacetime of two particles th
gravitationally scatter each other, certain inequality that
volves the masses and velocities of the particles is suffic
for the existence of closed timelike curves~CTCs!. That this
inequality is also a necessary condition can be seen f
Cutler’s analyisis on the global structure of these spacetim
@6#. This inequality, in turn, can be reexpressed as space
total EM , and, in summary, the spacetime of two partic
does not have CTCs if the EM is not spacelike~this has been
first noticed by Deser, Jackiw, and t’ Hooft@1#!. Kabat @7#
has further analyzed systems with more particles, and c
jectured that as a general property, CTCs cannot exist in
absence of spacelike EM. Menotti and Seminara@8# have
given a proof of this conjecture for systems with rotation
symmetry, but, unfortunately, this assumption does not h
either in solutions such as Gott’s or in others with differe
particles. Headrick and Gott@9# have also shown a resu
related to Kabat’s conjecture: if a CTC is deformable to
finity, then its holonomy cannot be timelike, except for
rotation of 2p.

Below we give an argument which shows that, quite ge
erally, this conjecture is true. Basically, the argument is
following: if a Cauchy horizon exists, it can be obtained a
limit of polarized surfaces; on the other hand, these surfa
cannot converge if the total EM is timelike~except when it is
a rotation of 2p), leading in this way to a contradiction.

The rest of this paper is devoted to a more detailed
scription of this simple idea, and heavily relies on the wor
of Cutler @6# and of Carrollet al. @10#, to which the reader
can refer for further details. Also, some of the tools here u
are of the kind of those used in Ref.@3#, but in that reference
the exposition is somewhat more detailed. Along this wo
©2000 The American Physical Society03-1
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we implicitly use some basic properties of curves, CTCs,
causality that can be seen in, e.g., Refs.@11# or @12#. Finally,
a comprehensive review of CTCs in 211 can be found in
Ref. @9#.

The notion of polarized surfaces was originally intr
duced by Kim and Thorne in their analysis of vacuum flu
tuations and wormholes@13#, and it is widely used in works
that study the stability/instability of Cauchy horizons und
quantum test fields.

The nth polarized surfaceS(n) is defined as the set o
points through which passes a self-intersecting null geod
~SNG!, i.e., a null geodesic that returns to the same poin
spacetime, but possibly with a different tangent vector, t
circles the systemn times ~this is made explicit below!. Its
utility as a ‘‘Cauchy horizon finder’’ is a consequence of t
following property:

lim
n→`

S~n!5H. ~1!

Cutler has used this criterion to obtain the global structure
Gott’s spacetime, and it has survived a nontrivial check
self-consistency, since Cutler finds that the region wh
there are CTCs disappears if the total EM is not spacelik
fact that is known from other sources~e.g., a time function
can be globally defined!.

For simplicity, let us start discussing the case of two p
ticles; the generalization will be straightforward. Let us su
pose that there are CTCs in this spacetime, restricted
region delimited by a Cauchy horizonH. It is easy to see tha
the CTCs must circle both particles. Thus, the CTCs can
characterized by the number of times they encircle them,
winding numbern. The same holds for the SNGs, and t
nth polarized surfaceS(n) is, thus, defined as the set o
points through which passes a SNG with winding numben.

We first choose a pointqPH and a curveg which starts
at q and ends at some pointp1, and is completely containe
in the region which contains CTCs~except forq, which is
not in the region of CTCs but, rather, in its boundary! . That
is, g:@0,1#→M, with M the spacetime manifold, such th
g(0)5q andg(1)5p1. Sincep1 is in the region where there
are CTCs, there exists a CTCC1 that passes throughp1; this
CTC circles, say,n times the pair of particles. We now ap
proachp1 to q alongg, while smoothly deforming the entire
curveC1, keepingn fixed. At a certain point, this deforma
tion will no longer be possible, and the curve that we we
deforming will result in a SNGGn that starts and ends at
point q1PS(n) ~it is not clear when this procedure will con
verge to a closed curve, but if it does, one can see that it m
converge to a SNG!. We now takeC1 and we move along it
twice, obtaining a curveC2 that passes throughp2(5p1).
Repeating the whole procedure, we obtainG2n and a point
q2PS(2n) that is closer toH, i.e., there exists a neighbo
hoodO of q, such thatq2PO but q1¹O. Thus, a pointqn
PS(n) will be closer ~in the topological sense just men
tioned! to H than another oneqmPS(m) with m,n. Thus,
the succession$qn% converges toq, and, in this way, one
expects that Eq.~1! holds. So we find that as a necessa
condition for the existence of CTCs, the polarized surfa
should converge.
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In the processS(n)→H, the initial tangent to the SNG
Gn , kn

( i ) , and the final one,kn
( f ) , must approach the tangent t

the horizon,k ~which is a null vector, sinceH is a null
hypersurface!. That is, kn

( f )→k and kn
( i )→k. SinceGn is a

geodesic, its tangent is parallel transported, i.e.,kn
( f )5Akn

( i ) ,
with APSO(2,1). The crucial point is thatA5L n, with L
the holonomic operator that defines the total EM. Nowk
must be a fixed null direction, i.e., a null eigenvector ofL.
SoL must have at least one null eigenvector. It is easy to
that if L is spacelike or null, it has two and one null eige
vectors, respectively; and ifL is timelike it has no null ei-
genvector, except when it is the identity~which must corre-
spond to a rotation of 2p, because for a rotation of angl
zero the spacetime would be the well behaved vacuum
metric!. Thus, if the total EM is timelike and it is not th
identity, there cannot be any fixed null directions and
have reached a contradiction and arrived at our main res

For more general situations, e.g., if there are an arbitr
number of particles, one must first recall that every su
system has timelike EM if the total EM is timelike@10#.
With this property in hand, one can then repeat the wh
construction and show that the polarized surfaces can
converge if the total EM is timelike.

The property that the evolution of data with timelike tot
EM is free of singularities and/or Cauchy horizons seems
be a general feature that is not even restricted to particle
solutions, but that, instead, also holds for fields coupled
gravity ~the simplest case of this statement being Einste
Rosen waves, or a massless scalar field coupled to gravi
seen as a 211 system!. A rigorous proof for vacuum and
electrovacuum with aG2 group of symmetries is containe
in the work of Bergeret al. @14# ~the condition of timelike
total EM is not made explicit in Ref.@14#, but it follows from
the boundary conditions there imposed!. It can be seen that if
one has a universe with timelike total EM, that one needs
add some matter in order to make the total EM space
@10#, and thus, this ‘‘quite general’’ property that CTCs ne
spacelike total EM gives a precise notion of how much e
ergy is needed for causality violation. A similar result in
11 would, of course, be of the greatest interest.

II. SOME FINAL COMMENTS

The argument that we gave as supporting the propert
the polarized surfaces as ‘‘finders’’ of Cauchy horizons
essentially the original one of Kim and Thorne. Though it
widely used and it is usually expected to hold under ve
general conditions, to our knowledge there is no rigoro
proof of it. Some parts of the analysis of the previous sect
are implicit in Cutler’s work, so we now make contact wi
it. Cutler takes a pointp through which a SNG passes an
chooses two charts of inertial-like coordinates~one chart for
each particle!. He then explicitly calculates the mapki→kf

as a nonlinear mapg(f) from the circle of null directions at
p to itself, and uses the fact thatg has two fixed points to
obtain the tangent to the horizon~one fixed point corre-
sponds to the tangent to the future horizon, and the other
to the past horizon! and reconstruct it using some symmetri
of the spacetime. That is, his mapg corresponds, essentially
3-2
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to our mapL. We have here taken advantage of the fact t
L is linear, to see under which conditions there are fixed n
directions~the fixed points ofg correspond to the null eigen
vectors ofL); and we have noted thatL defines the total EM,
so that the two fixed points that Cutler finds do not depe
on the details of the geometry of Gott’s spacetime, but rat
on the property that its total EM is spacelike.
h.
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