RAPID COMMUNICATIONS

PHYSICAL REVIEW D, VOLUME 61, 08150(R)

Exact solution for the exterior field of a rotating neutron star
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A four-parameter class of exact asymptotically flat solutions of the Einstein-Maxwell equations involving
only rational functions is presented. It is able to describe the exterior field of a slowly or rapidly rotating
neutron star with a poloidal magnetic field.
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I. INTRODUCTION nal function representation, and consequently could not be
written in a concise form

Observations of binary pulsafd] indicate that the indi-
vidual neutron stardNS) in such systems have masses very II. FOUR-PARAMETER EXACT SOLUTION
close to the Chandrasekhar limit of M4, of white dwarfs. ) . )
Theoretically, the issue of the maximum mass of a NS hinges  1"€ refp,orted solution has been constructed with the aid of
strongly on the equation of staEOS and the particle in- >ibgatullin’s method 11] according to which the complex
teractions at the high density of the center. Models of NSPotentials€ and @ satisfying Ermnst's equatior{d.2] are de-
with strong kaon condensatid@] or even a quark nucleus fined, for specified axis date(z):=£(z,p=0) and f(2)
(“strange star’ [3]) can have at most 1.5M2,, which =®(z,p=0), by the integrals
would leave a range for lower mass black holes. However,
even modestlifferential rotation[4] may easily increase the e ifl e(§)u(o)do
maximum mass ®l ,, of a nonrotating NS to aboveN3, for (z.p) 7)1 1—g2
a nascent NS in a transient phase of a supernova. Moreover,
a mass-quadrupole momeR is also important[5] for 101% d
achieving correspondence with numerical res8t3]. D(z.p)= _J (ulo) o @

In order to analytically model the exterior field of a NS in ' )1 1-¢?
the framework ofgyeneral relativity(GR), one needs aexact
asymptotically flat solution of thé&instein-Maxwell equa- The unknown functionu(o) is to be found from the singular
tions (electrovac spacetimppossessing at least four arbi- integral equation
trary physical parameters which are the mlsangular mo-

mentumJ, magnetic dipole., and mass-quadrupole moment 1 u(o)[e(é)+e(y)+2f(&)f(n)]do

Q. The simplest solution, besides, can be envisaged as axi- ffl > = (3]

ally symmetric, the magnetic field sharing the symmetry of (c=7)V1l-0

the mass and angular momentum distributions; an additional . . .

reflection symmetry with respect to the equatorial plané/ith the normalizing condition

which is expected of the self-gravitating objectee, e.g.,

[8] and references ther@imust also be imposed. 1 u(o)do 3
Our paper aims to present an exact solution which does ~11-o? -m )

satisfy the above requirements and, most importantly, one
that is a mathematically vergimple solution admitting a \yhere E=z+ipo, p=z+ip7, with p and z as the Weyl-

representation exclusively in terms of the rational functionsPa apetrou cylindrical coordinates andre [ —1,1]; ()
of spheroidal coordinate@revious effort in this direction tPape ylindi b =

only led either to the solution which had no reflection sym-=€(7), T(#):=f(), with the overbar signifying complex

metry[9] or to solutiong10] which did not permit the ratio- conjugation.
In what follows, the axis data(z) andf(z) are chosen in
the form
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i
M2 = ¥ M—ia)(z+ib) +d—o-ab’ ds”=—f(dt—wde)*+ K17 €27(x"~y?)
2 212 2 2

12— M2b 1 dx dy 5 012
Si=———  d:==[M2%2—(a—b)?], 4 X + +(x*=1)(1—-y“)de“|, (9

M2_(a_b)2 4[ ( )7] 4 (Xz_l 1_y2 ( )( y )de
such that the algebraic equation in which the metric coefficient§ y, andw are the following

rational functions of the coordinatesandy (see, e.g.[14]
for details of Sibgatullin’s methgd

f=E/D, €7=E/N6k3(x*-y?)* w=(y?’—1)L/E,

e(z)+e(z)+2f(2)f(z2)=0 (5)

will have a pair of distinct roots of multiplicity two. This is a
key point for having the rational form of the final expres- E={4[k*(x*~1)+8(1—y?)]*+(a—b)[(a—b)(d— o)
sions for&(p,z) and®(p,z) after performing the Riemann-

_ M2 g\ 2 _ 202 __ 2 _
Hilbert procedure of the analytic continuation of the func- M%](1 -y}~ 16 (x" = 1)(1-y“){(a=b)
tionse(z), f(z) into the complex planepz). The resulting X [K2(x2—y?)+25y?]+ M?by?}?,
expressions for the potential{p,z) and ®(p,z) obtained
from Egs.(1)—(5) are of the followingpolynomialform:* D ={4(k?x?— 6y?)?+ 2kMx[ 2k?*(x?— 1)+ (25+ab—b?)
£=(A—2MB)/(A+2MB), ®=2iuC/(A+2MB), X(1=y3)]+(a-b)[(a=b)(d—8)—M?p]

X (y*—1)—4d?% %+ 4y?{2k?(x*>— 1)[kx(a—b) —Mb]
—2Mbé(1-y?) +[(a—b)(k?*—28)—M?b]
X (2kx+M)(1—y?)}2,

A=4[ (k> = 8y?)?—d*~ikxy(a—b) (xX*~1)]—(1-Yy?)
X[(a—b)(d—8)—M?b][(a—b)(y?+1)+4ikxy],
B=kx{2k?(x?*—1)+[b(a—b)+25](1-y?)}

L=8k?(x>*—1){(a—b)[k?(x*—y?)+ 256y?]+M?by?
+iy{2k?b(x?—1)—[k?*(a—b)—M?b—2as](1-y?)},

X {KMX[ (2kx+M)?—a?+b%—2y?(25+ab—Db?)]
C=2K?y(x?2—1)+[28y—ikx(a—b)](1-y?), (6) —2y?(45d—M?b?)} —{4[k?(x2— 1)+ 8(1—y?)]?

where we have introduced the generalized spheroidal coor- +(a—b)[(a—b)(d—8)-M?b](1-y*)?}(1-Yy?)

dinates X{2M (2kx+M)[(a—b)(d— 8)—b(M2+25)]

1 1 —4M?p 5+ (a—b)(46d—M?b?)} — 8k2Mb(kx+ M)
X= ﬁ(rptr,) and y= ﬂ(u—r,),

X (x?—1)). (10
re=yp®+(zxk)?, k:=yd+34. 7 Special cases
The four arbitrary real parameters entering the solutior]imﬁguatlons(@ and(10) admit several well-known classical

are the total mask, total angular momentum per unit mass

a:=J/M. maanetic dinole moment. and mass-quadrupole (1) In the absence of the magnetic field and vanishing
m.(;men'é 9 P nt, q P arbitrary quadrupole deformation, i.e,=b=0, only the

Ernst potential€ survives which is readily recognizable as
that of the Tomimatsu-Saté= 2 solution[15] with the mass

Q=— M [M4+2M2(a2+ b?) quadrupoleQ=—2(M3+3J%/M).
4[M?—(a—b)?] (2)The stationary pure vacuum limit with a nonvanishing
quadrupole parametdris a particular three-parameter spe-
—(3a+b)(a—b)*~4u?] (8)  cialization of the Kinnersley-Chitre solutidi16].

(3) The magnetostatic limitg=b=0) is represented by
of the source. Bonnor's solution[17] for a massive magnetic dipole. For
The corresponding complete metric is given by the axi-this solution, the quadrupole momentQs= u2/M — M3,
symmetric line elemeft (4) Reduction to the Kerr metrif18] with total massv
and total angular momentum per unit mags=J/M is
achieved by setting.=0 and then formally choosing?
1Al of the formulas of this paper have been checked with the aid=a?—M?. The values ofM and a remain independent, in

of the MATHEMATICA 3.0 computer prografil3]. particular,a?<M? can be imposed since in this special limit
2Throughout the paper, natural units are used in which the gravithe complex continuatiol—ib is admitted. It should be
tational constant and the velocity of light are equal to unity. stressed, however, that there exist general argurh&@fsor
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FIG. 1. Ergosphere and singularities:
(i) M=4, &2, b=0.9, u=2; (i) M=2,
0 L o e a=1.6,b=-0.2, u=0.6 (m or n?, in the natu-
ral units.

0 0.5 1 1.5 2 2.5 0 0.5 1 1.5 2 2.5

the interior of the Kerr metric consisting of a perfect fluid  We shall conclude the presentation of our solution by
according to which a large rotational flattening of the bodywriting out Kinnersley’s potentialC [26] the real part of
necessarily implies a large absolute value of the quadrupolehich gives the magnetic componehyj, of the electromag-

moment. netic four potential:
(5) It is remarkable that the hyperextreme part of our so-
lution corresponding to pure imaginary valueskabelongs Ki=Ay+iA{=u(1-y*)KI(A+2MB),
to the Chen-Guo-Ernst family of hyperextreme spacetimes
[20]. This branch might represent exterior fieldsrefativis- K=2k2(x>—1)[2kx+3M +iy(a—b)]
tic disks Their importance for astrophysics was shown by 5 .
Bardeen and Wagon¢R1], cf. also[22]. In the absence of —(a—b)[2Ma—Mb(1-y*)—4idy]|+2(2kx+M)
the electromagnetic field an exact global solution for an in- X[8(1—y?) +M(M—iby)]+4M3s, (11)

finitesimally thin disk of dust has been constructed by Neu-

geg?#sé ?]git';gimjtgg' ;:é[i‘r:]éwn to be “slowly” rotating whereA/ is the electric component of a vector potential as-

astrophysical objecti25] (even at the Kepler frequenay, sociated with the dual electromagnetic field tensor. The
K

v . knowledge ofA , is a necessary basis for the investigation of
vT/ou(I; nd:rllqu_root;aSterCVSithO; ;22355:313/ 4§milf?sr t';]réesﬁggitor plasma-dynamical effects around neutron stars. In Fig. 2 the

treme part of the metri¢9) which should be used for their magnetic lines of force are plotted in cylindrical coordinates

description. At the same time, we still need to know the]cor two characteristic cases.

location of singularities in our solution to support the physi-

cal interpretation we are attributing to it. In Fig. 1 we have . MATCHING TO NUMERICAL MODELS

plotted in coordinatep andz the typical shapes of the infi- OF NEUTRON STARS

nite redshift surface which one has for the real-vallkethe

dots indicating the position of singularities. The two point  Our exact axisymmetric solution needs to batchedto
singularities on the symmetry axighe polesx=1, y interior solutions of neutron stars, in order to be realistic.
=+1) belong to the stationary limit surface, while the ring Since the junction conditions on the surface of the NS de-
singularity in each case lies at the equatorial plane betweepend very much on the material details such as equation of
the symmetry axis and ergosphere; no singularity outside thstate, conductivity, etc., we will restrict ourselves here only
infinite red shift surface arises, and hence the mé8jcis  to the identification ofasymptotically conserved quantities
describing the exterior fields of compact objects such as neuFhe identification of mas#! and angular momenturd of
tron stars. our solution agrees already with tistandardparameters of

10 10

FIG. 2. Magnetic lines of force(i) M=4,
. . a=2, b=0.4, u=1.2; (i) M=2, a=4, b=—1,
w=3 (m or n?, in the natural units

-10 -10
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asymptotically flat spacetimes in GRR7] and in the astro- For NSs of 1.4M  the range of this constants=2 to 7.4.
physics[28] of NSs. It is intriguing that this simple relation quadratic ihholds
also for fast rotating NS.
A. Magnetic field If we reparametrize the arbitrary quadrupole parameter
. of our exact solution by the dimensionless paramétearia
Normally, the NS’ magnetic field, predicted already in  p=+ \/a?+2aMA—M?, we obtain from Eq.(8) for the
1964 by Hoyle, Narlikar, and Wheel¢29] and reaching quadrupole momenty(=0):

high values below the upper limit B<3x10° Tesla, is

ignored in numerical studief28] of rapidly rotating NS. 1 aA%(aA2—MA + a2+ 2aMA —M?)
More recently, however, axisymmetric solutions of the Q=— 1+§A2— T 2 2.2
Einstein-Maxwell equations have been studjgd] using a 2(M"—a’+aA"—2aMA)
pseudo-spectral methd@1] involving Chebyshev-Legendre 72

polynomials in terms of maximal slicing quasi-isotropic co- X—. (16)

ordinates. Since the magnetic axis is aligned with the rota-
tion axis and only poloidal fields are permitted, this numeri- .
cal work is particularly suited for a comparison of the Our reparametrization is such that fAar=0 we recover the

—_12 :
electrovac spacetime outside the NS with our exact solutiof@ss-quadrupole mome@=—J/M of the Kerr metric.
= Thus it is worth pointing out that the mass-quadrupole pa-
For a star close to a sphere and small polar fidkds

—10F Tesla. th numerical results are within an error {ameter in our solution is also intimately related with the
"3 esla, theseé numerica ?su S are an erro 0angular momentum dipole and octupole moments, and this
10" ° in agreement with Ferraro’s solutigB82]

means that theeformationsof the source are mainly due to

RS rotation. In a particular case, for instance, whev
A¢=47-rp0f0ﬁsin2 0, r>R,, (12) =1.4My and a=0.629M, the values ofA covering the
NS range 2c<7.4 are given by the interval 0.986\

<2.068.

whereR, is the radius of the stap, is the mass density, and In comparison with Eq(15), the constant for our solu-
fo is the constant value taken by the electric current function;gp, depends not only on the malk but also onA > (M?2
[30). —a?)/2aM which can be adjusted to different EOS. The

The equation above enables us to see how the parametgggitional piece depending on angular momentum per unit
w of our solution may depend on the parameters of the COass, however, arises only in higher orderaf Thus the

responding interior metric for small values @f Indeed, in- 4 34rupole moment of our exact solution accounts rather
troducing the Boyer-Lindquist-like coordinat&and 6 via  \ya|l to the simple quadratic la15) of NSs. Moreover, in

the formulas the “extreme” limit a—M we find

kx=R—M, y=cosé, (13 A(Ai\/ﬂ)
Q=- 1‘W>M‘°" a
we easily find from Eq(11), in the limit R—o, that (A=2)

from which it can be seen th& can assume arbitrary values
) for any given value oM, unlike in the case of the extreme

Kerr metric for whichQ=—M?3. In this particular limit, the

“NS interval” corresponds to 0.931 A <1.584.
sinceR has a representatioR=r[1+O(r ~1)] in terms of Further study is needed to exhibit the astrophysical sig-
the isotropic coordinate [28]. From Egs.(12) and(14) the  nificance of our solution in more detail. In view of a simple
desired relation of. to the parameters determining the inte- analytical form of the new electrovacuum metric and clear
rior of a NS follows immediately. physical interpretation of the characteristic parameters it pos-
sesses, it is anticipated that the solution will prove itself suit-
able for use in concrete astrophysical applications involving
neutron stars.

1

W Sir? 6
- R?

¢ R

Sir 6
-2——+o0

+0

r2

B. Quadrupole moment

An operational way of defining the quadrupole moment of
an axially symmetric body in GR has been developed by
Ryan [33]. For NS one finds quite generally] that the
numerical simulations are rather well accounted by the |t is our pleasure to thank Jerzy Plésnand Alfredo
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