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Exact solution for the exterior field of a rotating neutron star
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A four-parameter class of exact asymptotically flat solutions of the Einstein-Maxwell equations involving
only rational functions is presented. It is able to describe the exterior field of a slowly or rapidly rotating
neutron star with a poloidal magnetic field.

PACS number~s!: 04.20.Jb, 04.40.Nr, 97.60.Lf
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I. INTRODUCTION

Observations of binary pulsars@1# indicate that the indi-
vidual neutron stars~NS! in such systems have masses ve
close to the Chandrasekhar limit of 1.4M ( of white dwarfs.
Theoretically, the issue of the maximum mass of a NS hin
strongly on the equation of state~EOS! and the particle in-
teractions at the high density of the center. Models of
with strong kaon condensation@2# or even a quark nucleu
~‘‘strange star’’ @3#! can have at most 1.5–2M ( , which
would leave a range for lower mass black holes. Howev
even modestdifferential rotation@4# may easily increase th
maximum mass 2M ( of a nonrotating NS to above 3M ( for
a nascent NS in a transient phase of a supernova. Moreo
a mass-quadrupole momentQ is also important@5# for
achieving correspondence with numerical results@6,7#.

In order to analytically model the exterior field of a NS
the framework ofgeneral relativity~GR!, one needs anexact
asymptotically flat solution of theEinstein-Maxwell equa-
tions ~electrovac spacetimes! possessing at least four arb
trary physical parameters which are the massM, angular mo-
mentumJ, magnetic dipolem, and mass-quadrupole mome
Q. The simplest solution, besides, can be envisaged as
ally symmetric, the magnetic field sharing the symmetry
the mass and angular momentum distributions; an additio
reflection symmetry with respect to the equatorial pla
which is expected of the self-gravitating objects~see, e.g.,
@8# and references therein! must also be imposed.

Our paper aims to present an exact solution which d
satisfy the above requirements and, most importantly,
that is a mathematically verysimple solution admitting a
representation exclusively in terms of the rational functio
of spheroidal coordinates~previous effort in this direction
only led either to the solution which had no reflection sy
metry @9# or to solutions@10# which did not permit the ratio-
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nal function representation, and consequently could not
written in a concise form!.

II. FOUR-PARAMETER EXACT SOLUTION

The reported solution has been constructed with the ai
Sibgatullin’s method@11# according to which the complex
potentialsE andF satisfying Ernst’s equations@12# are de-
fined, for specified axis datae(z)ªE(z,r50) and f (z)
ªF(z,r50), by the integrals

E~z,r!5
1

pE21

1 e~j!m~s!ds

A12s2
,

F~z,r!5
1

pE21

1 f ~j!m~s!ds

A12s2
. ~1!

The unknown functionm(s) is to be found from the singula
integral equation

«21

1 m~s!@e~j!1ẽ~h!12 f ~j! f̃ ~h!#ds

~s2t!A12s2
50 ~2!

with the normalizing condition

E
21

1 m~s!ds

A12s2
5p, ~3!

where j5z1 irs, h5z1 irt, with r and z as the Weyl-
Papapetrou cylindrical coordinates ands,tP@21,1#; ẽ(h)

ªe(h̄), f̃ (h)ª f (h̄), with the overbar signifying complex
conjugation.

In what follows, the axis datae(z) and f (z) are chosen in
the form

e~z!5
~z2M2 ia!~z1 ib!1d2d2ab

~z1M2 ia!~z1 ib!1d2d2ab
,
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f ~z!5
im

~z1M2 ia!~z1 ib!1d2d2ab
,

dª
m22M2b2

M22~a2b!2
, dª

1

4
@M22~a2b!2#, ~4!

such that the algebraic equation

e~z!1ē~z!12 f ~z! f̄ ~z!50 ~5!

will have a pair of distinct roots of multiplicity two. This is a
key point for having the rational form of the final expre
sions forE(r,z) andF(r,z) after performing the Riemann
Hilbert procedure of the analytic continuation of the fun
tions e(z), f (z) into the complex plane (r,z). The resulting
expressions for the potentialsE(r,z) and F(r,z) obtained
from Eqs.~1!–~5! are of the followingpolynomialform:1

E5~A22MB!/~A12MB!, F52imC/~A12MB!,

A54@~k2x22dy2!22d22 ik3xy~a2b!~x221!#2~12y2!

3@~a2b!~d2d!2M2b#@~a2b!~y211!14ikxy#,

B5kx$2k2~x221!1@b~a2b!12d#~12y2!%

1 iy$2k2b~x221!2@k2~a2b!2M2b22ad#~12y2!%,

C52k2y~x221!1@2dy2 ikx~a2b!#~12y2!, ~6!

where we have introduced the generalized spheroidal c
dinates

x5
1

2k
~r 11r 2! and y5

1

2k
~r 12r 2!,

r 6ªAr21~z6k!2, kªAd1d. ~7!

The four arbitrary real parameters entering the solut
are the total massM, total angular momentum per unit ma
aªJ/M , magnetic dipole momentm, and mass-quadrupol
moment

Q52
M

4@M22~a2b!2#
@M412M2~a21b2!

2~3a1b!~a2b!324m2# ~8!

of the source.
The corresponding complete metric is given by the a

symmetric line element2

1All of the formulas of this paper have been checked with the
of the MATHEMATICA 3.0 computer program@13#.

2Throughout the paper, natural units are used in which the gr
tational constant and the velocity of light are equal to unity.
08150
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ds252 f ~dt2vdw!21k2f 21Fe2g~x22y2!

3S dx2

x221
1

dy2

12y2D 1~x221!~12y2!dw2G , ~9!

in which the metric coefficientsf, g, andv are the following
rational functions of the coordinatesx andy ~see, e.g.,@14#
for details of Sibgatullin’s method!:

f 5E/D, e2g5E/16k8~x22y2!4, v5~y221!L/E,

E5$4@k2~x221!1d~12y2!#21~a2b!@~a2b!~d2d!

2M2b#~12y2!2%2216k2~x221!~12y2!$~a2b!

3@k2~x22y2!12dy2#1M2by2%2,

D5$4~k2x22dy2!212kMx@2k2~x221!1~2d1ab2b2!

3~12y2!#1~a2b!@~a2b!~d2d!2M2b#

3~y421!24d2%214y2$2k2~x221!@kx~a2b!2Mb#

22Mbd~12y2!1@~a2b!~k222d!2M2b#

3~2kx1M !~12y2!%2,

L58k2~x221!$~a2b!@k2~x22y2!12dy2#1M2by2%

3$kMx@~2kx1M !22a21b222y2~2d1ab2b2!#

22y2~4dd2M2b2!%2$4@k2~x221!1d~12y2!#2

1~a2b!@~a2b!~d2d!2M2b#~12y2!2%„~12y2!

3$2M ~2kx1M !@~a2b!~d2d!2b~M212d!#

24M2bd1~a2b!~4dd2M2b2!%28k2Mb~kx1M !

3~x221!…. ~10!

Special cases

Equations~6! and~10! admit several well-known classica
limits.

~1! In the absence of the magnetic field and vanish
arbitrary quadrupole deformation, i.e.,m5b50, only the
Ernst potentialE survives which is readily recognizable a
that of the Tomimatsu-Satod52 solution@15# with the mass
quadrupoleQ52 1

4 (M313J2/M ).
~2!The stationary pure vacuum limit with a nonvanishin

quadrupole parameterb is a particular three-parameter sp
cialization of the Kinnersley-Chitre solution@16#.

~3! The magnetostatic limit (a5b50) is represented by
Bonnor’s solution@17# for a massive magnetic dipole. Fo
this solution, the quadrupole moment isQ5m2/M2 1

4 M3.
~4! Reduction to the Kerr metric@18# with total massM

and total angular momentum per unit massaªJ/M is
achieved by settingm50 and then formally choosingb2

5a22M2. The values ofM and a remain independent, in
particular,a2,M2 can be imposed since in this special lim
the complex continuationb→ ib is admitted. It should be
stressed, however, that there exist general arguments@19# for

d

i-
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FIG. 1. Ergosphere and singularitie
~i! M54, a52, b50.9, m52; ~ii ! M52,
a51.6, b520.2, m50.6 ~m or m2, in the natu-
ral units!.
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the interior of the Kerr metric consisting of a perfect flu
according to which a large rotational flattening of the bo
necessarily implies a large absolute value of the quadru
moment.

~5! It is remarkable that the hyperextreme part of our
lution corresponding to pure imaginary values ofk belongs
to the Chen-Guo-Ernst family of hyperextreme spacetim
@20#. This branch might represent exterior fields ofrelativis-
tic disks. Their importance for astrophysics was shown
Bardeen and Wagoner@21#, cf. also@22#. In the absence o
the electromagnetic field an exact global solution for an
finitesimally thin disk of dust has been constructed by N
gebauer and Meinel@23#, cf. @24#.

Since neutron stars are known to be ‘‘slowly’’ rotatin
astrophysical objects@25# ~even at the Kepler frequencyvK

5AGM/R3.0.5 ms of a millisecond pulsar the equat
would only rotate with a speed ofvK.c/4), it is the subex-
treme part of the metric~9! which should be used for thei
description. At the same time, we still need to know t
location of singularities in our solution to support the phy
cal interpretation we are attributing to it. In Fig. 1 we ha
plotted in coordinatesr andz the typical shapes of the infi
nite redshift surface which one has for the real-valuedk, the
dots indicating the position of singularities. The two po
singularities on the symmetry axis~the poles x51, y
561) belong to the stationary limit surface, while the rin
singularity in each case lies at the equatorial plane betw
the symmetry axis and ergosphere; no singularity outside
infinite red shift surface arises, and hence the metric~9! is
describing the exterior fields of compact objects such as n
tron stars.
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We shall conclude the presentation of our solution
writing out Kinnersley’s potentialK @26# the real part of
which gives the magnetic componentAf of the electromag-
netic four potential:

KªAf1 iAt85m~12y2!K/~A12MB!,

K52k2~x221!@2kx13M1 iy~a2b!#

2~a2b!@2Ma2Mb~12y2!24idy#12~2kx1M !

3@d~12y2!1M ~M2 iby!#14Md, ~11!

whereAt8 is the electric component of a vector potential a
sociated with the dual electromagnetic field tensor. T
knowledge ofAf is a necessary basis for the investigation
plasma-dynamical effects around neutron stars. In Fig. 2
magnetic lines of force are plotted in cylindrical coordinat
for two characteristic cases.

III. MATCHING TO NUMERICAL MODELS
OF NEUTRON STARS

Our exact axisymmetric solution needs to bematchedto
interior solutions of neutron stars, in order to be realis
Since the junction conditions on the surface of the NS
pend very much on the material details such as equatio
state, conductivity, etc., we will restrict ourselves here o
to the identification ofasymptotically conserved quantitie.
The identification of massM and angular momentumJ of
our solution agrees already with thestandardparameters of
FIG. 2. Magnetic lines of force:~i! M54,
a52, b50.4, m51.2; ~ii ! M52, a54, b521,
m53 ~m or m2, in the natural units!.
1-3
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asymptotically flat spacetimes in GR@27# and in the astro-
physics@28# of NSs.

A. Magnetic field

Normally, the NS’ magnetic fieldBW , predicted already in
1964 by Hoyle, Narlikar, and Wheeler@29# and reaching
high values below the upper limit ofBW <33109 Tesla, is
ignored in numerical studies@28# of rapidly rotating NS.
More recently, however, axisymmetric solutions of t
Einstein-Maxwell equations have been studied@30# using a
pseudo-spectral method@31# involving Chebyshev-Legendr
polynomials in terms of maximal slicing quasi-isotropic c
ordinates. Since the magnetic axis is aligned with the ro
tion axis and only poloidal fields are permitted, this nume
cal work is particularly suited for a comparison of th
electrovac spacetime outside the NS with our exact solut

For a star close to a sphere and small polar fieldsBW
;106 Tesla, these numerical results are within an error
1023 in agreement with Ferraro’s solution@32#

Af54pr0f 0

R
*
5

15r
sin2 u, r .R* , ~12!

whereR* is the radius of the star,r0 is the mass density, an
f 0 is the constant value taken by the electric current funct
@30#.

The equation above enables us to see how the param
m of our solution may depend on the parameters of the c
responding interior metric for small values ofQ. Indeed, in-
troducing the Boyer-Lindquist-like coordinatesR and u via
the formulas

kx5R2M , y5cosu, ~13!

we easily find from Eq.~11!, in the limit R→`, that

Af5
m sin2 u

R
1OS 1

R2D 5
m sin2 u

r
1OS 1

r 2D , ~14!

sinceR has a representationR5r @11O(r 21)# in terms of
the isotropic coordinater @28#. From Eqs.~12! and ~14! the
desired relation ofm to the parameters determining the int
rior of a NS follows immediately.

B. Quadrupole moment

An operational way of defining the quadrupole moment
an axially symmetric body in GR has been developed
Ryan @33#. For NS one finds quite generally@7# that the
numerical simulations are rather well accounted by
simple quadratic relation

Q52c~M ,EOS!
J2

M
, ~15!

where the constantc5c(M ,EOS) depends only on the ma
M and the equation of state~EOS! for the interior of the NS.
08150
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For NSs of 1.4M ( the range of this constant isc52 to 7.4.
It is intriguing that this simple relation quadratic inJ holds
also for fast rotating NS.

If we reparametrize the arbitrary quadrupole parameteb
of our exact solution by the dimensionless parameterD via
b56Aa212aMD2M2, we obtain from Eq.~8! for the
quadrupole moment (m50):

Q52S 11
1

2
D22

aD2~aD22MD6Aa212aMD2M2!

2~M22a21a2D222aMD!
D

3
J2

M
. ~16!

Our reparametrization is such that forD50 we recover the
mass-quadrupole momentQ52J2/M of the Kerr metric.
Thus it is worth pointing out that the mass-quadrupole
rameter in our solution is also intimately related with t
angular momentum dipole and octupole moments, and
means that thedeformationsof the source are mainly due t
rotation. In a particular case, for instance, whenM
51.4M ( and a50.625M ( , the values ofD covering the
NS range 2,c,7.4 are given by the interval 0.986,D
,2.068.

In comparison with Eq.~15!, the constantc for our solu-
tion depends not only on the massM, but also onD.(M2

2a2)/2aM which can be adjusted to different EOS. Th
additional piece depending on angular momentum per
mass, however, arises only in higher order ofD. Thus the
quadrupole moment of our exact solution accounts rat
well to the simple quadratic law~15! of NSs. Moreover, in
the ‘‘extreme’’ limit a→M we find

Q52S 12
D~D6A2D!

2~D22!
D M3, ~17!

from which it can be seen thatQ can assume arbitrary value
for any given value ofM, unlike in the case of the extrem
Kerr metric for whichQ52M3. In this particular limit, the
‘‘NS interval’’ corresponds to 0.931,D,1.584.

Further study is needed to exhibit the astrophysical s
nificance of our solution in more detail. In view of a simp
analytical form of the new electrovacuum metric and cle
physical interpretation of the characteristic parameters it p
sesses, it is anticipated that the solution will prove itself su
able for use in concrete astrophysical applications involv
neutron stars.
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