Direct *CP*, *T*, and/or *CPT* violations in the K^0 - \overline{K}^0 system: Implications of the recent KTeV results on 2π decays

Yoshihiro Takeuchi* and S. Y. Tsai†

Atomic Energy Research Institute and Department of Physics, College of Science and Technology, Nihon University, Kanda-Surugadai, Chiyoda-ku, Tokyo 101-8308, Japan

(Received 16 September 1999; published 8 March 2000)

The recent results on the *CP* violating parameters Re(ε'/ε) and $\Delta \phi = \phi_{00} - \phi_{+-}$ reported by the KTeV Collaboration are analyzed with a view to constrain *CP*, *T*, and *CPT* violations in decay processes. Combined with some relevant data compiled by the Particle Data Group, we find Re($\varepsilon_2 - \varepsilon_0$) = (0.85 ± 3.11) \times 10⁻⁴ and $\text{Im}(\varepsilon_2 - \varepsilon_0) = (3.2 \pm 0.7) \times 10^{-4}$, where $\text{Re}(\varepsilon_1)$ and $\text{Im}(\varepsilon_1)$ represent respectively *CP/CPT* and *CP/T* violations in the decay of K^0 and $\overline{K^0}$ into a 2π state with isospin *I*.

PACS number(s): 11.30.Er, 13.20.Eb, 13.25.Es

Although it has been well established since 1964 [1] that *CP* symmetry is violated in the K^0 - \bar{K}^0 system, the origin or mechanism of *CP* violation is not well understood yet, on the one hand, and no evidence of *CP* violation has been established in any other systems or processes, on the other hand. Experimental, phenomenological, and theoretical studies of this and related (i.e., *T* and *CPT*) symmetries need to be continued with much effort.

The KTeV Collaboration $[2]$ recently reported

$$
Re(\varepsilon'/\varepsilon) = (2.80 \pm 0.41) \times 10^{-3}, \tag{1a}
$$

$$
\Delta \phi = (0.09 \pm 0.46)^{\circ},\tag{1b}
$$

and claimed that $\text{Re}(\varepsilon'/\varepsilon)\neq 0$ definitively established the existence of *CP* violation in decay processes. In the present Brief Report, we will analyze in detail what the KTeV results imply and see in particular how well *CPT* symmetry is tested compared to *T* symmetry.

The K^0 - \bar{K}^0 *mixing and* 2π *decays.* Let $|K^0\rangle$ and $|\overline{K^0}\rangle$ be eigenstates of the strong interaction with strangeness *S* $=+1$ and -1 , related to each other by (*CP*) and (*CPT*) operations as $[3,4]$

$$
(CP)|K^0\rangle = e^{i\alpha_K}|\overline{K^0}\rangle, \quad (CPT)|K^0\rangle = e^{i\beta_K}|\overline{K^0}\rangle, \quad (2)
$$

where α_K and β_K are arbitrary real parameters. When the weak interaction H_w is switched on, K^0 and $\overline{K^0}$ decay into other states, generically denoted as *n*, and get mixed. The states with definite mass $(m_{S,L})$ and width ($\gamma_{S,L}$; $\gamma_S > \gamma_L$ by definition) are linear combinations of K^0 and $\overline{K^0}$:

$$
|K_S\rangle = \frac{1}{\sqrt{|p_S|^2 + |q_S|^2}} (p_S|K^0\rangle + q_S|\overline{K^0}\rangle), \tag{3a}
$$

$$
|K_L\rangle = \frac{1}{\sqrt{|p_L|^2 + |q_L|^2}} (p_L |K^0\rangle - q_L | \overline{K^0}\rangle). \tag{3b}
$$

*Email address: yytake@phys.cst.nihon-u.ac.jp

† Email address: tsai@phys.cst.nihon-u.ac.jp

The ratios of the mixing parameters, $q_{S,L}/p_{S,L}$, as well as $\lambda_{S,L} = m_{S,L} - i \gamma_{S,L}/2$, are related to H_w ; the explicit expressions can be found in the literature $[3,5]$. We are interested in 2π decays and specifically in the following quantities:

$$
\eta_{+-} = |\eta_{+-}| e^{i\phi_{+-}} = \frac{\langle \pi^+ \pi^-, \text{outgoing} | H_{\rm w} | K_L \rangle}{\langle \pi^+ \pi^-, \text{outgoing} | H_{\rm w} | K_S \rangle}, \tag{4a}
$$

$$
\eta_{00} = |\eta_{00}| e^{i\phi_{00}} \equiv \frac{\langle \pi^0 \pi^0, \text{outgoing} | H_w | K_L \rangle}{\langle \pi^0 \pi^0, \text{outgoing} | H_w | K_S \rangle},
$$
(4b)

$$
r \equiv \frac{\gamma_S(\pi^+\pi^-) - 2\,\gamma_S(\pi^0\pi^0)}{\gamma_S(\pi^+\pi^-) + \gamma_S(\pi^0\pi^0)},\tag{5}
$$

where $\gamma_{S,L}(n)$ denotes the partial width for $K_{S,L}$ to decay into the final state *n*.

Parametrization and conditions imposed by CP, *T*, *and CPT symmetries.* We shall parametrize q_S / p_S and q_L / p_L as $\lceil 3 \rceil$

$$
\frac{q_S}{p_S} = e^{i\alpha_K} \frac{1 - \varepsilon - \delta}{1 + \varepsilon + \delta},\tag{6a}
$$

$$
\frac{q_L}{p_L} = e^{i\alpha_K} \frac{1 - \varepsilon + \delta}{1 + \varepsilon - \delta},\tag{6b}
$$

and the amplitudes for K^0 and $\overline{K^0}$ to decay into 2π states with isospin $I = 0$ or 2 as [3,6]

$$
\langle (2\pi)_I | H_{\rm w} | K^0 \rangle = F_I (1 + \varepsilon_I) e^{i\alpha_K/2}, \tag{7a}
$$

$$
\langle (2\pi)_I | H_{\rm w} | \bar{K}^0 \rangle = F_I (1 - \varepsilon_I) e^{-i\alpha_K/2}.
$$
 (7b)

Our parametrization is very unique in that it is invariant under rephasing of the initial states, $|K^0\rangle$ and $|\overline{K^0}\rangle$. It is, however, not invariant under rephasing of the final states, $|(2\pi)_I\rangle$. By making use of the phase ambiguity, one may, without loss of generality, set $[6]$

$$
\operatorname{Im}(F_I) = 0.\tag{8}
$$

One can readily verify [3,6] that *CP*, *T*, and *CPT* symmetries impose such conditions as

CP symmetry:
$$
\varepsilon = 0
$$
, $\delta = 0$, $\varepsilon_I = 0$,
\n*T* symmetry: $\varepsilon = 0$, Im $(\varepsilon_I) = 0$, (9)
\n*CPT* symmetry: $\delta = 0$, Re $(\varepsilon_I) = 0$.

Observed and expected smallness of symmetry violation allows one to treat all these parameters as small.

Formulas relevant for analysis. Defining

$$
\eta_I = |\eta_I| e^{i\phi_I} = \frac{\langle (2\pi)_I | H_w | K_L \rangle}{\langle (2\pi)_I | H_w | K_S \rangle},
$$
\n(10a)

$$
\omega = \frac{\langle (2\,\pi)_2 | H_{\rm w} | K_S \rangle}{\langle (2\,\pi)_0 | H_{\rm w} | K_S \rangle},\tag{10b}
$$

one finds $[7,8]$, from Eqs. $(3a)$, $(3b)$, $(6a)$, $(6b)$, and $(7a)$, $(7b)$,

$$
\eta_I = \varepsilon - \delta + \varepsilon_I, \qquad (11a)
$$

$$
\omega = \text{Re}(F_2) / \text{Re}(F_0),\tag{11b}
$$

and, by means of isospin decomposition,

$$
\eta_{+-} = \eta_0 + \varepsilon', \qquad (12a)
$$

$$
\eta_{00} = \eta_0 - 2\varepsilon',\tag{12b}
$$

$$
r = 4\operatorname{Re}(\omega'),\tag{13}
$$

where

$$
\varepsilon' \equiv (\eta_2 - \eta_0) \omega', \tag{14a}
$$

$$
\omega' = \frac{1}{\sqrt{2}} \omega e^{i(\delta_2 - \delta_0)},\tag{14b}
$$

 δ _{*l*} being the *S*-wave $\pi \pi$ scattering phase shift for the isospin *I* state at an energy of the rest mass of K^0 . Note that we have treated ω' , which is a measure of deviation from the ΔI $=1/2$ rule, as well as a small quantity. From Eqs. $(12a)$, $(12b)$, it follows that

$$
\eta_{00}/\eta_{+-} = 1 - 3\,\varepsilon'/\eta_0 \tag{15}
$$

or

$$
Re(\varepsilon'/\eta_0) = (1/3)(1 - |\eta_{00}/\eta_{+-}|), \qquad (16a)
$$

$$
\operatorname{Im}(\varepsilon'/\eta_0) = -(1/3)\Delta \phi,\tag{16b}
$$

where

$$
\Delta \phi \equiv \phi_{00} - \phi_{+-} \,. \tag{17}
$$

Implications of the KTeV results. With the help of the formulas derived above, we now look into implications of the latest results reported by the KTeV Collaboration $[2]$. We first note that, since ε in their notation corresponds exactly to

 η_0 in our notation,¹ their results (1a),(1b) give, either immediately or with the help of Eqs. $(16a)$, $(16b)$,

$$
Re(\varepsilon'/\eta_0) = (2.80 \pm 0.41) \times 10^{-3}, \tag{18a}
$$

Im(
$$
\varepsilon'/\eta_0
$$
) = (-0.52±2.68) \times 10⁻³, (18b)

$$
|\eta_{00}/\eta_{+-}| = 0.9916 \pm 0.0012. \tag{18c}
$$

From Eqs. $(11a)$ and $(14a)$, we immediately conclude that $\varepsilon' \neq 0$ implies that either ε_0 or ε_2 (or both) is nonvanishing,² confirming the assertion that the KTeV result on $\text{Re}(\varepsilon'/\varepsilon)$ established the existence of *CP* violation in a decay process $|2|$.

To go one step further, we need to know the value of η_0 . Since the KTeV collaboration has not yet reported their results on η_{+} and η_{00} separately, we shall input the Particle Data Group (PDG) [9] values for η_{+-} ,

$$
|\eta_{+-}| = (2.285 \pm 0.019) \times 10^{-3}, \tag{19a}
$$

$$
\phi_{+-} = (43.5 \pm 0.6)^{\circ}, \tag{19b}
$$

along with Eqs. $(1b)$ and $(18c)$, into

$$
\eta_0 \approx (2/3) \eta_{+-} + (1/3) \eta_{00}, \qquad (20)
$$

which follows from Eqs. $(12a)$, $(12b)$, to get

$$
|\eta_0| = (2.28 \pm 0.02) \times 10^{-3},\tag{21a}
$$

$$
\phi_0 = (43.53 \pm 0.94)^\circ. \tag{21b}
$$

We shall also use the PDG [9] values for $\gamma_S(\pi^+\pi^-)$ and $\gamma_S(\pi^0\pi^0)$ to get, with the help of Eqs. (5) and (13),

$$
Re(\omega') = (1.46 \pm 0.16) \times 10^{-2}.
$$
 (22)

In order to interpret Eqs. $(18a)$, $(18b)$, we derive from Eqs. $(14a)$, $(14b)$, with the aid of Eqs. $(11a)$, $(11b)$,

$$
\varepsilon'/\eta_0 = -i \text{Re}(\omega') (\varepsilon_2 - \varepsilon_0) e^{-i\Delta \phi'}/[\eta_0 | \cos(\delta_2 - \delta_0)]
$$
\n(23)

or

$$
\varepsilon_2 - \varepsilon_0 = i(\varepsilon'/\eta_0) |\eta_0| \cos(\delta_2 - \delta_0) e^{i\Delta \phi'}/\text{Re}(\omega'), (24)
$$

where

$$
\Delta \phi' \equiv \phi_0 - \delta_2 + \delta_0 - \pi/2. \tag{25}
$$

¹For the correspondence between our parametrization and the (more conventional) rephasing-dependent parametrizations, see Refs. $[3,8]$.

²Note that the reverse is however not necessarily true; a nonvanishing but equal value for both ε_0 and ε_2 could yield $\varepsilon' = 0$.

Inputting Eqs. (18a), (18b), (21a), (21b), and (22), and δ_2 $-\delta_0$ as well, into Eq. (24), we are able to derive constraints to Re($\varepsilon_2 - \varepsilon_0$) and Im($\varepsilon_2 - \varepsilon_0$):

$$
Re(\varepsilon_2 - \varepsilon_0) = (0.85 \pm 3.11) \times 10^{-4}, \tag{26a}
$$

$$
\operatorname{Im}(\varepsilon_2 - \varepsilon_0) = (3.2 \pm 0.7) \times 10^{-4},\tag{26b}
$$

where, as $\delta_2 - \delta_0$, we have tentatively used the Chell-Olsson value (-42 ± 4) ° [10].

Discussion. If, as the value of $\text{Re}(\varepsilon'/\varepsilon)$, one uses, instead of Eq. $(1a)$,

$$
Re(\varepsilon'/\varepsilon) = (2.59 \pm 0.36) \times 10^{-3}, \tag{27}
$$

which is an average of the KTeV result $[2]$ and the more recent result from the NA48 experiment $[11]$, one will get

$$
Re(\varepsilon_2 - \varepsilon_0) = (0.84 \pm 3.11) \times 10^{-4}, \tag{28a}
$$

Im(
$$
\varepsilon_2 - \varepsilon_0
$$
) = (3.0±0.6)×10⁻⁴. (28b)

Our results $(26b)$ and $(28b)$ indicate that a combination of the parameters which signal direct *CP* and *T* violations, Im($\varepsilon_2 - \varepsilon_0$), is definitely nonzero and of the order of 10^{-4} . The other results $(26a)$ and $(28a)$ on the other hand indicate that a combination of the parameters which signal direct *CP* and *CPT* violations, $\text{Re}(\varepsilon_2 - \varepsilon_0)$, is not well determined yet; though consistent with being zero, a value comparable to $\text{Im}(\epsilon_2-\epsilon_0)$ is not ruled out.

The procedure of our analysis is rather similar to that done by Dib and Peccei $[12]$, except that they have focused on *CPT* test and have hesitated to use the value of $Re(\varepsilon'/\varepsilon)$ as one of inputs, in view of experimental controversy on this quantity at that time. Thus, one of the results they have derived, $\text{Re}(B_2)/\text{Re}(A_2) - \text{Re}(B_0)/\text{Re}(A_0) = (1.3 \pm 8.4)$ $\times 10^{-4}$, corresponds exactly to our results Eqs. (26a) and $(28a)$, and a conclusion on direct *CP/CPT* violation qualitatively similar to ours has already been reached by them.

With the help of the Bell-Steinberger relation $[13]$, one may derive constraints to the indirect and mixed *CP*, *T*, and/or CPT violating parameters $[7,8,14,15]$. It turns out that the values of the direct *CP*/*T* violating parameter we have obtained, Eqs. (26b) and (28b), are almost one order smaller than those of the indirect and mixed *CP*/*T* violating parameters, $\text{Re}(\varepsilon)$ and $\text{Im}(\varepsilon+\varepsilon_0)$,³ while the constraints on the direct *CP*/*CPT* violating parameter we have found, Eqs. $(26a)$ and $(28a)$, are roughly one order weaker than those on the indirect and mixed CP/CPT violating parameters,⁴ Im(δ) and Re($\delta-\varepsilon_0$).

To conclude, we recall that the numerical results $(26a)$, $(26b)$, and $(28a)$, $(28b)$ depend much on the value of $\delta_2-\delta_0$, and that this quantity, which features strong interaction effects, is still not well determined.⁵ In order to obtain a better constraint on $\varepsilon_2 - \varepsilon_0$, a better determination of δ_2 $-\delta_0$, along with a more precise measurement of Re(ε'/ε) and $\Delta \phi$, are required.

We are grateful to Professor T. Yamanaka for a discussion on the results and details of the KTeV experiment.

 5 See, for example, Refs. [17,18], and references cited therein for theoretical problems related to determination of $\delta_2 - \delta_0$. If, as the value of this quantity, one uses (-56.7 ± 3.9) ° quoted in Ref. [17], instead of (-42 ± 4) ° used previously, one would find

$$
Re(\varepsilon_2 - \varepsilon_0) = (0.01 \pm 2.27) \times 10^{-4}, \tag{29a}
$$

Im(
$$
\varepsilon_2 - \varepsilon_0
$$
) = (2.44 ± 0.65) × 10⁻⁴, (29b)

in place of Eqs. $(26a)$, $(26b)$.

- [1] J.H. Christenson *et al.*, Phys. Rev. Lett. **13**, 138 (1964); T.T. Wu and C.N. Yang, *ibid.* **13**, 380 (1964).
- [2] A. Alavi-Harati et al., Phys. Rev. Lett. 83, 22 (1999); E. Blucher, talk presented at Rencontres de Moriond, 1999.
- [3] K. Kojima, W. Sugiyama, and S.Y. Tsai, Prog. Theor. Phys. 95, 913 (1996); S.Y. Tsai, Mod. Phys. Lett. A 11, 2941 (1996).
- [4] W.J. Mantke, Report No. MPI-PhT/94-98.
- @5# T.D. Lee, R. Oehme, and C.N. Yang, Phys. Rev. **106**, 340 ~1957!; T.D. Lee and C.S. Wu, Annu. Rev. Nucl. Sci. **16**, 511 $(1966).$
- [6] S.Y. Tsai, in *Proceedings of the 8'th B-Physics International Workshop*, Kawatabi, Miyagi, 1998, edited by K. Abe *et al.* (Tohoku University, Sendai, 1998), p. 95; Y. Kouchi, Y. Takeuchi, and S.Y. Tsai, Report No. NUP-A-99-14, hep-ph/9908201.
- [7] K. Kojima, A. Shinbori, W. Sugiyama, and S.Y. Tsai, Prog. Theor. Phys. 97, 103 (1997); A. Shinbori, N. Hashimoto, K. Kojima, T. Mochizuki, W. Sugiyama and S.Y. Tsai, in *Proceedings of the 5'th KEK Meeting on CP Violation and its Origin*, Tsukuba, Japan, edited by K. Hagiwara (KEK Report No. 97-12, Tsukuba, 1997), p. 181.
- [8] Y. Kouchi, master's thesis (Nihon University, 1998, in Japanese); Y. Kouchi, A. Shinbori, Y. Takeuchi, and S.Y. Tsai, in *Proceedings of the International Workshop on Fermion Masses and CP Violation*, Hiroshima, 1998, edited by T. Morozumi and T. Muta (Hiroshima University, Hiroshima, 1998), p. 79.
- @9# Particle Data Group, C. Caso *et al.*, Eur. Phys. J. C **3**, 1 $(1998).$
- $|10|$ E. Chell and M.G. Olsson, Phys. Rev. D 48, 4076 (1993) .

 3 See also Alvalez-Gaume, Kounnas, Lola, and Pavlopoulos [16], in which it is claimed that the recent CPLEAR data allow one to definitively conclude that $\text{Re}(\varepsilon)$ is $\neq 0$ without invoking the Bell-Steinberger relation and that *T* is violated independent of whether *CP* and/or *CPT* are violated or not.

 ${}^{4}\varepsilon_0$ and ε_2 (ε and δ) are referred to as a direct (indirect) parameter here. Note that, as emphasized in [3], classification of symmetry-violating parameters into ''direct'' and ''indirect'' ones makes sense only when they are defined in a rephasing-invariant way, i.e., in such a way that they are invariant under rephasing of $\vert K^0\rangle$ and $\vert \bar{K}^0\rangle$.

- @11# NA48 Collaboration, V. Fanti *et al.*, Phys. Lett. B **465**, 335 $(1999).$
- [12] C.O. Dib and R.D. Peccei, Phys. Rev. D 46, 2265 (1992).
- [13] J.S. Bell and J. Steinberger, in *Proceedings of the Oxford International Conference on Elementary Particles*, Oxford, 1965, edited by R.G.Moorhouse et al. (Rutherford Laboratory, Chilton, England, 1966), p. 195.
- [14] Y. Kouchi, Y. Takeuchi and S.Y. Tsai (in preparation).
- [15] CPLEAR Collaboration, A. Apostolakis et al., Phys. Lett. B **444**, 43 (1998); **444**, 52 (1998); **456**, 297 (1999).
- [16] L. Alvarez-Gaume, C. Kounnas, S. Lola, and P. Pavlopoulos, Phys. Lett. B 458, 347 (1999).
- [17] V. Cirigliano, J.F. Donoghue and E. Golowich, Phys. Rev. D (to be published), hep-ph/9907341.
- [18] K. Takamatsu, hep-ph/9905361.