PHYSICAL REVIEW D, VOLUME 61, 076005

Random matrices and the convergence of partition function zeros in finite density QCD
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We apply the Glasgow method for lattice QCD at finite chemical potential to a schematic random matrix
model. In this method the zeros of the partition function are obtained by averaging the coefficients of its
expansion in powers of the chemical potential. In this paper we investigate the phase structure by means of
Glasgow averaging and demonstrate that the method converges to the correct analytically known result. We
conclude that the statistics needed for complete convergence grows exponentially with the size of the
system—in our case, the dimension of the Dirac matrix. The use of an unquenched enseub éGdes not
give an improvement over a quenched ensemble. We elucidate the phenomenon of a faster convergence of
certain zeros of the partition function. The imprecision affecting the coefficients of the polynomial in the
chemical potential can be interpeted as the appearance of a spurious phase. This phase dominates in the regions
where the exact partition function is exponentially small, introducing additional phase boundaries, and hiding
part of the true ones. The zeros along the surviving parts of the true boundaries remain unaffected.

PACS numbgs): 11.15.Tk, 12.38.Gc, 12.38.Lg, 12.38.Mh

. INTRODUCTION exp(—u?N), whereN is the size of the random matrix, cor-
responding to the number of sites in a lattice simulation.
In contrast with the numerous successes of lattice QCDCancellations of this magnitude would require prohibitive
simulations at a finite chemical potentid—4] have oscil-  statistics in order for a brute force simulattdo be success-
lated between being mildly promising and outright frustrat-ful. We wish to note that in some models the construction of
ing. The source of the trouble lies in the following. In the clever algorithms makes it possible to deal with these can-
Euclidean formulation of QCD, the chemical potential spoilsce|iations in Monte Carlo simulatiori$].
the anti-Hermiticity of the Dirac operator. As a result, the |t would be hard to overrate the potential importance of a
fermion determinant is no longer a real number. In general, it ,ccessful lattice approach to QCD at finite chemical poten-

has a colmpl'e>;1 p_hasi/.l Hen(c:e, Ithe actllqn cafr;nc;(tj ser\f 8%i81. At this time, there is not even an estimate for the value
statistical weight in a Monte Carlo sampling of field configu- ¢ 16 critical chemical potential from lattice simulations. In

rations. . . . .

Quenched simulations, where the fermion determinant iéhe. absence of the guidance proylde(:_i _by the Ia.tt|c.e, Itis

: . > . . . difficult to assess the many semiempirical descriptions of
not included in the statistical weight, may provide a fairly

reliable approximation to selected observables of the tru uclgar matter at hlgh.dens@—lS]. For mst'ance, an ex-
ungquenched theory. However, in the presence of a chemic gnsion of the RMM to'mclude temperature via the first Mat-
potential, quenched simulations have produced consistentfjHPara frequenchle] gives reasonable predictions about the
unphysical resultg3]. The reason is that the quenched theoryPh@se diagram of QCD, even while ignoring most of its dy-
is theN;— 0 limit of an unphysical theory where the fermion Namics. In the present paper we wish to exploit the qualita-
determinant is replaced by its absolute valEg]. This is a  Uve Similarity between our simple RMM arfd.=3 QCD at
theory with a second, “conjugate” set of antiquark speciesf'”'te chemical potential in an attempt to understand certain
together with the normal quarks. Because Goldstone bosoridttice results on the problem of finife.

consist of a quark and a conjugate antiquark, the critical V& are interested in the analytic dependence of the QCD
chemical potential in quenched QCD is half the pion massPartition function on the chemical potential. This can be
This phenomenon was demonstrated in lattice simulations b§Pt@ined by computing the coefficients of the expansion of

Gocksch[5] using aU(1) toy model and was understood he partition function in powers of the chemical potential or
analytically in[6] by using a random matrix model inspired the fugacity. The Glasgow method of lattice Q€R17-2(
by QCD. is designed to do this. The unquenched partition functlon_can
One important conclusion of further studies of the samé€ S€en as the quenched average of the fermion determinant,
random matrix mode(RMM) is that the phase of the fer- 1-€- averaged only with the gauge action. In general, one
mion determinant leads to very large cancellations in thén@y also use an unquenched ensemble at some fixed chemi-
ensemble averaginfy]. A measure of this phenomenon is cal potentialu = 1, and include the inverse fermion deter-
given by the fact that the partition function is proportional to Minant at that same value:

*Present address: Department of Physics, Duke University, ‘Where the determinant is included as an observable in a
Durham, NC 27708-0305. quenched ensembile.
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detD(u) Here,C is anNXN complex matrix, and the integration is
Z(p)=(detD (1)) gayge= C{ ——— over the Haar measure,
detD (o) _
gaugeu =u o
) N
f pc=][] | dc;dc;. )
HereC is an irrelevant constant. One expects the efficiency ij=1

of the averaging process to depend on the overlap between

the quantity being averaged and the distribution used to gerFhis model was first formulatel®3,24] for ©=0 in order to
erate the ensemble. The situation when these two functiordescribe the correlations of the smallest eigenvalues of the
have their largest values in vastly different places, is knowrDirac operator. In this case it has been shown rigorously that

as the overlap problem. the model describes the zero-momentum sector of the low-
In the lattice Glasgow method the fermion determinant isenergy effective partition function of QC[25,26.
expanded in powers of the fugacify=exp(u). The expan- In the present context, the matr(m,u) mimics the

sion is finite and exact, since the fermion determinant is jusQCD Dirac operator for quark mass and chemical poten-
anNX N matrix (N is the number of lattice points times the tial w. The integration over matrix elements replaces the
number of degrees of freedom per Jité is obtained by integration over gauge field configurations. The massless
writing detd (u)=¢&Ndet(P+¢), where P is called the part of our random Dirac operator is anti-Hermitian for
propagator matrix. The expansion coefficients, written in=0, but foru+# 0 it has no definite Hermiticity properties. In
terms of the eigenvalues & are then obtained by ensemble order to study the properties of the partition function in the
averaging. The zeros of the partition function in the complexchemical potential plang, we rewrite the fermion determi-
 plane map out the phase structure. In particular, the onesant as follows:

close to the real axis define the critical val§)eof u. Since

the original paper by Yang and L¢&1] this approach has iC+pu m
been widely used in statistical mechanics. For some recent de1(D(m,,u))=de< ot
applications we refer tf22]. miCHpu
With the Glasgow method one obtains information about =det(F(m)+ u1). (4

the full u-dependence o, using an ensemble generated at
one fixed value of the chemical potential. Of course, th

. ®T'he matrixF(m) is analogous to the propagator matrix from
question of the overlap between whatever ensemble one | (m) d Propag

. dthe fermion : o the a _ 3ttice QCD[27,28,4 in the sense that its eigenvalues are the
using and the fermion determinant for the givermemains. 5 eq ofu for which the fermion determinant vanishes. In

The issue is even more ominous considering that we arg, s of the eigenvalues, of F(m) the RMM partition
unable to even define the notion of an ensemble at nonzerg - i is k

u, even in this random matrix model, due to the complex
action.
In this paper, we analyze the Glasgow method using a Z(m,,u)zf DCe N CCTT (N +p). (5)
random matrix model at nonzero chemical potential. As we k
have already discussed before, this model mimics the prob-
lems of the QCD partition function at nonzero chemical po- The guantity(n)=4, InZ(mu)/N is the analog of the
tential. Since the phase structure of this model is knowrbaryon number density of QCD. It is equal to the ensemble
analytically, it is an ideal testing ground for evaluating this average of (IN)=,{ 1/(\y+ w) ). In QCD at zero tempera-
algorithm and obtaining a better understanding of its probture, one expects the baryon number density to be identically
lems. zero for smallu, and then to increase starting from a certain
In Sec. Il we introduce the random matrix model andcritical value ofx [16]. Similarly, our model shows a phase
derive some of its analytical properties. The bulk of thistransition with an increase of the baryon number density.
paper is in Sec. lll. It contains our numerical analySiS of thEHowever,<n> is not zero below the critical value qt See

Glasgow method, and an explanation is given of the poo[16] for an explanation of the relationship betwegr) and
convergence of certain zeros of the partition function. Conthe baryon number density of QCD.

cluding remarks are made in Sec. IV. It is not clear how to define a statistical ensemble of
gauge field configuration®r random matrices for that mat-
Il. RANDOM MATRIX MODEL ter), corresponding to the true partition function with finite

. In the quenched approximation one discards the fermion

determinant, so the partition function does not depend any

more onyu or m. However, a “number density” can still be

computed by taking the average of KQE [ 1/(\+ u)].

Z(m,,u)=f DCe NCCdet(D(m, u)), Similarly, one can define a quenched “chiral condensate”

from the ensemble average of KTr(D(m,x) ). The

gquenched approximation can be interpreted either as the limit

_ ) of a process where one takes the number of flavors to zero,
or the quark masm to infinity. The quantity

We consider a random matrix modd@tMM) defined by
the partition functior{6,7]

m iC+pu

D =|.
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1 function ofn; and the limitn;— 0 should be obtainable from
Nt m the partition function for positive integral valuesfm‘. For

(6) anyn;, the eigenvalue density is positive definite so it can-
is called the partially quenched baryon number density. Th not be an analytic function of a complex variable. The resol-
“sea” uq defines the ensemble, and the “valenqe’probe:s vent 'S defined a§5(z_) :-(l/N)@‘f[l/o\k_ 2)]). The aver-
the ei 0 lue distributi ' age eigenvalue density is then givenWyRd d,« G(z)]. For

€ eigenvalue distribution. the partition function(9) the resolvent in theu plane is

. o G(z=—np)=3d,Z(m,pu,u*).
A. Quenched eigenvalue distribution By standard manipulation$] the partition function can

Form=0 the propagator matrix is block-diagonal, and its be rewritten as an integral over an;X 2n; complex matrix.
eigenvalues aretimes those ofC. The exactdistribution of  For'n.=1, one finds
the eigenvalues of a general complex matrix has been calcu-
lated a long time ago by Ginibife9]. In our normalization,
it is given by

1
”(MO,M)ZJ Dce_NtrCCTl_k[ ()\k+MO)N ;

Z(m,m*, u, u*)

— j d2ad2bd2cd2de—N(aa*+bb*+CC*+dd*)
p()\l, PR ,)\N):Cf dz)\l' . 'dz)\N

m+a o 0 id
><e"\'2k NETT =N 20 () ol © m-+ a* ic 0
k>1 X
o idr mrpr wr |19
The corresponding one-point function is ic* 0 u* m* +b
& (N

p()\)ZCe*NIMZZ ~ (8)  The resulting saddle point equations have two kinds of non-
k=o K trivial solutions, depending on whether the off-diagonal

- . ) o quantitiesc,c*,d,d* are identically zero or not. If they van-

In the largeN limit the eigenvalues are uniformly distributed jsh the partition function factorizes into pieces that depend
in the complex unit circle. This follows from the properties gy onm, 1 or onm*, w* . Then,G(2) is always an analytic
of the truncated exponential, to be discussed in more detaf{,nction of z. Therefore, the region in the complex plane of
later. For[x|<1, the truncated exponential is @ good ap-z(m or ) where the eigenvalues are located must be domi-
proximation of the complete one, gpis a constant. For pated by the other kind of solution, which mixes the param-
|\[>1, the truncated exponential behaves like a power Obters and their conjugates. It turns out that this solution is
IN|? which is quickly suppressed by expli\[?), so the dis-  gych thatc=c* =d=d*, and the quantitcc® is positive.
tribution vanishes with a sharp tail of width of order/N. Form=m* real, it is given by

For nonzerom we can calculate the eigenvalue distribu-
tion of the propagator matrix in the larde limit using the

_ _ _ _ IS X2 m? y2m?
conjugate replica trick6]. We consider the partition func- cc* = - +
tion, where we have replaced the fermion determinant with x2—m?  4(x>—m?)  2x3(x*—m?)
its absolute value squared,
(P+y?)y?m?
Z(m,m*, w, u*) - a2 —(X=+y9). (12)
X
" m iC+pu |2
=f DCe N'"CCldet ., The boundary of the domain of eigenvalues is given by the
IC Hu m curve, where the two types of solutions merge, i.e., the con-

9 dition cc* =0. One can see immediately that for=0 the
boundarycc* =0 reduces to the unit circle.
Here we can use eithenor 4 as a dummy variable probing  |n Fig. 1 we show the distribution of the eigenvalues in
the eigenvalue distribution of the corresponding operator as ghe complex plane of the propagator matrix of size 96 for
function of the other variable which is made real and theremasses of valum=0 andm=0.0625. Each plot consists of
fore has a physical meaning. For the spectrum of the propasigenvalues from 20 independent configurations. The ana-
gator matrix we sem=m* and probe the eigenvalues with |ytic curve given bycc* =0 is also drawn in each case. We

the complex dummy variable. This is the reverse of what clearly see that this does give the correct result for the
was done in[6] where the spectrum of the Dirac operator houndary of eigenvalues.

was investigated for givem. The conjugate replica trick
also allows us to calculate the eigenvalue distribution in the
present case.

Because of the absolute value of the determinant under The unquenched partition function defined in E2). can
the integral, the partition function is expected to be a smootlbe computed analytically30,6,7. It is given by

B. Unquenched partition function
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I I I B axis are interpreted as critical values of the parameters. They
TR eE T indicate a first-order phase transition in the thermodynamic
limit [6,7,16.

For finite N, the partition function can be evaluated as a
polynomial in eithemor w. The coefficients are obtained by
expanding the determinant and performing the integrals. One
exact expansion of the partition function is given [}

0.5

05 Nmz) (—=Np?) (N=j)!

N —
2,20 kD) T (N—j—K)!

(15

Z(m!M)_ NN+

(=]
LA L B L Y I ) L L B I
vl v v by v b v P by

-1 -0.5 0 0.5 1

The zeros of this polynomial can be readily calculated. They
are located along lines in the complex plane and in the limit
N—o they converge to the exact cuts found by the saddle
point analysis below Eq19).

0.5
C. Phase structure and zeros of a partition function

When a partition function has a nontrivial phase structure
in the thermodynamic limit, the complex plane of one of its
thermodynamic parameters is split into regions separated by
cuts. Inside each region, the partition function is analytic in
the parameters, so that its derivatives are continuous. The
(first-ordep transitions occur across the cuts, where the
(logarithmig derivatives of the partition function will in gen-
eral have discontinuities.

FIG. 1. Distribution of the eigenvalues in the complex plane of  Before taking the thermodynamic limite., at finiteN),
the propagator matrix of size=96 along with the analytic curve the partition function is an analytic function of the param-
for the boundary given bgc* =0 in Eqg.(1), form=0 (upper plo}  eters. If this partition function at finitdl is a polynomial in

-0.5

(=]
LI N B L B
ol e by e e v b 1y

-1 -0.5 0 0.5 1

andm=0.0625(lower plog. any of its thermodynamic parameters, such as in our case the
mass or the chemical potential, it will have zeros in the com-

+ m+o wo \N plex plane of these parameters. Its logarithmic derivatives

Z(m,,u)=f dodoTe Nioo det( p miot will have poles at the locations of the zeros. In the thermo-

(12) dynamic limit, the zeros coalesce into the same cuts that
define the phase structure.
Our partition function illustrates nicely the connection be-

where the integration is over thg; X N; matrix o. In the tween the zeros and the cuts. For=0 it is a truncated
N—oo limit the integrals can be evaluated via saddle pomt exponential,

approximation. The saddle points are given by a cubic equa:
tion N 2yj

(16)

(13) For u?<1 the largest term in this sum occurs well before the
truncation so we have a good approximation of the exponen-
tial. On the other hand, fqu?>1 the series is dominated by
the term withj=N. One can obtain a better estimate using
the incomplete gamma function, which is closely related to
the truncated exponentigB1]:

ao(m+ 0)2—M20=m+ o,

where the matrix variable is diagonal andis now a num-
ber. For fixed realm, there are four branch points in the
complex u plane, given by four of the siy values for
which the discriminant of the above equation,

1

D27

n Xk -
nle x> —=F(1+n,x)=f e~ 't"dt. (17)
K=o k! X

1
m*u?—m (2,&4—5,&2—2)4-(1—!—;1,2)3
(14
For real positive arguments the situation is simplecif less
vanishes. The branch points are connected by two brandfan the valug=n which maximizes the integrand, then the

cuts. The derivatives of the partition function are discontinu-saddle point is integrated over, the integral is a good approxi-
ous across these cuts. The points where the cuts cross the re@tion to the gamma function and the exponential is ob-
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tained. Forx>n the integral is dominated by its endpoint 1 T T T o
and the integrand is well approximated by the last term of the [ . . A No10°]
series. . = E
If x is complex, the saddle point dominates if the integra- A?:A A:“:‘ @ Np=10'
tion contour can be deformed across the saddle point. For our 0.51 A‘i. o 4o ;’A ]
partition function @ Lo o ER K 5o,
N ot
. —_ Ag  $ o a S o4
ZN(O’M):ﬂ-e7M2NJ< zefNuuNdu' (18) O - o o uA Au o
s Au u.= AA AA ':u |:|A
this happens if Rg¢’+In u?)<—1 and Reu®>—1. In this ta '-_: N N ::-' ot
caseZy(0,u) ~exp(—u?N—N). If the integral is dominated 05} s o, A s 2o " i
by the endpoint the@(0,u) ~ «?N. Nontrivial zeros of the st e
partition function are obtained for values of the chemical » s
potential where the saddle point contribution and the end I . .
point contribution are of comparable order of magnitude. e B S —
The zeros are thus given by the equati@h -1 0.5 0 Re(j) 0.5 1

Re(1+M2+|09M2):0- (19 FIG. 2. Zeros from averaging over 4@nd 10 configurations

- L . . d t f hed ble With32.
At finite N the deviation of the zeros from this critical curve and exact zeros for a quenched ensemble W

is of order 1N, The quenched ensemble is not the only way to sample the

set of all matrices. One may multiply and divide by any
convenient function in the above formula. One factor modi-
fies the ensemble, i.e., the way the individual matrices are
'generated, and the other one is used to compensate each
configuration for the modified weight. One obvious choice is
C}o use the unquenched ensembleuat 0.

In the next section we report the results of numerical ex-
periments performed using Glasgow averaging for the parti-
tion function (2), both with the quenched ensemble and the
unquenched ensemble at=0.

Ill. GLASGOW AVERAGING IN THE RMM

The unquenched partition function for givenandm can
be thought of as the quenched expectation value of the fe
mion determinant. If the zeros of the partition functi§nare
known, we can express the partition function as a produ
over its zeros

<1'k[ <xk+m>=Tk[ (&t ).

(20

In this identity, the zeros of the partition function appear as a A. Numerical simulations

kind of “averaged eigenvalues” of the propagator matrix. = We performed two different kinds of simulations. For
The Glasgow method from lattice QCD attempts to performsz0, we generated matrix elements with the Gaussian distri-
this averaging. For a given matrix from the quenched enpution given by Eq(2). We constructed the propagator ma-
semble, one writes out the coefficients of the polynomial ontrix and obtained its eigenvalues. For each set, the coeffi-
the left-hand side. The average coefficients are the coefficients of the corresponding polynomial are calculated and
cients of the right-hand side. The main focus of this paper isidded to the average. For=0, a much more economical
to study the convergence properties of the zeros to the exagtocedure is possible, namely, generating sets of eigenvalues
ones for finite ensembles. directly, using the exact Ginibre distributi@f). In this case

The eigenvalues are in general complex. Because of thge have employed a Metropolis algorithm. A given set is
structure of F(m), the eigenvalues occur in paifs\,,  varied using small steps and the modified set is accepted
— M\ }. Also the matrix— C occurs with the same probability depending on the corresponding value of the weight func-
as C in Eqg. (2). Therefore the ensemble average will alsotion. We have found that both cases have similar conver-
contain the paif —\,,\§ }. Upon ensemble averaging, one gence properties, and in this paper we will only report on the
can then easily show that the odd coefficients vanish and theasem=0.
remaining coefficients are real. In Fig. 2 we show the zeros in the complgxplane for a

These simplifications should not mislead us into believingguenched ensemble of matrices of dite 32 averaged over
that we have safely avoided the trouble of averaging over thélg=10°, 10" configurations. The averaged roots do converge
complex phase of the determinant. As we will see shortlyto the exact values as expected, but the convergence is ex-
the problem will show up in the form of a very high preci- tremely slow. The unconverged zeros are the ones situated
sion needed for the coefficients in order to calculate the rootsloser to the real axis. They are situated in a cloud of a well
reliably. Since the suppression achieved by averaging ovetefined shape and most of them are located on its edge. As
the phase of the determinant is on the order of the magnitudihe averaging proceeds the cloud shrinks and finally disap-
of the unquenched partition function, which far=0 is  pears. All the roots situated outside the cloud are obtained
exp(—N(1+u?), it becomes exponentially difficult to correctly for a giverN, Ng combination. This is illustrated
achieve such precision. in Fig. 3 where we perform ensemble averaging as large as
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1 [T T T T o exact '4_ 0.7 T Rk DL |
S - Noai
: AW LN NE;log: 0.6 o N=24 i
0.5 ot w E L ¢ N=48 |
~ a_ o7 e A
= N .o 05F .
ig 0 '_ 4q : LN an " o4 ]
. anfm e ~,0.4
Aﬂ.’u * “ u:u : Z r
AD oa 2 4 N
-05F -, . . < 0.3
F Aw [ XY |
f . : 0.2
_1 C 1 M I B | ] B
-1 -0.5 0 0.5 1
Re(l.l) 01
1F ' ' T e exact '] 02
a NE:IO 1
. . s aNg=10°]
0 5 - » o NE=108-
I L A o -
3 ame R FIG. 4. The widthA(Ng) of the unconverged cloud as a func-
. n;; ‘ . ;ln J tion of the number of configuratiordg . Notice thatA(Ng) shows
ol % -t % A ] a logarithmic dependence o .
i A ;‘% A A '?;u A
- ©na sge but as it appears from Fig. 3 the results are actually worse
05k R et ] than for the quenched ensemble. An easy explanation is that
[ L -, a small number of configurations with the determinant close
. * to zero are assigned a very large weight fag¢tdr Eq. (1)]
1k ] which has a destructive effect. Using a “negative” number
| I Y U Y RS S SRR S (N Y R VAU S SRR T | . - s - . . .
of flavors is another possibility but it is not likely to improve
-1 -0.5 0 0.5 1
Re(u) convergence.

We were able to run simulations which show some no-
ticeable degree of convergence withup to 48. There are
many ways one could measure the degree of convergence of
a given set of roots. The measure we will employ is the
distanceA (Ng) between where the two curves forming the
boundary of the unconverged roots cross the real axis. Due to
Neg=10%. In order to obtain more converged roots, we had tothe small number of points involved there is an inherent
reduce the size of the matrices kb=16. In this figure we degree of subjectivity involved in choosing the outer points
also show results folg=10" and 16. The roots next to the that define the contour of the cloud. The exact method used
real axis are always the last to converge. This is unfortunatto choose these boundaries, however, should not affect the
since the value of the critical chemical potential our case overall trend. For the lower boundary we use the smallest
ne.=0.527) is determined precisely by the discontinuityimaginary part of the eigenvalue near the real axis. The up-
across the real axis. The same pattern is observed for varioger estimate is made by running circles through the first few
matrix sizesN. The shape of the cloud of unconverged zerospoints near the real axis and choosing the one with the larg-
is very similar. However, the number of configuratidds  est radius. Ideally these are the points where the contour of
corresponding to a given degree of convergence increasége cloud of unconverged roots crosses the real axis, corre-
sharply with the matrix siz&l. One is able to determing,  sponding to a lower and an upper estimate gQrusing the
with reasonable accuracy only for small values\ofAs we  given ensemble.
can see in Fig. 3, even in that case a very large number of The dependenc&(Ng) on the size of the ensembleg,
configurations is required. Only after averaging ovef 10 is illustrated in Fig. 4 where we show results fd=12, N
configurations do we get a good estimateugf but the roots =24, and N=48. The thickness of the cloud of zeros,
are still not completely converged. A(Ng), shows a logarithmic dependence Ng. We have

Convergence is not improved by including the determi-included logarithmic fits for the rang®&lg=10° through
nant atu=0 in the statistical weight used to generate thel®® (10° for N=12). Of course, onca (Ng) becomes close
eigenvalues. It was suggested previoyslg] that using an to zero, it stays that way. The slopes of the fits for
ungquenched ensemble at zero chemical potential might im= 24,48 vary only slightly withN.
prove the efficiency of the averaging. Our results indicate Finally, the issue of most practical interest is how the
that, at best, using the unquenched ensemble has no effeatimber of configurationdNg required to achieve a fixed

FIG. 3. Zeros from averaging over 4,010°, and 16 configu-
rations and exact zeros for ensembles whih=16, using a
qguenched ensembl@pper ploj and an unquenched ensemble at
zero chemical potentialN;=1, lower plo).
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20 T T T T T o T L B S B
[ ) I L] L] a =]07 1
[0 AN =0.1 ] [ 10" ]
L . I * . * g =10 1
L O A(NE) = 0.2 0.5 - xu{ .I)_:u* 1
;ﬂ 15r6 A(Np) =0.3 ' =oan va
—_ 5‘ xu id ’:: r} * |:Ix
€ [a ANY=04 E P T
oy | I ve o o
2 10 op &= = 2t
: uxn o o & o ’qu
05 "nX . Ja _
-1 [ PSS ST NS S S S N T T Tt
[ -1 -0.5 0 0.5 1
O | 1 1 1 | Re(u)
16 24 32 40 48
N FIG. 6. Zeros from averaging ovétg=10" configurations and
zeros of the exact polynomial perturbed with an error factoe of
FIG. 5. The logarithm of the number of configurationsg] =102 both forN=32. The pattern of the false zeros is practically
needed to achieve the given erfdr(Ng)] in the zeros near the real the same for Glasgow averaging and the polynomial with artificial
axis for different sizes of matricedNj. noise.

) ) . . ) The effect of obtaining approximate coefficients by Glas-
value of A(Ng) varies with the size of the matrix. This was gow averaging is quite similar to that of simply adding “ar-

estimated by fitting lines to the available data #(Ng) ftificial noise” to the exact coefficients. In Fig. 6 we plot the
versus logy(Ng). As we saw in Fig. 4 this does give nice roots obtained foN=32 via Glasgow fromNg=10" con-
linear fits. We then chose values Af(Ng) and calculated figurations and the roots of the exact polynomial perturbed
where the linear fits intersected these values for each value dfy noise of magnitude=10"3. The patterns of the two sets
N. Our results are plotted in Fig. 5. We conclude that theof roots are hardly distinguishable.

number of configuration required to obtain a given precision In this subsection we study the effect of such small ran-
increases exponentially with the matrix sike This is the dom perturbations. In particular, we are interested in the de-
most important conclusion of this paper. In the remainingpendence of the precisial(Ng) (in obtainingu.) on N and
sections we will attempt to reinforce this conjecture bye. This approach has the advantage that we can consider
studying the sensitivity of the zeros of the exact partitionlarger values oN than in the case of direct Glasgow aver-
function to small random perturbations of the correspondingaging. We expect that the relation between the error param-

polynomial coefficients. eter e and the number of Glasgow configurations necessary
to achieve the same accuracy is given by the central limit
B. Perturbed exact zeros theorem,e~ 1/y/Ng.

It is a well known fact that extreme care has to be taken One striking feature for Iargeh:l 's the extreme §ensitivity
. ) ) of the roots to small perturbations. Rdr=96, a noise factor
when calculating zeros of very high order polynomials. Inof 10 8 already leads to a 20% error in the critical value of
particular, this is the case for a finite representation of 3he chemical potential. Therefore, computing the zeros for
partition function, such as the one under investigation, Wher?\lz% is alreadv b ' d th ’ bility of standard doubl
one is ultimately interested in large valueshfIn our nu- IS already beyon € capabiiity of standard double

. ) . o . recision-
merical experiments the polynomial coefficients are obtained®

as a result of a statistical averaging process. The averaged In Fig. 7 we plot zeros with different degrees of artificial

coefficients are approximations of the exact ones. As théloif)%f’sigir:gtﬁ v(\?ifthﬂtghuerbeioa[ctNr:oig TLZené(iasrgsfa]::ct);Er for
simulation proceeds, the error decreases. N )

We wish to investigate the sensitivity of the zeros of the:Ehe rfe;noglplng four se:st oIhzeros tm_t;;]ea_sets W'thtthef fﬁme dfac-
partition function to the precision with which the coefficients oro fom one set o the next. The intercep’s of the ecge

are obtained. We consider the exact polynomial and add 8f the eigenvalue CIOUd. with the real axis are practic.al.ly
fixed relative error to each coefficient: equally spaced for the different sets of zeros. The precision

A(€) appears to be a linear function of ley(until A(e)
Te=c(1+Ree), 21) vanishes.

whereR, are rgpdom numbers betwepr 1,1], ande is a 2In all our calculations we use multiprecision arithmetic, imple-
small real positive number. We then calculate the zeros of,anted either using thenu multiprecision package or the one

the ponnomiaIEkEkzk. made publicly available by NASA33].
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FIG. 7. Zeros of the perturbed RMM partition function fidr

— 96 with several values of the error coefficiant FIG. 9. Level curves of the absolute values of the free energy

per site for the RMM as a function of the complex parameter

In Fig. 8 we plotA(e) versus—Ilog;o(€) for N=48, 96, required to obtain a given precision. Extrapolating the
192, 384. For error valueA(€)<0.2 the curves are fairly N-dependence of the number of configurations needed given
straight giving a close to linear relationship betwekfe) by the linear interpolation in Fig. 5 to lattice simulations
and —log(e). In all cases convergence is approximatelyleads to extremely large numbers for even a small lattice
achieved when-log;o(€)~N/4. This shows that the accu- size. Consider for example a matrix sizeMf128[soD in
racy required to achieve a given precision increases exponefq. (2) is 256x 256], corresponding to a%lattice with one
tially with N. These results are consistent with results ob-degree of freedom per site. To achieve a precisiomof
tained with Glasgow averaging where the relative variance of=0.3 we would need approximatelg=10?® configura-
the coefficients is roughly constant and varies~as/\/Ng  tions, and forA=0.2 we would needNg=10*? configura-
with only a weak dependence dh tions. A much more reasonable number of configurations can

We conclude that adding random noise to the exactlyonly be achieved if we consider a small lattice ¢f®hich
known coefficients has the same effect on the roots of theorresponds tt= 24 for Kogut-Susskindstaggeregfermi-
partition function as Glasgow averaging. This confirms onceons. Here we would needlz=1C° configurations forA
more that an exponentially large number of configurations is=0.3 or Ng= 10 configurations forA =0.2. This exponen-

tial dependence was noted previougly,32. In [17], a sig-
0.8 e nal was achieved for a lattice of*2vith 10° configurations
but for a 4 lattice only a very weak signal was found after

] 2x 10° configurations.

C. Further analysis of the convergence of Glasgow averaging

0.6 -
—_ B 7 In the previous two subsections we hope to have con-
% B . vinced the reader that the phenomena accompanying Glas-

. gow averaging are nothing but the effect of knowing the
04 — polynomial coefficients of the partition function only with
. limited precision. This follows from the fact that the pattern
. of the false(unconvergejl zeros is reproduced by adding
- small random numbers to the exact polynomial coefficients.
02 — In our model the zeros close to the real axis are the last to
- converge. These are also the most interesting in practice,
. since they determine the critical valye. . It is conceivable
- that for certain situations in QC[such as with finite tem-
perature the roots close to the real axis are among the faster
converging ones, which would provide a glimmer of hope
for the Glasgow method.

In this subsection we consider the effect of artificial noise
FIG. 8. A(¢e) for N=48, 96, 192, 384. in detail. We wish to understand this phenomenon as well as
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why the false zeros are always concentrated in a cloud of a ]
well defined shape. We will find that there is a clear corre- 14
lation between the magnitude of the partition function and ]
the stability of the zeros. 0.5 |

In Fig. 9 we give a topographic map of the absolute value ]
of the RMM partition function on a logarithmic scale as a i
function of x. That is, we plot the level curves of the free 01
energy per site givefup to a constantoy In(|Zy?)/N. This is ]
the natural quantity to study, since the partition function 0.5
scales exponentially withl [7,16]. We observe a discontinu-
ity in the derivative of the absolute value of the partition _11
function in the complexu plane. This is the locus of the 1
zeros of the partition function. The deepest points are those -1 1
around the(real) critical value of the chemical potential. A
quick comparison with the preceding scatter plots should
convince the reader that the higher the value ofZlhthe 1-
more robust are the zeros in that neighborhood. However, the ]
level curves do not match the contour of the cloud of false 0.5
zeros. The situation is a little more subtle as we will see ’
below.

0
1. The noisy partition function

It is useful to separate the approximdt@oisy” ) parti- 0.5
tion function into the exact one and the part due to the error
in the coefficients, -1

Ziol 1) =Zo( )+ Zer 1) (22 -1 05 0 05 1
The partition functionZe () is a polynomial whose coeffi- FIG. 10. Zeros foN=96 and artificial erroe=10"8, with the
cients are the differences between the exact coefficients armlirve|Z,,/Zo|=1. The curve in the top panel is obtained using the
the approximate ones, exact value¥Z,,, and Zy; the one in the bottom panel is obtained
\ using the analytic approximations fa,,, Eq. (29), andZ,,.
— k = _
Ze”(“)_gfo OCu”,  C= CyF 6Tk (23 in the region whereZ, is well approximated by exp
(—u?N). The sum of thefinite) series is much smaller than

The differences are generated &= eRyCy in the “artifi-  the general term, which is typically of order 1. By multiply-

cial noise” case. Our initial assumption was that for trueing each term of this series with a random number we spoil
Glasgow averaging the relative error in the coefficients ishe cancellations. The sum of the perturbed series may there-
approximately the same for all zeros. This assumption waore be significantly larger in absolute value than the exact
reinforced by the similarity between the two types of resultssum.
discussed in previous subsections. In the following, we will
discuss mainly the “artificial noise” partition function. 2. Sensitivity of the zeros

In terms ofZ. (), an explanation of the qualitative pic-
ture we have observed is the following. In the regions of th

complexu plane whergZer( )| <|Zo(x)| one may ignore that Zy(w ) =0) and letu,+ du, be the roots of the total

the Z.,(u). The roots of the total partition function located noisv partition function. Erom our decomposition. we have
in these regions coincide to a good degree with the corre- yp ’ P '

sponding exact roots. On the contrary, in regions where

One arrives at similar conclusions by studying the infini-
etesimal variation of the roots. Lei, be the exact rootéso

Zer{ 1) dominates, the roots are determined by the latter and, Su+Z FSu =0 | Zerd pict Sp)| -1
their general pattern has no similarity to their exact counter- ol b Opti) + Zerd it Opuy) = 0— | Zo( it S|
parts. This is consistent with the fact that the robust zeros are (24)

the ones situated in the region with higher|Zg[). The
shrinking of the cloud of false zeros with decreasings a  Since the modified roots are not zeros &f or Z,, the
consequence of the corresponding decrease in the magnituebove equality is not fulfilled trivially. It indicates that the
of Zgy. false zeros should be located in the transition region where
Throughout most of the complex plane,Z, is clearly  |Z,| and|Z,,| are comparable, i.e., on the border of the re-
larger thanZ,,,. However, near the roots @ the error part  gion whereZ,,, dominates, rather than scattered inside it. In
has its chance to dominate. This is because the value of thiég. 10 we show how the contour of the cloud of false zeros
exact partition function is the result of a major cancellationis obtained using the formula above.
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FIG. 11. The absolute value of the free energy per site for the FIG. 12. The absolute value of the free energy per siteNfor

1078,

96 with noisee=

=96.

RMM with N

We can also make a quantitative estimate of how well
converged a given root is. If we expand the first half of Eq

(24) we get

are located at the intersection of the free energy surfaces.
‘The exact piece dominates everywhere except for inside the
bifurcation, where the error piece dominates. Thelepen-

dence is so steep for both of them that the smaller piece
becomes negligible very fast as one moves away from the

intersection line.

(i) ~0.

(i) + Zepd i) + 5/Lkzér

’
0

Zo(pk) + ol

(29)

When we discussed earlier the properties of polynomials
as partition functions, we associated the different analytic

functions which are approximated by the polynomial in dif-

ferent regions of the complex parameter space with the
phases of the partition function. We mentioned that the zeros

The first term is simply zero. The last term we will neglect as
being of higher order i, . The remaining two terms can

be rearranged to give

are typically located along the phase transition lines, since

(26)

Zol pei)
Z

within any given phase the partition function is a smooth

analytic function which does not vanish. The partition func-
tion Z,, has a quasianalytic behavior similar to that of the

partition function itself. The bifurcation of the line of zeros

the root is close to the exact one. If the ratio is close to 1 ofan be interpreted as the presence of an additional spurious
and the root is not obtained ‘Phase” in the partition function, namely, the region where

(')(,U«k)
In other words, the variation of a given rogj, is propor-
tional to the ratio oZ,, to Z;. If this quantity is negligible,

larger, the shift inu, is large,

dhe error piece dominates. Then the fact that the false zeros
are located on th&Z..|=|Z| line is natural.

correctly. Therefore we can say that in the region wher

|Zen<]Z¢], the roots ofZ,, are reliable.
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3. Error piece as additional phase

We may check our arguments in the previous sections by
comparing the magnitudes of the exact, the total and the
noise partition functiongor free energigsin the complexu

In|Z|?

=

0.527.

plane. Figure 11 shows the absolute value of the free energy
—itou

per site, InZy)/N in one quadrant of the complex plane.
The location of the exact zeros is on the cusp which runs

from u

8 The cusp in

=10~

In Fig. 12 we have the same type of plot now for the total

partition function with a noise facto#
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FIG. 13. The exacfthe same as in Fig. 1Jand the error parti-

—0.4

-0.2

where the noisy partition function is

branches of the cusp,

zeros. A few false zeros are also scattered inside the region.

larger. The new cusps coincide with the locus of the false
It is clear from Fig. 13 where we plot the surfaces corre-

=10"8.

96 ande

sponding toZ, and Z,, simultaneously that the new cusps tion functions forN
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have been multiplied by random numbers of order 1, is well
approximated by an analytic expression. This expression
shares an important property of the true partition function,
namely,it scales exponentially with N

1 1
R @R )~ IR ),

1 err . 1 err
N—lln(ZNl(M))~N—2|n(ZN2(M))- (30)

The magnitude of the error partition function is also con-
trolled by the factore which mimics the precision to which
the coefficients are approximated in the averaging process.
The locus of the false zeros is controlled by the relative

FIG. 14. The exact and the error partition functions computednagnitude of the true partition function and the error parti-
analytically. tion function. To have the same pattern of zeros, we must
also scalee exponentially withN, e(N)=a~N, a>0.

4. Analytic approximation of the error partition function

The question is whether the error partition function can be IV. CONCLUSIONS

at all approximated by an analytic function. In the present : . . .
. ; . We have investigated Glasgow averaging using a random
case the answer is very simple. Let us consider the error

artition function matrix model at nonzero chemical potential. We have found
P ' that in a quenched ensemble the method converges, but that

N (—Nu?) it requires an exponentially large number of configurations.

Ze ) =€, RKT' (27 The roots of the averaged polynomial are initially distrib-

k=0 : uted similarly to the eigenvalues of individual configura-

It is th me truncated inver xponential we have di tions. As the averaging proceeds, the roots approach their
s hé same lruncate erse exponential we have ISz, o ot values. After averaging over a finite number of con-
cussed, only now each term is multiplied by a random num

. - . . figurations, the roots clearly separate into two groups. Some
berRk of orde.r 1. The terrT]s in the original Ee”es Conspire 10,5015 are close to the corresponding exact ones. Typically,
achieve a major cancellation, of order™ 4", The random  these are the zeros far from the real axis. The remaining roots
numbers spoil this, and each term in the series is left to fendre situated in a cloud around the intersection of the real axis
for itself, and the sum is dominated by the largest termsgand the locus of the exact zeros. The zeros outside the cloud
From the ratio of two consecutive terms in the sum, are practically exact, while those inside and on the boundary
N2 of the cloud are very badly determined. They cannot be
- L' (2g)  traced to individual exact zeros. The shape of the cloud is
k similar for different matrix sizes. It shrinks as more configu-
rations are taken into account. However it only shrinks as a
logarithmic function of the total number of configurations.
By interpolating the number of configurations needed to
{each a given precision for several matrix sizes, we were able
o estimate the dependence of the number of configurations
needed for a given matrix size. Our conclusion is that the
number of configurations needed to reach a given level of

we conclude that the largest tertim absolute valugis the
one withk=Kpa= | #?NJ. If |x?|>1 then the largest term is
the one withk=N. Of course the surrounding terms must
have a significant contribution, but the end result should stil
be proportional to this largest term. Fpr|<1 our estimate

is therefore

Kimax N |2 precision grows exponentially with the size of the matrix.
|ZnoisetM)| ~maX e _ (29) The results of the corresponding unquenched simulations,
N Kmad || VN using an ensemble generated with=1 andu=0 are simi-

lar to the quenched ones. The unquenched ensemble may

In Fig. 14 we plot the absolute value 01; the two surfaceshave been helpful in improving the overlap between the
corresponding to the continuum limig™#™N and eNu2V, simulation and the “true” ensemble corresponding to fixed
and the one corresponding to our estimate of the error partiaonzerow. However, this would still necessitate simulating
tion function given above. The intersections of the three suran ensemble at nonzego, which is precisely what we were
faces follow the pattern of the corresponding zeros. We alstrying to avoid. The exponential statistics observed by us are
checked that Eq(29) approximates the error partition func- more likely to be the signature of the sign problem itself, i.e.,
tion well. the magnitude of the cancellation brought about by the vary-

As an added bonus, we can now explain the scaling withing phase of the determinant. Hence the Glasgow method is
N of the required precision. We found that the error partitionunable to surmount the sign problem. However, in a problem
function, i.e., the exact partition function whose coefficientswhere the latter is absent, such @8(2) simulations[34],
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the Glasgow method—even quenched—should be helpful. itelevant to the behavior of the model close to the critizal
would be interesting to see how the overlap issue manifestEhe upside of the failure of the unquenched ensemble at
itself in this case. =0 is that in future applications of the Glasgow method it
We obtained results very similar to those of Glasgow av-might be worth trying to use a quenched ensemble. We re-
eraging by perturbing the exact coefficients in the RMM par-mind the reader that using the quenched ensemble is not
tition function polynomial. We studied empirically the de- equivalent to the quenched approximation.
pendence of the reliability of the zeros on the precision with Another glimmer of hope is in the phenomenon of fast
which the coefficients are known and on the shtef the ~ converging zeros. In the present random matrix model the
model matrix for larger matrices. Just like in the case of2€ros that determine the critical are the last to converge.
averaging, this dependence is exponential. That is, given Erom our analysis there is no indication that _the sensitive
desired error bound for the zeros, the necessary precision ros are ge”ef?‘”_Y those (_:Iose to the_ r@ﬂdysma) axis..
the coefficients grows exponentially witl. The extrapola- There is ?..pOSSIbIIIty that n .QCD or in other interesting
tion of this dependence to Glasgow averaging translates infg®n-Hermitian models the critical parameter values are de-

exponentially large statistics, since the precision on the col€rmined by the robust zeros. It is hard to make any state-

efficients should be proportional to the square root of thdMent in this respect from the currently available QCD data
number of configurations. 4]. Perhaps a schematic model with features closer to QCD

There is a correlation between the phenomenon of slowef t€rms of eigenvalue distribution in the complgxplane

or faster converging zeros and the magnitude of the convould help clarify this issue. In general, it would be inter-

tinuum partition function. The zeros that converge slowly are®Sting 1 see how much of the analysis in this work regarding

in the region where the partition function is suppressedZ€'0S of fapproximately known polynomial partition func-
Large cancellations require better precision, hence more sti°NS applies to other models.
tistics. More formally, the effect of perturbing the coeffi-
cients can be understood as the addition of an eran
polynomial to the true partition function. This extra piece is We thank I. M. Barbour, S. Hands, E. Klepfish, M. P.
found to scale exponentially witN, just like the true parti- Lombardo, and S. E. Morrison for fruitful discussions. R. D.
tion function. The effect on the phase structure can be seeAmado and M. Plmacher are thanked for several critical
as the introduction of a spurious phase, which replaces theeadings of the manuscript. This work was supported in part
true ones in the regions of parameter space where the errby NSF grants PHY-98-00098 and PHY-97-22101 as well as
partition function dominates. The zeros in these regions folthe DOE grant DE-FG-88ER40388. Part of the calculations
low the modified phase boundaries. The scaling property opresented in this paper have been carried out at the National
the error partition function explains the need for exponentialScalable Cluster Project Center at the University of Pennsyl-
statistics in Glasgow averaging. vania, which is supported by a grant from the NSF. The
The negative result regarding unquenched simulations ahultiprecision calculations were performed using theu
n=0 is perhaps disappointing. It indicates that the quencheehultiprecision package or the package made available by
ensemble and the unquenched ensembje=a0 are equally NASA [33].
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