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Random matrices and the convergence of partition function zeros in finite density QCD
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We apply the Glasgow method for lattice QCD at finite chemical potential to a schematic random matrix
model. In this method the zeros of the partition function are obtained by averaging the coefficients of its
expansion in powers of the chemical potential. In this paper we investigate the phase structure by means of
Glasgow averaging and demonstrate that the method converges to the correct analytically known result. We
conclude that the statistics needed for complete convergence grows exponentially with the size of the
system—in our case, the dimension of the Dirac matrix. The use of an unquenched ensemble atm50 does not
give an improvement over a quenched ensemble. We elucidate the phenomenon of a faster convergence of
certain zeros of the partition function. The imprecision affecting the coefficients of the polynomial in the
chemical potential can be interpeted as the appearance of a spurious phase. This phase dominates in the regions
where the exact partition function is exponentially small, introducing additional phase boundaries, and hiding
part of the true ones. The zeros along the surviving parts of the true boundaries remain unaffected.

PACS number~s!: 11.15.Tk, 12.38.Gc, 12.38.Lg, 12.38.Mh
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I. INTRODUCTION

In contrast with the numerous successes of lattice QC
simulations at a finite chemical potential@1–4# have oscil-
lated between being mildly promising and outright frustr
ing. The source of the trouble lies in the following. In th
Euclidean formulation of QCD, the chemical potential spo
the anti-Hermiticity of the Dirac operator. As a result, t
fermion determinant is no longer a real number. In genera
has a complex phase. Hence, the action cannot serve
statistical weight in a Monte Carlo sampling of field config
rations.

Quenched simulations, where the fermion determinan
not included in the statistical weight, may provide a fair
reliable approximation to selected observables of the
unquenched theory. However, in the presence of a chem
potential, quenched simulations have produced consiste
unphysical results@3#. The reason is that the quenched theo
is theNf→0 limit of an unphysical theory where the fermio
determinant is replaced by its absolute value@5,6#. This is a
theory with a second, ‘‘conjugate’’ set of antiquark spec
together with the normal quarks. Because Goldstone bos
consist of a quark and a conjugate antiquark, the crit
chemical potential in quenched QCD is half the pion ma
This phenomenon was demonstrated in lattice simulation
Gocksch@5# using aU(1) toy model and was understoo
analytically in @6# by using a random matrix model inspire
by QCD.

One important conclusion of further studies of the sa
random matrix model~RMM! is that the phase of the fer
mion determinant leads to very large cancellations in
ensemble averaging@7#. A measure of this phenomenon
given by the fact that the partition function is proportional

*Present address: Department of Physics, Duke Univer
Durham, NC 27708-0305.
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exp(2m2N), whereN is the size of the random matrix, cor
responding to the number of sites in a lattice simulatio
Cancellations of this magnitude would require prohibiti
statistics in order for a brute force simulation1 to be success-
ful. We wish to note that in some models the construction
clever algorithms makes it possible to deal with these c
cellations in Monte Carlo simulations@8#.

It would be hard to overrate the potential importance o
successful lattice approach to QCD at finite chemical pot
tial. At this time, there is not even an estimate for the va
of the critical chemical potential from lattice simulations.
the absence of the guidance provided by the lattice, i
difficult to assess the many semiempirical descriptions
nuclear matter at high density@9–15#. For instance, an ex
tension of the RMM to include temperature via the first Ma
subara frequency@16# gives reasonable predictions about t
phase diagram of QCD, even while ignoring most of its d
namics. In the present paper we wish to exploit the qual
tive similarity between our simple RMM andNc53 QCD at
finite chemical potential in an attempt to understand cert
lattice results on the problem of finitem.

We are interested in the analytic dependence of the Q
partition function on the chemical potentialm. This can be
obtained by computing the coefficients of the expansion
the partition function in powers of the chemical potential
the fugacity. The Glasgow method of lattice QCD@4,17–20#
is designed to do this. The unquenched partition function
be seen as the quenched average of the fermion determi
i.e., averaged only with the gauge action. In general, o
may also use an unquenched ensemble at some fixed ch
cal potentialm5m0, and include the inverse fermion dete
minant at that same value:

y, 1Where the determinant is included as an observable in
quenched ensemble.
©2000 The American Physical Society05-1
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HALÁ SZ, OSBORN, STEPHANOV, AND VERBAARSCHOT PHYSICAL REVIEW D61 076005
Z~m!5^detD” ~m!&gauge5CK detD” ~m!

detD” ~m0!
L

gauge,m 5m 0

.

~1!

HereC is an irrelevant constant. One expects the efficien
of the averaging process to depend on the overlap betw
the quantity being averaged and the distribution used to g
erate the ensemble. The situation when these two funct
have their largest values in vastly different places, is kno
as the overlap problem.

In the lattice Glasgow method the fermion determinan
expanded in powers of the fugacityj5exp(m). The expan-
sion is finite and exact, since the fermion determinant is
an N3N matrix (N is the number of lattice points times th
number of degrees of freedom per site!. It is obtained by
writing detD” (m)5jN det (P1j), where P is called the
propagator matrix. The expansion coefficients, written
terms of the eigenvalues ofP, are then obtained by ensemb
averaging. The zeros of the partition function in the comp
m plane map out the phase structure. In particular, the o
close to the real axis define the critical value~s! of m. Since
the original paper by Yang and Lee@21# this approach has
been widely used in statistical mechanics. For some re
applications we refer to@22#.

With the Glasgow method one obtains information ab
the full m-dependence ofZ, using an ensemble generated
one fixed value of the chemical potential. Of course,
question of the overlap between whatever ensemble on
using and the fermion determinant for the givenm remains.
The issue is even more ominous considering that we
unable to even define the notion of an ensemble at non
m, even in this random matrix model, due to the comp
action.

In this paper, we analyze the Glasgow method usin
random matrix model at nonzero chemical potential. As
have already discussed before, this model mimics the p
lems of the QCD partition function at nonzero chemical p
tential. Since the phase structure of this model is kno
analytically, it is an ideal testing ground for evaluating th
algorithm and obtaining a better understanding of its pr
lems.

In Sec. II we introduce the random matrix model a
derive some of its analytical properties. The bulk of th
paper is in Sec. III. It contains our numerical analysis of
Glasgow method, and an explanation is given of the p
convergence of certain zeros of the partition function. C
cluding remarks are made in Sec. IV.

II. RANDOM MATRIX MODEL

We consider a random matrix model~RMM! defined by
the partition function@6,7#

Z~m,m!5E DCe2NtrCC†
det„D~m,m!…,

D~m,m!5F m iC1m

iC†1m m G . ~2!
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Here,C is an N3N complex matrix, and the integration i
over the Haar measure,

E DC5 )
i j 51

N E dCi j dCi j* . ~3!

This model was first formulated@23,24# for m50 in order to
describe the correlations of the smallest eigenvalues of
Dirac operator. In this case it has been shown rigorously
the model describes the zero-momentum sector of the l
energy effective partition function of QCD@25,26#.

In the present context, the matrixD(m,m) mimics the
QCD Dirac operator for quark massm and chemical poten-
tial m. The integration over matrix elements replaces
integration over gauge field configurations. The massl
part of our random Dirac operator is anti-Hermitian form
50, but formÞ0 it has no definite Hermiticity properties. I
order to study the properties of the partition function in t
chemical potential planem, we rewrite the fermion determi
nant as follows:

det„D~m,m!…5detS iC1m m

m iC†1m D
5det„F~m!1m1…. ~4!

The matrixF(m) is analogous to the propagator matrix fro
lattice QCD@27,28,4# in the sense that its eigenvalues are t
values ofm for which the fermion determinant vanishes.
terms of the eigenvalueslk of F(m) the RMM partition
function is

Z~m,m!5E DCe2NtrCC†

)
k

~lk1m!. ~5!

The quantity ^n&5]m ln Z(m,m)/N is the analog of the
baryon number density of QCD. It is equal to the ensem
average of̂ (1/N)(k@1/(lk1m)#&. In QCD at zero tempera
ture, one expects the baryon number density to be identic
zero for smallm, and then to increase starting from a certa
critical value ofm @16#. Similarly, our model shows a phas
transition with an increase of the baryon number dens
However,^n& is not zero below the critical value ofm. See
@16# for an explanation of the relationship between^n& and
the baryon number density of QCD.

It is not clear how to define a statistical ensemble
gauge field configurations~or random matrices for that mat
ter!, corresponding to the true partition function with fini
m. In the quenched approximation one discards the ferm
determinant, so the partition function does not depend
more onm or m. However, a ‘‘number density’’ can still be
computed by taking the average of (1/N)(k@1/(lk1m)#.
Similarly, one can define a quenched ‘‘chiral condensa
from the ensemble average of (1/N)Tr„D(m,m)21

…. The
quenched approximation can be interpreted either as the
of a process where one takes the number of flavors to z
or the quark massm to infinity. The quantity
5-2
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RANDOM MATRICES AND THE CONVERGENCE OF . . . PHYSICAL REVIEW D 61 076005
n~m0 ,m!5E DCe2NtrCC†

)
k

~lk1m0!
1

N (
k

1

lk1m
~6!

is called the partially quenched baryon number density. T
‘‘sea’’ m0 defines the ensemble, and the ‘‘valence’’m probes
the eigenvalue distribution.

A. Quenched eigenvalue distribution

For m50 the propagator matrix is block-diagonal, and
eigenvalues arei times those ofC. Theexactdistribution of
the eigenvalues of a general complex matrix has been ca
lated a long time ago by Ginibre@29#. In our normalization,
it is given by

r~l1 , . . . ,lN!5CE d2l1•••d2lN

3e2N(
k

ulku2)
k. l

ulk2l l u2. ~7!

The corresponding one-point function is

r~l!5Ce2Nulu2 (
k50

N21
~Nulu2!k

k!
. ~8!

In the largeN limit the eigenvalues are uniformly distribute
in the complex unit circle. This follows from the propertie
of the truncated exponential, to be discussed in more de
later. For ulu,1, the truncated exponential is a good a
proximation of the complete one, sor is a constant. For
ulu.1, the truncated exponential behaves like a power
ulu2 which is quickly suppressed by exp(2Nulu2), so the dis-
tribution vanishes with a sharp tail of width of order 1/AN.

For nonzerom we can calculate the eigenvalue distrib
tion of the propagator matrix in the largeN limit using the
conjugate replica trick@6#. We consider the partition func
tion, where we have replaced the fermion determinant w
its absolute value squared,

Z~m,m* ,m,m* !

5E DCe2NtrCC†UdetS m iC1m

iC†1m m D U2ñf

.

~9!

Here we can use eitherm or m as a dummy variable probin
the eigenvalue distribution of the corresponding operator
function of the other variable which is made real and the
fore has a physical meaning. For the spectrum of the pro
gator matrix we setm5m* and probe the eigenvalues wit
the complex dummy variablem. This is the reverse of wha
was done in@6# where the spectrum of the Dirac operat
was investigated for givenm. The conjugate replica trick
also allows us to calculate the eigenvalue distribution in
present case.

Because of the absolute value of the determinant un
the integral, the partition function is expected to be a smo
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function of ñf and the limitñf→0 should be obtainable from
the partition function for positive integral values ofñf . For
any ñf , the eigenvalue density is positive definite so it ca
not be an analytic function of a complex variable. The res
vent is defined asG(z)5(1/N)^(k@1/(lk2z)#&. The aver-
age eigenvalue density is then given byN Re@]z* G(z)#. For
the partition function~9! the resolvent in them plane is
G(z52m)5]mZ(m,m,m* ).

By standard manipulations@6# the partition function can
be rewritten as an integral over an 2ñf32ñf complex matrix.
For ñf51, one finds

Z~m,m* ,m,m* !

5E d2ad2bd2cd2de2N(aa* 1bb* 1cc* 1dd* )

3detFm1a m 0 id

m m1a* ic 0

0 id* m* 1b* m*

ic* 0 m* m* 1b

G . ~10!

The resulting saddle point equations have two kinds of n
trivial solutions, depending on whether the off-diagon
quantitiesc,c* ,d,d* are identically zero or not. If they van
ish, the partition function factorizes into pieces that depe
only onm,m or onm* ,m* . Then,G(z) is always an analytic
function of z. Therefore, the region in the complex plane
z(m or m) where the eigenvalues are located must be do
nated by the other kind of solution, which mixes the para
eters and their conjugates. It turns out that this solution
such thatc5c* 5d5d* , and the quantitycc* is positive.
For m5m* real, it is given by

cc* 5
x2

x22m2
2

m2

4~x22m2!
1

y2m2

2x2~x22m2!

2
~x21y2!y2m2

4x2
2~x21y2!. ~11!

The boundary of the domain of eigenvalues is given by
curve, where the two types of solutions merge, i.e., the c
dition cc* 50. One can see immediately that form50 the
boundarycc* 50 reduces to the unit circle.

In Fig. 1 we show the distribution of the eigenvalues
the complex plane of the propagator matrix of sizeN596 for
masses of valuem50 andm50.0625. Each plot consists o
eigenvalues from 20 independent configurations. The a
lytic curve given bycc* 50 is also drawn in each case. W
clearly see that this does give the correct result for
boundary of eigenvalues.

B. Unquenched partition function

The unquenched partition function defined in Eq.~2! can
be computed analytically@30,6,7#. It is given by
5-3
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HALÁ SZ, OSBORN, STEPHANOV, AND VERBAARSCHOT PHYSICAL REVIEW D61 076005
Z~m,m!5E dsds†e2Ntrss†
detS m1s m

m m1s†D N

~12!

where the integration is over theNf3Nf matrix s. In the
N→` limit the integrals can be evaluated via saddle po
approximation. The saddle points are given by a cubic eq
tion,

s* 5s

s~m1s!22m2s5m1s, ~13!

where the matrix variable is diagonal ands is now a num-
ber. For fixed realm, there are four branch points in th
complex m plane, given by four of the sixm values for
which the discriminant of the above equation,

D5
1

27
Xm4m22m2S 2m425m22

1

4D1~11m2!3C,
~14!

vanishes. The branch points are connected by two bra
cuts. The derivatives of the partition function are discontin
ous across these cuts. The points where the cuts cross th

FIG. 1. Distribution of the eigenvalues in the complex plane
the propagator matrix of sizeN596 along with the analytic curve
for the boundary given bycc* 50 in Eq.~1!, for m50 ~upper plot!
andm50.0625 ~lower plot!.
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axis are interpreted as critical values of the parameters. T
indicate a first-order phase transition in the thermodyna
limit @6,7,16#.

For finite N, the partition function can be evaluated as
polynomial in eitherm or m. The coefficients are obtained b
expanding the determinant and performing the integrals. O
exact expansion of the partition function is given by@7#

Z~m,m!5
pN!

NN11 (
k50

N

(
j 50

N2k
~Nm2!k

~k! !2

~2Nm2! j

j !

~N2 j !!

~N2 j 2k!!
.

~15!

The zeros of this polynomial can be readily calculated. Th
are located along lines in the complex plane and in the li
N→` they converge to the exact cuts found by the sad
point analysis below Eq.~19!.

C. Phase structure and zeros of a partition function

When a partition function has a nontrivial phase struct
in the thermodynamic limit, the complex plane of one of
thermodynamic parameters is split into regions separated
cuts. Inside each region, the partition function is analytic
the parameters, so that its derivatives are continuous.
~first-order! transitions occur across the cuts, where t
~logarithmic! derivatives of the partition function will in gen
eral have discontinuities.

Before taking the thermodynamic limit~i.e., at finiteN),
the partition function is an analytic function of the param
eters. If this partition function at finiteN is a polynomial in
any of its thermodynamic parameters, such as in our case
mass or the chemical potential, it will have zeros in the co
plex plane of these parameters. Its logarithmic derivati
will have poles at the locations of the zeros. In the therm
dynamic limit, the zeros coalesce into the same cuts
define the phase structure.

Our partition function illustrates nicely the connection b
tween the zeros and the cuts. Form50 it is a truncated
exponential,

ZN~0,m!5
pN!

NN11 (
j 50

N
~2Nm2! j

j !
. ~16!

For m2!1 the largest term in this sum occurs well before t
truncation so we have a good approximation of the expon
tial. On the other hand, form2@1 the series is dominated b
the term with j 5N. One can obtain a better estimate usi
the incomplete gamma function, which is closely related
the truncated exponential@31#:

n!e2x(
k50

n
xk

k!
5G~11n,x!5E

x

`

e2ttndt. ~17!

For real positive arguments the situation is simple. Ifx is less
than the valuet5n which maximizes the integrand, then th
saddle point is integrated over, the integral is a good appr
mation to the gamma function and the exponential is

f

5-4
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RANDOM MATRICES AND THE CONVERGENCE OF . . . PHYSICAL REVIEW D 61 076005
tained. Forx.n the integral is dominated by its endpoi
and the integrand is well approximated by the last term of
series.

If x is complex, the saddle point dominates if the integ
tion contour can be deformed across the saddle point. For
partition function

ZN~0,m!5pe2m2NE
2m2

`

e2NuuNdu, ~18!

this happens if Re(m21 ln m2),21 and Rem2.21. In this
caseZN(0,m);exp(2m2N2N). If the integral is dominated
by the endpoint thenZN(0,m);m2N. Nontrivial zeros of the
partition function are obtained for values of the chemi
potential where the saddle point contribution and the e
point contribution are of comparable order of magnitud
The zeros are thus given by the equation@7#

Re~11m21 logm2!50. ~19!

At finite N the deviation of the zeros from this critical curv
is of order 1/AN.

III. GLASGOW AVERAGING IN THE RMM

The unquenched partition function for givenm andm can
be thought of as the quenched expectation value of the
mion determinant. If the zeros of the partition functionjk are
known, we can express the partition function as a prod
over its zeros

K)
k

~lk1m!L 5)
k

~jk1m!. ~20!

In this identity, the zeros of the partition function appear a
kind of ‘‘averaged eigenvalues’’ of the propagator matr
The Glasgow method from lattice QCD attempts to perfo
this averaging. For a given matrix from the quenched
semble, one writes out the coefficients of the polynomial
the left-hand side. The average coefficients are the co
cients of the right-hand side. The main focus of this pape
to study the convergence properties of the zeros to the e
ones for finite ensembles.

The eigenvalues are in general complex. Because of
structure of F(m), the eigenvalues occur in pairs$lk ,
2lk* %. Also the matrix2C occurs with the same probabilit
as C in Eq. ~2!. Therefore the ensemble average will al
contain the pair$2lk ,lk* %. Upon ensemble averaging, on
can then easily show that the odd coefficients vanish and
remaining coefficients are real.

These simplifications should not mislead us into believ
that we have safely avoided the trouble of averaging over
complex phase of the determinant. As we will see shor
the problem will show up in the form of a very high prec
sion needed for the coefficients in order to calculate the ro
reliably. Since the suppression achieved by averaging o
the phase of the determinant is on the order of the magni
of the unquenched partition function, which form50 is
exp„2N(11m2)…, it becomes exponentially difficult to
achieve such precision.
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The quenched ensemble is not the only way to sample
set of all matrices. One may multiply and divide by an
convenient function in the above formula. One factor mo
fies the ensemble, i.e., the way the individual matrices
generated, and the other one is used to compensate
configuration for the modified weight. One obvious choice
to use the unquenched ensemble atm50.

In the next section we report the results of numerical
periments performed using Glasgow averaging for the pa
tion function ~2!, both with the quenched ensemble and t
unquenched ensemble atm50.

A. Numerical simulations

We performed two different kinds of simulations. Form
Þ0, we generated matrix elements with the Gaussian dis
bution given by Eq.~2!. We constructed the propagator m
trix and obtained its eigenvalues. For each set, the co
cients of the corresponding polynomial are calculated a
added to the average. Form50, a much more economica
procedure is possible, namely, generating sets of eigenva
directly, using the exact Ginibre distribution~7!. In this case
we have employed a Metropolis algorithm. A given set
varied using small steps and the modified set is accep
depending on the corresponding value of the weight fu
tion. We have found that both cases have similar conv
gence properties, and in this paper we will only report on
casem50.

In Fig. 2 we show the zeros in the complexm plane for a
quenched ensemble of matrices of sizeN532 averaged over
NE5106,107 configurations. The averaged roots do conve
to the exact values as expected, but the convergence is
tremely slow. The unconverged zeros are the ones situ
closer to the real axis. They are situated in a cloud of a w
defined shape and most of them are located on its edge
the averaging proceeds the cloud shrinks and finally dis
pears. All the roots situated outside the cloud are obtai
correctly for a givenN, NE combination. This is illustrated
in Fig. 3 where we perform ensemble averaging as large

FIG. 2. Zeros from averaging over 106 and 107 configurations
and exact zeros for a quenched ensemble withN532.
5-5
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HALÁ SZ, OSBORN, STEPHANOV, AND VERBAARSCHOT PHYSICAL REVIEW D61 076005
NE5108. In order to obtain more converged roots, we had
reduce the size of the matrices toN516. In this figure we
also show results forNE5104 and 106. The roots next to the
real axis are always the last to converge. This is unfortun
since the value of the critical chemical potential~in our case
mc50.527) is determined precisely by the discontinu
across the real axis. The same pattern is observed for va
matrix sizesN. The shape of the cloud of unconverged ze
is very similar. However, the number of configurationsNE
corresponding to a given degree of convergence incre
sharply with the matrix sizeN. One is able to determinemc
with reasonable accuracy only for small values ofN. As we
can see in Fig. 3, even in that case a very large numbe
configurations is required. Only after averaging over 18

configurations do we get a good estimate ofmc , but the roots
are still not completely converged.

Convergence is not improved by including the determ
nant atm50 in the statistical weight used to generate t
eigenvalues. It was suggested previously@32# that using an
unquenched ensemble at zero chemical potential might
prove the efficiency of the averaging. Our results indic
that, at best, using the unquenched ensemble has no e

FIG. 3. Zeros from averaging over 104, 106, and 108 configu-
rations and exact zeros for ensembles withN516, using a
quenched ensemble~upper plot! and an unquenched ensemble
zero chemical potential (Nf51, lower plot!.
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but as it appears from Fig. 3 the results are actually wo
than for the quenched ensemble. An easy explanation is
a small number of configurations with the determinant clo
to zero are assigned a very large weight factor@cf. Eq. ~1!#
which has a destructive effect. Using a ‘‘negative’’ numb
of flavors is another possibility but it is not likely to improv
convergence.

We were able to run simulations which show some n
ticeable degree of convergence withN up to 48. There are
many ways one could measure the degree of convergenc
a given set of roots. The measure we will employ is t
distanceD(NE) between where the two curves forming th
boundary of the unconverged roots cross the real axis. Du
the small number of points involved there is an inhere
degree of subjectivity involved in choosing the outer poin
that define the contour of the cloud. The exact method u
to choose these boundaries, however, should not affect
overall trend. For the lower boundary we use the smal
imaginary part of the eigenvalue near the real axis. The
per estimate is made by running circles through the first f
points near the real axis and choosing the one with the la
est radius. Ideally these are the points where the contou
the cloud of unconverged roots crosses the real axis, co
sponding to a lower and an upper estimate formc using the
given ensemble.

The dependenceD(NE) on the size of the ensemble,NE ,
is illustrated in Fig. 4 where we show results forN512, N
524, and N548. The thickness of the cloud of zero
D(NE), shows a logarithmic dependence onNE . We have
included logarithmic fits for the rangeNE5105 through
108 (106 for N512). Of course, onceD(NE) becomes close
to zero, it stays that way. The slopes of the fits forN
524,48 vary only slightly withN.

Finally, the issue of most practical interest is how t
number of configurationsNE required to achieve a fixed

t

FIG. 4. The widthD(NE) of the unconverged cloud as a func
tion of the number of configurationsNE . Notice thatD(NE) shows
a logarithmic dependence onNE .
5-6
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RANDOM MATRICES AND THE CONVERGENCE OF . . . PHYSICAL REVIEW D 61 076005
value ofD(NE) varies with the size of the matrix. This wa
estimated by fitting lines to the available data forD(NE)
versus log10(NE). As we saw in Fig. 4 this does give nic
linear fits. We then chose values ofD(NE) and calculated
where the linear fits intersected these values for each valu
N. Our results are plotted in Fig. 5. We conclude that
number of configuration required to obtain a given precis
increases exponentially with the matrix sizeN. This is the
most important conclusion of this paper. In the remain
sections we will attempt to reinforce this conjecture
studying the sensitivity of the zeros of the exact partiti
function to small random perturbations of the correspond
polynomial coefficients.

B. Perturbed exact zeros

It is a well known fact that extreme care has to be tak
when calculating zeros of very high order polynomials.
particular, this is the case for a finite representation o
partition function, such as the one under investigation, wh
one is ultimately interested in large values ofN. In our nu-
merical experiments the polynomial coefficients are obtai
as a result of a statistical averaging process. The avera
coefficients are approximations of the exact ones. As
simulation proceeds, the error decreases.

We wish to investigate the sensitivity of the zeros of t
partition function to the precision with which the coefficien
are obtained. We consider the exact polynomial and ad
fixed relative error to each coefficient:

c̃k5ck~11Rke!, ~21!

whereRk are random numbers between@21,1#, ande is a
small real positive number. We then calculate the zeros
the polynomial(kc̃kz

k.

FIG. 5. The logarithm of the number of configurations (NE)
needed to achieve the given error@D(NE)# in the zeros near the rea
axis for different sizes of matrices (N).
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The effect of obtaining approximate coefficients by Gla
gow averaging is quite similar to that of simply adding ‘‘a
tificial noise’’ to the exact coefficients. In Fig. 6 we plot th
roots obtained forN532 via Glasgow fromNE5107 con-
figurations and the roots of the exact polynomial perturb
by noise of magnitudee51023. The patterns of the two set
of roots are hardly distinguishable.

In this subsection we study the effect of such small ra
dom perturbations. In particular, we are interested in the
pendence of the precisionD(NE) ~in obtainingmc) on N and
e. This approach has the advantage that we can cons
larger values ofN than in the case of direct Glasgow ave
aging. We expect that the relation between the error par
eter e and the number of Glasgow configurations necess
to achieve the same accuracy is given by the central li
theorem,e;1/ANE.

One striking feature for largerN is the extreme sensitivity
of the roots to small perturbations. ForN596, a noise factor
of 10218 already leads to a 20% error in the critical value
the chemical potential. Therefore, computing the zeros
N596 is already beyond the capability of standard dou
precision.2

In Fig. 7 we plot zeros with different degrees of artifici
noise ~see label of figure! for N596. The zeros fore
510225 coincide with the exact roots. The noise factor f
the remaining four sets of zeros increases with the same
tor of 103 from one set to the next. The intercepts of the ed
of the eigenvalue cloud with the real axis are practica
equally spaced for the different sets of zeros. The precis
D(e) appears to be a linear function of log(e) until D(e)
vanishes.

2In all our calculations we use multiprecision arithmetic, impl
mented either using theGNU multiprecision package or the on
made publicly available by NASA@33#.

FIG. 6. Zeros from averaging overNE5107 configurations and
zeros of the exact polynomial perturbed with an error factor oe
51023 both forN532. The pattern of the false zeros is practica
the same for Glasgow averaging and the polynomial with artific
noise.
5-7
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HALÁ SZ, OSBORN, STEPHANOV, AND VERBAARSCHOT PHYSICAL REVIEW D61 076005
In Fig. 8 we plotD(e) versus2 log10(e) for N548, 96,
192, 384. For error valuesD(e)<0.2 the curves are fairly
straight giving a close to linear relationship betweenD(e)
and 2 log(e). In all cases convergence is approximate
achieved when2 log10(e)'N/4. This shows that the accu
racy required to achieve a given precision increases expo
tially with N. These results are consistent with results o
tained with Glasgow averaging where the relative variance
the coefficients is roughly constant and varies as;1/ANE
with only a weak dependence onN.

We conclude that adding random noise to the exa
known coefficients has the same effect on the roots of
partition function as Glasgow averaging. This confirms on
more that an exponentially large number of configuration

FIG. 7. Zeros of the perturbed RMM partition function forN
596 with several values of the error coefficiente.

FIG. 8. D(e) for N548, 96, 192, 384.
07600
n-
-
f

y
e
e
is

required to obtain a given precision. Extrapolating t
N-dependence of the number of configurations needed g
by the linear interpolation in Fig. 5 to lattice simulation
leads to extremely large numbers for even a small lat
size. Consider for example a matrix size ofN5128 @soD in
Eq. ~2! is 2563256#, corresponding to a 44 lattice with one
degree of freedom per site. To achieve a precision ofD
50.3 we would need approximatelyNE51028 configura-
tions, and forD50.2 we would needNE51032 configura-
tions. A much more reasonable number of configurations
only be achieved if we consider a small lattice of 24 which
corresponds toN524 for Kogut-Susskind~staggered! fermi-
ons. Here we would needNE5106 configurations forD
50.3 or NE5108 configurations forD50.2. This exponen-
tial dependence was noted previously@17,32#. In @17#, a sig-
nal was achieved for a lattice of 24 with 105 configurations
but for a 44 lattice only a very weak signal was found aft
23106 configurations.

C. Further analysis of the convergence of Glasgow averaging

In the previous two subsections we hope to have c
vinced the reader that the phenomena accompanying G
gow averaging are nothing but the effect of knowing t
polynomial coefficients of the partition function only wit
limited precision. This follows from the fact that the patte
of the false~unconverged! zeros is reproduced by addin
small random numbers to the exact polynomial coefficien

In our model the zeros close to the real axis are the las
converge. These are also the most interesting in prac
since they determine the critical valuemc . It is conceivable
that for certain situations in QCD~such as with finite tem-
perature! the roots close to the real axis are among the fa
converging ones, which would provide a glimmer of ho
for the Glasgow method.

In this subsection we consider the effect of artificial no
in detail. We wish to understand this phenomenon as wel

FIG. 9. Level curves of the absolute values of the free ene
per site for the RMM as a function of the complex parameterm.
5-8
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RANDOM MATRICES AND THE CONVERGENCE OF . . . PHYSICAL REVIEW D 61 076005
why the false zeros are always concentrated in a cloud
well defined shape. We will find that there is a clear cor
lation between the magnitude of the partition function a
the stability of the zeros.

In Fig. 9 we give a topographic map of the absolute va
of the RMM partition function on a logarithmic scale as
function of m. That is, we plot the level curves of the fre
energy per site given~up to a constant! by ln(uZNu2)/N. This is
the natural quantity to study, since the partition functi
scales exponentially withN @7,16#. We observe a discontinu
ity in the derivative of the absolute value of the partitio
function in the complexm plane. This is the locus of the
zeros of the partition function. The deepest points are th
around the~real! critical value of the chemical potential. A
quick comparison with the preceding scatter plots sho
convince the reader that the higher the value of ln(uZu) the
more robust are the zeros in that neighborhood. However
level curves do not match the contour of the cloud of fa
zeros. The situation is a little more subtle as we will s
below.

1. The noisy partition function

It is useful to separate the approximate~‘‘noisy’’ ! parti-
tion function into the exact one and the part due to the e
in the coefficients,

Ztot~m!5Z0~m!1Zerr~m!. ~22!

The partition functionZerr(m) is a polynomial whose coeffi
cients are the differences between the exact coefficients
the approximate ones,

Zerr~m!5 (
k50

N

dckm
k, c̃k5ck1dck . ~23!

The differences are generated asdck5eRkck in the ‘‘artifi-
cial noise’’ case. Our initial assumption was that for tr
Glasgow averaging the relative error in the coefficients
approximately the same for all zeros. This assumption w
reinforced by the similarity between the two types of resu
discussed in previous subsections. In the following, we w
discuss mainly the ‘‘artificial noise’’ partition function.

In terms ofZerr(m), an explanation of the qualitative pic
ture we have observed is the following. In the regions of
complexm plane whereuZerr(m)u!uZ0(m)u one may ignore
the Zerr(m). The roots of the total partition function locate
in these regions coincide to a good degree with the co
sponding exact roots. On the contrary, in regions wh
Zerr(m) dominates, the roots are determined by the latter
their general pattern has no similarity to their exact coun
parts. This is consistent with the fact that the robust zeros
the ones situated in the region with higher ln(uZ0u). The
shrinking of the cloud of false zeros with decreasinge is a
consequence of the corresponding decrease in the magn
of Zerr.

Throughout most of the complexm plane,Z0 is clearly
larger thanZerr. However, near the roots ofZ0 the error part
has its chance to dominate. This is because the value o
exact partition function is the result of a major cancellati
07600
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in the region whereZ0 is well approximated by exp
(2m2N). The sum of the~finite! series is much smaller tha
the general term, which is typically of order 1. By multiply
ing each term of this series with a random number we sp
the cancellations. The sum of the perturbed series may th
fore be significantly larger in absolute value than the ex
sum.

2. Sensitivity of the zeros

One arrives at similar conclusions by studying the infi
tesimal variation of the roots. Letmk be the exact roots~so
that Z0(mk)50) and letmk1dmk be the roots of the tota
noisy partition function. From our decomposition, we hav

Z0~mk1dmk!1Zerr~mk1dmk!50→ uZerr~mk1dmk!u
uZ0~mk1dmk!u

51.

~24!

Since the modified roots are not zeros ofZ0 or Zerr, the
above equality is not fulfilled trivially. It indicates that th
false zeros should be located in the transition region wh
uZ0u and uZerru are comparable, i.e., on the border of the
gion whereZerr dominates, rather than scattered inside it.
Fig. 10 we show how the contour of the cloud of false ze
is obtained using the formula above.

FIG. 10. Zeros forN596 and artificial errore51028, with the
curveuZerr /Z0u51. The curve in the top panel is obtained using t
exact valuesZerr and Z0; the one in the bottom panel is obtaine
using the analytic approximations forZerr, Eq. ~29!, andZ0.
5-9
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HALÁ SZ, OSBORN, STEPHANOV, AND VERBAARSCHOT PHYSICAL REVIEW D61 076005
We can also make a quantitative estimate of how w
converged a given root is. If we expand the first half of E
~24! we get

Z0~mk!1dmkZ08~mk!1Zerr~mk!1dmkZerr8 ~mk!'0.
~25!

The first term is simply zero. The last term we will neglect
being of higher order indmk . The remaining two terms ca
be rearranged to give

dmk'2
Zerr~mk!

Z08~mk!
. ~26!

In other words, the variation of a given rootmk is propor-
tional to the ratio ofZerr to Z08 . If this quantity is negligible,
the root is close to the exact one. If the ratio is close to 1
larger, the shift inmk is large, and the root is not obtaine
correctly. Therefore we can say that in the region wh
uZerru!uZ08u, the roots ofZtot are reliable.

3. Error piece as additional phase

We may check our arguments in the previous sections
comparing the magnitudes of the exact, the total and
noise partition functions~or free energies! in the complexm
plane. Figure 11 shows the absolute value of the free en
per site, ln(Z0)/N in one quadrant of the complexm plane.
The location of the exact zeros is on the cusp which r
from m52 i to m50.527.

In Fig. 12 we have the same type of plot now for the to
partition function with a noise factore51028. The cusp in
the noisy result bifurcates. The exact and the noisy surfa
coincide exactly except for the region between the two n
branches of the cusp, where the noisy partition function
larger. The new cusps coincide with the locus of the fa
zeros. A few false zeros are also scattered inside the reg
It is clear from Fig. 13 where we plot the surfaces cor
sponding toZ0 and Zerr simultaneously that the new cusp

FIG. 11. The absolute value of the free energy per site for
RMM with N596.
07600
ll
.

s

r

e

y
e

gy

s

l

es
w
is
e
n.
-

are located at the intersection of the free energy surfa
The exact piece dominates everywhere except for inside
bifurcation, where the error piece dominates. Them depen-
dence is so steep for both of them that the smaller pi
becomes negligible very fast as one moves away from
intersection line.

When we discussed earlier the properties of polynom
as partition functions, we associated the different analy
functions which are approximated by the polynomial in d
ferent regions of the complex parameter space with
phases of the partition function. We mentioned that the ze
are typically located along the phase transition lines, si
within any given phase the partition function is a smoo
analytic function which does not vanish. The partition fun
tion Zerr has a quasianalytic behavior similar to that of t
partition function itself. The bifurcation of the line of zero
can be interpreted as the presence of an additional spur
‘‘phase’’ in the partition function, namely, the region whe
the error piece dominates. Then the fact that the false z
are located on theuZerru5uZ0u line is natural.

e FIG. 12. The absolute value of the free energy per site forN
596 with noisee51028.

FIG. 13. The exact~the same as in Fig. 11! and the error parti-
tion functions forN596 ande51028.
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RANDOM MATRICES AND THE CONVERGENCE OF . . . PHYSICAL REVIEW D 61 076005
4. Analytic approximation of the error partition function

The question is whether the error partition function can
at all approximated by an analytic function. In the pres
case the answer is very simple. Let us consider the e
partition function,

ZN
error~m!5e(

k50

N

Rk

~2Nm2!k

k!
. ~27!

It is the same truncated inverse exponential we have
cussed, only now each term is multiplied by a random nu
berRk of order 1. The terms in the original series conspire
achieve a major cancellation, of ordere2N Rem2

. The random
numbers spoil this, and each term in the series is left to f
for itself, and the sum is dominated by the largest term
From the ratio of two consecutive terms in the sum,

2
Nm2

k
, ~28!

we conclude that the largest term~in absolute value! is the
one withk5kmax5um2Nu. If um2u.1 then the largest term i
the one withk5N. Of course the surrounding terms mu
have a significant contribution, but the end result should s
be proportional to this largest term. Forumu,1 our estimate
is therefore

uZN
noise~m!u'C

kmax
kmax

kmax!
;

eNumu2

umuAN
. ~29!

In Fig. 14 we plot the absolute value of the two surfac
corresponding to the continuum limit,e2m2N and eNm2N,
and the one corresponding to our estimate of the error p
tion function given above. The intersections of the three s
faces follow the pattern of the corresponding zeros. We a
checked that Eq.~29! approximates the error partition func
tion well.

As an added bonus, we can now explain the scaling w
N of the required precision. We found that the error partiti
function, i.e., the exact partition function whose coefficie

FIG. 14. The exact and the error partition functions compu
analytically.
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have been multiplied by random numbers of order 1, is w
approximated by an analytic expression. This express
shares an important property of the true partition functio
namely,it scales exponentially with N

1

N1
ln„ZN1

exact~m!…'
1

N2
ln„ZN2

exact~m!…,

1

N1
ln„ZN1

err~m!…'
1

N2
ln„ZN2

err~m!…. ~30!

The magnitude of the error partition function is also co
trolled by the factore which mimics the precision to which
the coefficients are approximated in the averaging proc
The locus of the false zeros is controlled by the relat
magnitude of the true partition function and the error pa
tion function. To have the same pattern of zeros, we m
also scalee exponentially withN, e(N)5a2N, a.0.

IV. CONCLUSIONS

We have investigated Glasgow averaging using a rand
matrix model at nonzero chemical potential. We have fou
that in a quenched ensemble the method converges, but
it requires an exponentially large number of configuration

The roots of the averaged polynomial are initially distri
uted similarly to the eigenvalues of individual configur
tions. As the averaging proceeds, the roots approach t
exact values. After averaging over a finite number of co
figurations, the roots clearly separate into two groups. So
roots are close to the corresponding exact ones. Typica
these are the zeros far from the real axis. The remaining r
are situated in a cloud around the intersection of the real
and the locus of the exact zeros. The zeros outside the c
are practically exact, while those inside and on the bound
of the cloud are very badly determined. They cannot
traced to individual exact zeros. The shape of the cloud
similar for different matrix sizes. It shrinks as more config
rations are taken into account. However it only shrinks a
logarithmic function of the total number of configurations

By interpolating the number of configurations needed
reach a given precision for several matrix sizes, we were a
to estimate the dependence of the number of configurat
needed for a given matrix size. Our conclusion is that
number of configurations needed to reach a given leve
precision grows exponentially with the size of the matrix.

The results of the corresponding unquenched simulatio
using an ensemble generated withNf51 andm50 are simi-
lar to the quenched ones. The unquenched ensemble
have been helpful in improving the overlap between
simulation and the ‘‘true’’ ensemble corresponding to fix
nonzerom. However, this would still necessitate simulatin
an ensemble at nonzerom, which is precisely what we were
trying to avoid. The exponential statistics observed by us
more likely to be the signature of the sign problem itself, i.
the magnitude of the cancellation brought about by the va
ing phase of the determinant. Hence the Glasgow metho
unable to surmount the sign problem. However, in a probl
where the latter is absent, such asSU(2) simulations@34#,

d
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HALÁ SZ, OSBORN, STEPHANOV, AND VERBAARSCHOT PHYSICAL REVIEW D61 076005
the Glasgow method—even quenched—should be helpfu
would be interesting to see how the overlap issue manif
itself in this case.

We obtained results very similar to those of Glasgow
eraging by perturbing the exact coefficients in the RMM p
tition function polynomial. We studied empirically the de
pendence of the reliability of the zeros on the precision w
which the coefficients are known and on the sizeN of the
model matrix for larger matrices. Just like in the case
averaging, this dependence is exponential. That is, give
desired error bound for the zeros, the necessary precisio
the coefficients grows exponentially withN. The extrapola-
tion of this dependence to Glasgow averaging translates
exponentially large statistics, since the precision on the
efficients should be proportional to the square root of
number of configurations.

There is a correlation between the phenomenon of slo
or faster converging zeros and the magnitude of the c
tinuum partition function. The zeros that converge slowly a
in the region where the partition function is suppress
Large cancellations require better precision, hence more
tistics. More formally, the effect of perturbing the coef
cients can be understood as the addition of an extra~error!
polynomial to the true partition function. This extra piece
found to scale exponentially withN, just like the true parti-
tion function. The effect on the phase structure can be s
as the introduction of a spurious phase, which replaces
true ones in the regions of parameter space where the
partition function dominates. The zeros in these regions
low the modified phase boundaries. The scaling property
the error partition function explains the need for exponen
statistics in Glasgow averaging.

The negative result regarding unquenched simulation
m50 is perhaps disappointing. It indicates that the quenc
ensemble and the unquenched ensemble atm50 are equally
J
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D
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relevant to the behavior of the model close to the criticalm.
The upside of the failure of the unquenched ensemble am
50 is that in future applications of the Glasgow method
might be worth trying to use a quenched ensemble. We
mind the reader that using the quenched ensemble is
equivalent to the quenched approximation.

Another glimmer of hope is in the phenomenon of fa
converging zeros. In the present random matrix model
zeros that determine the criticalm are the last to converge
From our analysis there is no indication that the sensit
zeros are generally those close to the real~physical! axis.
There is a possibility that in QCD or in other interestin
non-Hermitian models the critical parameter values are
termined by the robust zeros. It is hard to make any sta
ment in this respect from the currently available QCD d
@4#. Perhaps a schematic model with features closer to Q
in terms of eigenvalue distribution in the complexm plane
would help clarify this issue. In general, it would be inte
esting to see how much of the analysis in this work regard
zeros of approximately known polynomial partition fun
tions applies to other models.
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