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Dual quantum electrodynamics: Dyon-dyon and charge-monopole scattering
in a high-energy approximation

Leonard Gamberg* and Kimball A. Milton†

Department of Physics and Astronomy, University of Oklahoma, Norman, Oklahoma 73019
~Received 28 October 1999; published 8 March 2000!

We develop the quantum field theory of electron-point magnetic monopole interactions and, more generally,
dyon-dyon interactions, based on the original string-dependent ‘‘nonlocal’’ action of Dirac and Schwinger. We
demonstrate that a viable nonperturbative quantum field theoretic formulation can be constructed that results in
a stringindependentcross section for monopole-electron and dyon-dyon scattering. Such calculations can be
done only by using nonperturbative approximations such as the eikonal approximation and not by some
mutilation of lowest-order perturbation theory.

PACS number~s!: 14.80.Hv, 11.30.Fs, 11.80.Fv, 12.20.Ds
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I. INTRODUCTION

The subject of magnetic charge in quantum mechanics
been of great interest since the work of Dirac@1#, who
showed that electric and magnetic charge could co-exist
vided the quantization condition~in rationalized units!

eg

4p
5

N

2
, NPZ, ~1.1!

holds, wheree andg are the electric and magnetic charge
respectively,Z being the integers. In addition, the existen
of topological or ‘‘extended’’ magnetic charge has be
demonstrated in non-Abelian gauge theories@2#, where they
can have profound effects, most notably in the infrared
gime of the QCD vacuum. For example, in the illustrati
scenario of color confinement proposed by Mandelstam
’t Hooft @3# it is conjectured that the QCD vacuum behav
as adual type II superconductor. Because of the conden
tion of magnetic monopoles which emerge from theAbelian
projection@4# of the SU~3! color gauge group, the chromo
electric field acting betweenqq̄ pairs is squeezed into dua
Abrikosov flux tubes@5#. Very recent studies suggest th
these flux tubes may determine the infrared properties of
gluon propagator@6#. Also it has been suggested@7# that
color monopoles are sufficient to trigger the spontane
breakdown of chiral symmetry.

The monopoles most commonly considered today as
ing potentially observable are those associated with
grand-unification symmetry breaking scale, monopoles h
ing masses of order 1016 GeV; however, much lower
symmetry-breaking scales could be relevant, giving rise
monopoles of mass of order 10 TeV@8#. @It is worthwhile
mentioning that the previously believed prohibition~cf. Ref.
@9#! against topological monopoles in electroweak theory
apparently too restrictive@10#, thus raising the possibility o
the existence of monopoles at the electroweak-symm
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breaking scale.# Further, there is no reason why ‘‘elemen
tary’’ Dirac monopoles should not exist; only experime
can settle this question.

Since the early 1970s there have been many experime
searches for magnetic monopoles, ranging from seeking
mological bounds to studies of lunar samples@11#. Although
none of these searches ultimately has yielded a positive
nal, the arguments in favor of the existence of magne
charge, whether elementary or ‘‘extended,’’ remain as
gent as ever. However, the quantum field theory of elem
tary or pointlike magnetic charges remains poorly develop
particularly at the phenomenological level. In view of th
necessity of establishing a reliable estimate for monop
production in accelerators, for example, in order to
bounds on monopole masses in terrestrial experiments@12#,
it is important to put the theory on a firmer foundation.~This
is especially so for limits set through virtual-monopole pr
cesses@13#. For a critique of such limits see Ref.@14#.! It is
the purpose of this paper to initiate a complete study
monopole scattering and production in relativistic quant
electrodynamics extended to include point magnetic char
‘‘dual QED.’’ Given ongoing experiments it is important t
obtain reliable calculations of scattering processes.

From the work of Dirac on the nonrelativistic and th
relativistic quantum mechanics of magnetic monopo
@1,15#, and the subsequent work of Schwinger@16–18# and
later Zwanziger@19# on relativistic quantum field theories o
magnetic monopoles, it is known that it is not possible
write down a theory of pointlike electric and magnetic cu
rents interacting via the electromagnetic field describ
solely in terms of a local vector potentialAm(x). The con-
sistency of the Maxwell equations

]nFmn5 j m and ]n* Fmn5* j m , ~1.2!

where *Fmn5 1
2 emnstF

st, which imply the dual conservation
of electric and magnetic currents,j m and *j m , respectively,

]m j m50 and ]m* j m50, ~1.3!

necessitates the introduction of the Dirac string@1,16# or a
multi-valued potential@20#. In this paper we will follow the
string-dependent formulation, where the singular elect
©2000 The American Physical Society13-1
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magnetic potential is consistent with nonrelativistic quant
mechanics provided the Dirac quantization condition~1.1!
holds or, for particles~labeled bya, b, etc.! carrying both
electric and magnetic charge~dyons!, the Schwinger gener
alization

eagb2ebga

4p
5H N

2
, unsymmetric

N, symmetric
J , NPZ, ~1.4!

is invoked.~‘‘Symmetric’’ and ‘‘unsymmetric’’ refer to the
presence or absence of dual symmetry in the solution
Maxwell’s equations.! That is, consistency conditions, Eq
~1.1! and ~1.4!, must necessarily be satisfied if physical o
servables are to be rendered independent of a gauge art
the Dirac string singularity.Formally, rotational invariance
of nonrelativistic quantum mechanics with monopoles f
lows directly from the Schro¨dinger equation where re
orienting the string is equivalent to a gauge transformat
on the wave function which in turn is well defined given E
~1.1! or Eq. ~1.4!. In addition, in early work on the nonrela
tivistic electron-monopole scattering by Goldhaber@21#,
Schwingeret al. @22#, and Milton and DeRaad@23#, not sur-
prisingly, it was found that the resulting scattering cross s
tion is gauge string independent if and only if the quanti
tion condition is satisfied.1
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On the other hand, attempts to incorporate monopo
consistently into relativistic quantum field theory have m
with mixed success. Weinberg@25# and, somewhat thereaf
ter, Rabl@26# demonstrated that electron-monopole scatt
ing calculated in the one-photon-exchange approxima
was described by a string-dependent scattering amplitud
straightforward calculation begins, for example, with the
teraction given by Schwinger@18,27#:

W~ j ,* j !5E ~dx!~dx8!~dx9!* j m~x!emnst]
n f s~x2x8!

3D1~x82x9! j t~x9!. ~1.5!

Here the electric and magnetic currents arej m5ec̄gmc and
* j m5gx̄gmx, for example, for spin-1/2 particles. The pho
ton propagator is denoted byD1(x2x8) and f m(x) is the
Dirac string function which satisfies the differential equati

]m f m~x!5d~x!, ~1.6!

a formal solution of which is given by

f m~x!5nm~n•]!21d~x!, ~1.7!

wherenm is an arbitrary vector. Therefore, the lowest-ord
scattering amplitude, representing, for example, the inte
tion of a spin-1/2 electron with a spin-0 monopole, is
Tss852ieg
~2p!4d~p2p81k2k8!emnlsnnv̄s8~p8!gmus~p!ql~k1k8!s

A2Ep2Ep82vk2vk8~q22 i e!~n•q1 id!
U

q5p2p8

. ~1.8!
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Here the incoming momenta arep, k, and the outgoing mo-
menta arep8, k8, respectively, while the initial and fina
electron spin projections ares ands8, and where the differen
symbols for the energies of the electron and monopole,E and
v, respectively, refer to the different masses of the co
sponding particles. Further, note that in this paper we us
metric with signature (2,1,1,1), so thatq2.0 represents
a spacelike momentum transfer. The explicit dependence
the covariant string vector,nm , does not disappearupon
squaring the amplitude and multiplying by the appropri
phase space factors. To make matters worse, the value o
magnetic charge implied by Eq.~1.1!, ag5g2/4p'34N2,
calls into question any approach based on a badly diver
perturbative expansion inag . Although these earliest effort
using a Feynman-rule perturbation theory in one of a num

1Upon separation of variables, the angular differential opera
contains a contribution from the ‘‘intrinsic’’ field angular momen
tum carried by the interaction of the monopole with the pho
field, which is naturally quantized upon using the Dirac-Schwin
condition ~1.4!; that is, there is an additional effective magne
quantum numberm85(eagb2eagb)/4p, a fact already implicit in
the classical analysis of Poincare´ and Thomson@24#.
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of approaches to dual QED~see below! resulted in string-
dependent cross sections@25,26#, subsequentlyad hoc as-
sumptions were invoked to render the resulting cross s
tions string independent~e.g. Refs.@28# and @29#!.

Recently, in the context of calculating virtual monopo
processes, De Ru´jula @30# has advocated the notion tha
single photon-mediated monopole-antimonopole Drell-Y
production amplitudes are rendered string independ
through the implausible argument of Deans@28#, which
amounts to dropping the pole terms in the phot
propagator.2 Further, in a series of papers, Ignatiev and Jo
@31#, while arguing that the prescription of Deans lacks b
lievability, propose~as did Rabl@26#! averaging the scatter
ing amplitude over all possible directions of the string
order to eliminate the string dependence. In contrast
Deans, however, they arrive at a null result for the amplitu
in lowest order. Consequently, they argue that general p
ciples of quantum field theory which do not rely upon the ur

r
2Essentially it amounts to discarding string-dependent contri

tions on the basis of the argument that they cannot contribute to
gauge invariant quantity if the theory is to be viable.
3-2
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of perturbation theory must be invoked; that is, they consi
the constraints placed upon the scattering amplitude du
the requirements of discreteC and P symmetries~see also
Tolkachevet al. @32#!.

In contrast, by studying theformal behavior of Green’s
functions in the relativistic quantum field theory of electro
and monopoles, both Schwinger@18,27# and Brandt, Neri
and Zwanziger@33# demonstrated Lorentz and gauge inva
ance. In essence these demonstrations are nonperturb
and rely on the use of pointlike particle trajectories for t
matter fields. In the Schwinger approach, however, class
particle currents

j m~x!5(
e

eE dxe
md~x2xe!

* j m~x!5(
g

gE dxg
md~x2xg! ~1.9!

are substituted for the field theoretic sources, whereupo
change in the string trajectory gives rise to a change in
action which is a multiple of 2p because of the quantizatio
condition~1.1! or ~1.4!. In the second approach, putting asi
the issue of renormalization, Brandtet al.succeed in demon
strating the string independence of correlation functions
gauge- and Lorentz-invariant quantities using a functio
path integral formalism, once again as a consequence of
~1.1! and~1.4!, by converting the path integral over fields
one over closed particle trajectories~see Refs.@34–36#!.

However, while Lorentz invariance and string indepe
dence wereformally demonstrated in dual QED~albeit with
the above caveats!, such demonstrations have been conspi
ously absent in practical calculations.3 This deficiency stems
from the fact that in most phenomenological treatments
electron-monopole processes the ‘‘string independence’
the quantum field theory and the strength of the coupling
treated as separate issues. This viewpoint~see e.g. Refs
@31,29#! could not be more misleading. In fact, these tw
points are intimately related.4 If any lesson is to be learne
from the above-mentioned demonstrations of Lorentz
string invariance, it is this: The quantization conditions~1.1!
and~1.4!, being intimately tied to the demonstration of Lo
entz invariance, are intrinsically nonperturbative stateme
~and for that matter are obtained independently of any p
turbative approximation!. As such, attempts to demonstra
Lorentz invariance, whether formally or phenomenolo
cally, which are based on a perturbative expansion in

3This is surprising because one expects that the invariant no
ativistic scattering result~see Ref.@22# and references therein! cor-
responds in a certain kinematic regime to an infinite summation
a particularsubclassof Feynman diagrams. Moreover, the relati
istic Dirac equation also yields a string-independent cross sec
@37#.

4In this regard we remind the reader of the following viewpoint
Schwinger: ‘‘Relativistic invariance will appear to be violated
any treatment based on a perturbation expansion. Field theo
more than a set of ‘Feynman’s rules’.’’@16#
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coupling will most assuredly fail. While this is not a nov
viewpoint ~see Refs.@18,33#!, it seems to have been ove
looked in the more recent studies of point monopole p
cesses~see also Ref.@29#!.5

In fact, there exists one instance in the literature o
successful calculation demonstrating string independence
a relativistic scattering cross section within dual QED. U
lizing Schwinger’s functional source theory@39,18# in the
context of a high energy, low momentum transfer~zeroth
order eikonal! approximation~e.g. Refs.@40–44# and refer-
ences therein!, Urrutia @45# demonstrated the string indepe
dence of the charge-monopole scattering cross section
though again in his treatment the currents were approxima
by those of classical point particles as in Eq.~1.9!. @An ear-
lier, less complete treatment of charge-monopole scatter
in which Lorentz invariance was demonstrated, was given
F. R. Ore, Jr., Phys. Rev. D13, 2295 ~1976!. We thank R.
Jackiw for reminding us of this reference.#

The outline of this paper is as follows. In Sec. II w
establish the string-dependent dual-electrodynamic action
Sec. III we quantize the dual potential action by solving t
Schwinger-Dyson equations for the vacuum persistence
plitude for electron-monopole~and dyon-dyon! processes.
Then, by taking the functional Fourier transform of this s
lution, we are led unambiguously to the dual QED function
path integral that is compatible with the source theory f
malism developed by Schwinger@18,27#. In the process of
this development, we enforce a gauge fixing condition t
suggests that using the Dirac string formulation is not o
entirely natural and consistent with the underlying gau
symmetry of the charge-monopole system, but in fact is p
erable to the multi-valued potential of Ref.@20#. Having ac-
complished this, in Sec. IV we calculate the dyon-dyon sc
tering cross section in the context of this relativisticstring
dependentversion of dual QED and demonstrate that a no
perturbative approach in conjunction with Eq.~1.1! or Eq.
~1.4! is in fact necessary to demonstrate Lorentz and ga
~string! invariance of physical observables. To accompl
this we use the nonperturbative functional field-theory f
malism of Schwinger@35# and Symanzik@46#.6 Within this
formulation we are able to generalize the string-independ
eikonal result of Urrutia@45# while treating the currents a
constructed from quantum fields by invoking the quantiz
tion condition~1.4!. Finally in Sec. V we draw some conclu
sions concerning the phenomenology of dual QED and o
line our continuing efforts in this direction while in additio
proposing future work. Appendixes deal with some aspe
of the path-integral formalism in dual QED.

II. DUAL ELECTRODYNAMICS

Decades after Dirac’s early quantum-mechanical tre
ment ~both nonrelativistic@1# and relativistic@15#! of the

el-

f

n

is

5A very recent note@38# exemplifying the failure to connect the
issue of the strength of the magnetic coupling with that of str
independence deduces the inverse renormalization of electric
magnetic charges in contradistinction to the identity of these ren
malizations shown by Schwinger@17#.

6For an excellent review of these techniques see@47#.
3-3
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LEONARD GAMBERG AND KIMBALL A. MILTON PHYSICAL REVIEW D 61 075013
electron-monopole system, attempts to establish a consi
interacting quantum field theory of~point! electrons and
monopoles were carried out in two different approaches
Schwinger@16# and by Zwanziger@19#.

Schwinger’s approach is based upon the construction
nonlocalHamiltonian which is a function of two transvers
string-dependent potentials,AT and BT, in addition to, say,
spin-1/2 electron and monopole fields. Second quantiza
is established by postulating the commutation rules betw
the fields and their conjugate field momenta. In this form
lation the two gauge fields have a nonvanishing commuta
and in fact are notlinearly independent. Although this op-
erator method is noncovariant, it has the merit of explici
displaying the dual symmetry between the Dirac equati
for the spin-12 electron and monopole fields, as well as of t
Maxwell equations for the magnetic and electric fields.
turn Schwinger@18,27# developed and advocated a covaria
formalism derived from his source theory approach to qu
tum field theory. Thisfirst-order formulation of dual QED is
written in terms of the field strength tensorFmn and one
independent vector potentialAm . Alternatively, one can
trade the dependence on the field strength for that on
auxiliary dual vector potentialBm . The latter field is intro-
duced to identify unambiguously the photon field coupling
the dual monopole current, *j , through the effective ‘‘skel-
etal’’ action ~1.5!, coupling electric and magnetic current
This latter formulation proves helpful in calculating scatte
ing processes.

A second local covariant Lagrangian formulation ap
proach, developed by Zwanziger, utilizes two four-potenti
Am and Bm , which again are not independent. In additio
this formalism satisfies duality symmetry both at the level
the action as well as between the equations of motion forAm
and Bm and between the equations for the spin-1

2 electron
and monopole fields. The equivalence between these for
isms is shown in Refs.@48,49#.

However, the former covariant formalism of Schwinger
a natural generalization of Dirac’s~relativistic! quantum me-
chanics in the form of a covariant Lagrangian field theore
description of electron-monopole interactions. In this cont
it should come as no surprise that Schwinger’s source the
approach@27# laid the groundwork for the first consisten
gauge-invariant nonperturbative calculation of electro
monopole scattering@45#.

We also note that a ‘‘one potential’’ Hamiltonian formu
lation was developed later by Blagojevic´ et al. @49# where an
explicit set of Feynman rules was displayed. Finally we me
tion in passing the work of Deans@28#, where a formalism
based on Dirac’s monopole theory was quantized within
framework of Mandelstam’s gauge-invariant quantum fi
theory@50#. In Deans’ paper, while a set ofstring-dependent
Feynman rules was developed, they were used without c
cism of the badly divergent perturbation series; in additi
as we have seen, Lorentz-frame~string! dependence is ar
gued away in a highly questionable fashion.

‘‘Dual-potential’’ string dependent action

While the completely general formalism for charg
monopole quantum field theory was developed by Schwin
07501
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in the context of source theory, for the sake of accessibi
here we develop a string-dependent dual QED of monop
electron interactions in a more familiar function
formalism.7

In order to facilitate the construction of the dual-QE
formalism we recognize that the well-known continuous g
bal U(1) dual symmetry@16,18,27# implied by Eqs.~1.2!,
~1.3!, given by

S j 8

* j 8
D 5S cosf sinf

2sinf cosf D S j

* j D , ~2.1a!

S F8

* F8
D 5S cosf sinf

2sinf cosf D S F

* F D , ~2.1b!

suggests the introduction of an auxiliary vector poten
Bm(x) dual to Am(x). In order to satisfy the Maxwell and
charge conservation equations, Dirac modified the fi
strength tensor according to

Fmn5]mAn2]nAm1* Gmn , ~2.2!

where now Eqs.~1.2! and ~1.3! give rise to the consistenc
condition onGmn(x)52Gnm(x):

]n * Fmn52]nGmn5* j m . ~2.3!

We then obtain the following inhomogeneous solution to
dual Maxwell’s equation~2.3! for the tensorGmn(x) in terms
of the string functionf m and the magnetic current, which fo
a spin-1/2 monopole represented by a Dirac fieldx is
* j m(x)5gx̄(x)gmx(x):

Gmn~x!5~n•]!21@nm* j n~x!2nn* j m~x!#

5E ~dy!@ f m~x2y!* j n~y!2 f n~x2y!* j m~y!#,

~2.4!

where use is made of Eqs.~1.3!, ~1.6!, and~1.7!. A minimal
generalization of the QED Lagrangian including electro
monopole interactions reads

L52
1

4
FmnFmn1c̄~ ig]1egA2mc!c1x̄~ ig]2mx!x,

~2.5!

where the coupling of the monopole fieldx(x) to the elec-
tromagnetic field occurs through the quadratic field stren
term according to Eq.~2.2!. We now rewrite the Lagrangian
~2.5! to display more clearly that interaction by introducin
the auxiliary potentialBm(x).

Variation of Eq.~2.5! with respect to the field variables
c, x andAm , yields in addition to the Maxwell equations fo

7However, we emphasize that the source theory approach is in
just that, the ‘‘source’’ of these ideas.
3-4
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the field strength,8 Fmn , Eq. ~1.2! where j m(x)
5ec̄ (x)g mc (x), the equation of motion for the electron fiel

@ ig]1egA~x!2me#c~x!50, ~2.6!

and the nonlocal equation of motion for the monopole fie

~ ig]2mx!x~x!2
1

2E ~dy!* Fmn~y!
dGmn~y!

dx̄~x!
50.

~2.7!

It is straightforward to see from the Dirac equation for t
monopole~2.7! and the construction~2.4! that introducing
the auxiliary dual field~which is a functional ofFmn and
depends on the string functionf m)

Bm~x!52E ~dy! f n~x2y!* Fmn~y! ~2.8!

results in the following Dirac equation for the monopo
field:

@ ig]1ggB~x!2mg#x~x!50. ~2.9!

Here we have chosen the string to satisfy the oddness
dition ~this is the ‘‘symmetric’’ solution!

f m~x!52 f m~2x!, ~2.10!

which is related to Schwinger’s integer quantization con
tion @22,51#. Now Eqs.~2.6! and~2.9! display the dual sym-
metry expressed in Maxwell’s equations~1.2! and~1.3!. Not-
ing thatBm satisfies

E ~dx8! f m~x2x8!Bm~x8!50, ~2.11!

we see that Eq.~2.8! is a gauge-fixed vector field@52,53#
defined in terms of the field strength through aninversion
formula ~see Sec. III A!. In terms of these fields the ‘‘dual
potential’’ action can be re-expressed in terms of the vec
potentialAm and field strength tensorFmn @whereBm is the
functional ~2.8! of Fmn# in a first-order formalism as

W5E ~dx!H 2
1

2
Fmn~x!@]mAn~x!2]nAm~x!#

1
1

4
Fmn~x!Fmn~x!1c̄~x!@ ig]1egA~x!2mc#c~x!

1x̄~x!@ ig]1ggB~x!2mx#x~x!J , ~2.12a!

or in terms ofdual variables,

8We regardGmn(x) as dependent onx̄, x but notAm . Thus, the
dual Maxwell equation is given by the subsidiary condition~2.3!.
07501
,

n-

-

r

W5E ~dx!H 2
1

2
* Fmn~x!@]mBn~x!2]nBm~x!#

1
1

4
* Fmn~x!* Fmn~x!1c̄~x!@ ig]1egA~x!2mc#c~x!

1x̄~x!@ ig]1ggB~x!2mx#x~x!J . ~2.12b!

In Eq. ~2.12a!, Am(x) andFmn(x) are the independent field
variables9 and Bm(x) is given by Eq.~2.8!, while in Eq.
~2.12b! the dual fields are the independent variables,
which case,

Am~x!52E ~dy! f n~x2y!Fmn~y!

5
1

2
emnlsE ~dy! f n~x2y!* Fls~y!. ~2.13!

@Note that Eq. ~2.12b! may be obtained from the form
~2.12a! by inserting Eq.~2.13! into the former and then iden
tifying Bm according to the construction~2.8!. In this way the
sign of 1

4 FmnFmn52 1
4 * Fmn* Fmn is flipped.# Consequently,

the field equation relating *Fmn andBm is

* Fmn5]mBn2]nBm2E ~dy! * @ f m~x2y! j n~y!

2 f n~x2y! j m~y!#, ~2.14!

which is simply obtained from Eq.~2.2! by making the du-
ality transformationE→M, M→2E, whereE stands for
any electric quantity andM for any magnetic quantity.

III. QUANTIZATION OF DUAL QED:
SCHWINGER-DYSON EQUATIONS

Although the various actions describing the interactio
of point electric and magnetic poles can be described
terms of a set of Feynman rules which one conventiona
uses in perturbative calculations, the large value ofag or
eg/4p renders them useless for this purpose. In addition
mentioned in Sec. I, calculations of physical processes u
the perturbative approach from string-dependent actions s
as Eqs.~2.12a! and~2.12b! have led only to string dependen
results. In conjunction with a nonperturbative functional a
proach, however, the Feynman rules serve to elucidate
electron-monopole interactions. We express these inte
tions in terms of the ‘‘dual-potential’’ formalism as a qua
tum generalization of the relativistic classical theory of S
II. We use the Schwinger action principle@54# to quantize
the electron-monopole system by solving the correspond
Schwinger-Dyson equations for the generating function
Using a functional Fourier transform of this generating fun

9Using Eq.~2.8!, variations of the action, Eq.~2.12a!, with respect
to Am(x) andFmn(x) yield Eqs.~1.2! and ~2.2! where *Gmn(x) is
the dual of Eq.~2.4!.
3-5
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tional in terms of a path integral for the electron-monop
system, we rearrange the generating functional into a fo
that is well suited for the purpose of nonperturbative cal
lations.

A. Gauge symmetry

In order to construct the generating functional for Gree
functions in the electron-monopole system we must res
the gauge freedom resulting from the local gauge invaria
of the action~2.12a!. The inversionformulas forAm andBm ,
Eqs. ~2.13! and ~2.8! respectively, might suggest using th
technique of gauge-fixed fields@52,50# as was adopted in
@28#. However, we use the technique of gauge fixing acco
ing to methods outlined by Zumino@55# and generalized by
Zinn-Justin@56# in the language of stochastic quantization

The gauge fields are obtained in terms of the string
the gauge invariant field strength, by contracting the fi
strength~2.2!, ~2.4! with the Dirac string,f m(x), in conjunc-
tion with Eq. ~1.6!, yielding the following inversion formula
for the equation of motion,

Am~x!52E ~dx8! f n~x2x8!Fmn~x8!1]mL̃e~x!,

~3.1!

where we use the suggestive notationL̃e(x),

L̃e~x!5E ~dx8! f n~x2x8!An~x8!. ~3.2!

It is evident that Eq.~3.1! transforms consistently unde
gauge transformation

An~x!→An~x!1]nLe~x!, ~3.3!

while in addition we note that the Lagrangian~2.12a! is in-
variant under the gauge transformation,

c→exp@ ieLe#c, Am→Am1]mLe , ~3.4a!

as is the dual action~2.12b! under

x→exp@ igLg#x, Bm→Bm1]mLg . ~3.4b!

Assuming the freedom to chooseL̃e(x)52Le(x), we bring
the vector potential into gauge-fixed form,10 coinciding with
Eq. ~2.13!,

Am~x!52E ~dy! f n~x2y!Fmn~y!, ~3.5!

where the gauge choice is equivalent to astring-gauge

10It is worth noting the similarity of this condition to the
Schwinger-Fock gauge in ordinary QED,x•A(x)50, which yields
the gauge-fixed photon field,Am(x)52xn*0

1ds sFmn(xs).
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E ~dx8! f m~x2x8!Am~x8!50. ~3.7!

More generally, the fact that a gauge function exists, s
that Le(x)52L̃e(x) @cf. Eq. ~3.2!#, implying that we have
the freedom to consistently fix the gauge, is in fact no
trivial claim. If this were not true, it would certainly dera
the consistency of incorporating monopoles into QED wh
utilizing the Dirac string formalism. On the contrary, th
string gauge condition, Eq.~3.7!, is in fact a class of possible
consistent gauge conditions characterized by the symb
operator function~1.7! depending on a unit vectornm ~which
may be either spacelike or timelike!. In a similar manner,
given the dual field strength~2.14! the dual vector potentia
takes the following form@cf. Eq. ~2.8!#:

Bm~x!52E ~dx8! f n~x2x8!* Fmn~x8!1]mL̃g , ~3.8!

where

L̃g~x!5E ~dx8! f m~x2x8!Bm~x8!. ~3.9!

In order to quantize this system we must divide out t
equivalence class of field values defined by a gauge tra
tory in field space; in this sense the gauge condition restr
the vector potential to a hypersurface of field space which
embodied in the generalization of Eq.~3.7!:

E ~dx8! f m~x2x8!Am~x8!5Le~x!, ~3.10!

where hereLe is any function defining a unique gauge fixin
hypersurface in field space.12

In a path integral formalism, we enforce the conditio
~3.10! by introducing ad function, symbolically written as

d~ f mAm2Le!5E @dle#expF i E ~dx!le~x!

3S E ~dx8! f m~x2x8!Am~x8!2Le~x! D G ,
~3.11!

or by introducing a Gaussian functional integral

11Taking the divergence of Eq.~3.5! and using Eq.~1.2!, the
gauge-fixed condition~3.5! can be written as

]mA m5E ~dy! f m~x2y! j m~y!, ~3.6!

which is nothing other than the gauge-fixed condition of Zwanzi
in the two-potential formalism@19#.

12Choosing a different functionLe ~which the gauge freedom per
mits us to do! merely yields a different section of field space und
the restriction that it cut each equivalence class of field values o
3-6
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F~ f mAm2Le!

5E @dle#expF2
i

2E ~dx!~dx8!le~x!M ~x,x8!le~x8!

1 i E ~dx!le~x!S E ~dx8! f m~x2x8!Am~x8!

2Le~x! D G , ~3.12!

where the symmetric matrixM (x,x8)5k21d(x2x8) de-
scribes the spread of the integral*(dx8) f m(x2x8)Am(x8)
about the gauge function,Le(x). That is, we enforce the
gauge fixing condition~3.10! by adding the quadratic form
appearing here to the action~2.12a! and in turn eliminating
le by its ‘‘equation of motion’’

le~x!5kS E ~dy! f m~x2y!Am~y!2Le~x! D . ~3.13!

Now the equations of motion~1.2! take the form

]nFmn~x!2E ~dx8!le~x8! f m~x82x!5 j m~x!,

~3.14a!

]n* Fmn~x!2E ~dx8!lg~x8! f m~x82x!5* j m~x!,

~3.14b!

where the second equation refers to a similar gauge fixin
the dual sector. Taking the divergence of Eq.~3.14a! implies
le50 from Eqs.~1.6! and ~1.3!, which consistently yields
the gauge condition~3.10!. Using our freedom to make
transformation to the gauge-fixed condition~3.5!, Le50, the
equation of motion~3.14a! for the potential becomes

@2gmn]21]m]n1k nm~n•]!22nn#An~x!

5 j m~x!1emnst

nn

~n•]!
]s* j t~x!, nmAm50,

~3.15!

where we now have used the symbolic form of the str
function ~1.7!. We have retained the term proportional
nmnn in the kernel, scaled by the arbitrary parameterk,

Kmn5@2gmn]21]m]n1k nm~n•]!22nn#, ~3.16!

so thatKmn possesses an inverse

Dmn~x!5Fgmn2
nm]n1nn]m

~n•]!

1n2S 12
1

k

~n•]!2]2

n2 D ]m]n

~n•]!2GD1~x!,

~3.17!
07501
in

g

that is, *(dx8)Kma(x2x8)Dan(x82x9)5gm
n d(x2x9),

whereD1(x) is the massless scalar propagator,

D1~x!5
1

2]22 i e
d~x!. ~3.18!

This in turn enables us to rewrite Eq.~3.15! as an integral
equation, expressing the vector potential in terms of the e
tron and monopole currents,

Am~x!5E ~dx8!Dmn~x2x8! j n~x8!

1enlstE ~dx8!~dx9!Dmn~x2x8!

3 f l~x82x9!]s9 * j t~x9!. ~3.19!

The steps forBm(x) are analogous.

B. Vacuum persistence amplitude and the path integral

Given the gauge-fixed but string-dependent action we
prepared to quantize this theory of dual QED. Quantizat
using a path integral formulation of such a string depend
action is by no means straightforward; therefore we will d
velop the generating functional, making use of a functio
approach. Using the quantum action principle~cf. Ref. @54#!
we write the generating functional for Green functions~or
the vacuum persistence amplitude! in the presence of exter
nal sourcesJ,

Z~J!5^01u02&J, ~3.20!

for the electron-monopole system. Schwinger’s action pr
ciple states that under an arbitrary variation,

d^01u02&J5 i ^01udW~J!u02&J, ~3.21!

where W(J) is the action given in Eq.~2.12a! externally
driven by the sources,J, which for the present case are give
by the set$J,* J,h̄,h,j̄,j%:

W~J!5W1E ~dx!$JmAm1 * JmBm1h̄c1c̄h1 j̄x1x̄j%.

~3.22!

The one-point functions are then given by
3-7
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d

idJm~x!
logZ~J!5

^01uAm~x!u02&J

^01u02&J ,

d

id* Jm~x!
logZ~J!5

^01uBm~x!u02&J

^01u02&J ,

d

idh̄~x!
logZ~J!5

^01uc~x!u02&J

^01u02&J ,

d

idj̄~x!
logZ~J!5

^01ux~x!u02&J

^01u02&J . ~3.23!

Using Eqs.~3.23! we can write down derivatives with re
spect to the charges13 in terms of functional derivatives@57–
59# with respect to the external sources:

]

]e
^01u02&J5 i ^01u E ~dx! j m~x!Am~x!u02&J

52 i E ~dx!S d

dÃm~x!

d

dJm~x!
D ^01u02&J,

]

]g
^01u02&J5 i ^01u E ~dx!* j m~x!Bm~x!u02&J

52 i E ~dx!S d

dB̃m~x!

d

d* Jm~x!
D ^01u02&J.

~3.24!

Here we have introduced an effective source to bring do
the electron and monopole currents,

d

dÃm

[
1

i

d

dh
gm

d

dh̄
,

d

dB̃m

[
1

i

d

dj
gm

d

dj̄
. ~3.25!

These first order differential equations can be integrated w
the result

^01u02&J5expF2 igE ~dx!S d

dB̃n~x!

d

d* Jn~x!
D

2 ieE ~dx!S d

dÃm~x!

d

dJm~x!
D G ^01u02&0

J ,

~3.26!

where^01u02&0
J is the vacuum amplitude in the absence

interactions. By construction, the vacuum amplitude a
Green’s functions for the coupled problem are determined
functional derivatives with respect to the external sourceJ

13Here we redefine the electric and magnetic currentsj→e j and
* j→g* j . Note that the changes in the action due to induc
changes in the fields vanish by virtue of the stationary principle
07501
n

th
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of the uncoupled vacuum amplitude, where^01u02&0
J is the

product of the separate amplitudes for the quantized elec
magnetic and Dirac fields since they constitute complet
independent systems in the absence of coupling, that is,

^01u02&0
J5^01u02&0

(h̄,h,j̄,j)^01u02&0
(J,* J) . ~3.27!

First we consider̂01u02&0
J as a function ofJ and *J

d

idJm~x!
^01u02&0

J5^01uAm~x!u02&0
J . ~3.28!

Taking the matrix element of the integral equation~3.19! but
now with external sources rather than dynamical currents
find

^01uAm~x!u02&0
J

5E ~dx8!Dmn~x2x8!

3S Jn~x8!1enlstE ~dx9! f l~x82x9!]s9 * Jt~x9! D
3^01u02&0

J . ~3.29!

Using Eq. ~3.15! we arrive at the equivalent gauge-fixe
functional equation

@2gmn]21]m]n1knm~n•]!22nn#
d

idJn~x!
^01u02&0

J

5S Jm~x!1emnstE ~dx8! f n~x2x8!]8s* Jt~x8! D
3^01u02&0

J , ~3.30!

which is subject to the gauge condition

nn
d

dJn ^01u02&0
J50 ~3.31a!

or

E ~dx8! f n~x2x8!
d

dJn~x8!
^01u02&0

J50. ~3.31b!

In turn, from Eq.~3.26! we obtain the full functional equa
tion for ^01u02&J:

@2gmn]21]m]n1knm~n•]!22nn#
d

idJn~x!
^01u02&J

5expF2 igE ~dy!S d

dB̃a~y!

d

d* Ja~y!
D

2 ieE ~dy!S d

dÃa~y!

d

dJa~y!
D Gd
3-8
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3S Jm~x!1emnstE ~dx8! f n~x2x8!]8s* Jt~x8! D
3^01u02&0

J . ~3.32!

Commuting the external currents to the left of the expon
tial on the right side of Eq.~3.32! and using Eqs.~3.23!, we
are led to the Schwinger-Dyson equation for the vacu
amplitude, where we have restored the meaning of the fu
tional derivatives with respect toÃ,B̃ given in Eq.~3.25!,

H @2gmn]21]m]n1knm~n•]!22nn#
d

idJn~x!

2e
d

idh~x!
gm

d

idh̄~x!
2emnstE ~dx8! f n~x2x8!

3]8sg
d

idj~x8!
gt

d

idj̄~x8!
J ^01u02&J

5S Jm~x!1emnstE ~dx8! f n~x2x8!]8s * Jt~x8! D
3^01u02&J. ~3.33!

In an analogous manner, using

d

id* Jm~x!
^01u02&0

J5^01uBm~x!u02&0
J , ~3.34!

we obtain the functional equation~which is consistent with
duality!

H @2gmn]21]m]n1knm~n•]!22nn#
d

id* Jn~x!

2g
d

idj~x!
gm

d

idj̄~x!
1emnstE ~dx8! f n~x2x8!

3]8se
d

idh~x8!
gt

d

idh̄~x8!
J ^01u02&J

5S * Jm~x!2emnstE ~dx8! f n~x2x8!]8sJt~x8! D
3^01u02&J, ~3.35!

which is subject to the gauge condition

E ~dx8! f m~x2x8!
d

d * Jm~x8!
^01u02&J50. ~3.36!

In a straightforward manner we obtain the functional Dir
equations
07501
-

c-

H ig]1egm
d

idJm~x!
2mcJ d

idh̄~x!
^01u02&J

52h~x!^01u02&J, ~3.37a!

H ig]1ggm
d

id* Jm~x!
2mxJ d

idj̄~x!
^01u02&J

52j~x!^01u02&J. ~3.37b!

In order to obtain a generating functional for Green
functions we must solve the set of equations~3.33!, ~3.35!,
~3.37a!, ~3.37b! subject to Eqs.~3.31b! and ~3.36! for
^01u02&J. In the absence of interactions, we can imme
ately integrate the Schwinger-Dyson equations; in particu
Eq. ~3.35! then integrates to

^01u02&0
J

5N~J!expH i

2E ~dx!~dx8!* Jm~x!Dmn~x2x8!* Jn~x8!

1 i emnstE ~dx!~dx8!~dx9!* Jb~x!Dbm~x2x8!

3]8n f s~x82x9!Jt~x9!J . ~3.38!

We determineN, which depends only onJ, by inserting Eq.
~3.38! into Eq. ~3.33! or ~3.30!,

ln N~J!5
i

2E ~dx!~dx8!Jm~x!Dmn~x2x8!Jn~x8!,

~3.39!

resulting in the generating functional for the photonic sect

^01u02&0
(J,* J)

5expH i

2E ~dx!~dx8!Jm~x!Dmn~x2x8!Jn~x8!

1
i

2E ~dx!~dx8!* Jm~x!Dmn~x2x8!* Jn~x8!

2 i E ~dx!~dx8!Jm~x!D̃mn~x2x8!* Jn~x9!J ,

~3.40!

where we use the shorthand notation for the ‘‘dual propa
tor’’ that couples magnetic to electric charge:

D̃mn~x2x8!5emnstE ~dx9!D1~x2x9!]9s f t~x92x8!.

~3.41!

The term coupling electric and magnetic sources has
same form as in Eq.~1.5!; here, we have replacedDkm

→gkmD1 , as we may because of the appearance of
3-9
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Levi-Cività symbol in Eq.~3.41!. In an even more straight
forward manner Eqs.~3.37a!, ~3.37b! integrate to

^01u02&0
(h̄,h,j̄,j)

5expH i E ~dx!~dx8!@h̄~x!Gc~x2x8!h~x8!

1 j̄~x!Gx~x2x8!j~x8!#J , ~3.42!

whereGc andGx are the free propagators for the electrica
and magnetically charged fermions, respectively,

Gc~x!5
1

2 ig]1mc
d~x!,

Gx~x!5
1

2 ig]1mx
d~x!. ~3.43!

In the presence of interactions the coupled equations~3.33!,
~3.35!, ~3.37a!, ~3.37b! are solved by substituting Eqs.~3.40!
and~3.42! into Eq. ~3.26!. The resulting generating functio
is

Z~J!5expS 2 ieE ~dx!
d

dh~x!
gm

d

idJm~x!

d

dh̄~x!
D

3expS 2 igE ~dy!
d

dj~y!
gm

3
d

id* Jm~y!

d

dj̄~y!
D Z0~J!. ~3.44!

C. Nonperturbative generating functional

Because of the fact that any expansion inag or eg is not
practically useful, we recast the generating functional~3.44!
into a functional form better suited for a nonperturbati
calculation of the four-point Green’s function.

First we utilize the well-known Gaussian combinato
relation @46,47#; moving the exponentials containing the i
teraction vertices in terms of functional derivatives with r
spect to fermion sources past the free fermion propaga
we obtain~coordinate labels are now suppressed!

Z~J!5expH i E h̄S GcF12eg•
d

idJ
GcG21Dh

1Tr lnS 12eg•
d

idJ
GcD J

3expH i E j̄S GxF12gg•
d

id* J
GxG21D j

1Tr lnS 12gg•
d

id* J
GxD J Z0~J, * J!. ~3.45!
07501
-
rs,

Now, we re-express Eq.~3.40!, the non-interacting part o
the generating functional of the photonic action,Z0(J,* J),
using a functional Fourier transform,

Z0~J,* J!5E @dA#@dB#Z̃0~A,B!expF i E ~J•A1* J•B!G
~3.46!

or

Z0~J,* J!5E @dA#@dB#exp~ iG0@A,B,J,* J# !,

~3.47!

where ~using a matrix notation for integration over coord
nates!

G0@A,B,J,* J#5E ~J•A1* J•B!2
1

2E AmKmn An

1
1

2E B8mD̃mn
21B8n ~3.48!

with the abbreviation

Bm8 ~x!5Bm~x!2emnstE ~dx8!]n f s~x2x8!At~x8!

~3.49!

and the string-dependent ‘‘correlator’’

D̃mn~x2x8!5E ~dx9!$ f s~x2x9! f s~x92x8!gmn

2 f m~x2x9! f n~x92x8!% ~3.50!

~see Appendix A for details!. Using Eq.~3.48! we recast Eq.
~3.45! as

Z~J!5E @dA#@dB#F1~A!F2~B!exp~ iG0@A,B,J,* J# !.

~3.51!

Here the fermion functionalsF1 andF2 are obtained by the
replacementsd/ idJ→A, d/ id * J→B:

F1~A!5expHTr ln~12eg•AGc!

1 i E h̄~Gc@12eg•AGc#21!hJ ,

F2~B!5expHTr ln~12gg•BGx!

1 i E j̄~Gx@12gg•BGx#21!jJ . ~3.52!

We perform a change of variables by shifting about the s
tionary configuration of the effective action,G0@A,B,J,* J#:
3-10
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Am~x!5Ām~x!1fm~x!, Bm8 ~x!5B̄m8 ~x!1fm8 ~x! ~3.53!

whereĀ and B̄ are given by the solutions to

dG0~A,B,J,* J!

dAt
50,

dG0~A,B,J,* J!

dBt
50, ~3.54!

namely~most easily seen by regardingA andB8 as independent variables!,

Ām~x!5E ~dx8!Dmk~x2x8!S Jk~x8!2eknstE ~dx9!]n8 f s~x82x9!* Jt~x9! D ,

B̄m~x!5E ~dx8!Dmk~x2x8!S * Jk~x8!1eknstE ~dx9!]n8 f s~x82x9!Jt~x9! D , ~3.55!

reflecting the form of Eq.~3.19! and its dual. Note that the solutions~3.55! respect the dual symmetry, which is not howev
manifest in the form of the effective action~3.48!. Using the properties of Volterra expansions for functionals and perform
the resulting quadratic integration overf(x) and f8(x) ~see Appendix B!, we obtain a rearrangement of the generat
functional for the monopole-electron system that is well suited for nonperturbative calculations:

Z~J!

Z0~J,* J!
5expH i

2E ~dx!~dx8!S d

dĀm~x!
Dmn~x2x8!

d

dĀn~x8!
1

d

dB̄m~x!
Dmn~x2x8!

d

dB̄n~x8!
D

2 i E ~dx!~dx8!
d

dĀm~x!
D̃mn~x2x8!

d

dB̄n~x8!
J expH i E ~dx!~dx8!h̄~x!G~x,x8uĀ!h~x8!

1 i E ~dx!~dx8!j̄~x!G~x,x8uB̄!j~x8!J expH 2E
0

e

de8Tr gĀG~x,xuĀ!2E
0

g

dg8Tr gB̄G~x,xuB̄!J . ~3.56!

Here the two-point fermion Green’s functionsG(x1 ,y1uĀ), andG(x2 ,y2uB̄) in the background of the stationary photon fie
Ā,B̄ are given by

G~x,x8uĀ!5^xu~gp1mc2egĀ!21ux8&,

G~x,x8uB̄!5^xu~gp1mx2ggB̄!21ux8&, ~3.57!

where the trace includes integration over spacetime. This result is equivalent to the functional Fourier transform give
~3.46! including the fermionic monopole-electron system:

Z~J!5E @dA#@dB#det~2 igDA1mc!det~2 igDB1mx!expH i E ~dx!~dx8!@h̄~x!G~x,x8uA!h~x8!

1 j̄~x!G~x,x8uB!j~x8!#J expH 2
i

2E ~AmKmnAn2B8mD̃mn
21B8n!1 i E ~J•A1* J•B!J , ~3.58!

where we have integrated over the fermion degrees of freedom.
Finally from our knowledge of the manner in which electric and magnetic charge couple to photons through Ma

equations we can immediately write the generalization of Eq.~3.56! for dyons, the different species of which are labeled
the indexa:

Z~J!5expH i

2E ~dx!~dx8!K m~x!Dmn~x2x8!K n~x8!J expH i

2E ~dx!~dx8!
d

dĀm~x!
Dmn~x2x8!

d

dĀn~x8!
J

3expH i(
a
E ~dx!~dx8!z̄a~x!Ga~x,x8uĀa!za~x8!J expH 2(

a
E

0

1

dq Tr gĀaGa~x,xuqĀa!J , ~3.59!

whereAa5eaA1gaB, za is the source for the dyon of speciesa, and a matrix notation is adopted,
075013-11



e
-
e
n
e
ic
a
ris
rin

w
m

dy

o
er

rin
ro
-
ar
n
e

ns

ec
o

er-
:

o

t

ap-

LEONARD GAMBERG AND KIMBALL A. MILTON PHYSICAL REVIEW D 61 075013
K m~x!5S J~x!

* J~x!
D ,

d

dĀm~x!
5S d/dĀm~x!

d/dB̄m~x!
D ,

~3.60!

and

Dmn~x2x8!5S Dmn~x2x8! 2D̃mn~x2x8!

D̃mn~x2x8! Dmn~x2x8!
D .

~3.61!

IV. STRING INDEPENDENCE OF THE DYON-DYON
SCATTERING CROSS SECTION

In this section we demonstrate the string independenc
the dyon-dyon and charge-monopole~the latter being a spe
cial case of the former! scattering cross section. We will us
the generating functional~3.59! developed in the last sectio
to calculate the scattering cross section nonperturbativ
We find that we are able to demonstrate phenomenolog
string invariance of the scattering cross section. It appe
that in much the same manner as the Coulomb phase a
as a soft effect in high energy charge scattering, the st
dependence arises from the exchange of soft photons.

To calculate the dyon-dyon scattering cross section
obtain the four-point Green’s function for this process fro
Eq. ~3.59!:

G~x1 ,y1 ;x2 ,y2!

5
d

idz̄1~x1!

d

idz1~y1!

d

idz̄2~x2!

d

idz2~x2!
Z~J!U

J50

.

~4.1!

The subscripts on the sources refer to the two different
ons.

Here we confront our calculational limits; these are n
too dissimilar from those encountered in diffractive scatt
ing or in the strong-coupling regime of QCD@60–63#. As a
first step in analyzing the string dependence of the scatte
amplitudes, we study high-energy forward scattering p
cesses wheresoft photon contributions dominate. In dia
grammatic language, in this kinematic regime it is custom
to restrict attention to that subclass in which there are
closed fermion loops and the photons are exchanged betw
fermions@60#. In the context of Schwinger-Dyson equatio
this amounts to quenched or ladder approximation~see Fig.
1!. In this approximation the linkage operators, Ł, conn
two fermion propagators via photon exchange, as we read
from Eq. ~3.56!:

eŁ125expH i E ~dx!~dx8!
d

dĀ1
m~x!

D mn~x2x8!
d

dĀ2
n~x8!

J .

~4.2!

In this approximation Eq.~4.1! takes the form
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G~x1 ,y1 ;x2 ,y2!

52eŁ12G1~x1 ,y1uĀ1!G2~x2 ,y2uĀ2!uĀ5B̄50 , ~4.3!

where we express the two-point function using the prop
time parameter representation of an ordered exponential

Ga~x,yuĀa!5 i E
0

`

dje2 i j(ma2 ig])

3expH i E
0

j

dj8ej8g]gĀae2j8g]J
1

d~x2y!,

~4.4!

where ‘‘1 ’’ denotes path ordering inj8. The 12 subscripts
in Ł12 emphasize that only photon lines that link the tw
fermion lines are being considered.

High energy scattering cross section

Adapting techniques outlined in@64,65# we consider the
connected form of Eq.~4.3!. We use the connected two-poin
function and the identities

eŁ511E
0

1

daeaŁŁ ~4.5!

and

d

dĀm~x!
G~y,zuĀ!5eG~y,xuĀ!gmG~x,zuĀ!. ~4.6!

Using Eqs.~4.3! and~4.4! one straightforwardly is led to the
following representation of the four-point Green function,

G~x1 ,y1 ;x2 ,y2!52 i E
0

1

daE ~dz1!~dz2!

3@q1•q2Dmn~z12z2!2q13q2

3D̃mn~z12z2!#eaL12G1~x1 ,z1uĀ1!

3gmG1~z1 ,y1uĀ1!G2~x2 ,z2uĀ2!

3gnG2~z2 ,y2uĀ2!U
Ā5B̄50

, ~4.7!

FIG. 1. Dyon-dyon scattering amplitudes in the quenched
proximation.
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where the charge combinations invariant under duality tra
formations are

q1•q25e1e21g1g2

q13q25e1g22g1e2 . ~4.8!

In order to account for the soft nonperturbative effects of
interaction between electric and magnetic charges we c
sider the limit in which the momentum exchanged by t
photons is small compared to the mass of the fermions. T
affords a substantial simplification in evaluating the pa
ordered exponential in Eq.~4.4!; in conjunction with the as-
sumption of small momentum transfer compared to the in
dent and outgoing momenta,q/p(1,2)!1, this amounts to the
Bloch-Nordsieck@66# or eikonal approximation~see@40–43#
07501
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and for more modern applications in diffractive and stro
coupling QCD processes see@60–63#!. In this approximation
Eq. ~4.4! becomes

Ga~x,yuĀ!5 i E
0

`

dje2 i jmdS x2y2j
p

mD
3expH i E

0

j

dj8
p

m
•ĀS x2j8

p

mD J . ~4.9!

With this simplification each propagator in Eq.~4.3! can be
written as an exponential of a linear function of the gau
field. Performing mass shell amputation on each external
ordinate and taking the Fourier transform of Eq.~4.7! we
obtain the scattering amplitude,T(p1 ,p18 ;p2 ,p28):
ls con-
T~p1 ,p18 ;p2 ,p28!52 i E
0

1

daeaŁ12E ~dz1!~dz2!@q1•q2Dmn~z12z2!2q13q2D̃mn~z12z2!#

3E ~dx1!e2 ip1x1ū~p1!~m11v1•p1!G1~x1 ,z1uĀ1!gmE ~dy1!eip18y1G1~z1 ,y1uĀ1!~m11v18•p18!u~p18!

3E ~dx2!e2 ix2p2ū~p2!~m21v2•p2!G2~x2 ,z2uĀ2!gnE ~dy2!eip28y2G2~z2 ,y2uĀ2!~m21v28•p28!u~p28!.

~4.10!

Substituting Eq.~4.9! into Eq. ~4.10!, we simplify this to

T~p1 ,p18 ;p2 ,p28!52 i E
0

1

d aE ~dz1!~dz2!e2 iz1(p12p18)e2 iz2(p22p28)ū~p18!gmu~p1!ū~p28!gnu~p2!

3@q1•q2Dmn~z12z2!2q13q2D̃mn~z12z2!#eaL12

3expF i E
0

`

da1$p1•@Ā1~z11a1p1!#1p18•@Ā1~z12a1p18!#%G
3expF i E

0

`

da2$p2•@Ā2~z21a2p2!#1p28•@Ā2~z22a2p28!#%G . ~4.11!

Choosing the incoming momenta to be in thez direction, in the center of momentum frame,p1
m5(E1,0,0,p), p2

m

5(E2,0,0,2p), invoking the approximation of small recoil and passing the linkage operator through the exponentia
taining the photon field, we find, from Eq.~4.11!,

T~p1 ,p18 ;p2 ,p28!52 i E
0

1

daE ~dz1!~dz2!e2 iz1(p12p18)e2 iz2(p22p28)ū~p18!gmu~p1!ȳ~p28!gny~p2!

3@q1•q2Dmn~z12z2!2q13q2D̃mn~z12z2!#eiaF(p1 ,p2 ;z12z2), ~4.12!

where the ‘‘eikonal phase’’ integral is

Fn~p1,p2;z12z2!5p1
kp2

lE
2`

`

da1 da2~q1•q2Dkl

2q13q2D̃kl!~z12z21a1p12a2p2!. ~4.13!

We transform to the center of momentum coordinates, by decomposing the relative coordinate accordingly,
3-13
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~z12z2!m5x'
m2t1p1

m1t2p2
m , ~4.14!

where the Jacobian of the transformation is

J5pAs ~4.15!

ands52(p11p2)2 is the square of the center of mass e
ergy. Here we use thesymmetric~see @22,23# for details!
infinite string function, which has the momentum-space fo

f m~k!5
nm

2i S 1

n•k2 id
1

1

n•k1 id D . ~4.16!

Inserting the momentum-space representation of the pr
gator, we cast Eq.~4.13! into the form

Fn~p1 ,p2 ;x!

5p1
kp2

lE
2`

`

da1 da2E ~dk!

~2p!4

eik•(x1a1p12a2p2)

k21m2

3Fq1•q2gkl2q13q2eklstk
s

3
nt

2 S 1

n•k2 id
1

1

n•k1 id D G , ~4.17!

where we have introduced the standard infrared photon-m
regulator,m2. The delta functions that result from perform
ing the integrations over parametersa1 anda2 in Eq. ~4.17!
in the eikonal phase suggest the momentum decomposi

km5k'
m1l1e1

m1l2e2
m ,

where l15p2•k, and l25p1•k, ~4.18!

and the four-vector basis is given by

e1
m5

21

As
S 1,0,0,

p1
0

p D and e2
m5

21

As
S 1,0,0,2

p2
0

p D ,

~4.19!

which have the following properties:

e1•e15
1

s

M1
2

p2
, e2•e25

1

s

M2
2

p2
, and e1•e25

1

s

p1•p2

p2
.

~4.20!

The corresponding measure and Jacobian are, respectiv

~dk!5Jd2k'dl1dl2 and J5~pAs!21. ~4.21!

Using the definition of the Mo” ller amplitude,M (s,t), given
by removing the momentum-conserving delta function,
07501
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n

y,

T~p1 ,p18 ;p2 ,p28!5~2p!4d (4)~P2P8!M ~s,t !, ~4.22!

we put Eq.~4.12! into the form

M ~s,t !52 i E
0

1

daE d2x'e2 iq'•x'ū~p18!gmu~p1!

3ū~p28!gnu~p2!I mneiaFn(p1 ,p2 ;x), ~4.23!

where

I mn5E d2k'

~2p!2

dl1

2p

dl2

2p

3
eik'•x'2pd~l1!2pd~l2!

S k'
2 1m21

1

sp2
~l1

2M1
21l2

2M2
212l1l2p1•p2!D

3Fq1•q2gmn2q13q2emnstk
s

3
nt

2 S 1

n•k2 id
1

1

n•k1 id D G . ~4.24!

Here P5p11p2 and P85p181p28 , and q5p12p18 is the
momentum transfer. The factor

exp~ i t1p1•q2 i t2p2•q!5expF i
1

2
q2~t11t2!G

~4.25!

has been omitted because it is unity in the eikonal limit, a
correspondingly, we have carried out the integrals ont1 and
t2. The eikonal phase, Eq.~4.17!, now takes the very similar
form

Fn~p1 ,p2 ;x!5
p1

kp2
l

pAs
I kl . ~4.26!

Choosing a spacelike string,14 nm5(0,n), integrating over
the coordinatesl1 ,l2, and introducing ‘‘proper-time’’ pa-
rameter representations of the propagators, we reduce
~4.26! to

14We choose a spacelike string in order that we formally hav
local interaction in momentum space.
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Fn~p1 ,p2 ;x!5
1

pAs
E d2k

~2p!2
eik•xE

0

`

dse2s(k21m2)H q1•q2p1•p22q13q2p1
mp2

nemnst

ns

2i

]

]nt
S E

0

`dt

i t
ei t(n•k1 id)

2E
2`

0 dt

i t
ei t(n•k2 id)D J 5

1

2p H q1•q2

p1•p2

pAs
K0~muxu!2q13q2e3 jknj

]

]nk

1

2E dt

t
K0@mu~x1tn!u#J ,

~4.27!

in terms of modified Bessel functions, where we have dropped the subscript�.
We perform the parameter integral over t in the limit of smallm2:

2
1

2
ẑ•~ n̂3x!F E

0

`

2E
2`

0 G dt e2dutu

~ t1n̂•x!21x22~ n̂•x!2
5arctanF n•x

ẑ•~ n̂3x!
G , ~4.28!

so the phase is

Fn~p1 ,p2 ;x!5
1

2p H q1•q2ln~m̃uxu!2q13q2arctanF n̂•x

ẑ•~ n̂3x!
G J . ~4.29!

In this limit we have used the asymptotic limit of the modfied Bessel function

K0~x!;2 lnS egx

2 D , ~4.30!

whereg50.577 . . . isEuler’s constant and we have definedm̃5egm/2. Similarly, Eq.~4.23! becomes

M ~s,t !52
i

2pE0

1

daE d2xeiq•xū~p18!gmu~p1!ū~p28!gnu~p2!

3H gmnq1•q2K0~muxu!2emnstq13q2nt
]

]ns

1

2E dt

t
K0@mu~x1tn!u#J eiaFn(p1 ,p2 ;x). ~4.31!
c-
pl
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s

rs
e
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er
Although in the eikonal limit, no spin-flip processes o
cur, it is, as always, easier to calculate the helicity am
tudes, of which there is only one in this case. In the hig
energy limit,p0@m, the Dirac spinor in the helicity basis i

us~p!5A p0

2m
~11 ig5s!vs , ~4.32!

where thevs may be thought of as two-component spino
satisfyingg0vs5vs . They are further eigenstates of the h
licity operators•p̂ with eigenvalues:

v1
† ~ p̂8!5S cos

u

2
,sin

u

2D v2
† ~ p̂8!5S 2sin

u

2
,cos

u

2D
v1~ p̂!5S 1

0D v2~ p̂!5S 0

1D . ~4.33!

We employ the definition

g55g0g1g2g3 ~4.34!
07501
i-
-

-

and consequentlyg0g5 ig5s, wheres i j 5e i jksk. We then
easily find upon integrating over the parametera that the
spin non-flip part of Eq.~4.31! becomes (u→0)

M ~s,t !5
s

2M1M2
H E d2x eiq•xeiFn(p1 ,p2 ;x)2~2p!2d2~q!J .

~4.35!

Now notice that the arctangent function is discontinuo
when thexy components ofn̂ andx lie in the same direction.
We require that the eikonal phase factoreiFn be continuous,
which leads to the Schwinger quantization condition~1.4!:

q13q254Np. ~4.36!

Now using the integral form for the Bessel function of ord
n,

i nJn~ t !5E
0

2pdf

2p
ei (t cosf2nf), ~4.37!

we find the dyon-dyon scattering amplitude~4.35! to be
3-15
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M ~s,t !5
ps

M1M2
ei2NcE

0

`

dx x J2N~qx!ei2ã ln(m̃x),

~4.38!

where ã5q1•q2/4p, and c is the angle betweenq and n.
The integral overx is just a ratio of gamma functions,

E
0

`

dx~m̃x!112i ãJ2N~qx!5
1

2m̃
S 4m̃2

q2 D i ã11
G~11N1 i ã !

G~N2 i ã !
.

~4.39!

Then Eq.~4.38! becomes

M ~s,t !5
s

M1M2

2p

q2 ~N2 i ã !ei2NcS 4m̃2

q2 D i ã
G~11N1 i ã !

G~11N2 i ã !
.

~4.40!

This result is almost identical in structure to the nonrelat
istic form of the scattering amplitude for the Coulomb p
tential, which result is recovered by settingN50. ~See, for
example, Ref.@67#.! Following the standard convention@68#
we calculate the spin-averaged cross section for dyon-d
scattering in the high energy limit,

ds

dt
5

~q1•q2!21~q13q2!2

4pt2
. ~4.41!

While the Lagrangian is string dependent, because of
charge quantization condition, the cross section, Eq~4.41!, is
string independent.

For the case of charge-monopole scatteringe15g250,
this result, of course, coincides with that found by Urru
@45#, which is also string independent as a consequenc
Eq. ~1.1!. This is to be contrasted withad hocprescriptions
that average over string directions or eliminate its dep
dence by simply dropping string-dependent terms beca
they cannot contribute to any gauge invariant quantities~cf.
Ref. @28#!.

V. CONCLUSION

In this paper we have responded to the challenge
Schwinger@27#, to construct a realistic theory of relativisti
magnetic charges. He sketched such a development in so
theory language, but restricted his consideration to class
point particles, explicitly leaving the details to the read
Urrutia applied this skeletal formulation in the eikonal lim
@45#, as already suggested by Schwinger.

We believe that we have given a complete formulation
modern quantum field theoretic language, of an interac
electron-monopole or dyon-dyon system. The result
Schwinger-Dyson equations, although to some extent
plicit in the work of Schwinger and others, are given here
the first time.

The challenge is to apply these equations to the calc
tion of monopole and dyon processes. Perturbation theo
useless, not only because of the strength of the coupling
more essentially because the graphs are fatally string~or
07501
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gauge! dependent. The most obvious nonperturbative te
nique for transcending these limitations in scattering p
cesses lies in the high energy regime where the eikonal
proximation is applicable; in that limit, our formalism
generalizes the lowest-order result of Urrutia and charts
way to include systematic corrections. More problematic
the treatment of monopole production processes—we d
that discussion to a subsequent publication.

In addition we have also detailed how the Dirac stri
dependence disappears from physical quantities. It is by
means a result of string averaging or a result of dropp
string-dependent terms as in Ref.@28#. In fact, it is a result of
summing the soft contributions to the dyon-dyon or char
monopole process. There is good reason to believe tha
clusion of hard scattering contributions will not spoil th
consistency. At the level of the eikonal approximation and
corrections one might suspect the occurrence of a factor
tion of hard string-independent and soft string-depend
contributions in a manner similar to that argued recently
strong-coupling QCD.

It is also of interest to investigate other nonperturbat
methods of calculation in order to demonstrate gauge inv
ance of Green’s functions and scattering amplitudes in b
electron-monopole and dyon-dyon scattering and in Dr
Yan production processes.15 In a subsequent paper we wi
apply the techniques and results found here to the Drell-Y
production of monopole-antimonopole processes, and ob
phenomenologically relevant estimates for the laborat
production of monopole-antimonopole pairs.
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APPENDIX A: PATH INTEGRAL

In this appendix we summarize the main steps to obt
the covariant path integral for the string dependent act
corresponding to the generating functional, Eq.~3.44!.

This path integral is obtained by calculating the function
Fourier transform ofZ0 which in the photonic secto
amounts to transforming Eq.~3.40!, according to Eq.~3.46!,
the functional transform of which is given by

Z̃0~A,B!5E @dJ#@d* J#Z0~J,* J!

3expF2 i E ~J•A1* J•B!G . ~A1!

15In addition there is a formalism recently employed in Ref.@69#
based on Fradkin’s@70# Green’s function representation, which in
cludes approximate vertex and self-energy polarization correct
using nonperturbative techniques.
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After performing the Gaussian functional integration oveJ
in Eq. ~A1!, we obtain

Z̃0~A,B!5E @d * J#expH 2 i E ~dx!* Jm~x!Bm~x!

1
i

2E ~dx!~dx8!* Jm~x!Dmn~x2x8!* Jn~x8!

2
i

2E ~dx!~dx8!Am8 ~x!Kmn~x2x8!An8~x8!J ,

~A2!

whereKmn is the kernel given by Eq.~3.16!, the inverse to
Dmn, and

Am8 ~x!5Am~x!1emnstE ~dx!~dx8!~dx9!D~x2x8!

3]8n f s~x82x9!* Jt~x9!. ~A3!

We now use the following identity involving the contractio
of e symbols,
07501
emabgemnst52gn
ags

bgt
g1gn

agt
bgs

g1gs
agn

bgt
g2gs

agt
bgn

g

2gt
agn

bgs
g1gt

ags
bgn

g , ~A4!

to simplify the final term in the exponential in Eq.~A2!:

2
i

2E ~dx!~dx8!Am8 ~x!D21~x2x8!A8m~x8!

52
i

2E ~dx!~dx8!Am~x!D21~x2x8!Am~x8!

1 i E ~dx!~dx8!* Jm~x!emnst]
n f s~x2x8!At~x8!

2
i

2E ~dx!~dx8!* Jm~x!Dmn~x2x8!* Jn~x8!

2
i

2E ~dx!~dx8!* Jm~x!D1~x2x8!* Jm~x8!,

~A5!

the last term of which cancels the second term in the ex
nential in Eq.~A2!. Here we see the ‘‘string propagator,
Eq. ~3.50!. Now we carry out the *J functional integration,
noticing that the second term on the right side of Eq.~A5!
convertsBm to B8m, Eq. ~3.49!:
in the
Z0~A,B!5E @dA#@dB#expH 2
i

2E ~dx!~dx8!Am~x!Kmn~x2x8!An~x8!1
i

2E ~dx!~dx8!B8m~x!D̃mn
21~x2x8!B8n~x8!J

~A6!

which implies the effective action~3.48!.

APPENDIX B: FUNCTIONAL REARRANGEMENT

We consider the expansion about the minima of the effective actionG0@A,B,J,* J#, in particular, the impact on Eqs.~3.52!
of the transformation~3.53!. Using the properties of Volterra expansions for functionals, the shift in variables results
translation of the loop functionals:

F1~Ām1fm!5expH i E ~dx!fa~x!
d

idĀa~x!
J F1~Ām!, ~B1a!

F2~B̂m8 1fm8 !5expH i E ~dx!S fa8 ~x!2eabgdE ~dx8!]b f g~x2x8!

3fd~x8! D d

idB̄a~x!
J F2~B̄m!. ~B1b!

where

B̂m8 ~x!5B̄m~x!2emnstE ~dx8!]n f s~x2x8!ft~x8!. ~B2!

Substituting Eqs.~B1a!, ~B1b! back into Eq.~3.52!,
3-17
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Z~J!5expH i

2E ~dx!~dx8!@Jm~x!Dmn~x2x8!Jn~x8!1* Jm~x!Dmn~x2x8!* Jn~x8!#

2 i emnstE ~dx!~dx8!~dx9!Jk~x!Dkm~x2x8!]8n f s~x82x9!* Jt~x9!J
3E @df#@df8#expH i E ~dx!S fm~x!F d

idĀm~x!
1emnstE ~dx8!]n f s~x2x8!

d

idB̄t~x8!
G1fm8 ~x!

d

idB̄m~x!
D

2
i

2E ~dx!~dx8!@fm~x!Kmn~x2x8!fn~x8!2f8m~x!D̃mn
21~x2x8!f8n~x8!#J F1~Ā!F2~B̄!, ~B3!

and performing the resulting quadratic integration overf(x) andf8(x), we obtain the results in Eq.~3.56!.
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