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Dual quantum electrodynamics: Dyon-dyon and charge-monopole scattering
in a high-energy approximation
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We develop the quantum field theory of electron-point magnetic monopole interactions and, more generally,
dyon-dyon interactions, based on the original string-dependent “nonlocal” action of Dirac and Schwinger. We
demonstrate that a viable nonperturbative quantum field theoretic formulation can be constructed that results in
a stringindependentross section for monopole-electron and dyon-dyon scattering. Such calculations can be
done only by using nonperturbative approximations such as the eikonal approximation and not by some
mutilation of lowest-order perturbation theory.

PACS numbe(s): 14.80.Hv, 11.30.Fs, 11.80.Fv, 12.20.Ds

[. INTRODUCTION breaking scalg.Further, there is no reason why “elemen-
tary” Dirac monopoles should not exist; only experiment
The subject of magnetic charge in quantum mechanics hazn settle this question.

been of great interest since the work of Dirpt], who Since the early 1970s there have been many experimental
showed that electric and magnetic charge could co-exist prasearches for magnetic monopoles, ranging from seeking cos-
vided the quantization conditiofin rationalized units mological bounds to studies of lunar samgdl&s]. Although

none of these searches ultimately has yielded a positive sig-
nal, the arguments in favor of the existence of magnetic
charge, whether elementary or “extended,” remain as co-
gent as ever. However, the quantum field theory of elemen-
tary or pointlike magnetic charges remains poorly developed,
. i particularly at the phenomenological level. In view of the
holds, wheree andg are the electric and magnetic charges, necessity of establishing a reliable estimate for monopole
respectivelyZ being the integers. In addition, the eX'Stenceproduction in accelerators, for example, in order to set
of topological or “extend_ed” magnetic charge has beenpgunds on monopole masses in terrestrial experindi2s
demonstrated in non-Abelian gauge theofizs where they i s important to put the theory on a firmer foundatiéfhis
can have profound effects, most notably in the infrared rejs especially so for limits set through virtual-monopole pro-
gime of the QCD vacuum. For example, in the illustrative cesseg13]. For a critique of such limits see RéL4].) It is
scenario of _c<_)lor co_nflnement proposed by Mandelstam ang,e purpose of this paper to initiate a complete study of
't Hooft [3] it is conjectured that the QCD vacuum behavesmonopole scattering and production in relativistic quantum
as adual type Il superconductor. Because of the condensagectrodynamics extended to include point magnetic charges,
tion of magnetic monopoles which emerge from figelian  «qyal QED.” Given ongoing experiments it is important to
projection[4] of the SU3) color gauge group, the chromo- ghain reliable calculations of scattering processes.
electric field acting betweeqq pairs is squeezed into dual From the work of Dirac on the nonrelativistic and the
Abrikosov flux tubes[5]. Very recent studies suggest that relativistic quantum mechanics of magnetic monopoles
these flux tubes may determine the infrared properties of thgl,15], and the subsequent work of Schwing&6—1§ and
gluon propagatof6]. Also it has been suggestdd] that later Zwanzigef19] on relativistic quantum field theories of
color monopoles are sufficient to trigger the spontaneousnagnetic monopoles, it is known that it is not possible to
breakdown of chiral symmetry. write down a theory of pointlike electric and magnetic cur-
The monopoles most commonly considered today as beents interacting via the electromagnetic field described
ing potentially observable are those associated with theolely in terms of a local vector potential,(x). The con-
grand-unification symmetry breaking scale, monopoles havsistency of the Maxwell equations
ing masses of order 1D GeV; however, much lower
symmetry-breaking scales could be relevant, giving rise to 'F =i, and 9"F, =*j,, (1.2
monopoles of mass of order 10 T€8]. [It is worthwhile
mentioning that the previously believed prohibititei. Ref. ~ where *F , = %e#WTF‘”, which imply the dual conservation
[9]) against topological monopoles in electroweak theory isof electric and magnetic currents, and *j ,, respectively,
apparently too restrictivgl0], thus raising the possibility of

, NeZz, (1.9

the existence of monopoles at the electroweak-symmetry d,j#=0 and a;jl‘zo, (1.3
necessitates the introduction of the Dirac stridgl6] or a
*Electronic address: gamberg@mail.nhn.ou.edu multi-valued potentia[20]. In this paper we will follow the
TElectronic address: milton@mail.nhn.ou.edu string-dependent formulation, where the singular electro-
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magnetic potential is consistent with nonrelativistic quantum On the other hand, attempts to incorporate monopoles
mechanics provided the Dirac quantization condit{d@nl) consistently into relativistic quantum field theory have met
holds or, for particlelabeled bya, b, etc) carrying both  with mixed success. Weinbef@5] and, somewhat thereaf-
electric and magnetic charddyons, the Schwinger gener- ter, Rabl[26] demonstrated that electron-monopole scatter-
alization ing calculated in the one-photon-exchange approximation
was described by a string-dependent scattering amplitude. A
straightforward calculation begins, for example, with the in-

N .
Cadb—€p0a | 5. UNSymmetr Nez, (1.4 teraction given by Schwingdd8,27:

A N ) ’
N, symmetric

W(j,*j)=f (dx) (dX")(AX")* JH4(X) €6, F7(X=X")

is invoked. (“Symmetric” and “unsymmetric” refer to the

presence or absence of dual symmetry in the solutions of XD, (X' —xX")j(X"). (1.5
Maxwell's equationg. That is, consistency conditions, Egs.

(1.1) and(1.4), must necessarily be satisfied if physical ob-Here the electric and magnetic currents pre- ey, and
serval_ales are to b_e rend_ered mdependent of a gauge artlfacﬁ’MZQX)’MX, for example, for spin-1/2 particles. The pho-
the Dirac string smgularltyFormaIIy,. rotat_|onal invariance propagator is denoted Hy . (x—x') and f ,(x) is the

of nonrelativistic quantum mechanics with monopoles fol-pyira ¢ string function which satisfies the differential equation
lows directly from the Schminger equation where re-

orienting the string is equivalent to a gauge transformation 3, f#(x) = 8(x), (1.6

on the wave function which in turn is well defined given Eq. ) o

(1.1) or Eq.(1.4). In addition, in early work on the nonrela- & formal solution of which is given by

tivistic; electron-monopole .scattering by Goldhahex1], f4(x) =N (n-3)~18(x), 1.7)
Schwingeret al.[22], and Milton and DeRaaf23], not sur-

prisingly, it was found that the resulting scattering cross secwheren* is an arbitrary vector. Therefore, the lowest-order
tion is gauge string independent if and only if the quantiza-scattering amplitude, representing, for example, the interac-
tion condition is satisfied. tion of a spin-1/2 electron with a spin-0 monopole, is

TserZieg@m“é(p—p’+k—k')eman_SXp')qu(p)qh(Hkryr
V2Ep2Ep 2w (9= i€)(n-q+i )

1.9

q=p—p’

Here the incoming momenta ape k, and the outgoing mo- of approaches to dual QE[see below resulted in string-
menta arep’, k', respectively, while the initial and final dependent cross sectioh5,26, subsequentlyad hoc as-
electron spin projections asands’, and where the different  sumptions were invoked to render the resulting cross sec-
symbols for the energies of the electron and monog®lnd  tjons string independerte.g. Refs[28] and[29]).

w, respectively, refer to the different masses of the corre- Recently, in the context of calculating virtual monopole

sponding particles. Further, note that in this paper we use 6rocesses, De Rula [30] has advocated the notion that

i with o 2
metric with signature ¢, +, +, +), S0 thatg" >0 represents - g, o yhoton-mediated monopole-antimonopole Drell-Yan
a spacelike momentum transfer. The explicit dependence on

the covariant string vectom ,, does not disappeaupon production amplitudes are rendered string independent

squaring the amplitude andﬂmultiplying by the appropriatethrough the implausible argument of Deaf®8], which

phase space factors. To make matters worse, the value of tRghounts to dropping the pole terms in the photon

magnetic charge implied by Eql.1), ag=gzl4w~34N2, propaga_to?. Furt_her, in a series of papers, Ignatiev and Joshi

calls into question any approach based on a badly divergeh8l: While arguing that the prescription of Deans lacks be-

perturbative expansion ia, . Although these earliest efforts lievability, propose(as did Rab[26]) averaging the scatter-

using a Feynman-rule perturbation theory in one of a numbe?d amplitude over all possible directions of the string in
order to eliminate the string dependence. In contrast to
Deans, however, they arrive at a null result for the amplitude

1 _ _ _ _ in lowest order. Consequently, they argue that general prin-

pon separation of variables, the angular differential operatog;yieq of quantum field theory which do not rely upon the use

contains a contribution from the “intrinsic” field angular momen-

tum carried by the interaction of the monopole with the photon

field, which is naturally quantized upon using the Dirac-Schwinger

condition (1.4); that is, there is an additional effective magnetic “Essentially it amounts to discarding string-dependent contribu-

quantum numbem’ = (e,g,— €,0,)/47, a fact already implicit in  tions on the basis of the argument that they cannot contribute to any

the classical analysis of Poincasad Thomsori24]. gauge invariant quantity if the theory is to be viable.
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of perturbation theory must be invoked; that is, they considecoupling will most assuredly fail. While this is not a novel
the constraints placed upon the scattering amplitude due taewpoint (see Refs[18,33), it seems to have been over-
the requirements of discret@ and P symmetries(see also looked in the more recent studies of point monopole pro-
Tolkachevet al. [32]). cessegsee also Ref[29)).°

In contrast, by studying théormal behavior of Green’s In fact, there e>_<ists one instance in_ thg literature of a
functions in the relativistic quantum field theory of electronssuccessful calculation demonstrating string independence for
and monopoles, both Schwinggt8,27] and Brandt, Neri @ relativistic scattering cross section within dual QED. Uti-
and Zwanzigef33] demonstrated Lorentz and gauge invari-1Zing Schwinger's functional source theof$9,1§ in the
ance. In essence these demonstrations are nonperturbatg@1t€xt of a high energy, low momentum transfeeroth
and rely on the use of pointlike particle trajectories for the®'der ikonal approximation(e.g. Refs[40-44 and refer-

- : ._ences therein Urrutia[45] demonstrated the string indepen-
matter fields. In the Schwinger approach, however, CIaSSICagence of thl1 chargegmgnopole scattering crosg sectir())n al-
particle currents '

though again in his treatment the currents were approximated
by those of classical point particles as in Ef.9). [An ear-
i“(x)=2>, ef dx& S(X—Xe) lier, less complete treatment of charge-monopole scattering,
e in which Lorentz invariance was demonstrated, was given by
F. R. Ore, Jr., Phys. Rev. D3, 2295(1976. We thank R.
. _ _ Jackiw for reminding us of this referenge.
J#(X)_Eg“ gf dxg 3(X=Xg) (1.9 The outline of this paper is as follows. In Sec. Il we
establish the string-dependent dual-electrodynamic action. In
are substituted for the field theoretic sources, whereupon &ec. Il we quantize the dual potential action by solving the
change in the string trajectory gives rise to a change in th&chwinger-Dyson equations for the vacuum persistence am-
action which is a multiple of 2 because of the quantization Plitude for electron-monopoléand dyon-dyoh processes.
condition(1.1) or (1.4). In the second approach, putting aside Then, by taking the functional Fourier transform of this so-
the issue of renormalization, Brarett al. succeed in demon- lution, we are led unambiguously to the dual QED functional
strating the string independence of correlation functions oPath integral that is compatible with the source theory for-

gauge- and Lorentz-invariant quantities using a functiona[@/iSm developed by Schwinggi8,27. In the process of

path integral formalism, once again as a consequence of EqLliS development, we enforce a gauge fixing condition that

(1.1) and(1.4), by converting the path integral over fields to sUggests that using the D.irac strir]g formulation i.s not only
one over closed particle trajectoriesee Refs[34—36). entirely natural and consistent with the underlying gauge

However, while Lorentz invariance and string indepen—s’ymmetry of the charge-monopole system, but in fact is pref-

dence werdormally demonstrated in dual QE[albeit with ggﬁ)lﬁi;ﬁetgih?;ulitrl;vsillée?va(\)/:aegglaclucl);tz%g]dHoarzl-lggoicécat-
the above cavegtssuch demonstrations have been conspicu- P ’ ) Y y

ously absent in practical calculatiohhis deficiency stems te;'negng;?l‘:’lseé?;:%? ét;rgégn;ixé do;ﬂc;isrt(ar?cgv'zﬁtatfggnon-
from the fact that in most phenomenological treatments md P

gerturbative approach in conjunction with Ed..1) or Eq.

electron-monopole processes the “string independence” o 1.4) is in fact necessary to demonstrate Lorentz and gauge
the quantum field theory and the strength of the coupling are_" 7 "~ . . ry ke gaug
string invariance of physical observables. To accomplish

treated as separate issues. This viewpddete e.g. Refs. this we use the nonperturbative functional field-theory for-

[31,29) could not be more misleading. In fact, these two__ . . X 6\ par ;
points are intimately relatetilf any lesson is to be learned mallsrln (.)f SchwmgeE?S] and SymlgnZ|E46]. .W't_h'g this q
from the above-mentioned demonstrations of Lorentz anéqlr(mu Tt'on vlve ?re able to ger;](_elra 1€ t. € str:mg-m ependent
string invariance, it is this: The quantization conditigasl) eikonal result of Urrutig45] while treating the currents as
and(1.4), being intimately tied to the demonstration of Lor- qonstructgd from quantum fields by invoking the quantiza-
gon condition(1.4). Finally in Sec. V we draw some conclu-

entz invariance, are intrinsically nonperturbative statementSlonS concerning the phenomenoloay of dual OED and out-
(and for that matter are obtained independently of any per: 9 P gy

turbative approximation As such, attempts to demonstrate line our continuing efforts in this_ direction V\_/hile in addition
Lorentz invariance, whether formally or phenomenologi—prOIOOSIng f‘.““re work. Ap_pen(_:hxes deal with some aspects
cally, which are based on a perturbative expansion in th(glc the path-integral formalism in dual QED.

II. DUAL ELECTRODYNAMICS

G . R Decades after Dirac’s early quantum-mechanical treat-
This is surprising because one expects that the invariant nonrel- t (both lativisticl 1 d relativistic[ 15 of th
ativistic scattering resulisee Ref[22] and references thergigor- ment (both nonrelativistic[1] and relativistic[15]) o e

responds in a certain kinematic regime to an infinite summation of

a particularsubclassof Feynman diagrams. Moreover, the relativ-

istic Dirac equation also yields a string-independent cross sectionSA very recent notd38] exemplifying the failure to connect the

[37]. issue of the strength of the magnetic coupling with that of string
“In this regard we remind the reader of the following viewpoint of independence deduces the inverse renormalization of electric and

Schwinger: “Relativistic invariance will appear to be violated in magnetic charges in contradistinction to the identity of these renor-

any treatment based on a perturbation expansion. Field theory isializations shown by Schwing€t7].

more than a set of ‘Feynman'’s rules’['16] SFor an excellent review of these techniques [g58.
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electron-monopole system, attempts to establish a consisteint the context of source theory, for the sake of accessibility
interacting quantum field theory ofpoint) electrons and here we develop a string-dependent dual QED of monopole-
monopoles were carried out in two different approaches bylectron interactions in a more familiar functional
Schwinger{16] and by Zwanzigef19]. formalism!

Schwinger’s approach is based upon the construction of a In order to facilitate the construction of the dual-QED
nonlocalHamiltonian which is a function of two transverse, formalism we recognize that the well-known continuous glo-
string-dependent potential&’ and BT, in addition to, say, bal U(1) dual symmetry[16,18,27 implied by Egs.(1.2),
spin-1/2 electron and monopole fields. Second quantizatiofi.3), given by
is established by postulating the commutation rules between

the fields and their conjugate field momenta. In this formu- j’ B cos¢  sing)( ]

lation the two gauge fields have a nonvanishing commutator, i’ | —sing cos¢ i (2.18
and in fact are notinearly independentAlthough this op-

erator method is noncovariant, it has the merit of explicitly = cos¢ sing\[ F

displaying the dual symmetry between the Dirac equations (* ,) :( ) )(* ) (2.1b
for the spin electron and monopole fields, as well as of the F —sing cos¢/\*F

Maxwell equations for the magnetic and electric fields. In
turn Schwingef18,27] developed and advocated a covariant
formalism derived from his source theory approach to quan
tum field theory. Thidirst-orderformulation of dual QED is
written in terms of the field strength tensér,, and one
independent vector potentiah, . Alternatively, one can
trade the dependence on the field strength for that on an
auxiliary dual vector potentiaB ,. The latter field is intro- : . .
duced to identify unambiguouslILy the photon field coupling to\év::(;ﬁi:r?vgniqs((t)ZLTg(l.(3;)()g|ve rise to the consistency
the dual monopole current,j* through the effective “skel- wy YRR
etal” action (1.5), coupling electric and magnetic currents. GFE = —g'G  =*i
H H H H v v ]
This latter formulation proves helpful in calculating scatter- " "

ing processesl. | . ian f lati We then obtain the following inhomogeneous solution to the

A second loca covarlant'Lagrah'glan ormulation aP- dual Maxwell’'s equatiori2.3) for the tensoiG ,,(x) in terms
proach, developed by Zwanmger, yt|I|zes two four-pote_n.nalsof the string functiorf , and the magnetic current, which for
Af.’« and BM.’ wh|ch again are not independent. In addmon,a spin-1/2 monopole represented by a Dirac figldis
this formalism satisfies duality symmetry both at the level of N N i
the action as well as between the equations of motiomfor () =9x(x) ¥*x(x):
and B, and between the equations for the spirelectron 1 . .

m —=(n. Mk v —ntxiM

and monopole fields. The equivalence between these formal- Guu(X)=(n-0) 7 (x) =™ 4(x)]

suggests the introduction of an auxiliary vector potential
B,(x) dual to A, (x). In order to satisfy the Maxwell and
charge conservation equations, Dirac modified the field
strength tensor according to

F=0,A,~d,A,+*G,,, (2.2

- 23

isms is shown in Refd48,49.
However, the former covariant formalism of Schwinger is =f Ay (X=y)*j(y) = fF.(X=y)*j (V)]
a natural generalization of Dirac{selativistic) quantum me-
chanics in the form of a covariant Lagrangian field theoretic (2.4

description of electron-monopole interactions. In this context ) o

it should come as no surprise that Schwinger’s source theoyhere use is made of Eqel.3), (1.6), and(1.7). A minimal
approach[27] laid the groundwork for the first consistent, 9eneralization of the QED Lagrangian including electron-
gauge-invariant nonperturbative calculation of electronMonopole interactions reads

monopole scatterinf@5s].

We also note that a “one potential” Hamiltonian formu-
lation was developed later by Blagojée\étal.[49] where an
explicitset of Feynman rules was displayed. Finally we men- (2.9
tion in passing the work of Dearj&8], where a formalism
based on Dirac’s monopole theory was quantized within thavhere the coupling of the monopole fiejdx) to the elec-
framework of Mandelstam’s gauge-invariant quantum fieldtromagnetic field occurs through the quadratic field strength
theory[50]. In Deans’ paper, while a set efring-dependent term according to Eq(2.2). We now rewrite the Lagrangian
Feynman rules was developed, they were used without critit2.5 to display more clearly that interaction by introducing
cism of the badly divergent perturbation series; in additionthe auxiliary potentiaB ,(X).
as we have seen, Lorentz-frar(‘ﬁring) dependence is ar- Variation of Eq.(2.5) with respect to the field variables,
gued away in a highly questionable fashion. /8% andAﬂ, yields in addition to the Maxwell equations for

1 — .
L= ZF o+ yliya+eyA=my) gt x(iya—m)x,

“Dual-potential” string dependent action

While the completely general formalism for charge- “However, we emphasize that the source theory approach is in fact
monopole quantum field theory was developed by Schwingejust that, the “source” of these ideas.
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the field strengtff, F,,, Eq. (1.2 where j*(x) 1
J— — * 14
=ey (X)y“i(X), the equation of motion for the electron field, W‘f (dx)| = 5*FH(X)[0,B, (%) = 3,B(X)]
i yd+eyA(X)—mg]i(x)=0, (2.6 1 —
Hrorey ol + 2 FR00* F (0 + g0 y9+ 6YA() =My Jg(x)
and the nonlocal equation of motion for the monopole field,

+x(X)[iya+gyB(x)—m Ix(x) . (2.12b

5G,¥) _
ox(X) In Eqg. (2.123, A,(x) andF ,,(x) are the independent field
2.7 variable€ and B.(x) is given by Eq.(2.8), while in Eq.
(2.12h the dual fields are the independent variables, in
which case,

_ 1
(iyd—my)x(x)— EJ (dy)*F#*(y)

It is straightforward to see from the Dirac equation for the
monopole(2.7) and the constructioii2.4) that introducing

the auxiliary dual field(which is a functional ofF,, and
depends on the string functidn,) AL(X)= —J (dy)f*(X=y)F,.(y)
— v * 1 v Ao
B.(X)=— [ (dy)f"(x=y)*F,.(y) (2.8 =5 €uno | (AYF(X=y)*F¥(y). (213
results in the following Dirac equation for the monopole [Note that Eq.(2.12h may be obtained from the form
field: (2.123 by inserting Eq(2.13 into the former and then iden-
tifying B, according to the constructid@.8). In this way the
[iyd+gyB(x) —mg]x(x)=0. (29  sign of F, F#'=—3*F, *F~is flipped] Consequently,

the field equation relating#” and B* is
Here we have chosen the string to satisfy the oddness con-

dition (this is the “symmetric” solution ‘E —9 B —0B f(dy) *[E (X=y)i ()
pv— OuBr— 0By w\ AT YTy

—f.X=y)j.(¥V] (2.19
which is related to Schwinger’s integer quantization condi- ,. , . . . .
tion [22,51]. Now Egs.(2.6) gnd(z.g) d%splgy the dual sym- which is simply obtained from Ed2.2) by making the du-

metry expressed in Maxwell's equatiofis2) and(1.3). Not- ality tlr ants.formatl?.?fe/;(l/l, fMH_& whe{_eé‘ startl_ctis for
ing thatB,, satisfies any electric quantity an or any magnetic quantity.

fAH(x)=—f*(—x), (2.10

Ill. QUANTIZATION OF DUAL QED:
j (dx")f#(x=x")B,(x")=0, (211 SCHWINGER-DYSON EQUATIONS

) . . Although the various actions describing the interactions
we see that Eq(2.8) is a gauge-fixed vector fielfb2,53  of point electric and magnetic poles can be described in
defined in terms of the field strength through iamersion  terms of a set of Feynman rules which one conventionally
formula (see Sec. Il A. In terms of these fields the “dual- yses in perturbative calculations, the large valuengfor
potential” action can be re-expressed in terms of the Vectop g4 renders them useless for this purpose. In addition, as
potentialA,, and field strength tensdf,,, [whereB,, is the  mentioned in Sec. I, calculations of physical processes using

functional(2.8) of F,,] in a first-order formalism as the perturbative approach from string-dependent actions such
1 as Egs(2.123 and(2.12h have led only to string dependent
— =" _ results. In conjunction with a nonperturbative functional ap-
w j (dx)[ 2F COLauAL) = ,AL (0] proach, however, the Feynman rules serve to elucidate the

1 electron-monopole interactions. We express these interac-
v T tions in terms of the “dual-potential” formalism as a quan-
+—=F (X)) F*"(X)+ (X)[I yd+eyA(X)—m X S .
4 w0+l y YA s19 ) tum generalization of the relativistic classical theory of Sec.
Il. We use the Schwinger action principlé4] to quantize
+x()[ yd+gyB(x)—m Jx(X) |, (2.123 the el_ectron-monopole system by solving the_correspo_ndlng
Schwinger-Dyson equations for the generating functional.

Using a functional Fourier transform of this generating func-
or in terms ofdual variables,

. Using Eq.(2.8), variations of the action, Eq2.123, with respect
Swe regardGM(x).as Fiependent OR, X bu.t potAM. Thus, the to A,(x) andF,,(x) yield Egs.(1.2) and(2.2) where *G , () is
dual Maxwell equation is given by the subsidiary conditi@rg). the dual of Eq.(2.4).
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tional in terms of a path integral for the electron-monopoleconditiont*
system, we rearrange the generating functional into a form

that is well suited for the purpose of nonperturbative calcu-

lations.

A. Gauge symmetry

f (dx")fA(x=x")A,(x")=0. (3.7

More generally, the fact that a gauge function exists, such
that A¢(x) = — A(x) [cf. Eq. (3.2)], implying that we have

In_order to construct the generating functional for Green_’s[he freedom to consistently fix the gauge, is in fact not a
functions in the electron-monopole system we must restricfyia| claim. If this were not true, it would certainly derail

the gauge freedom resulting from the local gauge invariancg, o consistency of incorporating monopoles into QED while

of the action(2.123. Theinversionformulas forA, andB,,,

utilizing the Dirac string formalism. On the contrary, the

Egs.(2.13 and (2.8) respectively, might suggest using the string gauge conditionEg. (3.7), is in fact a class of possible
technique of gauge-fixed field$2,50 as was adopted in  consistent gauge conditions characterized by the symbolic
[28]. However, we use the technique of gauge fixing accordbperator functior(1.7) depending on a unit vector* (which

ing to methods outlined by Zumiri®5] and generalized by may pe either spacelike or timelikeln a similar manner,

Zinn-Justin[56] in the language of stochastic quantization.

iven the dual field strengtf2.14) the dual vector potential

The gauge fields are obtained in terms of the string andkes the following fornict. Eq. (2.9)]:
the gauge invariant field strength, by contracting the field

strength(2.2), (2.4) with the Dirac stringf*(x), in conjunc-
tion with Eq.(1.6), yielding the following inversion formula
for the equation of motion,

AL ()=~ f (dxX)F*(x—=x")F ,,(x") + 3, A (%),
(3.1

where we use the suggestive notatibg(x),

Ke(x)zf (dx) " (x—x")A,(X"). (3.2

It is evident that Eq.(3.1) transforms consistently under

gauge transformation
A (X)—=A(X)+3d,Ae(X), 3.3

while in addition we note that the Lagrangié 123 is in-
variant under the gauge transformation,

p—exdieAely, A,—A,+d, A, (3.439
as is the dual actiof2.12b under

Assuming the freedom to chooge,(x) = — A(x), we bring
the vector potential into gauge-fixed folthgoinciding with

Eqg. (2.13,

A (x)= - f (AP -YFy), (35

where the gauge choice is equivalent tos@ing-gauge

19t is worth noting the similarity of this condition to the

Schwinger-Fock gauge in ordinary QER.,.A(x) =0, which yields
the gauge-fixed photon fieldd ,(x) = fx”fcl,ds SF,,(xs).

Bﬂ(x)=—f(dx’)f”(x—x’)*FMV(X’)+¢9M7X9, (3.9
where

Kg(x)=f (dX) F4(x=X")B ,(x"). (3.9

In order to quantize this system we must divide out the
equivalence class of field values defined by a gauge trajec-
tory in field space; in this sense the gauge condition restricts
the vector potential to a hypersurface of field space which is
embodied in the generalization of E@®.7):

f (dX" ) FAX=X")A (X)) = Ag(X), (3.10
where here\, is any function defining a unique gauge fixing
hypersurface in field spacé.

In a path integral formalism, we enforce the condition
(3.10 by introducing aé function, symbolically written as

5(f“AM—Ae)=J [dxe]exp[ij (dX)No(X)

><< f (dx ) FH(X=x")AL(X") = Ag(X)
(3.11

or by introducing a Gaussian functional integral

Taking the divergence of Eq3.5 and using Eq.1.2), the
gauge-fixed conditiori3.5 can be written as

ﬂ,LA“=f (dy) FH(X=y)j . (y),

which is nothing other than the gauge-fixed condition of Zwanziger
in the two-potential formalisnp19].

2Choosing a different function . (which the gauge freedom per-
mits us to do merely yields a different section of field space under
the restriction that it cut each equivalence class of field values once.

(3.6
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D(F*A,—Ae) that is, [(dX')K,(Xx=x")D*"(x"=x")=g,d(x—X"),
whereD | (X) is the massless scalar propagator,

=f [d)\e]exp{—%j (dX)(dX"IN(X)M (X, X IN(X")

+iJ (dX)No(X) j(dx’)f“(x—x’)A#(x’) D.,(x)= O(X). (3.18

—9—ie

—Ae(X) ||, (3.12

This in turn enables us to rewrite EB.15 as an integral
equation, expressing the vector potential in terms of the elec-

where the symmetric matriM (x,x’)=«"18(x—x") de- tron and monopole currents

scribes the spread of the integre{dx’) f#(x—x")A,(x")
about the gauge functiom\¢(x). That is, we enforce the
gauge fixing condition3.10 by adding the quadratic form
appearing here to the actid2.12g and in turn eliminating AM(X):f (dx")D,,,(x=x")j"(x")
\e by its “equation of motion”

+ GV)\O'TJ (dX/)(dX”)DI_W(X—X,)

M0 =x] [ (At oeyAm-Am]|. @19
XEN(X" =X") 0% AX"). (3.19
Now the equations of motiofi.2) take the form
0VFMV(X)_f (AXIN(X)F (X" =X)=] (%), The steps foB,(x) are analogous.

(3.143
B. Vacuum persistence amplitude and the path integral

I F (X)) — j (dX)Ng(X)F (X" =X)=%] ,(X), Given the gauge-fixed but string-dependent action we are
(3.14h prepared to quantize this theory of dual QED. Quantization
using a path integral formulation of such a string dependent
where the second equation refers to a similar gauge fixing igction is by no means straightforward; therefore we will de-
the dual sector. Taking the divergence of E3j143 implies  velop the generating functional, making use of a functional
NAe=0 from Egs.(1.6) and (1.3), which consistently yields approach. Using the quantum action princifté Ref.[54])
the gauge conditior3.10. Using our freedom to make a we write the generating functional for Green functicis

transformation to the gauge-fixed conditi®5), A,=0, the  the vacuum persistence amplityde the presence of exter-
equation of motion(3.144 for the potential becomes nal sources,

[ =940+ 3,0, + kN, (n-9)"?n,]AY(X) Z(J)=(0.|0-), (3.20

14

=ju(X)te voT (?O—*ITX: n“A :01 . . .
00+ e o) ! ) a for the electron-monopole system. Schwinger’s action prin-

(3.15 ciple states that under an arbitrary variation,

where we now have used the symbolic form of the string _
function (1.7). We have retained the term proportional to 8(0,|0_)7=i(0,|sW(7[0_)7, (3.2)
n,n, in the kernel, scaled by the arbitrary parameter

K,=[~0,,0°+d,d,+kn,n-d)"?n,], (3.16 whereW(J) is the action given in Eq(2.12a externally
driven by the sourceg?, which for the present case are given

so thatK ,, possesses an inverse by the set{J,*J,;, n,gg}:
n,d,+n,d
D,(X)=| g~ —”(;_a)y = o
W(j)zW+f (dX){I*A,+ *I*B,+ nib+ Y+ Ex+ x €}
1(n-9)%9%\ a,0 3.2
+n? 1——( Z ) D (%), @22
K n (n-9)

(3.17  The one-point functions are then given by
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of the uncoupled vacuum amplitude, whéee, |0_){ is the
product of the separate amplitudes for the quantized electro-
magnetic and Dirac fields since they constitute completely
independent systems in the absence of coupling, that is,

(0,]0)g=(0.]0)§77¢9(0,]0)§" . (3.27

First we considef0,|0_)7 as a function of) and *J

(0,10)7=(0.|A,([0-)].  (3.28

i 6J4(X)

(3.23 ] ) )
Taking the matrix element of the integral equati@nl9 but

now with external sources rather than dynamical currents we

Using Egs.(3.23 we can write down derivatives with re- find
spect to the charg&$in terms of functional derivativels7—

59] with respect to the external sources:

J
25(0,10-)7=i¢0,] f (dX)j#(0A,(x)]0_)7

[ @

J
£<0+|0_>J=i<0+|f (dx)* J#(X)B.(x)]0_)7

o
= J
If( <5B,u( X) 6* I¥(x ))<O+|O_> '

Here we have introduced an effective source to bring down

the electron and monopole currents,

6 16 o 6 156 o
[

~ - Y= =
oA, 161" 5y 5B,

These first order differential equations can be integrated with

the result
o o
J— i
(010 eXF{ 'gf(dx)<5éy<x>m”<x>

_,ef(

5A#( ) SIM(x

A, (%) 5J“(x))< 0.0

m__

i 567 5¢

Joos

(04]AL()[0-)F
=f (dX")D ,,(x=x")
X(JV(X’)-FEVM”J’ (dX")fa (X" —=x")d0* I (X")

x(0,]0-)7. (3.29

Using Eg. (3.15 we arrive at the equivalent gauge-fixed
functional equation

2 2
[—0,,0°+3,d,+kn,(n-d)"

(3.29
=(Jﬂ(x)+ewmf (dx")f*(x—=x")a"7*J7(x")
x(0,]0.)d, (3.30
(3.29 which is subject to the gauge condition
o
n’—=35(0+0-)g=0 (3.313

or

f (dx)f*(x—x") (0,]0_)J=0. (3.31h

5IV(x")

In turn, from Eq.(3.26) we obtain the full functional equa-

(3.26  tion for (0, |0_)7"

where(0,|0_){ is the vacuum amplitude in the absence of

interactions. By construction, the vacuum amplitude and

[~ 0,,0°+d,d,+Kkn,(n-d)"2n

Green'’s functions for the coupled problem are determined by

functional derivatives with respect to the external soutges

Here we redefine the electric and magnetic curr¢rtej and
Note that the changes in the action due to induced
changes in the fields vanish by virtue of the stationary principle.

*j—gr).

1-0f @l 555 5
=expg —1 =
&R 19 W By o)

—ief (dy)

)
SAL(y) 83%(y)
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J,(X)+ e V‘”J (dx")fY(x=x")a"7*J7(x") i vo+ eyt — N\
S YO s3m(x) i5 (x)< +10-)
J

X(0.]0-)5. (3.32 =~ 9(x)(0,]0_)7, (3.373
Commuting the external currents to the left of the exponen- S
tial on the right side of Eq(3.32 and using Eqs(3.23, we |i7(9+gyﬂ_— ]—< Loy
are led to the Schwinger-Dyson equation for the vacuum i 0% J#(x) 1 6&(X)
amplitude, where we have restored the meaning of the func- = £(x)(0.]0_)Y. (3.37b

tional derivatives with respect t4,B given in Eq.(3.25,

In order to obtain a generating functional for Green’s
functions we must solve the set of equatidBs33), (3.35),
(3.373, (3.37h subject to EQgs.(3.31h and (3.36 for

2 -2
I[—gwa +3,0,+kn,(n-d)"“n,]

163,(x) (0,]0_)7. In the absence of interactions, we can immedi-
5 5 ately integrate the Schwinger-Dyson equations; in particular,
—e- —— — €0 | (X)) (x—X' Eq. (3.3 then integrates to
15700 ™isn0 f (AT

(0.]0.)7

1o g T o J
Xd° "0 V= (0,]0-)

i 8E(X") " 10&(X") =/\/’(J)exp|’|§f (dx)(dx)* I, (X)D#"(x—=x")*J,(X")

:(JM(X)'F eMVUTf (dx’)f”(x—x’)a"’*JT(x’))

+ie#mf (dx)(dX)(dX")* I 5(X)DP#(Xx—X")
X(0,|0_)7. (3.33

xa’”f"(x’—x”)JT(x”)’. (3.39
In an analogous manner, using

We determineV, which depends only od, by inserting Eq.
3.38 into Eq.(3.33 or (3.30,
——(0,]0_)J=(0,|B,(x)[0_){, (3.3 (

30 (0+10-08= (0. BL000-), (334

i
InAT9) = 5 | (@0(ex)3,00D(x-x)3,00),
we obtain the functional equatigmvhich is consistent with (3.39
duality) .

resulting in the generating functional for the photonic sector,

)
2 2 *
|[ 9uyd°+3d,0,+Kkn,(n-9)" V]|5*Jy(x) (0,]0_)§9

o o

i
=exp[— (dx)(dx")J ,(x)D*(x—x")J(x")
— v 2 1 v
T6E00 T 5 (%) f (BT f

+ IEJ (dx)(dx")*J,(x)D#¥(x—=x")*J,(X")

o o
Xd'%e ]( 0,[0-)7
I577(X’) I577( ")

—if(dx)(dx’)JM(x)f)”V(x—x’)*JV(x”) ,

=(*Jﬂ(x)— ewMJ (dx")f"(x—=x")a"?J7(x")

%(0.10_), (3.39

(3.40

where we use the shorthand notation for the “dual propaga-

o ) - tor” that couples magnetic to electric charge:
which is subject to the gauge condition

D, (x=x")= e,m”J (dX")D , (x—=x")d" 7 f7(x"—x").

5
f(dx')fﬂ(x—x')rmqo »7=0. (3.3 (3.41)

The term coupling electric and magnetic sources has the
In a straightforward manner we obtain the functional Diracsame form as in Eq(1.5; here, we have replaced
equations —g“*D,, as we may because of the appearance of the

075013-9



LEONARD GAMBERG AND KIMBALL A. MILTON PHYSICAL REVIEW D 61075013

Levi-Civita symbol in Eq.(3.41). In an even more straight- Now, we re-express Eq3.40, the non-interacting part of
forward manner Eq9.3.373, (3.37h integrate to the generating functional of the photonic actiah(J,*J),
using a functional Fourier transform,

(040§ 79
zO(J,*J):f [dA][dB]zo(A,B)exp{if (J-A+*J-B)}

~exaf [ (@00 ) [708 0x-x) ) .45
+E(x)ex(x—x'>§(x'>]], 342
whereG,, andG, are the free propagators for the electrically Zo(3,*J) = f [dA][dB]exp(il’o[A,B,J,*J]),
and magnetically charged fermions, respectively, (3.47
B where (using a matrix notation for integration over coordi-
Gy (x)= mﬁ(x), nates
1 FO[ABJ*J]=f(J~A+*J~B)—1fA"K AY
— 1 =Y mv
G, (x) ——iya+mX 8(X). (3.43 2
1 ~
In the presence of interactions the coupled equatiBr3), + EJ B'“A, B (3.48

(3.39, (3.373, (3.37b are solved by substituting Eg&8.40
and(3.42 into Eq.(3.26. The resulting generating function
is

with the abbreviation

Z(J)=ex;1(—ief(dx> o u_° 5 BL<X>=Bﬂ<X>—GMmf (dx")3"17(x=x")AT(x")
3100 " 1535(x) 57(x) (3.49

S and the string-dependent “correlator”

xexp(—igf (dy) SE(Y) o )
K, (x—x')= f (X7 (X=X (X = X')

1) 1)
T @) 2ol (349 (X, (0 X)) (350

(see Appendix A for detai)s Using Eq.(3.48 we recast Eq.

. . ) (3.49 as
C. Nonperturbative generating functional

Because of the fact that any expansiorvpior eg is not _ f . .
practically useful, we recast the generating functid@ad4) Z(7)= | [dAILdB]F.(A)F2(B)expil'o[A,B,J,*J]).

into a functional form better suited for a nonperturbative (3.5
calculation of the four-point Green'’s function.

First we utilize the well-known Gaussian combinatoric Here the fermion functionalg; andF; are obtained by the
relation[46,47); moving the exponentials containing the in- replacements/i 5J—A, 6/i5*J—B:
teraction vertices in terms of functional derivatives with re-
spect to fermion sources past the free fermion propagators,

we obtain(coordinate labels are now suppressed F1(A) =exp[ Trin(1=ey-AGy)

S -1 = _1
Z(ﬂZEXp{if;(G¢ 1—e'y-mG¢, )77 +'f 7(Gy[l-ey-AG,] )77]'
S
+Tr|n(1—ey-me¢ﬂ FZ(B):exp[TrIn(l—gy~BGX)
) -1 —
xexp{iJ%GX[l—gyme} )g +if g(Gx[l—gy-BGX]‘l)g}. (3.52

We perform a change of variables by shifting about the sta-

é
— R *
+Tr|n( 1-gy i6%J GX)]ZO(J’ J). (349 tionary configuration of the effective actiohg[A,B,J,*J]:
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A=A, (X)+d,(X), BL(X)=BL(X)+d(x) (3.53

whereA andB are given by the solutions to

STo(A,B,J,*J STo(A,B,J,*J
ol ):o, ol ):0, (354
SA” SB”

namely(most easily seen by regardidgandB’ as independent variables

KM(X)=f (dX’)DMK(x—X’)(J“(X’)—e””‘”f (dX”)&;f(,(X’—X”)*JT(X”)),

B,00= [ (@)D, 00x) [ +3700) + e [ (a0 -x3,00)). (359
reflecting the form of Eq(3.19 and its dual. Note that the solutiof3.55 respect the dual symmetry, which is not however
manifest in the form of the effective acti@B.48. Using the properties of Volterra expansions for functionals and performing
the resulting quadratic integration ovei(x) and ¢’(x) (see Appendix B we obtain a rearrangement of the generating
functional for the monopole-electron system that is well suited for nonperturbative calculations:

ﬂ—ex I—f (dx)(dx’)( o D, (x—=x") 0 + 0 D, (x—=x") d )

Zp(3,*3) M2 SAL(x) SAL(X)  8B,(x) SB,(x")
—'fd dx’ 55 —x' p['fd dx') p(X)G(x,x'|A) n(x’
i (dx)( X)(SK#(x) pr(X—=X )5§V(X,) exp i | (dx)(dx") n(x)G(x,x"|A)n(x")

_ _ e _ _ g _ _
+if (dx)(dx’)g(x)G(x,x’|B)§(x’)]exp[ —f de'Tr yAG(x,x|A)—f dg'Tr yBG(x,x|B)]. (3.56
0 0
Here the two-point fermion Green’s functio@s(xl,y1|K), andG(xZ,y2|§) in the background of the stationary photon field
A,B are given by
G(x,X'[A)=(x|(yp+m,—eyA)"|x),
G(x,x'[B)=(x|(yp+m,—gyB) *x'), (357

where the trace includes integration over spacetime. This result is equivalent to the functional Fourier transform given in Eq.
(3.46 including the fermionic monopole-electron system:

Z(j)=f [dA][dB]de(—iyDA+m¢)de(—inB+mX)exp[if (dx)(dx’)[;(x)G(x,x’|A)n(x’)

+E(x)G(x,x’|B)§(x’)]]exp{—%f (A#KWAV—B'MZ;B'V)HJ (J-A+*J-B)], (3.59

where we have integrated over the fermion degrees of freedom.

Finally from our knowledge of the manner in which electric and magnetic charge couple to photons through Maxwell’s
equations we can immediately write the generalization of (Bcp6) for dyons, the different species of which are labeled by
the indexa:

D, (Xx=X")

[ [
Z(j)=exp[§f (dx)(dX")KCH(X)D,,,(Xx=x") ¥ (x )]exp[zf (dx)(dx )&zﬂ(x) b‘zy(x’)]

xex%iZ f (dx)(dx')@(x)ea(x,x'|Za>§a<x'>}exp[—E folquwZaGamx an>]. (3.59

whereA,=e,A+g,B, ¢, is the source for the dyon of speciasand a matrix notation is adopted,
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R

J(x) 5 81 5A,,(x)
KEX) =1 , , == — ,
IO A0\ 816B (%)
(3.60
and
, D}LV(X_X,) _B#V(X_X/) >
DMV(X_X )= 'DMV(X_X,) D,W(X_X') ) FIG. 1. Dyon-dyon scattering amplitudes in the quenched ap-

(3.61 proximation.

G(X1,Y1:%2,Y2)
IV. STRING INDEPENDENCE OF THE DYON-DYON (X1.Y11%z.¥2 . o
SCATTERING CROSS SECTION = _eleel(Xl,Y1|A1)Gz(xz,y2|Az)|K=E=0, 4.3

In this section we demonstrate the string independence %here we express the two-point function using the proper-
the dyon-dyon and charge-monopdtke latter being a spe- . P P f dered 9 pr FI)
cial case of the formérscattering cross section. We will use time parameter representation of an ordered exponential:
the generating function@B.59 developed in the last section .
to calculate the scattering cross section nonperturbatively.Ga(xyy|za):if dée 1éma=iyd)
We find that we are able to demonstrate phenomenological 0
string invariance of the scattering cross section. It appears

- ; 13 L=,
that in much the same manner as the Coulomb phase arises Xexp-: if dé'ef' Yy Ae €7 S(x—y),
as a soft effect in high energy charge scattering, the string 0
dependence arises from the exchange of soft photons.

To calculate the dyon-dyon scattering cross section we
obtain the four-point Green'’s function for this process from

Eqg. (3.59:

+

(4.9

where “+” denotes path ordering ig’. The 12 subscripts
in £, emphasize that only photon lines that link the two

fermion lines are being considered.
G(X1,Y1:X2.Y2)

S S S S High energy scattering cross section

=i5z1(X1) 1601(Y1) 1 87,5(x,) 1682(X2) 29 o Adapting techniques outlined (64,65 we consider the
connected form of Eq4.3). We use the connected two-point
(4.D)  function and the identities

; ; 1
gg:' subscripts on the sources refer to the two different dy- o114 J’O dac?tt 4.5
Here we confront our calculational limits; these are not
too dissimilar from those encountered in diffractive scatter-yng

ing or in the strong-coupling regime of QCB0-63. As a

first step in analyzing the string dependence of the scattering
amplitudes, we study high-energy forward scattering pro- —
cesses wheresoft photon contributions dominate. In dia- A, (X)
grammatic language, in this kinematic regime it is customary

to restrict attention to that subclass in which there are ndJsing Egs.(4.3) and(4.4) one straightforwardly is led to the
closed fermion loops and the photons are exchanged betweégllowing representation of the four-point Green function,
fermions[60]. In the context of Schwinger-Dyson equations

this amounts to quenched or ladder approximateee Fig. ] (1

1). In this approximation the linkage operators, t, connect®(X1:Y1:X2.¥2) =~ JO daJ (dz)(dz,)

two fermion propagators via photon exchange, as we read off

from Eq. (3.56): X[A1- 92D 4, (21— 25) — 01X 0

X B,LLV(Z]._ 2)1€12G (x4, 24| A;)

G(y,zlA)=eG(y,x|A)y*G(x,z|A). (4.6)

; ’ g Viy__ ! _ _
eHz:exp{lf (dx)(dx )6Z’f(x)DM (X—X )§ZZ(X’) : X 7,G1(21,Y1] A1) Ga(X, 22 )

4.2
: 4.7

A=B=0

X YVG2(22-Y2|Z2)

In this approximation Eq4.1) takes the form
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where the charge combinations invariant under duality transand for more modern applications in diffractive and strong
formations are coupling QCD processes sgg—-63). In this approximation
Eq. (4.4 becomes
O1-02=€18,17010>

— . L . p
g1X0d>=€19>,—01€5. (4.8 Ga(x,y A):Ijo dée '§m5(x_y_§a)

In order to account for the soft nonperturbative effects of the :

interaction between electric and magnetic charges we con- ><exp|if dg’R-Z(x—g’B)]- (4.9
sider the limit in which the momentum exchanged by the o ~m m

photons is small compared to the mass of the fermions. This

affords a substantial simplification in evaluating the path-With this simplification each propagator in E@.3) can be
ordered exponential in Eq4.4); in conjunction with the as- written as an exponential of a linear function of the gauge
sumption of small momentum transfer compared to the incifield. Performing mass shell amputation on each external co-
dent and outgoing momenta/p; <1, this amounts to the ordinate and taking the Fourier transform of E4.7) we
Bloch-NordsiecK 66] or eikonal approximatiorisee[40-43  obtain the scattering amplitud&(p,p;;p2,P3):

l ~
T(pl,pi;pz,pé)=—ifodaeatlzf (dz)(dz,)[Q1-A2D (21— 25) = 01X 02D (21— 25) ]
XJ (dxl)eiiplxli(pl)(ml_l'vl'pl)Gl(Xlazl|Zl)7'uJ (dY1)eipiylG1(ZlaY1|Z1)(m1+Ui'pi)U(pi)

XJ (dxz)e_ixzpzi(pz)(mzﬂLUZ‘Pz)Gz(X21zz|Z2)7Vf (dyz)e‘péy262(zz,y2|Z2)(m2+v§~pé)u(pé).

(4.10
Substituting Eq(4.9) into Eq. (4.10, we simplify this to
1 : ’ : I— J—
T(P1,P1:P2,Py) =i fo d af (dzy)(dzp)e “aPimPremi22(P2=Paly(pl) yu(p,)u(p3) ¥ u(py)
X[41-92D (21— 25) —g; X Q25,w(21_22)]eal'12
Xexr{i jo dal{Pl'[Zl(Zﬁ' apy) ]+ pi'[zl(zl_ alpi)]}}
xexn[i fo dan{pa[Ax(Zo+ azp2) 1+ py- [ Ax(zo— a2p)) T} |- (4.1

Choosing the incoming momenta to be in thedirection, in the center of momentum framp{=(E{,0,0p), p5
=(E,,0,0,—p), invoking the approximation of small recoil and passing the linkage operator through the exponentials con-
taining the photon field, we find, from E.11),

1 . , . J— _
T(py,p}iP.py) =~ | da (dz)(az)e Or e et PHu(p)) y,u(py) ol ) (P
X[ 0y - Q2D (21—25) — Oy X QD #¥(2,— 2,) ]3P (P1 P22~ 22) (4.12
where the “eikonal phase” integral is
D (p1,P221—2) = pfpg Jlmdal day(gr-gzD

— 01X 02D o) (21~ 2o+ a1py— apy). (4.13
We transform to the center of momentum coordinates, by decomposing the relative coordinate accordingly,
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(21— ) =X =1 py+ T2p%, (4.14 T(P1,P1:P2,Ps)=(2m)* (PP )M(s,t), (4.22

where the Jacobian of the transformation is we put Eq.(4.12 into the form

J=p\s (4.15
1 —

— i 2 —iq, - ’
ands=—(p,+p,)? is the square of the center of mass en- M(s,t)=—i JO daJ d*x e "% u(py) y*u(pa)
ergy. Here we use theymmetric(see[22,23 for detail9
infinite string function, which has the momentum-space form X u( pé)7vu(p2)|wéa©n(p1,pz:x)’ (4.23

Nk 1 1 where

(k)= o5 (4.16

nk=i6 nk+id)

Inserting the momentum-space representation of the propa- d?k, di; dX,
gator, we cast Eq4.13 into the form “”:f

(2m)? 2w 2w

kX p 2
®n(p1,pP2:X) > e 2m8(N 1) 27 8(N )

(dk) dk- (x+a1p1—azpp)
(2m)* K2+ u?

1
ki+1u2+ —()\§M§+>\§M§+ 2N 1\opy- pZ))

sp?

:pfp)ﬁf_ da;da,

X0y q29,uv_ g X qZE,U.VO'TkU

X | A1 02000 — A1 X O2€ 0 5 K”

1 1 (4.29

nk=id nk+io

n’T

)

n” 1 1
2\nk=io n-k+io

(4.17

where we have introduced the standard infrared photon-massere P=p,+p, and P’ = p;+p,, andgq=p,—p; is the
regulator, . The delta functions that result from perform- momentum transfer. The factor

ing the integrations over parameters and «, in Eq. (4.17)

in the eikonal phase suggest the momentum decomposition

) . 1
exm7'1I31'q_”'zpz'Q):eXF{I §q2(7'1+ Tz)}
(4.25

k'u:kf+)\1eil'+)\2el2t,
where A;=p,-k, and A\,=p;-K, (4.18

has been omitted because it is unity in the eikonal limit, and
correspondingly, we have carried out the integrals-pand
7,. The eikonal phase, E.17), now takes the very similar

and the four-vector basis is given by

0
- Py - P2 form
ef=— (100 and e"=—(1,0,0,— —),
1 \/g p 2 \/g
(4.19
which have the following properties: p1p2
P2 X len - 4.2
Dn(p1,p2;X)= p\/g N (4.26

1 M3 1 M3 d 1p;-p2

el-el—gF, 62~62—g¥, an er- 62—57

(4.20 Choosing a spacelike strit,n*=(0,n), integrating over
' the coordinates\;,\,, and introducing “proper-time” pa-

The corresponding measure and Jacobian are, respecuvel;}""‘meter representations of the propagators, we reduce Eq.

4.26) to
(dk)=Jd%k, dx,d\, and J=(pys)~L (4.2D)

Using the definition of the Miter amplitude,M(s,t), given wWe choose a spacelike string in order that we formally have a
by removing the momentum-conserving delta function, local interaction in momentum space.
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o NS N o
n(PLpP2iX)= T | o et ] dse Qu-O2P1* Po~ 61X oY PE€pnrs 57 70

ngét(n-kﬂa)
o it

odt - . 1 pP1- P> 0 1 (dt
—J' —gtnk '5))]:E|ql'Q2EK0(M|X|)_Q1XQZESW”Jﬁ§fTKo[M(XHn)H ,

it
(4.27
in terms of modified Bessel functions, where we have dropped the subdcript
We perform the parameter integral over t in the limit of smadt
1. () Joc fo dte X -
— =zZ-(NXX — = = =arctaf———|, .
2 0 J=|(t+n-x)2+x?—(n-x)? z-(NXX)
so the phase is
1 - n-x
Pn(p1,P2:X)= 5} A AaIn(|X)) —dr X gaarctan =————| 1. (4.29
™ Z-(NXX)
In this limit we have used the asymptotic limit of the modfied Bessel function
erx
Ko(x)~—|n(7 , (4.30
wherey=0.577 . .. isEuler's constant and we have defingd-e”u/2. Similarly, Eq.(4.23 becomes
i 1 200X /T T
M(s)=— 5= da | a2 Up) vou(pyu(py) v upo)
d 1 (dt jad ( %)
X guvql‘qZKO(lu“|X|)_ e,uva'fqlqunTaT EJ TKo[,LL|(X+tn)|] €3®nP1:P2:%), (431)

Although in the eikonal limit, no spin-flip processes oc- and consequently®y=iy°c, where ajj =6ijk0'k. We then
cur, it is, as always, easier to calculate the helicity ampli-easily find upon integrating over the paramegethat the
tudes, of which there is only one in this case. In the high-spin non-flip part of Eq(4.31) becomes §—0)
energy limit,p®>m, the Dirac spinor in the helicity basis is

po M(Sut)ZZMSM [Jdzxeiq'xeiq’n(plvpz;x)_(277)252(q) )
ua(p)ZVﬁ(lJriyg,a)yw (4.32 1My e

where thev,, may be thought of as two-component spinors Now notice that the arctangent function is discontinuous

satisfyingy®v,=v,,. They are further eigenstates of the he-when thexy components of andx lie in the same direction.
licity operator o~ p with eigenvalueo: We require that the eikonal phase facebP» be continuous,

which leads to the Schwinger quantization conditi@r):

- 0 0 “ 0 0
vi(p’)z(coi,sini) vT(p’):(—sinE,cosz—) 01X d2=4Nm. (4.36
Now using the integral form for the Bessel function of order
. 1 R 0 v,
v+(P)=<O) v—(p)=(1)- (4.33
2nd g .
o iV‘]v(t):J _¢e|(t cosaﬁ—vqﬁ)' (4.37)
We employ the definition 0o 2w
Ys= Yoy v?y? (4.34  we find the dyon-dyon scattering amplitut®35 to be
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, o - gauge dependent. The most obvious nonperturbative tech-
ézwa dx x Ly(gx)e? N, nique for transcending these limitations in scattering pro-
0 cesses lies in the high energy regime where the eikonal ap-
(4.38 proximation is applicable; in that limit, our formalism
generalizes the lowest-order result of Urrutia and charts the
way to include systematic corrections. More problematic is

TS

M(s,t)= MM,

where @=q; - q,/4m, and ¢ is the angle betweeq and n.

The integral ovex is just a ratio of gamma functions, the treatment of monopole production processes—we defer
T - that discussion to a subsequent publication.
© e 1ol 1 e I'(1+N+ia) In addition we have also detailed how the Dirac string
fo dx(ux) Jan(ax) = E ? T(N—iw dependence disappears from physical quantities. It is by no

(439 Mmeans a result of string averaging or a result of dropping
' string-dependent terms as in REE8]. In fact, it is a result of

Then Eq.(4.39 becomes summing the soft contributions to the dyon-dyon or charge-
_ monopole process. There is good reason to believe that in-
s 2 i 47,2 i“F(1+N+ia) clusion of hard scattering contributions will not spoil this
M(s,t)= YRV — (N—ia)e?\V — | = consistency. At the level of the eikonal approximation and its
M2 g q I'(1+N-ia) corrections one might suspect the occurrence of a factoriza-

(440 tion of hard string-independent and soft string-dependent
contributions in a manner similar to that argued recently in
strong-coupling QCD.

It is also of interest to investigate other nonperturbative

This result is almost identical in structure to the nonrelativ-
istic form of the scattering amplitude for the Coulomb po-

tential, which result is recovered by settifg=0. (See, for o ; ;
: : methods of calculation in order to demonstrate gauge invari-

example, Ref[67].) Following the standard conventi¢f8] ) ; . . .
ance of Green'’s functions and scattering amplitudes in both

we calculate the spin-averaged cross section for dyon-dyon . ;
SO . o electron-monopole and dyon-dyon scattering and in Drell-
scattering in the high energy limit,

Yan production processé3.In a subsequent paper we will

d (1 0p) 2+ (G X )2 apply the techniques and results found here to the Drell-Yan
do_61-% 91 A2 _ (4.4  Production of monopole-antimonopole processes, and obtain
dt 4rt? phenomenologically relevant estimates for the laboratory

production of monopole-antimonopole pairs.
While the Lagrangian is string dependent, because of the

charge quantization condition, the cross section(4&4)), is ACKNOWLEDGMENTS

string independent. We are grateful to George Kalbfleisch for many useful

For the case of charge-monopole scatter@gg,=0, di . the phvsi ¢ | dqf -
this result, of course, coincides with that found by Urrutia 2'SC¢USSIONS on i€ physics ol monopoles and for reéviving our

[45], which is also string independent as a consequence d(gterest in the whole su_bject. . further_thank Markus
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dence by simply dropping string-dependent terms becau his vt[/ork ;S fSlIJEpported in part by a grant from the U.S.
they cannot contribute to any gauge invariant quantitoés epartment of Energy.

Ref.[28]).

APPENDIX A: PATH INTEGRAL

V. CONCLUSION In this appendix we summarize the main steps to obtain
the covariant path integral for the string dependent action
In this paper we have responded to the challenge oforresponding to the generating functional, E2j44).
Schwinger| 27], to construct a realistic theory of relativistic  Thjs path integral is obtained by calculating the functional
magnetic charges. He sketched such a development in sourggurier transform ofZ, which in the photonic sector
theory language, but restricted his consideration to classicmounts to transforming E¢3.40), according to Eq(3.46),

point particles, explicitly leaving the details to the reader.the functional transform of which is given by
Urrutia applied this skeletal formulation in the eikonal limit

[45], as already suggested by Schwinger.

We believe that we have given a complete formulation, in
modern quantum field theoretic language, of an interacting
electron-monopole or dyon-dyon system. The resulting Xex;{ _iJ (J.AJF*J.B)}_ (A1)
Schwinger-Dyson equations, although to some extent im-
plicit in the work of Schwinger and others, are given here for
the first time.

The challenge is to apply these equations to the calcula- 19 addition there is a formalism recently employed in Hé€8]
tion of monopole and dyon processes. Perturbation theory isased on Fradkin’70] Green’s function representation, which in-
useless, not only because of the strength of the coupling, butudes approximate vertex and self-energy polarization corrections
more essentially because the graphs are fatally stfimg using nonperturbative techniques.

Zo(A,B)= f [dI][d* I]Zo(d,*J)
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After performing the Gaussian functional integration over PV, 0= —9%9Pgr+9%gPg2+9%9Pgr— g%gPg?
in Eq. (A1), we obtain
~07979)+979597 (A4)

to simplify the final term in the exponential in EGA2):

20(A,B):f[d*J]eXp[_ij(dx)*‘JM(X)BM(X) i

i ‘Iif (@)(dX)AL)DH(x=X)HAH(X')

# 5 ] (@o(ax)73,0000-x)73,00) i

i T2 f (dx)(dx)AL(x)DH(x=X")Ak(x')

‘EJ <dx)(dx')AL(x)K“V(x—X’)A'V(X')]’
+if (dX)(AX')* IHX) €,00,0"F 7 (X=X )AT(X')

(A2)

[

whereK ,, is the kernel given by Eq3.16), the inverse to - §J (dx)(dx')* I, () A#(x—X")*J,(X")
D#*, and .
[

_EJ (dx)(dx")* IX(X)D 4 (x=x")*J,(X"),

AL(X)=A,(x)+ Guva (dx)(dx’)(dx")D(x—x") (A5)
X 3" F(X —X")* IT(X"). (A3)  the last term of which cancels the second term in the expo-

nential in Eq.(A2). Here we see the ‘string propagator,”

Eg. (3.50. Now we carry out the 3 functional integration,
We now use the following identity involving the contraction noticing that the second term on the right side of E&p)
of e symbols, convertsB* to B'#, Eq. (3.49:

ZO(A,B)zf[dA][dB]exp[—%f (dx)(dx’)A“(x)KM(x—x’)AV(x’)+sz (dx)(dx’)B’“(X)Z;Vl(x—x’)B’V(x’)
(A6)

which implies the effective actio(B.48).

APPENDIX B: FUNCTIONAL REARRANGEMENT

We consider the expansion about the minima of the effective attpA,B,J,* J], in particular, the impact on Eq€3.52
of the transformatior{3.53. Using the properties of Volterra expansions for functionals, the shift in variables results in the
translation of the loop functionals:

FI(K,U,)! (Bla)

~ 1)
Fl(AM+¢M):eXp‘ if (dX)qsa(X)iéK 0

Fz(é;ﬁ(;s;):exp{if(dx) ¢;(x)—eaﬁy5J (dx")aPEY(x—x")

X¢5(x/))i6§ (X)] Fz(gﬂ). (B1b)

where
B/(X)=B,(X) = €407 f (dx)a"f7(x=x") $"(X'). (B2)

Substituting Eqs(Bla), (B1b) back into Eq.(3.52),
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i
Z(J)=exp{§f (dX)(dX")[IX(X)D ,,(X=X")I"(X") +*I*(X)D ., (Xx—=x")* I (X") ]
—i%mf (dX)(dX’)(dX”)JK(X)D““(x—X’)a’”f"(X’—X”)*JT(X”)]

+e7T | (dX)a,f o (X—X")

i 6A,(X) i B7(X') o)

xj [dqs][dqs']exp{if (dX)(%(X) i 6B, (x))
M

F1(A)F,(B), (B3)

- sz (dx)(dX)[FH(X)K,, (X=X") $*(X') = " “(X) A} (x=X") " (X')]

and performing the resulting quadratic integration og€x) and ¢’ (x), we obtain the results in E¢3.56).
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