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CP conserving constraints on supersymmetricCP violation in the MSSM
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We address the following question. Take the constrained minimal supersymmetric standard model
~CMSSM! with the two CP violating supersymmetry~SUSY! phases different from zero, and neglect the
bound coming from the electric dipole moment~EDM! of the neutron: is it possible to fully account forCP
violation in the kaon andB systems using only the SUSY contributions with a vanishing CKM phase? We
show that the BR(B→Xsg) constraint, thoughCP conserving, forces a negative answer to the above question.
This implies that even in the regions of the CMSSM, where a cancellation of different contributions to the
EDM allows for large SUSY phases, it is not possible to exploit the SUSY phases to fully account for
observableCP violation. Hence to have sizable SUSY contributions toCP violation, one needs new flavor
structures in the sfermion mass matrices beyond the usual CKM matrix.

PACS number~s!: 13.25.Hw, 11.30.Er, 12.60.Jv, 13.25.Es
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I. INTRODUCTION

Since the initial work of Kobayashi and Maskawa, t
standard model~SM! of electroweak interactions is known t
be able to accommodate the experimentally observedCP
violation through a unique phasedCKM in the Cabibbo-
Kobayashi-Maskawa~CKM! mixing matrix. However, the
available experimental information, namely«K and «8/«, is
not enough to establish this phase as the only source ofCP
violation.

Most of the extensions of the SM include new observa
phases that may significantly modify the pattern ofCP vio-
lation. Supersymmetry~SUSY! is, without a doubt, one o
the most popular extensions of the SM. Indeed, in the m
mal supersymmetric extension of the SM~MSSM!, there are
additional phases which can cause deviations from the
dictions of the SM. After all possible rephasings of the p
rameters and fields, there remain at least two new phys
phases in the MSSM Lagrangian. These phases can be
sen to be the phases of the Higgsino Dirac mass param
(fm5Arg@m#) and the trilinear sfermion coupling to th
Higgs (fA0

5Arg@A0#) @1#. In fact, in the so-called con
strained minimal supersymmetric standard model~CMSSM!,
with strict universality at the grand unification scale, the
are the only new phases present.

It was soon realized that for most of the CMSSM para
eter space, the experimental bounds on the electric di
moments of the electron and neutron constrainedfA0 ,m to be

at mostO(1022). Consequently these new supersymme
phases have been taken to vanish exactly in most studie
CMSSM.

However, in the last few years, the possibility of havi
nonzero SUSY phases has again attracted a great de
attention. Several new mechanisms have been propose
suppress electric dipole moments~EDMs! below the experi-
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mental bounds while allowing SUSY phasesO(1). Methods
of suppressing the EDMs consist of cancellation of vario
SUSY contributions among themselves@2#, nonuniversality
of the soft breaking parameters at the unification scale@3#,
and approximately degenerate heavy sfermions for the
two generations@4#. In a recent work@5#, we showed that, in
a model with heavy sfermions of the first two generatio
and in the large tanb regime,«K and«B could receive very
sizable contributions from these new SUSY phases. Sim
studies@6#, including a larger set of experimental constrain
have reported the impossibility of such large supersymme
contributions.1

In this work, we are going to complete our previou
analysis with the inclusion of all the relevant constraints in
CMSSM scenario. In doing so we adopt a different persp
tive. We will assume from the very beginning that both s
persymmetric phases areO(1), ignoring for the moment
EDM bounds.2 In these conditions, and taking into accou
otherCP-conserving constraints, we will analyze the effec
on the low energyCP violation observables, especially«K
and«B . It should be noted that the model used in@5# can be
easily obtained as a limit of the CMSSM by decoupling t
first two generations of squarks and neglecting the interg
eration mixing in the sfermion mass matrices. Hence,

1In this paper we restrict our discussions to the CMSSM. If o
relaxes some of the constraints of this model, for instance by all
ing for large gluino mediatedCP violation with nonuniversal soft
SUSY breaking terms, then it might still be possible to have fu
supersymmetric« and«8/« @7#.

2EDM cancellations may be obtained through nontrivial relat
phases in the gaugino mass parameters~see for instance the third
paper in Ref.@2#!. However, for the discussion of the present pap
no explicit mechanism for such a cancellation is needed.
©2000 The American Physical Society09-1
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results in the more general CMSSM will include this mod
as a limiting case.

In the next section we study the new sources of fla
mixing present at the electroweak scale in any supersymm
ric model. In Sec. III we are going to analyze neutral mes
mixing, i.e.,K02K̄0 andB02B̄0 mixings, with large super-
symmetric phases. Section IV will be devoted to the study
the branching ratio of the decayb→sg. In Sec. V we will
show the impact of the measuredb→sg branching ratio on
the supersymmetric contributions to«K and«B . Section VI
will present our conclusions, and in Appendices A and B
collect, respectively, the formulas for the integration of r
evant renormalization group equations~RGE’s! and the dif-
ferent loop functions appearing in the text.

II. FLAVOR MIXING IN THE CMSSM

The issue of flavor changing neutral current~FCNC! in-
teractions in the CMSSM has been widely investigated in
literature. For the completeness of the discussion, we bri
recall those properties which will be relevant for our ana
sis.

The CMSSM is the simplest supersymmetric structure
can build from the SM particle content. This model is co
pletely defined once we specify the soft-supersymme
breaking terms. These are taken to be strictly universa
some ultra-high energy scale, which we take to be the gr
unification scale (MGUT):

~mQ
2 ! i j 5~mU

2 ! i j 5~mD
2 ! i j 5~mL

2! i j 5~mE
2 ! i j 5m0

2 d i j ,
~1!

mH1

2 5mH2

2 5m0
2 ,

mg̃5mW̃5mB̃5m1/2,

~AU! i j 5A0eifA~YU! i j , ~AD! i j 5A0eifA~YD! i j ,

~AE! i j 5A0eifA~YE! i j .

That is, there is a common mass for all the scalars,m0
2, a

single gaugino mass,m1/2, and all the trilinear soft-breaking
terms are directly proportional to the corresponding Yuka
couplings in the superpotential with a proportionality co
stantA0eifA.

Now, with the use of the renormalization group equatio
~RGE! of the MSSM, as explained in Appendix A, we ca
obtain the whole supersymmetric spectrum at the e
troweak scale. All the supersymmetric masses and mixi
are then a function ofm0

2, m1/2, A0 , fA , fm , and tanb. We
require radiative symmetry breaking to fixumu and uBmu
@8,9# with tree-level Higgs potential.3

3The RGE’s of the MSSM have received a vast amount of att
tion in the literature. However, in most of the previous analyses
SUSY phasesfA andfm are switched off. For this reason we pref
to give the relevant RGE’s with nonvanishing SUSY phases in A
pendix A.
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It is important to notice that, even in a model with un
versal soft-breaking terms at some high energy scale as
CMSSM, some off-diagonality in the squark mass matric
appears at the electroweak scale. Working on the basi
squarks rotated parallel to the quarks, the so-called su
CKM basis~SCKM!, we find that the squark mass matrix
not flavor diagonal atMW . This is due to the fact that a
MGUT there exist two nontrivial flavor structures, namely t
two Yukawa matrices for the up and down quarks, which
not simultaneously diagonalizable. This implies that throu
RGE evolution some flavor mixing leaks into the sfermi
mass matrices. In a general supersymmetric model, the p
ence of new flavor structures in the soft-breaking ter
would generate large flavor mixing in the sfermion ma
matrices. However, in the CMSSM the two Yukawa matric
are the only source of flavor change. As always in the SCK
basis, any off-diagonal entry in the sfermion mass matri
at MW will be necessarily proportional to a product o
Yukawa couplings. The RGE’s for the soft-breaking term
are sets of linear equations, and thus, to match the cor
quirality of the coupling, Yukawa couplings or trilinear so
terms must enter the RGE in pairs, as we can see in E
~A1!–~A3! in Appendix A.

In fact, in the up ~down! squark mass matrix the u
~down! Yukawas will also be diagonalized and so w
mainly contribute to diagonal entries while off-diagonal e
tries will be due to the down~up! Yukawa matrix. This
means, for instance, that in this model the off-diagonality
the MLL

(d) 2 matrix will roughly bec•YuYu
† , with c a propor-

tionality factor that typically is

c.
1

~4p!2
logS MGUT

MW
D.0.20, ~2!

as expected from the loop factor and the running fromMGUT
to MW . Nevertheless, we have to keep in mind that this
simply a typical estimate and the final value ofc can suffer a
sizable variation depending on many other factors
present in this simple estimate.

On the other hand, this has clear implications on the tab
dependence of these off-diagonal entries of the sferm
mass matrices. In the basis where the down Yukawa ma
is diagonal, we can write the up and down Yukawas as

YU~MZ!5
g

A2MWsinb
VCKM

† Mu,

YD~MZ!5
g

A2MWcosb
Md ~3!

with VCKM the Cabibbo-Kobayashi-Maskawa mixing matr
andMu,d the diagonalized mass matrices for the quarks.
can see in this equation that for tanb*1 the up Yukawa
matrix will maintain similar values when going to large ta
b. Hence, the off-diagonal entries in the down squarks m
matrix will be roughly stable with tanb. In the up squark
mass matrix we have the opposite situation and the tab
dependence is very strong. In this case the off-diagonal

-
e

-
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tries depend on the down Yukawa matrix that grows linea
with tanb for large tanb. This means that we can expect th
flavor change in the up and down squark mass matrix to
similar when tanb.mt /mb.40, while for tanb.2 the fla-
vor change in the up mass matrix will be approximate
(tanb540)2/(tanb52)25400 times smaller~see Appendix
A for details!. These points also apply to the left-right su
matrices where again flavor changing entries will be due
the opposite isospin Yukawa matrix. In fact, this left-rig
sfermion mixing only appears after electroweak symme
breaking. The expression for these matrices in the SC
basis is

MLR
(u)25S v2

A2
VCKMAU* ~MZ!2Um~MZ!Ueifmcotb MuD ,

~4!

MLR
(d)25

v1

A2
AD* ~MZ!2um~MZ!ueifmtanb Md . ~5!

Then, these left-right mixings will have an additional su
pression proportional to the mass of the corresponding ri
handed quark~remember thatAUv1'A0MU). This is always
true for all the generation changing entries that are produ
by the A matrices. However, in the down mass matrix, th
suppression can be partially compensated by a large valu
tan b in the diagonal terms proportional tom. These are all
well-known facts in the different studies of FCNC process
in the framework of the CMSSM@9,10# and imply that flavor
mixing is still dominantly given by the usual CKM mixing
matrix in W bosons, charged Higgs bosons, and charg
vertices.

In this work, we are especially interested inCP violating
observables. Then we must also consider the presenc
observable phases in the sfermion mass matrices. In the
lowing we will take the CKM matrix exactly real to isolat
pure effects of the new supersymmetric phases@11#. The
sfermion mass matrices contain several physical phases
give rise toCP violation phenomena. In particular, befo
RGE evolution, these phases (fA , fm) are confined to the
left-right part of the sfermion mass matrix while both th
left-left, mQ

2 , and right-rightmU,D
2 , matrices are real and

diagonal. However this is not true anymore atMW ; fA leaks
into the off-diagonal elements of these Hermitian matric
through RGE evolution. From the explicit RGE in th
MSSM, Eq. ~A1!, it is clear that this phase only enters th
(mQ

2 ) i j evolution through the combinations (AUAU
† ) i j or

(ADAD
† ) i j . At MGUT these matrices have a common pha

and so the combination (AA†) is exactly real. So to the ex
tent that theA matrices keep a uniform phase during RG
evolution, no phase will leak into themQ

2 matrices. However,
we can easily see from Eqs.~A2! and~A3! that this is not the
case, and different elements of theA matrices are renormal
ized differently. In this equation, we can see that only
terms involving two Yukawa and oneA matrix can produce
a mismatch in the phases. Moreover, these terms will only
important when there are no small Yukawas involved. Th
we can expect a mismatch only on the off-diagonal eleme
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involving the third generation. Keeping this in mind, the ge
eral form of themQ

2 matrix at MW in terms of the initial
conditions is

mQ
2 ~MW!5hQ

(m)m0
21hQ

(A)A0
21hQ

(g)m1/2
2 1~hQ

(gA)eifA

1hQ
(gA) Te2 ifA!A0m1/2, ~6!

where the coefficientsh are 333 matrices with real numeri-
cal entries. In this expression we can see that the presen
imaginary parts will be linked to the nonsymmetric part
the hQ

(gA) matrices. As is clear from the mass matrices
Appendix A @Eqs.~A5!–~A7! and~A12!–~A14!#, these non-
symmetric parts ofmQ

2 are always more that three orders
magnitude smaller than the corresponding symmetric pa
This means that in the SCKM basis, the imaginary parts
any mass insertion are present only in one part per 223
3103, and are always associated with (3,i ) MI, as in Eqs.
~A8!–~A11! and ~A15!–~A18!. A very similar situation was
also found by Bertolini and Vissani in the CMSSM wit
vanishing SUSY phases for the leakage ofdCKM @12,3#. So
we conclude that in the processes we will consider, we
take bothM (u)

LL
2 andM (d)

LL
2 as real to a very good approx

mation.
In the following we will analyze the new effects of thi

model on indirectCP violation in K andB systems. In doing
so, we will use both the exact vertex mixing method and
mass insertion~MI ! approximation@13#. Notice that the MI
approximation is extremely good in the case of the CMSS
where all the off-diagonal entries are sufficiently small. T
size of these off-diagonal entries directly gives, in the M
approximation, the amount of flavor changing induced by
sfermion mass matrices. A possible exception may arise
the stop squark and sbottom sectors that, in any case, c
be diagonalized to ensure the validity of the MI approxim
tion @14#. As we will see in the next section, this is fre
quently useful to understand the exact results obtained in
vertex mixing method.

III. INDIRECT CP VIOLATION IN THE CMSSM

In the SM, neutral meson mixing arises at one lo
through the well-knownW box. However, in the CMSSM,
there are new contributions toDF52 processes coming
from boxes mediated by supersymmetric particles. These
charged Higgs boxes (H6), chargino boxes (x6), and
gluino-neutralino boxes (g̃, x0). The amount of the indirec
CP violation in the neutral mesonM system is measured b
the well-known«M parameter

«M5
1

A2

Im^M 0uH e f f
DF52uM̄0&

DMM
, ~7!

whereDMM is theM2M̄ mass splitting.«M depends on
the matrix elements of theDF52 Hamiltonian,H e f f

DF52 ,
which can be decomposed as
9-3
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H e f f
DF5252

GF
2MW

2

~2p!2
~Vtd* Vtq!2@C1~m!Q1~m!1C2~m!Q2~m!

1C3~m!Q3~m!#, ~8!

where the relevant four-fermion operators are given by

Q15d̄L
agmqL

a
•d̄L

bgmqL
b ,

Q25d̄L
aqR

a
•d̄L

bqR
b ,

Q35d̄L
aqR

b
•d̄L

bqR
a ~9!

with q5s,b for the K andB systems, respectively, anda,b
as color indices. In the CMSSM, these are the only th
operators present in the limit of vanishingmd .

At this point, we are going to divide our discussion in
two parts. We analyze separately the effective operatorQ1
that preserves chirality along the fermionic line, and the
eratorsQ2 andQ3 that change chirality along the fermion
line. As we will see below, the flavor mixing in the sfermio
mass matrix and the experimental constraints on both k
of operators are very different.

A. Chirality conserving transitions

In Eq. ~8!, Q1 is the only operator present that does n
involve a chirality change in the fermionic line. With respe
to the associated sfermion, no chirality change in the s
mion propagator will be needed, and so the suppression
sociated with left-right sfermion mixing can be avoided.
general,C1(m0) can be decomposed as follows

C1~m0!5C1
W~MW!1C1

H~MW!1C1
g̃,x0

~MW!1C1
x~MW!.

~10!

The usual SMW box, where all the couplings are pure
left-handed, can only contribute to this effective operat
However, withdCKM50, C1

W does not contain any comple
phase and hence cannot contribute to the imaginary pa
«M . In any case, it will always be, in the CMSSM, th
dominant contribution toDMM . Similarly, the charged
Higgs contribution,C1

H depends on the same combination
CKM elements with no otherCP violating phase@9#. So it
will not contribute to ourCP violating observable.

Gluino and neutralino contributions toC1
g̃,x0

are specifi-
cally supersymmetric. They involve the superpartners
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quarks and gauge bosons. Here the source of flavor mixin
not directly the usual CKM matrix. It is the presence
off-diagonal elements in the sfermion mass matrices, as
cussed in the previous section. From the point of view ofCP
violation, we will always need a complex Wilson coefficien
In the SCKM basis all gluino vertices are flavor diagonal a
real. This means that in the MI approximation we need
complex mass insertion in one of the sfermion lines. As
plained in the previous section, these MI are proportiona
Yukawa couplings and real up to 1 part in 23103. The com-
plete expressions for the gluino contributions toDF52 pro-
cesses in the MI approximation can be found in@15#. The
bounds obtained there for the real and imaginary parts of
mass insertions required to saturateDMK and«K are

AuRe~d12
d !LL

2 u,431022, ~11!

u~d12
d !LLusin~2fLL!,331023,

~d i j
d !AB5

~MAB
2 ! i j

M̃
,

whereM̃ is an average squark mass.
In the CMSSM, as we can see in Appendix A, these m

insertions are much smaller. In particular, the fact that
bound onDMK, the real part of the MI, is satisfied implie
that the imaginary parts are at least two orders of magnit
below the required value to saturate«K . Hence, no sizable
contributions to«K from gluino boxes are possible. The situ
ation in B02B̄0 mixing is completely analogous; assumin
that the minimum phase from the mixing observable in theB
factories is around 0.1 radian, we would need an imagin
contribution not more than one order of magnitude below
real one. With the arguments given above, this is clearly
of reach for gluino boxes in the CMSSM. Neutralino cont
butions are generally smaller than gluino due to smaller c
plings with the same source of flavor mixing. In fact, a
though neutralino vertices in the SCKM basis also invo
the complex neutralino mixings, any imaginary part on th
operator will only be due to a complex mass insertion. T
can be seen in the explicit expressions in@9# where all neu-
tralino mixings in this operator appear in pairs with its com
plex conjugate counterpart.

Finally, the charginos also contribute toC1(MW)x. In this
case, flavor mixing comes explicitly from the CKM mixin
matrix, although off-diagonality in the sfermion mass mat
introduces a small additional source of flavor mixing:
C1
x~MW!5 (

i , j 51

2

(
k,l 51

6

(
aga8g8

Va8d
* VaqVg8d

* Vgq

~Vtd* Vtq!2
@G(a,k) iG(a8,k) j* G(g8,l ) i* G(g,l ) j Y1~zk ,zl ,si ,sj !#, ~12!
9-4
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wherezk5Mũk

2 /MW
2 , si5M x̃ i

2 /MW
2 , and Vaq•G(a,k) i repre-

sent the coupling of chargino and squarkk to left-handed
down quarks

G(a,k) i5S GUL
ak CR1i* 2

ma

A2MWsinb
GUR

ak CR2i* D , ~13!

whereGUL and GUR are 633 matrices such that the 636
unitary matrix GU[$GULGUR% diagonalizes the up-squar
mass matrix,GUMU

2 GU
† 5diag(Mũ1

2 , . . . ,Mũ6

2 ). CR is one of

the matrices that diagonalize the chargino mass ma
e
r
n
be
t

rs
is

ar
rk
e
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n
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th

t o

-
rt
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through a biunitary transformation CR
†Mx

2CL
5diag(Mx

1
6,Mx

2
6), with

Mx
25S m̃W MWcosb

MWsinb umueifm
D . ~14!

From these equations it is clear thatG(a,k) i will in general be
complex, as bothfm and fA are present in the differen
mixing matrices. The loop functionY1(a,b,c,d) is given in
Eq. ~B1! of Appendix B.

The main part ofC1
x in Eq. ~12! will be given by pure

CKM flavor mixing, neglecting the additional flavor mixin
in the squark mass matrix@10,16#. In this case,a5a8 and
g5g8, we have
C1
(0)x~MW!5 (

i , j 51

2

(
k,l 51

6

(
ag

Vad* VaqVgd* Vgq

~Vtd* Vtq!2
@G(a,k) iG(a,k) j* G(g,l ) i* G(g,l ) j Y1~zk ,zl ,si ,sj !#. ~15!
ity

he
iral-

this
But, taking into account thatY1(a,b,c,d) is symmetric un-
der the exchange of any pair of arguments we have

G(a,k) iG(a,k) j* G(g,l ) i* G(g,l ) j Y1~zk ,zl ,si ,sj !

5
1

2
~G(a,k) iG(a,k) j* G(g,l ) i* G(g,l ) j

1G(a,k) i* G(a,k) jG(g,l ) iG(g,l ) j* !Y1~zk ,zl ,si ,sj !,

~16!

and soC1
(0)x is exactly real@5#. This is not exactly true in the

CMSSM, where there is additional flavor change in the sf
mion mass matrices. Here some imaginary parts appea
the C1

x in Eq. ~12!. Being associated to the size of interge
erational sfermion mixings, these imaginary parts will
maximal for large tanb. In Fig. 1 we show in a scatter plo
the size of imaginary and real parts ofC1

x in theK system for
a fixed value of tanb540. The region of SUSY paramete
explored in this and all of the following scatter plots
50 GeV<m0 ,m1/2, A0<500 GeV, and 0<fA ,fm<2p.
With these initial conditions we impose that all squarks
heavier than 100 GeV with the exception of the tops squa
that, as the charginos, are only required to be above 80 G
Furthermore we impose the constraint from theb→sg de-
cay. Notice that, as we will see later, this is a conserva
attitude in the sense that other constraints that we do
impose could only make our conclusions stronger. Un
these conditions, we can see here that in the CMSSM
Wilson coefficient is always real up to a part in 105. Figure
2 is the equivalent plot for the case ofB0-B̄0 mixing. Here,
imaginary parts are relatively larger but, in any case, ou
reach for the foreseenB factories.

Taking this into account, from the point of view of ex
perimental interest, we will always neglect imaginary pa
in the Wilson coefficientC1 within the CMSSM. Notice that
r-
in

-

e
s
V.

e
ot
r
is

f

s

this would not apply in a general model with nonuniversal
at the grand unified theory~GUT! scale@15# and each par-
ticular model should be considered separately.

B. Chirality changing transitions

From the point of view of flavor change andCP viola-
tion, operatorsQ2 andQ3 are different fromQ1. These two
operators always involve a change in the chirality of t
external quarks and consequently also a change of the ch
ity of the associated squarks or gauginos. In particular,

FIG. 1. Imaginary and real parts of the Wilson coefficientC1
x in

kaon mixing.
9-5
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implies the direct involvement of the supersymmetric phas
On the other hand, these operators are suppressed b
presence of down quark Yukawa couplings, and so can o
be relevant in the region of large tanb @5#. We can write the
different contributions toC2 andC3 as

C2~MW!5C2
H~MW!1C2

g̃~MW!, ~17!

C3~MW!5C3
g̃,x0

~MW!1C3
x~MW!.

In first place, the charged Higgs boson contributes only toC2

but, parallel to the discussion forC1
W,H , the absence o

phases prevents it from contributing to«M .
Gluino and neutralino boxes contribute both toQ2 and

Q3. However flavor change will be given in this case by
off-diagonal left-right mass insertion. In the CMSSM the
MI are always proportional to the mass and are never
hanced by large tanb values @see Eq.~4!# of the right-
handed squark. This implies that these left-right flavor tr
sitions from gluino will always be smaller in the CMSSM
than the corresponding chargino contributions, where fla
change is directly given by the CKM matrix. In fact, this
already well-known for the case ofb→sg decay@17#, which
is completely equivalent from the point of view of flavo
change.

Hence, the most important contribution, especially
light stop and chargino, will be the chargino box. Before t
inclusion of QCD effects, it contributes solely to the coef
cient C3,

C3
x~MW!5 (

i , j 51

2

(
k,l 51

6

(
aga8g8

Va8d
* VaqVg8d

* Vgq

~Vtd* Vtq!2

mq
2

2MW
2 cos2b

3H (a,k) iG(a8,k) j* G(g8,l ) i* H (g,l ) jY2~zk ,zl ,si ,sj !,

~18!

FIG. 2. Imaginary and real parts of the Wilson coefficientC1
x in

B mixing.
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wheremq /(A2MWcosb)•Vaq•H
(a,k)i represents the coupling

of chargino and squark to the right-handed down quarq
with,

H (a,k) i5CL2i* GUL
ak , ~19!

and Y2(a,b,c,d) given in Eq.~B2!. Unlike theC1
x Wilson

coefficient,C3
x is complex even in the absence of interge

erational mixing in the sfermion mass matrices@5#. In fact,
the presence of flavor violating entries in the up-squark m
matrix hardly modifies the results obtained in their abse
@10,16#. So in these conditions we have

C3
x~MW!5 (

i , j 51

2

(
k,l 53,6

@Fs~3,k,3,l ,i , j !

22Fs~3,k,1,1,i , j !1Fs~1,1,1,1,i , j !#,

~20!

Fs~a,k,g,l ,i , j !5
mq

2

2MW
2 cos2b

H (a,k) iG(a,k) j* G(g,l ) i*

3H (g,l ) jY2~zk ,zl ,si ,sj !,

where we have used CKM unitarity and degeneracy of
first two generations of squarks. Due to the differences
tweenH and G couplings, this contribution is always com
plex in the presence of SUSY phases. The most relev
feature of Eqs.~18! and ~20! is the explicit presence of the
external quark Yukawa coupling squared,mq

2/(2MW
2 cos2b).

This is the reason why this contribution is usually neglec
in the literature@6,9,16#. However, as we showed in@5#, this
contribution could be relevant in the large tanb regime. For
instance, inB0-B̄0 mixing we havemb

2/(2MW
2 cos2b) that for

tanb*25 is larger than 1 and so it is not suppressed at
when compared with theC1

x Wilson coefficient. This means
that this contribution can be very important in the large tanb
regime@5# and could have observable effects inCP violation
experiments in the newB factories. However, in our previou
work @5#, we did not include the additional constraints com
ing from b→sg decay. In the next sections we will analyz
the relation of«M with this decay, and the constraints im
posed by its experimental measure.

IV. B\Sg IN THE CMSSM

The decayb→sg has already been extensively studied
the context of the CMSSM with vanishing SUSY phas
@17#. Because the branching ratio is aCP conserving observ-
able, the presence of new phases will not modify the m
features found in@17# concerning the relative importance o
the different contributions. However, in the presence of
new SUSY phases, these contributions will have differ
phases and will be observable through the interference.
we will see next, the experimental constraints will also ha
a large impact on the imaginary parts of the decay am
tudes.
9-6
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This decay is described by the followingDF51 effective
Hamiltonian:

H e f f
DF5152

4GF

A2
Vts* Vtb (

i 52,7,8
CiQi , ~21!

where the relevant operators are given by

Q25 s̄LgmcLc̄LgmbL , ~22!

Q75
emb

16p2
s̄LsmnFmnbR , ~23!

Q85
gsmb

16p2
s̄LsmnGmnbR . ~24!

HereC2(m0)51, and the Wilson coefficientsC7,8 can be de-
composed accordingly with the particles in the loop,

C7~MW!5C 7
W~MW!1C 7

H~MW!1C 7
x6

~MW!1C 7
g̃x0

~MW!,
~25!

C8~MW!5C 8
W~MW!1C 8

H~MW!1C 8
x6

~MW!1C 8
g̃x0

~MW!.

Among these contributions, theW penguin diagram is ex
actly the same as in the SM and it does not depend on
supersymmetric parameters; it is simply a function of S
couplings and masses. This contribution is@9#

C 7
W~MW!52

3

2
xt@QUF1~xt!1F2~xt!#, ~26!

C 8
W~MW!52

3

2
xtF1~xt!,

with xt5mt
2/MW

2 andQU the charge of the up quarks. Sim
larly, in the charged Higgs penguins all the variables
known with the exception ofMh . Again this contribution is
unchanged by the inclusion of the new SUSY phases,

C 7
H~MW!52

xt

2xh
$cot2b@QUF1~xt /xh!1F2~xt /xh!#

1QUF3~xt /xh!1F4~xt /xh!%, ~27!

C 8
H~MW!52

xt

2xh
@cot2bF1~xt /xh!1F3~xt /xh!#,

wherexh5Mh
2/MW

2 . This contribution gives a sizable corre
tion to the b→sg decay that constrains the mass of t
charged Higgs in two Higgs doublet models or in the MSS
with low tanb. However, in the case of moderate-large t
b, chargino contributions may partially compensate t
charged Higgs contribution relaxing the constraints@17#.

In addition to theW6 and charged Higgs contribution
analyzed above, there are three specifically supersymm
contributions mediated by gluino, neutralino, and chargi
In gluino or neutralino diagrams flavor change is due to
07500
ny

e

s

ric
.
e

off-diagonality in the sdown mass matrix. Being left-rig
flavor off-diagonal transitions, they are suppressed by
mass of theb quark. Indeed, smallness of gluino and ne
tralino contributions has already been established in@17#,
where it was shown that in the CMSSM, such contributio
are roughly one order of magnitude smaller than the charg
contribution.

Together with theW6 and charged Higgs, the most im
portant supersymmetric contribution will be, especially
the large-moderate tanb regime, the chargino contribution
In the W and charged Higgs contributions, the necess
chirality flip for the dipole amplitude is always proportion
to mb . However, in the chargino penguin the chirality fl
can be made either through a chargino mass insertion in
loop or through an external leg mass insertion proportiona
mb . In fact, as pointed out in@9#, this enhancement due t
mx i /mb is partially compensated by the presence of theb
Yukawa coupling. Nevertheless, this compensation is o
effective for low values of tanb. In terms of the chargino-
quark-squark couplings used in the previous section, th
contributions are

C 7
x6

~MW!5 (
k51

6

(
i 51

2

(
a,b5u,c,t

VabVbs*

VtbVts*

3S G(a,k) iG* (b,k) iFL
7~zk ,si !

1
mb

A2MWcosb
H (a,k) iG* (b,k) i

Mx i

mb
FR

7~zk ,si !D ,

C 8
x6

~MW!5 (
k51

6

(
i 51

2

(
a,b5u,c,t

VabVbs*

VtbVts*

3S G(a,k) iG* (b,k) iFL
8~zk ,si !

1
mb

A2MWcosb
H (a,k) iG* (b,k) i

Mx i

mb
FR

8~zk ,si !D
~28!

with the loop functions defined in Appendix B. Similarly t
the situation for the Wilson coefficientC3, we can, to a very
good approximation, neglect the presence of intergen
tional mixing in the up-squark mass matrix@9,10#, then,

C 7
x6

~MW!5 (
k53,6

(
i 51

2 S G(3,k) iG* (3,k) iFL
7~zk ,si !

2G(1,1)iG* (1,1)iFL
7~z1 ,si !

1
mx i

mb

mb

A2MWcosb
@H (3,k) iG* (3,k) iFR

7~zk ,si !

2H (1,1)iG* (1,1)iFR
7~z1 ,si !# D
9-7
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C 8
x6

~MW!5 (
k53,6

(
i 51

2 S G(3,k) iG* (3,k) iFL
8~zk ,si !

2G(1,1)iG* (1,1)iFL
8~z1 ,si !

1
mx i

mb

mb

A2MWcosb
~H (3,k) iG* (3,k) iFR

8~zk ,si !

2H (1,1)iG* (1,1)iFR
8~z1 ,si !!D ~29!
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where, once more, we use CKM unitarity and degeneracy
the first two generations of squarks.

The second term inC7,8 in Eq. ~30!, which corresponds to
the chargino mass insertion in the loop, is dominant in
large tanb regime. Notice that bothG* (a,k) i andH (a,k) i are
products of the squark and chargino mixing matrices that
be O(1) ~in the case of flavor-diagonal stop mixings!. Then
for stop and chargino masses around the electroweak s
this term has an extra enhancement of 1/cosb. This means
that for large tanb we can approximate these Wilson coe
ficients as
C 7
x6

~MW!5 (
k53,6

(
i 51

2
mx i

mb

mb

A2MWcosb
@H (3,k) iG* (3,k) iFR

7~zk ,si !2H (1,1)iG* (1,1)iFR
7~z1 ,si !#,

C 8
x6

~MW!5 (
k53,6

(
i 51

2
mx i

mb

mb

A2MWcosb
@H (3,k) iG* (3,k) iFR

8~zk ,si !2H (1,1)iG* (1,1)iFR
8~z1 ,si !#. ~30!
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V. B\Sg AND «M : CORRELATED ANALYSIS

As we have seen in Sec. III, chargino contribution to t
C3 Wilson coefficient, Eq.~20!, is the main contribution to
indirect CP violation of the new supersymmetric phases
large values of tanb. However, if we compare this Wilson
coefficient with the chargino contribution to the decayb
→sg, Eqs. ~20! and ~30!, we can see that both chargin
contributions are deeply related. In fact, if we make a rou
approximation and assume that the two different loop fu
tions involved are of the same order, i.e.,

Y2~zk ,zl ,si ,sj !'Asisj FR
7~zk ,si ! FR

7~zl ,sj !, ~31!

we would obtain

C3~MW!5„C7~MW!…2
mq

2

MW
2

. ~32!

Of course, this cannot be considered as a good approx
tion. As we can see from their explicit expressions in Appe
dix B, the loop functions are clearly different. Anyway, the
can be expected to give results of the same order of ma
tude. So the order of magnitude ofC3 is determined by the
allowed values ofC7, as we will explicitly show below.

To reach this goal, we will follow@18#, where they con-
strain in a model-independent way new physics contributi
to the Wilson coefficients involved in theb→sg decay. In
terms of these Wilson coefficients, the branching ra
BR(B→Xsg) is
r

h
-

a-
-

i-

s

o

BR~B→Xsg!.1.25810.382uj7u210.015uj8u2

11.395 Re@j7#10.161 Re@j8#10.083 Re@j7j8* #,

~33!

where ja5Ca(MW)/C a
W6

(MW). The different coefficients
appearing in Eq.~33! are the SM renormalization grou
evolved contributions that must be recovered in the limitja
51. The numerical values are taken from@18#. We have not
taken into account the errors associated with the choice
the scale and the restrictions on the photon energy that do
modify our conclusions. Now using the experimental me
sure, BR(B→Xsg)5(3.1460.48)31024, we can constrain
the allowed values of the complex variablesj7 and j8. In
fact, we can already see from Eq.~33! that in the approxi-
mationj7'j8 this is simply the equation of an ellipse in th
Re@j7#2Im@j7# plane. In the case of supersymmetry wi
large tanb, the new physics contribution toj7 andj8 will be
mainly due to the chargino. The allowed values ofj7 directly
constrain then the chargino contributions toC7(MW) and in-
directly constrain the values ofC3(MW).

In Fig. 3, we show a scatter plot of the allowed values
Re(C7) versus Im(C7) in the CMSSM for a fixed value of
tanb with the constraints from Eq.~33!. Notice that a rela-
tively large value of tanb, for example, tanb*10, is needed
to compensate theW and charged Higgs contributions an
cover the whole allowed area with positive and negative v
ues. However, the shape of the plot is clearly independen
tan b; only the number of allowed points and its location
the allowed area depend on the value considered. In
figure we take tanb540 because only a large value cou
give rise to observableCP violation @5#. The values ofC7
andC8 used here are the values obtained in the CMSSM
9-8
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a given set of initial conditions. Although we do not use t
approximationj7'j8 this does not modify the elliptic shap
of the plot.

Figure 4 shows the allowed values for a rescaled Wils
coefficientC̄3(MW)5MW

2 /mq
2C3(MW) corresponding to the

same allowed points of the SUSY parameter space in Fig
As we anticipated previously, the allowed values forC̄3 are
close to the square of the values ofC7 in Fig. 3 slightly
scaled by different values of the loop functions. This is t
proof of the importance of theb→sg constraint on the
chargino contributions to indirectCP violation.

We can immediately translate this result to a constraint
the size of the chargino contributions to«M :

FIG. 3. Experimental constraints on the Wilson coefficientC7.

FIG. 4. Allowed values for the rescaled WCC̄3.
07500
n

3.

e

n

«M5
GF

2MW
2

4p2A2 DMM

~VtdVtq!2

24
FM

2 MMh3~m!B3~m!

3
MM

2

mq
2~m!1md

2~m!
Im@C3#. ~34!

In this expressionMM , DMM , and FM denote the mass
mass difference, and decay constant of the neutral me
M 0. The coefficienth3(m)52.93 @19# includes the RGE
effects fromMW to the meson mass scale,m, andB3(m), the
B parameter associated with the matrix element of theQ3
operator@19#.

Then for theK system, using the experimentally measur
value ofDMK , we obtain

«K
x 51.731022

ms
2

MW
2

Im@C̄3#'0.431027Im@C̄3#. ~35!

Given the allowed values ofC̄3 in Fig. 4, this means that in
the CMSSM, even with large SUSY phases, chargino can
produce a sizable contribution to«K . We have seen in Sec
III that gluino and neutralino also give negligible contrib
tions in the CMSSM or in a model without off-diagonal sof
breaking terms at the GUT scale. Hence indirectCP viola-
tion in the kaon system will be mainly given by the usual S
box and the presence of aCP violating phase in the CKM
matrix, dCKM , is still needed.

The case ofB0-B̄0 mixing has a particular interest due t
the arrival of new data from theB factories. In fact, as ex-
plained at the end of Sec. III and in@5#, in the large tanb
regime chargino contributions to indirectCP violation can
be very important. However, for any value of tanb we must
satisfy the bounds from theb→sg decay. So if we apply
these constraints to theB02B̄0 mixing,

«B
x50.17

mb
2

MW
2

Im@C̄3#'0.531023Im@C̄3# ~36!

where once again, with the allowed values of Fig. 4, we
a very small contribution toCP violation in the mixing. We
must take into account that the mixing-inducedCP phase,
uM , measurable inB0 CP asymmetries, is related to«B by
uM5arcsin$2A2•«B%. The expected sensitivities on theCP
phases at theB factories are around60.1 radians, so this
supersymmetric chargino contribution will be completely o
of reach. Gluino and neutralino contributions to indirectCP
violation can also be discarded in the CMSSM. Once ag
we have to conclude that no new contributions to indir
CP violation from the new SUSY phases will be observab
in B0 CP asymmetries in the framework of the CMSSM
Recently, the Collider Detector at Fermilab~CDF! @20# has
provided preliminary indications that sin 2b is in agreement
with the SM predictions. Clearly, from the above result@Eq.
~36!#, it appears that the CMSSM contribution is too sm
by itself to account for this result.
9-9
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VI. CONCLUSIONS

In this work, the effects of nonvanishing supersymmet
phases on indirectCP violation in K and B systems have
been analyzed within the CMSSM. We have found that
erators involving only left-handed external quarks are
sensitive to these new phases at an observable level. Th
due to the absence of intergenerational mixings beyond th
originated from the CKM matrix. On the contrary, operato
involving both right- and left-handed quarks are in gene
complex, even in the absence ofdCKM , and could be relevan
in the large tanb regime. However, we have shown th
these contributions are deeply related with the BRB
→Xsg) decay. So, taking into account the constraints co
ing from this decay, these contributions also turn out to
too small to be measured experimentally.

Although these conclusions are specific for indirectCP
violation, they could also be implemented for chargino m
diated directCP violation in the decays. Again, in thes
decays the same chargino-quark-squark couplings are
volved and we can also expect a big impact of theb→sg
constrain. In fact, the conclusions reached in this paper
far more general. The correlation betweenb→sg and SUSY
induced indirectCP violation exists in any supersymmetr
model with sufficiently small intergenerational mixings
the sfermion mass matrices. This would include specifica
all the models without new flavor structures beyond the us
CKM matrix at the GUT scale and simplified models as t
one the authors used in@5#.

In summary, concerning the simpler supersymme
models, like CMSSM, the constraints coming from BR(B
→Xsg) decay are sufficient to rule out pure supersymme
07500
c

-
t
is

se

l
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e

-

in-

re
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al

c

c

indirect CP violation in K and B systems, even in the ab
sence of any electric dipole moment constraints. This
very important consequences for the supergravity indu
models where a cancellation between different supersymm
ric contributions allows large supersymmetric phases wh
respecting EDM bounds@2#. In these models, even in th
regions of parameter space where this cancellation occurs
observable effect of the large SUSY phases will appear
indirect CP violation experiments. However, as pointed o
by Baek and Ko@6#, these phases would still be observab
in CP asymmetries in theb→sg decay.

All this means that the presence of large SUSY phase
not sufficient to produce observable effects at the low ene
experiments. In particular, new sources of flavor change
yond the usual CKM matrix are needed. And so, any dev
tion from the SM expectations at indirectCP violation ex-
periments due to supersymmetry should be taken as a sig
nonuniversality of the soft-breaking terms. In this conte
one recalls the recent studies on superstring compacti
tions with nonuniversal gaugino masses@21#.
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APPENDIX A: INTEGRATION OF RGE’S IN CMSSM

In this Appendix we describe the new features of the integration of RGE’s in the CMSSM with nonvanishing SUSY
relevant to our analysis. The complete matrix form of the RG equations can be found in@9#. Using their notation and
conventions, with the only change ofAq5mYq

A , we will mainly concentrate on the left-left scalar-quark mass matrix and
trilinear soft-breaking coupling evolution:

dmQ
2

dt
5~ 16

3 ã3M3
213ã2M2

21 1
9 ã1M1

2!12 1
2 @ỸUỸU

† mQ
2 1mQ

2 ỸUỸU
† 12~ỸUmU

2 ỸU
† 1m̄2

2ỸUỸU
† 1ÃUÃU

† !#1 1
2 @ỸDỸD

† mQ
2

1mQ
2 ỸDỸD

† 12~ỸDmD
2 ỸD

† 1m̄1
2ỸDỸD

† 1ÃDÃD
† !#, ~A1!

dÃU

dt
5 1

2 ~ 16
3 ã313ã21 1

9 ã1!ÃU2~ 16
3 ã3M313ã2M21 1

9 ã1M1!ỸU2 1
2 @4ÃUỸU

† ỸU16 Tr~ÃUỸU
† !ỸU15ỸUỸU

† ÃU

13 Tr~ỸUỸU
† !ÃU12ÃDỸD

† ỸU1ỸDỸD
† ÃU#, ~A2!

dÃD

dt
5 1

2 ~ 16
3 ã313ã21 1

9 ã1!ÃD2~ 16
3 ã3M313ã2M21 1

9 ã1M1!ỸD2 1
2 @4ÃDỸD

† ỸD16Tr~ÃDỸD
† !ỸD15ỸDỸD

† ÃD

13Tr~ỸDỸD
† !ÃD12ÃUỸU

† ỸD1ỸUỸU
† ÃD12Tr~ÃEỸE

† !ỸD1Tr~ỸEỸE
† !ÃD#. ~A3!

Except for the Yukawa coupling matrices, the RGE’s of all other quantities are linear@9#. This means, in particular, tha
RGE’s of all soft masses, though coupled, can be solved as a linear combination of the GUT-scale parametersm0 , A0eifA, and
9-10
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M1/2 at any scale belowMG . However, one notices that the initial conditions on the trilinear couplings require the know
of the particular Yukawa texture at the unification scale. To do this, we numerically integrate the Yukawa RGE with a
value of tanb and in terms of the fermion masses and the CKM matrix. Specifying the GUT-scale initial conditions i
way, it is straightforward to compute all soft masses atMW for arbitrary values ofm0 , A0eifA, and M1/2. Thanks to the
linearity of the corresponding RGE’s, the soft masses atMW admit the following expansion

AU,D~MZ!5aU,D
A A0eifA1aU,D

g M1/2, ~A4!

mQ,U,D
2 ~MZ!5hQ,U,D

m m0
21hQ,U,D

A A0
21hQ,U,D

g M1/2
2 1~hQ,U,D

(g A) eifA

1hQ,U,D
(g A) T e2 ifA!A0M1/2,

where the coefficientsa and h are 333 matrices with real numerical entries. One notices that the matricesmQ,U,D
2 (MZ)

would be completely real were it not for the nonsymmetric terms in the matrixhQ,U,D
g A . However, it will be seen from the

specific examples that this matrix remains nearly symmetric and, thus,CP violating entriesmQ,U,D
2 (MZ) are extremely

suppressed. Moreover, one notices thatAU,D(MZ) carries, in general, largeCP violating phases; however, these terms a
effective only for intragenerationalLR-type mixings. Hence, this particular observation shows the importance of cha
contributions forCP violation in FCNC processes, as explained in Sec. II.

As mentioned before, due to the nonlinearity of the RGE’s for Yukawa matrices, it is not possible to give a fully a
solution for the soft mass parameters. Nevertheless, once we fix tanb, we can numerically integrate the Yukawa RG
Therefore, below we give semianalytic solutions of RGE’s for tanb52 and tanb540 to illustrate the small and large tanb
regimes.

Fixing tanb52, we get for the relevanth matrices in Eq.~A4!,

hQ
g 5S 7.07 2.7931024 27.0231023

2.7931024 7.07 4.9231022

27.0231023 4.9231022 5.74
D , ~A5!

1
2 ~hQ

(g A)1hQ
(g A) T!5S 5.3431026 23.4431025 7.9031024

23.4431025 2.2931024 25.5231023

7.9031024 25.5231023 0.15
D , ~A6!

1
2 ~hQ

(g A)2hQ
(g A) T!5S 0 0 1.3431028

0 0 28.5531028

21.3431028 8.5531028 0
D , ~A7!

where the vanishing off-diagonal entries in the last matrix mean values smaller than 10210 in absolute magnitude. Among th
matrices involved in Eq.~A4!, hg is always the largest one for similar values ofM1/2 andm0. So it sets the scale of the matri
element whileh (gA) is the only one that can produce an imaginary part. Hence, we do not specify the otherh matrices, which
area not important for our discussion.

Once we obtain themQ(MW) matrix with the help of Eq.~A4! we can get the values of theMLL
(u)2 andMLL

(d)2 in the SCKM
basis that give the size of flavor change in the squark mass matrices compared with the diagonal elements. For tanb52, those
elements of the squark mass-squared matrix causingLL transitions between first and second, as well as second and
generations, are given by

~MLL
(u)2!12522.7931027 m0

229.3031028 A0
221.1731026 M1/2

2 18.1531027 A0M1/2cosfA , ~A8!

~MLL
(u)2!23524.0731025 m0

221.1531025 A0
221.6131024 M1/2

2 1131024 A0M1/2cosfA2 1.71

31027 A0M1/2 i sinfA , ~A9!

~MLL
(d)2!1259.3831025 m0

213.7531026 A0
212.7931024 M1/2

2 16.8731025 A0M1/2cosfA , ~A10!

~MLL
(d)2!2351.6731022 m0

215.3231024 A0
214.9131022 M1/2

2 21.131022 A0M1/2cosfA21.70

31027 A0M1/2 i sinfA . ~A11!

Now, we repeat the same quantities above for tanb540:
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hQ
g 5S 7.07 2.4431024 25.8031023

2.4431024 7.07 4.0631022

25.8031023 4.0631022 4.97
D , ~A12!

1

2
~hQ

(g A)1hQ
(g A) T!5S 8.3231026 24.5731025 7.8231024

24.5731025 5.2031024 25.4731023

7.8231024 25.4731023 0.22
D , ~A13!

1

2
~hQ

(g A)2hQ
(g A) T!5S 0 0 21.6431026

0 0 1.1431025

1.6431026 21.1431025 0
D , ~A14!

~MLL
2 (u)!12528.7731025 m0

222.7731025 A0
223.031024 M1/2

2 11.2131024 A0M1/2cosfA1 i 1.1310210A0M1/2sinfA ,
~A15!

~MLL
2 (u)!23521.2831022 m0

222.7031023 A0
223.7731022 M1/2

2 15.6731023 A0M1/2cosfA1 i 2.30

31025 A0M1/2sinfA , ~A16!

~MLL
2 (d)!1257.5131025 m0

217.7431026 A0
212.4431024 M1/2

2 29.1331025 A0M1/2cosfA , ~A17!

~MLL
2 (d)!2351.3431022 m0

217.8431024 A0
214.0531022 M1/2

2 21.131022 A0M1/2cosfA1 i 2.2831025 A0M1/2sinfA .
~A18!

A comparison of the corresponding quantities in tanb52 and tanb540 cases reveals the sensitivity of the results on tanb.
As explained in Sec. II,YU(MZ) remains nearly unchanged whileYD(MZ) assumes an order of magnitude enhancemen
tanb varies from 2 to 40. This change inYD(MZ) affects various quantities as dictated by the differential equations~A1!–
~A3!.

APPENDIX B: LOOP FUNCTIONS

In this appendix we collect the different loop function used in the text. The functionsY1 and Y2 enteringB2B̄ and K

2K̄ mixings are given by

Y1~a,b,c,d!5
a2

~b2a!~c2a!~d2a!
ln a1

b2

~a2b!~c2b!~d2b!
ln b1

c2

~a2c!~b2c!~d2c!
ln c1

d2

~a2d!~b2d!~c2d!
ln d

~B1!

and

Y2~a,b,c,d!5A4cdF a

~b2a!~c2a!~d2a!
ln a1

b

~a2b!~c2b!~d2b!
ln b1

c

~a2c!~b2c!~d2c!
ln c

1
d

~a2d!~b2d!~c2d!
ln dG . ~B2!

For the analysis ofb→sg branching ratio the following loop functions are relevant:

F1~x!5
1

12~x21!4
~x326x213x1216x ln x!, ~B3!

F2~x!5
1

12~x21!4
~2x313x226x1126x2ln x!, ~B4!

F3~x!5
1

2~x21!3
~x224x1312 lnx!, ~B5!
075009-12
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F4~x!5
1

2~x21!3
~x22122x ln x!, ~B6!

FL
7~x,y!5

1

x
@QUF2~y/x!1F1~y/x!#, ~B7!

FR
7~x,y!5

1

x
@QUF4~y/x!1F3~y/x!#, ~B8!

FL
8~x,y!5

1

x
F2~y/x!, ~B9!

FR
8~x,y!5

1

x
F4~y/x!. ~B10!
S

l.

s.

l.

s.

,
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