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Chiral condensate in the deconfined phase of quenched gauge theories
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We compute the low-lying spectrum of the overlap Dirac operator in the deconfined phase of finite-
temperature quenched gauge theory. It suggests the existence of a chiral condensate which we confirm with a
direct stochastic estimate. We show that the part of the spectrum responsible for the chiral condensate can be
understood as arising from a dilute gas of instantons and anti-instantons.

PACS number~s!: 11.15.Ha, 11.30.Rd, 12.38.Gc
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I. INTRODUCTION

The fermion spectrum near zero eigenvalue is closely
lated to gauge field topology and to chiral symmetry bre
ing. While there is considerable experimental and theoret
support for chiral symmetry breaking in gauge theories w
dynamical quarks at zero temperature and theoretical a
ments for its restoration above a critical temperature,
situation is less clear for the nominally simpler case of f
mions in the background of quenched gauge fields. To
prove our understanding of the quenched, deconfined ph
we have studied the spectrum of the Hermitian overlap D
operator@1# in that region. We find a segment of the spe
trum concentrated at and near zero eigenvalue and sepa
from the bulk of the spectrum. The bulk of the spectru
begins to rise rapidly at larger eigenvalues. The exactly z
eigenvalues are associated with the global topology of
gauge field configurations. The statistical properties of
small eigenvalues are in correspondence with predicti
from a dilute gas of instantons and anti-instantons. Sm
nonzero eigenvalues with these properties give rise to a fi
chiral condensate.

Gauge field topology plays a central role in QCD. T
presence of gauge field configurations with nontrivial top
ogy indicates that massless fermions will have exact z
modes. These zero modes cause an explicit breaking o
axial U~1! symmetry and result in a massiveh8 @2#. Conven-
tional wisdom says that the axial U~1! symmetry remains
broken at all temperatures since one does not expect a c
plete suppression of nontrivial gauge field backgrounds.
cent studies using dynamical staggered fermions indicate
the axial symmetry most likely remains broken at high te
peratures although the magnitude might be considera
smaller than at low temperatures@3–5#. Since topology is
also expected to be suppressed at high temperatures@6#, this
result is consistent with expectations. Chiral symme
0556-2821/2000/61~7!/074504~10!/$15.00 61 0745
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breaking, on the other hand, comes from the finite density
eigenvalues near zero@7#, so we expect this density to b
zero at high temperature in full QCD since chiral symme
is restored in that case.

The most likely scenario for the spectrum of the massl
Dirac operator at high temperatures is to have a delta fu
tion at zero due to topology, followed by a gap and a co
tinuous spectrum of eigenvalues resulting in a theory w
unbroken chiral symmetry and a broken axial U~1! symme-
try. If we adopt the instanton picture for topology, we expe
a dilute gas of instantons and anti-instantons at high temp
ture since the topological susceptibility is highly suppress
However, this dilute gas of instantons and anti-instanto
should not give rise to a chiral condensate in hig
temperature, full QCD. A natural explanation in the conte
of instanton models is that instantons and anti-instant
form molecules at high temperatures@8#. One expects tha
this formation of molecules is primarily due to interactio
induced by fermions@8,9#.

In this paper, we will study the spectrum of the massle
overlap Dirac operator@1# on the lattice in pure SU~2! and
SU~3! gauge theories on lattices withNT54 in the decon-
fined phase. We will study several different ensembles
understand the finite volume effects and also the effec
going deeper into the deconfined phase. In addition to
rectly studying the spectrum, we will also study the chi
condensate and scalar susceptibility. In some ensembles
will also compare our results with those obtained using st
gered fermions under these conditions.

We have the following results:
~i! The overlap Dirac operator has exact zero eigenval

indicating that gauge field configurations with nontrivial t
pology persist in the high temperature phase.

~ii ! The spectrum of the nonzero eigenvalues of the ov
lap Dirac operator has two parts separated by a region
eigenvalue where the density is essentially zero.
©2000 The American Physical Society04-1
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~a! The distribution of very small nonzero eigenvalues
the overlap Dirac operator is well-described by a dilute g
of noninteracting instantons and anti-instantons.

~b! The bulk part of the spectrum begins at larger eig
value and rises smoothly and steeply.

~iii ! The very small eigenvalues of the overlap Dirac o
erator have the properties that are needed to give a c
condensate. The separation between the very small eige
ues and the bulk of the spectrum results in a minimum in
scalar susceptibility.

These features are qualitatively different from the st
gered Dirac operator in a quenched theory. The stagg
Dirac operator does not have any exact zero eigenval
Studies with dynamical staggered fermions have indica
that chiral symmetry is restored at high enough temperat
in QCD with Nf flavors of massless quarks and also in t
quenched theory. Early numerical studies of chiral symme
restoration at high temperatures using staggered fermion
the ‘‘quenched’’ approximation can be found in Ref.@10#.
Further studies using dynamical staggered fermions have
tablished a phase transition showing chiral symmetry re
ration at high temperatures. Recent reviews of the lat
results can be found in Ref.@11#, and Ref.@12# contains the
most recent results for theNT54 phase transition.

The lack of exact zero eigenvalues in the staggered
mion spectrum follows from the breaking of the continuu
chiral and flavor symmetry at finite lattice spacing@13#. The
observed restoration of chiral symmetry at high tempera
is consistent with the prediction of Ref.@14# for SU~2! gauge
theory with staggered fermions. However, a gap in the sp
trum of the staggered Dirac operator at high temperature
not been convincingly established~see, e.g., Ref.@5#!. A tail
of small eigenvalues seems to persist, possibly consistin
the ‘‘shifted’’ would-be zero modes due to global topolog

The proof of chiral symmetry restoration at high tempe
ture in Ref. @14# is for dynamical fermions, while we ar
only studying the quenched theory here. So, we could
plain the presence, and even accumulation, of very sm
eigenvalues in the spectrum of the overlap Dirac operato
a quenched artifact. This is not satisfactory, however, si
staggered fermions in a quenched theory show no such
cumulation of small eigenvalues, but rather a tapering tai
small eigenvalues, indicative of a chirally symmetric pha
As is well known, massless fermions are nontrivial to co
struct on the lattice@15#. The overlap Dirac operator is on
solution to the problem. It is not ultralocal, i.e., its interacti
size is not finite, but its interactions are exponentially d
creasing with distance. It therefore does not fit into the
sumptions used in Ref.@14#, and the proof presented the
need not hold even in the dynamical theory with over
fermions. We do not address the issue of the existence
chirally symmetric phase in the dynamical theory with ov
lap Dirac fermions in this paper.

Care has to be taken in a finite temperature study in
quenched approximation. In the pure gauge case, gauge
configurations with the Polyakov loop phase near anyZN
phase are equivalent, related by a globalZN symmetry. How-
ever, the coupling to fermions is notZN symmetric and the
phase with the Polyakov loop along the positive real axis
07450
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preferred. Configurations with ‘‘nontrivial expectatio
value’’ for Polyakov loop phase can give an ‘‘unphysica
signal for a chiral condensate@3# ~negative for SU~2! and
complex for SU~3! with anti-periodic boundary conditions in
the time direction for fermions!. In pure SU~N! gauge theo-
ries, configurations with expectation values for the Polyak
lines related by a simpleZN factor are equally likely. We will
therefore generate pure gauge ensembles so that every
figuration has a positive expectation value for the Polyak
loop and impose anti-periodic boundary conditions in t
time direction for fermions. So in a sense, this is not
strictly quenched calculation, but has included in it by ha
one important feature of the theory with dynamical quark

The organization of the paper is as follows. In the seco
section, we will briefly summarize what we need to kno
about the overlap Dirac operator. We will present our resu
for the eigenvalue spectrum in Sec. III and focus on the v
small eigenvalues of the overlap Dirac operator. We w
show that the spectrum of the very small nonzero and ex
zero eigenvalues is described quite well by a noninterac
dilute gas of instantons and anti-instantons. We use the w
‘‘dilute’’ to emphasize that topology is highly suppresse
and that the spectrum of these very small eigenvalue
separated from the bulk of the spectrum. We will present
data for the chiral condensate and scalar susceptibility
discuss the relationship between the small, nonzero eigen
ues and the chiral condensate in Sec. IV. Our conclusions
in Sec. V.

Similar studies of the fate of chiral symmetry breaking
the deconfined phase of quenched QCD have been done
domain wall fermions by the Columbia group@16# who mea-
sured^c̄c& and found evidence of topology from its increa
at small quark mass and by Lagae¨ and Sinclair@17# who
studied low eigenvalues and meson propagators and fo
evidence of topology from both.

II. OVERLAP DIRAC OPERATOR

The massive overlap Dirac operator is given by@1,18#

D~m!5
1

2
@11m1~12m!g5e~Hw!#, ~1!

with 0<m<1 describing fermions with positive mass all th
way from zero to infinity. The Hermitian operatorHw is just
g5Dw whereDw is the usual Wilson-Dirac operator with
negative mass on the lattice under consideration.

The propagator for external fermions is given by@1,18#

D̃21~m!5~12m!21@D21~m!21#. ~2!

In many cases, it is more convenient to use the Hermit
version,Ho(m)5g5D(m). It is easy to see that

Ho
2~m!5~12m2!Ho

2~0!1m2; @Ho
2~0!,g5#50. ~3!

Each eigenvalue 0,l2,1 of Ho
2(0) is doubly degenerate

with opposite chirality eigenvectors. In this basis,Ho(m) and
D(m) are block diagonal with 232 blocks, e.g.,D(m),
4-2
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CHIRAL CONDENSATE IN THE DECONFINED PHASE . . . PHYSICAL REVIEW D 61 074504
S ~12m!l21m ~12m!lA12l2

2~12m!lA12l2 ~12m!l21m
D , ~4!

where

g55S 1 0

0 21D . ~5!

For a gauge field with topological chargeQÞ0, there are,
in addition, uQu exact zero modes with the chiralit
sign (Q) paired with eigenvectors of opposite chirality an
an eigenvalue equal to unity. These are also eigenvecto
Ho(m) andD(m):

D~m!zero sector: S m 0

0 1D or S 1 0

0 m D , ~6!

depending on the sign ofQ.
In the chiral eigenbasis ofHo

2(0), theexternal propagato
takes the block diagonal form with 232 blocks,

D̃21~m!5
1

l2~12m2!1m2S m~12l2! 2lA12l2

lA12l2 m~12l2!
D ,

~7!

and in topologically nontrivial background fields, theuQu
additional blocks are

S 1

m
0

0 0
D or S 0 0

0
1

m
D , ~8!

depending on the sign ofQ.
The nontopological contribution to the fermion bilinea

which is the part that will survive the infinite volume limit, i

^c̄c&5K 1

V (
l.0

2m~12l2!

l2~12m2!1m2L . ~9!

The chiral condensate is dominated by the small, nonz
eigenvalues. In the thermodynamic limit, it is given by t
density of eigenvalues at zeror(01).

A physical quantity that is more sensitive at small qua
masses than the chiral condensate is the connected part o
scalar susceptibility. The nontopological contribution to th
quantity is

xa0
52

1

V
^Tr D̃22&5 K d

dm
^c̄c&AL

5K 1

V (
l.0

2~12l2!@l2~11m2!2m2#

@l2~12m2!1m2#2 L . ~10!

This quantity is particularly sensitive to them dependence o
the cancellations between thel2 andm2 terms in the second
factor of the numerator.
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Since chiral symmetry is exact on the lattice for t
overlap Dirac operator, the pion susceptibility isxp

5(1/m)^c̄c& @18#, and we can define a quantity

v5xp2xa0
5

1

m
^c̄c&2 K d

dm
^c̄c&AL

5
4

V K (
l.0

m2~12l i
2!2

@l i
2~12m2!1m2#2L . ~11!

This is a measure of the U(1)A symmetry breaking in a dy-
namical theory. It is strictly positive and is not sensitive
cancellations like those within the sum forxa0

in Eq. ~10!.
Due to the higher powers of the quark mass and eigenva
in the sum, it is more sensitive than the chiral condensat
small eigenvalues.

III. EIGENVALUE SPECTRUM

We will investigate the quark spectrum on the ensemb
of pure SU~2! and SU~3! gauge theory configurations liste
in Table I. At NT54, the critical coupling is bc
52.2986(6) for SU~2! and bc55.6925(2) for SU~3! @19#.
All ensembles in Table I are in the deconfined phase.

The low-lying eigenvalues ofH0
2 ~including the exact zero

modes! and DsDs
† (Ds is the massless staggered operat!

were computed using the Ritz variational technique@20#. In
order to deal numerically with the overlap Dirac operator
is necessary to use a representation fore(Hw), and we used
the optimal rational approximation@21#. We compare the
low lying spectrum of the staggered and overlap Dirac o
erator for two typical ensembles, SU~2! at b52.4 and SU~3!
at b55.75, both on 16334 lattices, in Fig. 1. We see a
remarkable difference. Both staggered and overlap spect
show a rapidly rising bulk. But while the staggered spectr
has a rapidly decreasing tail of small eigenvalues, the ov
lap spectrum shows an accumulation of very small, but n
zero, eigenvalues.

The spectral distributions of the overlap Dirac opera

TABLE I. Pure gauge ensembles studied. All ensembles hav
extent ofNT54 in the short direction. The number of configur
tions, the linear extent in the spatial directions, and the estima
temperature are also given.

Gauge group b N T/Tc L

SU~2! 2.3 50 1.0 8
SU~2! 2.4 100 1.4 8
SU~2! 2.4 200 1.4 16
SU~2! 2.5 200 2.0 16
SU~3! 5.71 200 1.03 16
SU~3! 5.75 400 1.13 8
SU~3! 5.75 200 1.13 12
SU~3! 5.75 400 1.13 16
SU~3! 5.85 400 1.38 8
SU~3! 5.85 206 1.38 16
4-3
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FIG. 1. Histogram of the low-lying eigenvalues of the staggered and overlap Dirac operator for the SU~2! ensemble atb52.4 and the
SU~3! ensemble atb55.75. Both lattices have a spatial volume of 163. For the overlap Dirac operator the exact zero modes are not sh
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for all the ensembles in Table I have the same qualita
features:

~i! There is a typical scale (l50.05) independent of the
ensemble that separates the spectrum into two parts: ‘‘sm
(,0.05) and ‘‘large’’ (.0.05) eigenvalues.1

~ii ! Small eigenvalues occur in all topological sectors.
~iii ! The number of small eigenvalues per unit of latti

volume remains roughly constant at fixed coupling un
changes of the volume and decreases as one goes deepe
the deconfined phase.

In this section, we focus on the statistical properties of
low-lying eigenvalues of the overlap Dirac operator. O
conclusion is that it is roughly consistent with the data
associate each nonzero pair of small eigenvalues with
instanton and/or anti-instanton pair. Topics related to
magnitude of the eigenvalues are discussed in the next
tion.

1We note here that the smallest eigenvalue for the free ove
Dirac operator with anti-periodic boundary conditions in the te
perature direction is 0.238 and 0.200 for a Wilson mass of 1.5
1.8, respectively, atNT54.
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We approach the hypothesis in steps of increasing sp
ficity. Let n1 andn2 be the number of separated, localize
instantons and anti-instantons, respectively. Then the to
logical charge of the configuration, as determined by the
mions, isQ5n12n2 and the total number of objects isn
[n11n2 .

For infinite separation between instantons and a
instantons, this givesn zero eigenvalues. At large but finit
separation, we expectuQu exactly zero eigenvalues andn
2uQu52 min(n1 ,n2) small eigenvalues. Since the nonze
eigenvalues come in6l pairs, we associate each nonze
pair of small eigenvalues with an instanton and/or an
instanton pair. The number of exact zero modes ofH0

2 in a
fixed gauge field background is equal to the net numbe
levels crossing zero in the spectral flow ofHw @22#. In addi-
tion, individual levels crossing zero in the spectral flow
Hw can be associated with instantons in the backgro
gauge field@23,24#. We performed a spectral flow on sever
of the ensembles in Table I and found that there is essent
a one-to-one agreement: Ifn1 (n2) levels crossed zero
from above ~below!, then there were n2uQu
52 min(n1 ,n2) small eigenvalues for the overlap Dira
operator in addition to the rigorously expecteduQu5un1

p
-
d

4-4
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TABLE II. Distribution of the number of topological objects along with predictions from a Pois
distribution.

SU~2! SU~2! SU~2! SU~2! SU~3! SU~3! SU~3! SU~3! SU~3! SU~3!

b 2.3 2.4 2.4 2.5 5.71 5.75 5.75 5.75 5.85 5.85
L 8 8 16 16 16 8 12 16 8 16
N 50 100 200 200 200 400 200 400 400 206

n50 11~10! 74~75! 27~28! 130~130! 1~1! 286~290! 83~77! 38~35! 379~378! 144~137!
n51 13~16! 23~22! 57~55! 57~56! 5~6! 100~93! 63~73! 76~85! 19~22! 43~56!

n52 14~13! 3~3! 58~54! 10~12! 8~16! 13~15! 39~35! 105~104! 2~1! 17~11!

n53 8~7! 32~35! 3~2! 28~27! 1~2! 11~11! 95~84! 1~2!

n54 2~3! 16~17! 46~35! 3~3! 46~51! 1~0!

n55 2~1! 4~7! 38~35! 1~1! 25~25!

n56 3~2! 34~30! 9~10!

n57 3~1! 17~21! 5~4!

n58 10~14! 1~1!

n59 6~8!

n510 2~4!

n511 3~2!

n512 2~1!

^n&/V 1.66 0.29 0.25 0.05 0.63 0.32 0.28 0.31 0.06 0.05
Ratio 0.97 1.09 0.93 0.99 1.15 1.08 0.92 1.02 0.90 0.83
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2n2u exact zero eigenvalues. Therefore our association
small eigenvalues ofH0 with instanton and/or anti-instanto
pairs is well justified.

For finite temperature withT.Tc , the distribution of in-
stanton sizes increases steeply with instanton size until
cut off on the large size end byNT . Thus most of the instan
tons have a size not too far fromNT . We will always use a
simple model in which the instantons and anti-instantons
assumed to be at a sufficiently large separation that t
interactions due to the pure gauge action can be neglec

With the assumption that then objects are noninteracting
the number per configuration should have a Poisson distr
tion

P~n,^n&!5^n&ne2^n&/n!, ~12!

where ^n& is the average of the distribution. For a Poiss
distribution, the average and variance are equal. We pre
our data for the distribution ofn as counted by the fermion
in Table II. The average of the distribution per 83 lattice
volume is shown in the same table. The numbers in pa
theses are the predictions of the distribution using the a
age value in Eq.~12!. We also write down the ratio of the
variance and the average in the table. The data are in fa
good agreement with the Poisson distribution.

To the extent that then zero and small eigenvalues can
associated with any sort of objects localized in three spac
Euclidean four space, the number of objects andn should, at
fixed NT and fixed couplingg2, be proportional to the spatia
volume V in lattice units. This is roughly supported by th
SU~2! and SU~3! data in Table II. If the localized objects ar
instantons, then we also expect the density to decrease
idly with decreasingg2. This is also seen in the data.
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At the next level of detail, we can distinguish between t
contributions ton from n1 and n2 . If the instantons and
anti-instantons are thrown into the configurations indep
dently ~without interaction!, then for a fixedn the relative
probabilities in the (n2 ,n1) distribution will be given by the
binomial coefficients

B~n1 ,n2un!5
1

2n

n!

n1!n2!
. ~13!

Combining this with^n& values from the data gives predic
tions for the numbersn1 and n2 of positive and negative
chirality states. We combine (n1 ,n2) with (n2 ,n1) and
compare the data and predictions in Table III. In almost
of the cases, the difference is within the statistical error
pected from the value of the predicted number.

Finally, the assumption of a noninteracting gas of insta
tons and anti-instantons leads to a simple expression for
distribution of topological charge,

T~Q!5e2^n&I Q~^n&!, ~14!

where I Q is the modified Bessel function of orderQ. Our
data can be cross-checked against this prediction also,
this is shown in Table IV. Again, we see fairly good agre
ment with the data. We also note that^Q2&5^n& under this
assumption, and this is essentially the case when we com
Table II and Table IV.

This simple model of associating the zero and the sm
nonzero eigenvalues with independent instantons and a
instantons seems to account for the main statistical prope
of the n1 ,n2 data.
4-5
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TABLE IV. Distribution of topological charge along with the prediction based on a noninteracting g
instantons and anti-instantons using the average from the Poisson distribution.

SU~2! SU~2! SU~2! SU~2! SU~3! SU~3! SU~3! SU~3! SU~3! SU~3!

b 2.3 2.4 2.4 2.5 5.71 5.75 5.75 5.75 5.85 5.85
L 8 8 16 16 16 8 12 16 8 16
N 50 200 200 200 200 400 200 400 400 206

Q50 19~17! 75~76! 61~62! 134~136! 38~36! 293~297! 103~96! 101~110! 379~378! 153~143!
Q51 21~22! 23~22! 82~86! 60~57! 67~65! 101~95! 72~82! 164~166! 19~22! 44~57!

Q52 7~8! 2~2! 41~37! 6~6! 45~47! 6~8! 22~19! 86~83! 2~0! 9~6!

Q53 2~2! 14~11! 26~28! 3~3! 35~30!

Q54 1~0! 2~3! 18~14! 12~9!

Q55 3~6! 2~2!

Q56 1~2!

Q57 1~1!

Q58
Q59
Q510 1~0!

^Q2&/V 1.66 0.31 0.25 0.05 0.64 0.31 0.28 0.33 0.07 0.05

TABLE III. Distribution of the number of instantons for a fixed number of topological objects~less than
eight! along with predictions from binomial distribution using the Poisson average.

SU~2! SU~2! SU~2! SU~2! SU~3! SU~3! SU~3! SU~3! SU~3! SU~3!

b 2.3 2.4 2.4 2.5 5.71 5.75 5.75 5.75 5.85 5.85
L 8 8 16 16 16 8 12 16 8 16
N 50 200 200 200 200 400 200 400 400 206

n52,n150 6~7! 2~2! 33~27! 6~6! 1~8! 6~8! 20~18! 54~52! 2~0! 8~6!

n52,n151 8~7! 1~2! 25~27! 4~6! 7~8! 7~8! 19~18! 51~52! 0~0! 9~6!

n53,n150 1~2! 12~9! 0~0! 7~7! 0~0! 3~3! 25~21! 0~0!

n53,n151 7~5! 20~27! 3~1! 21~21! 1~1! 8~8! 70~63! 1~1!

n54,n150 1~0! 2~2! 9~4! 0~0! 9~6! 0~0!

n54,n151 1~2! 6~9! 18~17! 2~1! 30~26! 1~0!

n54,n152 0~1! 8~6! 19~13! 1~1! 7~19! 0~0!

n55,n150 0~0! 0~0! 1~2! 0~0! 2~2!

n55,n151 1~0! 1~2! 10~11! 0~0! 9~8!

n55,n152 1~1! 3~4! 27~22! 1~0! 14~16!

n56,n150 0~0! 1~1! 0~0!

n56,n151 0~0! 7~6! 3~2!

n56,n152 2~1! 19~14! 2~5!

n56,n153 1~1! 7~9! 4~3!

n57,n150 0~0! 1~0! 0~0!

n57,n151 0~0! 1~2! 0~0!

n57,n152 1~0! 3~7! 1~1!

n57,n153 2~0! 12~12! 4~2!
074504-6
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FIG. 2. Histogram of the small eigenvalues along with the histogram from the toy model forD51,2,3 with the appropriate value of^n&
from Table II for the SU~2! ensemble atb52.4 and the SU~3! ensemble atb55.75. Both lattices have a spatial volume of 163.
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IV. SMALL EIGENVALUES
AND A CHIRAL CONDENSATE

This section deals with the spectrum of the small, nonz
eigenvalues. We begin with a discussion relating the sp
trum to expectations from the instanton–anti-instanton
model. This is followed by an analysis of the way in whic
these eigenvalues contribute to physical quantities suc
the chiral condensate.

In the previous section, we were only concerned with
number of small eigenvalues~eigenvalues below 0.05) in
each configuration. Our computation of the low-lying eige
values ofHo

2 along with the spectral flow ofHw enables us to
obtain this number with very good certainty per configu
tion. Because of the numerical accuracies involved, the sm
eigenvalues can be trusted only with an absolute accurac
0.005, and we can create a histogram of the low-lying eig
values with a bin width of 0.005 giving us a total of ten bi
in each ensemble.

A detailed analysis of the relationship of small eigenv
ues, instantons, and the condensate at zero temperatur
be found in@25#. It was shown there that the spectrum fro
a model with fermions in a background of dilute instanto
and anti-instantons gives a chiral condensate and is co
tent with chiral random matrix theory. Some discussion
the finite temperature spectrum appears in@8#. We have used
a much simpler version of these ideas.

The most important effect for widely separated instanto
and anti-instantons is from the mixing of then would-be zero
modes of the fermions. At infinite separation, there would
n modes withl50. At finite temperature and in the con
tinuum, the spatial tails of these wave functions are expon
tial. Further, a configuration with, e.g.,n5n1 has that num-
ber of exact zero modes. This leads us to a model w
instantons and anti-instantons that are still distributed in
pendently over the configurations and with ann3n interac-
tion matrix for then modes that is made up ofn13n1 and
n23n2 blocks on the diagonal andn23n1 and n13n2

off-diagonal blocks. The diagonal blocks corresponding
instanton–instanton fermion mode interactions and to a
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o
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s
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instanton–anti-instanton fermion mode interactions, inclu
ing self-interactions, are zero.

Ti j 50 if i and j are both instantons

or both anti-instantons. ~15!

In the off-diagonal blocks there is an entry for each orde
way that an instanton can be paired with an anti-instanton
has the form

Ti j 5h0e2d( i , j )/D if ~ i , j ! is an instanton–anti-instanton pa
~16!

The energy scale is determined by the constanth0. The dis-
tance between the instanton and/or anti-instanton pai
d( i , j ). The length scale of the mode interactions isD. We
expectD to be of orderNT since that is the range of th
continuum mode tails.

The next step is to generate data from the model
compare it with the real data. The model calculation is in
continuum with periodic boundary conditions, so thatd( i , j )
is the shortest distance connecting the pair. The (n1 ,n2)
values are distributed according to Eq.~12! and Eq.~13! with
^n& obtained from Table II. The positions of the instanto
and anti-instantons are selected at random. Then the m
elements ofT are computed. Finally the eigenvalues ofT are
computed. Note that for a matrix with the form ofT, the
spectrum hasuQu zeros and (n2uQu)/2 pairs6l. This pro-
cess is repeated for many configurations. The resulting se
eigenvalue distributions is then compared with the data fr
the various ensembles. The conclusion is that a value oD
52 best fits the data for all the ensembles. We have sho
the comparison between the real data and the toy mode
two of the cases in Fig. 2. Thus the spectrum of the sm
eigenvalues can also be explained by the simple instant
anti-instanton gas picture.

A physical role for these modes is suggested by the
that the chiral condensate is determined by the infin
volume fermion spectral density at zero eigenvalue. T
most straightforward thing to do would be to use the co
4-7
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FIG. 3. The stochastic estimates of^c̄c&, v andxa0
for the SU~2! ensemble atb52.4 and SU~3! ensemble atb55.75. Both lattices

have a spatial volume of 163.
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al
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puted eigenvalues to do the sums in Eqs.~9!–~11! for the
condensate,v, andxa0

. However, we need them→0 limit,
and it is apparent from the forms of the sums that they
very sensitive to the positions of the eigenvalues whenm is
very small. As mentioned earlier in this section, the sm
eigenvalues are not precisely known, so that the value of
sum is unreliable form less than about 0.01, and this is n
small enough to be useful.

However, it is possible to compute the chiral condens
v, andxa0

by a stochastic method using the overlap Dir
07450
e

ll
e

e,

operator. The method is specific to the overlap Dirac ope
tor and is described in Refs.@18,24#. Using this method, we
have computed the condensate, the anomalous U(1)A break-
ing, and the scalar susceptibility for the SU~2! ensemble with
b52.4 on the 163 lattice and for the SU~3! ensemble with
b55.75 also on the 163 lattice. The results are shown in Fig
3. If the steep decrease of the condensate toward zero b
m50.002 is interpreted as a finite volume effect, then th
data are evidence for chiral symmetry breaking. Addition
evidence for chiral symmetry breaking can be seen in
4-8
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plots for v. We see there is a quark mass region in
nontopological contribution tov from m50.002 to 0.05
where the expected divergence of 1/m sets in. The region
below m50.002 is where the finite volume effects becom
large.

The shapes of the curves in Fig. 3 are consistent with
qualitative features of the computed eigenvalues; small
genvalues concentrated close tol50, a sparsely populate
region aroundl50.05, and the dense eigenvalues of t
bulk of the spectrum beginning at a larger eigenvalue. T
strongest effect is a dip inxa0

due to the presence of tw
terms in the sum in Eq.~10! with opposite signs, along with
a spectral distribution that has two regions~a small eigenval-
ues region and a bulk region! separated by a sparsely pop
lated region aroundl50.05 as seen in Fig. 1.

One may ask whether the simple model, which rep
duces the properties of the small eigenvalues, gives a c
condensate. The short answer to that question is yes.
model is just a simplification of the model in Ref.@25#,
which does give a condensate. The longer answer co
after testing the simplified model itself for the necess
properties. Witĥ n&/V fixed and increasingV, the staircase
function

N~l,V!5E
0

l

ds r~s,V! ~17!

in the largeV and smalll region needs to approach a fun
tion of lV that is linear for largelV. N(l,V), as computed
with modest statistics from the model eigenvalues, is con
tent with that behavior. Thus it appears that the eigenva
in the small region of the spectrum are sufficient to give r
to a condensate.
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V. CONCLUSIONS

We have studied the spectrum of the overlap Dirac ope
tor on several quenched ensembles in the deconfined ph
We find clear evidence for topology in the deconfined pha
We also found that the topological susceptibility decrea
sharply as we go deeper into the deconfined phase.
gauge field contains instanton and anti-instanton-like obje
which are well-described as a dilute gas. This is supported
a part of the spectrum of the overlap Dirac operator cons
ing of small~in our case,0.05) eigenvalues which are we
separated from the bulk. This small part is consistently
scribed as arising from a dilute gas of instantons and a
instantons. It appears that the small eigenvalues produce
such a dilute gas are sufficient to create a chiral conden
and hence spontaneous chiral symmetry breaking even in
deconfined phase of quenched gauge theories.
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@8# T. Schäfer, E.V. Shuryak, and J.J.M. Verbaarschot, Phys. R

D 51, 1267~1995!.
@9# E.-M. Ilgenfritz and E.V. Shuryak, Phys. Lett. B325, 263
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