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Chiral condensate in the deconfined phase of quenched gauge theories
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We compute the low-lying spectrum of the overlap Dirac operator in the deconfined phase of finite-
temperature quenched gauge theory. It suggests the existence of a chiral condensate which we confirm with a
direct stochastic estimate. We show that the part of the spectrum responsible for the chiral condensate can be
understood as arising from a dilute gas of instantons and anti-instantons.
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[. INTRODUCTION breaking, on the other hand, comes from the finite density of
eigenvalues near zefl@], so we expect this density to be

The fermion spectrum near zero eigenvalue is closely rezero at high temperature in full QCD since chiral symmetry
lated to gauge field topology and to chiral symmetry break-s restored in that case.
ing. While there is considerable experimental and theoretical The most likely scenario for the spectrum of the massless
support for chiral symmetry breaking in gauge theories withDirac operator at high temperatures is to have a delta func-
dynamical quarks at zero temperature and theoretical arguion at zero due to topology, followed by a gap and a con-
ments for its restoration above a critical temperature, theéinuous spectrum of eigenvalues resulting in a theory with
situation is less clear for the nominally simpler case of fer-unbroken chiral symmetry and a broken axiglllJsymme-
mions in the background of quenched gauge fields. To imtry. If we adopt the instanton picture for topology, we expect
prove our understanding of the quenched, deconfined phasa dilute gas of instantons and anti-instantons at high tempera-
we have studied the spectrum of the Hermitian overlap Dira¢ure since the topological susceptibility is highly suppressed.
operator[1] in that region. We find a segment of the spec-However, this dilute gas of instantons and anti-instantons
trum concentrated at and near zero eigenvalue and separatgltould not give rise to a chiral condensate in high-
from the bulk of the spectrum. The bulk of the spectrumtemperature, full QCD. A natural explanation in the context
begins to rise rapidly at larger eigenvalues. The exactly zerof instanton models is that instantons and anti-instantons
eigenvalues are associated with the global topology of théorm molecules at high temperaturfg]. One expects that
gauge field configurations. The statistical properties of thehis formation of molecules is primarily due to interactions
small eigenvalues are in correspondence with predictionmduced by fermion$8,9].
from a dilute gas of instantons and anti-instantons. Small, In this paper, we will study the spectrum of the massless
nonzero eigenvalues with these properties give rise to a finiteverlap Dirac operatofl] on the lattice in pure S(2) and
chiral condensate. SU(3) gauge theories on lattices withly=4 in the decon-

Gauge field topology plays a central role in QCD. Thefined phase. We will study several different ensembles to
presence of gauge field configurations with nontrivial topol-understand the finite volume effects and also the effect of
ogy indicates that massless fermions will have exact zergoing deeper into the deconfined phase. In addition to di-
modes. These zero modes cause an explicit breaking of thectly studying the spectrum, we will also study the chiral
axial U(1) symmetry and result in a massivg [2]. Conven-  condensate and scalar susceptibility. In some ensembles, we
tional wisdom says that the axial(l) symmetry remains will also compare our results with those obtained using stag-
broken at all temperatures since one does not expect a corgered fermions under these conditions.
plete suppression of nontrivial gauge field backgrounds. Re- We have the following results:
cent studies using dynamical staggered fermions indicate that (i) The overlap Dirac operator has exact zero eigenvalues
the axial symmetry most likely remains broken at high tem-indicating that gauge field configurations with nontrivial to-
peratures although the magnitude might be considerablpology persist in the high temperature phase.
smaller than at low temperatur¢3—5|. Since topology is (ii) The spectrum of the nonzero eigenvalues of the over-
also expected to be suppressed at high temperdtbfethis lap Dirac operator has two parts separated by a region in
result is consistent with expectations. Chiral symmetryeigenvalue where the density is essentially zero.
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(@) The distribution of very small nonzero eigenvalues ofpreferred. Configurations with ‘“nontrivial expectation
the overlap Dirac operator is well-described by a dilute gas/alue” for Polyakov loop phase can give an “unphysical”

of noninteracting instantons and anti-instantons. signal for a chiral gonder_msa{@] (negative for Sl(JZ.)_and'
(b) The bulk part of the spectrum begins at larger eigencomplex for SU3) with anti-periodic boundary conditions in
value and rises smoothly and steeply. the time direction for fermions In pure SUN) gauge theo-

(|||) The very small eigenvalues of the Over|ap Dirac Op_r.ies, Configurati0n§ with expectation values for the POlyf’ikOV
erator have the properties that are needed to give a chirdles related by a simplgy factor are equally likely. We will
condensate. The separation between the very small eigenvafierefore generate pure gauge ensembles so that every con-
ues and the bulk of the spectrum results in a minimum in thdiguration has a positive expectation value for the Polyakov
scalar susceptibility. Ipop and impose antl-perlodlc bpundary condlt!on_s in the

These features are qualitatively different from the staglime direction for fermions. So in a sense, this is not a
gered Dirac operator in a quenched theory. The staggereﬂ“c'[_'y guenched calculation, but has_lncluded in it by hand
Dirac operator does not have any exact zero eigenvalue8n€ important feature of the theory with dynamical quarks.
Studies with dynamical staggered fermions have indicated The organization of the paper is as follows. In the second
that chiral symmetry is restored at high enough temperaturedection, we will briefly summarize what we need to know
in QCD with N; flavors of massless quarks and also in the@bout thg overlap Dirac operator. We will present our results
quenched theory. Early numerical studies of chiral symmetryor the eigenvalue spectrum in Sec. lll and focus on the very
restoration at high temperatures using staggered fermions #nall eigenvalues of the overlap Dirac operator. We will
the “quenched” approximation can be found in REL0]. show t_hat the spectrum of the very small nonzero_and exact
Further studies using dynamical staggered fermions have eZ€ro eigenvalues is described quite well by a noninteracting
tablished a phase transition showing chiral symmetry restodilute gas of instantons and anti-instantons. We use the word
ration at high temperatures. Recent reviews of the latticedilute” to emphasize that topology is highly suppressed
results can be found in RefL1], and Ref[12] contains the and that the spectrum of these very small glgenvalues is
most recent results for td;=4 phase transition. separated from_the bulk of the spectrum. We will prgs_e_nt our

The lack of exact zero eigenvalues in the staggered ferdf'ﬂa for the chlr_al co_ndensate and scalar suscept|b|_llty and
mion spectrum follows from the breaking of the continuum discuss the relz_at|onsh|p betwegn the small, nonzero e!genval-
chiral and flavor symmetry at finite lattice spaciig]. The ~ Ues and the chiral condensate in Sec. IV. Our conclusions are
observed restoration of chiral symmetry at high temperaturd? Sec. V. _ _ o
is consistent with the prediction of RéfL4] for SU(2) gauge Similar gtudles of the fate of chiral symmetry breaking in
theory with staggered fermions. However, a gap in the spedhe deconfined phase of quenched QCD have been done with
trum of the staggered Dirac operator at high temperature h&omain wall fermions by the Columbia gro{ip6] who mea-
not been convincingly establishéske, e.g., Ref5]). A tail ~ sured(y) and found evidence of topology from its increase
of small eigenvalues seems to persist, possibly consisting @t small quark mass and by Lagaed Sinclair[17] who
the “shifted” would-be zero modes due to global topology. studied low eigenvalues and meson propagators and found

The proof of chiral symmetry restoration at high tempera-evidence of topology from both.
ture in Ref.[14] is for dynamical fermions, while we are
only studying the quenched theory here. So, we could ex- Il. OVERLAP DIRAC OPERATOR
plain the presence, and even accumulation, of very small ) ) o
eigenvalues in the spectrum of the overlap Dirac operator as 1h€ massive overlap Dirac operator is given[fy18|
a quenched artifact. This is not satisfactory, however, since 1
staggered fermions in a quenched theory show no such ac- _- _
cumulation of small eigenvalues, but rather a tapering tail of D(x) Z[H’ML(l wyseHwl, @
small eigenvalues, indicative of a chirally symmetric phase.

As is well known, massless fermions are nontrivial to con-with 0< <1 describing fermions with positive mass all the
struct on the lattic¢15]. The overlap Dirac operator is one way from zero to infinity. The Hermitian operatbk,, is just
solution to the problem. It is not ultralocal, i.e., its interaction ysD,, whereD,, is the usual Wilson-Dirac operator with a
size is not finite, but its interactions are exponentially de-negative mass on the lattice under consideration.

creasing with distance. It therefore does not fit into the as- The propagator for external fermions is given [dy18|
sumptions used in Refl14], and the proof presented there ~

need not hold even in the dynamical theory with overlap D Y w)=1—w) YD Hu)—1]. 2
fermions. We do not address the issue of the existence of a

chirally symmetric phase in the dynamical theory with over- In many cases, it is more convenient to use the Hermitian
lap Dirac fermions in this paper. version,Hy(w)=vysD(w). It is easy to see that

Care has to be taken in a finite temperature study in the
guenched approximation. In the pure gauge case, gauge field Hf,(u)=(1—M2)H(2,(O)+M2; [Hg(O),yS]zo. 3
configurations with the Polyakov loop phase near @py
phase are equivalent, related by a glabglsymmetry. How-  Each eigenvalue €\?<1 of H§(O) is doubly degenerate
ever, the coupling to fermions is ndy, symmetric and the with opposite chirality eigenvectors. In this basi,(x) and
phase with the Polyakov loop along the positive real axis iD(w) are block diagonal with 2 blocks, e.g.D(u),
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TABLE I. Pure gauge ensembles studied. All ensembles have an
(4) extent of Ny=4 in the short direction. The number of configura-
tions, the linear extent in the spatial directions, and the estimated
temperature are also given.

(I=w\+p  (I=p)NJ1-\?
—(I=mA1-2  (1-wA\+pu

where
Gauge group B N T/T, L

1 0
Ys= ( ) , (5) Su2) 2.3 50 1.0 8
0 -1 suR) 2.4 100 1.4 8
. . . SU(2 2.4 200 1.4 16

For a gauge field with topological char@e# 0, there are, (2)

in addition, |Q| exact zero modes with the chirality SU2) 25 200 2.0 16
! SU(3) 571 200 1.03 16

sign (Q) paired with eigenvectors of opposite chirality and

an eigenvalue equal to unity. These are also eigenvectors of SU3) 575 400 113 8
Ho(x) andD(u): SUR) 5.75 200 1.13 12
SU(3) 5.75 400 1.13 16

w0 1 0 S{Uc) 5.85 400 1.38 8

D(1)zer0sector | 4] O ( 0 M), (6) SuU@3) 5.85 206 1.38 16

depending on the sign @).
In the chiral eigenbasis Oﬂg(O), theexternal propagator
takes the block diagonal form with>22 blocks,

w(1—2\?) —)\\/1—)\2)
AVLI=AZ  w(1—\%) )’

Since chiral symmetry is exact on the lattice for the
overlap Dirac operator, the pion susceptibility ig,

=(Lw){ ) [18], and we can define a quantity
1

R Y

1 d —
O= X7 Xay™= ;<¢¢>_<M<¢¢>A>

4 pA(1-2\7)?
V&0 IN(1— pd) + p??)

()

and in topologically nontrivial background fields, the| =
additional blocks are

11

1 0 0 This is a measure of the U(d)symmetry breaking in a dy-
; 0 or 1 ) namical theory. It is strictly positive and is not sensitive to
0 0 o —/[’ cancellations like those within the sum fgg, in Eq. (10).

o

Due to the higher powers of the quark mass and eigenvalues
in the sum, it is more sensitive than the chiral condensate to

depending on the sign dp. small eigenvalues.

The nontopological contribution to the fermion bilinear,
which is the part that will survive the infinite volume limit, is
Ill. EIGENVALUE SPECTRUM
2
<E¢>: i > M ] 9) We will investigate the quark spectrum on the ensembles
VS0 N2(1— u?) + p? of pure SU2) and SU3) gauge theory configurations listed
in Table 1. At Ny=4, the critical coupling is 3.
The chiral condensate is dominated by the small, nonzere-2.2986(6) for SW2) and 8.,=5.6925(2) for SW3) [19].
eigenvalues. In the thermodynamic limit, it is given by the All ensembles in Table | are in the deconfined phase.
density of eigenvalues at zepg0"). The low-lying eigenvalues dfi§ (including the exact zero
A physical quantity that is more sensitive at small quarkmodes and D,D! (D, is the massless staggered opefator
masses than the chiral condensate is the connected part of there computed using the Ritz variational technid2@]. In
scalar susceptibility. The nontopological contribution to thisorder to deal numerically with the overlap Dirac operator, it

quantity Is is necessary to use a representationefgt,,), and we used
the optimal rational approximatiof2l]. We compare the
__ 1(Tr 5_2>: i(%p) low lying spectrum of the staggered and overlap Dirac op-
Xag Vv du A erator for two typical ensembles, &) at 3=2.4 and SW3)

2 2 2 2 at =5.75, both on 18x4 lattices, in Fig. 1. We see a
_ i 2(1- M)A+ %) — p7] (10) remarkable difference. Both staggered and overlap spectrum
ViEL  [N(L-pd)+uf? show a rapidly rising bulk. But while the staggered spectrum
has a rapidly decreasing tail of small eigenvalues, the over-
This quantity is particularly sensitive to thedependence of lap spectrum shows an accumulation of very small, but non-
the cancellations between thé and 2 terms in the second zero, eigenvalues.
factor of the numerator. The spectral distributions of the overlap Dirac operator
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FIG. 1. Histogram of the low-lying eigenvalues of the staggered and overlap Dirac operator for(@)eeBtbemble aB=2.4 and the
SU(3) ensemble aB=5.75. Both lattices have a spatial volume of 1Bor the overlap Dirac operator the exact zero modes are not shown.

for all the ensembles in Table | have the same qualitative We approach the hypothesis in steps of increasing speci-
features: ficity. Let n, andn_ be the number of separated, localized

(i) There is a typical scalen(=0.05) independent of the instantons and anti-instantons, respectively. Then the topo-
ensemble that separates the spectrum into two parts: “smalllogical charge of the configuration, as determined by the fer-
(<0.05) and “large” (>0.05) eigenvalues. mions, iIsQ=n_,—n_ and the total number of objects s

(i) Small eigenvalues occur in all topological sectors. =n,+n_.

(iii) The number of small eigenvalues per unit of lattice For infinite separation between instantons and anti-
volume remains roughly constant at fixed coupling undeiinstantons, this givea zero eigenvalues. At large but finite
changes of the volume and decreases as one goes deeper iséparation, we exped¢Q| exactly zero eigenvalues anm
the deconfined phase. —|Q|=2 min(n, ,n_) small eigenvalues. Since the nonzero

In this section, we focus on the statistical properties of thesigenvalues come it \ pairs, we associate each nonzero
low-lying eigenvalues of the overlap Dirac operator. Ourpair of small eigenvalues with an instanton and/or anti-
conclusion is that it is roughly consistent with the data toinstanton pair. The number of exact zero mode#igfin a
associate each nonzero pair of small eigenvalues with afixed gauge field background is equal to the net number of
instanton and/or anti-instanton pair. Topics related to thgeyels crossing zero in the spectral flowtsf, [22]. In addi-
magnitude of the eigenvalues are discussed in the next sefon, individual levels crossing zero in the spectral flow of
tion. H,, can be associated with instantons in the background

gauge field 23,24]. We performed a spectral flow on several
of the ensembles in Table | and found that there is essentially
We note here that the smallest eigenvalue for the free overla@ One-to-one agreement: if, (n_) levels crossed zero
Dirac operator with anti-periodic boundary conditions in the tem-from  above (below), then there were n— Q|
perature direction is 0.238 and 0.200 for a Wilson mass of 1.5 and=2 min(n, ,n_) small eigenvalues for the overlap Dirac
1.8, respectively, aN;=4. operator in addition to the rigorously expecté@|=|n,
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TABLE Il. Distribution of the number of topological objects along with predictions from a Poisson

distribution.

SU@2) SU(2) SU?2) SU(2) SU(3) SU®3) SU@3) SU(3) SU(3) SU@3)
B 2.3 2.4 2.4 2.5 5.71 5.75 5.75 5.75 5.85 5.85
L 8 8 16 16 16 8 12 16 8 16
N 50 100 200 200 200 400 200 400 400 206
n=0 11100 74(75 27(28) 130130 1(1) 286290 83(77) 3835 379378 144137
n=1 1316) 2322 57(55 57(56) 56) 10093) 63(73) 76(85 19(22) 43(56)
n=2 1413 3(3) 5854 10(12) 816 13(15 3935 105104  2(1) 17(12)
n=3 8§07 3235 32 2827 12 1111 9584 1(2)
n=4 2(3) 16(17) 46(35) 3(3) 46(51) 1(0)
n=>5 2(1) A7) 38(35) 1(1) 25(25)
n==6 3(2) 34(30) 9(10)
n=7 3(1) 17(21) 5(4)
n=8 10(14) 1(1)
n=9 6(8)
n=10 2A4)
n=11 32)
n=12 21)
(n)/V 1.66 0.29 0.25 0.05 0.63 0.32 0.28 0.31 0.06 0.05
Ratio 0.97 1.09 0.93 0.99 1.15 1.08 0.92 1.02 0.90 0.83

—n_| exact zero eigenvalues. Therefore our association of At the next level of detail, we can distinguish between the
small eigenvalues dfl, with instanton and/or anti-instanton contributions ton from n, andn_. If the instantons and
pairs is well justified. anti-instantons are thrown into the configurations indepen-
For finite temperature witii >T,, the distribution of in-  dently (without interaction, then for a fixedn the relative
stanton sizes increases steeply with instanton size until it iprobabilities in the K _ ,n ) distribution will be given by the
cut off on the large size end By . Thus most of the instan- binomial coefficients
tons have a size not too far froh;. We will always use a
simple model in which the instantons and anti-instantons are 1 nl!
assumed to be at a sufficiently large separation that their B(n,,n_|n)=
interactions due to the pure gauge action can be neglected.
With the assumption that theobjects are noninteracting,
the number per configuration should have a Poisson distrib
tion

2"n,In_1" (13

JSombining this with(n) values from the data gives predic-
tions for the numbers, andn_ of positive and negative
chirality states. We combinen(. ,n_) with (n_,n,) and
compare the data and predictions in Table Ill. In almost all
of the cases, the difference is within the statistical error ex-
pected from the value of the predicted number.

Finally, the assumption of a noninteracting gas of instan-
ns and anti-instantons leads to a simple expression for the
distribution of topological charge,

P(n,(n))=(n)"e (M/nt, (12)
where(n) is the average of the distribution. For a Poisson
distribution, the average and variance are equal. We presep(;[
our data for the distribution afi as counted by the fermions
in Table 1l. The average of the distribution pef &ttice
volume is shown in the same table. The numbers in paren-
theses are the predictions of the distribution using the aver-
age value in Eq(12). We also write down the ratio of the
variance and the average in the table. The data are in fairlwherelq is the modified Bessel function of ord€. Our
good agreement with the Poisson distribution. data can be cross-checked against this prediction also, and
To the extent that the zero and small eigenvalues can be this is shown in Table IV. Again, we see fairly good agree-
associated with any sort of objects localized in three space anent with the data. We also note tH&@?)=(n) under this
Euclidean four space, the number of objects arsthould, at assumption, and this is essentially the case when we compare
fixed N7 and fixed couplingy?, be proportional to the spatial Table Il and Table V.
volumeV in lattice units. This is roughly supported by the  This simple model of associating the zero and the small,
SU(2) and SU3) data in Table II. If the localized objects are nonzero eigenvalues with independent instantons and anti-
instantons, then we also expect the density to decrease rajmstantons seems to account for the main statistical properties
idly with decreasingg?. This is also seen in the data. of then, ,n_ data.

T(Q)=e Mig((n)), (14)
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TABLE IIl. Distribution of the number of instantons for a fixed number of topological objdess than
eight along with predictions from binomial distribution using the Poisson average.

SU(2) SU2) SU2) SU2 SUB) SUB SU3) SUB) SUB) SuUB)
B 2.3 2.4 2.4 2.5 5.71 5.75 5.75 5.75 5.85 5.85
L 8 8 16 16 16 8 12 16 8 16
N 50 200 200 200 200 400 200 400 400 206
n=2n,.=0 6(7) 2(2)  33(27) 6(6) 1(8) 6(8) 20(18) 54552  2(0) 8(6)
n=2n,=1 8(7) 12) 2527  4(6) 7(8) 7(8) 1918 5152  0(0) 9(6)
n=3n,=0 12 129) 00) 7(7) 00) 33 2521 0(0)
n=3n,=1 7(5) 20(27) 3(1) 21(21) 1(1) 8(8) 70(63) 1(1)
n=4n,=0 1(0) 2(2) 9(4) 0(0) 9(6) 0(0)
n=4n,=1 1(2) 6(9) 18(17) 2(1) 3026 1(0)
n=4n,=2 0(1) 8(6) 19(13) 1(2) 7(19) 0(0)
n=5n,=0 0(0) 0(0) 1(2) 0(0) 2(2)
n=5n,=1 1(0) 1(2) 10(11) 0(0) 9(8)
n=5n,=2 11 3(4) 27(22) 10)  14(16)
n=6n,=0 o(0) 1(1) 0(0)
n=6n,=1 o(0) 7(6) 3(2)
n=6n,=2 2(1) 19(14) 2(5)
n=6n,.=3 1(2) 7(9) 4(3)
n=7n,=0 0(0) 1(0) 0(0)
n=7n,=1 0(0) 1(2) 0(0)
n=7n,=2 1(0) 3(7) 1(2)
n=7n,=3 2(0) 12(12) 4(2)

TABLE IV. Distribution of topological charge along with the prediction based on a noninteracting gas of

instantons and anti-instantons using the average from the Poisson distribution.

SU2 SU2 SU?2 SU2 SUB3) SU3 SU3 SU3 SUB  SUE)
B 23 24 24 2.5 571 575 5.75 5.75 5.85 5.85
L 8 8 16 16 16 8 12 16 8 16
N 50 200 200 200 200 400 200 400 400 206
Q=0 1917 75(76) 61(62) 134136 38(36) 293297 10396) 101110 379379 153143
Q=1 2122 2322 8286) 6057) 67(65 10195 7282 164166 1922  44(57)
Q=2 78 22 4137 6(6) 4547 6(8) 2219 8683  2(0) 9(6)
Q=3 202 14(11) 26(29) 33 3530
Q=4 10 2(3) 18(14) 12(9)
Q=5 3(6) 2(2)
Q=6 1(2)
Q=7 (1)
Q=8
Q=9
Q=10 10
(Q?)/V 166 031 025 005 064 031 0.28 0.33 0.07 0.05
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FIG. 2. Histogram of the small eigenvalues along with the histogram from the toy moderdr,2,3 with the appropriate value ¢fi)
from Table Il for the SW2) ensemble aB=2.4 and the S(B) ensemble aB=5.75. Both lattices have a spatial volume of 16

IV. SMALL EIGENVALUES instanton—anti-instanton fermion mode interactions, includ-
AND A CHIRAL CONDENSATE ing self-interactions, are zero.
This section deals with the spectrum of the small, nonzero T;=0 if i andj are both instantons
eigenvalues. We begin with a discussion relating the spec-
trum to expectations from the instanton—anti-instanton gas or both anti-instantons. (15

model. This is followed by an analysis of the way in which

these eigenvalues contribute to physical quantities such 48 the off-diagonal blocks there is an entry for each ordered
the chiral condensate. way that an instanton can be paired with an anti-instanton. It

In the previous section, we were only concerned with thé1615 the form
number o]‘ smgll eigenvalue(?eigenvalues below 9.05)_ in Tij:hoe—d(i,j)/D if (i,j) is an instanton—anti-instanton pair
each configuration. Our computation of the low-lying eigen- (16)
values oﬂ-|§ along with the spectral flow dfl,, enables us to
obtain this number with very good certainty per configura-The energy scale is determined by the conskgniThe dis-
tion. Because of the numerical accuracies involved, the smathnce between the instanton and/or anti-instanton pair is
eigenvalues can be trusted only with an absolute accuracy af(i,j). The length scale of the mode interactiondisWe
0.005, and we can create a histogram of the low-lying eigenexpectD to be of orderNt since that is the range of the
values with a bin width of 0.005 giving us a total of ten bins continuum mode tails.
in each ensemble. The next step is to generate data from the model and

A detailed analysis of the relationship of small eigenval-compare it with the real data. The model calculation is in the
ues, instantons, and the condensate at zero temperature camntinuum with periodic boundary conditions, so tdét, j)
be found in[25]. It was shown there that the spectrum fromis the shortest distance connecting the pair. The ,6_)
a model with fermions in a background of dilute instantonsvalues are distributed according to Efj2) and Eq.(13) with
and anti-instantons gives a chiral condensate and is consién) obtained from Table Il. The positions of the instantons
tent with chiral random matrix theory. Some discussion ofand anti-instantons are selected at random. Then the matrix
the finite temperature spectrum appearf8ih We have used elements ofl are computed. Finally the eigenvaluesTofre
a much simpler version of these ideas. computed. Note that for a matrix with the form of the

The most important effect for widely separated instantonspectrum hasQ| zeros and 1f—|Q|)/2 pairs +\. This pro-
and anti-instantons is from the mixing of thevould-be zero  cess is repeated for many configurations. The resulting set of
modes of the fermions. At infinite separation, there would beeigenvalue distributions is then compared with the data from
n modes withA =0. At finite temperature and in the con- the various ensembles. The conclusion is that a value of
tinuum, the spatial tails of these wave functions are exponen=2 best fits the data for all the ensembles. We have shown
tial. Further, a configuration with, e.gqy=n . has that num- the comparison between the real data and the toy model for
ber of exact zero modes. This leads us to a model withwo of the cases in Fig. 2. Thus the spectrum of the small
instantons and anti-instantons that are still distributed indeeigenvalues can also be explained by the simple instanton—
pendently over the configurations and with@® n interac-  anti-instanton gas picture.
tion matrix for then modes that is made up of, Xn, and A physical role for these modes is suggested by the fact
n_Xn_ blocks on the diagonal and_Xxn, andn, XxXn_ that the chiral condensate is determined by the infinite-
off-diagonal blocks. The diagonal blocks corresponding tovolume fermion spectral density at zero eigenvalue. The
instanton—instanton fermion mode interactions and to antimost straightforward thing to do would be to use the com-
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FIG. 3. The stochastic estimates(afgl/), ) anano for the SU2) ensemble ap=2.4 and SW3) ensemble a3=5.75. Both lattices
have a spatial volume of $6

puted eigenvalues to do the sums in E—(11) for the  operator. The method is specific to the overlap Dirac opera-
condensateg, andxao. However, we need the—0 limit, tor and is described in Refgl8,24. Using this method, we
and it is apparent from the forms of the sums that they aréiave computed the condensate, the anomalous,UfrBak-
very sensitive to the positions of the eigenvalues wpeis  ing, and the scalar susceptibility for the @Jensemble with
very small. As mentioned earlier in this section, the small3=2.4 on the 18 lattice and for the S{B) ensemble with
eigenvalues are not precisely known, so that the value of th8=5.75 also on the fattice. The results are shown in Fig.
sum is unreliable fo less than about 0.01, and this is not 3. If the steep decrease of the condensate toward zero below
small enough to be useful. ©=0.002 is interpreted as a finite volume effect, then these
However, it is possible to compute the chiral condensateglata are evidence for chiral symmetry breaking. Additional
w, and)(ao by a stochastic method using the overlap Diracevidence for chiral symmetry breaking can be seen in the

074504-8



CHIRAL CONDENSATE IN THE DECONFINED PHASE . .. PHYSICAL REVIEW D 61 074504

plots for . We see there is a quark mass region in the V. CONCLUSIONS
nontopological contribution taw from ©=0.002 to 0.05
where the expected divergence ofulsets in. The region We have studied the spectrum of the overlap Dirac opera-
below ©=0.002 is where the finite volume effects becometor on several quenched ensembles in the deconfined phase.
large. We find clear evidence for topology in the deconfined phase.
The shapes of the curves in Fig. 3 are consistent with thgve also found that the topological susceptibility decreases
qualitative features of the computed eigenvalues; small eisharply as we go deeper into the deconfined phase. The
genvalues concentrated closeNe-0, a sparsely populated gayge field contains instanton and anti-instanton-like objects
region around\=0.05, and the dense eigenvalues of theynich are well-described as a dilute gas. This is supported by
bulk of the spectrum beginning at a larger eigenvalue. The, nart of the spectrum of the overlap Dirac operator consist-
strongest effect is a dip i, due to the presence of WO jng of small(in our case<0.05) eigenvalues which are well
terms in the sum in Eq10) with opposite signs, along with separated from the bulk. This small part is consistently de-
a spectral distribution that has two regidassmall eigenval-  scribed as arising from a dilute gas of instantons and anti-
ues region and a bulk regipseparated by a sparsely popu- instantons. It appears that the small eigenvalues produced by
lated region around =0.05 as seen in Fig. 1. _ such a dilute gas are sufficient to create a chiral condensate
One may ask whether the simple model, which repro-nq hence spontaneous chiral symmetry breaking even in the

duces the properties of the small eigenvalues, gives a chirgdyqnfined phase of quenched gauge theories
condensate. The short answer to that question is yes. Our '

model is just a simplification of the model in RgR25],
which does give a condensate. The longer answer comes
after testing the simplified model itself for the necessary
properties. With(n)/V fixed and increasiny, the staircase
function
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