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Efficiency of the UV-filtered multiboson algorithm

Constantia AlexandrotiPhilippe de Forcran@Massimo D’Elia® and Haralambos Panagopodios
Department of Natural Sciences, University of Cyprus, CY-1678 Nicosia, Cyprus
2ETH-Zlrich, CH-8092 Zuich, Switzerland
3Dipartimento di Fisica dell’'Universitaand I.N.F.N., 1-56127, Pisa, Italy
(Received 28 June 1999; published 1 March 2000

We study the efficiency of an improved multiboson algorithm with two flavors of Wilson fermions in a
realistic physical situationd=5.60x=0.156 on a 18x 24 lattic. The performance of this exact algorithm
is compared with that of a state-of-the-art HMC algorithm: a considerable improvement is obtained for the
plaquette auto-correlation time, while the two algorithms appear similarly efficient at decorrelating the topo-
logical charge.

PACS numbsdrs): 12.38.Gc, 02.70.Lq, 11.15.Ha

I. INTRODUCTION In this way the original QCD partition function is approxi-
mated by a functional integration over the gauge libkand

n bosonic fieldsy,, where the integration measure is given
1jn terms of a local action

The Monte Carlo simulation of lattice QCD, including the
effects of dynamical quark loops, is a particularly difficult
and challenging problem, as it involves the computation o
the fermion matrix determinant, which appears, after integra- n
tion over the anti-commuting fermion fields, in the QCD S=Sy+ >, [(D+m—2z) ¢, 4
partition function k=1

Ny so that standard powerful local algorithrtfeeat bath, over-
z= H du, Me—sg[U]H de(D[UT+m,). (1) re]axatlor) can pe used. The systemat[c error dpnvmg from
X, 1 ’ i=1 this approximation can be corrected either during the simu-
lation, with a global accept-reject step, or by a reweighting
The fermion determinant leads to non-local interactiongProcedure on physical observables.

among the gauge links, ,,, so that the cost for updating all An important question to the lattice scienf[ific commqnity
links naively grows at least a8(V/?), whereV is the lattice s which of the two approache$iMC or MB) is more effi-
volume. cient for simulating QCD with dynamical fermions. No de-

The standard approach to this problem is given by thdinitive answer is yet available. On general grounds, the MB
hybrid Monte CarldHMC) method. The computation of the method has the advantage of being still relatively new, so
determinant is achieved stochastically by the introduction othat prospects for improvement are much greater. .
an auxiliary bosonic pseudo-fermion fieftl For the case of The MB approach allows two different strategies for im-
two degenerate flavors one may write provement. The first is the choice of the approximating poly-

nomial. As the numben of bosonic fields increases, the
work per updating step grows as Moreover, the autocor-
|de(D+m)|2:f [do[dple ! @ m "> (2)  relation time for physical observables also grows approxi-
mately asn. It is therefore essential to choose a polynomial
) ) o ) of the lowest possible degree while preserving sufficient ac-
One f}'" has to deal with a non-local action involvin® ( cyuracy in the approximation, i.e. sufficient acceptance in the
+m) %, but now, using molecular dynamics, a global updat-\etropolis step. The second is the choice of the update al-
ing of U can be performed. _ gorithm. Since we are dealing with a local action, a number

An alternative approach, which allows the use of localgf possible efficient local algorithms are available. More-
algorithms, is the so-called multibos¢NB) method, origi-  gyer, a global updating of the bosonic field variables can be
nally proposed by Lscher [1]. If a polynomial Pn(X)  simply implemented, since their distribution is Gaussian. The
=cyllg_;(x—2z,) can be found which approximatescidver  coupled dynamics of the systefgauge links+ boson fields
the whole spectrum of f+m), then P(D+m)~(D s highly nontrivial, so that the optimal mixture of update
+m)~*. Using a relation similar to Eq(2) one can then algorithms is essentially determined by numerical experi-
write ment[2]. As we will see, a good choice can make a substan-

tial difference.

|det D +m)|?~|det P, (D +m)|? The aim of the present work is to test the efficiency of an
improved version of the MB algorithm in a physical situation

AV t and to directly compare its performance with a “state of the

Cn f l_k[ [dJldé] art” HMC algorithm, namely the one used by the SESAM
Collaboration[3]. Clearly, the efficiency of an algorithm is

_ _ 2 different depending on the physical observable one is moni-

><exp( Zk (@+m=20¢d"). (3 toring (i.e., one obtains different integrated autocorrelation
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times for different observablgsin the present work we are ,
studying the plaquette and the topological charge. These two ~ de(1— KM):eXP< -2 ajTrMJ)
observables are representative of the small@diy) and .
largest-(IR) scale features of the gauge field, respectively. .
Therefore, their Monte Carlo dynamics provides a succinct xde{(l— KM)eXF{ +; M
description of the efficiency of a simulation at decorrelating
all intermediate scales. The study of the topological charggvhere the identity de¢*=e™ * has been used.
dynamics is of particular importance: because of the associ- The idea behind this is to filter out the UV part of the
ated zero-mode crossing, it is expected theoretically, and hasirac spectrum: the term exp(zjajTrMJ'), which adds a set
been shown in practicp4], that HMC algorithms near the of small loops to the gauge action, accounts for the UV
chiral limit can be particularly inefficient at decorrelating modes of the fermion determinant. In this way the zeros of
topology, so that even using a very long simulation time orthe new polynomiali.e. the one which approximates the
supercomputers, one is not able to properly sample the topdaverse of (— xM)exp(+2;aM')] can be concentrated near
logical modes of the theory and ensure ergodicity. The effithe small eigenvaluegcorresponding to IR modgsand a
ciency of the multiboson method in this respect has not beehetter approximation can be obtained with less cost.
studied yet. The number of coefficient$a;} as well as their values
We have used the exact, non-Hermitian version of the MBcan be optimized. It is easy to see that fe4 the term
algorithm[5] with two flavors of Wilson fermions. In order €XP(~ZjaTr M') can be reabsorbed in a shift of the cou-
to reduce the number of bosonic fields we have used thBling B of the pure gauge Wilson actiod,S=192«"a,, so
method proposed if6]: after a preconditioning of the Dirac that no computational overhead is incurred.
matrix, which rewrites the effect of the UV fermionic de- FOr the optimization of the coefficients;} and of the
grees of freedom as a simple modification of the pure gaug€'SiZ; of the polynomial we have followed the procedure
action(UV filtering), an optimized polynomial is constructed suggested ifi6], which we describe here briefly. The e}aram-
numerically by adapting it, via quadratic minimization, to a 1€ have to be chosen 0 thatwlet1, whereW=II, (1
typical configuration of the physical ensemble. — kM —21)(1-xM)expEZyaM)). A sufficient condition
The dynamics of the algorithm has then been improved byor this is thatWz= » for Gaussian vectorg. Therefore one
choosing a proper mixture of local overrelaxation of the bo-takes an equilibrium gauge configuration, fixes the coeffi-
son and gauge fields and of global heat bath on the bosd#entsa; to some initial value, draws one or more Gaussian
fields. The introduction of the global heat bath stefnose  Vvectors » and finds, by quadratic minimization, the roots
computational cost is strongly reduced by using a quasi hed&} Which minimize the quantitg=||W»— 7.
bath with approximate inversidif]) turns out to be essential ~ During this procedure alsée/da; can be computed, so
in order to improve the dynamics of the algorithm at smallthat one can repeat this optimization using new values for
quark mas$8]. a;, and thus minimize also with respect to tags by New-
In Sec. Il we present more details about the algorithmton’s method.
used. In Sec. Ill the numerical results of our simulations are In principle one should perform an average over different
shown. In Sec. IV we give our conclusions. equilibrium gauge fields. In practice results do not change
appreciably with the gauge field, so that one single configu-
ration gives sufficient information.

} (6)

Il. DESCRIPTION OF THE ALGORITHM Alj interestin.g by-product of the optimization is that'it is
. possible to estimate the acceptance for the Metropolis test
A. Statics expected during the actual Monte Carlo simulation. The ac-

We have used the exact, non-Hermitian version of the MEceptance probability fofU g —{Unewt is
algorithm[5], which includes a noisy Metropolis test to cor- .
rect for the polynomial approximation to the fermionic de- . e~ [Woignl =+ 7l
terminant[9]. min| 1, o Woeur 2+ 72 (7

As the degreen of the approximating polynomial is in- K

creased, the work per independent configuration grows as and a good estimate for this is eV — 7]), with c

[5]: it is therefore crucial to keep as low as possible while ™ X X - :
maintaining a good approximation, i.e. a good acceptance f%SE)t)ti.r;]rirz";’ti?)itl;I;nritceegﬁ:]ebe directly obtained as a result of

the Metropolis test.
In order to do that we have followed the procedurg&if _
Inspired by the loop expansion of the fermion determinant, B. Dynamics

| As we will show in the next section, the UV filtering is
de(1—«kM)= eTrlog(l—KM):eXp( > al M') , (5 Very effective in reducing the number of fields by a factor of
T 3 or more. The improvement may be really impressive for
heavy quarks, since in this case the small loops account for
most of the dynamical effects.
one rewrites the determinant as However, as the quark mass decreases, one must include
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larger loops in the gauge action or increase the number of TABLE I. Summary of the parameters of our 3 simulations. The
boson fields. Because the multiplicity of larger Wilson loopsoptimized coefficients,, a, and A3 have been rounded off to 3
increases combinatorically, the best compromisee next decimals. Integrated autocorrelation times are measured in applica-
section limits the loop expansion to small loops and in- tions of the Wilson-Dirac matrix to a vector.

creases the number of fields, which eventually diverges as

1/mq [5]. In this case the dynamics of the system may besjmuylation A B C
highly nontrivial and the proper choice of the algorithm, or

mixture of algorithms, may become very important. Volume g 84 16°x 24

In particular, for light quark masses it is more likely for g, « 5.3,0.158 5.3,0.165 5.6,0.156

one of the zeros of the polynomial to get very close to then, 7 16 24
Dirac spectrum boundary, and so for the corresponding b0a2 4.411 6.066 4.077
son field to become almost massless. The dynamics of tho%(;1 1.389 4.423 8.789
IR boson fields then becomes critical. They represent thg 5_ 195,45, 0.166 0.629 0.999
bottleneck of the dynamical evolution of the whole system.T_m(D)(MB) 3500 64000 27500

One has then to search for a good algorithm in order to speegm(m)(HMC) 14000 72000 85006
up those slow modes.

Because of the simple form of the bosonic distribution, 20Obtained from the SESAM Collaboration data on @482 lattice
NEW

2 [3].
P(#)=exd —[(D—z) ¢il“], tS)
- . . tance for¢ close to 1[7]. The use of even-odd precon-
a global heat bath on the bosonic fields can be simply 'mpleaitioning fukrther reduces the computational demand.

mented[8] and turns out to be very effective. The new field This global update of the bosonic fields has then to be

NEW : ; ; o1 ;
«  Is obtained by applyingll —z,) " to a Gaussian vec-  omhined with local update algorithms. We have chosen lo-
tor » cal overrelaxation for both gauge and bosonic fiélds.
NEW_ ([ _ 5. )-1 ©) A good tuning of the relative frequencies of the three
ko = (D=z) different algorithms in the mixture is essential. With the glo-
. . bal heat bath some new uncorrelated information is brought
Ibn thls. V\?‘yleEW is completely uncorrelated from the old into the statistical system via the boson fields, which %f
osonic field. ’

course needs some time to propagate to the gauge fields too.
While a stochastic choicéwith proper weights among the
Yhree algorithms might seem preferable, we have observed
: ) that the use of a deterministic sequence of algorithms in the
to the edge of the Dirac spectrum, so thBt{z) is almost trajectory between two successive Metropolis steps is much

singular. ;
. . more effective.
In order to cure this problem we have adopted, instead of

the usual heat bath with exact inversion, a quasi heat bath
consisting of an approximate inversion plus a Metropolis
accept-reject step as proposed M. Three representative systems, increasingly demanding in
The idea is not to perform an exact inversion @ ( computer resources, have been studied: medium-heavy
—2z), but to stop the inversion algorithfBiCG in our casg  quarks in a small lattice, light quarks in a small lattice, and
early by loosening the convergence criterion. In order to prelight quarks in a large lattice. In all three cases the efficiency
serve detailed balance, the system one solves approximatedy our algorithm at least matched that of the HMC method.
is Our simulations are of lengt®(10%) 7;,,(CJ), sufficient to
extract reasonably accurdt®(10%)] integrated autocorre-
(D=2z)x=b, (100 |ation times,,(0) for the plaguette.
) ) . oLb ) In all cases we simulate 2 flavors of Wilson fermions, and
with the right-hand sidé=(D—2zJ ¢+ 7. The residual ,5e the non-Hermitian version of the multiboson algorithm
isr=b—(D—z)x. A candidate bosonic field is then formed [5] with even-odd preconditioning and noisy Metropolis cor-
as rection test. The gauge action is the Wilson plaquette action.
NEW oLD We have implemented UV-filtering up to fourth ordee.
b =X he (12) up to 4-link loops, which generates a shik g in the gauge
coupling B8, but causes no overhead.
The details of the three simulations, denotéd, (B) and
- tim NEW__ ,OLD (C), are summarized in Table I. Note that the optimized
Min(L.exq2Rer (D=2 (i < OID. (12 value of the coefficiend,, and thusA 8, is much larger than
It is easily proved that in this way the bosonic field is th® Nopping parameter expansion value (1/4). This is be-
sampled with the correct distribution, for any convergence
criterion of the solver. Using this simple trick it is possible to
strongly reduce the number of iterations of the inversion al- INote that no heat bath on gauge fields is needed, since ergodicity
gorithm (by a factor of 3 or spwhile maintaining an accep- s already ensured by the global heat bath on bosonic fields.

In practice, since an accurate exact inversion@f(z,)
is needed, the global heat bath may become prohibitivel
expensive, especially for those fields wheges very close

IlI. NUMERICAL RESULTS

It is accepted with probability

074503-3



CONSTANTIA ALEXANDROU et al. PHYSICAL REVIEW D 61 074503

cause UV filtering does its best to approximate the infinite [ T T ' [
series given by the hopping parameter expansion with a se- o 84 =53 £=0.158
ries truncated to 4th order: the best truncated series is not the
truncation of the infinite one.
When performing the Metropolis test between two trajec- P o S 1
tories the quantityWs, where W=II(1—«xM—2z1)-(1 SN BN :
— kM) - expEaMi), has to be computed, and some care LoE |
is needed in the evaluation of the exponentigl ol—i . Coe o
=exp(2}“:_01ajMi)7;. Our method is to compute it by Taylor 4
expansion, stopping the series when the contribution of the o4
first neglected order tg is less than 10 for each site. : =
For MB simulations(A) and (B), the order of update of T o q
the gauge links was not the usual one. All 8 links attached to - ]
a given sitex, forming a “star” pattern, were updated before 1 —
proceeding to another set of 8 links. This arrangement allows
a re-use of intermediate link products in the calculation of
the gauge force, thereby reducing the overall amount of com- 0 1 &
putation[10]. More importantly, it becomes very simple in FIG. 1. Zeros of the UV-filtered polynomidtircles, and esti-

this scheme to integrate analytically over the central bosonig,ateq boundary of the Dirac spectruurossel simulation(A).
fields ¢ (x), which permits a larger-step update of the gauge

fields. This provides similar advantages to the combined
gauge-boson update 2], without the overhead.

The HMC simulations used for comparisons incorporate h f the simulati indi di bl
state-of-the-art improvements: even-odd preconditioning | "'€ Parameters of the simulation are indicated in Table I,

[(A), (B) and (C)]; incomplete convergence of the solver cOlUMN (B). «. is approximately 0.1688) [14], so we are
during the MD trajectorj(A) and(B)] or time extrapolation ~Simulating light quarks. As appears clegrly in Fig. 3, several
of the initial gues$(C)]; BIiCGys [(A) and(B)] or BiCGStab  Of the IR zeros are now closer to the Dirac spectrum bound-
[(C)] solver; multi-step-size integration, followingl1], in  ary. Consequently, the global quasi-heat bath provides a
[(A) and (B)]. Simulation(C) is a SESAM Collaboration large improvement over local updates, by a factor of 5 or
production run[3]. It does not incorporate, however, SSOR more. The number of boson fields=16, is very much
preconditioning which they use with advantage in more ressmaller than the number of solver iterations per HMC step
cent projects where it reduces the work per independent corf~53). The 2 algorithms appear about equally efficigete
figuration by a factor of about p12]. Fig. 4). Since the work per independent configuration grows
more slowly with the volume for MB than HMC
(V[log(V)T? vs V4 [5]), this bodes well for realistic simula-

. . o _ tions in large volumes.
The parameters of the simulation are indicated in Table I,

column (A). Seven auxiliary fields only were required after

UV filtering (note that there is no need for the number of TR . r
fields to be even Figure 1 shows the location of the associ- -----
ated complex zeros of the approximating polynomial, to- 08| .
gether with the boundary of the Dirac spectrum estimated by
diagonalizing the tridiagonal matrix given by the Big&
solver. Only one zero is devoted to controlling the UV part
of the Dirac spectrum, while the other 6 control the IR. This
is because the shifA 3~0.166 in the gauge coupling ac-
counts for most of the UV fluctuations already. Because
none of the auxiliary fields has a small mass, as can bef
judged from the distance of the zeros to the boundary of theg
Dirac spectrum, Fig. 1, local and global updates of these
fields are about equally efficient. In both cases, the plaquette
decorrelates about 4 times faster than with HMC, as shown
in Fig. 2. This good result is inherent to the MB approach:
for heavy quarks, it reduces to pure gauge local updates, ,, ! . . !
whereas the HMC algorithm remains an infinitesimal-step 0 2000 4130:)' i :0‘50 8000 10000
algorithm with much slower dynamid4.3]. Therefore, the uitpleations by

relevant question is, at which quark mass, if any, does the FIG. 2. Autocorrelation of the plaquette, with the UV-filtered
MB approach lose its advantage? This is the reason for ouiB algorithm (solid line) and the HMC algorithmdashed lingat
second test. B=5.3 and«x=0.158(simulation A).

B. Light quarks, small lattice

A. Medium-heavy quarks, small lattice

05 - e 4

relation of Plaquette
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FIG. 3. Zeros of the UV-filtered polynomidtircles, and esti- FIG. 5. Zeros of the UV-filtered polynomiah& 24) (circles,
mated boundary of the Dirac spectryorosses simulation(B). of the non-UV-filtered polynomial (=80) (+), and estimated

boundary of the Dirac spectruferossey simulation(C).

C. Light quarks, large lattice

, i o ) and gauge fields. This choice may be subject to further opti-
The parameters of the simulation are indicated in Table 'miza?iong y ) P

column(C). This large-scale simulation has been performed Of the optimized roots of the UV-filtered polynomial,

on the APE/TOWER machine in Pisa. _ shown in Fig. 5, 16 are devoted to IR modes and 8 to UV
The number of boson fieldsy=24, is again very much ,54es of the Dirac operator.

smaller than the number of BICG iterations per MD step g jjystrate the benefits of UV-filtering and of the
(~91). Note that without UV filtering, these 2 numbers be-posonic quasi heat bath, we show in Fig. 6 the evolution of
come comparable: we ne_edBd: 80 fields in this case, _Wlt_h the plaquette, first without UV filtering (=80 bosonic
the zeros of the polynomial gvgnly spaced on the unit C'rCIEfieIds), then with UV filtering (1=24) but without a quasi
centered at (1,0), to reach similar acceptanc&4%). heat bath, and finally with both features. The improvement is

Regarding the mixture of algorithms, we have found that;jearly visible in each case. The autocorrelation of the
a good compromise is to perform one global heat bath pefjaquette is compared in Fig. 7 with that obtained by the
bosonic field during each symmetrized trajectory composedesan Collaboration using the HMC meth¢8]. Our MB
of 12 couples of local over-relaxation sweeps for the bosoni%pproaoh is more efficient by a factor of3.

In Fig. 8 we compare the topological charge histories ob-

1 . . . tained from our simulation and from a sample of SESAM

UV-filtered MB' ——
HMC

0‘572 T T LI | T
)

0.571

0.570

Autocorrelation of Plaquette
Plaquette

0.569

0.2 1 1 1 1 1 1 - e
0 20000 40000 60000 80000 100000 120000 140000 0x107 1x107 2x10”7 3x107

Multiplications by D Dxv

FIG. 4. Autocorrelation of the plaquette, with the UV-filtered FIG. 6. Monte Carlo history of the plaquette, with the non-
MB algorithm (solid line) and the HMC algorithm{dashed ling at Hermitian MB algorithm(1), then with UV filtering(Il), finally with
B=5.3 andxk=0.165(simulation B. UV filtering and bosonic quasi heat battl ) (simulation Q.
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Multiplications by D FIG. 8. Comparison of topological charge histories obtained
with HMC and UV-filtered MB algorithm atB=5.6 and «
FIG. 7. Autocorrelation of the plaquette, with the UV-filtered =0.156. The common scale has been set in terms of equivBllent
MB algorithm (solid line) and the SESAM HMC algorithridashed  x 3 multiplications.
line) at 8=5.6 andx=0.156(simulation Q.

filtering and global quasi heat bath of the boson fields. The

configurationg 15]. In both cases the same cooling methodformer absorbs the UV modes of the Dirac operator in the
was used. Neither simulation is long enough to extract gyauge action, and thereby reduces the required number of
reliable autocorrelation time for this observable. Attempts abosonic fields by a factor of 3 or more, thus removing the
doing so yield roughly equivalent results for both algorithms,memory bottleneck of the non-filtered MB. The latter greatly
as the figure already indicates. Therefore, even for this globaiccelerates, at low computer cost, the dynamics of the IR,
observable, our MB method seems not worse than the HM@®Ww-mass boson fields. The same scheme can be imple-
method. mented without changes to simulations with staggered fermi-

We considered extending the UV filtering to order 6. Thisons. Similar efficiency gains are expected. At the same time,
would allow a further reduction of the number of bosonicthe MB polynomial can be tailored to approximate any num-
fields, at the expense of including in the action 6-link loopsber of staggered flavors, for instaniig=2. With a correc-
coming from Tr(M®). The optimization of the UV-filtered tion step as used fal;=1 Wilson-quark simulation§16],
polynomial was performed under these premises. It indicatethis will allow for exact, efficient simulation of two stag-
that the same accuracy obtained witk: 24 and 4th-order gered flavors, which are inaccessible to the HMC algorithm.
UV filtering could be obtained withh~20 and 6th-order UV
filtering. This relatively small reduction in did not justify ACKNOWLEDGMENTS

the overhead of including 6-link loops in the update. ) o .
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