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Renormalization group scaling in nonrelativistic QCD
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We discuss the matching conditions and renormalization group evolution of non-relativistic QCD. A variant
of the conventionalMS scheme is proposed in which a subtraction velocityn is used rather than a subtraction
scalem. We derive a novel renormalization group equation in velocity space which can be used to sum
logarithms ofv in the effective theory. We apply our method to several examples. In particular we show that
our formulation correctly reproduces the two-loop anomalous dimension of the heavy quark production current
near threshold.

PACS number~s!: 12.39.Hg, 11.10.St, 12.38.Bx
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I. INTRODUCTION

The dynamics of almost on-shell heavy quarksQ with
massm much greater than the QCD scaleLQCD can be com-
puted in a systematic expansion in terms of several sm
parameters. In the single heavy quark sector, the dynami
described by heavy quark effective theory~HQET!, which
has an expansion in powers ofas(m) and LQCD/m @1#.
HQET can be used to compute properties of hadrons suc

the B̄ and D mesons containing a singleb or c quark. The
dynamics in the quark-antiquark sector is far more com
cated than in the single quark sector. At low moment

transfer theQQ̄ pair can form non-relativistic Coulomb-like

bound states, which are theJ/c and Y for the c̄c and b̄b
sectors, respectively. It should be possible to describe
dynamics of nonrelativistic heavy quarks using a nonrela
istic effective field theory for QCD. A formulation of this
effective theory, called NRQCD~nonrelativistic QCD!, has
been proposed by Bodwin, Braaten, and Lepage~BBL! @2#.
The analogous theory for electromagnetism, NRQED, w
developed earlier by Caswell and Lepage@3#.

Constructing NRQCD has proven to be more diffic
than HQET, the complication being that there are ma
scales involved. In HQET, the only two important scales
the quark massm andLQCD. In NRQCD there are two othe
important scales,mv andmv2, the momentum and energy o
the quarks~wherev is the typical quark velocity!. Momen-
tum regions with ~energy, momentum! of order (m,m),
(mv,mv), (mv2,mv) and (mv2,mv2) are referred to in the
literature as hard, soft, potential and ultrasoft, respectiv
@4#. The effective field theory must be able to correctly r
produce phenomena in all of these regions.

The simplest approach to NRQCD uses a momen
space cutoff to regulate the loop integrals. This has the
vantage that the physics below the cutoffL is automatically
correctly taken into account. However, the usefulness of
approach for computations is limited since cutoffs bre
gauge invariance. Furthermore, the theory does not h
0556-2821/2000/61~7!/074025~14!/$15.00 61 0740
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manifest power counting—loop graphs mix powers ofv. If a
mass independent subtraction scheme such as the mod
minimal subtraction scheme (MS) is applied to the BBL La-
grangian, thev expansion breaks down due to unphysic
poles introduced by the nonrelativistic approximation. The
have been many approaches advocated to remedy this s
tion.

In Ref. @5#, it was shown that it was more useful to fo
mulate NRQCD as a theory in which ultrasoft modes cou
via the multipole expansion. A velocity power counting ru
for bound states in nonrelativistic effective field theories w
formulated in Ref.@6#. The leading order term in the effec
tive Lagrangian reproduced the form of the propagator in
potential regime. To recover the poles in the gluon propa
tor that correspond to gluon radiation, the gluon propaga
1/„v2(k0)22k2

… had to include subleading terms inv, which
caused problems with the naive velocity power count
rules. In Ref.@7#, it was pointed out that the usual matchin
onto NRQCD violatedv power counting if theMS scheme
was used, and it was shown that the problem could be fi
in the single heavy-quark sector by using the same match
conditions as for HQET. In Ref.@8#, it was demonstrated tha
the multipole expansion is the appropriate generalization
@7# to the two quark sector. In Ref.@9#, an effective theory
was formulated using two different fields for the potent
and radiation gluons. A problem which arose in this form
lation, however, was that it neglected soft gluon mod
which are responsible for the running of the coupling bel
m5m.

In the threshold expansion@4#, the results of NRQCD are
obtained directly from QCD by expanding graphs about
relevant kinematic regimes~hard, soft, potential and ultra
soft!. This technique has recently been used to extract
two-loop corrections to top-antitop production near thresh
with comparative ease@10–13#. However, it is less simple to
perform renormalization-group improved calculations in th
formulation than in a true effective field theory~our results
in this paper will disagree with the RGE analysis presen
in @14#.! The threshold expansion was written as an effect
©2000 The American Physical Society25-1
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theory by Griesshammer@15#.
In the approach advocated by Pineda and Soto@16–19#

the matching onto the effective field theory occurs at t
stages. Matching between QCD and NRQCD occurs at
scalem5m, while at m of order the inverse separation b
tween the heavy quarks NRQCD is matched onto a new
fective theory which the authors call potential NRQCD~PN-
RQCD!. In particular, Pineda and Soto argue that t
matching between QCD and NRQCD should contain o
the hard part of loop integrals, and should be performed
ing HQET Feynman rules. By performing the matching e
actly at threshold, the Coulomb singularity is regulated
dimensional regularization, so the one-loop matching con
tions are well defined. Furthermore, the treatment of s
modes is particularly simple in this approach, as they j
correspond to the running in the theory betweenm andmv.

We argue in this paper, however, that the problem w
this approach is that HQET Feynman rules do not corre
treat the momentum region betweenm andmv. In particular,
in @18# it is argued that the anomalous dimension for t
electromagnetic current for heavy quark production vanish
While this is true at one loop, at two loops the current ha
nonzero anomalous dimension@10,11# which HQET Feyn-
man rules cannot reproduce.

In this paper, we construct an effective theory f
NRQCD which has a consistentv expansion when loops ar
evaluated in theMS scheme, and which correctly reproduc
the two loop anomalous dimension of the heavy quark p
duction current. The Lagrangian we use is similar to that
@15#, however, we do not have to introduce as many ex
fields ~such as soft quarks! as in that formulation. Unlike the
PNRQCD approach, we argue that the correct matching s
onto the effective Lagrangian~similar to that of PNRQCD! is
m5m, not m5mv. The added complication which the
arises is that soft modes must explicitly be taken into acco
betweenm5m and m5mv, in order to obtain the correc
running of the potential.

We also introduce a novel renormalization group~VRG!
equation in velocity space that is used to sum logarithms ov
in the effective theory. The VRG represents the invariance
the theory under changes in the subtraction velocityn. The
formulation of NRQCD presented in this paper allows one
include the effects of the running coupling constant in
quark potential by using the velocity renormalization gro
equations, and to simultaneously sum soft and ultrasoft lo
rithms.

In Sec. II, we discuss some general aspects of the p
lem, and in Sec. III we introduce the fields required in t
effective field theory and discuss power counting and lo
graphs in NRQCD. The VRG is introduced in Sec. IV, wh
in Sec. V we illustrate the formalism with some examples.
particular, we show that we correctly reproduce the two-lo
anomalous dimension of the heavy quark production curr
We defer the complete RGE analysis of heavy quark prod
tion to a future paper.

II. p 2Õ2m OR NO p2Õ2m

Consider pair production of aQ̄Q pair near threshold by a
virtual photon. We are interested in the threshold regi
07402
e

f-

y
s-
-
y
i-
ft
t

h
ly

s.
a

-
f
a

le

nt

f

o
e

a-

b-

p

p
t.

c-

,

where the fermions are nonrelativistic, so thatv!1, where

v5A12
4m2

s
~1!

is the velocity of the two final state fermions~ignoring for
the moment complications from confinement effects
QCD!. The electromagnetic current in the full theo
matches to

Ji5c†s i@x†#TCJ~m!, ~2!

CJ~m!511c1~m!
as

p
1c2~m!S as

p D 2

1•••,

where c and x annihilate quarks and antiquarks, respe
tively. Ignoring for the moment non-perturbative effec
there are three relevant scales in the process: the quark
m, the quark three-momentump5mv, and the quark energy
E5mv2/2.

An approach to the problem of unraveling these sca
was developed in Refs.@7,16–19#. The authors argued that a
the scalem, no distinction need be made between energy a
momentum, since they are both!m; it is only at the scale
mv that they are distinguished in the power counting. T
correct effective field theory was therefore argued to be id
tical to HQET. The NRQCD and HQET descriptions diffe
in how they treat these scales. In the HQET approach,
kinetic term in L is taken as a perturbation, while in th
NRQCD approach, the kinetic term is resummed in t
propagator. While this violatesm power counting, it was
shown in @9# that as long as the potential is taken to
instantaneous, and real radiation is coupled via the multip
expansion, there is a consistent counting inv.

At one loop, both approaches yield the correct result
the matching onto the external current. In the NRQCD a
proach the Coulomb singularity;1/v in the Q̄Q production
amplitude is reproduced by nonrelativistic fermions under
ing instantaneous potential exchange, while in the HQ
approach the Coulomb singularity is regulated at thresh
by dimensional regularization. In the latter case the match
condition is given solely by the hard part of the graph, o
tained by evaluating the full theory at threshold. Both a
proaches give the well-known result for the matching con
tion,

c1~m!522CF . ~3!

At two loops, however, the approaches differ. The two-lo
matching onto NRQCD was computed by Hoang for QE
@10,11#, and the computation has been recently extende
the non-Abelian case by Czarnecki and Melnikov@12#, and
by Beneke, Signer and Smirnov@13#. These authors find

c2~m!5p2CFS 1

3
CF1

1

2
CAD ln

m

m
1non-logarithmic terms.

~4!
5-2
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RENORMALIZATION GROUP SCALING IN . . . PHYSICAL REVIEW D61 074025
The electromagnetic current has no anomalous dimensio
the full theory, which implies that in the effective theory,CJ
must have an anomalous dimension atm5m,

m
dCJ~m!

dm
52CFS 1

3
CF1

1

2
CADas

2 . ~5!

The anomalous dimension is of leading order in the 1m
expansion, and it is straightforward to verify in eitherA0

50 or Coulomb gauge that the leading order graphs do
give a two-loop anomalous dimension in HQET.

The situation is rather different in NRQCD, which has av
power counting scheme. In this case, theO(1) anomalous
dimension arises at two loops due to a 1/v2 enhancement o
an O(v2) term in the potential: the 1/v2 Coulomb enhance
ment is crucial to this result. We will compute the anomalo
dimension in Sec. V C, and show that it correctly reprodu
Eq. ~5!. The distinguishing feature between NRQCD a
HQET is that HQET does not have the Coulomb divergen
By evaluating one-loop graphs exactly at threshold o
avoids the problem of Coulomb divergences, and this pro
dure allows one to compute the one-loop matching corr
tion Eq. ~3! using HQET. However, in two-loop graphs th
internal graph is not at threshold, and so is sensitive to
Coulomb singularity. The problem in them counting scheme
seems to be that unless thep2/2m term is included in the
leading order propagator, the effective theory cannot c
rectly reproduce the propagation of a fermion-antiferm
pair, such as the graph in Fig. 1, which vanishes in dim
sional regularization if HQET propagators are used.

Thus the effective field theory atm5m must resum the
p2/2m term in the propagator to reproduce the infrared ph
ics of full QCD, and to correctly reproduce the two-loo
anomalous dimension. Once thep2/2m term is included in
the quark propagator, it is also necessary to perform a m
tipole expansion and include a quark-antiquark potential@8#.
The matching from QCD to an effective theory with pote
tials is done at the scalem5m, so the potential in the effec
tive theory atm5m depends onas(m). Since the dominan
momenta in the static potential are of ordermv, one might
expect that the relevant coupling isas(mv), and this is borne
out by more detailed studies of the quark static poten
@20–22#. One therefore requires that the potential genera
at m5m must run in the effective theory belowm. This
running can be implemented by the inclusion of soft glu
modes, with (E,p);(mv,mv), the importance of which was
pointed out by Greisshammer@15#. Soft gluon modes should
be integrated out of NRQCD, since they can never be p
duced on-shell; nevertheless they must be included in
running betweenm andmv.

FIG. 1. Fermion-antifermion propagation graph. The two^ cre-
ate and annihilate a fermion-antifermion pair.
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A. Possible hierarchies

In addition to the scalemv andmv2 the non-perturbative
scaleLQCD also plays an important role for real quarkonium
ThoughLQCD will not play an important role for the analysi
of this paper, some aspects of its power counting are wo
emphasizing.

For very largem, or equivalently, smallas(m), one is in
the regimeLQCD!mv2!mv!m, sinceLQCD/m is formally
smaller than any power ofas . These inequalities are onl
well satisfied fort quarks; for charmonium and bottomium
the situation is closer toLQCD;mv2 or LQCD;mv, and
non-perturbative effects become important. Of course,
apparent independence ofmv, mv2 andLQCD for a Coulomb
system is illusory. The velocityv in a Coulomb bound state
is given by solvingv5as(mv):

v5
4p

b0ln~m2v2/LQCD
2 !

, ~6!

where

b05112
2

3
nf ~7!

which givesv5as(mv) as a function ofm/LQCD. In Fig. 2,
LQCD/mas

2(mv) is plotted as a function ofm/LQCD, with
v5as(mv). Clearly, for large m/LQCD, one can have
LQCD!mv2!mv!m. However, it is not possible to hav
LQCD@mv2. The maximum possible value ofLQCD/mv2 is

LQCD

mv2
5

b0

2pe
50.53 ~ for nf53!, ~8!

at

m

LQCD
5

eb0

2p
53.9, v5

2p

b0
50.70 ~ for nf53!. ~9!

@Here e52.718.# ~Of course these values should only b
taken as illustrative, since ifLQCD;mv2 the system is no

FIG. 2. Plot ofLQCD/mas
2(mv) as a function ofm/LQCD, for

nf53.
5-3
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LUKE, MANOHAR, AND ROTHSTEIN PHYSICAL REVIEW D61 074025
longer Coulombic.! For theJ/C, mc /LQCD;3 and for the
Y, mb /LQCD;9 so thatmv2/LQCD is not very different in
the two cases.

III. THE EFFECTIVE THEORY

To construct the effective theory, label the total energyE
and momentumP of the heavy quark by

P5p1k, E5k0, ~10!

where the three-vectorp is of the order of the soft scalemv,
and the four-vectork is of the order of the ultrasoft scal
mv2. Momentum space of sizemv is divided up into boxes
of size mv2. The location of each box is labeled byp, and
the points within a box are labeled byk, as shown in Fig. 3.
The variablep is a discrete label, andk is a continuous label
This procedure was originally used by Georgi for HQE
@23#, where the four-momentumpm was split betweenmvm

of orderm and the residual momentumkm of orderLQCD,

pm5mvm1km. ~11!

In HQET, the velocityv is a discrete label, andk is a con-
tinuous label, so that one sums onv and integrates overk
@23#. In our case, we will sum overp and integrate overk.

The quark fieldc(x) in QCD is replaced by

c~x!→cp~x!. ~12!

The labelp represents momenta of order the soft scalemv,
and ~the Fourier transform of! x represents energy and mo
menta of order the ultrasoft scalemv2.

The decomposition Eq.~11! is not unique, since one ca
redefinek→k1q, mv→mv2q, whereq is of orderk. This
redefinition, called reparametrization invariance, leads
constraints on the effective field theory, and relates differ
orders in the 1/m expansion@24#. One can make a simila
redefinition here,

FIG. 3. Momentum space of sizemv is divided into boxes of
sizemv2. A point in momentum space is labeled byp andk.
07402
o
t

k→k¿q, p→pÀq, ~13!

whereq is of ordermv2. In terms of fields, this transforma
tion is

cp~x!→eiq"xcpÀq~x!. ~14!

The application of reparametrization invariance to spinors
HQET was subtle, because of the constraintv”c5c, that
projected out the particle component of the spinor. In o
casecp is a two-component spinor whose upper and low
components represent the amplitudes to annihilate a q
with spin 61/2 along afixed axis. The transformation Eq
~13! does not affect the spin labels, so the consequence
reparametrization invariance are similar to the case of HQ
for spin-zero particles.@Spin would enter if the component
of cp represented helicity states.# The basic result is tha
derivatives oncp(x) should be of the formip¿¹ @24#.

On-shell gauge fields have energy of order their mom
tum. One can have propagating gauge fields with energy
momentum of ordermv or of ordermv2, which are referred
to as soft and ultrasoft gauge fields, respectively. The ga
fields in the full theory are replaced by two different fields
the effective theory, momentum-dependent gauge fie
Ap

m(x), and momentum-independent gauge fieldsAm(x). The
fieldsAp

m(x) represent the soft degrees of freedom andAm(x)
represent the ultrasoft degrees of freedom. The total ene
and momentum of the soft gauge fields is

PÄp¿k, E5p01k0, ~15!

and of the ultrasoft gauge fields iskm, wherek is the Fourier
transform of the spacetime argumentx. Note that soft gauge
fields are labeled by a four-vectorp, whereas quark fields ar
labeled by a three-vectorp. Any other light modes~such as
light fermions and ghosts! in the theory must also be divide
into soft and ultrasoft fields, as for the gauge fields.

The terms in the NRQCD effective Lagrangian descr
the interactions of the soft gauge fields among themsel
and the interaction of two or more soft gauge fields with t
fermions. There are no terms that involve the interaction o
fermion with a single soft gauge field, i.e. no vertex of t
form cp8

† Aq
mcp , since energy cannot be conserved in the

teraction.
The effective Lagrangian for NRQCD can now be writte

down in terms of the fieldscp which annihilate a quark,xp
which annihilate an antiquark,Ap

m which annihilate and cre-
ate soft gluons, andAm which annihilate and create ultraso
gluons. The covariant derivative isDm5]m1 igAm5(D0,
2D), so thatD05]01 igA0, D5¹2 igA, and involves only
the ultrasoft gluon fields. The effective Lagrangian is gau
invariant under ultrasoft gauge transformations, those
which the gauge parameter varies on a distance s
1/(mv2). The full gauge invariance of the original Lagran
ian is recovered by combining gauge invariance in the eff
tive theory with reparametrization invariance.

The effective Lagrangian in the center of mass frame
5-4
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L52
1

4
FmnFmn1(

p
upmAp

n2pnAp
mu21(

p
cp

†H iD 02
~p2 iD!2

2m J cp22pas (
q,q8p,p8

H 1

q0cp8
†

@Aq8
0 ,Aq

0#cp

1
gn0~q82p1p8!m2gm0~q2p1p8!n1gmn~q2q8!0

~p82p!2
cp8

†
@Aq8

n ,Aq
m#cpJ 1c↔x, T↔T̄

2(
p,q

4pas

~p2q!2cq
†TAcpxÀq

† T̄AxÀp1••• ~16!
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where we have retained the lowest order terms in each se
of the theory~except for soft gluon self-interactions!. The
matricesTA and T̄A are the color matrices for the3 and 3̄
representations, respectively. The field strength ten
igFmn5@Dm,Dn# is constructed only out of ultrasoft gaug
fields. If we were interested in including the effects of lig
quarks we would need to add new soft and ultrasoft fields
each flavor. The matching at the scalem would then intro-
duce additional non-local four fermion terms involving bo
the heavy and light quark fields.

In using Eq.~16!, it is crucial to expand out the term (p
2 iD)2. Thep2 piece is part of the leading order Lagrangi
that gives thecp propagator,

cp
†H iD 02

p2

2mJ cp , ~17!

and the terms involvingD are treated as a perturbation. Th
is the momentum space equivalent of the multipole exp
sion written inx space in@8#, since the ultrasoft gluons d
not transfer three momentum to the quarks. This proced
will be justified when the velocity power counting rules f
the Lagrangian are derived.

The QCD Lagrangian contains gauge fixing terms a
ghost interactions. It is convenient to quantize the theory
background field gauge. The background fields can be ta
to be the ultrasoft modes of the effective theory. The qu
tum fields represent the quark potential, and the soft mo
of the effective theory. The effective Lagrangian is gau
invariant with respect to the ultrasoft modes, and conta
the gauge fixing terms of the original theory for the s
modes. One can then gauge fix the ultrasoft gauge field
compute loop graphs involving the ultrasoft gauge fields.
will use Feynman gauge for both the soft and ultras
modes.

FIG. 4. One loop vertex correction in the full theory and effe
tive theory. The momenta are related byP5p1k, P85p1k8.
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The terms in the effective Lagrangian Eq.~16! are ob-
tained by matching graphs in QCD and the effective theo
The ultrasoft gluon fieldsAm in the effective Lagrangian can
not change the momentum labelp on the fermion lines, so
the single-quark terms inL do not changep. The Lagrangian
in the single-quark sector is the same as the HQET Lagra
ian, as pointed out in Ref.@7#. This relation between the
NRQCD and HQET Lagrangians holds even if loop corre
tions are included. Consider a loop contribution to a term
the single-quark sector of the effective theory, such as
shown in Fig. 4. In the effective theory, the incoming a
outgoing momenta of the quark,P and P8 respectively, are
broken up into a soft piecep and an ultrasoft piecek,k8. The
soft labelp must be the same on the incoming and outgo
lines, since the ultrasoft gluons do not changep, so the mo-
mentum transfer in the effective theory isk82k5P82P.
The matching condition can be computed as the differe
between Figs. 4~a! and 4~b!, expanded in a power series i
1/m. The full-theory computation is given by computing Fi
4~a! on-shell, and expanding in powers of the external m
menta overm. The effective theory contribution is given b
evaluating Fig. 4~b! on-shell. The on-shell condition in th
effective theory isk05p2/2m. The intermediate fermion
propagator

1

k01q02p2/2m1 i e
~18!

is equal to

1

q01 i e
~19!

when the on-shell condition is used.1 The Feynman rules Eq
~19! are precisely those that would be used to match fr
QCD to HQET, and are known not to violate the 1/m power
counting in the effective theory. Thus the couplings of t
ultrasoft gluons in the single-quark sector are precisely th
in HQET. This was the procedure used to compute
HQET and NRQCD Lagrangians at one loop in Ref.@7#.

1Note that we have used the lowest order Lagrangian Eq.~17! to
derive the propagator, so the energy term in the denominator
volves the loop momentumq, but the momentum termp2/2m does
not.
5-5
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LUKE, MANOHAR, AND ROTHSTEIN PHYSICAL REVIEW D61 074025
The Coulomb potential can scatter quark states from
value ofp to another. These effects are explicitly included
the two-body terms inL. The Coulomb potential is usuall
thought of as a nonlocal two-body operator. However,
cause of the use of the extra labelp, the Coulomb potential

4pa

~p2q!2
cq

†~x!TAcp~x!xÀq
† ~x!T̄AxÀp~x! ~20!

is local, and manifestly gauge invariant. The Coulomb p
tential is obtained as the value of Fig. 5 evaluated in the
theory. The Coulomb potential is proportional to the Casim
TAT̄A, and gives an attractive interaction in the color sing
channel and a repulsive interaction in the color octet chan

The leading terms involving the soft gluons are given
matching the Compton scattering graphs Figs. 6~a,b,c! in the
full theory to the local operator Fig. 6~d! in the effective
theory. Soft gluons have energy and momenta of ordermv,
whereas the quarkscp have energies of ordermv2 and mo-
menta of ordermv. The intermediate quark in Fig. 6~a,b! is
off-shell, and the Compton scattering graph in the full-theo
can be replaced by a local vertex in the effective theory
shown in the figure. The intermediate gluon in Fig. 6~c! is
also off-shell, since energy cannot be transferred from
external gluons to the quark line. Thus the interaction in F
6~c! can also be represented by a local vertex in the effec
theory. The leading order soft interaction vanishes for QE
We will comment on this in Sec. V. Loop graphs involvin
the soft interaction of Fig. 6~d! are part of the running po
tential in the effective theory.

The Lagrangian Eq.~16! is similar to the PNRQCD La-
grangian constructed by Pineda and Soto in Ref.@25#, but
there are a few important differences. The Lagrangian
given by matching to QCD at the scalem5m, rather than at
the scalem5mv. The Lagrangian also contains explicit so
modes. Soft modes are necessary to reproduce the run

FIG. 5. The Coulomb potential in the full theory~a! is given by
a local two-quark operator~b! in the effective theory.
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potential in the effective theory. Finally, the Coulomb pote
tial is constructed using ap-dependent, but local inx two-
body operator, instead of a two-body operator nonlocal inx.
The use ofp-dependent fields is the momentum space ana
of the multipole expansion, and simplifies the discussion
gauge invariance, particularly in the non-Abelian case.

A. Power counting in the Lagrangian

The NRQCD effective Lagrangian can be used to co
pute processes to a given order in the velocityv. To deter-
mine the order inv of a given diagram, it is useful to have
velocity power counting scheme, and we will use the one
Table I. This velocity power counting scheme differs som
what from that in BBL, since we have separated the glu
field into soft and ultrasoft modes, and the Coulomb inter
tion. The order inv of the soft gluons modesAp is irrelevant,
since they cannot appear as external states in the proce
we are considering. The final power counting formula f
graphs we will derive in Eq.~40! holds regardless of the
order inv chosen forAp . The lowest dimension operator i
the zero-quark sector of the Lagrange density is the ga
kinetic energy, which is of orderv8. All the terms in the field
strength tensorFmn are of the same order inv, sinceDm and
Am are both of orderv2.

The lowest dimension terms in the one-quark sector a

cp
†~x!H iD 02

p2

2mJ cp~x! ~21!

which are of orderv5. The lowest order Lagrangian Eq.~21!

TABLE I. Velocity counting rules for the effective theory. Th
electric and magnetic fields are those constructed out of the ultra
gauge potentialAm.

p v
c, x v3/2

Ap
m v

D0 v2

D v2

Am v2

E v4

B v4
s

by
FIG. 6. The Compton scattering graph
@~a!,~b!,~c!# match on to a local operator~d! in the
effective theory. Soft gluon modes are denoted
a zigzag line.
5-6
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must be used to determine thecp propagator. Terms tha
involve the covariant derivativeD are of higher order than
v5. For example,

cp
† p"D

m
cp ~22!

is of orderv6, and must be treated as a perturbation in
effective theory. Each replacement ofp by D increases the
order inv by one.

The lowest dimension operator in the two-quark secto
the Coulomb interaction. Each quark field is of orderv3/2 and
1/(pÀq)2 is of order 1/v2, so the Coulomb interaction is o
orderasv

4.
The lowest dimension terms that involve soft gluons

of orderasv
4. Consider, for example,

22pas (
q,q8p,p8

1

q0cp8
†

@Aq8
0 ,Aq

0#cp . ~23!

The two cp fields are of orderv3, the twoAq
0 fields are of

orderv2, and 1/q0 is of order 1/v, so the vertex is of orde
asv

4.

B. Loop graphs

The computation of loop graphs using the effective L
grangian Eq.~16! involves some subtleties. There are thr
kinds of loops, which we will refer to as ultrasoft, potenti
and soft, respectively. We will determine the dominant m
mentum region for each graph by studying the pole struc
of the diagram, which is what determines the behavior of
graph in theMS scheme.

Consider graphs in the effective theory that involve onl
single fermion line, such as Fig. 4~b!. The internal fermion
propagators are given by the lowest order term in the o
fermion sector, Eq.~18!. These terms depend only on the so
momentump, and not on the ultrasoft momentumk carried
by the gluon lines. Thus the two fermion propagators in F
4~b! are

1

k01q02p2/2m
, and

1

k801q02p2/2m
, ~24!

respectively. These propagators do not depend on the s
part of the loop momentumq, but they do depend onm. The
propagators have poles at energies of orderp2/2m or k0. The
pole positions are set by the external gluon and quark e
gies, and also byp2/2m, which depends on the quark mo
mentum. The fact that the energy poles are determined by
momentum~and vice versa!, is important, because it relate
the soft and ultrasoft scales. We will refer to a typical ext
nal quark energy as of the order of the ultrasoft scalemU ,
and a typical external quark momentum as of the order of
soft scalemS. Then loop graphs in the one-fermion sect
have poles at energies of ordermU and mS

2/m. The gauge
boson propagator is 1/@(q0)22q2#, so the typical momenta
in the loop are of the same order as the gluon energyq
;q0. Loop graphs such as Fig. 4~b! in which the ultrasoft
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momentumq is integrated over will be referred to as ultra
soft loops, and when evaluated in dimensional regularizat
are dominated by energy and momenta of ordermU or mS

2/m.
The use ofp2/2m rather than (p¿q)2/(2m) in the propa-

gators removes the problem of the breakdown of the eff
tive theory due to poles of orderm in loop graphs. The powe
counting scheme of Table I in whichp is of ordermv, but q
is of order mv2 requires that (p¿q)2 be expanded asp2

12p•q1q2, with p2 included in the fermion propagator, an
the higher order terms2p•q1q2 treated as vertex insertions

Consider a graph that involves a potential loop, such
the one-loop correction to Coulomb scattering. The graph
shown as Fig. 7~a! in the full theory, and as Fig. 7~b! in the
effective theory. The external fermions have energyE and
momenta6p,p8. In the effective theory, the external ferm
ons are labeled by the soft momentum6p,p8, and the ultra-
soft momentum (E,0). The intermediate fermions in the e
fective theory have soft momentum6q, and ultrasoft
momentum (E,0)6k. The graph in the effective theory is

}(
q
E d4k

1

~p2q!2

1

~p82q!2

3
1

k01E2q2/2m

1

2k01E2q2/2m
. ~25!

There is an integral over the ultrasoft energyk0, the ultrasoft
momentumk, and a sum over the soft momentumq. Recall
the decomposition of momentum space shown in Fig.
Summing overq and integrating overk is equivalent to in-
tegrating over the entire momentum space. Thus one
replace Eq.~25! by

E d4q
1

~p2q!2

1

~p82q!2

3
1

q01E2q2/2m

1

2q01E2q2/2m
, ~26!

where

dk0→dq0, (
q
E dk→E dq. ~27!

The loop graph is dominated byq0;E, andq;AmE, which
are ultrasoft, and soft, respectively. This is consistent w
the picture thatq0 ranges over a box of sizemv2 andq over

FIG. 7. One loop correction to Coulomb scattering in the f
and effective theories.
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LUKE, MANOHAR, AND ROTHSTEIN PHYSICAL REVIEW D61 074025
a box of sizemv. It again shows that one cannot treat t
soft and ultrasoft scales as independent of each other;
are related by (soft)2;ultrasoft3m.

Finally, consider a graph such as Fig. 8 that involve
soft loop. It gives a contribution of the form

}(
q
E d4k

1

~p2p8!2

1

~p2p8!2

3
1

~q0!22q2

1

~q0!22~q¿pÀp8!2
, ~28!

where we have used the last interaction in Eq.~16! for the
soft vertices. The sum onq is over a four-vector. As for
potential loops, one can make the replacement

(
q
E d4k→E d4q, ~29!

where the replacement must be done for all four compon
of q, since soft gluons carry a four-vector labelq. It is
straightforward to see that Eq.~28! is dominated byq0 andq
of ordermv, which is consistent with using the replaceme
Eq. ~27! for all four components ofq.

C. Power counting formula for loop graphs

It is now straightforward to derive a power counting ru
for an arbitrary graph in NRQCD. A given graph hasLU
ultrasoft loops,LP potential loops, andLS soft loops. These
can be determined from the structure of the diagram i
systematic way. The total number of loops isLU1LP1LS .
Now delete all the ultrasoft lines from the graph. The
maining number of loops isLP1LS . Finally, delete all quark
lines from the diagram. The remaining number of loops
LS . An example of loop counting is shown in Fig. 9.

Let Vk denote the number of vertices of ordervk in a
given graph. For example,cp

†iD 0cp is a vertex of typeV5,
since it is a one-fermion vertex of orderv5. It is convenient
to break up the vertices into ultrasoft,Vk

(U) , potentialVk
(P)

and softVk
(S) . The ultrasoft verticesVk

(U) are those vertices in
Vk that involve only ultrasoft fields, the potential vertice
Vk

(P) are those with at least one fermion field and no s
fields. The soft verticesVk

(S) involve at least one soft field
An example of vertex counting is shown in Fig. 9.

A diagram is of ordervd, where

FIG. 8. One loop graph involving the soft gauge fields. Th
graph contributes to the running potential in the effective theor
07402
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k

k@Vk
(U)1Vk

(P)1Vk
(S)#25I F24I S28I U18LU15LP

14LS . ~30!

The first term simply adds up the powers inv of all the
vertices. Each internal quark line eliminates twocp fields,
and gives a factor of the fermion propagator 1/(E2p2/2m),
which give a net factor of 1/(v3v2)5v25. This gives the
term 25I F , where I F is the number of internal fermion
lines. Each internal soft line eliminates twoAp fields, and
gives a factor of the gauge propagator 1/„(p0)22p2

…, which
gives a net factor of 1/(v2v2)5v24. This gives the term
24I S , where I S is the number of internal soft lines. Eac
internal ultrasoft line eliminates twoAm fields, and gives a
factor of the gauge propagator 1/„(k0)22k2

…, which gives a
net factor of 1/(v4v4)5v28. This gives the term28I U ,
whereI U is the number of internal ultrasoft lines.

Ultrasoft loops are dominated by energy and moment
of order mv2, and give a factor ofv2 for each integral, so
that one gets a factor ofv8 for each loop. Potential loops ar
dominated by energy of ordermv2 and momentum of orde
mv, and give a factor ofv2 for each time integration, andv
for each space integration, for a net factor ofv5 per loop.
Soft loops are dominated by energy and momentum of or
mv, and give a factor ofv for each integration, for a ne

FIG. 9. An example of counting ultrasoft, potential and so
loops and vertices. Graph~a! has 11 vertices and 7 loops. Deletin
all ultrasoft lines gives graph~b!, which has 9 vertices and 4 loops
Deleting all fermion lines from graph~b! gives graph~c!, with 4
vertices and 2 loops, which is the number of soft vertices and loo
There are 5 potential vertices and 2 potential loops@the difference
between~b! and ~c!#, and 2 ultrasoft vertices and 3 ultrasoft loop
@the difference between~a! and ~b!#. The graph~c! has two con-
nected soft components,NS52.
5-8
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factor of v4 for each loop. These contributions give th
8LU15LP14LS term in Eq.~30!.

The identity

(
k,n

@Vk
(U)1Vk

(P)1Vk
(S)#2I F2I S2I U1LU1LP1LS51,

~31!

is the usual relation that the Euler character of a conne
graph is unity. An analogous relation holds for the gra
with all ultrasoft lines removed. We will assume that t
graph remains connected when ultrasoft lines are remo
which is true for any process in which momentum of ord
mv is transferred between the two fermion lines. The re
tion for the graph with ultrasoft lines removed is

(
k

@Vk
(P)1Vk

(S)#2I F2I S1LP1LS51. ~32!

For I F to be equal in the two relations Eqs.~31! and~32!, it
is important that one not erase vertices where the glu
couple to the fermions~see Fig. 9!, so the total number o
vertices is given byVk

(P)1Vk
(S) . Finally, one has the Eule

character relation for the graph with all ultrasoft and fermi
lines removed,

(
k

Vk
(S)2I S1LS5NS , ~33!

whereNS is the number of connected components in the s
graph.

Eliminating I U , I F andLS between Eqs.~30!–~33! gives
the result

d551(
k

@~k28!Vk
(U)1~k25!Vk

(P)1~k24!Vk
(S)#2NS .

~34!

A given soft vertex in the Lagrange density has the gen
form

~cp!a~Aq!b~Am!cpd~D !eS 1

mD f

, ~35!

where cp represents any quark or antiquark fields or th
conjugates. The term Eq.~35! has dimension four,

45
3

2
a1b1c1d1e2 f , ~36!

and is of ordervk, where

k5
3

2
a1b12c1d12e. ~37!

Subtracting these two relations gives

k245c1e1 f . ~38!

The vertex can only have positive powers ofD, Am, and 1/m,
soc1e1 f >0. @Note thatd need not be positive.# For a soft
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vertex, lets5c1e1 f >0. Label the soft verticesVk
(S) by

the values ofb and s, so that they are denoted byVb,s
(S) ,

wherek541s. Then one finds

(
k

~k24!Vk
(S)5(

b,s
sVb,s

(S) . ~39!

Substituting this result into Eq.~34! gives the power count-
ing formula

d551(
k

@~k28!Vk
(U)1~k25!Vk

(P)#1(
s

sVb,s
(S) 2NS .

~40!

This is an important result. All terms in the zero-fermio
sector havek>8, and in the nonzero fermion sector ha
s>0. Thus the contributions of (k28)Vk

(U) , andsVb,s
(S) are

each positive. There can be negative powers ofv from both
soft and potential exchange, but these come with compen
ing factors ofas . The Coulomb interaction isk54 vertex in
V(P), but is of orderas . Iterating the Coulomb interactionn
times produces terms of order (as /v)n, so for v;as , the
Coulomb interaction must be summed to all orders. TheNS
term is negative, but each soft component must contain
least one power ofas .

As an example of Eq.~34!, consider the electron self
energy diagram Fig. 10 which produces the Lamb shift. T
graph contains twop•A vertices, each of which is of orde
v6, and one ultrasoft loop, so the net power isd551(6
25)3257. The graph has a factor ofas from the two
gauge couplings, and so is of orderasv

7 compared to the
leading term in the single-fermion sector~which is of order
v5), i.e. it is of relative orderasv

2. Similarly the soft loop
graph in Fig. 8 hass50, and NS51, and so is of order
as

2v4. This is the same order inv, but one higher order inas

than the Coulomb interaction.

IV. VELOCITY RENORMALIZATION GROUP
EQUATION

Loop diagrams in the effective theory can be diverge
and the effective theory is renormalized using theMS
scheme. A scale parametermU is introduced when one ana
lytically continues the Lagrangian from four toD5422e
dimensions, as in conventional dimensional regularization
gauge theories. There is a subtlety in the use of dimensio
regularization in NRQCD. In evaluating loop graphs wi
potential loops, we made the replacement Eq.~27!. In D

FIG. 10. Graph contributing to the Lamb shift. The dot repr
sents ap•A interaction.
5-9
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LUKE, MANOHAR, AND ROTHSTEIN PHYSICAL REVIEW D61 074025
dimensions, the relation should read

dk0→dq0, (
q
E dD21k→S mS

mU
D 42DE dD21q. ~41!

The factor of (mS/mU)42D is needed to ensure the corre
dimensionality on the two sides of Eq.~41!. The integral
over dk is over a volume of the order ofmU

D21 , since the
typical range of integration is of ordermU . The integral over
dq is over a volume of the order ofmS

D21 , since the range o
integration is of ordermS. The number of terms in the sum
on q on the left-hand side of Eq.~41! is the ratio of the two
volumes in four dimensions, (mS/mU)3. Away from four di-
mensions, this number does not properly account for the
mentum space volumes on the two sides of Eq.~41!, and the
additional factor of (mS/mU)D24 is needed. The mismatch o
dimensions inDÞ4 occurs only for the space part of th
integral. The factor above is correct when the NRQCD in
grals are done in the conventional way, by first doing thek0

integral using the method of residues disregarding the c
tour at infinity, followed by thek integral in 322e dimen-
sions. Similarly, for soft loops Eq.~29! should be replaced
by

(
q
E dDk→S mS

mU
D 42DE dDq. ~42!

The effective theory renormalized in theMS scheme has
two m parameters,mS andmU . However, the two parameter
are not independent, since the soft and ultrasoft scales
related,mS

25mmU . It is better to think of the parameters a
mS5mn andmU5mn2, wheren is the subtraction point ve
locity. One can now derive a new kind of renormalizati
group equation for the effective theory, since the bare the
is independent of the subtraction velocityn. This velocity
renormalization group equation can be used to scale the
efficients in the effective theory from the matching sca
mS5m, mU5m to mS5mv, mU5mv2, i.e., from n51 to
n5v.

The velocity renormalization group equation addresses
important point about the effective theory, the simultaneo
existence of two related scalesmS and mU . Loop graphs
involving gluon loops will typically have logarithms of th
form lnm/E, whereE;mv2 is the typical gluon energy. The
scale m is equal tomU , since mU is the scale paramete
introduced inD dimensions. Loop graphs containing fou
fermion terms~the potential and soft loop graphs discuss
earlier!, typically have logarithms of the form lnm/AmE or
ln m/p. These graphs use the replacement Eq.~41!, and so
have a factor of

S mS

mU
D 2e

mU
2e5mS

2e ~43!

for each loop, where the first factor is from Eq.~41!, and the
second factor is the conventional factor for each loop in
mensional regularization. Thus in potential and soft loo
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logarithms are of the form lnmS/AmE or lnmS/p. The ra-
diation and potential logarithms are

ln
mU

E
5 ln

mn2

mv2 , ln
mS

AmE
5 ln

mn

mv
. ~44!

The choice of renormalization pointn5v ensures that both
logarithms are simultaneously small. Thus using the veloc
renormalization group equation fromn51 to n5v simulta-
neously sums the logarithms involving the soft and ultras
scales. The velocity renormalization group equation is
MS equivalent of using an energy cutoffmn2 and a momen-
tum cutoffmn in a hard cutoff scheme. The VRG allows on
to have a static potential with an effective coupling const
as(mn), and radiation corrections with an effective couplin
constantas(mn2).

In a conventional renormalization group approach, o
would scale the effective theory fromm5m to m5mv, and
then down tom5mv2. The VRG differs from this in an
important way, because it uses a subtraction velocity ra
than a subtraction scale. Scaling the theory fromn51 to n
5v is equivalent to simultaneously scaling potential and s
graphs fromm to mv, and radiation graphs fromm to mv2.
The scalemv and mv2 are coupled in the theory, and th
coupling of scales is better treated using a subtraction ve
ity rather than a subtraction scale.

V. EXAMPLES

The formalism we have developed will be applied to thr
illustrative examples in this section, the one-loop correct
to the static potential, integrating out a heavy fermion, a
the two-loop anomalous dimension of the production curr
@10,11#.

A. Box graph and the static potential

The first example we consider is the renormalization
the static potential at one loop. At the tree level, the fermio
fermion scattering amplitude is reproduced in the effect
theory by a local operator, the Coulomb vertex in Eq.~16!.
At one-loop, the QCD diagrams that contribute are shown
Table II above the horizontal line, and the graphs in t
effective theory are shown below the horizontal line. T
sum of the QCD diagrams gives the net one-loop contri
tion to the static potential~in the color singlet channel!,

V~k!52
4pas~m!CF

uku2 F12CA

11

6

as~m!

p
ln

k

mG , ~45!

where only the logarithmic term has been retained. T
gives the well-known result that the potential can be rew
ten as

V~k!5
4pas~ uku!

uku2
T•T̄, ~46!

whereT•T̄52CF in the color singlet channel.
5-10
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The box graph~the first diagram in Table II! was com-
puted using the threshold expansion by Beneke and Smi
@4#, and it is interesting to see how the effective field theo
reproduces the various contributions. The hard part of
box graph is the matching condition between QCD a
NRQCD, i.e. a local two-fermion operator in the effectiv
Lagrangian, and is also equal to the difference between
graphs computed in QCD and HQET. The potential part
the box graph is reproduced in the effective theory by
one-loop contribution from the iteration of two Coulomb i
teractions Fig. 7. The HQET value of the box diagra

TABLE II. One-loop correction to quark-antiquark scatterin
The color factors listed in the table are for the color singlet chan
The column labeled QCD gives the contribution of the graph eva
ated in QCD in theMS scheme in Feynman gauge, from Titard a
Yndurain@26,27#. Only the logarithmic contributions are given.l is
a gluon mass used as an infrared regulator,k is the momentum
transfer, andm is the scale parameter of dimensional regularizati
The gluon vacuum polarization graph includes the contribut
from the ghost loop. The column labeled HQET gives the contri
tions of the diagrams in HQET, wherem→`. The breakup of the
total diagram into soft and ultrasoft contributions is given in the l
two columns. The two diagrams below the horizontal line are
contributions to quark-antiquark scattering in the effective theo
The complete set of ultrasoft diagrams is show in Fig. 11.
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2CFln l/k, is both infrared and ultraviolet finite if a gluon
massl is introduced as an infrared regulator. This total co
tribution is split, in the threshold expansion, into an infrar
divergent soft contribution 2CFln m/k, and an ultraviolet di-
vergent ultrasoft contribution 2CFln l/m. The sum of the soft
and ultrasoft contributions has no 1/e pole, since the ultra-
violet and infrared divergences cancel.2

The ultrasoft contribution vanishes in the full and effe
tive theories, if the infrared divergence is regulated by
mensional regularization. The non-trivial contribution is t
soft part of the box graph. The importance of this contrib
tion was pointed out by Griesshammer@15#, who argued that
one needed to introduce soft gauge fields, as well as
quark fields. In our approach, the soft part of the box grap
reproduced in the effective theory by the loop graph sho
in Fig. 8, where the interaction vertex is from the last tw
lines of Eq.~16!. It is not necessary to introduce soft qua
fields, as advocated by Griesshammer.

In QED, the soft part of the box and crossed-box gra
cancel. This is consistent with the effective Lagrangian E
~16!, where the soft interaction vertex vanishes for QED.
QED, the soft modes can be integrated out directly atn51,
and replaced by local operators at the scalem5m. This ap-
proach does not resum the logarithms ofv in the potential
~which are absent for QED!, and so is not a satisfactor
procedure for QCD.

The effective theory correctly reproduces the soft and
trasoft contributions to the static potential. The soft vertex
Fig. 8 is computed from the Compton scattering graphs
Fig. 6. Fig. 8 reproduces the sum of the soft part of the b
vertex and vacuum polarization corrections to fermio
fermion scattering. We have seen that the soft vertex is p
portional to the commutator of two gauge fields, so the s
graph Fig. 8 is proportional toCA . This automatically imple-
ments the cancellation between the variousCF contributions
to quark-antiquark scattering in the full QCD calculation. A
explicit computation of Fig. 8 gives the contribution

2
~4pasT•T̄!

uku2
as

p
CAS 11

5

6D ln
k

mS
~47!

to the scattering potential, where the first term~1! is an in-
frared divergent contribution, and the second~5/6! is an ul-
traviolet divergent contribution. Note that the soft graph
infrared divergenteven if a gluon mass is used as an infrar
regulator. The infrared divergent contribution of Eq.~47! is
converted to an ultraviolet divergent contribution if tadpo
graphs are included. Equation~47! agrees with the sum o
the soft contributions listed in Table II.

2The cancellation is not really between an ultraviolet and infra
divergence. In the effective theory, there are tadpole graphs w
are zero in dimensional regularization, and have the form of a
ference 1/e21/e between an ultraviolet and infrared divergenc
One cannot characterize a 1/e pole as an infrared or ultraviole
divergence if tadpole graphs are set to zero.

l.
-

.
n
-

t
e
.

5-11



to
r

k-
io

th
or
e
co

-
a

-
t

a
th
in
m
on
n

o
in

ap
ph

r-
on

of
de

o

g
All

ous

on
a

l
ex-

n

, in
ion
s
oft

as

s

e
r-

lian
r

ry

n

ft

.

LUKE, MANOHAR, AND ROTHSTEIN PHYSICAL REVIEW D61 074025
The ultrasoft contributions in the QCD theory add up
zero. The ultrasoft contributions in the effective theory a
the renormalization of the local four-fermion quar
antiquark potential, shown in Fig. 11. Each graph is ultrav
let divergent, and proportional to lnmU /k. The sum of all the
graphs is zero, in both the singlet and octet channels. In
effective theory, ultrasoft radiative corrections do not ren
malize the quark-antiquark potential. They do, howev
cause mixing between the leading order potential, and
rections to the potential suppressed by powers of 1/m.

The quark-antiquark potential is VRG invariant. This im
plies that the couplingas of the soft gluons must satisfy
b-function equation, where theb-function for the VRG is
the same as the conventional one, sincemS5mn, so that
mSd/dmS5nd/dn. In other words, the quark-antiquark po
tential takes the form Eq.~45!, with the coupling constan
renormalized at the soft scalem5mS5mn. Choosingmn
5uku sums the leading logarithms, and gives Eq.~46!.

The effective theory has performed an interesting re
rangement of the terms in the radiative correction to
static potential, compared with those in the correspond
HQET computation in Feynman gauge. In the HQET co
putation, the vertex and wavefunction renormalizati
graphs contribute2CAln k/m, and the vacuum polarizatio
graph contributes an additional2(5/6)CAln k/m. The box
diagram is finite, and does not contribute to the running
the static potential. The vertex and wavefunction graphs
volve ultrasoft loops, whereas the vacuum polarization gr
involves soft loops. In the effective theory, the box gra
contribution lnk/l is broken up into a soft piece, lnk/m, and
an ultrasoft piece, lnm/l. The ultrasoft piece cancels the ve
tex and wave function graphs, leaving the soft contributi
so that the static potential depends only onmS, and not on
mU .3 The breakup of the box graph into soft and ultras
can be done without double counting in a mass-indepen
scheme such asMS @4#.

Terms in the one-fermion sector of the theory are ren

3This is true even when the running soft gluon couplingas(mn)
and ultrasoft gluon couplingas(mn2) are used.

FIG. 11. Renormalization of the four-quark operator represe
ing the quark-antiquark potential by ultrasoft gluons.
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malized by ultrasoft gluons. The ultrasoft gluon couplin
constant is renormalized due to their self-interactions.
these graphs can be computed as for HQET@7,28,29#. The
VRG anomalous dimension is twice the usual anomal
dimension, sincend/dn52mUd/dmU .

There are relations between the soft and ultrasoft glu
couplings in the effective theory. The two couplings have
b-function that is related to the QCDb-function, so that the
soft coupling isasoft(n)5as(mn) and the ultrasoft coupling
is aultrasoft(n)5as(mn2), where as(m) obeys the usua
renormalization group equation. This can be verified by
plicit computation in the effective theory.

B. Integrating out a light fermion

Consider the NRQCD theory with an additional fermio
C of massmC , with LQCD!mC!m. At the scalem, one
can match from QCD to an effective theory that contains
addition to the fields we have been discussing, the ferm
C. At the scalem, the fermionC behaves like a massles
particle, so the effective theory contains soft and ultras
fermion fields forC, Cq(x) and C(x), respectively. The
VRG equation is used to scale the theory belowm. At the
velocity mn25mC , i.e. n5AmC /m, the ultrasoft fermion
modesC(x) can be integrated out of ultrasoft loops such
Fig. 12, and at the velocitymn5mC , i.e.n5mC /m, the soft
fermion modesCq(x) can be integrated out of soft loop
such as Fig. 13. This sums logarithms ofm/mC in both soft
and ultrasoft loops.

C. Two-loop running of the production current

A highly non-trivial check of the effective theory is th
computation of the two-loop running of the production cu
rent. This was computed by Hoang for QED@10,11#, and the
computation has been recently extended to the non-Abe
case by Czarnecki and Melnikov@12#, and by Beneke, Signe
and Smirnov@13#.

Consider production of aQ̄Q pair near threshold by a
virtual photon. The electromagnetic current in the full theo

t-

FIG. 12. A light fermion bubble contributions to an ultraso
loop.

FIG. 13. A light fermion bubble contributions to a soft loop
5-12
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matches to the effective current Eq.~2! in the effective
theory, where the two-loop matching condition@10–13# be-
tween the full and effective theories is given in Eq.~4!. The
electromagnetic current has no anomalous dimension in
full theory, which implies that in the effective theory,cJ
must have an anomalous dimension,

m
dCJ~m!

dm
52CFS 1

3
CF1

1

2
CADas

2 ~48!

at m5m.
The anomalous dimension Eq.~48! is of orderas

2v0, so
we need to compute all diagrams of this order in the effec
theory. The interactions needed are in the quark-antiqu
potential to orderv2 in the color singlet channel. The poten
tial in the center of mass frame for the processQ(p)
1Q̄(2p)→Q(p8)1Q̄(2p8) with momentum transferk
5p2p8 is ~borrowing the notation of Titard and Yndurai
@26,27#!

V5VC

1

uku2
1Vr

upu2

m2uku2
1Vuku

p2

muku
1

V2

m2 1
Vh f

m2
S2

1
VLS

m2
L~k!1

VT

m2 T, ~49!

where

S5
s11s2

2
, ~50!

L~k!52 i
S•~k3p!

k2 , ~51!

T5s1•s22
3

k2
~k•s1!~k•s2!

~52!

and the coefficients we need are

VC~m5m!524pas~m!CF ,

Vr~m5m!524pas~m!CF ,

Vuku~m5m!5as
2~m!CFS 1

2
CF2CAD ,

V2~m5m!50,

Vh f~m5m!5
4pas~m!CF

3
, ~53!

using tree-level matching atm5m for VC,2,h f and one-loop
matching atm5m for Vuku . In addition to the above terms
we also need thep4/8m3 kinetic energy correction in the
Lagrangian, whose coefficient is fixed by reparametrizat
invariance.
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The diagrams which contribute to the two-loop anom
lous dimension of the production current in the effecti
theory are shown in Fig. 14. The contribution from the d
grams to the anomalous dimension will be calledga2ge ,
respectively, where

mS

dCJ

dmS
5n

dCJ

dn
5g. ~54!

One finds that

ga50,

gb52
1

64p2 VC
2 ,

gc52
1

16p2 VC~V212Vh f!2
1

32p2 VCVr ,

gd52
1

32p2 VCVr ,

ge5
1

2
Vuku ~55!

and the total anomalous dimension is

g5ga1gb1gc1gd1ge

52
VC

2

64p2 2
VCVr

16p2 2
VC~V212Vh f!

16p2
1

Vuku

2
~56!

FIG. 14. Diagrams which contribute to the two-loop anomalo
dimension of the production current. The dot and box repres
terms in the tree-level potential at order 1 (VC), andv2 (VC , V2 ,
Vh f , VLS , VT) respectively. Thê is an insertion of the orderv2

term proportional toas
2/muku in the one-loop potential (Vuku). The

3 is an insertion of thep4/8m3 kinetic energy correction.
5-13
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which agrees with the known result for QCD atm5m, Eq.
~48!, when the coefficients Eq.~53! are used.

To complete the renormalization group analysis of
two-loop anomalous dimension, one needs the running
ues forVC , Vh f andVuku , which will be presented elsewher
Note, however, that our analysis disagrees with the result
@14#, in which the running of these terms in the potential w
neglected.

VI. CONCLUSIONS

We have discussed a formulation of nonrelativistic QC
that can be used with a mass-independent subtraction sch
such asMS. The effective theory passes several non-triv
checks:~1! it has a consistentv power counting expansion
~2! it correctly reproduces the running of the quark-antiqu
potential at one loop, and~3! it correctly reproduces the two
loop running of the production current. The effective theo
allows one to simultaneously treat the momentum region
ordermv andmv2.

In the way we have formulated the effective theory,
large logarithms have been summed at the scalen5v. At
, in
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this point, one can integrate out the soft modes, and at
same time switch from a theory of quarks and antiquarks
a theory of quarkonia, i.e. to an effective Lagrangian rep
senting quarkonia interacting with background color field
as first studied by Voloshin@30# and Leutwyler@31#.

The methods described here should also be applicab
other nonrelativistic field theories, such as those describ
nucleon-nucleon scattering at low energies@32#.
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