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We discuss the matching conditions and renormalization group evolution of non-relativistic QCD. A variant
of the conventionaMS scheme is proposed in which a subtraction velogitg used rather than a subtraction
scale . We derive a novel renormalization group equation in velocity space which can be used to sum
logarithms ofv in the effective theory. We apply our method to several examples. In particular we show that
our formulation correctly reproduces the two-loop anomalous dimension of the heavy quark production current
near threshold.

PACS numbeps): 12.39.Hg, 11.10.St, 12.38.Bx

[. INTRODUCTION manifest power counting—loop graphs mix powers off a
mass independent subtraction scheme such as the modified
The dynamics of almost on-shell heavy quaswith minimal subtraction schemeMS) is applied to the BBL La-

massm much greater than the QCD scalgcp can be com-  grangian, thev expansion breaks down due to unphysical
puted in a systematic expansion in terms of several smafpoles introduced by the nonrelativistic approximation. There
parameters. In the single heavy quark sector, the dynamics #ve been many approaches advocated to remedy this situa-
described by heavy quark effective thediyQET), which  tion.
has an expansion in powers afy(m) and Agcp/m [1]. In Ref. [5], it was shown 'Fhat it_ was more useful to for-
HQET can be used to compute properties of hadrons such &8ulate NRQCD as a theory in which ultrasoft modes couple

the B andD mesons containing a singteor ¢ quark. The via the multipole expansion. A velocity power counting rule

o ) . . for bound states in nonrelativistic effective field theories was
dynamics in the quark-antiquark sector is far more compli-

ted than in the sinal K tor. At | ¢ formulated in Ref[6]. The leading order term in the effec-
cate an in the singie quark sector. ow: momentumy, e Lagrangian reproduced the form of the propagator in the

transfer theQQ pair can form non-relativistic Coulomb-like potential regime. To recover the poles in the gluon propaga-
bound states, which are thi#y andY for the cc andbb  tor that correspond to gluon radiation, the gluon propagator
sectors, respectively. It should be possible to describe th&/(v2(k®)%—k?) had to include subleading termsdn which
dynamics of nonrelativistic heavy quarks using a nonrelativ-caused problems with the naive velocity power counting
istic effective field theory for QCD. A formulation of this rules. In Ref[7], it was pointed out that the usual matching
effective theory, called NRQCDnonrelativistic QCD, has  onto NRQCD violatedh power counting if theMS scheme
been proposed by Bodwin, Braaten, and Lep&fBL) [2].  was used, and it was shown that the problem could be fixed
The analogous theory for electromagnetism, NRQED, wasn the single heavy-quark sector by using the same matching
developed earlier by Caswell and Lepdgé conditions as for HQET. In Ref8], it was demonstrated that
Constructing NRQCD has proven to be more difficult the multipole expansion is the appropriate generalization of
than HQET, the complication being that there are many7] to the two quark sector. In Ref9], an effective theory
scales involved. In HQET, the only two important scales aravas formulated using two different fields for the potential
the quark mase andA gcp. IN NRQCD there are two other and radiation gluons. A problem which arose in this formu-
important scalesny andmu?, the momentum and energy of lation, however, was that it neglected soft gluon modes,
the quarksiwherew is the typical quark velocity Momen-  which are responsible for the running of the coupling below
tum regions with (energy, momentumof order (m,m), p=m.
(mv,mv), (mv2,mv) and (mv?,mv?) are referred to in the In the threshold expansidd], the results of NRQCD are
literature as hard, soft, potential and ultrasoft, respectivelypbtained directly from QCD by expanding graphs about the
[4]. The effective field theory must be able to correctly re-relevant kinematic regimeéard, soft, potential and ultra-
produce phenomena in all of these regions. soff). This technique has recently been used to extract the
The simplest approach to NRQCD uses a momentuntwo-loop corrections to top-antitop production near threshold
space cutoff to regulate the loop integrals. This has the adwith comparative eadd0—13. However, it is less simple to
vantage that the physics below the cutaffis automatically  perform renormalization-group improved calculations in this
correctly taken into account. However, the usefulness of thiformulation than in a true effective field theofgur results
approach for computations is limited since cutoffs breakin this paper will disagree with the RGE analysis presented
gauge invariance. Furthermore, the theory does not havia [14].) The threshold expansion was written as an effective
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theory by Griesshammgu5). where the fermions are nonrelativistic, so thatl, where
In the approach advocated by Pineda and $at-19

the matching onto the effective field theory occurs at two [ am?

stages. Matching between QCD and NRQCD occurs at the v=1\/1- < (D)

scalex=m, while at u of order the inverse separation be-
tween the heavy quarks NRQCD is matched onto a new ef-
fective theory which the authors call potential NRQCEN- is the velocity of the two final state fermioriggnoring for
RQCD). In particular, Pineda and Soto argue that thethe moment complications from confinement effects in
matching between QCD and NRQCD should contain onlyQCD). The electromagnetic current in the full theory
the hard part of loop integrals, and should be performed usmatches to
ing HQET Feynman rules. By performing the matching ex-
aptly at threshold, the _Coulomb singularity is regylated by J=yto[xT7Cy(w), 2)
dimensional regularization, so the one-loop matching condi-
tions are well defined. Furthermore, the treatment of soft o
modes is particularly s.lmp_le in this approach, as they just CJ(M)=1+C1(M)—S+02(M)
correspond to the running in the theory betweeand mv. m

We argue in this paper, however, that the problem with
this approach is that HQET Feynman rules do not correctiyvhere ¢ and y annihilate quarks and antiquarks, respec-
treat the momentum region betweerandmo . In particular, ~ tively. Ignoring for the moment non-perturbative effects,
in [18] it is argued that the anomalous dimension for thethere are three relevant scales in the process: the quark mass
electromagnetic current for heavy quark production vanishedh the quark three-momentup=muv, and the quark energy
While this is true at one loop, at two loops the current has £=mv?/2,

nonzero anomalous dimensi¢h0,11 which HQET Feyn- An approach to the problem of unraveling these scales
man rules cannot reproduce. was developed in Reff7,16—19. The authors argued that at

In this paper, we construct an effective theory forthe scalem, no distinction need be made between energy and
NRQCD which has a consistentexpansion when loops are momentum, since they are botam; it is only at the scale
evaluated in thé1S scheme, and which correctly reproduces™v that they are distinguished in the power counting. The
the two loop anomalous dimension of the heavy quark pro€°rrect effective field theory was therefore argued to be iden-
duction current. The Lagrangian we use is similar to that ofic@l to HQET. The NRQCD and HQET descriptions differ
[15], however, we do not have to introduce as many extrd? how they treat these scales. In the HQET approach, the
fields (such as soft quarkss in that formulation. Unlike the Kinetic term in £ is taken as a perturbation, while in the
PNRQCD approach, we argue that the correct matching scadRQCD approach, the kinetic term is resummed in the
onto the effective Lagrangiaisimilar to that of PNRQCDis ~ Propagator. While this violatesn power counting, it was
u=m, not u=mov. The added complication which then shown in[9] that as long as the potential is taken to be
arises is that soft modes must explicitly be taken into accouriStantaneous, and real radiation is coupled via the multipole

betweenx=m and w=mu, in order to obtain the correct ©€xpansion, there is a consistent counting in
running of the potential. At one loop, both approaches yield the correct result for

We also introduce a novel renormalization graiiRG) the matching onto the external current. In the NRQCD ap-
equation in velocity space that is used to sum logarithms of proach the Coulomb singularity 1/v in the QQ production
in the effective theory. The VRG represents the invariance oimplitude is reproduced by nonrelativistic fermions undergo-
the theory under changes in the subtraction velogitffhe  ing instantaneous potential exchange, while in the HQET
formulation of NRQCD presented in this paper allows one toapproach the Coulomb singularity is regulated at threshold
include the effects of the running coupling constant in theby dimensional regularization. In the latter case the matching
quark potential by using the velocity renormalization groupcondition is given solely by the hard part of the graph, ob-
equations, and to simultaneously sum soft and ultrasoft logaained by evaluating the full theory at threshold. Both ap-
rithms. proaches give the well-known result for the matching condi-
In Sec. II, we discuss some general aspects of the prolion,
lem, and in Sec. Il we introduce the fields required in the
effective field theory and discuss power counting and loop Cci(u)=—2Cg. 3)
graphs in NRQCD. The VRG is introduced in Sec. IV, while

in Sec. V we illustrate the formalism with some examples. Inat two loops, however, the approaches differ. The two-loop
particular, we show that we CorreCtIy reprOduce the tWO'lOOH"natching onto NRQCD was Computed by Hoang for QED
anomalous dimension of the heavy quark production curren10,11], and the computation has been recently extended to
We defer the complete RGE analysis of heavy quark producthe non-Abelian case by Czarnecki and MelniKa2], and

tion to a future paper. by Beneke, Signer and Smirn¢%3]. These authors find

2

Ag
== +...,
T
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_ —2c = -
Consider pair production of@Q pair near threshold by a Colp)=m CF( 3Crt5Ca

virtual photon. We are interested in the threshold region, (4)

m
In; + non-logarithmic terms.
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FIG. 1. Fermion-antifermion propagation graph. The tware- 048
ate and annihilate a fermion-antifermion pair.
0.46
The electromagnetic current has no anomalous dimension in
the full theory, which implies that in the effective theo@; 044
must have an anomalous dimensionuat m, 0 2 4 6 8 10
myAqep
dC 1 1 .
M a(w) -—C, _CF+_CA) ag. (5) FIG. 2. Plot ofAQCD/mag(mv) as a function ofn/A g¢p, for
d/.L 3 2 nf:3.
The anomalous dimension is of leading order in thma 1/ A. Possible hierarchies

expansion, and it is straightforward_to verify in eithaf In addition to the scalew andmv? the non-perturbative
=0 or Coulomb gauge that the leading order graphs do nodcaje -, also plays an important role for real quarkonium.
give a two-loop anomalous dimension in HQET. ThoughA gcp Will not play an important role for the analysis

The situation is rather differentin NRQCD, whichhas a o this paper, some aspects of its power counting are worth
power counting scheme. In this case, Bél) anomalous emphasizing.

dimension arises at two loops due to aZénhancement of For very largem, or equivalently, smalkg(m), one is in

an O(v?) term in the potential: the @ Coulomb enhance- ¢ regimeA oep<mo2<mu <m, sinceA oep/m is formally

ment is crucial to this result. We will compute the anomalousgmajier than any power of.. These inequalities are only
s

dimension in Sec. V C, and show that it correctly reproduce§ye|| satisfied fort quarks; for charmonium and bottomium
Eq. (5). The distinguishing feature between NRQCD andiha situation is closer thco~m02 or Agep~Mu, and

HQET is that HQET does not have the Coulomb divergencenon nerturbative effects become important. Of course, the

By evaluating one-loop graphs exactly at threshold oneapparentindependencemb, mvzandAQCDforaCoulomb

avoids the problem of Coulomb divergences, and this procesy ¢tam s jllusory. The velocity in a Coulomb bound state
dure allows one to compute the one-loop matching correc

tion Eq. (3) using HQET. However, in two-loop graphs the 'S given by solvingy = as(Mv):

internal graph is not at threshold, and so is sensitive to the 4
Coulomb singularity. The problem in thl counting scheme v= RTIC R, (6)
seems to be that unless tpé/2m term is included in the boln(m“v“/AGep)

leading order propagator, the effective theory cannot cor-
rectly reproduce the propagation of a fermion-antifermionwhere
pair, such as the graph in Fig. 1, which vanishes in dimen-
sional regularization if HQET propagators are used. 2

Thus the effective field theory ai=m must resum the bo=11~=ny (7
p?/2m term in the propagator to reproduce the infrared phys-
ics of full QCD, and to correctly reproduce the two-loop
anomalous dimension. Once tpé/2m term is included in
the quark propagator, it is also necessary to perform a mu
tipole expansion and include a quark-antiquark poten&hl
The matching from QCD to an effective theory with poten-
tials is done at the scale=m, so the potential in the effec-
tive theory atu=m depends orxg(m). Since the dominant
momenta in the static potential are of ordev, one might Aqgep  bo —053(f _3 8
expect that the relevant couplingdg(mv), and this is borne 2 2me (for ng=3), )
out by more detailed studies of the quark static potential
[20—22. One therefore requires that the potential generategt
at u=m must run in the effective theory belom. This
running can be implemented by the inclusion of soft gluon
modes, with E,p)~ (mv,mv), the importance of which was m _ % =39 p= 2_7720 70(for n¢=3) (9)
pointed out by GreisshammEt5]. Soft gluon modes should Ageo 2m 777 by T e
be integrated out of NRQCD, since they can never be pro-
duced on-shell; nevertheless they must be included in thEHere e=2.718] (Of course these values should only be
running betweem and mo. taken as illustrative, since izI&QCD~mu2 the system is no

which givesv = ag(mv) as a function of/Aocp. In Fig. 2,
[/_\QCD/maﬁ(mv) is plotted as a function of/Aqcp, with
v=ag(mv). Clearly, for large m/Agcp, One can have
Agcp<mu?<mu<m. However, it is not possible to have
Aqcp>Mu?. The maximum possible value dfocp/mo? is
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FIG. 3. Momentum space of sizev is divided into boxes of
sizemv?. A point in momentum space is labeled pyandk.

longer Coulombig. For theJ/¥, m./Aqcp~3 and for the

Y, My/Agcp~9 so thathZ/AQCD is not very different in
the two cases.

lll. THE EFFECTIVE THEORY

To construct the effective theory, label the total enefgy
and momentuni of the heavy quark by

P=p+k, E=K°, (10

where the three-vectqr is of the order of the soft scalev,
and the four-vectok is of the order of the ultrasoft scale
mv2. Momentum space of sizew is divided up into boxes
of sizemw?. The location of each box is labeled lpy and
the points within a box are labeled By as shown in Fig. 3.
The variablep is a discrete label, anklis a continuous label.

PHYSICAL REVIEW D61 074025

k—k+qg, p—p—q, (13

whereq is of ordermuv?. In terms of fields, this transforma-
tion is

Pp(X)— €T (X). (14)

The application of reparametrization invariance to spinors in
HQET was subtle, because of the constraigt= ¢, that
projected out the particle component of the spinor. In our
case, is a two-component spinor whose upper and lower
components represent the amplitudes to annihilate a quark
with spin =1/2 along afixed axis. The transformation Eq.
(13) does not affect the spin labels, so the consequences of
reparametrization invariance are similar to the case of HQET
for spin-zero particled.Spin would enter if the components

of ¢, represented helicity stat¢sThe basic result is that
derivatives onyr,(x) should be of the formp+V [24].

On-shell gauge fields have energy of order their momen-
tum. One can have propagating gauge fields with energy and
momentum of ordemy or of ordermuv?, which are referred
to as soft and ultrasoft gauge fields, respectively. The gauge
fields in the full theory are replaced by two different fields in
the effective theory, momentum-dependent gauge fields,
Af(x), and momentum-independent gauge figdd¢x). The
fieldsAf(x) represent the soft degrees of freedom Art@x)
represent the ultrasoft degrees of freedom. The total energy
and momentum of the soft gauge fields is

P=p+k, E=p°+K°, (15)

and of the ultrasoft gauge fieldsk$, wherek is the Fourier
transform of the spacetime argumentNote that soft gauge
fields are labeled by a four-vectpr whereas quark fields are
labeled by a three-vectqr. Any other light modegsuch as
light fermions and ghostsn the theory must also be divided

This procedure was originally used by Georgi for HQET into soft and ultrasoft fields, as for the gauge fields.

[23], where the four-momenturp* was split betweemy #
of orderm and the residual momentuk# of order A ocp,

p*=mu#+KkH, 11

In HQET, the velocityv is a discrete label, anklis a con-

tinuous label, so that one sums onand integrates ovek

[23]. In our case, we will sum over and integrate ovek.
The quark fieldi(x) in QCD is replaced by

$h(X) = hp(X). (12)

The labelp represents momenta of order the soft saalg
and (the Fourier transform 9ofx represents energy and mo-
menta of order the ultrasoft scabe?.

The decomposition Eg11) is not unique, since one can
redefinek—k+q, mv—mv —q, whereq is of orderk. This

The terms in the NRQCD effective Lagrangian describe
the interactions of the soft gauge fields among themselves,
and the interaction of two or more soft gauge fields with the
fermions. There are no terms that involve the interaction of a
fermion with a single soft gauge field, i.e. no vertex of the
form ‘/’;'Ag‘//m since energy cannot be conserved in the in-
teraction.

The effective Lagrangian for NRQCD can now be written
down in terms of the fieldg, which annihilate a quarky,,
which annihilate an antiquarky which annihilate and cre-
ate soft gluons, and* which annihilate and create ultrasoft
gluons. The covariant derivative B*=g*+igA*=(D°,
—D), so thatD®=3°+igA®, D=V —igA, and involves only
the ultrasoft gluon fields. The effective Lagrangian is gauge
invariant under ultrasoft gauge transformations, those in
which the gauge parameter varies on a distance scale

redefinition, called reparametrization invariance, leads td/(mv?). The full gauge invariance of the original Lagrang-
constraints on the effective field theory, and relates differenian is recovered by combining gauge invariance in the effec-

orders in the Ih expansion[24]. One can make a similar
redefinition here,

tive theory with reparametrization invariance.
The effective Lagrangian in the center of mass frame is

074025-4
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1 . _ (p—iD)? 1
LZ_ZFMVF“V+2p [p“AL—p Ag|2+% lﬂ;[lDo_T 'ﬂp_zwasq%p, @‘ﬂ;’[Ag’ Al

0 ’ ’ 0 AV v 1\ 0
g (q'—p+p)*—g* (q—p+p")’'+g*"(d—q’) )
+ ULLAL ALY,

) + Y=y, ToT
(p'—p)?

dra —
- qu (o= q;w;TAwpx*_qTAx_p+ . (16)

where we have retained the lowest order terms in each sector The terms in the effective Lagrangian Ed.6) are ob-
of the theory(except for soft gluon self-interactionsThe  tained by matching graphs in QCD and the effective theory.
matricesT? and T2 are the color matrices for the and3  The ultrasoft gluon fieldé* in the effective Lagrangian can-
representations, respectively. The field strength tensdiot change the momentum labelon the fermion lines, so
igF#*=[D*,D"] is constructed only out of ultrasoft gauge the single-quark terms ig do not chang@. The Lagrangian
fields. If we were interested in including the effects of light in the single-quark sector is the same as the HQET Lagrang-
quarks we would need to add new soft and ultrasoft fields fofan, as pointed out in Ref.7]. This relation between the
each flavor. The matching at the scafewould then intro- NRQCD and HQET Lagrangians holds even if loop correc-
duce additional non-local four fermion terms involving both tions are included. Consider a loop contribution to a term in
the heavy and light quark fields. the single-quark sector of the effective theory, such as that
In using Eq(le), it is crucial to expand out the ternp( shown in Flg 4. In the effective theory, the incoming and

—iD)2. Thep? piece is part of the leading order Lagrangian 0utgoing momenta of the quarR, and P’ respectively, are
that gives the,, propagator, broken up into a soft piege and an ultrasoft piecke,k’. The

soft labelp must be the same on the incoming and outgoing
tlng P lines, since the ultrasoft gluons do not champgeso the mo-
Yp)1D"— m o, (17 mentum transfer in the effective theory ks—k=P'—P.
The matching condition can be computed as the difference
and the terms involvind are treated as a perturbation. This between Figs. @) and 4b), expanded in a power series in
is the momentum space equivalent of the multipole expanl/m. The full-theory computation is given by computing Fig.
sion written inx space in[8], since the ultrasoft gluons do 4(a) on-shell, and expanding in powers of the external mo-
not transfer three momentum to the quarks. This procedurgenta ovem. The effective theory contribution is given by
will be justified when the velocity power counting rules for evaluating Fig. &) on-shell. The on-shell condition in the
the Lagrangian are derived. effective theory isk®=p?/2m. The intermediate fermion
The QCD Lagrangian contains gauge fixing terms anddropagator
ghost interactions. It is convenient to quantize the theory in
background field gauge. The background fields can be taken 1

2

to be the ultrasoft modes of the effective theory. The quan- KO+ q%— p2/2m+ie (18)
tum fields represent the quark potential, and the soft modes

of the effective theory. The effective Lagrangian is gauges equal to

invariant with respect to the ultrasoft modes, and contains

the gauge fixing terms of the original theory for the soft 1

modes. One can then gauge fix the ultrasoft gauge fields, to Prie (19

compute loop graphs involving the ultrasoft gauge fields. We
will use Feynman gauge for both the soft and ultrasoftyhen the on-shell condition is usé@he Feynman rules Eq.

modes. (19) are precisely those that would be used to match from
QCD to HQET, and are known not to violate thenlpower
’W%D’b 1 counting in the effective theory. Thus the couplings of the
&@’@ f@,@ﬂ% ultrasoft gluons in the single-quark sector are precisely those
S o in HQET. This was the procedure used to compute the

2
P P+q § P'4q P Pk Pkiq Pi'+q  PK HQET and NRQCD Lagrangians at one loop in R&f.

P(;;) k(t;;( INote that we have used the lowest order Lagrangian(Eg.to

derive the propagator, so the energy term in the denominator in-
FIG. 4. One loop vertex correction in the full theory and effec- volves the loop momentum, but the momentum term?/2m does
tive theory. The momenta are related By-p+k, P’ =p+k’. not.

074025-5



LUKE, MANOHAR, AND ROTHSTEIN PHYSICAL REVIEW D61 074025

g TABLE I. Velocity counting rules for the effective theory. The
electric and magnetic fields are those constructed out of the ultrasoft
gauge potentiah*.

p v
® ® b X 032
FIG. 5. The Coulomb potential in the full theofs) is given by A% UZ
a local two-quark operatdb) in the effective theory. D 02
D v
The Coulomb potential can scatter quark states from one A v?
value ofp to another. These effects are explicitly included in E v*
the two-body terms irL. The Coulomb potential is usually B v?

thought of as a nonlocal two-body operator. However, be
cause of the use of the extra lalgelthe Coulomb potential,
potential in the effective theory. Finally, the Coulomb poten-

a . A . — tial is constructed using p-dependent, but local ix two-
— a2 BT P (X) x —q(X) T x —p(X) (200 pody operator, instead of a two-body operator nonloca. in
(p—q The use op-dependent fields is the momentum space analog

. . . . of the multipole expansion, and simplifies the discussion of
is local, and manifestly gauge invariant. The Coulomb po- P P P

T . . . auge invariance, particularly in the non-Abelian case.
tential is obtained as the value of Fig. 5 evaluated in the fullg g P y
theory. The Coulomb potential is proportional to the Casimir

TATA, and gives an attractive interaction in the color singlet A. Power counting in the Lagrangian

channel and a repulsive interaction in the color octet channel. The NRQCD effective Lagrangian can be used to com-
The leading terms involving the soft gluons are given by te processes to a given order in the velooityTo deter-

matching the Compton scattering graphs Figa.ifig inthe  mine the order in of a given diagram, it is useful to have a

full theory to the local operator Fig.(6) in the effective e|ocity power counting scheme, and we will use the one in

theory. Soft gluons have energy and momentg of onde;  Taple 1. This velocity power counting scheme differs some-

whereas the quarks, have energies of ordenv” and mo-  \yhat from that in BBL, since we have separated the gluon

menta of ordem. The intermediate quark in Fig(#b is  field into soft and ultrasoft modes, and the Coulomb interac-

off-shell, and the Compton scattering graph in the full-theorytion The order iny of the soft gluons mode, is irrelevant,

can be replaced by a local vertex in the effective theory, agjnce they cannot appear as external states in the processes

shown in the figure. The intermediate gluon in Figc)8s  \ve are considering. The final power counting formula for

also off-shell, since energy cannot be transferred from thgy.annhs we will derive in Eq(40) holds regardless of the

external gluons to the quark line. Thus the interaction in Figgrder iny chosen forA, . The lowest dimension operator in

6(c) can also be represented by a local vertex in the effectivene zero-quark sector of the Lagrange density is the gauge

theory. The leading order soft interaction vanishes for QEDyjnetic energy, which is of ordar®. All the terms in the field

We will comment on this in Sec. V. Loop graphs involving strength tensoF*” are of the same order in, sinceD* and

the soft interaction of Fig. @) are part of the running po- A« are poth of orden 2.

tential in the effective theory. The lowest dimension terms in the one-quark sector are
The Lagrangian Eq(16) is similar to the PNRQCD La-

grangian constructed by Pineda and Soto in R2%], but : . P

there are a few important differences. The Lagrangian is l//p(X){IDO— ﬁ] Pp(X) (22)

given by matching to QCD at the scale=m, rather than at

the scaleu=muv. The Lagrangian also contains explicit soft

modes. Soft modes are necessary to reproduce the runnimghich are of order®. The lowest order Lagrangian E@1)

2

~ > T i
2, é“g % ’ 6666‘ 0t wwm(:m 566001
N S (P 8
%y S st g
) S %0 e

@ ® © FIG. 6. The Compton scattering graphs

[(@),(b),(c)] match on to a local operatéd) in the
effective theory. Soft gluon modes are denoted by
a zigzag line.

@
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must be used to determine th, propagator. Terms that (Ep @+E9  EP EBOHOP) (E0+HH0,9 ENHOp)
involve the covariant derivativ® are of higher order than
v°. For example,

+P-D
oty (22 ,
m ED  Elq EP)  EOHOP EOkH0-)  (EOHOP)
. L b
is of orderv®, and must be treated as a perturbation in the @ ®
effective theory. Each replacement pfby D increases the FIG. 7. One loop correction to Coulomb scattering in the full
order inv by one. and effective theories.

The lowest dimension operator in the two-quark sector is
the Coulomb interaction. Each quark field is of ordé?and ~ momentumq is integrated over will be referred to as ultra-
1/(p—q)? is of order 162, so the Coulomb interaction is of soft loops, and when evaluated in dimensional regularization,

order ag?. are dominated by energy and momenta of opdgor ,ué/m.
The lowest dimension terms that involve soft gluons are  The use ofp?/2m rather than p+q)?/(2m) in the propa-
of orderag*. Consider, for example, gators removes the problem of the breakdown of the effec-
1 tive theory due to poles of ordemin loop graphs. The power
9 Zutrad Ay 23 _countlng scheme of Table I in whighis of ordermv, butq
Wasq’qu’p, qol’llp[ o Aal 23 is of ordermv? requires that §+q)? be expanded ap®

+2p-qg+q?, with p? included in the fermion propagator, and
The two ¢, fields are of orden?, the twoAg fields are of  the higher order term8p- q+ g? treated as vertex insertions.
orderv?, and 14° is of order 14, so the vertex is of order Consider a graph that involves a potential loop, such as
agp®. the one-loop correction to Coulomb scattering. The graph is
shown as Fig. @&) in the full theory, and as Fig.(B) in the
B. Loop graphs effective theory. The external fermions have enekyand
momenta*p,p’. In the effective theory, the external fermi-

The computation of loop graphs using the effective La'ons are labeled by the soft momentunp,p’, and the ultra-

grangian Eq(16) involves some subtleties. There are threesoft momentum E.0). The intermediate fermions in the ef-

kinds of loops, which we will refer to as ultrasoft, potential fective theorv have soft momenturta. and ultrasoft
and soft, respectively. We will determine the dominant mo- y d

mentum region for each graph by studying the pole structurgnomentum £.,0)=k. The graph in the effective theory is
of the diagram, which is what determines the behavior of the
graph in theMS scheme. > f d?k
Consider graphs in the effective theory that involve only a q
single fermion line, such as Fig(k). The internal fermion
propagators are given by the lowest order term in the one- « 1 1
fermion sector, E((18). These terms depend only on the soft kK°+E—qg?2m —K°+E— q2/2m'
momentump, and not on the ultrasoft momentukncarried
by the gluon lines. Thus the two fermion propagators in Fig.There is an integral over the ultrasoft enekdy the ultrasoft
4(b) are momenturk, and a sum over the soft momentumRecall
the decomposition of momentum space shown in Fig. 3.
1 and 1 (24 Summing overg and integrating ovek is equivalent to in-
0, 0_ . 2/0 " 0, 0 2/’ tegrating over the entire momentum space. Thus one can
k”+qg"—p“/2m k'°+qg”—p/2m replace Eq(25) by

respectively. These propagators do not depend on the space

part of the loop momentum, but they do depend om. The f d*q 1 1

propagators have poles at energies of opfé2m or k°. The (P—a)* (p’ —q)?

pole positions are set by the external gluon and quark ener-

gies, and also byp?/2m, which depends on the quark mo- 1 1
mentum. The fact.that the energy poles are determ_ined by the X q°+E—g¥2m —q°+E— q2/2m’
momentum(and vice versp is important, because it relates

the soft and ultrasoft scales. We will refer to a typical exter-where

nal quark energy as of the order of the ultrasoft sqalg

and a typical external quark momentum as of the order of the

soft scalews. Then loop graphs in the one-fermion sector dk’—dg”, % f dk%f dg.
have poles at energies of ordgf, and ,u%/m. The gauge

boson propagator is [(/q°)?—g?], so the typical momenta The loop graph is dominated P~ E, andg~ ymE, which

in the loop are of the same order as the gluon eneqgy, are ultrasoft, and soft, respectively. This is consistent with
~q°. Loop graphs such as Fig(B} in which the ultrasoft the picture that® ranges over a box of sizev? andq over

1 1
(P=0)%(p'~q)2

(25

(26)

(27)
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FIG. 8. One loop graph involving the soft gauge fields. This
graph contributes to the running potential in the effective theory. @
a box of sizemw. It again shows that one cannot treat the
soft and ultrasoft scales as independent of each other; they
are related by (soff)~ ultrasoftx m.
Finally, consider a graph such as Fig. 8 that involves a
soft loop. It gives a contribution of the form (®)
1 1
MZ J'd4k 2 1\2
a (p=p")° (p—p")
X ! ! (28
(99%=a? (q°)~(q+p—p")?’ ©

) o FIG. 9. An example of counting ultrasoft, potential and soft
where we have used the last interaction in Eif) for the  |oops and vertices. Grapa) has 11 vertices and 7 loops. Deleting
soft vertices. The sum oqg is over a four-vector. As for g ultrasoft lines gives graptb), which has 9 vertices and 4 loops.
potential loops, one can make the replacement Deleting all fermion lines from grapkb) gives graph(c), with 4

vertices and 2 loops, which is the number of soft vertices and loops.
There are 5 potential vertices and 2 potential logthe difference
f d4k—>J' d“qg,

>

q

(29 between(b) and(c)], and 2 ultrasoft vertices and 3 ultrasoft loops
[the difference betweefa) and (b)]. The graph(c) has two con-
nected soft componentblg=2.

where the replacement must be done for all four components

of g, since soft gluons carry a four-vector labgl It is

straightforward to see that E@8) is dominated by® andq 6= 2>, K[V{?+ V(I +V(d]—51—415—81,+8Ly+5Lp

of ordermv, which is consistent with using the replacement :

Eqg. (27) for all four components of. +4Lg. (30)

C. Power counting formula for loop graphs The first term simply adds up the powers dnof all the
vertices. Each internal quark line eliminates twpg fields,
and gives a factor of the fermion propagatorELAp?/2m),
which give a net factor of 1{(v?)=v~°. This gives the
term —5l¢, wherelg is the number of internal fermion
%ines. Each internal soft line eliminates twhy, fields, and
gives a factor of the gauge propagatof(pf)2— p?), which
gives a net factor of 1{(?v?)=v~*. This gives the term
—4lg, wherelg is the number of internal soft lines. Each
internal ultrasoft line eliminates t\Q’AZM fi(zelds, and gives a
. Let V| denote the num?groof \{ertices of ordef in a Laeitc;;;t)trhgfgf/%%le}4?25%%?—?—&&“ g);jive: zh;N Tﬁ;ﬁlgf’a
given graph. For example/,iD ", is a vertex of typ&/s,  \yhere|, is the number of internal ultrasoft lines.
since it is a one-fermion vertex of orde?. It is convenient Ultrasoft loops are dominated by energy and momentum
to break up the vertices into ultrasoiti”’, potentialVi”  of ordermu?, and give a factor ob? for each integral, so
and softv{? . The ultrasoft vertice¥{”) are those vertices in that one gets a factor of for each loop. Potential loops are
V that involve only ultrasoft fields, the potential vertices dominated by energy of ordenv? and momentum of order
VE(P) are those with at least one fermion field and no softmy, and give a factor 062 for each time integration, and
fields. The soft verticeS/(kS) involve at least one soft field. for each space integration, for a net factorudf per loop.
An example of vertex counting is shown in Fig. 9. Soft loops are dominated by energy and momentum of order
A diagram is of ordew?, where mv, and give a factor ob for each integration, for a net

It is now straightforward to derive a power counting rule
for an arbitrary graph in NRQCD. A given graph hhg
ultrasoft loopsLp potential loops, andl g soft loops. These
can be determined from the structure of the diagram in
systematic way. The total number of loopsLig+Lp+Lg.
Now delete all the ultrasoft lines from the graph. The re-
maining number of loops isp+ Lg. Finally, delete all quark
lines from the diagram. The remaining number of loops is
Ls. An example of loop counting is shown in Fig. 9.

074025-8
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factor of v* for each loop. These contributions give the 66660”60‘0‘%
8L, +5Lp+4L term in Eq.(30). <& 2
The identity * ¢

kZ [V + VP + VO -1 —1g—Iy+Ly+Lpt+Lg=1,
,N
(3D

is the usual relation that the Euler character of a connected FIG. 10. Graph contributing to the Lamb shift. The dot repre-
graph is unity. An analogous relation holds for the graphSents &-A interaction.

with all ultrasoft lines removed. We will assume that the 9
graph remains connected when ultrasoft lines are removedertex, leto=c+e+f=0. Label the soft vertice¥,” by
which is true for any process in which momentum of orderthe values ofo and o, so that they are denoted byf?,,
mo is transferred between the two fermion lines. The relawherek=4+o. Then one finds

tion for the graph with ultrasoft lines removed is

> (k=aVd=> oV(3. (39
> VP +VE -l —lstLptLs=1. (32 K bo 7
k

. ) ) Substituting this result into Eq34) gives the power count-
For I ¢ to be equal in the two relations Eq81) and(32), it jng formula

is important that one not erase vertices where the gluons
couple to the fermiongsee Fig. 9, so the total number of L ) ©
vertices is given byv{”+ V(¥ . Finally, one has the Euler 5:5+Ek [(k=8)V{+(k=5)V(D1+ 2> oV —Ns.
character relation for the graph with all ultrasoft and fermion 7 (40)
lines removed,
This is an important result. All terms in the zero-fermion
> V® —1g+Ls=Ng, (33)  sector havek=8, anc_i in_the nonzero fermion sector have
K 0=0. Thus the contributions ok 8)V{”, andaV{) are
ach positive. There can be negative powers @fom both

: . e
whereNs is the number of connected components in the SOf%oft and potential exchange, but these come with compensat-

graph. i . g X
T . g factors ofag. The Coulomb interaction is=4 vertex in
theErI'ergLr:?tmg lu, Ir andLs between Eqs(30)—(33) gives V() but is of orderas. Iterating the Coulomb interactiom

times produces terms of ordew{/v)", so forv~ag, the
Coulomb interaction must be summed to all orders. Nae
6=5+ >, [(k—=8)VIY + (k—5)V{? + (k—4)V{d]—Ns. term is negative, but each soft component must contain at
k (34) least one power ofs.
As an example of Eq(34), consider the electron self-
A given soft vertex in the Lagrange density has the generi@nergy diagram Fig. 10 which produces the Lamb shift. The
form graph contains tw- A vertices, each of which is of order
v®, and one ultrasoft loop, so the net powerds 5+ (6
a by ApyCrd e 1\f —5)x2=7. The graph has a factor ats from the two
(¥p)%(Aq)”(A*)*p%(D) m/ (39 gauge couplings, and so is of ordetw’ compared to the
leading term in the single-fermion sect@vhich is of order
where ¢, represents any quark or antiquark fields or theirv®), i.e. it is of relative orderg?. Similarly the soft loop

conjugates. The term E¢35) has dimension four, graph in Fig. 8 hasr=0, andNg=1, and so is of order
a§v4. This is the same order i, but one higher order ing
4= ga+ b+c+d+e—f, (36) than the Coulomb interaction.

and is of ordew ¥, where IV. VELOCITY RENORMALIZATION GROUP

EQUATION
k= §a+ b+2c+d+ 2e. (37) Loop diagrams in the effective theory can be divergent,
2 and the effective theory is renormalized using tNMS

scheme. A scale parametgy, is introduced when one ana-
lytically continues the Lagrangian from four ©=4-—2¢
K—d=c+e+f. (3g)  dimensions, as in conventional dimensional regularization of
gauge theories. There is a subtlety in the use of dimensional
The vertex can only have positive powerdnfA#, and 1m, regularization in NRQCD. In evaluating loop graphs with
soc+e+f=0.[Note thatd need not be positiveFor a soft  potential loops, we made the replacement E2y). In D

Subtracting these two relations gives

074025-9
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dimensions, the relation should read logarithms are of the form Ipg/\mE or Inug/p. The ra-
diation and potential logarithms are

ps\ 4P
dk’—dq?, >, delke(—) deflq. (41)
q My

2
mv m
L
E mv JmE mv

The factor of ws/uy)* P is needed to ensure the correct

dimensionality on the two sides of E¢41). The integral  The choice of renormalization point=v ensures that both
over dk is over a volume of the order i *, since the |ogarithms are simultaneously small. Thus using the velocity
typical range of integration is of ordesr,. The integral over  renormalization group equation from=1 to »=v simulta-
dq is over a volume of the order gi2 !, since the range of neously sums the logarithms involving the soft and ultrasoft
integration is of ordefs. The number of terms in the sum scales. The velocity renormalization group equation is the
on g on the left-hand side of Eq41) is the ratio of the two  MS equivalent of using an energy cuteffv?> and a momen-
volumes in four dimensions «s/uy)*. Away from four di-  tum cutoffmy in a hard cutoff scheme. The VRG allows one
mensions, this number does not properly account for the map have a static potential with an effective coupling constant
mentum space volumes on the two sides of @d), and the 4 (my), and radiation corrections with an effective coupling
additional factor of fus/uy)®~* is needed. The mismatch of constantag(my?).
dimensions inD#4 occurs only for the space part of the  |n a conventional renormalization group approach, one
integral. The factor above is correct when the NRQCD intewould scale the effective theory frop=m to x=muv, and
grals are done in the conventional way, by first doingkhe then down tou=mv?. The VRG differs from this in an
integral using the method of residues disregarding the corimportant way, because it uses a subtraction velocity rather
tour at infinity, followed by thek integral in 3—2€ dimen-  than a subtraction scale. Scaling the theory frem1 to v
sions. Similarly, for soft loops E¢29) should be replaced =y is equivalent to simultaneously scaling potential and soft
by graphs fromm to mv, and radiation graphs from to mo2.
The scalemv and mv? are coupled in the theory, and this
D f de_,(E)4Df 40 42) coupling of scales is better treated using a subtraction veloc-
3 My 4. ity rather than a subtraction scale.

The effective theory renormalized in théS scheme has V. EXAMPLES

two u parametersys anduy . However, the two parameters g tomalism we have developed will be applied to three
are not independent, since the soft and ultrasoft scales aj

2 , X fustrative examples in this section, the one-loop correction
related,us=muy . It is better to think of the parameters as , he static potential, integrating out a heavy fermion, and

_ _ 2 - . . ! A X
us=mp and uy=mv*, wherev is the subtraction point ve-  {he two-loop anomalous dimension of the production current
locity. One can now derive a new kind of renormalization [10,11.

group equation for the effective theory, since the bare theory
is independent of the subtraction velocity This velocity
renormalization group equation can be used to scale the co-
efficients in the effective theory from the matching scale The first example we consider is the renormalization of
Mws=M, uy=mto us=mv, uy=mv? i.e., fromrv=1 to the static potential at one loop. At the tree level, the fermion-
v=u. fermion scattering amplitude is reproduced in the effective
The velocity renormalization group equation addresses atheory by a local operator, the Coulomb vertex in ELp).
important point about the effective theory, the simultaneoudAt one-loop, the QCD diagrams that contribute are shown in
existence of two related scalgess and w. Loop graphs Table Il above the horizontal line, and the graphs in the
involving gluon loops will typically have logarithms of the effective theory are shown below the horizontal line. The
form In u/E, whereE~mu? is the typical gluon energy. The sum of the QCD diagrams gives the net one-loop contribu-
scale u is equal touy, since uy is the scale parameter tion to the static potentigin the color singlet channgl
introduced inD dimensions. Loop graphs containing four-
fermion terms(the potential and soft loop graphs discussed V(K)= — dmay(p)Ce 1l ag(p) k (45)

A. Box graph and the static potential

earliey, typically have logarithms of the form ja/\/mE or k|2 1=Cas i
In u/p. These graphs use the replacement &4), and so
have a factor of where only the logarithmic term has been retained. This
gives the well-known result that the potential can be rewrit-
ws) 2 ) ) ten as
(_) Bo = ps (43)
Ho 47Tas(|k|) =

for each loop, where the first factor is from E41), and the
second factor is the conventional factor for each loop in di- o
mensional regularization. Thus in potential and soft loopswhereT-T=—Cg in the color singlet channel.
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TABLE II. One-loop correction to quark-antiquark scattering. 2CIn \/k, is both infrared and ultraviolet finite if a gluon
The color factors listed in the table are for the color singlet channelnass) is introduced as an infrared regulator. This total con-
The column labeled QCD gives the contribution of the graph evaluyiption is split, in the threshold expansion, into an infrared
ated in QCD in theMS scheme in Feynman gauge, from Titard and gjyergent soft contribution @¢In w/k, and an ultraviolet di-
Yndurain[26,27]. Only the Ioganthmlc contrlbu_tlons are givenis vergent ultrasoft contribution@gIn M. The sum of the soft
a gluon mass used as an infrared regulakols the momentum 4", irasoft contributions has noelpole, since the ultra-
transfer, andk is the scale parameter of dimensional regularlzatlon.violet and infrared divergences candel

The gluon vacuum polarization graph includes the contribution L . .
from the ghost loop. The column labeled HQET gives the contribu-, The ultrasoft contribution vanishes in the full and effec-

tions of the diagrams in HQET, whera— . The breakup of the tive theoriles, iflth_e infraredhdivergenqelis reg_ltJ)Iat_ed by gi'
total diagram into soft and ultrasoft contributions is given in the lastMensional regu arization. The npn-tnwa contri qtlon IS _t e
two columns. The two diagrams below the horizontal line are theSOft part of the box graph. The importance of this contribu-

contributions to quark-antiquark scattering in the effective theoryion was pointed out by Griesshamniéb], who argued that
The complete set of ultrasoft diagrams is show in Fig. 11. one needed to introduce soft gauge fields, as well as soft

quark fields. In our approach, the soft part of the box graph is
reproduced in the effective theory by the loop graph shown

Diagram  Color Factor| QCD HQET | Soft Ultrasoft in Fig. 8, where the interaction vertex is from the last two
lines of Eq.(16). It is not necessary to introduce soft quark

C 2l 22 | —2lnk  2m2 fields, as advocated by Griesshammer.
F " R " i In QED, the soft part of the box and crossed-box graph

cancel. This is consistent with the effective Lagrangian Eq.
(16), where the soft interaction vertex vanishes for QED. In
QED, the soft modes can be integrated out directlyatl,
and replaced by local operators at the sqgatem. This ap-
proach does not resum the logarithmsvofn the potential
Cp ~l& —2ln2| 0 —9ln2 (which are absent for QED and so is not a satisfactory
" # procedure for QCD.

The effective theory correctly reproduces the soft and ul-
trasoft contributions to the static potential. The soft vertex in
(Cp- %CA) In 2% 2ln§ 0 2111% Fig. 8 is computed from the Compton scattering graphs in
Fig. 6. Fig. 8 reproduces the sum of the soft part of the box,
vertex and vacuum polarization corrections to fermion-
Ca S & 0 0 0 fermion scattering. We have seen that the soft vertex is pro-
portional to the commutator of two gauge fields, so the soft
graph Fig. 8 is proportional t€, . This automatically imple-
ments the cancellation between the vari@gscontributions

(Cr—1Ca)|-2In} —2In3| 2In% —2In2

Ca ~8nk _8pk| B1pk 0 - L .
6y 6 u| e to quark-antiquark scattering in the full QCD calculation. An
explicit computation of Fig. 8 gives the contribution
(A7aT-T) as 5\ k
Ca —Ujp - +—|In— (47)
oo Ik MTU6) s
0 to the scattering potential, where the first tefim is an in-

NI DX

frared divergent contribution, and the secdbdb) is an ul-
traviolet divergent contribution. Note that the soft graph is
infrared divergeneven if a gluon mass is used as an infrared
regulator. The infrared divergent contribution of E47) is
The box graph(the first diagram in Table Jiwas com- converted to an ultraviolet divergent contribution if tadpole
puted using the threshold expansion by Beneke and Smirnd@aphs are included. Equatigd?7) agrees with the sum of
[4], and it is interesting to see how the effective field theorythe soft contributions listed in Table II.
reproduces the various contributions. The hard part of the
box graph is the matching condition between QCD and
NRQCD, i.e. a local two-fermion operator in the effective 2rne cancellation is not really between an ultraviolet and infrared
Lagrangian, and is also equal to the difference between thgvergence. In the effective theory, there are tadpole graphs which
graphs computed in QCD and HQET. The potential part ofare zero in dimensional regularization, and have the form of a dif-
the box graph is reproduced in the effective theory by theerence 1¢—1/e between an ultraviolet and infrared divergence.
one-loop contribution from the iteration of two Coulomb in- One cannot characterize aelpole as an infrared or ultraviolet
teractions Fig. 7. The HQET value of the box diagram,divergence if tadpole graphs are set to zero.
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FIG. 12. A light fermion bubble contributions to an ultrasoft

600 loop.
éﬁ P
malized by ultrasoft gluons. The ultrasoft gluon coupling
constant is renormalized due to their self-interactions. All
these graphs can be computed as for HQER8,29. The

VRG anomalous dimension is twice the usual anomalous

FIG. 11. Renormalization of the four-quark operator representdimension, sincerd/dv=2u,d/duy .
ing the quark-antiquark potential by ultrasoft gluons. There are relations between the soft and ultrasoft gluon

couplings in the effective theory. The two couplings have a

The ultrasoft contributions in the QCD theory add up to 8-function that is related to the QCB-function, so that the
zero. The ultrasoft contributions in the effective theory aresoft coupling isag.( v) = as(mv) and the ultrasoft coupling
the renormalization of the local four-fermion quark- is Qurasof V) = as(Mr?), where ag(u) obeys the usual
antiquark potential, shown in Fig. 11. Each graph is ultravio-renormalization group equation. This can be verified by ex-
let divergent, and proportional to jrn,/k. The sum of all the  plicit computation in the effective theory.
graphs is zero, in both the singlet and octet channels. In the
effective theory, ultrasoft radiative corrections do not renor- B. Integrating out a light fermion
malize the quark-antiquark potential. They do, however,
cause mixing between the leading order potential, and cory,
rections to the potential suppressed by powers of. 1/

The quark-antiquark potential is VRG invariant. This im-
plies that the couplingyg of the soft gluons must satisfy a
B-function equation, where thg-function for the VRG is
the same as the conventional one, sipcg=mv, so that
usd/dus=vd/dv. In other words, the quark-antiquark po-
tential takes the form Eg45), with the coupling constant

rienormahzed at the soft scaje=us=mv. Choosingmy modes¥ (x) can be integrated out of ultrasoft loops such as
=|k| sums the leading logarithms, and gives ). Fig. 12, and at the velocitmv=my,, i.e. v=my /m, the soft

The effective theory has performed an interesting rear; > .
i L ) fermion modes¥,(x) can be integrated out of soft loops

rangement of the terms in the radiative correction to the . R . :

; . . . . such as Fig. 13. This sums logarithmsmfmy, in both soft
static potential, compared with those in the correspondm%n d ultrasoft 1oons
HQET computation in Feynman gauge. In the HQET com- pS.
putation, the vertex and wavefunction renormalization
graphs contribute- C,lnk/u, and the vacuum polarization
graph contributes an additionat (5/6)Calnk/x. The box A highly non-trivial check of the effective theory is the
diagram is finite, and does not contribute to the running ofcomputation of the two-loop running of the production cur-
the static potential. The vertex and wavefunction graphs inrent. This was computed by Hoang for QEDD,11], and the
volve ultrasoft loops, whereas the vacuum polarization grapltomputation has been recently extended to the non-Abelian
involves soft loops. In the effective theory, the box graphcase by Czarnecki and Melnik$%2], and by Beneke, Signer

contribution Ink/\ is broken up into a soft piece, ki, and  and SmirnoV{13].

an ultrasoft piece, Ip/N. The ultrasoft piece cancels the ver-  consider production of @Q pair near threshold by a

tex and wave function graphs, leaving the soft contributionyirtual photon. The electromagnetic current in the full theory
so that the static potential depends only @g, and not on

wy - The breakup of the box graph into soft and ultrasoft
can be done without double counting in a mass-independent
scheme such adlS [4].

Terms in the one-fermion sector of the theory are renor-

\Q
§
S
g

Consider the NRQCD theory with an additional fermion
of massmy,, with Agcp<<my<<m. At the scalem, one
can match from QCD to an effective theory that contains, in
addition to the fields we have been discussing, the fermion
V. At the scalem, the fermionV behaves like a massless
particle, so the effective theory contains soft and ultrasoft
fermion fields for¥, ¥ (x) and W(x), respectively. The
VRG equation is used to scale the theory belowAt the
velocity mv’=my,, i.e. v=+ymy/m, the ultrasoft fermion

C. Two-loop running of the production current

3This is true even when the running soft gluon coupliagmy)
and ultrasoft gluon coupling(mv?) are used. FIG. 13. A light fermion bubble contributions to a soft loop.
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matches to the effective current ER) in the effective
theory, where the two-loop matching conditipt0—13 be-
tween the full and effective theories is given in Ed). The

electromagnetic current has no anomalous dimension in the @ b
full theory, which implies that in the effective theorg,
must have an anomalous dimension,

dCy(u) 1 1
A =—C¢|3Cr+5Ca a? (48
© )

at u=m.
The anomalous dimension E@8) is of orderaﬁvo, SO
we need to compute all diagrams of this order in the effective
theory. The interactions needed are in the quark-antiquark
potential to ordew? in the color singlet channel. The poten-
tial in the center of mass frame for the proce@¢p)
+Q(—p)—Q(p)+Q(—p’) with momentum transferk ©

=p—p’ is (borrowing the notation of Titard and Yndurain FIG. 14. Diagrams which contribute to the two-loop anomalous

[26,27) dimension of the production current. The dot and box represent
terms in the tree-level potential at order ), andv? (V¢, Vs,

Vhi, Vis, V1) respectively. The is an insertion of the ordar?
term proportional tax2/m|k| in the one-loop potential\( ). The

X is an insertion of thg@*/8m? kinetic energy correction.

vy Loy et Ve Vi
C|k|2 r K| m|k| m2 m2

m2|k|2 SZ

LS T
AR+ T, (49 The diagrams which contribute to the two-loop anoma-
m : . ; ) .
lous dimension of the production current in the effective
theory are shown in Fig. 14. The contribution from the dia-

where . . .
grams to the anomalous dimension will be calleg- vy,,
o+ oy respectively, where
S=——, (50)
dC, dC; (54
S-(kXp) HSdug Vdv 7
A(k)=—i—7—, (51
One finds that
3
T=0,-05— E(k-trl)(k-trz) ¥a=0,
(52)
and the coefficients we need are Yo 64772\/ ,
Ve(p=m)=—4may(m)Ceg, 1 1
=— Ve(Vo+ 2V — VeV
V,(p=m)=—4may m)Ce, Ye= " 1gg2 VeVt 2Vi) ~ 352 VeV,
) — 2 1 1
Vik(p=m)=ag(m)C¢| 5Cr=Ca|, Ya=~ 352VcVr,
Vo(u=m)=0, 1
Ye= 5 VK (55)
A7ay(m)Cg
Va(p=m)= ————, (53)

and the total anomalous dimension is

using tree-level matching ai=m for V¢ ,,¢ and one-loop

matching atw=m for V. In addition to the above terms, Y=Yat ¥t Yot Yat Ve
we also need the?*/8m? kinetic energy correction in the 2

Lagrangian, whose coefficient is fixed by reparametrization S Ve  VeVr Ve(Va+2Vhy) +M

- 56
invariance. 647>  16m° 1672 2 (56

074025-13



LUKE, MANOHAR, AND ROTHSTEIN

which agrees with the known result for QCD at=m, Eq.
(48), when the coefficients E¢53) are used.

PHYSICAL REVIEW D61 074025

this point, one can integrate out the soft modes, and at the
same time switch from a theory of quarks and antiquarks to

To complete the renormalization group analysis of thea theory of quarkonia, i.e. to an effective Lagrangian repre-
two-loop anomalous dimension, one needs the running vakenting quarkonia interacting with background color fields,
ues forVe, Vi andV)y , which will be presented elsewhere. as first studied by Voloshif30] and Leutwyler{31].

Note, however, that our analysis disagrees with the results of The methods described here should also be applicable to
[14], in which the running of these terms in the potential wasother nonrelativistic field theories, such as those describing

neglected.

VI. CONCLUSIONS

nucleon-nucleon scattering at low enerdigg].
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