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Event by event analysis and entropy of multiparticle systems
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The coincidence method of measuring the entropy of a system, proposed some time ago by Ma, is gener-
alized to include systems out of equilibrium. It is suggested that the method can be adapted to analyze
multiparticle states produced in high-energy collisions.

PACS number~s!: 25.75.2q, 05.30.2d, 13.85.Hd
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I. INTRODUCTION

Entropy, being one of the most important characteris
of a system with many degrees of freedom, is — in particu
— an important characteristic of multiparticle productio
processes. In this context it abounds in analyses of de
hadronic matter and in discussions of various models
quark-gluon plasma@1#.

Processes in which particles are produced can be con
ered as so-calleddynamical systems@2,3# in which — gen-
erally — entropy gets produced. Although the application
the mathematical theory of dynamical systems to calcu
the entropy in multiparticle production is still out of reac
the existing models suggest that the systems produce
high-energy collisions pass through a stage of~approximate!
local statistical equilibrium@4,5#.

Recently@6# we proposed to apply the event coinciden
method@7# to measure the entropy of a multiparticle syste
provided it can be described by a microcanonical ensemb1

Since the event-by-event analysis becomes a commonly
cepted tool to study the multiparticle phenomena, we f
that it is worthwhile to pursue this problem further. In th
present paper we extend the coincidence method to the m
realistic case of when the energy of the system in questio
not necessarily fixed. We show that the method can be ra
effective for investigatinglocal properties of the particle
spectra. Since the observed particles map the state o
system just before it breaks into freely-moving hadro
~which get registered in the detectors!, such a measuremen
can provide important information on the evolution of t
system.2

At this point it may be important to stress that to prope
estimate the entropy of a multiparticle system one wo
need information not only on the distribution of momenta b
also about positions of particles. In particular, correlatio
between positions and momenta are very essential. This
formation cannot be obtained, generally, in a mod
independent way. One should thus keep in mind that
entropy we discuss in the present paper only partially refle

*Email address: bialas@thp1.if.uj.edu.pl
1A direct measurement of the entropy of multiplicity distributio

observed in multiparticle production was first reported in@8#.
2Note that the free movement of the particles from the produc

point to the detector does not influence this measurement.
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the statistical properties of the system: the degrees of f
dom related to positions of particles are integrated ov
Nevertheless it provides valuable information about the s
tem in question, and can be used to identify its nature.
particular, our method may have a wide range of applicat
for the systems where correlations between momenta
positions of the particles are unimportant.

II. ENTROPY AND THE COINCIDENCE METHOD

In a system at equilibrium with all states having the sa
probability ~microcanonical ensemble!, entropy measures th
numberG of states of the system

S5 logG. ~1!

This formula can be rewritten in terms of the probabilityp
for one of the states of the system to realize. Since all st
have equal probabilities we have

p5
1

G
~2!

and thus

S52 log p. ~3!

Ma observed@7# that the probabilityp can also be expresse
as the probability of ‘‘coincidence,’’ i.e., the probability tha
while sampling the system, one finds two states~configura-
tions! which are identical to each other. Indeed, this pro
ability is given by

C25 (
all states

~p2!5Gp25p ~4!

so that

S52 logC2 . ~5!

Now if we measureN configurations and findN2 coinci-
dences we have~in the limit of largeN)

C25
N2

N~N21!/2
~6!

and thus we obtain a method of estimatingp and therefore
the entropySalso. The attractive feature of this procedure

n
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A. BIALAS AND W. CZYZ PHYSICAL REVIEW D 61 074021
that, as seen from Eq.~6!, the statistical error drops very fas
~like N21) with an increasing number of the trie
configurations.3

This method does not work, however, if the energy of
considered system is not precisely fixed~e.g., for a canonica
or grand-canonical ensemble! or if the system is not in ther
modynamic equilibrium. In such a case the states of the
tem have, in general, various probabilities of occurren
Consequently, neither Eqs.~3! nor ~4! are valid.

In the present note we argue that even in this general
the coincidence method can nevertheless be used to o
information on the entropy of the system. To this end it
however, necessary to measure coincidences of more
two configurations. The argument goes as follows.

For an arbitrary system entropy is defined by the gen
formula @10#

S52 (
all n

pn log pn , ~7!

wherepn is the probability of occurrence of the state label
by n, and the sum runs over all states of the system.

To begin we observe that Eq.~7! can be rewritten as

S52^ log p&, ~8!

where^•••& denotes the average over all states of the s
tem.

Using now the identity

p5^p&
p

^p&
5^p&F12S 12

p

^p& D G ~9!

one can transform Eq.~8! into

S52 log^p&1 (
m52

`
1

m K S 12
p

^p& D
mL . ~10!

In this way we have expressed the entropy by the mom
^pm&.

Now the point is that these moments have a simple ph
cal interpretation in terms of the coincidence probability.
deed, let us denote byCk the probability of coincidence ofk
configurations. In terms of probabilitiespn it can be ex-
pressed as4

Ck5 (
all n

~pn!k5 (
all n

pn~pn!k215^pk21&. ~11!

We see that the probability of coincidence ofk configu-
rations is given by thek21 moment ofp.

3This holds forN in the regionAG!N!G, the case of interest in
the present context.

4This formula can be easily proven by considering the Berno
distribution ofN independent samplings of the considered syste
The error can be estimated with the same technique.
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We thus conclude from Eq.~10! that the probabilitiesCk
of coincidences of all orders are, in principle, necessary
determine the entropy of the system.

In terms ofCk8s, Eq. ~10! reads

S52 logC21 (
m52

`
1

m (
k50

m

~21!kS m
k D Ck11

~C2!k
. ~12!

If all states have the same probability of occurrence we tr
ally obtain Ck115(C2)k. Thus all terms in the sum vanis
and we fall back to the formula~5!.5

Of course the series~12! and its approximations may b
used for estimation of entropy only if the result is conve
gent. To this end the consecutive terms must be sm
enough and thus the parametersCk11 /(C2)k cannot be much
larger than one.6 This condition limits seriously the applica
bility of Eq. ~12!.

III. APPLICATION OF THE ‘‘REPLICA METHOD’’

It is useful to rearrange the series~12! using the so-called
replica method@11#. To this end, let us consider a syste
made ofM independent replicas of the considered syste
The entropy of such a composite system is obviously giv
by

S~M !5MS. ~13!

On the other hand, since it is made ofM independent sub-
systems the coincidence probabilities are given by

Ck~M !5@Ck#
M. ~14!

Consequently, repeating the argument of the previous sec
we obtain

S~M !52M logC21 (
m52

`
1

m (
k50

m

~21!kS m
k D S Ck11

~C2!kD M

.

~15!

Now, the consistency of Eqs.~13! and~15! requires that the
sum on the right-hand side~r.h.s.! of Eq. ~15! is proportional
to M and thus only the term proportional toM can survive.
This term is easy to calculate by observing that

S Ck11

~C2!kD M

511M logS Ck11

~C2!kD 1•••. ~16!

By substituting this into Eq.~15! we obtain

li
.

5(k50
m (21)k(k

m)5(121)m50.
6It is not difficult to see thatCk11 /(C2)k>1. Indeed, for any

positive variablef we have ^ f k21( f 2^ f &)2&>0. It follows that
^ f k11&2^ f &k11>3^ f &2(^ f k21&2^ f &k21) and one can complete th
proof by induction.
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S~M !52M logC21M (
m52

`
1

m (
k50

m

~21!kS m
k D logS Ck11

@C2#kD .

~17!

Using Eq.~13! we thus have

S52 logC21 (
m52

`
1

m (
k52

m

~21!kS m
k D logS Ck11

@C2#kD ,

~18!

which represents our final formula. It is providing parti
resummation of the powers ofCk11 /@C2#k into logarithms.

IV. RENYI’S ENTROPIES

The formula~18! can be rewritten in terms of the Ren
entropies7 defined as@12#

Hk52
logCk

k21
. ~19!

Using this definition one can easily see thatH15S. Substi-
tuting Eq.~19! into Eq. ~18! we obtain, after some algebra

S5H21 (
n51

`

(
k50

n

~21!kS n
kDHk12

5 (
n50

`

(
k50

n

~21!kS n
kDHk12

5H21~H22H3!1~H223H31H4!

1~H223H313H42H5!1•••. ~20!

One sees that the firstN terms of this series represent th
polynomial extrapolation of the functionHk from the points
k52,3,4, . . . ,N11 to k51. This observation not only ex
plains the meaning of formulas~18! and ~20! but also sug-
gests the way to improve it: one should look for more effe
tive extrapolations. One possibility we have investigated
some detail is to take

Hk5a
logk

k21
1a01a1~k21!1a2~k21!21•••. ~21!

The number of terms is determined by the number of co
cidence probabilities one is able to measure. If onlyC2 and
C3 are measured we obtain

S5H21
12 log 2

log 22~1/2!log 3
~H22H3!. ~22!

If three coincidences are measured we have

S5H21~H22H3!~11v!2v~H32H4!, ~23!

7The argument presented in this section was suggested to us
Zyczkowski.
07402
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v5
122 log 21~1/2!log 3

log~2/3!1~2/3!log 2
. ~24!

In Fig. 1 the results of this procedure are shown for th
distributions, often encountered in the analysis of multip
ticle data: Poisson, negative binomial, and the geometric
ries. One sees that extrapolation using only two terms is
far sufficient to obtain an accurate value of entropy, provid
the average multiplicity is not lower than 1/2. The first ter
(H2) is, however, hardly sufficient even for fairly large mu
tiplicities.

For n̄→0 the extrapolation is rather poor which show
that the method is not well adapted for studies of low m
tiplicity events.

We have also found that for these three distributions
polynomial extrapolation~20! is less accurate than Eq.~21!.

V. ESTIMATE OF ENTROPY THROUGH
MEASUREMENTS OF COINCIDENCES

We have suggested recently@6# that the coincidence
method of Ma can be used to estimate the entropy of
system of particles produced in a high-energy collision. T
idea was to consider the produced events as the rando
chosen configurations of the system. Measurement of
~appropriately defined! probability of coincidence of two
events was interpreted, following the formula~5!, as a mea-
K.

FIG. 1. Estimates of entropy for systems with commonly e
countered distributions using the extrapolation given by Eq.~21!,
plotted versus average multiplicity. Continuous lines: entropy c
culated directly from Eq.~7!. Dashed lines: entropy calculated from
Eq. ~5!. Open points: Three-term extrapolation from Eq.~23!. Full
points: Two-term extrapolation from Eq.~22!.
1-3
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A. BIALAS AND W. CZYZ PHYSICAL REVIEW D 61 074021
surement of entropy of the system.8

As it is not very likely that the system produced in
high-energy collision can indeed be accurately represe
by a microcanonical ensemble at equilibrium9, however, one
may have justified doubts about the accuracy of this meth
It is clear from the previous argument that Eqs.~18! and~20!
provide a possibility to assess this. Indeed, already mea
ing the probability of coincidence of three events

C35
N3

N~N21!~N22!/6
~25!

allows one to estimate the first correction to Eq.~5!. As
discussed in the previous section, this is often sufficien
obtain an accurate value of the entropy.

VI. DISCRETIZATION

Application of the coincidence method, as described
previous sections, for measurements of entropy in multip
ticle production~which is our main objective! requires dis-
cretization of the observed multiparticle spectra@6#. The de-
pendence of the results of measurements on discretiza
can be discussed as follows.

Consider a system consisting of a certain number, saN,
of particles produced in a high-energy collision. L
F(q)dq[F(q1 , . . . ,qN)dq1 . . . dqN be their probability
distribution in momentum space. To discretize, we split
distribution intoM (3N dimensional! bins of sizeDqm , m
51, . . . ,M . The probability distribution to find the system
in the binm is

w~m,M !5F„q(1)~m!, . . . ,q(N)~m!…Dqm , ~26!

where@q(1)(m), . . . ,q(N)(m)# is the set ofN momenta de-
fining the bin m. The coincidence probabilities measur
from the distribution~26! are

Ck~M !5 (
m51

M

~Dqm!k@F„q( i )~m!…#k. ~27!

If we now split each bin intol new bins~and thus multiply
the number of bins by factorl) the probability~26! changes
accordingly and we obtain

8As explained in Sec. I, we are considering only entropy relate
the distribution of particle momenta. The volume fluctuations a
correlations between the position and momentum of a particle
neglected.

9Although this is the case in the Fermi model of multipartic
production@9#.
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Ck~lM !5
1

lk21 (
m51

M

~Dqm!k

3 (
l m51

l
1

l
@F„q(1)~m,l m!, . . . ,q(N)~m,l m!…#k.

~28!

For nonsingular distributionF(q1 , . . . ,qN) the dependence
of the sum on the r.h.s. onl disappears in the limitl→`
and thus using Eq.~18! or Eq. ~20! we have

S~lM !5 logl1S~M !, ~29!

which summarizes the dependence of the proposed mea
ment on the resolution used in the procedure
discretization.10 Note thatl denotes the number of splitting
in 3N dimensional momentum space. If the splitting proc
dure is performed by simply splitting the bins in on
dimensional single particle momentum distribution intol0
new bins, we havel5(l0)3N which gives

S~lM !53N logl01S~M !. ~30!

The final question one may ask is how the entropy m
sured from the distribution~26! is related to the ‘‘true’’
entropy11 of the N particle system described by the distrib
tion function F(q1 , . . . ,qN). To consider this problem we
observe that the spacing between the momentum states
system ofN particles is given by the quantum-mechanic
relation

dq5S ~2p!3

v D N

, ~31!

wherev denotes the volume of the system.12 Denoting the
total number of states of the system byG the ‘‘true’’ entropy
is given by

S~G!52(
i 51

G

p„q(1)~ i !, . . . ,q(N)~ i !…

3 log@p„q(1)~ i !, . . . ,q(N)~ i !…#

52 (
m51

M

w„q(1)~m!, . . . ,q(N)~m!…

3 log@w„q(1)~m!, . . . ,q(N)~m!…/G~m!#

5S~M !1 (
m51

M

w„q(1)~m!, . . . ,q(N)~m!…logG~m!,

~32!

o
d
re

10Additional dependence onl would indicate that the distribution
F(q1 , . . . ,qN) is singular~see, e.g.,@13#!.

11We use quotation marks to emphasize that, as explained in
I, the entropy we discuss in this paper is not—in general—the
tual entropy of the system since it neglects the positions of parti
in configuration space.

12The fluctuations of the volume can be—at least in principle
determined if the HBT correlations are measured for each even
1-4
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EVENT BY EVENT ANALYSIS AND ENTROPY OF . . . PHYSICAL REVIEW D 61 074021
where

G~m!5
Dqm

dq
5F „D0~M !…3

~2p!3
vGN

~33!

is the number of states in the binm. HereD0(M ) denotes the
size of the~one-dimensional! bin in momentum space of on
particle.

Equation~32! relates the entropyS(G) of the considered
system toS(M ) — the one measured by discretization in
M bins. For the simplest case of when all bins used in d
cretization are equal to each other,Gm does not depend onm
and the last sum in Eq.~32! can be performed. The result

S~G!5S~M !1 log„G~m!…5S~M !13N logS v1/3
D0~M !

2p D .

~34!

VII. INDEPENDENTLY PRODUCED PARTICLES

To assess the practical possibilities of using the propo
method to the actual multiparticle data, we have estima
the coincidence probabilities for a system of particles p
duced independently.

Suppose that the produced particles come in a numbe
species, labeled byf. Then

Ck5)
f

Ck~ f !, ~35!

so that it is enough to consider one kind of particle.
We now discretize the system by splitting it intoM bins

of size Dq. With this procedure, the state of the system
defined by giving the number of particles in each bin.
particles are emitted independently, the probability of
given state is

W~n1 , . . . ,nM !5)
i 51

M

P~ni ,n̄i !, ~36!

whereP(n,n̄) is the Poisson distribution with averagen̄ and
n̄i is the average number of particles in a bin labeledi and is
given by

n̄i5E
qi2Dq/2

qi1Dq/2

dq r~q!, ~37!

where r(q) is the single particle momentum distributio
*dq r(q)5N̄ with N being the total number of particles.

From Eq.~27! we deduce

Ck5 (
n1 , . . . ,nM

@W~n1 , . . . ,nM !#k5)
i 51

M

Ck
pois~ n̄i !, ~38!

where

Ck
pois~ n̄!5(

n
@P~n,n̄!#k. ~39!
07402
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We have calculated numericallyCk
pois(n̄) for 2<k<5.

They are shown in Fig. 2, plotted versusn̄. One sees that in
the range 1<n̄<50 they can be well approximated by th
formula

Ck
pois~ n̄!'S 1

3An̄
D k21

, ~40!

which shows that they are not prohibitively small even
fairly high multiplicities. We thus conclude that for at lea
one bin one should be able to measureC2 and C3 with a
reasonable accuracy even for large systems~i.e., systems
containing many particles13!.

The situation becomes much worse, however, with
increasing number of bins, as easily seen from Eq.~38!. For
N̄5100 and M510 bins, for example, one obtainsC2
'1029.5 and C3'10219. The situation improves somewha
for smaller multiplicities such asN̄510 andM510, where
one hasC2'1025 and C3'10210. As shown in Sec. VI,
however, the method does not work if the particle multipl
ity in one bin falls belown̄;1/2. Therefore it is limited to a
study of rather small regions of phase space.

VIII. APPLICATIONS

We are convinced that systematic measurements of
local entropy of multiparticle systems created in high-ene
collisions can provide interesting insights into the physics
multiparticle production.

~i! Since the entropy measures the effective number
states of the system, it provides direct information about
internal degrees of freedom. This is well known and actua

13For large multiplicities the first term in the asymptotic expa

sion of Ck is 1/(A2kpn̄)k21.

FIG. 2. Coincidence probabilities for Poisson distribution vers
average multiplicity.
1-5
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A. BIALAS AND W. CZYZ PHYSICAL REVIEW D 61 074021
exploited in numerous models of production of the qua
gluon plasma@1,5,4#. Usually, however, the entropy is sim
ply estimated from the measured number of particles~see,
e.g.,@4#!. This estimate strongly relies on the assumed th
mal equilibrium and, moreover, is expected to be valid o
in the limit of a very large number of particles. Our metho
leading to an independent estimate of the entropy, may
be used for a verification of the accuracy of the stand
approach. For instance, the validity of the relations@4# which
express entropy through the thermal energy density and
number of ‘‘wounded nucleons’’@14# can be tested agains
the entropy estimated from our formulas.

~ii ! Most of the models discussing particle production
heavy ion collisions assume local thermal equilibrium of t
created system~at least in central collisions!. Measurements
of entropy allow one to verify this assumption by testing t
validity of some thermodynamic identities. One of the mo
promising ones seems to be@6#

]S~E,N,V!

]E U
N,V

5
1

T
, ~41!

where both the left-hand side~l.h.s.! and r.h.s. can be esti
mated from the data.14 It would be very interesting therefor
to study Eq.~41! in different phase-space regions, and w
varying impact parameter of collisions in order to establ
the region where the assumption of thermal equilibrium ha
chance to be reasonable~let us also note that one may as we
envisage an application of this test to ‘‘elementary’’e1e2

and pp collisions and thus verify the interesting hypothesis
Beccatini@5#!.

~iii ! If the thermal equilibrium is verified, one may use th
identity

]S~E,N,V!

]N U
E,V

52
m

T
~42!

to estimate the chemical potential of the produced partic
This would be another important ingredient in model bui
ing.

~iv! The method proposed in the present paper allows
to measure the entropy of systems far from equilibrium. T
certainly extends the possibilities of treating multipartic
production phenomena by the methods of statistical phys
For example, the long debated problem as to what ex
particle production in heavy ion collisions can be treated a
simple superposition of nucleon-nucleon collisions may
very effectively tested.

14This formula is valid under the assumption of a fixed number
particles,N, and a fixed volume,V, where the equilibrium is sup
posed to be established. The number of particles can be mea
but it is difficult to have direct access to the volume. We can c
jecture, however, that a selection of a well defined sample of ev
will come from similar volumes; in fact it is hard to imagine that
could be otherwise. If this is indeed the case, i.e., if the fluctuati
of the volume are not too large, it can be measured from the H
correlations.
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~v! It should be noted that many of the properties of t
‘‘true’’ entropy of the system are also shared by the Re
entropies~19! which can be measured directly, without th
uncertain extrapolation procedure explained in Sec.
Therefore, we feel that they should also be treated serio
and estimated as precisely as possible in theoretical calc
tions concerning multiparticle production. Actually, in som
cases the calculation of Renyi entropies is not more diffic
than the calculation of the entropy of the system itself,15 thus
providing a new, powerful tool for the analysis of multipa
ticle systems.

IX. FINAL COMMENTS

At this point it may be worthwhile to point out that th
measurement of event coincidence probabilities repres
interesting information about the multiparticle system, ind
pendent of its relation to the Shannon entropy. Indeed
gives valuable information on statistical fluctuations of t
system in question and thus may be considered as an a
native approach to the problem of ‘‘erraticity’’@15#. It seems
to be a more detailed measure of even-by-event fluctuat
than the distribution of the~horizontally averaged! factorial
moments@15#. The weak point is that the method seem
applicable only to a small part of the available phase spac16

Some averaging procedure may thus turn out to be neces
also in this case.

It is also worthwhile to emphasize that the event coin
dence probabilities are sensitive to an entirely different
gion of multiparticle spectrum than the widely used factor
moments@13#. Indeed, whereas factorial moments are sen
tive mostly to the large multiplicity tail of the spectrum, th
coincidence probabilities obtain the largest contributio
from the region where the probability distribution is max
mal. The two methods thus seem complementary to e
other and should best be used in parallel to obtain the m
mum of information.

X. CONCLUSIONS

In conclusion, we have proposed a generalization of M
coincidence method of entropy determination. It requi
measurements of coincidences of 2,3, . . . configurations.
The new method can be applied to a more general clas
systems. In particular, thermodynamical equilibrium is n
necessary.

The method seems well adapted to the analysis of lo
properties of multiparticle states produced in high-ene
collisions. It may thus turn out to be useful for an investig

f

red
-
ts

s
T

15E.g., for a photon gas one findsHq5
1
4 (111/q11/q2

11/q3)S.
16An interesting possibility would be to study two~or more! dis-

connected regions of available phase space, with such a mea
ment being sensitive to thelong rangecorrelations in the multipar-
ticle system.
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tion of the thermodynamic properties of the dense hadro
matter and/or quark-gluon plasma.
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