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Event by event analysis and entropy of multiparticle systems
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The coincidence method of measuring the entropy of a system, proposed some time ago by Ma, is gener-
alized to include systems out of equilibrium. It is suggested that the method can be adapted to analyze
multiparticle states produced in high-energy collisions.

PACS numbegps): 25.75—-q, 05.30--d, 13.85.Hd

[. INTRODUCTION the statistical properties of the system: the degrees of free-
dom related to positions of particles are integrated over.
Entropy, being one of the most important characteristicdNevertheless it provides valuable information about the sys-
of a system with many degrees of freedom, is — in particulatem in question, and can be used to identify its nature. In
— an important characteristic of multiparticle production particular, our method may have a wide range of application
processes. In this context it abounds in analyses of dender the systems where correlations between momenta and
hadronic matter and in discussions of various models oPOSsitions of the particles are unimportant.
quark-gluon plasméd].
Processes in which particles are produced can be consid- !l ENTROPY AND THE COINCIDENCE METHOD
ered as so-calledynamical systemi2,3] in which — gen-
erally — entropy gets produced. Although the application of
the mathematical theory of dynamical systems to calculat
the entropy in multiparticle production is still out of reach,

In a system at equilibrium with all states having the same
robability (microcanonical ensembleentropy measures the
umberl’ of states of the system

the existing models suggest that the systems produced in S=logT. (1)
high-energy collisions pass through a stagéapfproximate
local statistical equilibriuni4,5]. This formula can be rewritten in terms of the probability

Recently[6] we proposed to apply the event coincidencefor one of the states of the system to realize. Since all states
method[ 7] to measure the entropy of a multiparticle system,have equal probabilities we have
provided it can be described by a microcanonical ensefble.
Since the event-by-event analysis becomes a commonly ac- 1 @)

cepted tool to study the multiparticle phenomena, we feel P=T

that it is worthwhile to pursue this problem further. In the

present paper we extend the coincidence method to the mog#d thus

realistic case of when the energy of the system in question is S=—logp 3

not necessarily fixed. We show that the method can be rather

effective for investigatinglocal properties of the particle Ma observed7] that the probability can also be expressed

spectra. Since the observed particles map the state of tfé% the probability of “coincidence,” i.e., the probability that

system just before it breaks into freely-moving hadrons, e samoling the svstem. one finds two st wsnfigura-
(which get registered in the detecfjrsuch a measurement tions) whic% a?e iden>t/ical té) each other. Indeed tk?is prob-
can provide important information on the evolution of the ability is given by ’

systen?

At this point it may be important to stress that to properly
estimate the entropy of a multiparticle system one would C,= > (p?)=Tp?=p (4)
need information not only on the distribution of momenta but allstates
also about positions of particles. In particular, correlationsSo that
between positions and momenta are very essential. This in-
formation cannot be obtained, generally, in a model- S=—logC,. (5)
independent way. One should thus keep in mind that the
entropy we discuss in the present paper only partially reflectSlow if we measureN configurations and findN, coinci-

dences we havén the limit of largeN)

*Email address: bialas@thpl.if.uj.edu.pl C.— P ©6)
A direct measurement of the entropy of multiplicity distribution 27 N(N—-1)/2
observed in multiparticle production was first reported8h
°Note that the free movement of the particles from the productiorand thus we obtain a method of estimatipgnd therefore
point to the detector does not influence this measurement. the entropyS also. The attractive feature of this procedure is
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that, as seen from E@6), the statistical error drops very fast ~ We thus conclude from Ed10) that the probabilitie<,
(like N™1) with an increasing number of the tried of coincidences of all orders are, in principle, necessary to
configurations. determine the entropy of the system.

This method does not work, however, if the energy of the In terms ofC;s, Eq. (10) reads
considered system is not precisely fixedg., for a canonical
or grand-canonical ensembler if the system is not in ther- o0
modynamic equilibrium. In such a case the states of the sys- S=—-logC,+ 2
tem have, in general, various probabilities of occurrence. m=2
Consequently, neither Eq&3) nor (4) are valid.

In the present note we argue that even in this general cagdeall states have the same probability of occurrence we trivi-
the coincidence method can nevertheless be used to obtadtly obtainC,.;=(C,)¥. Thus all terms in the sum vanish
information on the entropy of the system. To this end it is,and we fall back to the formuls).”
however, necessary to measure coincidences of more than Of course the serie€l2) and its approximations may be

S km)%
go( 1)(k (Co)X 12

two configurations. The argument goes as follows. used for estimation of entropy only if the result is conver-
For an arbitrary system entropy is defined by the generagjent. To this end the consecutive terms must be small
formula[10] enough and thus the paramet€s_;/(C,)* cannot be much

larger than on&.This condition limits seriously the applica-
bility of Eq. (12).
=2 pnlogpy, (7) ¥ of Bq. (13

Ill. APPLICATION OF THE “REPLICA METHOD”
wherep, is the probability of occurrence of the state labeled

by n, and the sum runs over all states of the system. It is useful to rearrange the seri€?) using the so-called
To begin we observe that E(7) can be rewritten as replica method 11]. To this end, let us consider a system
made ofM independent replicas of the considered system.
S=—(logp), (8) 'tl)'he entropy of such a composite system is obviously given
y
where(- - -) denotes the average over all states of the sys-
tem. S(M)=MS. (13

Using now the identity
On the other hand, since it is made Mfindependent sub-
p p systems the coincidence probabilities are given b
p=<p>—=<p>[1—(l——” o ¥ P g y
(p) (p) y
_ Cu(M)=[C\ ™. (14)
one can transform Ed8) into
Consequently, repeating the argument of the previous section

S=—log(p)+ >, —<(1— i) > (10 e oPRn
m=2 M (p)
) m M
1 K m Ck+1
In this way we have expressed the entropy by the moments S(M)=—M log C2+mZZ m kzo (-1 Kk —(C U
- - 2

(pm).
Now the point is that these moments have a simple physi-
cal interpretation in terms of the coincidence probability. In-
deed, let us denote @, the probability of coincidence &
configurations. In terms of probabilities, it can be ex-

(15

Now, the consistency of Eq$l3) and(15) requires that the
sum on the right-hand side.h.s) of Eq. (15) is proportional
to M and thus only the term proportional M can survive.

pressed ds This term is easy to calculate by observing that
_ k_ k=1_ /nk—1 M
Cr :;n (Pn) }n Pa(Po)™ =P (4D (Ck”) :1+Mlog( Cooa), (16)
(Co) (Co)
We see that the probability of coincidence lotonfigu-
rations is given by thé&k—21 moment ofp. By substituting this into Eq(15) we obtain

3This holds forN in the region T <N<T, the case of interestin 5" (- 1)¥(")=(1—-1)"=0.
the present context. 81t is not difficult to see thatC,,,/(C,)*=1. Indeed, for any
“This formula can be easily proven by considering the Bernoullipositive variablef we have(fk’l(f—(f>)2>20. It follows that
distribution of N independent samplings of the considered system( ™) —(f)k*1=3(f)2((fk"1)— (f)k~1) and one can complete the
The error can be estimated with the same technique. proof by induction.
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S(M)=—M logC,+ §1§m‘, ( ) Crcr1 T 7
(M=~ MooCar Mg, m & [CoIF " e o
17

Using Eq.(13) we thus have
m
m Cii1
(T )
2 1k Og([cz]k>

which represents our final formula. It is providing partial
resummation of the powers @, ;/[C,]¥ into logarithms.

3+

—logC,+ 2,
m=2

IV. RENYI'S ENTROPIES
o S [Hz,Hz,Hsl

The formula(18) can be rewritten in terms of the Renyi

entropie$ defined ag12] i ® S[Ha Ha]
0.1 1 1 1 -
log C, J T 10 100 T
=- 7=0.5
Hi= = =1 - (19
Using this definition one can easily see tlibt=S. Substi- FIG. 1. Estimates of entropy for systems with commonly en-

tuting Eq.(19) into Eq.(18) we obtain, after some algebra, countered distributions using the extrapolation given by @d),
plotted versus average multiplicity. Continuous lines: entropy cal-
culated directly from Eq(7). Dashed lines: entropy calculated from

S=H,+ Z z (=1) ( )Hk+2 Eq. (5). Open points: Three-term extrapolation from E2g). Full
points: Two-term extrapolation from Eq2).

é é ( )Hk+2 where

=Hy+(Hy—Hg)+(H,—3H3+Hy) 1—-2log 2+ (1/2)log 3 04
t(Hy—3Hy+3H,— o)+ 20 = Tog2/3)+ (213)og 2 ° 4

One sees that the firdd terms of this series represent the
polynomial extrapolation of the functioid, from the points
k=2,3,4... N+1 tok=1. This observation not only ex-
plains the meaning of formulad8) and (20) but also sug-
gests the way to improve it: one should look for more effec-
tive extrapolations. One possibility we have investigated in
some detail is to take

In Fig. 1 the results of this procedure are shown for three
distributions, often encountered in the analysis of multipar-
ticle data: Poisson, negative binomial, and the geometric se-
ries. One sees that extrapolation using only two terms is by
far sufficient to obtain an accurate value of entropy, provided
the average multiplicity is not lower than 1/2. The first term
(H») is, however, hardly sufficient even for fairly large mul-
gk tiplicities.
Hi=aj—7+aot ag(k—1)+ay(k—1)%+---. (21 For n—0 the extrapolation is rather poor which shows
that the method is not well adapted for studies of low mul-
The number of terms is determined by the number of coindiplicity events.

cidence probabilities one is able to measure. If ddlyand We have also found that for these three distributions the
C, are measured we obtain polynomial extrapolatiort20) is less accurate than E(R1).
—log2
S=H,+ m( Hs). (22) V. ESTIMATE OF ENTROPY THROUGH
09 (1/2)log MEASUREMENTS OF COINCIDENCES
If three coincidences are measured we have We have suggested recent]$] that the coincidence

method of Ma can be used to estimate the entropy of the
system of particles produced in a high-energy collision. The
idea was to consider the produced events as the randomly
chosen configurations of the system. Measurement of the
"The argument presented in this section was suggested to us by Kappropriately defingdprobability of coincidence of two
ZyczkowsKi. events was interpreted, following the formuB, as a mea-

S=H,+(H,—Hj3)(1+w)—w(Hz—Hy), (23
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surement of entropy of the systém. 1
As it is not very likely that the system produced in a C(AM)=

high-energy collision can indeed be accurately represented

by a microcanonical ensemble at equilibriythowever, one

M=

(Agm)*

k—1 1

>

m

A
may have justified doubts about the accuracy of this method. X > E[q)(q(l)(me), o a™m, DTk
It is clear from the previous argument that E(8) and(20) =1\
provide a possibility to assess this. Indeed, already measur- (29)
ing the probability of coincidence of three events
For nonsingular distributio®(q4, .. . ,qy) the dependence
of the sum on the r.h.s. ok disappears in the limik —o
Nj and thus using Eq18) or Eq.(20) we have
Cs= (25
N(N-1)(N-2)/6 S(\M)=log\ +S(M), (29

which summarizes the dependence of the proposed measure-
allows one to estimate the first correction to Ef). As ment on théa resolution used in the procedure of
discussed in the previous section, this is often sufficient taliscretization'® Note thath denotes the number of splittings
obtain an accurate value of the entropy. in 3N dimensional momentum space. If the splitting proce-

dure is performed by simply splitting the bins in one-

dimensional single particle momentum distribution intg

. _ 3N . .
VI. DISCRETIZATION new bins, we haVQ.—()\O) which gives

Application of the coincidence method, as described in S(AM)=3NlogAo+S(M). (30)

previous sections, for measurements of entropy in multipar- e final question one may ask is how the entropy mea-

ticle production(which is our main objectiverequires dis-  gyred from the distribution(26) is related to the “true”

cretization of the observed multiparticle sped& The de- entropy* of the N particle system described by the distribu-

pendence of the results of measurements on discretizatiafbn function ®(q, . .. ,qy). To consider this problem we

can be discussed as follows. observe that the spacing between the momentum states of a
Consider a system consisting of a certain number,Nsay system ofN particles is given by the quantum-mechanical

of particles produced in a high-energy collision. Let relation

®(q)dg=P(qy, .- -,0n)dq; - . .dgy be their probability 3N

distribution in momentum space. To discretize, we split the 5q=((277) ) (31)

distribution intoM (3N dimensional bins of sizeAq,,, m v ’

=1,... M. The probability distribution to find the system

in the binm is

wherev denotes the volume of the systémDenoting the
total number of states of the system Bythe “true” entropy
is given by

wimM)=d@V(m), ... gV(m)Ag,, (26 "
S(T)= —;1 p@@®(i), ....gMN(i))

where[g®(m), ...,g™N(m)] is the set ofN momenta de- Xlog[ p(q®(i), . .. a™M(i)]
fining the binm. The coincidence probabilities measured

from the distribution(26) are M

=— > w@®m), ... gM(m))
m=1

- . xloglw(@(m), ... g™(m)/T(m)]
CuM)= 2, (Adm) (@@ (m))] 27 )
=S(M)+ 2 w(@(m), ... g™ (m))logI(m),

If we now split each bin into. new bins(and thus multiply (32)

the number of bins by factor) the probability(26) changes
accordingly and we obtain
additional dependence an would indicate that the distribution
®(qq, ...,qy) is singular(see, e.g.[13]).
8As explained in Sec. |, we are considering only entropy related to **We use quotation marks to emphasize that, as explained in Sec.
the distribution of particle momenta. The volume fluctuations andl, the entropy we discuss in this paper is not—in general—the ac-
correlations between the position and momentum of a particle areual entropy of the system since it neglects the positions of particles

neglected. in configuration space.
9Although this is the case in the Fermi model of multiparticle °The fluctuations of the volume can be—at least in principle—
production[9]. determined if the HBT correlations are measured for each event.
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COINCIDENCE PROBABILITIES
where FOR POISSON DISTRIBUTION

3 N
F(m):Aéqm: (Ag(M)) 1 @3

v
a | @m? 0 \ '
C2
is the number of states in the bim HereAy(M) denotes the 102 -
size of the(one-dimensionalbin in momentum space of one

particle. 103
Equation(32) relates the entrop$(I") of the considered

system toS(M) — the one measured by discretization into 10-4

M bins. For the simplest case of when all bins used in dis- Sy
cretization are equal to each othEr, does not depend am |

and the last sum in Ed32) can be performed. The result is 10 c

5

1/3A0(M)
S(I')=S(M)+log(I'(m))=S(M)+3N log| v |

(34) !

1 10 100 T

VIl INDEPENDENTLY PRODUCED PARTICLES FIG. 2. Coincidence probabilities for Poisson distribution versus

To assess the practical possibilities of using the propose@verage multiplicity.
method to the actual multiparticle data, we have estimated

— . i pois( )
the coincidence probabilities for a system of particles pro- e have calculated numericaligi®Xn) for 2<k<5.

duced independently. They are shown in Fig. 2, plotted versusOne sees that in
Suppose that the produced particles come in a number ahe range &n=<50 they can be well approximated by the
species, labeled by Then formula
1 k—1
CK=H Ci(f), (39 CE°‘5(F)~(—) . (40)
3\,

so that it is enough to consider one kind of particle.

We now discretize the system by splitting it ink bins which shows that they are not prohibitively small even at

) ) ; ._fairly high multiplicities. We thus conclude that for at least
of size Aq. With this procedure, the state of the system IS he bin one should be able to meas@@g and Cs with a

defined by giving the number of particles in each bin. If reasonable accuracy even for large Systdives, systems
particles are emitted independently, the probability of a y ge sy » SY

. . containing many particlé$).
given state is The situation becomes much worse, however, with the

M increasing number of bins, as easily seen from (86). For
W(nq, ... ,nM)=H P(n;,n;), (36) N=100 and M=10 bins, for example, one obtaing,
=1 ~10 %% and C3~10 '°. The situation improves somewhat
for smaller multiplicities such abl=10 andM =10, where
one hasC,~107° and C3~10 1°. As shown in Sec. VI,
however, the method does not work if the particle multiplic-

whereP(n,n) is the Poisson distribution with averageand
n; is the average number of particles in a bin labéladd is

iven b . . — N

g y ity in one bin falls belown~1/2. Therefore it is limited to a

_ qi+Aq/2 study of rather small regions of phase space.

“i:f dgp(q), (37

gi ~Ag/2 VIIl. APPLICATIONS
where p(q) is the single particle momentum distribution:  We are convinced that systematic measurements of the
fdgp(g)=N with N being the total number of particles. local entropy of multiparticle systems created in high-energy
From Eq.(27) we deduce collisions can provide interesting insights into the physics of

multiparticle production.
M - (i) Since the entropy measures the effective number of
Ce= 2 [W(ng, ... anm)]k:_ﬂl CR™ni), (38)  states of the system, it provides direct information about its
o internal degrees of freedom. This is well known and actually

is — Bor large multiplicities the first term in the asymptotic expan-
Cp0|s(n):§: P(n,n) k (39 g pliciu ymp p
K n [ ] sion of Cy is 1/(v2kmn)*~ 1.
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exploited in numerous models of production of the quark- (v) It should be noted that many of the properties of the
gluon plasmd1,5,4]. Usually, however, the entropy is sim- “true” entropy of the system are also shared by the Renyi
ply estimated from the measured number of parti¢kee,  entropies(19) which can be measured directly, without the
e.g.,[4]). This estimate strongly relies on the assumed theruncertain extrapolation procedure explained in Sec. IV.
mal equilibrium and, moreover, is expected to be valid onlyTherefore, we feel that they should also be treated seriously
in the limit of a very large number of particles. Our method, and estimated as precisely as possible in theoretical calcula-
leading to an independent estimate of the entropy, may thugons concerning multiparticle production. Actually, in some
be used for a verification of the accuracy of the standargases the calculation of Renyi entropies is not more difficult
approach. For instance, the validity of the relatiphswhich — yhap the calculation of the entropy of the system itS&thus

express entropy through the thermal energy density and thg,iging a new, powerful tool for the analysis of multipar-
number of “wounded nucleons{14] can be tested against ticle systems

the entropy estimated from our formulas.

(ii) Most of the models discussing particle production in
heavy ion collisions assume local thermal equilibrium of the
created systerfat least in central collisionsMeasurements IX. FINAL COMMENTS

of entropy allow one to verify this assumption by testing the At this point it may be worthwhile to point out that the
validity of some thermodynamic identities. One of the mostyeasurement of event coincidence probabilities represents
promising ones seems to bé| interesting information about the multiparticle system, inde-
IS(E,N,V) 1 p_endent of its _relation to the Shgnnon entropy. Indeed, it
— A =2 (41  gives valuable information on statistical fluctuations of the
JE NV T system in question and thus may be considered as an alter-
native approach to the problem of “erraticity’15]. It seems
where both the left-hand sidéh.s) and r.h.s. can be esti- tg pe a more detailed measure of even-by-event fluctuations
mated from the dat It would be very interesting therefore than the distribution of théhorizontally averagedfactorial
to study Eq.(41) in different phase-space regions, and with moments[15]. The weak point is that the method seems
varying impact parameter of collisions in order to establishappjicable only to a small part of the available phase space.
the region where the aSSUmption of thermal equilibl’ium has gome averaging procedure may thus turn out to be necessary
chance to be reasonalflet us also note that one may as well zisg in this case.
envisage an application of this test to “elementarg”e” It is also worthwhile to emphasize that the event coinci-
and pp collisions and thus verify the interesting hypothesis ofjence probabilities are sensitive to an entirely different re-
Beccatini[5]). gion of multiparticle spectrum than the widely used factorial
~ (iii) If the thermal equilibrium is verified, one may use the moments[13]. Indeed, whereas factorial moments are sensi-
identity tive mostly to the large multiplicity tail of the spectrum, the
coincidence probabilities obtain the largest contributions
JS(E.N,V) (42) from the region where the probability distribution is maxi-
N Ev mal. The two methods thus seem complementary to each
other and should best be used in parallel to obtain the maxi-
to estimate the chemical potential of the produced particlesmnum of information.
This would be another important ingredient in model build-
ing.
(iv) The method proposed in the present paper allows one X. CONCLUSIONS
to measure the entropy of systems far from equilibrium. This
certainly extends the possibilities of treating multiparticle  In conclusion, we have proposed a generalization of Ma’s
production phenomena by the methods of statistical physic&oincidence method of entropy determination. It requires
For example, the long debated problem as to what exterfieasurements of coincidences of ,2,3. configurations.
particle production in heavy ion collisions can be treated as 4he new method can be applied to a more general class of
simple superposition of nucleon-nucleon collisions may besystems. In particular, thermodynamical equilibrium is not

very effectively tested. necessary. -
The method seems well adapted to the analysis of local

properties of multiparticle states produced in high-energy
collisions. It may thus turn out to be useful for an investiga-

—I=

Y“This formula is valid under the assumption of a fixed number of
particles,N, and a fixed volumey, where the equilibrium is sup-
posed to be established. The number of particles can be measureqSE ¢ h findt-= 1(1+ 1/a+ 1/a?
but it is difficult to have direct access to the volume. We can con- g or a photon gas one find#,=3(1+1/g+1/q
jecture, however, that a selection of a well defined sample of events 1/a7)s.
will come from similar volumes; in fact it is hard to imagine that it  *6An interesting possibility would be to study twor more dis-
could be otherwise. If this is indeed the case, i.e., if the fluctuationgonnected regions of available phase space, with such a measure-
of the volume are not too large, it can be measured from the HBTment being sensitive to tHeng rangecorrelations in the multipar-
correlations. ticle system.
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tion of the thermodynamic properties of the dense hadroni®iscussions with Hans Feldmeier, Hendrik van Hees,

matter and/or quark-gluon plasma. Jorn Knoll, Jacek Wosiek, and Kacper Zalewski are highly

appreciated. A.B. thanks W. Noerenberg for the kind

hospitality of the GSI Theory Group where part of this work
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