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Color superconductivity in weak coupling
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We derive perturbatively the gap equations for a color-superconducting condensate with total spinJ50 in
dense QCD. At zero temperature, we confirm the results of Son for the dependence of the condensate on the
coupling constant, and compute the prefactor to leading logarithmic accuracy. At nonzero temperature, we find
that to leading order in weak coupling, the temperature dependence of the condensate is identical to that in
BCS-like theories. The condensates for total spinJ51 are classified; to leading logarithmic accuracy these
condensates are of the same order as those of spinJ50.

PACS number~s!: 12.38.Mh, 24.85.1p
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I. INTRODUCTION

Cooper’s theorem@1–3# implies that if there is an attrac
tive interaction in a cold Fermi sea, the system is unsta
with respect to the formation of a particle-particle conde
sate. In QCD, single-gluon exchange between quarks of
ferent color generates an attractive interaction in the co
antitriplet channel@4#. Thus, it appears unavoidable th
color superconductivity occurs in dense quark matter wh
is sufficiently cold @5–20#. How a dense quark phas
matches onto hadronic matter is difficult to address@7,11#. In
particular, while a quark-quark condensate may form, s
condensation competes with the tendency of a quark-qu
pair to bind with a third quark, to form a color-singlet ha
ron.

One way of understanding color superconductivity is
compute at very high densities, where by asymptotic fr
dom, perturbation theory can be used. At nonzero temp
ture, but zero quark density, it is well known that perturb
tion theory is a particularly bad approximation@21#. If g is
the coupling constant for QCD, the free energy is not
expansion ing2, but only in g, with a series which is well
behaved only forg<1. In contrast, at zero temperature a
nonzero quark density, the free energy is an expansio
g2 ln(1/g), and appears to be well behaved for much lar
values of the coupling constant, up to values ofg<4 @22#.
Similar conclusions can be reached by comparing the gl
‘‘mass,’’ mg;gm or ;gT, to the chemical potential,m, or
the temperature,T @15#. Thus for cold, dense quark matte
perturbation theory might give us information which n
even lattice QCD calculations can provide.

Color superconductivity is rather different from ordina
superconductivity, as in the model of Bardeen, Cooper,
Schrieffer~BCS! @1–3#. In BCS-like theories, superconduc
tivity is determined by infrared divergences which arise
the scattering between two fermions close to the Fermi
face: the initial fermions, with momentak and 2k, scatter
into a pair with momentak8 and2k8. Summing up bubble

*Email address: pisarski@bnl.gov
†Email address: rischke@bnl.gov
0556-2821/2000/61~7!/074017~22!/$15.00 61 0740
le
-
if-
r-

h

h
rk

-
a-
-

n

in
r

n

d

r-

diagrams generates an instability which is only cured b
fermion-fermion condensate. If the fermions interact throu
a point-like four-fermion coupling, though, there is no co
relation between the initial and outgoing momenta,k andk8.
In the gap equation, this implies that the gap function
constant with respect to momentum, as long as the mom
are near the Fermi surface.

In QCD, however, scattering through single-gluon e
change strongly correlates the direction of the in- and out
ing quarks: there is a logarithmic divergence for forwar
angle scattering,;*du/u. This extra logarithm from
forward scattering implies that the gap is not an exponen
in 1/g2, as in BCS-like theories, but only in 1/g @7,8,13,15#.
As a consequence, the gap function is no longer constan
a function of momentum, even about the Fermi surface.

The logarithmic divergence for forward-angle scatteri
arises because in cold, dense quark matter, static, mag
interactions are not screened through a ‘‘magnetic mas
This is very different from a system of hot quarks and g
ons. Over large distances, a hot system is essentially t
dimensional; gluons in three dimensions have powerlike
frared divergences, which screen static, magnetic fluctuat
through a magnetic mass;g2T. In contrast, loop corrections
in cold, dense quark matter are essentially four dimensio
infrared divergences are at worst logarithmic, so that a
magnetic mass is at best;m exp(21/g2), which is much
smaller than the scale for color superconductivi
;m exp(21/g) @7,8#.

The dependence of the zero-temperature co
superconducting spin-zero condensatef0 on the QCD cou-
pling constantg was first computed by Son@8#, who used a
beautiful renormalization-group analysis to show that

f052
b0

g5
m expS 2

p

2ḡ
D . ~1!

Here ḡ5g/(3A2p) arises naturally from the solution, as
suming three colors. In Son’s result, 2b0 is a pure number of
order 1.

In this paper we derive the gap equations for a conden
with total spinJ50 andNf52 massless quark flavors, at a
©2000 The American Physical Society17-1
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ROBERT D. PISARSKI AND DIRK H. RISCHKE PHYSICAL REVIEW D61 074017
arbitrary temperatureT. Our derivation is perturbative, i.e
g!1. In this case there are three scales in cold, dense Q
the chemical potentialm, the gluon massmg;gm, and the
color-superconducting condensatef0;m exp(21/g), and
they are naturally ordered,m@mg@f0.

We solve the gap equations to ‘‘leading logarithmic acc
racy,’’ by which we mean the following. In the gap equ
tions, the leading terms are; ln(m/f0). These terms generat
the exponential in 1/g in Eq. ~1!; therefore ln(m/f0) is of
order 1/g. There are also leading logarithmic term
; ln(m/mg), which are; ln(1/g) plus a constant. The ln(1/g)
gives rise to the prefactor 1/g5, while the constant contrib
utes tob0. For Nf flavors of massless quarks we find

b05256p4S 2

Nf
D 5/2

b08 . ~2!

There are other terms in the gap equations, which do
arise from ln(m/mg). These terms are of order 1, and thus
the same order as the constant term originating from
logarithm ln(m/mg). Hence they contribute in the same wa
to b0. We do not compute these, so that in Eq.~2! there is an
undetermined constantb08 .

Our results were described previously@15#, and agree
completely with an independent analysis by Scha¨fer and
Wilczek @13#; they also overlap with those of Honget al.
@12#. The factorNf

25/2 in Eq. ~2! originates from theNf de-
pendence ofmg ; however,b08 will also depend onNf @19#.

Even though we do not determineb08 , it is very interest-
ing that the numerical value ofb0 /b08 is large. This implies
that, for chemical potentials of order;1 GeV, the gap can
be of order 100 MeV@13,15#. Such large values of the ga
are in accord with previous estimates obtained wit
Nambu–Jona-Lasinio models@5#, and are much larger tha
original estimates by Bailin and Love,f0;1 MeV @4#.

We then solve the gap equations at nonzero tempera
We find a surprising result: while the detailed form of t
gap function is very different in QCD versus BCS-like the
ries, the temperature dependence of the condensate—th
mensionless ratio of the condensate at a temperatureT to that
at zero temperature,f(T)/f0—is identical to BCS-type
theories. In particular, the ratio of the critical temperatu
Tc /f0.0.567, is as in BCS@1,2#. Our result forf(T)/f0 is
valid to leading order in weak coupling, even though w
cannot compute the overall magnitude off0, i.e.,b08 . In our
mean-field approximation the transition is of second ord
but the transition can be driven first order by critical fluctu
tions near the would-be critical point@7#.

We then classify the condensates with total spinJ51.
Following our classification of condensates withJ50, which
employed projectors for chirality, helicity, and energy, w
show that there are two types of spin-1 condensates, lo
tudinal and transverse. As an example, we solve the
equations forNf51 and find

f152
b1

g5
m expS 2

p

2ḡ
D , b1[

b0

b08
b18 . ~3!
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That is, not only is the parametric dependence of the sp
condensates ong the same as for spin 0, as argued origina
by Son @8#, but to leading logarithmic accuracy, even th
constant in front is the same. We do not expect thatb18 , the
undetermined constant analogous tob08 , is the same. Surely
b18 is smaller thanb08 , and depends on whether the conde
sate is longitudinal or transverse. This is very different fro
BCS-like theories, where condensates with higher spin
typically exponentially suppressed. In QCD, higher-sp
condensates are only suppressed by a pure number.

Nevertheless, one dramatic implication of our results
that superconductivity in QCD may be very unlike one
intuition from nonrelativistic systems. Instead of higher-sp
gaps being much smaller, they may be relatively large, wh
is important for phenomenology. Consider, for instance
quark star withu, d, ands quarks. In the limit of high den-
sities, when the strange quark massms is negligible, the
number ofu, d, ands quarks are equal. Then charge neutr
ity is automatic, and the preferred color-superconduct
condensates are of spinJ50, with color-flavor locking@6#.
For realistic densities, however, the chemical potentials
u, d, and s will not be equal. The strange quark chemic
potential differs from the up and down quark chemical p
tentials due toms@mu , md . The up and down quark chem
cal potentials differ on account of charge neutrality. The
effects suppress the color-antitripletJ50 condensates, be
cause they are composed of quarks with different flavor.
the other hand, the color-antitripletJ51 condensates ma
form between quarks of the same flavor, and are not s
pressed if the chemical potentials of the various flavors
fer.

This paper is organized as follows. In Sec. II, we deri
the gap equations for a spinJ50 condensate ofNf52 mass-
less flavors at an arbitrary temperatureT. In Sec. III we solve
these equations to leading logarithmic accuracy, first aT
50, and then at nonzeroT. In Sec. IV we classify the pos
sible spinJ51 condensates, and solve the gap equations
Nf51. Section V concludes this work with a discussion
higher-order effects which contribute tob08 and b18 . Our
units are\5c51; the metric tensor isgmn5diag (1,2,
2,2). Four-vectors are denoted by capital letters,K[Km

5(k0,k), andk[uku, while k[k/k.

II. GAP EQUATIONS

In general, a color-superconducting condensateF i j , f g
1 is a

Nc3Nc matrix in fundamental color space (i , j 51, . . . ,Nc),
a Nf3Nf matrix in flavor space (f ,g51, . . . ,Nf), and a 4
34 matrix in Dirac space@7#. As shown in@7#, for Nf52 a
color-antitriplet condensate is a flavor singlet,

F i j , f g
1 [e f gF i j

1[e f g e i jkFk
1 . ~4!

By a global color rotation, we can always chooseFk
1 to

point in the 3-direction in color space,Fk
1[dk3 F1. For

Nf53, even if we assume that the dominant condensate
color antitriplet, there is always a small admixture of a co
sextet@16#. The color-antitriplet condensate is a flavor an
7-2
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COLOR SUPERCONDUCTIVITY IN WEAK COUPLING PHYSICAL REVIEW D61 074017
triplet, and the color sextet a flavor sextet@7,19#. In this
paper, for simplicity we consider only the caseNf52.

The gap equation for a color-superconducting conden
of massless fermions was derived in@9# @cf. Eq. ~A35! of
@9##. At a nonzero temperatureT, this equation reads~we
suppress fundamental color and flavor indices for the m
ment!

F1~K !5g2
T

V (
Q

Ḡa
mDmn

ab~K2Q!

3G0
2~Q!F1~Q!G1~Q!Gb

n . ~5!

Here,T/V(Q[T(n*d3q/(2p)3 in the infinite-volume limit
@n labels the Matsubara frequenciesvn[(2n11)pT[ iq0#,
and a summation over Lorentz indicesm,n as well as adjoint
color indicesa,b51, . . . ,Nc

221 is implied; Nc53 is the
number of colors.Dmn

ab is the gluon propagator,

G0
6~Q![~g•Q6mg0!21 ~6!

is the propagator forfree, massless particles~upper sign! or
charge-conjugate particles~lower sign!,

G6[$@G0
6#212S6%21 ~7!

is the propagator forquasiparticles~upper sign! or charge-
conjugate quasiparticles~lower sign!, and

S6[F7G0
7F6 ~8!

their self-energy arising from the interaction with the co
densate. The charge-conjugate condensate is

F2[g0~F1!†g0 , ~9!

and the vertices are

Ga
m[Tagm, Ḡa

m[C~Ga
m!TC21[2gmTa

T , ~10!

wheregm are the Dirac matrices andTa the Gell-Mann ma-
trices,C52C†52CT52C215 ig2g0 is the charge conju-
gation matrix.

In the following, we analyze the flavor, color, and Dira
structure of the gap equation~5!. For Nf52, the color-flavor
structure of the condensate~4! does not mix color and flavo
indices, and thus the analysis of flavor and color can be d
separately. This is different forNf53, where color rotations
are locked to flavor rotations.

A. Flavor structure

We first discuss the flavor structure of Eq.~5!. Fundamen-
tal color indices will be suppressed for the moment. The f
propagator~6! is diagonal in flavor,

G0 f g
6 ~Q![d f gG0

6~Q![d f g~g•Q6mg0!21, ~11!

and so is the self-energy,
07401
te

-

-

ne

e

S f g
1 5g0~F1! f h

† g0G0 hi
2 F ig

15eh fdhie igg0~F1!†g0G0
2F1

5d f gg0~F1!†g0G0
2F1[d f gS1, ~12!

and thusGf g
1 5d f gG1. Therefore, both the left- and right

hand sides of Eq.~5! are simply proportional toe f g : the
flavor structure of the gap equation is trivial in QCD wi
Nf52 flavors, and will thus not be explicitly denoted in th
following.

B. Color structure

The free propagator~6! is diagonal in the color indices fo
the fundamental representation,

G0i j
6 ~Q![d i j G0

6~Q![d i j ~g•Q6mg0!21. ~13!

The self-energyS i j
1 is also diagonal, but not all diagona

elements are equal:

S i j
15g0~F1! ik

† g0G0kl
2 F l j

15eki3dkle l j 3g0~F1!†g0G0
2F1

[~d i j 2d i3d j 3!S1; ~14!

the self-energy for quarks with color 3 vanishes. This is e
to understand. Let us first note that, according to Eq.~A17!

of @9#, the condensateF1 is actually proportional tôcCc̄&,
while F2;^cc̄C&. (cC[Cc̄T is the charge-conjugate fer
mion field.! Thus, according to Eq.~8!, the self-energyS1

arises from the following process: a quark with, let us s
color 1 annihilates with a corresponding antiquark inF1,
creating a charge-conjugate quark with color 2. This quar
propagated with the charge-conjugate propagatorG0

2 , and
annihilates with a charge-conjugate antiquark of color 2
F2, whereby a quark with color 1 is emitted. As only quar
with colors 1 and 2 condense, it is not possible to annihil
and create quarks with color 3 in this process; thus the la
do not attain a self-energy.

One can now compute the color structure of the quasip
ticle propagator,

Gi j
15$d i j @G0

1#212~d i j 2d i3d j 3!S1%21

5~d i j 2d i3d j 3!G11d i3d j 3G0
1 , ~15!

whereG1[$@G0
1#212S1%21.

When inserted into the gap equation~5!, the terms
;d i3 d j 3 in Eq. ~15! vanish, asF i j

1;e i j 3. The gap equation
becomes

e i j 3F1~K !52~T1i
a T2 j

b 2T2i
a T1 j

b !g2
T

V (
Q

gmDmn
ab~K2Q!

3G0
2~Q!F1~Q!G1~Q!gn. ~16!

From the explicit form of the Gell-Mann matrices we no
infer that only gluons with adjoint colors 1, 2, 3, and 8 pa
ticipate in the gap equation.

A color-superconducting condensateFk
1;dk3 breaks

SU(3)c to SU(2)c ; gluons 1, 2, and 3 then correspond to t
generators of the unbroken subgroup, and thus remain m
7-3
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ROBERT D. PISARSKI AND DIRK H. RISCHKE PHYSICAL REVIEW D61 074017
less, while the 8th gluon attains a mass through
Anderson-Higgs effect. DenotingDmn

11 5Dmn
22 5Dmn

33 [Dmn

andDmn
88 [D̃mn , we obtain

F1~K !5
3

4
g2

T

V (
Q

gmFDmn~K2Q!2
1

9
D̃mn~K2Q!G

3G0
2~Q!F1~Q!G1~Q!gn, ~17!

where a common factore i j 3 has been dropped from bot
sides of the gap equation.

In a complete treatment of the gap equations the effec
the condensate on the gluon propagator has to be inclu
@20#. In contrast, we use the gluon propagator in the ‘‘ha
dense loop’’ ~HDL! approximation @23–26#. The HDL
propagator introduces a gluon massmg;gm. Since in per-
turbation theory the scale of the condensatef0 is much
smaller thanmg , it is reasonable to expect that, to a fir
approximation, we can neglect the effects of the conden
on the gluon propagator. A more detailed explanation
given below. We consequently assumeD̃mn[Dmn , and ob-
tain

F1~K !5
2

3
g2

T

V (
Q

gmDmn~K2Q!

3G0
2~Q!F1~Q!G1~Q!gn. ~18!

C. Dirac structure

In @9# we have shown that the gap matrixF1 for a con-
densate with total spinJ50 has the form

J50: F1~K !5 (
h5r ,l

(
s56

(
e56

fhs
e ~K !P hs

e ~k!. ~19!

The 434 matricesP hs
e (k) are defined as

P hs
e ~k![PhPs~k!Le~k!, ~20!

wherePh are projectors for chirality,h5r ,l ,

Pr5
11g5

2
, Pl 5

12g5

2
, ~21!

while

Ps~k!5
11sg5g0g• k̂

2
, s56, ~22!

are projectors for helicity, and

Le~k!5
11e~bkg0g• k̂1akg0!

2
, e56, ~23!

are projectors for energy, bk[k/Ek , ak[m/Ek , Ek

[Ak21m2. While theP hs
e (k) are composed of projectors

they are not projectors themselves@cf. Eq. ~B29! in @9##, and
thus were termed ‘‘quasiprojectors’’ in@9#.
07401
e

of
ed

te
s

In the ultrarelativistic limit,m50, the energy projectors
simplify to

m50: Le~k!5
11eg0g• k̂

2
. ~24!

This has three major consequences. First, the quasiproje
~20! become true projectors@cf. Eq. ~B29! of @9##. Second,
Pr 1

2 5Pr 2
1 5Pl 1

1 5Pl 2
2 [0, expressing the fact that right

handed, positive-helicity particles cannot have negative
ergy, etc.@cf. Eq. ~B30! of @9##. Third, either the chirality,or
the helicity, or the energy projector in Eq.~20! becomes
superfluous@cf. Eq. ~B31! of @9##. In the following, we omit
the helicity projector and use just chirality and energy p
jectors,

m50: P hs
e ~k!→P h

e~k![P hLe~k!. ~25!

Then, Eq.~19! simplifies to@cf. Eq. ~8! of @9##

J50,m50: F1~K !5 (
h5r ,l

(
e56

fh
e~K !P h

e~k!. ~26!

The quasiparticle propagator assumes the form@cf. Eq. ~15!
of @9##

G1~Q!5 (
h5r ,l

(
e56

P h
e~q!

q0
22@eq

e~fh
e!#2

@G0
2~Q!#21, ~27!

whereeq
e(f)[A(q2em)21ufu2. From Eq.~26! of @9# we

then infer that the gap equation~18! can be written in the
form

F1~K !5
2

3
g2

T

V (
Q

gmDmn~K2Q!

3 (
h5r ,l

(
e56

fh
e~Q!

q0
22@eq

e~fh
e!#2

P2h
2e~q!gn, ~28!

where2h5l , if h5r , and2h5r , if h5l .
With the help of the projectorsP h

e(k) one can derive gap
equations for the individual gap functionsfh

e ,

fh
e~K !5

2

3
g2

T

V (
Q

Dmn~K2Q!

3H fh
e~Q!

q0
22@eq

e~fh
e!#2

Tr@P h
e~k!gmP2h

2e~q!gn#

1
fh

2e~Q!

q0
22@eq

2e~fh
2e!#2

Tr@P h
e~k!gmP2h

e ~q!gn#J .

~29!

To obtain this result we have usedP hgm5gmP2h and
PhP2h50, so that the gap equations for right- and le
handed condensates decouple. This is a consequence o
7-4
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U(1)A symmetry of the QCD Lagrangian, which is expect
to be effectively restored at asymptotically high densit
@7,14#.

In the Coulomb gauge, the HDL propagator is@23,24#

D00~P!5D l~P!1jC

p0
2

p4
, D0i~P!5jC

p0pi

p4
,

D i j ~P!5~d i j 2 p̂i p̂ j !D t~P!1jC

p̂i p̂ j

p2
. ~30!

We set the gauge parameterjC[0. We shall show later tha
our results are manifestly gauge invariant to leading logar
mic accuracy. The longitudinal and transverse propaga
D l ,t are defined in Eqs.~33! below.

The traces in Eq.~29! are readily evaluated. We need th
terms

Tr@P hLe~k!g0L7e~q!g0#5
16 k̂•q̂

2
, ~31a!

(
i

Tr@P hLe~k!g iL
7e~q!g i #52

37 k̂•q̂

2
, ~31b!

Tr@P hLe~k!g•p̂L7e~q!g•p̂#52
16 k̂•q̂

2

~k7q!2

p2
,

~31c!

wherep5k2q. Obviously, the final result is independent
the chirality projector. We therefore conclude that the g
equations~29! for right- and left-handed gap functions a
identical. This means that right- and left-handed gaps
equal up to a complex phase factor exp(iu). Condensation
fixes the value ofu and breaksU(1)A spontaneously. As
discussed in@7,14# this leads to spontaneous breaking of p
ity.

The gap equations for either right- or left-handed g
functions read

fh
e~K !5

2

3
g2

T

V (
Q

H fh
e~Q!

q0
22@eq

e~fh
e!#2 FD l~K2Q!

11 k̂•q̂

2

1D t~K2Q!S 2
32 k̂•q̂

2
1

11 k̂•q̂

2

~k2q!2

~k2q!2D G
1

fh
2e~Q!

q0
22@eq

2e~fh
2e!#2 FD l~K2Q!

12 k̂•q̂

2

1D t~K2Q!S 2
31 k̂•q̂

2
1

12 k̂•q̂

2

~k1q!2

~k2q!2D G J .

~32!

The gap equations involve singularities from both the qu
and gluon propagators. The poles of 1/$q0

22@eq
e(fh

e)#2% give
a residue;1/eq

e(fh
e). Remember, though, that the quasipa
07401
s

-
rs

p

e

-

p

k

-

ticle energyeq
1 is very small near the Fermi surface,em

1

5ufh
1u. The quasi-antiparticle energyeq

2 , however, is al-
ways larger thanm. Therefore, in weak coupling, the dom
nant terms arise from the quasiparticle polesq0

56eq
1(fh

1) @9#, and the contribution from quasi-antipartic
poles can be neglected. Consequently, we do not nee
solve Eq.~32! for the quasi-antiparticle gaps,fh

2 , in order to
determine the solution for the quasiparticle gaps,fh

1 . In the
following, we drop the subscripth and superscript1 to sim-
plify the notation, and denotefh

1(K)[f(K).

D. Spectral representations

To perform the Matsubara sum over quark energiesq0
52 i (2n11)pT, we introduce spectral representations. F
the gluon propagators@23,24#,

D l~P![2
1

p2
1E

0

1/T

dt ep0t D l~t,p!,

D t~P![E
0

1/T

dt ep0t D t~t,p!, ~33a!

D l ,t~t,p![E
0

`

dvr l ,t~v,p!$@11nB~v/T!#e2vt

1nB~v/T!evt%, ~33b!

where nB(x)[1/(ex21) is the Bose-Einstein distribution
function. The term21/p2 in the longitudinal propagator can
cels the contribution ofD l(P) at p0→` @24#. The spectral
densities are given by@23,24#

r l ,t~v,p!5r l ,t
pole~v,p!d@v2v l ,t~p!#1r l ,t

cut~v,p!u~p2v!,
~34a!

r l
pole~v,p!5

v~v22p2!

p2~p213mg
22v2!

, ~34b!

r l
cut~v,p!5

2M2

p

v

p H Fp213mg
2S 12

v

2p
lnUp1v

p2vU D G2

1S 2M2
v

p D 2J 21

, ~34c!

r t
pole~v,p!5

v~v22p2!

3mg
2v22~v22p2!2

, ~34d!

r t
cut~v,p!5

M2

p

v

p

p2

p22v2 H F p21
3

2
mg

2S v2

p22v2

1
v

2p
lnUp1v

p2vU D G 2

1S M2
v

p D 2J 21

. ~34e!

The basic parameter of the HDL propagators is the glu
mass
7-5
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mg
2[Nf

g2m2

6p2
1S Nc1

Nf

2 D g2T2

9
. ~35!

We also found it convenient to introduce

M2[
3p

4
mg

2.2.36mg
2 . ~36!

The functionsv l ,t(p) are the solutions of the equations

p213mg
2F12

v l

2p
lnS v l1p

v l2pD G50,

~37a!

p2~v t
22p2!2

3

2
mg

2Fv t
21

v t

2p
~p22v t

2!lnS v t1p

v t2pD G50,

~37b!

and define the dispersion relations for longitudinal and tra
verse gluons, respectively. They satisfyv l ,t(p)>mg .

We argue later that the phase-space region which do
nates the gap integrals is the nearly static, small-momen
limit. The gluon energies are on the order of the gap,v
;f, while the gluon momentap are much larger thanv, but
much smaller thanmg . In this limit, v!p!mg ,

r l
cut~v,p!.

2M2

p

v

p

1

~p213mg
2!2

r t
cut~v,p!.

M2

p

vp

p61~M2v!2
. ~38!
o
is
a
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We also introduce a spectral representation for the qu
tity

J~Q![
f~Q!

q0
22@eq~f!#2

[E
0

1/T

dt eq0t J~t,q!. ~39!

Neglecting the singularities off(Q) in the complexq0
plane, and assumingf(q0 ,q) to be an even function ofq0,
we find

J~t,q![E
0

`

dvr̃~v,q!$@12nF~v/T!#e2vt

2nF~v/T!evt%, ~40!

where

r̃~v,q![2
f~v,q!

2v
d~v2eq!, eq[eq~f!, ~41!

and nF(x)51/(ex11) is the Fermi-Dirac distribution func
tion.

By neglecting the singularities off(Q), the only contri-
bution to the spectral representation ofJ(Q) is from the
poles of 1/$q0

22@eq(f)#2%, which generates the delta func
tion in the spectral density~41!. This forces the energy in the
gap functionf(q0 ,q) to lie on the quasiparticle mass she
q05eq(f).

The Matsubara sums overq0 can now be computed a
(p[k2q)
T(
q0

D l~K2Q!J~Q!52
f~eq ,q!

2eq
H 2

1

2
tanhS eq

2TD 2

p2
1E

0

`

dvr l~v,p!F1

2
tanhS eq

2TD S 1

k01v1eq
2

1

k02v2eq

2
1

k02v1eq
1

1

k01v2eq
D1

1

2
cothS v

2TD S 1

k01v1eq
2

1

k02v2eq
1

1

k02v1eq

2
1

k01v2eq
D G J , ~42a!

T(
q0

D t~K2Q!J~Q!52
f~eq ,q!

2eq
E

0

`

dvr t~v,p!F1

2
tanhS eq

2TD S 1

k01v1eq
2

1

k02v2eq
2

1

k02v1eq
1

1

k01v2eq
D

1
1

2
cothS v

2TD S 1

k01v1eq
2

1

k02v2eq
1

1

k02v1eq
2

1

k01v2eq
D G , ~42b!
where we have made use of Eq.~41! andek0 /T[21, since
k052 i (2n11)pT.

E. Analytic continuation

In field theories, the only physical quantities are those
the mass shell, such asS-matrix elements. In our case, th
implies that we need the gap function not for Euclidean v
n

l-

ues of the energy,k052 i (2n11)pT, but on the quasipar-
ticle mass shell, for real values ofk05ek . This is achieved
by analytically continuingk0→ek1 ih @2#. The analytic con-
tinuation of the gap equation~32! introduces a termih in the
energy denominators in Eq.~42!. As 1/(x1 ih)[P(1/x)
2 ipd(x) ~where P stands for the principal value!, this gen-
erates an imaginary part for the functionf(ek ,k). As shown
below, this imaginary part is down byg relative to the real
7-6
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part. This justifies neglecting the singularities off(Q) in
deriving Eq. ~42!. In the following, implicitly we take the
principal value of all energy denominators. Finally, since
gap functionf(k0 ,k) does not depend on the orientation
the 3-vectork, but only on its magnitude,k @cf. Eq.~32!#, the
on-shell gap function is a function ofk only, f(ek ,k)
[f(ek ,k)[fk .

F. Contribution from longitudinal gluons

The contribution from longitudinal gluons is given by E
~42a!. In general, this equation can only be evaluated
merically, using the full expressions~34! for the spectral
densities. We can proceed analytically by noting that, due
the factor 1/eq , the integral over momentaq is dominated by
the region close to the Fermi surface. In the following,
shall therefore assume that the momentak andq are close to
the Fermi surface, such thatek;eq!mg . Now rewrite

1

v1eq1ek
1

1

v1eq2ek
1

1

v2~eq1ek!
1

1

v2~eq2ek!

5
1

v F42
eq1ek

v1eq1ek
2

eq2ek

v1eq2ek
1

eq1ek

v2~eq1ek!

1
eq2ek

v2~eq2ek!
G , ~43!

and make use of the sum rule@23,24#

2E
0

`

dv
r l~v,p!

v
5

1

p2
1D l~0,p!, D l~0,p![2

1

p213mg
2

,

~44!

to obtain

T(
q0

D l~K2Q!J~Q!

52
f~eq ,q!

2eq
H 1

2
tanhS eq

2TD F2
2

p213mg
2

1Jl~k,q!G
1Kl~k,q!J , ~45!

where

Jl~k,q![E
0

`

dv
r l~v,p!

v F eq1ek

v2~eq1ek!
2

eq1ek

v1eq1ek

1
eq2ek

v2~eq2ek!
2

eq2ek

v1eq2ek
G ~46!

and
07401
e

-

to

Kl~k,q![E
0

`

dvr l~v,p!
1

2
cothS v

2TD F 1

v1eq1ek

1
1

v1eq2ek
2

1

v2~eq1ek!
2

1

v2~eq2ek!
G .
~47!

The integralJl consists of two parts, one from the pole ter
in the spectral density, and one from the cut term. The p
term is

J l
pole~k,q!5

1

p2

v l
22p2

p213mg
22v l

2 F eq1ek

v l2~eq1ek!
2

eq1ek

v l1eq1ek

1
eq2ek

v l2~eq2ek!
2

eq2ek

v l1eq2ek
G . ~48!

As v l>mg@ek;eq , we may expand the energy denomin
tors aroundv l ,

J l
pole~k,q!.

1

p2

v l
22p2

p213mg
22v l

2
4

eq
21ek

2

v l
2

. ~49!

This contribution is quadratic ineq /v l;ek /v l!1 and thus
negligible.

The cut term is estimated using the approximate form
the spectral density~38!,

J l
cut~k,q!.

2M2

pp

1

~p213mg
2!2E0

p

dvF eq1ek

v2~eq1ek!

2
eq1ek

v1eq1ek
1

eq2ek

v2~eq2ek!
2

eq2ek

v1eq2ek
G

5
2M2

pp

1

~p213mg
2!2 F ~eq1ek!lnUeq1ek2p

eq1ek1pU
1~eq2ek!lnUeq2ek2p

eq2ek1pUG . ~50!

This integral is proportional to factorseq6ek , which para-
metrically cancel the prefactor 1/eq in Eq. ~45!. ~This is true
except forp→0, where these factors cancel when expand
the logarithms. However, the Jacobian of the angular integ
tion in the gap equation,*d cosu;*dpp, suppresses this
contribution.! It is thus negligible compared to the term
;2/(p213mg

2) in Eq. ~45!.
We now turn to evaluateKl(k,q). After expanding the

energy denominators in Eq.~47! aroundv l>mg@ek;eq ,
the pole part reads

K l
pole~k,q!.2

1

p2

v l
22p2

p213mg
22v l

2

1

2
cothS v l

2TD4
eq

v l
.

~51!

The range of temperatures of interest is limited byTc , the
critical temperature for the onset of color superconductiv
7-7
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As Tc;f0!mg<v l , coth(vl/2T);1. The factoreq cancels
the prefactor in Eq.~45!, such thatK l

pole is negligible com-
pared to the term;2/(p213mg

2) in Eq. ~45!.
To estimate the cut term, we use the approximate exp

sion ~38!, and employ a relation similar to Eq.~43!,

1

v1eq1ek
1

1

v1eq2ek
2

1

v2~eq1ek!
2

1

v2~eq2ek!

52
1

v F eq1ek

v1eq1ek
1

eq2ek

v1eq2ek

1
eq1ek

v2~eq1ek!
1

eq2ek

v2~eq2ek!
G , ~52!

to obtain

K l
cut~k,q!.2

2M2

pp

1

~p213mg
2!2E0

p

dv
1

2
cothS v

2TD
3F eq1ek

v1eq1ek
1

eq2ek

v1eq2ek
1

eq1ek

v2~eq1ek!

1
eq2ek

v2~eq2ek!
G . ~53!

For v of order T or larger, this contribution is small, sinc
then coth(v/2T);1, and thus all terms are proportional
eq6ek . For v!T, however, the large~classical! occupation
number density of gluons can enhance this contribution
the classical limit, one approximates coth(v/2T).2T/v. Si-
multaneously, as the range of validity of this approximati
is v!T, the upper limit of the integral should now be r
placed byp* [min(T,p). Reverting the step~52!, we obtain

K l
cut~k,q!.

2M2T

pp

1

~p213mg
2!2

3 lnU p* 1eq1ek

p* 2~eq1ek!

p* 1eq2ek

p* 2~eq2ek!
U . ~54!

For T→0, we may expand the logarithm to show that th
contribution is quadratically small inT. On the other hand
for T→Tc , close to the Fermi surfaceeq;ek;f→0, and
the logarithm can be expanded forp* @eq6ek . The result is
proportional toeq6ek , which cancels the prefactor 1/eq ,
and thus suppresses this contribution. We shall therefore
glect it in the following.

The final result for the longitudinal contribution is thus

T(
q0

D l~K2Q!J~Q!.
f~eq ,q!

2eq

1

2
tanhS eq

2TD 2

p213mg
2

.

~55!

This result could also have been obtained by simply tak
the static limit of the longitudinal gluon propagator,D l(0,p),
on the left-hand side in Eq.~55!, and performing the Mat-
subara sum directly. We conclude that the contribution
07401
s-

n

e-

g

f

static electric gluons dominates over that of nonstatic elec
gluons. We note that, while the individual terms~49! and
~51! exhibit an apparent infrared divergent prefactor 1/p2,
the sum of all terms is infrared finite, as can be shown
computing the contribution of electric gluons without usin
Eq. ~43!.

G. Contribution from transverse gluons

The contribution from transverse gluons is written in
form similar to Eq.~45!:

T(
q0

D t~K2Q!J~Q!52
f~eq ,q!

2eq
F1

2
tanhS eq

2TDJt~k,q!

1Kt~k,q!G , ~56!

where

Jt~k,q![E
0

`

dvr t~v,p!F 1

v1eq1ek
1

1

v1eq2ek

1
1

v2~eq1ek!
1

1

v2~eq2ek!
G ~57!

and

Kt~k,q![E
0

`

dvr t~v,p!
1

2
cothS v

2TD F 1

v1eq1ek

1
1

v1eq2ek
2

1

v2~eq1ek!
2

1

v2~eq2ek!
G .
~58!

The functionJt consists of a pole and a cut term. In the fir
we expand the energy denominators aroundv t>mg@eq
;ek , to obtain, to leading order ineq6ek ,

J t
pole~k,q!.4

v t
22p2

3mg
2v t

22~v t
22p2!2

. ~59!

For the cut term, we again employ Eq.~38! to obtain

J t
cut~k,q!.

M2p

p E
0

p

dv
v

p61~M2v!2 F 1

v1eq1ek

1
1

v1eq2ek
1

1

v2~eq1ek!
1

1

v2~eq2ek!
G .

~60!

The v integral can be performed analytically. Denotea
[p3/M2. Then
7-8
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J t
cut~k,q!.

p

pM2E0

p

dv
v

v21a2 F 1

v1eq1ek
1

1

v1eq2ek

1
1

v2~eq1ek!
1

1

v2~eq2ek!
G

5
p

pM2 H 2F a

a21~eq1ek!
2

1
a

a21~eq2ek!
2GarctanS p

aD
2

eq1ek

a21~eq1ek!
2

lnU p1eq1ek

p2~eq1ek!
U

2
eq2ek

a21~eq2ek!
2

lnU p1eq2ek

p2~eq2ek!
UJ . ~61!

The terms proportional toeq6ek are of higher order and ca
be neglected, such that

J t
cut~k,q!.F p4

p61M4~eq1ek!
2

1
p4

p61M4~eq2ek!
2G 2

p
arctanS M2

p2 D . ~62!

The arctan cutsJt off for momentap larger than;M . To
make further progress, in the following we replace the m
complicated arctan with a simpleu function cutoff,
2 arctan(M2/p2)/p→u(M2p). However, to retain consistenc
with the sum rule@23,24#

2E
0

`

dv
r t~v,p!

v
5

1

p2
, ~63!

we also have to modify the result for the pole term~59!. To
enact the modification, note thatJt/2 is identical to the left-
hand side of the sum rule~63!, when we seteq5ek50 in Eq.
~57!. Thus, the most simple choice is

J t
pole~k,q!.

2

p2
u~p2M !, ~64!

since then, foreq5ek50,

Jt~k,q!5J t
pole~k,q!1J t

cut~k,q![
2

p2
. ~65!

The functionKt also consists of a pole and a cut term.
the first, we expand the energy denominators aroundv t
>mg@eq;ek ,
07401
e

K t
pole~k,q!.2

v t
22p2

3mg
2v t

22~v t
22p2!2

1

2
cothS v t

2TD4eq

v t
.

~66!

As the factoreq cancels the prefactor 1/eq in Eq. ~56!, this
contribution is of higher order and thus negligible.

The cut term is estimated with Eq.~38! to be ~as before,
a5p3/M2)

K t
cut~k,q!.

p

pM2E0

p

dv
v

v21a2

1

2
cothS v

2TD F 1

v1eq1ek

1
1

v1eq2ek
2

1

v2~eq1ek!
2

1

v2~eq2ek!
G .

~67!

For v of orderT or larger, coth(v/2T).1, similar steps that
led to Eq.~61! now show that the final result is proportion
to eq6ek , and thus of higher order. Forv!T, however,

K t
cut~k,q!.

pT

pM2E0

p*
dv

1

v21a2 F 1

v1eq1ek
1

1

v1eq2ek

2
1

v2~eq1ek!
2

1

v2~eq2ek!
G

.
M2

p F pT

p61M4~eq1ek!
2

lnU p* 1eq1ek

p* 2~eq1ek!
U

1
pT

p61M4~eq2ek!
2

lnU p* 1eq2ek

p* 2~eq2ek!
UG , ~68!

where as beforep* 5min(T,p), and terms proportional to
eq6ek have been neglected in the last line. For smallT, an
expansion of the logarithms shows that this contribution
quadratic inT. On the other hand, forT→Tc , an expansion
of the logarithms forp* @eq6ek shows that it is propor-
tional to eq6ek ; it thus parametrically cancels the prefact
1/eq . We shall thus neglect this contribution in the follow
ing.

Our final result for the transverse contribution is therefo

T(
q0

D t~K2Q!J~Q!

.2
f~eq ,q!

2eq

1

2
tanhS eq

2TD H 2

p2
u~p2M !1u~M2p!

3F p4

p61M4~eq1ek!
2

1
p4

p61M4~eq2ek!
2G J .

~69!

H. Gap equation

Collecting the results from the previous subsections, a
replacing the angular integration*d cosu by an integral over
p5uk2qu, the gap equation~32! reads
7-9
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fk5
g2

24p2k
E

m2d

m1d
dq

q

eq
tanhS eq

2TDfq

3E
uk2qu

k1q

dppH 2

p213mg
2

~k1q!22p2

4kq
1F 2

p2
u~p2M !

1u~M2p!S p4

p61M4~eq1ek!
2

1
p4

p61M4~eq2ek!
2D G

3S 11
p2

4kq
2

~k22q2!2

4kqp2 D J . ~70!

Here, we restricted theq integration to a regionm2d<q
<m1d, d!m around the Fermi surface, since we assum
that eq;ek!mg;gm!m. Therefore, we may setk.q;m.
Also, to leading order we may neglectp2 terms with respect
to (k1q)2 terms. Then, the gap equation~70! simplifies to

fk.
g2

24p2Em2d

m1ddq

eq
tanhS eq

2TDfqF lnS 4m2

3mg
2D 1 lnS 4m2

M2 D
1

1

3
lnS M2

ueq
22ek

2u D G . ~71!

The first term in brackets,; ln(4m2/3mg
2), arises from static

electric gluons@proportional to 2/(p213mg
2) in Eq. ~70!#, the

second,; ln(4m2/M2), from nonstatic magnetic gluons@pro-
portional to u(p2M ) in Eq. ~70!#, and the last term
; ln(M2/ueq

22ek
2u), from soft, Landau-damped magnetic gl

ons@proportional tou(M2p) in Eq. ~70!#. These terms can
be combined to give

fk.
g2

18p2E0

dd~q2m!

eq
tanhS eq

2TD 1

2
lnS b2m2

ueq
22ek

2u D fq ,

~72!

where we exploited the symmetry of the integrand in E
~71! around the Fermi surface to restrict theq2m integration
to the intervalm<q<m1d; i.e., we only integrate over mo
mentaq from the Fermi surface up tom1d. Moreover, we
have defined

b[256p4S 2

Nfg
2D 5/2

. ~73!

The temperature dependence ofmg @cf. Eq. ~35!#, has been
neglected, asT;f0!mg;gm.

The result~73! for b agrees with the analysis of Scha¨fer
and Wilczek@13#. It does not agree with that of Honget al.
@12#, because they neglected the contribution of electric g
ons. Note that our gap equation~72! differs from that of Son
@8# and of Scha¨fer and Wilczek@13# in that we integrate ove
momentaq, while they integrate over Euclidean energiesq0.
The energy dependence of our gap function is always gi
07401
d

.

-

n

by the quasiparticle mass shellf(K)5f(ek ,k). One advan-
tage of our approach is that the extension to nonzero t
perature is immediate.

From Eq. ~70!, the gluon momenta which dominate th
contribution of nearly static, transverse gluons arep6

;M4(eq6ek)
2, or for energieseq , ek close to the Fermi

surface,p;(mg
2f)1/3. While these momenta are small rel

tive to the gluon massmg , they are much larger than th
condensatef. This is why we can use an HDL propagator
the gap equations, neglecting the effects of the condens

The approximations which lead to Eq.~72! are only valid
to leading logarithmic accuracy, in that we neglect terms
order 1 relative to ln(m/mg);ln(1/g). Possible contributions
of order 1, which contribute tob08 in Eq. ~2!, are discussed in
Sec. V.

III. SOLVING THE GAP EQUATION

The gap equation~72! is an integral equation for the func
tion fk[f(ek ,k). In general, it can only be solved numer
cally @13#. In this section, we first discuss the paramet
dependence of the solution to Eq.~72! on the QCD coupling
constant. To this end, it is instructive to understand wh
terms in Eq.~71! determine the exponent and the prefactor
Eq. ~1!. We then derive an approximate analytical soluti
by converting the integral equation~72! into a differential
equation. The solution is discussed in detail at zero and
nonzero temperature.

A. Parametric dependence of the solution
on the QCD coupling constant

Let us introduce the variable

ḡ[
g

3A2p
. ~74!

At T50, the general structure of the gap equation~71! is

fk5
ḡ2

2 E
0

dd~q2m!

eq
F lnS m2

ueq
22ek

2u D 12 lnS b0

b08g
5D 1cGfq .

~75!

The first term,; ln(m2/ueq
22ek

2u), arises from nearly static
transverse gluons. As compared to Eq.~71! we have factored
out a term; ln(M2/m2). The second term,; ln@b0 /(b08g

5)#,
combines this term with the contribution from electric a
nonstatic magnetic gluons. The ratiob0 /b08 is a well-defined
number and given in Eq.~2!. These first two terms compris
the leading logarithmic approximation. The last term,c, rep-
resents contributions that go beyond leading logarithmic
curacy, such as terms of order 1 in*d(q2m)/eq , or of
higher order, for instance;*d(q2m). We have neglected
these terms in our derivation of Eq.~71!. In Eq. ~2!, they
were written in terms of the undetermined constantb08 . We
are therefore permitted to choosec[2 lnb08 in the following.

In order to understand which terms are responsible for
exponent and the prefactor in Eq.~1! let us solve Eq.~75!
7-10
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assuming that the gap functionfq is constant as a function
of momentum. This will give the wrong coefficient in th
exponent, but suffices to understand the parametric de
dence of Eq.~1! on g. For k5m, fq5fk5f05const, the
(q2m) integral in Eq.~75! can be performed to yield (d
@f0)

1.ḡ2F1

2
ln2S 2d

f0
D1 lnS b0m

g5d
D lnS 2d

f0
D G . ~76!

The first term arises from the leading term; ln(m2/ueq
22ek

2u)
in Eq. ~75!, while the second comes from the leading log
rithmic term; ln@b0 /(b08g

5)#. The quadratic equation~76! for
ln(2d/f0) has the solution

lnS 2d

f0
D.2 lnS b0m

g5d
D 1Aln2S b0m

g5d
D 1

2

ḡ2
. ~77!

In weak coupling, the term;2/ḡ2 dominates the right-hand
side, so that we can expand the square root. This term
gives rise to the exponent in 1/ḡ for f0. The term
; ln@b0m/(g5d)# in Eq. ~77! gives rise to the prefactor of th
exponential. In this way we obtain

f0.2
b0

g5
m expS 2

A2

ḡ
D @11O~g!#. ~78!

Note that, to leading order ing, the dependence on the cuto
d cancels in the final result. Equation~78! is rather similar to
Eq. ~1!. The difference is that, due to our~erroneous! as-
sumption of a constant gap function, the coefficient in
exponent is incorrect,A2, instead ofp/2.

B. Converting the integral equation
into a differential equation

The gap equation~72! can be solved analytically by ap
proximating the logarithm under the integral. As in@8#, we
replace

1

2
lnS b2m2

ueq
22ek

2u D→ lnS bm

eq
D u~q2k!1 lnS bm

ek
D u~k2q!,

~79!

and the gap equation~72! becomes

fk.ḡ2F lnS bm

ek
D E

0

k2md~q2m!

eq
tanhS eq

2TDfq

1E
k2m

d d~q2m!

eq
tanhS eq

2TD lnS bm

eq
DfqG . ~80!

Upon differentiation with respect tok, we see that the gap
function fk monotonously decreases from its maximum
the Fermi surfacek5m ~we assumefq>0 for 0<q2m
<d). Let us introduce the variables
07401
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y[ lnS 2bm

q2m1eq
D , ~81a!

x[ lnS 2bm

k2m1ek
D , ~81b!

x* [ lnS 2bm

em
D[ lnS 2bm

f D , ~81c!

where f[fm[f(em ,m k̂) is the value of the gap at th
Fermi surface. Obviously,x* >x, y. As d!mg!m!bm @cf.
Eq. ~73!#, both x and y are much larger than 1. In terms o
these new variables,

eq5bme2yF11S f~y!

f
e2(x* 2y)D 2G[e~y!, ~82a!

ek5bme2xF11S f~x!

f
e2(x* 2x)D 2G5e~x!,

~82b!

where we defined a new functione(y).
The transformation to the new variabley is natural, be-

cause

dy52
d~q2m!

eq
~83!

is the measure for integration, without any further Jacobi
It is similar to Son’s variableySon5 ln(m/q0). For Son’s vari-
able, however,dySon52dq0 /q0, so that in the gap equation
it is necessary to include a Jacobian for the transforma
from q0 to ySon. This Jacobian does not affect his results f
the parametric dependence of the gap function ong, but to
leading logarithmic accuracy, it does affect the prefactor a
the shape of the gap function; cf. discussion at the end
Sec. III C.

In the new variablesx, y the approximate gap equatio
reads

f~x!.ḡ2FxE
x

x*
dy tanhS e~y!

2T Df~y!

1E
ln(bm/d)

x

dy y tanhS e~y!

2T Df~y!G , ~84!

with e(y) given by Eq.~82a!. Here, we have neglected term

; ln@11~f~y!/f!2e22(x* 2y)#!y

and

; ln@11~f~x!/f!2e22(x* 2x)#!x.

This is a good approximation, as the value of the logarith
is bounded from above by ln 2.0.693, while x, y
> ln(bm/d)@1. Differentiating with respect tox yields
7-11
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d

dx
f~x!.ḡ2E

x

x*
dy tanhS e~y!

2T Df~y!, ~85a!

d2

dx2
f~x!.2ḡ2 tanhS e~x!

2T Df~x!. ~85b!

This is the generalization of Son’s equation for the gap fu
tion to nonzero temperature.

C. Zero temperature

The approximation~79! has succeeded to convert th
original integral equation into the differential equation~85b!.
For nonzeroT, however, becausee(x) is a complicated func-
tion of x, this equation still requires a numerical solution. O
the other hand, forT50 the solution is simply a trigonomet
ric function. Determining its phase and amplitude from t
values off(x* ) anddf/dx at x* , we obtain

f~x!5f0 cos@ ḡ~x* 2x!#. ~86!

The value of the zero-temperature gap function at the Fe
surface,f0, can now be obtained by inserting the soluti
~86! into the approximate gap equation forx5x* . This
yields

f052d expF2
1

ḡ
arctanS 1

ḡ ln~bm/d!
D G . ~87!

The dependence on the momentum cutoffd is spurious: in
weak coupling,ḡ!1, we may expand the arctan with th
result

f052bm expS 2
p

2ḡ
D 3@11O~ ḡ2!#. ~88!

This is identical to Eq.~1!, except that here the undetermine
constantb08 is equal to 1, since we computed only to leadi
logarithmic accuracy and dropped terms of order 1 in the
equation.

While our analysis is strictly valid only for small value
of g, it is instructive to extrapolate to strong coupling. T
behavior off0 as function ofg is shown in Fig. 1. One
observes thatf0 has a maximum at a coupling constantg

FIG. 1. f0 /m as function ofg. We have set the undetermine
constantb08 in Eq. ~2! equal to 1.
07401
-

i

p

.4.2. The maximum value is quite large,f0.0.26m, due to
the large prefactorb0, Eq. ~2!, which has important implica-
tions for phenomenology@15#.

To leading order inḡ, x* [p/(2ḡ), such that

f~x!52bm expS 2
p

2ḡ
D sin~ ḡx!. ~89!

The gap function peaks at the Fermi surface,x5x* , and
varies over a regionx* 2x;1/ḡ. This implies that the gap
integral is dominated by momenta exponentially close to
Fermi surface,eq;bme2y!mg . For example, whenq2m

;mg , and consequentlyy;1, sin(ḡy);ḡy, and the gap
function is ḡ times smaller than at the Fermi surface. Phy
cally, this dependence of the gap function on moment
reflects the fact that single-gluon exchange is dominated
forward-angle scattering@15#.

The effect of using the variabley, Eq. ~81a!, instead of a
variable z[ ln(bm/eq) analogous to Son’s variableySon
[ ln(m/q0) @8,13# is the appearance of a prefactor 2 in E
~89!, as well as a factor of 2 under the logarithm inx*
5 ln(2bm/f). These factors of 2 were found empirically in
numerical analysis by Scha¨fer and Wilczek@13#.

D. Nonzero temperature

At nonzero temperature, the gap function depends on b
x and T. In this subsection we denote this dependence
f(x,T). The value off(x,T) at the Fermi surface is denote
by f(T). As before,f05f(0).

In weak coupling, we can computef(x,T) by assuming
f(x,T).f(T) f(x,0)/f0. In other words, thex dependence
of the gap function is taken to be the same as at zero t
perature, so that the only effect of nonzero temperature i
change the overall magnitude of the gap function. We fi
present this calculation, and then discuss why, in weak c
pling, it is reasonable to assume that the gap function
function of x does not change when the temperature is v
ied. Finally, we verify this assumption by numerical calcu
tions.

For reference, we review how the solution to a BCS-ty
gap equation changes with temperature. Taking the B
coupling constant to beG, the gap equation is of the form

f~T!5G2E
0

Ld~q2m!

eq
tanhS eq

2TDf~T!,

eq5A~q2m!21f~T!2. ~90!

In BCS-type theories, the momentum dependence of the
equation can be ignored, so that we just have a fixed-p
equation which determinesf(T). Besides the trivial solu-
tion, f(T)50, at sufficiently small temperatures there is al
a nontrivial solutionf(T)Þ0. It is determined by solving
the equation

15G2E
0

Ld~q2m!

eq
tanhS eq

2TD . ~91!
7-12
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At zero temperature, the solution is

1.G2lnS 2L

f0
D , f0.2LexpS 2

1

G2D . ~92!

The gap equation requires us to introduce a cutoff,L, but all
that matters is that the cutoff be much larger than the va
of the gap at zero temperature,L@f0.

With increasingT, the thermal factor tanh(eq/2T) reduces
the integrand in Eq.~91!, so thatf(T) has to decrease in
order to achieve equality of right- and left-hand sides of E
~91!. Above a critical temperature,Tc , this is no longer pos-
sible and we only have the trivial solution,f(T)50,
T>Tc .

Let us investigate in more detail how the balance betw
the left- and right-hand sides of Eq.~91! is achieved at non-
zero temperature. We divide the integration region in E
~91! into two pieces, forq2m smaller or larger thankf0,
wherek is some pure number, which is assumed to be la
The first region corresponds to momenta near the Fermi
face, 0<q2m<kf0. Although k@1, because the gap i
exponentially smallin the coupling constant, Eq.~92!, in
weak coupling this region constitutes only a rather sm
contribution to the complete gap integral in Eq.~91!.

The bulk of the integral comes from the region of m
menta away from the Fermi surface,kf0<q2m<L. The
quintessential point of our argument, which we shall apply
the QCD case shortly, is that, for temperatures on the o
of f0, the thermal factor can be neglected in this region,
to corrections;exp(2kf0 /T). The gap equation~91! can
therefore be written in the form

1.G2F E
0

kf0d~q2m!

eq
tanhS eq

2TD1E
kf0

L d~q2m!

eq
G .

~93!

In the small region very near the Fermi surface, for mome
0<q2m<kf0, the thermal factor must be retained.

In weak coupling,G!1, the region away from the Ferm
surface almost saturates the 1 on the left-hand side of the
equation~93!. To see this, we compute the contribution
this region to the right-hand side,

G2E
kf0

L d~q2m!

eq
.G2 lnS L

kf0
D.12G2 ln~2k!, ~94!

where we used the solution~92! at T50. Hence, in order to
satisfy the gap equation~93!, the first integral in Eq.~93! has
to balance the termG2 ln(2k),

G2 ln~2k!.G2E
0

kf0d~q2m!

eq
tanhS eq

2TD . ~95!

This equation can be written in a more concise form. N
that

E
0

kf0d~q2m!

eq
0

. ln~2k!, ~96!
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05A(q2m)21f0

2 is the quasiparticle excitation en
ergy at zero temperature. We therefore replace the t
ln(2k) in Eq. ~95! by this integral,

0.G2E
0

kf0
d~q2m!F 1

eq
tanhS eq

2TD2
1

eq
0G . ~97!

The same result could have been obtained directly, by s
tracting Eq.~91! at zero temperature from Eq.~91! at TÞ0,
and using the fact that, for momentaq2m>kf0 , eq.eq

0 ,
so that the contributions to the integrals away from the Fe
surface cancel in the subtraction process. The integral in
~97! is finite in the infrared, even forf(T)50, since
tanh(x)/x→1 asx→0.

Dividing all quantities with dimension of energy byf0,
one realizes that Eq.~97! determines the ratiof(T)/f0 as a
function of T/f0. Note that this ratio is independent of th
cutoff L, as well as the coupling constantG, sinceG2 is just
an overall constant in Eq.~97! which we can divide out.

Equation~97! has the following interpretation. As men
tioned above, the 1 on the left-hand side of the gap equa
~93! is almost completely saturated by momenta away fr
the Fermi surface,kf0<q2m<L, where thermal correc-
tions are negligible. Thermal effects become important i
small region near the Fermi surface, 0<q2m<kf0. It is
only in this region that the change of the gap function w
temperature has to compensate for the presence of the
mal factor. The ratiof(T)/f0 is thereforecompletelydeter-
mined by investigating how the gap equation changes witT
in a small region around the Fermi surface.

In Eq. ~97!, we are allowed to sendk→`, as done in Eq.
~10! of @15#, because tanhx→1 for x→`, and eq→eq

0 for
q2m→`. The ratiof(T)/f0 is therefore not only indepen
dent of the cutoffL and the coupling constantG, but also of
k. However, sendingk→` somewhat obscures the fact th
only a small region around the Fermi surface controls h
f(T) changes with temperature.

Equation~97! cannot be evaluated analytically for arb
trary T, although it is easy to solve numerically; as is we
known, the transition is of second order, withf(T)→0 as
T→Tc . At the critical temperatureTc , however, one can
evaluate Eq.~97! analytically:

E
0

`

d~q2m!F 1

eq
tanhS eq

2Tc
D2

1

eq
0G. lnS zf0

2Tc
D50,

z5
2eg

p
.1.13. ~98!

Here g.0.577 is the Euler-Mascheroni constant. The so
tion is

Tc

f0
5

z

2
50.567, ~99!

which is the usual result in BCS theory@1,2#.
We now go through a similar computation for QCD, n

glecting the change in thex dependence of the gap functio
7-13
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with temperature,f(x,T).f(T) f(x,0)/f0. Consider the
gap equation~84! for x5x* , i.e., for the gap function at the
Fermi surface,f(T). AssumingT,Tc , and taking the non-
trivial solutionf(T)Þ0, we can divide both sides byf(T).
We obtain

1.ḡ2E
ln(bm/d)

x*
dy y tanhS e~y!

2T D f~y,0!

f0
. ~100!

This is the equation analogous to Eq.~91!. We now assume
that the critical temperature is on the order of the value of
condensate at zero temperature,f0. In analogy to the treat-
ment for BCS-like theories, we divide the region of integr
tion into one in which 0<q2m<kf0 and one in which
kf0<q2m<d. As before, for momenta away from th
Fermi surface the thermal factor is neglected. Us
f(y,0)/f05sin(ḡy), we obtain

1.ḡ2F E
xk

x*
dy y tanhS e~y!

2T D sin~ ḡy!

1E
ln(bm/d)

xk
dy ysin~ ḡy!G , ~101!

which is analogous to Eq.~93!. Following the definition of
the variable x in Eq. ~81b!, here we introducedxk
5 ln@bm/(kf0)#. Again, in weak coupling the 1 on the lef
hand side is almost completely saturated by the integra
region away from the Fermi surface. To see this, we comp
the respective integral in a power series expansion inḡ:

ḡ2E
ln(bm/d)

xk
dy ysin~ ḡy!.12

p

2
ḡ ln~2k!1O~ ḡ2!.

~102!

In order to satisfy Eq.~101!, the integral over the region ver
near the Fermi surface has to compensate the terms of o
O(ḡ) in Eq. ~102!,

ḡ2E
xk

x*
dy y tanhS e~y!

2T D sin~ ḡy!.
p

2
ḡ ln~2k!1O~ ḡ2!.

~103!

To see how this compensation works, we expand the var
terms on the left-hand side in powers ofḡ. As x* 5p/(2ḡ)
andxk5x* 2 ln(2k), y is of orderx* in the whole integration
region, up to corrections of orderḡ. Note that this is equiva-
lent to approximating the factor ln(bm/eq) by ln(2bm/f0). For
the momentum dependence of the gap function, this has
consequence that sin(ḡy)511O(ḡ); i.e., to leading order in
weak coupling, the gap function can be taken to be const
f(y,0).f0. In this way one obtains

p

2
ḡ ln~2k!.

p

2
ḡE

0

kf0d~q2m!

eq
tanhS eq

2TD1O~ ḡ2!,

~104!
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where we reverted the integration variabley into q2m. With
Eq. ~96!, we can write this as

0.
p

2
ḡE

0

kf0
d~q2m!F 1

eq
tanhS eq

2TD2
1

eq
0G1O~ ḡ2!.

~105!

Apart from the prefactor~which can be divided out!, to lead-
ing order in weak coupling, Eq.~105! is the same as in BCS
type theories, Eq.~97!. Thus, also the ratiof(T)/f0 is iden-
tical to that in BCS. Given the very different nature of th
gap equation, this is a remarkable result.

How can we claim that we can reliably computef(T)/f0
to leading order in weak coupling, although we cannot co
pute the overall magnitude of the condensate at zero t
perature, the constantb08 in Eq. ~2!? To understand this, con
sider the counting of powers ofg in the gap equation; for
this, it suffices to use the approximations of Sec. III A.

From Eq.~76! we have seen that the exponential in 1g
arises from terms;g2 ln2(2d/f0). Since f0;exp(21/g),
these terms are of order 1, and therefore of the same ord
the left-hand side of Eq.~76!. Analogously, in the nonzero
temperature gap equation~101!, terms of order 1 arise from
the region of momenta away from the Fermi surface, a
thus balance the 1 on the left-hand side. As temperature
fects are negligible in this region, we conclude that the
ponential behavior;exp(21/g) of the gap cannot chang
with temperature.

The prefactor of the exponential is determined by ter
;g2 ln(2d/f0);g in the gap equation~76!. These includeall
terms of this order, i.e., the leading logarithmic terms as w
as terms of order 1, which give rise tob08 . From Eq.~103!
we realize that temperature effects also enter at ordeg.
These effects therefore change the prefactor of the expo
tial. In the above discussion, we have determined the cha
of the gap equation with temperature to leading order ing, or
in other words, we have determined the prefactor at nonz
temperature. To leading order ing, the result is that the pref
actor changes precisely in the same way as in BCS-like th
ries.

To understand how the gap function changes withboth x
and T, consider first the region just below the critical tem
perature. Even though the overall magnitude of the g
f(T), is small, we can still considerf(x,T)/f(T); even as
T→Tc , this ratio remains of order 1. Then near the Fer
surface, the gap functionmustchange due to thermal effects
after all, the variablex* (T)5 ln@2bm/f(T)# diverges asT
→Tc , whenf(T)→0.

To understand the change in the gap function, cons
energies small relative to the temperature,e(x),T. In this
limit, the thermal factor tanh@e/(2T)#.e/(2T). Using the defi-
nition of the variablex, Eq. ~85b! is approximately

S e
d

de D 2

f~e,T!.2ḡ2S e

2TDf~e,T!. ~106!

About small e, the solution is given as a power series
e/(2T):
7-14



tu

ta
a

ga
n
ga

lu
w
m
an
re

,

ly

a
ti

e

e
e

-

ors,
n of

e

the

ction

COLOR SUPERCONDUCTIVITY IN WEAK COUPLING PHYSICAL REVIEW D61 074017
f~e,T!.F12ḡ2
e

2T
1O~ ḡ4!Gf~T!, T→Tc , e!T.

~107!

Thus when the energy is much less than the tempera
althoughx→`, the gap function is not;sin(ḡx), as for the
zero-temperature gap function, but approaches a cons
That is, due to the thermal factor in the equation for the g
function, the momentum dependence is cut off, and the
function ‘‘flattens.’’ This is why in our previous calculatio
we could neglect the momentum dependence of the
function when the energy is less thankf0.

Our analytical results are confirmed by numerical so
tions of Eq.~85b! at nonzero temperature. In Fig. 2 we sho
the gap function at the Fermi surface as a function of te
perature. We considered two values of the coupling const
g50.1 and 4.2. The first is safely in the weak-coupling
gime, while the latter is the value wheref0 has a maximum
as a function ofg; cf. Fig. 1. In weak coupling,f(T)/f0 is
indistinguishable from BCS. Surprisingly, even for largeg
54.2, while Tc is slightly larger than in BCS theory
Tc /f0.0.585,f(T)/f0 is rather similar to the behavior in
BCS-like theories. This is not unlike the situation in strong
coupled BCS, i.e., Eliashberg theory@3#, whereTc /f0 also
changes slightly, albeit in the opposite direction.

In Fig. 3~a! we show f(x,T) as a function ofx at g
54.2 for two temperatures,T50 andT50.581f0 which is
close toTc . As the temperature increases, the overall sc
of f(x,T) decreases, because the condensate is evapora
cf. Fig. 2. Simultaneously,x* (T)5 ln@2bm/f(T)# increases.
In Fig. 3~b! we plot f(x,T)/f(T) as a function ofx/x* (T)
at the same two temperatures. As can be seen, once w
vide out the overall scalef(T), the ratiof(x,T)/f(T) is
relatively insensitive to temperature. AtT50.581f0, we ob-
serve that the gap function does ‘‘flatten’’ as it approach
the Fermi surface,x→x* (T), as we argued previously on th
basis of Eq.~107!.

FIG. 2. The gap at the Fermi surfacef(T), normalized to its
zero-temperature valuef0, as a function ofT/f0. Solid line, g
50.1; dashed line,g54.2.
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IV. CONDENSATES WITH TOTAL SPIN JÄ1

A. Classification

The gap matrixF1 for a condensate with total spinJ
50 has the form~19!. Generalizing this equation to a con
densate with total spinJ51 is straightforward. For aJ51
condensate, the individual gap functionsfhs

e in Eq. ~19! are
no longer scalar functions in coordinate space, but 3-vect
fhs

e . These vectors have a component along the directio
k,

whs
e ~K ![fhs

e ~K !• k̂, ~108!

and two components transverse to this direction,

xhs
e ~K ![fhs

e ~K !•~12 k̂k̂!, ~109!

such that

fhs
e ~K ![whs

e ~K !k̂1xhs
e ~K !. ~110!

The gap matrixF1 is, however, still a scalar in coordinat
space. One therefore has to contract the vector indices ofxhs

e

with the other independent 3-vector at our disposal,g,

xhs
e ~K !•g[fhs

e ~K !•~12 k̂k̂!•g[xhs
e ~K !•g'~k!,

~111!

where we have definedg'(k)[(12 k̂k̂)•g and used the pro-
jector property (12 k̂k̂)2[12 k̂k̂.

Suppressing color and flavor indices for the moment,
most general ansatz for a gap matrix describingJ51 con-
densates is therefore

FIG. 3. ~a! The gap functionf(x,T), normalized to the zero-
temperature gap functionf0, as a function of the variablex for T
50 ~solid line! and T50.581f0 ~dashed line!, g54.2. ~b! The
same, but now the gap function is normalized to its valuef(T) at
the Fermi surface at the same temperature, and plotted as fun
of x normalized tox* (T). For the sake of simplicity, we have
chosend5bm.
7-15
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J51: F1~K !5 (
h5r ,l

(
s56

(
e56

@whs
e ~K !

1xhs
e ~K !•g'~k!]P hs

e ~k!. ~112!

The scalar productxhs
e (K)•g'(k) has simple commutation

properties with the quasiprojectorsP hs
e (k):

Phg'~k!5g'~k!P2h , ~113a!

Ps~k!g'~k!5g'~k!P2s~k!, ~113b!

Le~k!g'~k!5g'~k!@Le~k!2eakg0#.
~113c!

In the massless limit,ak50, and g' commutes with the
energy projectors.

Instead of contracting thetransversecomponents~109! of
fhs

e (K) with g, one could have alternatively also use
fhs

e (K) itself. The commutation properties forfhs
e
•g, how-

ever, are more complicated than forxhs
e
•g'(k), with addi-

tional terms proportional tok̂. The advantage of usingg'(k)
is that these terms are canceled by the projector12 k̂k̂.

Finally, an important question that arises is why w
chooseg to contract the transverse components offhs

e in Eq.
~112!. Why notg0g or g5g0g? The answer lies again in th
commutation properties~113!. In the commutation property
for g0g'(k) or g5g0g'(k) corresponding to Eq.~113c!, the
sign of the energy on the right-hand side would be flipp
Physically, this means that such terms represent pairin
particles with antiparticles, and not of particles with pa
ticles; cf. discussion of Eq.~119! in Sec. IV C. This is clearly
not what happens in a superconductor, where particles f
pairs near the Fermi surface.

B. Parity

The J51 condensates can be decomposed accordin
their transformation properties under parity. Let us first wr
the interaction termc̄CF1c in the effective action@9# in the
form

c̄C~K !F1~K !c~K !5 (
h5r ,l

(
s56

(
e56

c̄C~K !

3fhs
e ~K !•@ k̂1g'~k!#P hs

e ~k!c~K !.

~114!

Let us define new condensate fields

f6
1[

1

2
~fr 1

1 6fl 2
1 !, f6

2[
1

2
~fr 2

2 6fl 1
2 !,

p6
1[

1

2
~fr 2

1 6fl 1
1 !, p6

2[
1

2
~fr 1

2 6fl 2
2 !. ~115!

In terms of these fields, the interaction term~114! assumes
the form
07401
.
of
-

m

to

c̄C~K ! F1~K !c~K !5 (
e56

c̄C~K !H $f1
e ~K !•@ k̂1g'~k!#

1f2
e ~K !•@ k̂1g'~k!#g5%

3
11eg0g• k̂

2
Le~k!

1$p1
e ~K !•@ k̂1g'~k!#

1p2
e ~K !•@ k̂1g'~k!#g5%

3
12eg0g• k̂

2
Le~k!J c~K !. ~116!

In the limit m→0, Le(k)→(11eg0g• k̂)/2, such that the
terms proportional top6

e vanish.
Under a parity transformation,g0→g0 , g→2g, g5→

2g5, andk→2k. Thus, the terms (16eg0g• k̂)/2 and the
energy projectors do not change under a parity transfor
tion. The parity ofc̄C is opposite to that ofc @9#. A parity
transformation leaves the effective action invariant, since
QCD Lagrangian~from which the effective action is derived!
does not violate parity explicitly. Thus, if we perform a pa
ity transformation of the interaction term~116!, the gap func-
tions f6

e , p6
e must have the same parity as the accompa

ing Dirac matrices. Consequently, we conclude thatf1
e , p1

e

are parity even, whilef2
e , p2

e are parity odd.
Two limiting cases are of special interest. If all righ

handed, positive-helicity gaps are equal to the left-hand
negative-helicity gaps,fr 1

e 5fl 2
e , and all right-handed,

negative-helicity gaps are equal to the left-handed, posit
helicity gaps,fr 2

e 5fl 1
e , then f2

e 5p2
e 50; i.e., the odd-

parity gaps vanish, and condensation occurs exclusivel
theJP511 channel.@It is proved in the Appendix that in this
case Eq.~116! agrees with the ansatz of Bailin and Love f
theJP511 gaps@4#.# On the other hand, if they are equal
magnitude, but different in sign, condensation occurs exc
sively in theJP512 channel.

This is different for theJ50 gaps. In that case, one ca
write down an equation analogous to Eq.~116!. The differ-
ence is that all vectorsf6

e , p6
e are replaced by scalar func

tions f6
e , p6

e , and the termsk̂1g'(k) are absent, too. Fo
the parity transformation properties, this has the conseque
that if f r 1

e 56f l 2
e , f r 2

e 56f l 1
e , condensation occurs in

the JP507 channel.

C. Ultrarelativistic limit

In the following, we exclusively consider massless ferm
ons. In this case, the helicity projectors~and corresponding
indices! become superfluous@cf. Eq. ~25!#,

m50: whs
e →wh

e , xhs
e →xh

e , ~117!

and the quasiprojectors become true projectors; cf. disc
sion above@and Eq.~B29! of @9##. The general ansatz~112!
simplifies to
7-16
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J51,m50:

F1~K !5 (
h5r ,l

(
e56

@wh
e~K !

1xh
e~K !•g'~k!#P h

e~k!. ~118!

In the effective action, the interaction termc̄CF1c decom-
poses into four parts on account of the projectorsP h

e @cf. Eq.
~B34! of @9##,

c̄C~K !F1~K !c~K !5 (
h5r ,l

(
e56

@c̄C h
e ~K !wh

e~K !ch
e~K !

1c̄C 2h
e ~K !xh

e~K !•g'~k!ch
e~K !#.

~119!

Here we definedch
e[P h

ec, and used the commutation prop
erties ~113! of g' . From Eq. ~119! it is obvious that the
longitudinal gaps correspond to condensation of quarks w
the samechirality, (rr ) or (l l ). In this respect the longitu
dinal J51 gaps are similar to theJ50 gaps@9#. On the
other hand, the transverseJ51 gaps correspond to conde
sation of quarks withdifferentchiralities, (r l ) or (l r ).

Equation ~119! shows why we do not chooseg0g or
g5 g0g to contract the transverse components offhs

e in Eq.
~112!; cf. discussion at the end of Sec. IV A. The extra fa
torsg0 or g5g0 flip the sign of the energy in Eq.~113c!, and
the transverse gaps would describe pairing of particles w
antiparticles of the same chirality.

D. Color and flavor representations

With the help of the symmetry property@cf. Eq. ~B4! of
@9##

CF1~K !C215@F1~2K !#T, ~120!

we derive

@wh
e~2K !#T52wh

e~K !, @xh
e~2K !#T52x2h

e ~K !.
~121!

The symmetry properties~121! allow us to classify the pos
sible color and flavor representations of theJ51 conden-
sates for massless fermions. We assume there areNf flavors
of massless fermions with a global flavor symme
SU(Nf) r3SU(Nf) l and, of course, a local color symmet
SU(3)c . From group theory,

23251a13s , 33353̄a16s , ~122!

where the subscriptsa and s denote antisymmetric or sym
metric representations, respectively. For single-gluon
change, the color-antitriplet channel3̄a

c is attractive, and the
color-sextet channel6s

c is repulsive.
We first discuss the longitudinal condensateswh

e . From
Eq. ~119!, the longitudinalJ51 condensates only coupl
quarks of the same chirality, and so do not break
07401
th

-

th

-

e

SU(Nf) r3SU(Nf) l flavor symmetry. By Eq.~121!, the lon-
gitudinal condensates must correspond to a color-flavor
resentation which is overall antisymmetric.

ForNf51, the flavor representation is trivial, and conde
sation must occur in the3̄a

c channel. This is most likely the
favored channel for condensation of quarks of the same
vor, since theJ50 gaps are overall symmetric@7,9#, and
consequently must be in the repulsive6s

c channel.
For Nf52, the allowed color-flavor representations a

either (3̄a
c , 3s

f), which is favored, or (6s
c , 1a

f ). This is in con-

trast to theJ50 gaps, which come in (3̄a
c , 1a

f ) or (6s
c , 3s

f).
Here the flavor representation refers to either SU(2)r or
SU(2)l .

For Nf53, there are (3̄a
c , 6s

f) or (6s
c , 3̄a

f ). On the other

hand, theJ50 gaps are (3̄a
c , 3̄a

f ) or (6s
c , 6s

f).
If only longitudinal J51 gaps are present, the pari

properties are analogous to theJ50 gaps. In particular, since
condensates of different chiralities do not mix, the magnitu
of the longitudinalJ51 gaps will be equal, while their rela
tive phase represents the spontaneous breaking of p
@7,14#.

The symmetry relation~121! relates transverseJ51 con-
densates of different chirality. Therefore, we cannot dr
general conclusions about the possible color-flavor repre
tations of the transverseJ51 gaps.A priori, both the sym-
metric as well as the antisymmetric color and flavor rep
sentations are allowed.

Two special cases are of interest. Ifxr ,l
e [xl ,r

e , so that
condensation is in theJP511 channel, the color-flavor rep
resentations of the transverseJ51 gaps are identical to thos
of the longitudinalJ51 gaps. On the other hand, ifxr ,l

e [
2xl ,r

e , so that condensation is in theJP512 channel, they
are equal to those of theJ50 gaps.

When Nf>2, the appearance of transverseJ51 gaps
must necessarily break the SU(Nf) r3SU(Nf) l symmetry to
a vectorlike SU(Nf) symmetry. This striking feature arise
because the transverse gaps are proportional tog' , and not,
say,g0g' .

E. Gap equation

In general, condensation can occur in channels with a
trary total spinJ. Therefore, the gap matrixF1(K) will not
simply be of theJ50 form ~19! or theJ51 form ~112!, but
it will be a sum of Eqs.~19! and ~112!, as well as contain
contributions from higher spinJ>2. We do not attempt to
solve this problem in full generality. Instead, we consider
simpler case where the gap matrix contains justJ50 andJ
51 contributions. We also take the fermions to be massl
The gap matrix then assumes the form

J50 and 1, m50:

F1~K !5 (
h5r ,l

(
e56

@fh
e~K !1wh

e~K !

1xh
e~K !•g'~k!#P h

e~k!, ~123!
7-17
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wherefh
e denote theJ50 gaps, andwh

e the longitudinal and
xh

e the transverse components of theJ51 gaps.
The quasiparticle propagator can be computed from E

~7!, ~8!, and ~9!, and the commutation property~113c!. Ig-
noring the color and flavor structure for the moment, o
obtains

G1~Q!5H (
h5r ,l

(
e56

~q0
22~q2em!21$@fh

e~Q!#†

1@wh
e~Q!#†2@x2h

e ~Q!#†
•g'~q!%$fh

e~Q!1wh
e~Q!

1xh
e~Q!•g'~q!%!P h

e~q!J 21

@G0
2~Q!#21. ~124!

To invert the term in the large curly brackets, we first have
specify the color-flavor structure of the various condensa
In the following, we just consider the most simple caseNf
51. Let us assume that condensation occurs exclusivel
the attractive color-antitriplet channel3̄a

c ; i.e., F i j
1[e i jkFk

1

is an antisymmetricNc3Nc matrix in color space,i , j
51, . . . ,Nc . In this case, theJ50 gaps vanish,fh

e[0, on
account of Fermi statistics@7,9#. Since the individual gap
functions wh i j

e , xh i j
e are also in the3̄a

c representation, we
conclude from Eq.~121! thatxr

e[xl
e . In contrast,w r

e andw l
e

remaina priori unrelated.
The term in the large curly brackets in Eq.~124! has an

off-diagonal contribution in color space. Since its contrib
tion to Gi j

1 is quadratic infh
e , we shall neglect it in the

following, and consider only the diagonal part,Gi j
1

.d i j G1. Even so, the inversion of the term in the lar
curly brackets is still cumbersome, due to the presence
terms;g' . To simplify the treatment, we assume that t
J51 gaps arereal valued. With Eq. ~121! this leads to

@wh
e~K !#†5@wh

e~2K !#T[2wh
e~K !,

@x2h
e ~K !#†5@x2h

e ~2K !#T[2xh
e~K !. ~125!

This has the consequence that all cross terms;g' between
the gapswh

e and xh
e vanish in Eq.~124!. The quasiparticle

propagator can now be explicitly computed:

G1~Q!. (
h5r ,l

(
e56

P h
e~q!

q0
22@eq

e~fh
e!#2

@G0
2~Q!#21.

~126!

The quasiparticle energies are

eq
e~fh

e![F ~q2e m!21(
l 51

Nc

fh l
e
•fh l

e G1/2

. ~127!

Inserting Eq.~126! into the gap equation~5!, the same steps
that led to Eq.~28! now lead to
07401
s.

e
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F i
1~K !.

2

3
g2

T

V (
Q

gm Dmn~K2Q!

3 (
h5r ,l

(
e56

wh i
e ~Q!2xh i

e ~Q!•g'~q!

q0
22@eq

e~fh
e!#2

P2h
2e~q!gn.

~128!

The gap equations for different fundamental colorsi de-
couple; therefore we omit the color index in the followin
Taking projections we arrive at the following equation f
the longitudinal gap functions:

wh
e~K !.

2

3
g2

T

V (
Q

Dmn~K2Q!

3H wh
e~Q!

q0
22@eq

e~fh
e!#2

Tr@P h
e~k!gmP2h

2e~q!gn#

1
wh

2e~Q!

q0
22@eq

2e~fh
2e!#2

Tr@P h
e~k!gmP2h

e ~q!gn#J .

~129!

This equation is rather similar to Eq.~29!. The only differ-
ence is the appearance of the transverse gaps in the qua
ticle and quasi-antiparticle energieseq

e(fh
e); cf. Eq. ~127!.

For the transverse gaps, we use the fact thatxr
e5xl

e to
arrive at

xh
e~K !.

2

3
g2

T

V (
Q

Dmn~K2Q!H xh
e~Q!

q0
22@eq

e~fh
e!#2

3
1

2
Tr@gL2e~q!gnLe~k!g'~k!gm#

1
xh

2e~Q!

q0
22@eq

2e~fh
2e!#2

3
1

2
Tr@gLe~q!gnLe~k!g'~k!gm#J . ~130!

Taking the Coulomb gauge for the gluon propagator, E
~30!, and computing the traces similar to Eqs.~31!, we obtain

xh
e~K !.

2

3
g2

T

V (
Q

H xh
e~Q!

q0
22@eq

e~fh
e!#2

•S 1
11 k̂•q̂

2
2 k̂

k̂1q̂

2
D

3FD l~K2Q!2D t~K2Q!S 12
~k2q!2

~k2q!2D G
1

xh
2e~Q!

q0
22@eq

2e~fh
2e!#2

•S 1
12 k̂•q̂

2
2 k̂

k̂2q̂

2
D

3FD l~K2Q!2D t~K2Q!S 12
~k1q!2

~k2q!2D G J .

~131!
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Neglecting the antiparticle contribution, and takingk5q
5m, as well ask.q @the collinear limit; in Eq.~70! this
corresponds to neglecting terms of orderp2#, we obtain, for
the transverse quasiparticle gap,

xh
1~K !.

2

3
g2

T

V (
Q

xh
1~Q!

q0
22@eq

1~fh
1!#2

3@D l~K2Q!2D t~K2Q!#. ~132!

To leading logarithmic order, the gap equation for the tra
verse gap isidentical to that for the longitudinal gap. To se
this directly, one computes the traces in Eq.~129!. One ob-
tains an equation very similar to Eq.~32!. Now one com-
putes the angular factors fork.q, k5q5m:

11 k̂•q̂

2
.1, 2

32 k̂•q̂

2
1

11 k̂•q̂

2

~k2q!2

~k2q!2
.21,

~133!

which proves our assertion.
Consequently, to this order allJ51 gaps are of equa

magnitude. Further, the sum of the squares of theJ51 gaps
satisfies the same gap equation as the square of theJ50 gap.
This conclusion agrees with Son’s renormalization-gro
analysis@8#, who argued that the parametric dependence og
of any spinJ gap is the same. We find that even the prefac
is the same to leading logarithmic accuracy. Our results
fer from those of Hsu and Schwetz@18#, who argued thatJ
50 gaps are favored over those for higher spin.

Beyond leading logarithmic order we suggest that, ifJ
50 gaps are allowed by color-flavor symmetry, they a
probably favored over theJ51 gaps. If only aJ51 gap is
allowed, as forNf51, we believe that either the longitudina
gaps or the transverse gaps with a definite color-flavor r
resentation will be favored. Which one is favored will b
determined by the constantsb08 andb18 in Eqs.~2! and ~3!.

V. CONCLUSIONS

We conclude by addressing effects which can contrib
to the constantsb08 and b18 in the condensate, Eqs.~2! and
~3!. We suggest that our lengthy calculations which led to
result~2! for b0 may be done much more efficiently by co
structing an effective theory for quarks near the Fermi s
face, as initiated by Hong@10#. This is presumably the eas
est way to calculateb08 andb18 as well. Nevertheless, we ca
estimate what kind of effects could contribute to these as
yet undetermined constants. These include the following

~i! Gauge dependence of the condensate.If calculated
properly, any physical quantity must be independent of
choice of gauge. For color superconductivity, what is phy
cal is the gap on the quasiparticle mass shell. At nonz
temperature and zero quark density, general arguments
to Kobes, Kunstatter, and Rebhan@27# indicate that the mas
shells for quarks and gluons are gauge invariant. Their pr
does not extend obviously to nonzero density, but we s
assume that to be the case.

At higher orders, the quasiparticle self-energy,S1, con-
07401
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tains not only the interaction with the condensate, Eq.~8!,
but also wave-function renormalization. Any apparent gau
dependence in the former must be canceled by the ga
dependence of wave-function renormalization, leaving
quasiparticle mass shell gauge invariant.

It is easy to see that such subtleties do not enter at
order to which we have computed. The gluon propagato
Coulomb gauge, with gauge fixing parameterjC , is given in
Eq. ~30!. Alternatively, one could have taken covaria
gauge; with gauge fixing parameterj, the covariant gauge
propagator was given in Eq.~37! of @23#. We have seen
however, that to the accuracy to which we compute, only
gluon propagator in the static limit,p0→0, matters. In the
static limit, the gauge dependent terms are identical for eit
the Coulomb or covariant gauge, and appear only as spat
longitudinal terms,;j p̂i p̂ j /p2. Consider, for example, how
the gauge dependent part of the gluon propagator affects
quasiparticle contribution,;fh

1/$q0
22@eq

1(fh
1)#2%, to the

gap equation forfh
1 . From the gap equation~29!, and using

Eqs.~31!, this becomes

jC Tr@P h
1~k!g•p̂P2h

2 ~q!g•p̂#

;2jC

11 k̂•q̂

2

~k2q!2

p2
→0, k,q→m. ~134!

That is, there are gauge dependent terms, but they only
tribute to the antiparticle gaps,fh

2 . ~Further, the antiparticle
gaps must be computed on their proper mass shell. At
Fermi surface,ek

2;2 m is not small, in contrast toek
1;f0

!m.! Consequently, gauge dependent terms in the part
gaps do not appear to even affect the prefactor in the c
densate, the constantb08 . These conclusions about gauge i
variance agree with the results of Scha¨fer and Wilczek@13#.
In contrast, Honget al. @12# argue that the Landau gauge
preferred, as in other approximate treatments of Schwing
Dyson equations. We insist that in the present example,
rect calculation demonstrates gauge invariance without
ther ado.

~ii ! Wave-function and vertex renormalization.As noted
by Son@8#, one can have infrared singular factors for wav
function renormalization. For nonrelativistic fermions, th
was noted long ago by Holstein, Norton, and Pincus@28#.
~This wave-function renormalization is not the HDL corre
tion discussed by Scha¨fer and Wilczek@13#; such corrections
involve two hard lines, and are down byg2.! The dominant
corrections involve a very soft transverse gluon on a qu
line; this produces gauge-invariant terms of the formZ21
;g2 ln(m/eq);g when eq;f0. This correction was com-
puted by Brown, Liu, and Ren@17#, who find that it is a large
effect. Besides such wave-function renormalization, o
might expect that the Slavnov-Taylor identities would al
generate similar corrections for the gluon and for the qua
quark-gluon vertex. This was not found, however, by t
authors of@17#.

~iii ! Effects of the condensate.We have computed the ga
using an HDL-resummed gluon propagator. This is poss
because the momenta which generate the gap are m
7-19
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larger than the scale of the gap. To see this, note that in
transverse gluon propagator, Eq.~38!, Landau damping con
tributes to the gluon propagator when the momentump6

;(mg
2v)2; since the frequencyv;f, the dominant mo-

menta arep;mg
2/3f1/3, which for small f is much larger

thanf.
Effects of the condensate on the gluon propagator can

estimated by power counting at large momentum,p@f0.
One would naturally expect that they are;g2f2, but due to
an infrared divergence, they are larger,;mg

2f/p @20#. These
terms are important whenmg

2f/p;p2, or p;mg
2/3f1/3. This

is exactly the same scale at which Landau damping opera
These effects will not alter the coefficient of the logarithm
divergence~and hence the exponent!, but they will produce
terms of order one in the gap equation, which contribute
b08 andb18 .

~iv! Damping of the condensate.In the above, we ne-
glected the fact that the gap function has an imaginary p
To understand this imaginary part, consider first the s
energy for a quark in a Fermi sea. As computed by Le Be
and Manuel, and by Vanderheyden and Ollitrault@26#, away
from the edge of the Fermi sea, the quark can decay
another quark and a very soft gluon. This is only possi
with a HDL-resummed gluon, whose spectral representa
has support from Landau damping in the space-like reg
The damping rate of the quark behaves as;g2up2mu, van-
ishing at the Fermi surface.

From a similar physical process, the gap function acqu
a nonzero imaginary part when its momentum is away fr
the Fermi surface. A quark can scatter into a quark wit
different momentum through a very soft gluon. We can e
mate the resulting imaginary part of the gap function as
lows @15#. If we had not restricted our analysis to the pri
cipal value part of the energy denominators arising in E
~42!, instead of lnueq

22ek
2u in Eq. ~72! we would have obtained

ln(eq
22ek

2). This logarithm has a cut foreq,ek , giving rise to
an imaginary part forfk ,

Im fk;ḡ2E
f0

ekdeq

eq
fq.ḡ2 lnS ek

f0
Df0 . ~135!

Taking ek;bme2x @cf. Eq. ~81b!#, momenta exponentially
close to the Fermi surface occur whenx;x* 5p/(2ḡ) ~in
weak coupling!. In this region, the imaginary part of the ga
function, Imfk;ḡ2(x* 2x)f0, is downby ḡ relative to the
real part, Refk;sin(ḡx)f0. At the Fermi surface itself,x
5x* , the imaginary part vanishes. Away from the Fer
surface,ek;m, sox;1, andfk is strongly damped, with the
real and imaginary parts of comparable magnitude, Refk

;Im fk;ḡf0.
A gap function with a nonzero imaginary part is actua

well known from strongly coupled superconductors, as st
ied in Eliashberg theory@3#. Damping occurs for a simila
reason as here, due to a nonzero imaginary part for the p
mon.

There is no problem in principle with including the dam
ing of the gap function. A spectral representation for the g
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function is introduced, analogous to that of the quark a
gluon propagators. The resulting gap integrals are more
volved ~especially at nonzero temperature!, but can be
treated in the manner which we employed above.

~v! Magnetic mass.As argued in Sec. I, at zero temper
ture the scale for the magnetic mass is;m exp(21/g2). It is
therefore negligible compared to the scale of the condens
At nonzero temperature, the scale is no larger thang2T. For
T;f0, this is down byg2, and will only affect the prefactor
of the gap to higher order ing.

We conclude by stressing that the determination of
prefactor is not merely an interesting problem in its ow
right, but because it truly determines the physics of co
superconductivity~at least in weak coupling!. To the order at
which we compute, there is absolutelyno preference for the
condensate to favor spin-0 over spin-1~or spin-2, etc.!.
Surely the spin-1 condensate is less favored than spin 0
ratio of the two condensates is, in weak coupling, a p
number which can be uniquely computed, once one kno
how to compute the prefactor in the condensate.

Indeed, perhaps one should entertain a more specula
hypothesis. Even if aJ50 gap is favored, maybe there
always some small admixture of higher-spin gaps, and ro
tional invariance is inevitably broken in the true ground st
of color superconductivity.
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APPENDIX: THE JPÄ1¿ GAPS

According to the results of Sec. IV B, if condensatio
occurs exclusively in theJP511 channel, the ansatz for th
gap matrix reads~we suppress the dependence of the g
functions onK in the following!

JP511: F15 (
e56

Ff1
e
•@ k̂1g'~k!#

11eg0g• k̂

2

1p1
e
•@ k̂1g'~k!#

12eg0g• k̂

2
GLe~k!.

~A1!

Now use
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@ k̂1g'~k!#
16eg0g• k̂

2
Le~k!5 k̂

17eg0

4
@~16bk7ak!2~16bk6ak!g• k̂#1g

1

4
@~16bk!~16eg0g• k̂!7akg• k̂1eakg0#

~A2!

to obtain

F15F11bk2ak

4
~f1

11f1
2!1

12bk1ak

4
~p1

11p1
2!G• k̂1F2

11bk2ak

4
~f1

12f1
2!1

12bk1ak

4
~p1

12p1
2!G• k̂g0

1F2
11bk1ak

4
~f1

11f1
2!2

12bk2ak

4
~p1

11p1
2!G• k̂g• k̂1F11bk1ak

4
~f1

12f1
2!2

12bk2ak

4

3~p1
12p1

2!G• k̂g0g• k̂1F11bk

4
~f1

11f1
2!1

12bk

4
~p1

11p1
2!G•g1

ak

4
~f1

12f1
21p1

12p1
2!•gg0

1
ak

4
~2f1

12f1
21p1

11p1
2!•gg• k̂1F11bk

4
~f1

12f1
2!2

12bk

4
~p1

12p1
2!G•gg0g• k̂. ~A3!
n

al

e’s
s
ncy

d in
e

o

. In
re
re-

f
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ent

ilin

l

Bailin and Love’s ansatz for aJP511 gap reads@cf. Eq.
~4.24! of @4#; we again suppress the momentum depende
of the gap functions#

D5D1•g1D2• k̂g• k̂1 i D33 k̂•gg51D4• k̂1D5•gg0

1D6• k̂g• k̂g01D7• k̂g01 i D83 k̂•gg0g5 . ~A4!

~We added ani in the last term as compared to@4#. This
simplifies the notation in the following, but is not essenti
as the gap functions are in general complex valued.! With the
definition of g55 ig0g1g2g3 one computes

i D3 k̂•gg552g0~D• k̂1D•gg• k̂![2g0D•g'~k!g• k̂,
~A5!

and rewrites Eq.~A4! as

D5~D41D8!• k̂1~D72D3!• k̂g01D2• k̂g• k̂2D6• k̂g0g• k̂

1D1•g1D5•gg01D8•gg• k̂1D3•gg0g• k̂. ~A6!

Direct comparison of Eqs.~A3! and ~A6! reveals

D15D45
11bk

4
~f1

11f1
2!1

12bk

4
~p1

11p1
2!,

~A7a!

D252D11D8 , ~A7b!

D35
11bk

4
~f1

12f1
2!2

12bk

4
~p1

12p1
2!,

~A7c!

D55D75
ak

4
~f1

12f1
21p1

12p1
2!, ~A7d!

D652D32D5 , ~A7e!
07401
ce

,

D85
ak

4
~2f1

12f1
21p1

11p1
2!. ~A7f!

These relations exhibit a redundancy in Bailin and Lov
ansatz~A4!: only four of the eight 3-vector gap function
D1 , . . . ,D8 are independent. The reason for this redunda
is that in Eq.~A4! the transverse components ofD2 , D4 , D6 ,
andD7 never appear, as these gap functions are projecte
the longitudinal directionk̂. Furthermore, only the transvers
components ofD3 and D8 appear on account of Eq.~A5!.
Finally, the longitudinal components of the remaining tw
gap functionsD1 and D5 can be absorbed by redefiningD2
andD6; thus only their transverse components contribute
this manner, only half of the original 24 gap functions a
independent. Physically, this can be understood from the
striction to the positive-parity channelJP511. Thus, only
the four 3-vectorsf1

6 , p1
6 appear on the right-hand side o

Eq. ~A7!. The other four 3-vectorsf2
6 , p2

6 do not contrib-
ute, as they correspond to pairing in theJP512 channel.

This said, one can readily derive a more efficient form
Bailin and Love’s ansatz~A4!, which utilizes both longitu-
dinal and transverse components of the truly independ
gap functions. Choosing the latter to beD1 , D3 , D5, andD8,
we obtain, from Eq.~A4! with Eq. ~A7!,

D5D1•@ k̂1g'~k!#1D3•@ k̂1g'~k!#g0g• k̂

1D5•@ k̂1g'~k!#g01D8•@ k̂1g'~k!#g• k̂. ~A8!

It is now also easy to interpret the results obtained by Ba
and Love in@29#, where they studiedJP511 condensation
in the ultrarelativistic limit. In this limit,ak50, thus D5
5D850 on account of Eqs.~A7!. Bailin and Love discuss
two order parameters for condensation in theJP511 chan-
nel, the first being the longitudinal component ofD42D5

2D6, the second being (D11D3)•(g2 k̂g• k̂2 i k̂3gg5).
From Eqs.~A7!, we identify the first with the longitudina
7-21
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component ofD11D3. From Eq.~A5!, we realize that the
second is identical to (D11D3)•g'(k) (12g0 g• k̂); i.e., es-
sentially the transverse components ofD11D3. Thus, Bailin
and Love discuss two separate gap equations, one for
longitudinal, the other for the transverse components of
-

-

a
,
ys

07401
he
e

independent gap functionD11D3. Although we also find
two gap equations for the longitudinal and the transve
gaps~cf. Sec. IV!, we donot find that they decouple, as th
excitation energies~127! containboth longitudinal and trans-
verse gap functions.
.
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