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We derive perturbatively the gap equations for a color-superconducting condensate with tofet 8pin
dense QCD. At zero temperature, we confirm the results of Son for the dependence of the condensate on the
coupling constant, and compute the prefactor to leading logarithmic accuracy. At nonzero temperature, we find
that to leading order in weak coupling, the temperature dependence of the condensate is identical to that in
BCS-like theories. The condensates for total spinl are classified; to leading logarithmic accuracy these
condensates are of the same order as those oflspih

PACS numbeps): 12.38.Mh, 24.85t+p

I. INTRODUCTION diagrams generates an instability which is only cured by a
fermion-fermion condensate. If the fermions interact through

Cooper’s theoremil—3] implies that if there is an attrac- a point-like four-fermion coupling, though, there is no cor-
tive interaction in a cold Fermi sea, the system is unstabléelation between the initial and outgoing momertandk’.
with respect to the formation of a particle-particle conden-In the gap equation, this implies that the gap function is
sate. In QCD, single-gluon exchange between quarks of difconstant with respect to momentum, as long as the momenta
ferent color generates an attractive interaction in the colorare near the Fermi surface.
antitriplet channel[4]. Thus, it appears unavoidable that In QCD, however, scattering through single-gluon ex-
color superconductivity occurs in dense quark matter whictehange strongly correlates the direction of the in- and outgo-
is sufficiently cold [5-20. How a dense quark phase ing quarks: there is a logarithmic divergence for forward-
matches onto hadronic matter is difficult to addrigg41]. In angle scattering,~fd6/6. This extra logarithm from
particular, while a quark-quark condensate may form, sucfiorward scattering implies that the gap is not an exponential
condensation competes with the tendency of a quark-quark 1/g2, as in BCS-like theories, but only ind.[7,8,13,15.
pair to bind with a third quark, to form a color-singlet had- As a consequence, the gap function is no longer constant as
ron. a function of momentum, even about the Fermi surface.

One way of understanding color superconductivity is to The logarithmic divergence for forward-angle scattering
compute at very high densities, where by asymptotic freearises because in cold, dense quark matter, static, magnetic
dom, perturbation theory can be used. At nonzero temperdnteractions are not screened through a “magnetic mass.”
ture, but zero quark density, it is well known that perturba-This is very different from a system of hot quarks and glu-
tion theory is a particularly bad approximatipal]. If gis  ons. Over large distances, a hot system is essentially three
the coupling constant for QCD, the free energy is not ardimensional; gluons in three dimensions have powerlike in-
expansion ing?, but only ing, with a series which is well frared divergences, which screen static, magnetic fluctuations
behaved only fog=<1. In contrast, at zero temperature andthrough a magnetic massg?T. In contrast, loop corrections
nonzero quark density, the free energy is an expansion i cold, dense quark matter are essentially four dimensional;
g°In(1/g), and appears to be well behaved for much largeinfrared divergences are at worst logarithmic, so that any
values of the coupling constant, up to valuesgsf4 [22].  magnetic mass is at bestu exp(~1/g°), which is much
Similar conclusions can be reached by comparing the gluosmaller than the scale for color superconductivity,
“mass,” my~gu or ~gT, to the chemical potential, or ~ ~u exp(-1/g) [7.8].
the temperatureT [15]. Thus for cold, dense quark matter, The dependence of the zero-temperature color-
perturbation theory might give us information which not superconducting spin-zero condensétgon the QCD cou-
even lattice QCD calculations can provide. pling constanig was first computed by Sdi8], who used a

Color superconductivity is rather different from ordinary beautiful renormalization-group analysis to show that
superconductivity, as in the model of Bardeen, Cooper, and
Schrieffer(BCS) [1-3]. In BCS-like theories, superconduc- 0 -
tivity is determined by infrared divergences which arise in ho=2— ,uexp< - —_>
the scattering between two fermions close to the Fermi sur- g 29
face: the initial fermions, with momenta and —k, scatter -
into a pair with moment’ and —k’. Summing up bubble Here g=g/(32#) arises naturally from the solution, as-

suming three colors. In Son’s resultbg is a pure number of

@

order 1.
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arbitrary temperaturd. Our derivation is perturbative, i.e., That is, not only is the parametric dependence of the spin-1
g<<1. In this case there are three scales in cold, dense QCRpndensates ogthe same as for spin 0, as argued originally
the chemical potentiglk, the gluon massny~gu, and the by Son[8], but to leading logarithmic accuracy, even the
color-superconducting condensatg,~ u exp(—1/g), and constant in front is the same. We do not expect tiatthe
they are naturally orderegl,>mg> ¢. undetermined constant analogoushfp is the same. Surely

We solve the gap equations to “leading logarithmic accu-p; is smaller tharb}, and depends on whether the conden-
racy,” by which we mean the following. In the gap equa- sate is longitudinal or transverse. This is very different from
tions, the leading terms areln(u/¢). These terms generate BCS-like theories, where condensates with higher spin are
the exponential in I in Eq. (1); therefore Infu/¢y) is of  typically exponentially suppressed. In QCD, higher-spin
order 1g. There are also Ieading Iogarithmic terms condensates are 0n|y Suppressed by a pure number.

~In(u/my), which are~In(1/g) plus a constant. The In(@y Nevertheless, one dramatic implication of our results is
gives rise to the prefactor g9, while the constant contrib- that superconductivity in QCD may be very unlike one’s
utes tob,. For N¢ flavors of massless quarks we find intuition from nonrelativistic systems. Instead of higher-spin
gaps being much smaller, they may be relatively large, which
o 2 52 , is important for phenomenology. Consider, for instance, a

bo= 256 N_f bo. 3 quark star withu, d, ands quarks. In the limit of high den-

sities, when the strange quark masg is negligible, the

There are other terms in the gap equations, which do ndfumPer ofu, d ands quarks are equal. Then charge neutral-
arise from Infu/my). These terms are of order 1, and thus of 'ty is automatic, and the prejerred color—superponductmg
the same order as the constant term originating from thgondensates are of spi=0, with color-flavor locking[6].

logarithm Ing/my). Hence they contribute in the same way For realistic densities, however, the chemical potentials for

to by. We do not compute these, so that in E2).there is an u, d, and S.Wi” not be equal. The strange quark chemical
undetermined constait, potential differs from the up and down quark chemical po-

Our results were described previoudl¥5], and agree tentials due ton,>m, , my. The up and down quark chemi-

: . . ¢ cal potentials differ on account of charge neutrality. These
\c;\c/)img:ael;[e[li/3]\;/V|ttE e; nallsrl)d?)?/eerrllg?)n\t/vi?r:] &:stése 2¥ I—? ;,t;a Ql('j effects suppress the coIor—antitriplét:O_ condensates, be-
52 - cause they are composed of quarks with different flavor. On
[12]. The factorN; > in Eq. (2) originates from theN; de- Lo
] S the other hand, the color-antitripldt=1 condensates may
pendence ofny ; however,b, will al_so de_.\p_end oﬁ\_h [19]. form between quarks of the same flavor, and are not sup-
~ Even though we do not determiibg, it is very interest-  ,roqseq if the chemical potentials of the various flavors dif-
ing that the numerical value dfy /b is large. This implies  fgr.
that, for chemical potentials of order1 GeV, the gap can  This paper is organized as follows. In Sec. II, we derive
be Of. order 100 Me\/{l3,15| Such |?.rge values Of the gap the gap equations for a Spﬂq:O condensate dﬂfzz mass-
are in accord with previous estimates obtained withiness flavors at an arbitrary temperatditan Sec. Il we solve
Nambu-—Jona-Lasinio modef§], and are much larger than these equations to leading logarithmic accuracy, firsT at
original estimates by Bailin and Loves,~1 MeV [4]. =0, and then at nonzer®. In Sec. IV we classify the pos-
We then solve the gap equations at nonzero temperaturgiple spinJ=1 condensates, and solve the gap equations for
We find a surprising result: while the detailed form of the N —1 " Section V concludes this work with a discussion of
gap function is very different in QCD versus BCS-like theo- higher-order effects which contribute o, and bj. Our
ries, the temperature dependence of the condensate—the diziis ares =c= 1; the metric tensor igy*’=diag (+,—,
mensionless ratio of the condensate at a temperatto¢hat —). Four-vectors are denoted by capital lettefs= K*
at zero temperatureg(T)/po—is identical to BCS-type =,(k° k), andk=|k|, while k=k/k ’
theories. In particular, the ratio of the critical temperature, Y ’ '
T./$o=0.567, is as in BC$1,2]. Our result forep(T)/ g is
valid to leading order in weak coupling, even though we Il. GAP EQUATIONS
cannot compute the overall magnitudedy, i.e.,b}. In our
mean-field approximation the transition is of second order
but the transition can be driven first order by critical fluctua-
tions near the would-be critical poiff].
We then classify the condensates with total spinl.
Following our classification of condensates with 0, which
employed projectors for chirality, helicity, and energy, we

In general, a color-superconducting condengaﬁqg isa
N¢X N matrix in fundamental color space, =1, ... N.),
a N¢ X N¢ matrix in flavor spacef,g=1,... N¢), and a 4
X 4 matrix in Dirac spac¢7]. As shown in[7], for N;=2 a
color-antitriplet condensate is a flavor singlet,

show that there are two types of spin-1 condensates, longi- Djf g = €rgPi] = €rg €k Py - 4)
tudinal and transverse. As an example, we solve the gap
equations folN;=1 and find By a global color rotation, we can always choo®§¢ to
point in the 3-direction in color spac&, =8, ®*. For
b, - o N;=3, even if we assume that the dominant condensate is a
$1=2—pexp — =, b= —bj. (3)  color antitriplet, there is always a small admixture of a color
g bo sextet[16]. The color-antitriplet condensate is a flavor anti-
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triplet, and the color sextet a flavor sex{ét19). In this
paper, for simplicity we consider only the calde=2.

The gap equation for a color-superconducting condensate

of massless fermions was derived [[@)] [cf. Eq. (A35) of
[9]]. At a nonzero temperaturg, this equation readéwe

PHYSICAL REVIEW 31074017
3{5= Yo(P ) 070G 0 ni®ig = €ntdni€igYo(P ) TGy @
= S1g¥o(P )T yGy P =682 7, (12

and thust*g=5ng*. Therefore, both the left- and right-

suppress fundamental color and flavor indices for the mohand sides of Eq(5) are simply proportional tcey: the

men}

J(K—Q)

T J—
O (K)=gy X TIAL

X Gy (Q)PT(Q)GT(Q)T'y. ©)

Here, T/VEo=TZ,fd%q/(27)? in the infinite-volume limit

[n labels the Matsubara frequencieg= (2n+1)7T=iqg],

and a summation over Lorentz indicesr as well as adjoint

color indicesa,b=1, ... ,Ng—l is implied; N.=3 is the
b .

number of colorsAf‘w is the gluon propagator,

Gy (Q)=(7-Q=py * (6)
is the propagator fofree, massless particlesipper sign or
charge-conjugate particlékwer sign,

G ={[Gy] *-37}* (7)
is the propagator foquasiparticles(upper sign or charge-
conjugate quasiparticldsower sign, and

3F=P Gy P (8)
their self-energy arising from the interaction with the con-
densate. The charge-conjugate condensate is

D =yy(P )Ty, €)

and the vertices are

[A=Tay*, TE=CIH)TCT'=—»*T;, (10
where y* are the Dirac matrices ant, the Gell-Mann ma-
trices,C=—C'=—CT=—C 1=i4?y, is the charge conju-
gation matrix.

In the following, we analyze the flavor, color, and Dirac
structure of the gap equati@b). For N;= 2, the color-flavor
structure of the condensat4) does not mix color and flavor

flavor structure of the gap equation is trivial in QCD with
N;=2 flavors, and will thus not be explicitly denoted in the
following.

B. Color structure

The free propagatde) is diagonal in the color indices for
the fundamental representation,

G5ij(Q)=8;G5(Q)=8;j(y- Q= uyy) ™.

The self—energyEfjr is also diagonal, but not all diagonal
elements are equal:

(13

3= yo(P ) voGou @i = exiadi€rjaYo(P ) oGy @
=(8j— 6136132 "; (14)

the self-energy for quarks with color 3 vanishes. This is easy
to understand. Let us first note that, according to &d.7)
of [9], the condensat® * is actually proportional td ),
while @~ ~{(yiic). (yc=Cy" is the charge-conjugate fer-
mion field) Thus, according to Eq8), the self-energy. "
arises from the following process: a quark with, let us say,
color 1 annihilates with a corresponding antiquarkdit
creating a charge-conjugate quark with color 2. This quark is
propagated with the charge-conjugate propaggigr, and
annihilates with a charge-conjugate antiquark of color 2 in
@, whereby a quark with color 1 is emitted. As only quarks
with colors 1 and 2 condense, it is not possible to annihilate
and create quarks with color 3 in this process; thus the latter
do not attain a self-energy.
One can now compute the color structure of the quasipar-
ticle propagator,
G ={8j[Gy1 ' (58— 8i36z)= "} 7+
= (8~ 6138;3)G "+ 8136;3G, , (15

whereG*={[Gg] -3}~ L
When inserted into the gap equatidb), the terms
~ 8i3 83 in Eq. (15) vanish, asb;; ~ €;;3. The gap equation

indices, and thus the analysis of flavor and color can be don@ecomes

separately. This is different fa¥; =3, where color rotations
are locked to flavor rotations.

A. Flavor structure

We first discuss the flavor structure of E). Fundamen-

.
€@ (K)=—(THT3 - ToThe*y 2 y*ALUK-Q)

XGg (Q)P(Q)G(Q)y". (16)

tal color indices will be suppressed for the moment. The fred "0m the explicit form of the Gell-Mann matrices we now

propagatorn(6) is diagonal in flavor,
Gorg(Q)= 614Gy (Q)=1g( 7 Q*uye) ™t (11

and so is the self-energy,

infer that only gluons with adjoint colors 1, 2, 3, and 8 par-
ticipate in the gap equation.

A color-superconducting condensatg, ~ &,; breaks
SU(3), to SU(2),; gluons 1, 2, and 3 then correspond to the
generators of the unbroken subgroup, and thus remain mass-
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less, while the 8th gluon attains a mass through the In the ultrarelativistic limit,m=0, the energy projectors
; : 11 _ A22 _ A33_ ; ;

Anderson—~H|ggs effect. Denoting,,=A=A =A simplify to

andA% =K ,,, we obtain

)%

r 1+e’)/0‘)/|2

= - e =
m=0: A&(k) 5

3.7 1_ (24)
O (K)=70°G 2 7| Au(K-Q)~ g 4,,(K-Q)
This has three major consequences. First, the quasiprojectors
(20) become true projectofsf. Eq. (B29) of [9]]. Second,
P =P _=P/. =P, =0, expressing the fact that right-
where a common factog;;; has been dropped from both phanded, positive-helicity particles cannot have negative en-
sides of the gap equation. _ ergy, etc]cf. Eq.(B30) of [9]]. Third, eitherthe chirality,or

In a complete treatment of the gap equations the effect off,e helicity, or the energy projector in Eq20) becomes
the condensate on the gluon propagator has to be includegperfluougct. Eq. (B31) of [9]]. In the following, we omit

[20]. In contrast, we use the gluon propagator in the “hardine nelicity projector and use just chirality and energy pro-
dense loop” (HDL) approximation [23—26. The HDL  jectors,

propagator introduces a gluon masg~gu. Since in per-
turbation theory the scale of the condensdig is much
smaller thanmg, it is reasonable to expect that, to a first
approximation, we can neglect the effects of the condensatehen, Eq.(19) simplifies to[cf. Eq. (8) of [9]]
on the gluon propagator. A more detailed explanation is

XGy (Q@(Q)GT(Q)y”, (17)

m=0: PE(K)—PEK)=PLA(K). (25)

given below. We consequently assuﬁngVEAM, and ob-
tain
2T
+ =—_g2— H —_
P (K)=30°G X V*A,u(K-Q)
XGg (QP(Q)GT(Q) . (18)

C. Dirac structure

In [9] we have shown that the gap matdx" for a con-
densate with total spid=0 has the form

J=0: ¢+(K)=h§/ s; e; HE(K)PEL(K). (19

The 4x 4 matricesPy (k) are defined as

Prs(K)=PyP(k)A%(K), (20)
where P, are projectors for chiralityh=r,/,
1+ys 1-vs
P=—p—, Py, (21
while
1+s -k
Pk = T o 22
are projectors for helicity, and
1+e k+
AC(K)= (Bkyoy K+ axyo) — 23

2 l

are projectors for energy, Bi=kK/Ey, ay=m/E, Ey

J=0,m=0: ®*(K)= > > $AK)PEk). (26)

h=r,/ e==x

The quasiparticle propagator assumes the farimEg. (15)
of [9]]

PE(q)
=3 3 M srrt @)

h=r,/ e==+ m

where e5(¢) = q—eu)?+[¢|% From Eq.(26) of [9] we
then infer that the gap equatidi8) can be written in the
form

2 T
PT(K)=30°G 2 7*Au(K-Q)
HQ)
x WY @y, (28

h=rs 6= gg—[eg(op)1?

where—h=/, if h=r, and—h=r, if h=/.
With the help of the projector®; (k) one can derive gap
equations for the individual gap functions, ,

2 T
HK)I=30°G 2 Au(K-Q)
$i(Q)
do—Leq(op) 12

¢n °(Q)
do—[eq (b )1

T PRK) Y*P-R(@)y"]

T PRK) Y PEp(a) '] -

(29

= k?+m?. While the Pry(k) are composed of projectors, To obtain this result we have useB,y*=y*P_, and

they are not projectors themsehes. Eq.(B29) in [9]], and
thus were termed “quasiprojectors” i®].

PyP_,=0, so that the gap equations for right- and left-
handed condensates decouple. This is a consequence of the
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U(1), symmetry of the QCD Lagrangian, which is expectedticle energye; is very small near the Fermi surface;
to be effectively restored at asymptotically high densities=|¢,'|. The quasi-antiparticle energy; , however, is al-

[7,14].
In the Coulomb gauge, the HDL propagator 28,24

pz i
Aoo<P)=A|<P>+§cp—Z, Am(P):gcp;—f,

AiJ-(P):(ai,-—ﬁiﬁj>At<P>+§c%. (30

We set the gauge parametgy=0. We shall show later that

ways larger tharnw. Therefore, in weak coupling, the domi-
nant terms arise from the quasiparticle poleg

== eq*(cbﬁ) [9], and the contribution from quasi-antiparticle
poles can be neglected. Consequently, we do not need to
solve Eq.(32) for the quasi-antiparticle gapg,, , in order to
determine the solution for the quasiparticle gaps,. In the
following, we drop the subscrigt and superscript- to sim-

plify the notation, and denoté, (K)= ¢(K).

D. Spectral representations

our results are manifestly gauge invariant to leading logarith-  To perform the Matsubara sum over quark energigs
mic accuracy. The longitudinal and transverse propagators: —j(2n+1)#T, we introduce spectral representations. For

Al,t are defined in qu.33) below. the g|uon propagator[§324]’
The traces in Eq29) are readily evaluated. We need the

terms 1 uT
A,(P)E——2+f drePomA(7,p),
e Fe 1+k-q P ’
THPRASK) oA ™S (A) ol =—— (319 .
At(P)zf d7ePom A(7,p), (333
_ 37Kk-§ 0
2 TR ASK) A5 (@) yi]= - —5—, (31b) i}
A(7p)= | dop 0.1+ ne(0T)Te
o nme . 1xkeq(kFQ)?
TPRASK) Y- pATH@) y-Pl=— — > +ng(w/T)e’"}, (33b
(319 where ng(x)=1/(e*—1) is the Bose-Einstein distribution

wherep=k—q. Obviously, the final result is independent of function. The t_er”f 1/p? in the longitudinal propagator can-
the chirality projector. We therefore conclude that the gapCels Fhe contrlt_)utlon of(P) at pp— [24]. The spectral
equations(29) for right- and left-handed gap functions are densities are given bj23,24

identical This means that right- and left-handed gaps are

equal up to a complex phase factor e¥p( Condensation p"‘(w’p):pﬁ?le(w’p) 5[w—w|’t(p)]+pf}tn(w,p) 0(p~w),

fixes the value of¢ and breaksU(1), spontaneously. As (343
discussed ii7,14] this leads to spontaneous breaking of par- 2 5
ity. pole __ w(e™pY)
. . . P (wap)_ 2, 2 2 N (34b)
The gap equations for either right- or left-handed gap pP=(p°+3my— w?)
functions read
2M? @ o |ptol\]?
2 T e 1+k-q pi(w,p)=— — p2+3m2(1——ln—
¢ﬁ(K)=§92v2 {#Q)QZ[AKK—Q) a | TP ’ 2p [p-w
Q |do—[eq(on)] w\2) -1
.. .. +|2M?— 34
3-k-G 1+k-G (k-0 p) (349
+A(K=Q)| = +
z 2 (k-9 »
o ,p) = g P (340
—e O y - [}
¢n (Q) A,(K—Q)l_ -q t 3mgw2 (02— p?)2
do—Leq “(¢n )17
3+k-q 1-k-q (k+q)? OO A | S
FAK—Q) - a, qkta)”} || Pl )= g 2 [P T 2™ 2
2 2 (k-9 , )
+ 2|
(32 +%Inp_—2) +(M2%) ] . (340

The gap equations involve singularities from both the quark

and gluon propagators. The poles o{fqﬁl—[eg(qsﬁ)]z} give  The basic parameter of the HDL propagators is the gluon
a residue~1/eq( ). Remember, though, that the quasipar-mass
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2,2 2712
2 g u Nf g T
mgszﬁ+ NC+? T (35)
We also found it convenient to introduce
3
2__ 2__ 2
M =ng—2.36*ng. (36
The functionsw) {(p) are the solutions of the equations
o [ot+p
2+3m2[1——|n( ”:o,
P 997 2p \o—p
(373
3 1) wit+p
2 2 2y 2 2 2, Mt o 2 t _
p (wi—p°) 2mg wt+2p(p wp)ln o p 0,
(37b)

and define the dispersion relations for longitudinal and trans-

verse gluons, respectively. They satigdy;(p)=mj.

PHYSICAL REVIEW D361 074017

We also introduce a spectral representation for the quan-
tity

E(Q)= (39

$Q
q%-[eq(dn]z_fo dretr=ina)

Neglecting the singularities ot(Q) in the complexqq

plane, and assuming(qy,q) to be an even function af,
we find

E(T.Q)Ef:dwz(w,Q){[l—nF(w/T)]ef"”

—np(w/T)e*™}, (40
where
plw,)== ¢(2“;;q> dw—e€q), eq=eq(¢), (4D

We argue later that the phase-space region which domi- . o o
nates the gap integrals is the nearly static, small-momenturdnd ng(x) =1/(€*+ 1) is the Fermi-Dirac distribution func-

limit. The gluon energies are on the order of the gap,
~ ¢, while the gluon momentp are much larger thaw, but
much smaller thamn, . In this limit, o<p<my,
2M? w 1
7T P (p®+3m5)?
2

cu M ep
Pt t(“%p)— o p6+(M2w)2.

pi*{(w,p)=

(38)

TqE A(K-Q)E(Q)=—
0

q

1 1 1
_ko—w+eq+k0+w—eq +§COt
ool
_k0+w—eq ’
— #d(€q,q) (= 1 €
TS A(K-QE(Q =~ ZoE% [ “dupw.p)|  tant 52
o €q 0
1 1

d(€q,0) B 1 Eq) 2 *
e [ Etan?‘(ﬁ E—'_fo dwp|(w,p)

T

tion.

By neglecting the singularities ap(Q), the only contri-
bution to the spectral representation S{Q) is from the
poles of 1{q§—[eq(¢)]2}, which generates the delta func-
tion in the spectral densiti41). This forces the energy in the
gap functiong(qq,q) to lie on the quasiparticle mass shell,
do= €q(P)-

The Matsubara sums ovey, can now be computed as
(p=k-aq)

1 1
k0+w+eq ko_a)_éq

1 €q
E tan ﬁ

1 1 1

w

%ﬁ)(ko"'w*‘éq_ ko_w_6q+ ko_w+€q

(423

1 1 1 N 1
k0+w+eq ko_b)_Eq ko_w+€q k0+a)_€q

1 w
+ ECOt ﬁ

Ko /T—

where we have made use of H4l) ande —1, since

Ko=—i(2n+1)aT.

E. Analytic continuation

— + —
k0+w+6q ko_w_Gq ko_(l)+€q ko+w_6q

1 1
) , (42b

ues of the energyko=—i(2n+1)#T, but on the quasipar-
ticle mass shell, for real values &f=¢€,. This is achieved
by analytically continuind,— €,+1i % [2]. The analytic con-
tinuation of the gap equatiai32) introduces a termsy in the
energy denominators in Eq42). As 1/(x+in)=P(1Kk)

In field theories, the only physical quantities are those on—iwd(x) (where P stands for the principal vajuéhis gen-
the mass shell, such &matrix elements. In our case, this erates an imaginary part for the functigife, k). As shown
implies that we need the gap function not for Euclidean valbelow, this imaginary part is down hy relative to the real
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part. This justifies neglecting the singularities #{Q) in

deriving Eq.(42). In the following, implicitly we take the
principal value of all energy denominators. Finally, since the
gap functiong(ky,k) does not depend on the orientation of
the 3-vectok, but only on its magnitudes [cf. Eq.(32)], the

on-shell gap function is a function dk only, ¢(e,k)

= ¢(€x,K)= .

F. Contribution from longitudinal gluons

PHYSICAL REVIEW 361074017

Ky (k —de ! tr( @ !
1(k,q)= | dwpi(,p)7coth 5= wteqt e
1 1 1
w+6q—6k_w—(eq-i-ek)_w—(eq—ek) '

(47)

The integral7, consists of two parts, one from the pole term
in the spectral density, and one from the cut term. The pole

The contribution from longitudinal gluons is given by Eq. term is
(423. In general, this equation can only be evaluated nu-

merically, using the full expression@4) for the spectral |
densities. We can proceed analytically by noting that, due ta7f (K,d)=—;
the factor 1¢,, the integral over momentais dominated by
the region close to the Fermi surface. In the following, we
shall therefore assume that the momdatandq are close to

the Fermi surface, such that~ e ;<my. Now rewrite

1 1 1 1
+ + +
otegte wte—e w—(€te) o—(eg—€)
E B €qt € &g & €qt €
Cw oteégte ote—e w—(eqt €
€4 €
q—k, (43)
o— (€5 €)
and make use of the sum ryla3,24
= plop 1
2] d =—+A/(0p), A(0Op)=———,
| a0 I
(44)
to obtain
T2 A(K-QZE(Q)
9o
¢<eq,q>|1 k(eq) 2
=— —tanh —=|| - —— + J7(k,q)
2
2¢q |2 2T p?+3myg
+IC.(k,q)], (45
where
(=, plw,p)|  egte €qT €
j(k,q)—fodw 0} o—(eqte) oteqte
Gq_fk Gq_é'k

—+

(46)

o—(eg—€) ot eq—e

and

2 2

o —p €q1 €k €qt €
p? p?+3mi—owf L@~ (€t &) ot eqt e
€q— €k €q— €k
. -1 : (48)
w|—(eq—ek) w|+6q_€k

As o;=mg> €~ €;, we may expand the energy denomina-
tors aroundw) ,

2 2 2 2
RGO P B MR i
R p? p?+3mi—wf  of

(49

This contribution is quadratic iey/w;~ €/w;<1 and thus
negligible.

The cut term is estimated using the approximate form of
the spectral densit{38),

€q7F €

2M?2 1 Jp

u7|CUt(k!q)2 7Tp (p2+3m2)2
9

0

)
o— (€t €)

€q7 €k €9~ €k €97 €

otete o—(—€) wteg—e€

2M?2 1 €qt e P
= 55| (gt @)In| =———
7P (p?+3m?) €qt &t P
€q— €k P
+ (€q— €)In|4+——|. 50
(€q— €0 P (50)

This integral is proportional to factorg,* €., which para-
metrically cancel the prefactor €4 in Eq. (45). (This is true
except forp— 0, where these factors cancel when expanding
the logarithms. However, the Jacobian of the angular integra-
tion in the gap equationfd cosé~[dpp suppresses this
contribution) It is thus negligible compared to the term
~2/(p®+3m3) in Eq. (45).

We now turn to evaluatéC(k,q). After expanding the
energy denominators in E@47) around w;=mg> €~ €4,
the pole part reads

1 w?—p? 1 €

)
(5

The range of temperatures of interest is limited Ty, the
critical temperature for the onset of color superconductivity.
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As T~ po<mg=<uwj, cothw/2T)~ 1. The factore, cancels static electric gluons dominates over that of nonstatic electric
the prefactor in Eq(45), such thatiC lpole is negligible com- gluons. We note that, while the individual tern%9) and
1 o . . 2
pared to the term~2/(p2+3m2) in Eq. (45) (51) exhibit an apparent infrared divergent prefactop<l/
9 . .

To estimate the cut term, we use the approximate expre§he SUT Oftﬁ” tern:s_blst_mfrarfedl f|r1|t_e, alls can bteh shtown_ by
sion (38), and employ a relation similar to E¢3), computing the contribution of electric gluons without using

Eq. (43).
1 1 1 1
+ - - _—
otete ote—e w—(egte) w—(eq— € G. Contribution from transverse gluons
1 eqtex €q— €k The contribution from transverse gluons is written in a

= — — + . . .
wlotegte wteq e form similar to Eq.(45):

_ — P(€q,q) |1 €
T R €9 g TS AK-QEQ=- 1| Stant o3| Zi(k,a)
- — (52) < 2¢q |2 2T
o—(eqte) w—(€g— € o q
to obtain +Kt(k,q)}, (56)
o e 2M7 1 fpd ” ot =
| ( !q)_ mp (p2+3mg)2 0 (,()ZCO 2T where
» €q € €9 €k N €qt € " 1 1
wtete wte—e w—(eqt€) jt(kyQ)Efo dopw,p) w+6q+€k+ W+ eq— €
Gq_Ek
—a k) (53 . L
w (Eq €1) w—(6q+6k)+w_(fq_6k) 57

For w of orderT or larger, this contribution is small, since
then coth{/2T)~1, and thus all terms are proportional to and
€= €. Foro<T, however, the largéclassical occupation
number density of gluons can enhance this contribution. In

; 7 . ) * 1 1
the classical limit, one approximates cabf€T)=2T/w. Si- ]Ct(k,q)sf dwp(®,p)= cotr(i S
multaneously, as the range of validity of this approximation 0 2 2T/ o+ et e
is w<T, the upper limit of the integral should now be re- 1 1 1

placed byp* =min(T,p). Reverting the stefb2), we obtain

w+ eq—ek_ o—(€qt € B o—(€eq— €
2M2T 1 (58)
7P (p?+3m3)?

Kk, q)=

The function.J; consists of a pole and a cut term. In the first,
we expand the energy denominators aroumd=mg> e

P*+eqtex P teq— e ‘ (54
~ €, to obtain, to leading order ig;* €,

p* —(eq+ €) P* —(eq— €|

XIn

For T—0, we may expand the logarithm to show that this w2— 2
contribution is quadratically small ifi. On the other hand, TPk, q) =4 P (59)
for T—T,, close to the Fermi surface,~ e~ ¢—0, and 3miwi — (wf—p?)?

the logarithm can be expanded fof > €, = €. The result is
proportional toe,* €, which cancels the prefactor €}/,

and thus suppresses this contribution. We shall therefore ne-
glect it in the following.

For the cut term, we again employ E@®@8) to obtain

The final result for the longitudinal contribution is thus e M?p (p ® 1
Ji ‘(k,q>:—f do————
bleo.q) 1 . 2 T Jo p°+(M2w) ot €eqt gy
T2, ANK=-Q)E :¢—tanl‘(—q —_—.
qzo I( Q (Q) 26(1 2 2T p2+3m5 N 1 n 1 n 1 .
(55) ote—€ o—(egte) w—(€q—€)

This result could also have been obtained by simply taking (60

the static limit of the longitudinal gluon propagatadr,(0,p),
on the left-hand side in Eq55), and performing the Mat- The o integral can be performed analytically. Denate
subara sum directly. We conclude that the contribution of=p3/M?2. Then
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Tk @)= | "o

1 N 1
o—(egte) o—(€g—€)

2_ 2
! R e A WO PIAL L
w’+a?lotegte wte—e t ' 3m2w?— (02— p?)? 2 2T '

(66)

As the factore, cancels the prefactor 4 in Eq. (56), this
contribution is of higher order and thus negligible.

p a The cut term is estimated with E(B8) to be (as before,
mM? a2+(eq+ €)? a=p/M")
S arcta P Kk, q)N g f 2; t"(% %
a2+(eq—ek)2 a w “+a @ T
+ p+eqt ! ! !
€ €] € € - - .
_ 2+(q +k 2 ‘p (eq-l—ek) ote—€e w—(egte) w—(€—€)
a - k
Gq €y q (67)
__ Cac In‘ PFeq” ek || (61)  Forw of orderT or larger, cothg/2T)=1, similar steps that
a2+(eq— €)? |P—(eq— €W led to Eq.(61) now show that the final result is proportional

to €4* €, and thus of higher order. Fes<T, however,

The terms proportional te,* €, are of higher order and can

be neglected, such that p* 1

w
2)o w2+ a?

1 1
_|._
wtegte oteg— e

4
u k'q)2 . 4p 5 . 1 _ 1
p°+M%(eq+ €4 o—(egte) o—(eg—€)
p* Earctar<M2). (62) ~ m* pT P* +eqt e ‘
P+ M*(eq—€y)? p PO+ Mgt €)? | P* —(eqt )]
The arctan cutgj; off for momentap larger than~M. To I pT P*+eq— e ‘ (69)
make further progress, in the following we replace the more pS+M*(eg—€)? | p* _(fq_fk)‘ '

complicated arctan with a simpled function cutoff,
2 arctani1?/p?)/=— 6(M —p). However, to retain consistency Where as before* =min(T,p), and terms proportional to
with the sum rulg 23,24 €,* € have been neglected in the last line. For srilalan
expansion of the logarithms shows that this contribution is
. 1 quadratic inT. On the other hand, fof —T,, an expansion
f dwpt(w L — (63  of the logarithms forp*>e,+ €, shows that it is propor-
@ p2 tional to €5+ € ; it thus parametrically cancels the prefactor
1/e,. We shall thus neglect this contribution in the follow-

we also have to modify the result for the pole tef®8). To  ing.

enact the modification, note that/2 is identical to the left- Our final result for the transverse contribution is therefore
hand side of the sum rul@3), when we set,= €,=0 in Eq.
(57). Thus, the most simple choice is TqE A(K—Q)E(Q)
0
2 (€4,9) 1 € 2
TP, 9= 0(p—M), (64) M@l o feajl2 0 _
t 02 2e, 2tan o1 p20(p M)+ 6(M—p)

4 4

p p
p6+ M4(Eq+ ek)2 p6+ M4(Eq— ek)2

since then, fore,= €,=0,

2

Tk =TPkQ+ Tk g= . (69 (€9

o

H. Gap equation

The function/C; also consists of a pole and a cut term. In  Collecting the results from the previous subsections, and
the first, we expand the energy denominators arowpd replacing the angular integratigid cosé by an integral over
=mg> e~ €, p=|k—q|, the gap equation32) reads
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g? [#té by the quasiparticle mass shél(K) = ¢(¢,,k). One advan-
¢k: j I‘(ZT) ¢q

Y dq—tan tage of our approach is that the extension to nonzero tem-
ar

perature is immediate.
K+ q 5 (k+q)2— p? From Eq.(70), the gluon momenta which dominate the
xf dpp
k=g p?+3m;  4kq

n—2=o

_g(p M) contribution of nearly static, transverse gluons gié

~M4(eqt ek)2 or for energiese,, €, close to the Fermi

surface,p~(mg 2$)Y3. While these momenta are small rela-

tive to the gluon massng, they are much larger than the

condensate. This is why we can use an HDL propagator in

the gap equations, neglecting the effects of the condensate.
The approximations which lead to E.2) are only valid

] (70) to leading logarithmic accuracy, in that we neglect terms of

order 1 relative to Iry(L/mg)~In(1/g) Possible contributions

of order 1, which contribute tbg in Eq. (2), are discussed in

4

p . p*
p6—i-l\/|4(¢sq-|—ek)2 p6-i-l\/|4(¢sq—ek)2
2 k2_ 2\2
N PR 55
4kq  4kqp?

+6(M—p)

Here, we restricted the integration to a regionu— 6<q
<pu+ 6, 5<u around the Fermi surface, since we assumedS

that e,~ ex,<my~gu<u. Therefore, we may séd=q~ u.

Also, to leading order we may neglq&ﬁ terms with respect lll. SOLVING THE GAP EQUATION

to (k+q)* terms. Then, the gap equatién0) simplifies to The gap equatiofi72) is an integral equation for the func-
tion ¢ = &(€,,K). In general, it can only be solved numeri-
cally [13]. In this section, we first discuss the parametric
dependence of the solution to EF2) on the QCD coupling
constant. To this end, it is instructive to understand which

4,u2

dg| In

g ntsdq ’_( €q
= —tanh 5=
¢k 24’/72 n—3~ eq 2T g

1 M2 terms in Eq(71) determine the exponent and the prefactor in
+§In (71) Eqg. (1). We then derive an approximate analytical solution
|€q_€k| by converting the integral equatiof72) into a differential

equation. The solution is discussed in detail at zero and at
The first term in brackets~|n(4,u2/3m ), arises from static nonzero temperature.
electric gluongproportional to 2/p?+ 3m o) in Eq.(70)], the
second,~In(4u?/M?), from nonstatic magnetlc gluoripro- A. Parametric dependence of the solution
portional to §(p—M) in Eq. (70)], and the last term, on the QCD coupling constant
~In(M?%|€— ), from soft, Landau-damped magnetic glu-
ons[proportional tod(M —p) in Eq. (70)]. These terms can
be combined to give

Let us introduce the variable

— g
=——. (74)
g® (od(q—u) &1 [ b*u? 3V2
b= 5 — tanh == —In % bq, )
187%Jo € 2T €5 el At T=0, the general structure of the gap equaiid) is
(72) B

. . , 9” (2d(q—p) %

where we exploited the symmetry of the integrand in Eq. ¢x=% | +2In| ——|+C|dq.

(71) around the Fermi surface to restrict tipe w integration |€q_ €il 0

to the intervalu<qg<u + §; i.e., we only integrate over mo-
mentaq from the Fermi surface up tp+ 8. Moreover, we
have defined

(79

The first term, ~In(u?|€;—€f)), arises from nearly static,
transverse gluons. As compared to Efl) we have factored
52 out a term~In(M%u?). The second term;-In[by/(b)g®)],
b= 256774( 2 ) . 73) combines this term with the contribution from electric and
N;g? nonstatic magnetic gluons. The rabig/b is a well-defined
number and given in Eq2). These first two terms comprise
The temperature dependencengf [cf. Eq. (35)], has been the leading logarithmic approximation. The last teontep-
neglected, ad ~ ¢o<my~gu. resents contributions that go beyond leading logarithmic ac-
The result(73) for b agrees with the analysis of Sgha  curacy, such as terms of order 1 ji(q—u)/eq, or of
and Wilczek[13]. It does not agree with that of Horeg al. ~ higher order, for instance- fd(q— «). We have neglected
[12], because they neglected the contribution of electric gluthese terms in our derivation of E¢71). In Eq. (2), they
ons. Note that our gap equatiéf2) differs from that of Son  were written in terms of the undetermined constajit We
[8] and of Schier and WilczeK 13] in that we integrate over are therefore permitted to choose 2 Inby in the following.
momentag, while they integrate over Euclidean energigs In order to understand which terms are responsible for the
The energy dependence of our gap function is always giveexponent and the prefactor in E@.) let us solve Eq(75)
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assuming that the gap functiafy, is constant as a function 2bu
of momentum. This will give the wrong coefficient in the y=Inj ———], (81a
. . q—pte€q
exponent, but suffices to understand the parametric depen-
dence of Eq.(1) on g. For k= u, ¢q= ¢ = po=const, the b
(g— ) integral in Eq.(75) can be performed to yield{ xz|n(—'u , (81b)
> k—,LL+ €K
$0)
2b 2b
T BN LT R s L s G
2 \ oo g°s) \¢o #

where (;SE(;SME(}&(G#,,LLR) is the value of the gap at the
Fermi surface. Obviousl)* =X, y. As d<mg<u<bu [cf.
Eq. (73], bothx andy are much larger than 1. In terms of
these new variables,

The first term arises from the leading terrin(u?|e;—€f))

in Eq. (75), while the second comes from the leading loga-
rithmic term~In[by/(b,g®)]. The quadratic equatiof76) for
In(2d8 ¢pg) has the solution

— ¢(y) _(X*_ ) 2 _
25 bou bow| 2 eq=bue V| 1+| ——e N |=e(y), (829
In(— =—In|— |+ \/IN| —|+=. (77
bo g%s g°5) ¢@?
— e=bue 1+ Mef(x*f’() i =€(X)
In weak coupling, the term-2/g? dominates the right-hand k=DM & ’

side, so that we can expand the square root. This term then (82h)

gives rise to the exponent in EL/ for ¢o. The term
~In[bou/(g®8)] in Eq. (77) gives rise to the prefactor of the
exponential. In this way we obtain

where we defined a new functiay).
The transformation to the new variabjeis natural, be-
cause

[1+0(9)]. (78) dy=_ 2=~ @

€q

b 2
qSOzZ—Z,u exp( - \/—_—
g g

Note that, to leading order ig, the dependence on the cutoff is the measure for integration, without any further Jacobian.
o cancels in the final result. Equati¢n8) is rather similarto |t is similar to Son’s variablg/s,= In(u/qo). For Son’s vari-

Eg. (1). The difference is that, due to ogerroneous as-  aple, howeverdys,= —ddy/qo, SO that in the gap equation,
sumption of a constant gap function, the coefficient in theit is necessary to include a Jacobian for the transformation

exponent is incorrecty2, instead ofr/2. from g t0 Yson. This Jacobian does not affect his results for
the parametric dependence of the gap functiorgphut to
B. Converting the integral equation leading logarithmic accuracy, it does affect the prefactor and
into a differential equation the shape of the gap function; cf. discussion at the end of

Sec. Ill C.

The gap equationi72) can be solved analytically by ap- In the new variablex, y the approximate gap equation

proximating the logarithm under the integral. As[8], we

reads
replace
1 b2u? bu bu H(X)=g? xfx*d tanl‘(ﬂ) )
Eln R eln(—)e(q—k)ﬂn(—)H(k—q), g X y 2T y
|€q_6k| €q €k 79
79 X e(y)
+ﬁn(byl§)dy ytan)’(? ¢>(Y)}, (84)

and the gap equatiofr2) becomes
with e(y) given by Eq.(823. Here, we have neglected terms

bﬂ> c-nd(q- ) %q>

R —t -

€« fo €q anfl 27 % ~In[1+(p(y)l $)2e 26" N]<y
o d(q—pu) €|, [bur

+fk_ﬂe—qtank(ﬁ)ln(e—q) d)q} (80

Upon differentiation with respect tk, we see that the gap

function ¢, monotonously decreases from its maximum atThis is a good approximation, as the value of the logarithms
the Fermi surfac&k=u (we assumep,=0 for O<q—u is bounded from above by In20.693, while x,y

< ). Let us introduce the variables =In(bw/8)>1. Differentiating with respect ta yields

¢k252[|n

nd

Q

~In[1+ (p(x)/ p)2e~ 2" ~¥]<x.
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T =4.2. The maximum value is quite larg#y=0.26u, due to
0.25 | the large prefactobg, Eq.(2), which has important implica-
. tions for phenomenologyl5].
L To leading order irg, x* =/(2g), such that
= 015 |
<
0.10 | _ I P
d(X)=2bu ex — | sin(gx). (89
0.05 | 29
0.00 e T e 10 The gap function peaks at the Fermi surfagesx*, and

5 varies over a regiox* —x~1/g. This implies that the gap
integral is dominated by momenta exponentially close to the
FIG. 1. ¢o/u as function ofg. We have set the undetermined Formi surfacegq~bue Y<my. For example, whem— x
constantby in Eqg. (2) equal to 1. L= =
~mg, and consequently~1, sinQy)~gy, and the gap
d . e(y) function isg times smaller than at the Fermi surface. Physi-
—¢(x):ng dytanl‘(—) o(y), (859  cally, this dependence of the gap function on momentum
dx x 2T reflects the fact that single-gluon exchange is dominated by
forward-angle scatteringl5].
> €(X The effect of using the variablg Eq. (813, instead of a
§¢(x)— -9 tam'(?> P(x). (850 \ariable z=In(bule;) analogous to Son’s variablgsy,
=In(u/qy) [8,13] is the appearance of a prefactor 2 in Eqg.
This is the generalization of Son’s equation for the gap func{89), as well as a factor of 2 under the logarithm
tion to nonzero temperature. =In(2bu/¢). These factors of 2 were found empirically in a
numerical analysis by Scfe and Wilczek[13].

2

C. Zero temperature

The approximation(79) has succeeded to convert the D. Nonzero temperature

original integral equation into the differential equati@bb). At nonzero temperature, the gap function depends on both
For nonzerdl, however, becausgx) is a complicated func- x and T. In this subsection we denote this dependence by
tion of x, this equation still requires a numerical solution. On ¢(x,T). The value of¢(x,T) at the Fermi surface is denoted
the other hand, fof =0 the solution is simply a trigonomet- by ¢(T). As before,¢pg= ¢(0).

ric function. Determining its phase and amplitude from the In weak coupling, we can comput&(x,T) by assuming

values ofp(x*) andd¢/dx at x*, we obtain d(X, T)=(T) $(x,0)/¢g. In other words, the dependence
_ of the gap function is taken to be the same as at zero tem-
(X)) = o cod g(X* —X)]. (86)  perature, so that the only effect of nonzero temperature is to

) change the overall magnitude of the gap function. We first
The value of the zero-temperature gap function at the Fermjesent this calculation, and then discuss why, in weak cou-
surface, ¢, can now be obtained by inserting t?e solution pling, it is reasonable to assume that the gap function as
(86) into the approximate gap equation far=x*. This  fynction of x does not change when the temperature is var-

yields ied. Finally, we verify this assumption by numerical calcula-

tions.

bo=25exp — iarctar(_ 1 _ (87) For refe_rence, we revieyv how the solution toa BCS-type

g gIn(bu/ ) gap equation changes with temperature. Taking the BCS
coupling constant to b&, the gap equation is of the form

The dependence on the momentum cuidfis spurious: in

ing,g- i Ad(q—pu) €
weak coupling,g<1, we may expand the arctan with the T :sz ¢ I_(_q) T
result ¢(T) 0 e @MfoT d(T),
_ = Q=2+ H(T)2
do=2bu exp( - 21_ X[1+0(g?)]. (88) €=V(q— )"+ (T) (90)
g

In BCS-type theories, the momentum dependence of the gap

This is identical to Eq(1), except that here the undetermined €quation can be ignored, so that we just have a fixed-point

constanty is equal to 1, since we computed only to leading€duation which determineg(T). Besides the trivial solu-

logarithmic accuracy and dropped terms of order 1 in the gafion: ¢(T) =0, at sufficiently small temperatures there is also

equation. a nontnwal solutiong(T)#0. It is determined by solving
While our analysis is strictly valid only for small values the equation

of g, it is instructive to extrapolate to strong coupling. The Ad

behavior of ¢ as function ofg is shown in Fig. 1. One 1:(32f Mtanl‘(i). (91)

observes thatpy has a maximum at a coupling constant 0 €q 2T
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At zero temperature, the solution is whereeg=/(q—u)?+ $2 is the quasiparticle excitation en-
ergy at zero temperature. We therefore replace the term
2A 1 i is i
1:GZIn<—), bo=2Aexp — —|. 92) In(2«) in Eq. (95 by this integral,
o G?
2 Kd’od 1 €q 1 9

The gap equation requires us to introduce a cutbffbut all 0=G o (q—nw) e_q tan o7 ? . (97)
that matters is that the cutoff be much larger than the value a
of the gap at zero temperatur®> ¢y. The same result could have been obtained directly, by sub-

With increasingT, the thermal factor tank§/2T) reduces  tracting Eq.(91) at zero temperature from E¢1) at T#0,
the integrand in Eq(91), so that¢(T) has to decrease in and using the fact that, for momenta- =« o, €= ey,
order to achieve equality of right- and left-hand sides of Edsg that the contributions to the integrals away from the Fermi
(91). Above a critical temperaturd,;, this is no longer pos-  syrface cancel in the subtraction process. The integral in Eq.
sible and we only have the trivial solutionp(T)=0, (97) is finite in the infrared, even ford(T)=0, since
T=T.. tanh)/x—1 asx—0.

Let us investigate in more detail hov_v the t_)alance between Dividing all quantities with dimension of energy by,
the left- and right-hand sildgs of E@l) is ac_h|eved _at non-  one realizes that Eq97) determines the ratigy(T)/ ¢, as a
zero temperature. We divide the integration region in Edfynction of T/¢,. Note that this ratio is independent of the
(92) into two pieces, forg—x smaller or larger thakdo,  cytoff A, as well as the coupling consta@t sinceG?2 is just
wherex is some pure number, which is assumed to be larges, gverall constant in Eq97) which we can divide out.
The first region corresponds to momenta near the Fermi sur- Equation(97) has the following interpretation. As men-
face, O<q—u=<rdo. Although «>1, because the gap is tioned above, the 1 on the left-hand side of the gap equation
exponentially smalin the coupling constant, Eq92), in  (93) is almost completely saturated by momenta away from
weak coupling this region constitutes only a rather smalkhe Fermi surfacexdo<q— u<A, where thermal correc-
contribution to the complete gap integral in EQ1). tions are negligible. Thermal effects become important in a

The bulk of the integral comes from the region of mo- g region near the Fermi surfacesq—u<kdy. It is
menta away from the Fermi surfacego<q—u<A. The  only in this region that the change of the gap function with
quintessential point of our argument, which we shall apply tqemperature has to compensate for the presence of the ther-
the QCD case shortly, is that, for temperatures on the ordeg{,5 factor. The ratiap(T)/ ¢, is thereforecompletelydeter-

1=G?

of ¢y, the thermal factor can be neglected in this region, Ugmined by investigating how the gap equation changes With
to corrections~exp(~«d,/T). The gap equatiori91) can iy a small region around the Fermi surface.
therefore be written in the form In Eq. (97), we are allowed to send— o, as done (i)n Eq.
. B B (10) of [15], because tarkh—1 for x—o, and e;— €, for
f %Mtanl‘(i) " fA d@-p) q— pu— . The ratio(T)/ ¢y is therefore not on?y ingepen-
0 €q 2T x¢o  €q dent of the cutoffA and the coupling constaf®, but also of
(93 k. However, sending— o somewhat obscures the fact that
: . only a small region around the Fermi surface controls how
In the small region very near the Fermi surface,.for momenta(lﬁ(_l_) changes with temperature
oﬁﬁ w’leL agk,;:((ﬁ;&’ptlihnztgzrlnatlhf:?teogrigglu:\tvgs frreotr?q{heg.Fermi Equation(97) cannot be evaluated analytically for arbi-

’ ' . trary T, although it is easy to solve numerically; as is well
surface almost saturates the 1 on the left-hand side of the 98D Swn the transition is of second order Wi(T)—0 as
equation(93). To see this, we compute the contribution of T ’ At the critical temperaturd ho’wever one can
this region to the right-hand side, evalugte Eq(97) analytically: ¢ '

A d(gq— A
sz (qf—M)zGZ'n(W)Zl—Gz'n(ZK), (94) de B 1t |‘( €q _ 1 ~ §¢o -0
xbo g 0 O(q M)eqan 2T, Eg—nZTC—,
where we used the solutig®2) at T=0. Hence, in order to
satisfy the gap equatiai®3), the first integral in Eq(93) has _ E~1 13 98)
to balance the tern®? In(2x), ¢=— =113

xbod(q—p) € Here y=0.577 is the Euler-Mascheroni constant. The solu-
2 —c2 1 7 a4
G°In(2xk)=G JO tan 5T (95) tion is

€q
This equation can be written in a more concise form. Note E: £=0.567, (99)
that o 2
xdod(q— ) which is the usual result in BCS theof{,2].
f o =In(2x), (96) We now go through a similar computation for QCD, ne-
0 €q glecting the change in the dependence of the gap function
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with temperature,g(X,T)=@(T) ¢(x,0)/¢o. Consider the where we reverted the integration variapleto q— w. With
gap equatior{84) for x=x*, i.e., for the gap function at the Eg. (96), we can write this as
Fermi surfaceg(T). AssumingT<T,., and taking the non-

trivial solution ¢(T)# 0, we can divide both sides by(T). T (ko 1 € 1 _
We obtain 0= 5 gJ d(g—pu) —tanr(—) - +0(g?).
0 €q 2T €
ok € 0 (105
1:ngx dy ytan)'( (y)) M (100
In(bul8) 2T bo Apart from the prefactofwhich can be divided oltto lead-

ing order in weak coupling, Eq105) is the same as in BCS-
This is the equation analogous to Ef1). We now assume type theories, Eq97). Thus, also the ratig(T)/ ¢, is iden-
that the critical temperature is on the order of the value of thejcal to that in BCS. Given the very different nature of the
condensate at zero temperatugg, In analogy to the treat- gap equation, this is a remarkable resuilt.
ment for BCS-like theories, we divide the region of integra-  How can we claim that we can reliably computéT)/ ¢,
tion into one in which 6sq—u<«k¢y and one in which to leading order in weak coupling, although we cannot com-
kpo=q—u<4J. As before, for momenta away from the pute the overall magnitude of the condensate at zero tem-
Fermi surface the thermal factor is neglected. Usingperature, the constabf, in Eq.(2)? To understand this, con-
¢(y,0)/ o= sin(@y), we obtain sider the counting of powers @f in the gap equation; for
this, it suffices to use the approximations of Sec. Il A.
—| [** ely)) . — From Eq.(76) we have seen that the exponential iy 1/
1=g L dy ytanh —=|sin(gy) arises from terms~g?In?(28/¢y). Since ¢o~exp(—1/g),
“ these terms are of order 1, and therefore of the same order as
X o the left-hand side of Eq.76). Analogously, in the nonzero-
+ fln(b /5)dy ysm(gy)}, (10D temperature gap equati¢f0l), terms of order 1 arise from
. the region of momenta away from the Fermi surface, and
thus balance the 1 on the left-hand side. As temperature ef-
fects are negligible in this region, we conclude that the ex-
ponential behavior-exp(—1/g) of the gap cannot change

which is analogous to Eq93). Following the definition of
the variable x in Eq. (81b), here we introducedx,
=In[bu/(k¢p)]. Again, in weak coupling the 1 on the left- ™
hand side is almost completely saturated by the integratio?ﬁvIth temperature. L .
region away from the Fermi surface. To see this, we compute 'I;he prefactor .Of the exponent_|al IS determlr_1ed by terms
o , , — ~g-In(28 ¢pg)~g in the gap equatiofi76). These includell
the respective integral in a power series expansiog: in terms of this order, i.e., the leading logarithmic terms as well
. - as terms of order 1, which give rise b§. From Eq.(103
2f dyysir‘(gy):l—E gIn(2x)+0(g?). we realize that temperature effects also enter at ogler
In(bu/ 8) These effects therefore change the prefactor of the exponen-
(102 tial. In the above discussion, we have determined the change
of the gap equation with temperature to leading ordey, ior
In order to satisfy Eq(101), the integral over the region very in other words, we have determined the prefactor at nonzero
near the Fermi surface has to compensate the terms of ordgfmperature. To leading order gy the result is that the pref-

o(a) in Eq. (102), actor changes precisely in the same way as in BCS-like theo-
ries.
— [x* ey))  — T — To understand how the gap function changes Wibth x
g JX dy ytan 7 |singy)=% g In(2x)+0O(g?). and T, consider first the region just below the critical tem-

(103 perature. Even though the overall magnitude of the gap,
¢(T), is small, we can still considep(x,T)/¢(T); even as
To see how this compensation works, we expand the various— Te. this ratio remamns of order 1. Then near the Fermi
terms on the left-hand side in powers @fAs x* — 7r/(2_) surface, the gap functlorrmustchange due to t_hermal effects:
N . POWErS . 9 after all, the variablex* (T)=In[2bu/¢(T)] diverges asT

andx,=x* —In(2«), y is of orderx_* in the whole integration —.T., when(T)—0.
region, up to corrections of order Note that this is equiva- T understand the change in the gap function, consider
lent to approximating the factor Ibfi/;) by In(2ou/¢). For  energies small relative to the temperatusgx) <T. In this
the momentum dependence of the gap function, this has thenit, the thermal factor tar{l#/(2T)]=€/(2T). Using the defi-
consequence that sgy)=1+0(g); i.e., to leading order in nition of the variablex, Eq. (85b) is approximately
weak coupling, the gap function can be taken to be constant,

&(y,0)=¢,. In this way one obtains 2

e €3e ¢(e,T>:—52(%>¢<e,T>. (108
m — T — [ KPo — € _
Zoinzo=739)] %tanr(ﬁ)m(g%,

q About small €, the solution is given as a power series in

(104  €/(2T):
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FIG. 3. (&) The gap functiong(x,T), normalized to the zero-
temperature gap functiog,, as a function of the variablbe for T
=0 (solid line) and T=0.581¢, (dashed ling g=4.2. (b) The
same, but now the gap function is normalized to its vaif&) at
the Fermi surface at the same temperature, and plotted as function
of x normalized tox*(T). For the sake of simplicity, we have
chosens=bpu.

FIG. 2. The gap at the Fermi surfaggT), normalized to its
zero-temperature valugg, as a function ofT/¢,. Solid line, g
=0.1; dashed lineg=4.2.

bleT)= 1—52%+0(54) H(T), T—T., e<T.

(107
IV. CONDENSATES WITH TOTAL SPIN J=1

Thus when the energy is much less than the temperature, A. Classification

althoughx— c, the gap function is not-sin(gx), as for the The gap matrix® ™ for a condensate with total spih
zero-temperature gap function, but approaches a constant.0 has the form(19). Generalizing this equation to a con-
That is, due to the thermal factor in the equation for the gaglensate with total spid=1 is straightforward. For d=1
function, the momentum dependence is cut off, and the gapondensate, the individual gap functiop§, in Eq. (19) are
function “flattens.” This is why in our previous calculation ng |onger scalar functions in coordinate space, but 3-vectors,

we could neglect the momentum dependence of the gape  These vectors have a component along the direction of
function when the energy is less thaip,.

Our analytical results are confirmed by numerical solu—k’
tions of Eq.(85b) at nonzero temperature. In Fig. 2 we show
the gap function at the Fermi surface as a function of tem-
perature. We considered two values of the coupling constan
g=0.1 and 4.2. The first is safely in the weak-coupling re-
gime, while the latter is the value whegg has a maximum
as a function ofg; cf. Fig. 1. In weak coupling¢(T)/ ¢g is
indistinguishable from BCS. Surprisingly, even for large
=4.2, while T, is slightly larger than in BCS theory, such that
T./pe=0.585, ¢(T)/ ¢pg is rather similar to the behavior in
BCS-like theories. This is not unlike the situation in strongly
coupled BCS, i.e., Eliashberg thedr§], whereT./ ¢, also
changes slightly, albeit in the opposite direction.

PR K)=dhy(K) -k, (108

bind two components transverse to this direction,

XE(K)=ig(K) - (1—Kk), (109

Br(K) = ord K)k+ xio(K). (110
The gap matrix®* is, however, still a scalar in coordinate

In Fig. 3@ we show ¢(x,T) as a function ofx at g gpace. One therefore has to contract the vector indicgg.of
=4.2 for two temperatures,=0 andT=0.581, which is \yith the other independent 3-vector at our disposal,
close toT.. As the temperature increases, the overall scale

of ¢(x,T) decreases, because the condensate is evaporating;
cf. Fig. 2. Simultaneouslyx* (T) =In[2bu/#(T)] increases.

In Fig. 3(b) we plot ¢(x,T)/$(T) as a function ofk/x* (T)

at the same two temperatures. As can be seen, once we di- .
vide out the overall scale(T), the ratio ¢(x,T)/¢(T) is ~ Where we have defineg, (k)= (1—kk)-yand used the pro-
relatively insensitive to temperature. At=0.581p,, we ob-  jector property {—kk)?=1—Kkk.

serve that the gap function does “flatten” as it approaches Suppressing color and flavor indices for the moment, the
the Fermi surfaces— x* (T), as we argued previously on the most general ansatz for a gap matrix describirgl con-
basis of Eq.(107). densates is therefore

XE(K) - 7= (K) - (1—KK) - y=xEo(K) - 7. (K),
(111
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=L OTR= 2 2 2 [l IeK) O (K)p(K)= 3 P {5 (K)- [+ 7, (1]
+xns(K) - v (K] PR(K). 112 + @2 (K) - [k+y.(K) s}
The scalar produckf(K)- v, (k) has simple commutation 1+eyy k o
properties with the quasiprojectof((k): % 2 AXK)
Povi(K) =7, (K)P_p, (1133 +{7m%(K) - [k+y.(K)]
Py(k) v (K) =7, (K)P-g(k), (113b) + 7% (K) - [k+ 1. (k)] s}
e — € _ — R
A (k)YL(k) ')’L(k)[A (k) eak')/O]'(:LlSQ xl e;’o?’ Ae(k) lﬁ(K) (116)

In the massless limitw, =0, and y, commutes with the In the limit m—0, A%(k)—(1+eyyy-K)/2, such that the

energy projectors. . ) )
Instead of contracting theeansversecomponent$109) of terms propomopal tar, vamsh_.
Under a parity transformationy,— vo, v——1v, y5—

&r(K) with v, one could have alternatively also used A
—vs, andk— —k. Thus, the terms (X eyyy-k)/2 and the

- (K) itself. The commutation properties fab; .- v, how- _ .
Pns(K) brop s ¥ energy projectors do not change under a parity transforma-

ever, are more complicated than fgf- v, (k), with addi- _ ) ) } )

tional terms proportional t&. The advantage of using, (k) tion. The parity ofc is opposite to that ofy [9]. A parity

. ' . o transformation leaves the effective action invariant, since the

is that these terms are canceled by the projettekk. QCD Lagrangiar{from which the effective action is derivied
Finally, an important question that arises is why weqoes not violate parity explicitly. Thus, if we perform a par-

choosey to contract the transverse componentsff in Eq. ity transformation of the interaction ter(@16), the gap func-

(112). Why notyoy or ysy0¥? The answer lies again in the tions ¢% , #% must have the same parity as the accompany-

commutation propertie€l13). In the commutation property ing Dirac matrices. Consequently, we conclude @8t z°

for yoy, (k) or y5y7y,. (k) corresponding to Eq1139, the are parity even, whilas® , #° are parity odd.

sign of the energy on the right-hand side would be flipped. Two Iimiting,cases ;re Bf special interest. If all right-

Phyfsically, 'this means that such terms repr'esent pairing cHanded, positive-helicity gaps are equal to the left-handed,
particles with antiparticles, and not of particles with par- negative-helicity gapsg®, =2 , and all right-handed
r+ - ’

ticles; cf. discussion of Eq119) in Sec. IV C. This is clearly negative-helicity aaps are equal to the left-handed. positive-
not what happens in a superconductor, where particles forrn Ig ) Z g_ pe h N e__°_0- i h ' pdd
pairs near the Fermi surface. elicity gaps,q&r__— ¢, , then ¢—_.’T—_ , 1.8, the odd-
parity gaps vanish, and condensation occurs exclusively in
theJ®=1" channel[lt is proved in the Appendix that in this
case Eq(116) agrees with the ansatz of Bailin and Love for
The J=1 condensates can be decomposed according tine J°=1" gaps[4].] On the other hand, if they are equal in
their transformation properties under parity. Let us first writemagnitude, but different in sign, condensation occurs exclu-
the interaction termye® * i in the effective actiorid] in the  Sively in theJ°=1" channel.
form This is different for theJ=0 gaps. In that case, one can
write down an equation analogous to Ef16). The differ-
ence is that all vectorg?. , #% are replaced by scalar func-
tions ¢S , 7 , and the term&+ y, (k) are absent, too. For
. . . the parity transformation properties, this has the consequence
X n(K) - [k+ v (KPR P(K). that if ¢, =+ ¢S, ¢S =+ ¢S, , condensation occurs in
(114  theJ®=07 channel.

B. Parity

Ye(K)D T (K)g(K) = } Ye(K)

h=r,/ s=* e==*

Let us define new condensate fields C. Ultrarelativistic limit

1 1 In the following, we exclusively consider massless fermi-
A E((/;:;i b ), Pp.= §(¢f_t¢;+), ons. In this case, the helicity projectoi@nd corresponding
indiceg become superfluodsf. Eq. (25)],

1 Sl m=0: ¢ ¢, XL 11
mi=S($ L), m=S(dtd, ). (119 Phs™ Ph+ Xhs— Xh» (117)

and the quasiprojectors become true projectors; cf. discus-
In terms of these fields, the interaction teffrl4) assumes sion abovgand Eq.(B29) of [9]]. The general ansa{d12)
the form simplifies to

074017-16



COLOR SUPERCONDUCTIVITY IN WEAK COUPLING PHYSICAL REVIEW 361074017

J=1,m=0: SU(N¢), X SU(N;¢) , flavor symmetry. By Eq(121), the lon-
gitudinal condensates must correspond to a color-flavor rep-
resentation which is overall antisymmetric.

e (k)= h;/ egt Lon(K) ForN¢=1, the flavor representation is trivial, and conden-
. . sation must occur in th8; channel. This is most likely the
+xn(K) - 7L (K) P R(K). (118 favored channel for condensation of quarks of the same fla-

_ _ _ . — vor, since theJ=0 gaps are overall symmetr{@,9], and
In the effective action, the interaction tergp® ™ ¢» decom-  consequently must be in the repulsi§echannel.

poses into four parts on account of the projec®fscf. Eq. For N;=2, the allowed color-flavor representations are
(B34) of [9]], either (32, 30), which is favored, or €, 1f). This is in con-
o o trast to theJ=0 gaps, which come in3{, 1) or (62, 3f).
Pe(K)PHKIPK) = X D[4 n(K)eR(K)Yi(K) Here the flavor representation refers to either SU(@)
h=r,/ e=* SU(Z)/.
F P8 (KOXEK) - 7, (K YR(K) . For N;=3, there are &, 6) or (6, 37). On the other

hand, theJ=0 gaps are &, 3%) or (62, 65).

If only longitudinal J=1 gaps are present, the parity
Here we defineds$=P ¢y, and used the commutation prop- Properties are analogous to the 0 gaps. In particular, since
erties (113 of y, . From Eq.(119 it is obvious that the condensates of different chiralities do not mix, the magnitude
longitudinal gaps correspond to condensation of quarks witlQf the longitudinald=1 gaps will be equal, while their rela-
the samechirality, (rr) or (/7). In this respect the longitu- tive phase represents the spontaneous breaking of parity
dinal J=1 gaps are similar to thd=0 gaps[9]. On the [7,14].

other hand, the transverse= 1 gaps correspond to conden-  1he Symmetry relatioit121) relates transversé=1 con-
sation of quarks withdifferentchiralities, /) or (/7). densates of different chirality. Therefore, we cannot draw

Equation (119 shows why we do not choosg,y or general conclusions about the possible color-flavor represen-
vs 7o t0 contract the transverse components¢ft, in Eq. tations of the transversb=_1 gaps.A priori, both the sym-
(112): cf. discussion at the end of Sec. IV A. The extra fac-Mmetric as well as the antisymmetric color and flavor repre-

tors yg Or ys57, flip the sign of the energy in E¢1139, and sentations are allowed.

H H —
the transverse gaps would describe pairing of particles with WO Special cases are ff interest.¥f ,/=x, so that
antiparticles of the same chirality. condensation is in th@"=1" channel, the color-flavor rep-

resentations of the transverde 1 gaps are identical to those
of the longitudinalJ=1 gaps. On the other hand, f ,=

. —x%,, so that condensation is in tl=1" channel, they
With the help of the symmetry properfgf. Eq. (B4) of  g/e équal to those of the=0 gaps.

(119

D. Color and flavor representations

en Ny=2, the appearance of transverde1 gaps
[9]] When N;=2, th f de 1

+ 1 1+ k)T must necessarily break the SU{), X SU(N;) , symmetry to

Cer(C (e (=K, (120 a vectorlike SUN¢) symmetry. This striking feature arises
we derive because the transverse gaps are proportiong| toand not,
say, Yo7 -
[on(—K)1T=—¢r(K), [xh(—K)IT=—xZ4(K).
(123 E. Gap equation

The symmetry propertied21) allow us to classify the pos- In general, condensation can occur in channels with arbi-

sible color and flavor representations of the1 conden- trary total spind. Therefore, the gap matrie * (K) will not
sates for massless fermions. We assume therdlafavors  simply be of theJ=0 form (19) or theJ=1 form (112, but
of massless fermions with a global flavor symmetryit will be a sum of Eqs(19) and (112, as well as contain
SU(N;), X SU(N;) , and, of course, a local color symmetry contributions from higher spid=2. We do not attempt to

SU(3).. From group theory, solve this problem in full generality. Instead, we consider the
- simpler case where the gap matrix contains just0 andJ
2X2=1,+3,, 3X3=3,+6, (1220 =1 contributions. We also take the fermions to be massless.

The gap matrix then assumes the form

where the subscripta and s denote antisymmetric or sym-
metric representations, respectively. For single-gluon ex- J=0 and 1, m=0:
change, the color-antitriplet chanrig] is attractive, and the
color-sextet channes; is repulsive.

We first discuss the longitudinal condensatgs From
Eq. (119, the longitudinalJ=1 condensates only couple
quarks of the same chirality, and so do not break the +xn(K) - v (K 1PR(k), (123

CK)= 2 3 [AHK)+ef(K)
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where ¢y denote thel=0 gaps, andpy, the longitudinal and

¢ the transverse components of the 1 gaps. P (K)z— E 7 A,(K=Q)
The quasiparticle propagator can be computed from Egs.
(7),.(8), and (9), and the commutation propertit1309. Ig- eE(Q—xE(Q)- YL(Q) . ,
noring the color and flavor structure for the moment, one X 2 2 . > P_p(a)y”.
obtains =1/ e= a5 —Les(n)]
(128
G Q= X X (- (a—ew)*+{[4(Q] The gap equations for different fundamental colorge-
h=r,/ e== couple; therefore we omit the color index in the following.

R t e + o o Taking projections we arrive at the following equation for
+[§Dh(Q)] _[th(Q)] : YL(q)}{¢h(Q)+(Ph(Q) the |0ngitudina| gap functions:

+xh(Q)- v (MHPR@ [Go(QI™h (129 eS(K)= 2 A, (K-Q)
To invert the term in the large curly brackets, we first have to ¢r(Q) /LN el
specify the color-flavor structure of the various condensates. q2_[6e(¢e)]2 Phk) y*P-p(a)y"]
In the following, we just consider the most simple caée 0 awh
=1. Let us assume that condensation occurs exclusively in (o)) .
the attractive color-antitriplet channg{; i.e., @,/ =€ Oy Y T e e S TIPRIO Y PEp(a) v T
. do—[eq ()]

is an antisymmetricN.X N, matrix in color space,,j
=1,... N.. In this case, thd=0 gaps vanishg:=0, on (129
account of Fermi statistick7,9]. Since the individual gap This equation is rather similar to EG9). The only differ-

functions ¢y j;, xh i are also in tehe3§ represengation, We ence is the appearance of the transverse gaps in the quasipar-
conclude from Eq(121) thatx;= x, . In contraste; ande; ticle and quasi-antiparticle energie¥( #f); cf. Eq. (127.

remaina priori unrelated. . For the transverse gaps, we use the fact §fat x> to
The term in the large curly brackets in EdQ.24) has an  4ive at

off-diagonal contribution in color space. Since its contribu-

tion to Gﬁ is quadratic in¢y, we shall neglect it in the xi(Q)
following, and consider only the diagonal parGﬁ Xh(K)~_ E A (K= TW
= Jjj G*. Even so, the inversion of the term in the large 9o ath
curly brackets is still cumbersome, due to the presence of 1

terms~y, . To simplify the treatment, we assume that the XSTH YA (@) " A%(K) v (K) ]
J=1 gaps areeal valued With Eq. (12]) this leads to

e t e T e + EE(Q)
[@h(K)] :[¢h(_K)] E_(Ph(K)u qé_[€;e(¢h—6)]2
e T—_r+8 (— T—_,¢ 1
DX H(OT =D~ KO TT= = X5(K). (129 XETMAe(q)yvAe(k)yl(kW]]_ 130

This has the consequence that all cross termg between
the gapsey, and xf vanish in Eq.(124). The quasiparticle
propagator can now be explicitly computed:

Taking the Coulomb gauge for the gluon propagator, Eq.
(30), and computing the traces similar to E¢&1), we obtain

2 Xh(Q) +k-q . k+q
O=30G > : —k
c'@=3 3 ¢[ Gy (I YRSV g2 2
h=r./e==Qp— q(¢h)]2 (K—q)?
(129 x MK—Q)—A«K—Q)(l—(k_q)z)]
The quasiparticle energies are B “ o~ PN
L XQ _(11—k~q_Rk—q)
N, 12 2_ T e ho®)12 2 2
do—[€q ()]
e(P)=| (a—en+> ¢ )| . (127 Coe
o (k+a)?
X A(K=Q)=A(K=Q)| 1-=— ] | 1.
Inserting Eq.(126) into the gap equatiofb), the same steps (k=aq)
that led to Eq(28) now lead to (131
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Neglecting the antiparticle contribution, and takikg-q tains not only the interaction with the condensate, &),
=u, as well ask=q [the collinear limit; in Eq.(70) this  but also wave-function renormalization. Any apparent gauge
corresponds to neglecting terms of orgéq, we obtain, for dependence in the former must be canceled by the gauge

the transverse quasiparticle gap, dependence of wave-function renormalization, leaving the
quasiparticle mass shell gauge invariant.
2 .7 xn (Q) It is easy to see that such subtleties do not enter at the
X (K)= §92V 2 o gt12 order to which we have computed. The gluon propagator in
Q qo—leq ()]

Coulomb gauge, with gauge fixing parameggr, is given in
X[A(K=Q)—A(K-Q)]. (132 Eqg. (30). Alternatively, one could have taken covariant
gauge; with gauge fixing parametéy the covariant gauge
To leading logarithmic order, the gap equation for the transpropagator was given in Eq37) of [23]. We have seen,
verse gap isdentical to that for the longitudinal gap. To see however, that to the accuracy to which we compute, only the
this directly, one computes the traces in EtR9. One ob-  gluon propagator in the static limip,—0, matters. In the
tains an equation very similar to E¢82). Now one com-  static limit, the gauge dependent terms are identical for either
putes the angular factors fér=q, k=q= u: the Coulomb or covariant gauge, and appear only as spatially
- - . ) longitudinal terms~ £p'p!/p?. Consider, for example, how
1+k-q -1 _ 3-k-q " 1+k-q(k—q) _ the gauge dependent part of the gluon propagator affects the
2 ’ 2 2 (k—q)? ' quasiparticle contribution;~ ¢y /{a5—[ €5 (¢)1%}, to the
(133 gap equation fogp, . From the gap equatiof29), and using
Egs.(31), this becomes

which proves our assertion.

Consequently, to this order all=1 gaps are of equal + AP A
magnitude. Further, the sum of the squares oflthel gaps £c T Pn (K)7-pP-p(A)-P]
satisfies the same gap equation as the square ditlegap.

This conclusion agrees with Son’s renormalization-group -
analysig 8], who argued that the parametric dependencg on

of any spinJ gap is the same. We find that even the prefactor

is the same to leading logarithmic accuracy. Our results difThat is, there are gauge dependent terms, but they only con-
fer from those of Hsu and Schwelt8], who argued thaf tribute to the antiparticle gaps, . (Further, the antiparticle

=0 gaps are favored over those for higher spin. gaps must be computed on their proper mass shell. At the

Beyond leading logarithmic order we suggest that] if Fermi surfaceg, ~2 w is not small, in contrast te, ~ ¢,
=0 gaps are allowed by color-flavor symmetry, they are<u.) Consequently, gauge dependent terms in the particle
probably favored over thd=1 gaps. If only alJ=1 gap is gaps do not appear to even affect the prefactor in the con-
allowed, as foN¢=1, we believe that either the longitudinal densate, the constabf. These conclusions about gauge in-
gaps or the transverse gaps with a definite color-flavor repvariance agree with the results of Staraand Wilczek[13].
resentation will be favored. Which one is favored will be In contrast, Honget al.[12] argue that the Landau gauge is

1+k-q (k—q)?
C 2 pz

—0, k,g—u. (139

determined by the constaritig andb; in Egs.(2) and(3). preferred, as in other approximate treatments of Schwinger-
Dyson equations. We insist that in the present example, di-
V. CONCLUSIONS rect calculation demonstrates gauge invariance without fur-

ther ado.

We conclude by addressing effects which can contribute (ji) Wave-function and vertex renormalizatioks noted
to the constant®, andb; in the condensate, Eq&2) and by Son[8], one can have infrared singular factors for wave-
(3). We suggest that our lengthy calculations which led to thefunction renormalization. For nonrelativistic fermions, this
result(2) for by may be done much more efficiently by con- was noted long ago by Holstein, Norton, and Pinf28].
structing an effective theory for quarks near the Fermi sur{This wave-function renormalization is not the HDL correc-
face, as initiated by Honpl0]. This is presumably the easi- tion discussed by Scker and Wilcze 13]; such corrections
est way to calculatb) andb; as well. Nevertheless, we can involve two hard lines, and are down Ig¢.) The dominant
estimate what kind of effects could contribute to these as otorrections involve a very soft transverse gluon on a quark
yet undetermined constants. These include the following: line; this produces gauge-invariant terms of the faZm 1

(i) Gauge dependence of the condensdtecalculated ~gzln(,u/eq)~g when €,~ ¢o. This correction was com-
properly, any physical quantity must be independent of theputed by Brown, Liu, and Re17], who find that it is a large
choice of gauge. For color superconductivity, what is physieffect. Besides such wave-function renormalization, one
cal is the gap on the quasiparticle mass shell. At nonzermight expect that the Slavnov-Taylor identities would also
temperature and zero quark density, general arguments dggnerate similar corrections for the gluon and for the quark-
to Kobes, Kunstatter, and Rebhg#7] indicate that the mass quark-gluon vertex. This was not found, however, by the
shells for quarks and gluons are gauge invariant. Their proo&uthors of[17].
does not extend obviously to nonzero density, but we shall (iii) Effects of the condensaté/e have computed the gap
assume that to be the case. using an HDL-resummed gluon propagator. This is possible

At higher orders, the quasiparticle self-energy,, con- because the momenta which generate the gap are much
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larger than the scale of the gap. To see this, note that in thieinction is introduced, analogous to that of the quark and
transverse gluon propagator, E88), Landau damping con- gluon propagators. The resulting gap integrals are more in-
tributes to the gluon propagator when the momentofn  volved (especially at nonzero temperatyreout can be
~(m§w)2; since the frequencys~ ¢, the dominant mo- treated in the manner which we employed above.

menta arep~m§’3¢1’3, which for small ¢ is much larger (v) Magnetic massAs argued in Sec. |, at zero tempera-
than ¢. ture the scale for the magnetic mass-ig. exp(—1/g?). It is

Effects of the condensate on the gluon propagator can bigerefore negligible compared to the scale of the condensate.
estimated by power counting at large momenty® ¢o. At nonzero temperature, the scale is no larger 2h For
One would naturally expect that they areg®¢?, but due to T~ ¢, this is down byg?, and will only affect the prefactor
an infrared divergence, they are Iargen:né¢/p [20]. These  of the gap to higher order ig.
terms are important whem( ¢/p~p?, or p~mz°¢*% This We conclude by stressing that the determination of the
is exactly the same scale at which Landau damping operategrefactor is not merely an interesting problem in its own
These effects will not alter the coefficient of the logarithmic right, but because it truly determines the physics of color
divergence(and hence the expongnbut they will produce  superconductivityat least in weak couplingTo the order at
terms of order one in the gap equation, which contribute tavhich we compute, there is absolutety preference for the
by andby . condensate to favor spin-0 over spinedr spin-2, eto.

(iv) Damping of the condensatén the above, we ne- Surely the spin-1 condensate is less favored than spin 0; the
glected the fact that the gap function has an imaginary partatio of the two condensates is, in weak coupling, a pure
To understand this imaginary part, consider first the selfnumber which can be uniquely computed, once one knows
energy for a quark in a Fermi sea. As computed by Le Bellahow to compute the prefactor in the condensate.
and Manuel, and by Vanderheyden and Ollitrd@8], away Indeed, perhaps one should entertain a more speculative
from the edge of the Fermi sea, the quark can decay intbypothesis. Even if @d=0 gap is favored, maybe there is
another quark and a very soft gluon. This is only possiblealways some small admixture of higher-spin gaps, and rota-
with a HDL-resummed gluon, whose spectral representatiotional invariance is inevitably broken in the true ground state
has support from Landau damping in the space-like regionof color superconductivity.

The damping rate of the quark behaves-ag?|p— u/|, van-
ishing at the Fermi surface.

From a similar physical process, the gap function acquires ACKNOWLEDGMENTS
a nonzero imaginary part when its momentum is away from )
the Fermi surface. A quark can scatter into a quark with a We acknowledge discussions with D. Blaschke, W.
different momentum through a very soft gluon. We can estiBrown, V. J. Emery, D. K. Hong, S. D. H. Hsu, M. Laine, J.
mate the resulting imaginary part of the gap function as fol-T- Liu, V. N. Muthukumar, K. Rajagopal, H. C. Ren, T.
lows [15]. If we had not restricted our analysis to the prin- Schder, and D. T. Son. We especially thank T. Sigreand
cipal value part of the energy denominators arising in EqD-T. Son for discussions on the rati,/¢o. R.D.P. was
(42), instead of Ife;— €] in Eq. (72) we would have obtained supported in part by DOE grant DE-AC02-98CH10886.

|n(e§—e§). This logarithm has a cut fm’q<€kv giving rise to D.H.R. thanks Rl.KEN, BNL_ _a_nd the US Department of
an imaginary part foeb,, Energy for providing the facilities essential for the comple-

tion of this work, and Columbia University’s Nuclear Theory

. Group for continuing access to their computing facilities.
k

Im ¢ ~_2Fk%¢ ~_2In(—)¢ (135

9 #o €q a9 ®o 0
APPENDIX: THE JP=1% GAPS

Taking e,~bue ™ [cf. Eq. (81b)], momenta exponentially

close to the Fermi surface occur when-x*=m/(2g) (in .. o exclusively in thd”=1" channel, the ansatz for the
weak. coupling. In this region, t.he imagihary par.t of the gap gap matrix readgwe suppress the dependence of the gap
function, Imqbk~g2(x:— X) ¢o, is downby g relative to the  f,nctions onK in the following

real part, Rep,~sin(@x)¢y. At the Fermi surface itselfx

=x*, the imaginary part vanishes. Away from the Fermi

surface e~ u, Sox~1, andgy is strongly damped, with the ) 1+eyyy- k

real and imaginary parts of comparable magnitude pRe P=1% d*t= . &% [k+ 7y, (k)]

According to the results of Sec. IV B, if condensation

2
~Im ¢~gebo. )
A gap function with a nonzero imaginary part is actually R 1—eyyy-k
well known from strongly coupled superconductors, as stud- + 7% [k+ 9y, (k)] — AS(k).
ied in Eliashberg theory3]. Damping occurs for a similar
reason as here, due to a nonzero imaginary part for the plas- (A1)
mon.

There is no problem in principle with including the damp-
ing of the gap function. A spectral representation for the gagNow use
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1*eyyy-k - 1 . .
[k+n(k)]— (k)= k [(1+,3k+ak) (1= Bcx a) v Kl+ vZ[(1£ B (1xeyey-K) F axy K+ eaxyo]
(A2)
to obtain
1+Bk B +ak _ ~ 1+,8k—ak _ 1—Bk+ak _ ~
o= —(¢++¢+)+T(ﬁi+ﬂ+) K+ —T(¢1—¢+)+T(TFI_W+) Ko
1+ Byt o o 1B ax N P e TS o 1B
2 B e 1+¢+)—T(ﬂi+ﬂ’+) “Ky-k+ T(¢i_¢+)_T
N - ,Bk Bk _ oy _ _
X("Ti_ﬂ+) 'k707'k+ (¢+ ¢+)+ (771"'774—) ")’+Z(¢i_¢++”i_”+)"}”}’0
ay _ _ - Bk o 1B _ -
+Z(_¢i_¢++ﬂ¢+“+)'?’7'k+ (¢+ b.)— 4 (771_77+) Yo7 K. (A3)
|
Bailin and Love’s ansatz for 8°=1" gap readdcf. Eq. a N S
(4.24 of [4]; we again suppress the momentum dependence ~ Ag= - (— ¢~ +a +m.). (A7)

of the gap functiong
A=A y+ Ay Ky k+iAsx K- yys+ Ay k+As- vy

(We added an in the last term as compared [d]. This

These relations exhibit a redundancy in Bailin and Love’s
ansatz(A4): only four of the eight 3-vector gap functions
A;, ... Ag are independent. The reason for this redundancy
is that in Eq.(A4) the transverse components®f, A4, Ag,

and A, never appear, as these gap functions are projected in

simplifies the notation in the following, but is not essential, the longitudinal directiork. Furthermore, only the transverse

as the gap functions are in general complex valuéfth the
definition of ys=iy,yy?y® one computes

IAXK- yy5=— 7o(A-k+A- yy-k)=—yA- n(k)y-(lz,

Ab)

and rewrites Eq(A4) as

A=(Ay+Ag)-k+ (A~ Ag)-kyg+ Ay ky-k—Ag-kyoy-k

+A1 v+ As yyo+ Ag vy k+ Az yypy k. (A6)
Direct comparison of EQSA3) and(A6) reveals
A=A e R L )
(A73)
A2: _A1+A8, (A?b)
,Bk _ﬁk _
Ag= (¢+ b,)— (771_77+),
(A7c)
ay _ _
As=A7=4 (- +mi—m), (A7d)
AGZ _A3_A5, (A?e)

components ofA; and Ag appear on account of E@A5).
Finally, the longitudinal components of the remaining two
gap functionsA; and A; can be absorbed by redefinidg
andAg; thus only their transverse components contribute. In
this manner, only half of the original 24 gap functions are
independent. Physically, this can be understood from the re-
striction to the positive-parity channéP=1". Thus, only

the four 3-vectorsp, , ;. appear on the right-hand side of
Eq. (A7). The other four 3-vectorgh™ , @~ do not contrib-
ute, as they correspond to pairing in thé=1" channel.

This said, one can readily derive a more efficient form of
Bailin and Love’s ansatzA4), which utilizes both longitu-
dinal and transverse components of the truly independent
gap functions. Choosing the latter to Ag, Az, As, andAg,
we obtain, from Eq(A4) with Eq. (A7),

A=A [k+y (K)]+ Az [k+ v (K)]yoy-k

+As- [k+y (K)]yotAg [k+y (K)]y-k. (A8)
It is now also easy to interpret the results obtained by Bailin
and Love in[29], where they studied”=1" condensation
in the ultrarelativistic limit. In this limit, &, =0, thus Ag
=Ag=0 on account of EqgA7). Bailin and Love discuss
two order parameters for condensation in #fe=1" chan-
nel, the first being the longitudinal component Af— As
—Ag, the second beingd; + Ag) - (y—ky-k—ikx yys).

From Eqgs.(A7), we identify the first with the longitudinal

074017-21



ROBERT D. PISARSKI AND DIRK H. RISCHKE

component ofA;+A;. From Eq.(A5), we realize that the

second is identical toX; + Az) - v, (k) (1—y, v-K); i.e., es-
sentially the transverse componentsAgf+ A;. Thus, Bailin

PHYSICAL REVIEW D61 074017

independent gap functiod;+ A;. Although we also find
two gap equations for the longitudinal and the transverse
gaps(cf. Sec. IV}, we donot find that they decouple, as the

and Love discuss two separate gap equations, one for thexcitation energie€l27) containbothlongitudinal and trans-
longitudinal, the other for the transverse components of the&erse gap functions.
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