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Hard-thermal-loop resummation of the free energy of a quark-gluon plasma
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The quark contribution to the free energy of a hot quark-gluon plasma is calculated to leading order in
hard-thermal-loogHTL) perturbation theory. This method selectively resums higher order corrections associ-
ated with plasma effects, such as screening, quasiparticles, and Landau damping. Comparing to the weak-
coupling expansion of QCD, the error in the one-loop HTL free energy is of akderbut the Iargeag’2

correction from QCD plasma effects is included exactly.

PACS numbegps): 12.38.Mh, 11.10.Wx, 12.38.Cy

[. INTRODUCTION Sec. VI. In the Appendix, we have collected the integrals that
are required in the calculations.
Experimental data from the BNL Relativistic Heavy lon
Collider (RHIC) will soon become available. In order to de- |, QUARK CONTRIBUTION TO HTL FREE ENERGY
termine if a quark-gluon plasma has been created, a careful
comparison of the predictions of hadronic models and QCD The one-loop HTL free energy for aBU(Nc) gauge
has to be made. It is therefore desirable to find a systemati@€ory withN; massless quarks is
way to calculate the thermodynamic properties and signa-
tures of a quark-gluon plasma within QCD. Asymptotic free-

dom suggests that at sufficiently high temperatures a

straightforward perturbative expansion should suffice. HowWhere 7t and 7, are the contributions to the free energy
m transverse and longitudinal gluons, respectivély,is

ever, at experimentally accessible temperatures, perturbati\{E0 ibution to the f ¢ hl 3 col
QCD does not seem to be of any quantitative [is€3]. The feﬂ(]:on fl uklon %‘}_e. ree enetrg{ rom_?rz]ic avli)r ant .EO or
problem is evident in the free energy of the quark-gluonc.) € quarks, an IS a counterterm. The quark contribu-

) . tg)n is given by
plasma. The weak-coupling expansion has been calculate
through orderag”2 [1-3]. The successive approximations to
the free energy show no sign of converging at temperatures Fq= —% logdef K—X(K)]. 2
that are relevant for heavy-ion collisions.

One possibility for improving the convergence of the per-

Fur=(NZ=D)[(d=1) Fr+ F I+ NN F+AF, (1)

turbative predictions is to apply Padgproximants to the The sum-integral in Eq2) represents a dimensionally regu-
larized integral over the momentuknand a sum over the

series inozé’2 [4]; however, this technique can only be ap- Matsubara f a8 — (214 1) o T
plied if several terms in the perturbation series are known. atsubara frequencies, =(2n+1)m .
Another possibility is to use hard-thermal-logpTL) ap-

*© d
proximations within a self-consistefdt-derivable framework =T uid d’k 3)
[5]. A third approach is to apply HTL perturbation theory n=—o (277)3'

[6], which is an extension of the resummation method of
Braaten and Pisarski7] into a systematic perturbative ex- The factor ofu3~9, whereu is a renormalization scale, en-
pansion. In two previous papef8], we calculated the one- syres that the regularized free energy has the correct dimen-

loop free energy of pure-glue QCD using HTL perturbationsjons even fod# 3. The HTL quark self-energy in EqR) is
theory. Here we extend that calculation to include quarks,

thus completing the calculation of the free energy of a hot m(2] i w,+k mg iw, io,+k).
quark-gluon plasma to leading order in HTL perturbation X (K)= -—log—— yo+ —| 1— = log——|k- ¥,
theor 2k Iwn—k k 2k Iwn—k

. @

The paper is organized as follows. In the next section, we
calculate the quark contribution to the free energy of a hot A ]
quark-gluon plasma at one loop in HTL perturbation theory.Wherek=k/k andmy is the thermal quark mass parameter
In Sec. Ill, we carry out the high-temperature expansion o 8]. o
the free energy, and in Sec. IV we take the low-temperature We proceed to calculate the quark contribution to the
limit. In Sec. V, we compare the one-loop HTL free enerngTL free energy. The inverse quark propagator can be writ-

with the weak-coupling expansion of QCD. We conclude int€n as
K= (K)=Ao(K) 70— As(K)k- 7, (5)

*Currently at: Physics Department, University of Washington, Se-
attle, WA 98195-1560. where
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(] w, Is the dispersion relation for the standard quark mode
whose helicity equals its chiralityn _ is the dispersion rela-
tion for the plasming a collective mode whose helicity is
opposite to its chirality8]. The integrand in EQ9) also has
branch cuts running from-k to k due to the logarithms in
Egs. (6) and (7). The contourC can be deformed to wrap
around the branch cuts as shown in Fig. 1. We identify the
—x x X n/‘ % contributions from the branch cuts that end-a&, as the
-0, o, « +k +O_ +0, quasiparticle contribution td¢-; from the quark mode. We
identify the contribution fronk<|w|<w_ as the quasipar-
ticle contribution from the plasmino. The sum of these con-
tributions is denoted by qp:

fq,qp:_“fk

1
Tlog(1l+e Po+)+ P

FIG. 1. The quark contribution to the HTL free energy can be

expressed as an integral over a cont@Quthat wraps around the 1ie Bo- 1
branch cuts of lofAZ—AY/(w’—k?)]. e —
+T|Ogm+ Z(w_ k)|. (12
) mé iw,+k
AyK)=iw,— Iog—, (6)
2k Ciw,—k

We identify the remaining contribution frofw|<k as the

9 Landau-damping term and denote it By | 4:

mg iw, Tw,tk
Ag(K)= k+— 1——I g— (7)
. L q Ld= — f f Baia 1 ~3| (13
We can write the quark contributiof2) as errt
) AZ— Ag _
]-'qz—z%, log(k2+ wn)—z% log i ol (8  The angled, is
n
where we have separated out the free energy of an ideal gas 7rm K2
of massless fermions. The first sum-integral in &).can be k2 k 2k2 L}
evaluated analytically. In the second sum-integral, the suny o(@,k) =arctan 4 ,
over Matsubara frequencies can be expressed as a contour 2 « 2
integral: K2+ 2m3+ k2 1-¢L 4k2(L )
(14
7
Fo=——o=T4
q 180

where L=log[(k+ w)/(k—w)] and K?=k?— w2, The com-
1 plete quark contribution to the free energy is the sum of the
5o+ (9 quasiparticle terni12) and the Landau-damping tert3).
e +1 We first simplify the quasiparticle term. The integral of
w is ultraviolet divergent since the asymptotic behavior of
ahe dispersion relatiow , is [9]

(Ag—As)(Agt+Ayg)
_ k2

+2ff dw'
k (327Tilog

where the contou€ encloses the pointe=iw, along the
imaginary axis in Fig. 1. We have introduced a condense
notation for the dimensionally regularized momentum inte-
ral: 2 4 2
g mg My 2k
o (K)—k+—

The integrand in EQC9) has Ioganthmic branch cuts that The integral of _—k) is convergent because the disper-
run from—o~t0 —w. , from—w_tow_, fromw, to +»,  sjon relationw_(k) approaches the light cone exponentially
and from—k to k, wherew.. are the quasiparticle dispersion fast ask— . In order to extract the divergence analytically,
relations that satisfA,+As=0, or we make a subtraction that renders the integral finitel in

2 K =3 dimensions. The subtraction is then evaluated analyti-
gl 2=, @ cally using dimensional regularization. Our choice of sub-
0=w.+k 2k [( 1= ) Y. —k iz}' (1 traction integral for the quasiparticle term is

(15
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Subtracting this from Eq13), we can take the limitl— 3:

sub)_ _
fq,Ld—fﬁfﬁd:?fo dwe5w+1L dkk6,

VK2 + quz

mé ( g2(|<2+2m§) _1)].

2

2(k2+2m§)3/2 mq __f de’ dkkz[ 7Tm w
q 13(K21 o2m2)
(16 K3 (K +2mq)
. . MK 2L
After subtracting this term from Ed12), we can take the N (20)
limit d—3: 2k4 (K2 +2mp) |’

If we impose ultraviolet cutoffsse<<A andk<<A on the en-
log(1+e™F+) ergy and momentum, the subtraction intedted) has loga-
rithmic divergences proportional tmglogA and m‘q‘long.

2T (=
b)_
Fap— T >——?fo dkK?

1+e Bo- They cancel against the corresponding divergences in the
+|og—_k quasiparticle subtraction integrél6). The subtraction inte-
1+e™” gral in Eq. (19 is evaluated in the limid—3 using Egs.
1 (A4),(A5):
- i 2
szo dkkz (1)+ k +2mq f(SUb) 1 2m —€ Qd 1 2|ng 4| 2
2™ 7 emie’ e
mg ( 2(k?+2mj) 1) 1 ,
2 - T
2(k2+2m) %2 mg +2log?2+ /. (21)
1 o)
_ ?fo dkik(w_—K). (17)  The last integral in Eq(20) is a function ofmy only and is

therefore proportlonal tm Its contribution to Eq(20) is
(7.525< 10 %)myj.

Adding Egs.(17), (18), (20) and(21), our final result for
the quark contribution to the HTL free energy is

If we impose a momentum cutoki<<A, our subtraction in-

tegral (16) has power divergences proportional Ad" and
2A2 and logarithmic divergences proportional mﬁlogA

and m4long The quartic divergence is cancelled by the T 14 e Bo-

usual renormallzanon of the vacuum energy density at Zero = — _2f dkkz[log(1+e Bw+)+|og—

temperature. Dimensional regularization throws away the ™

power divergences and replaces the logarithmic divergences

by poles ind—3. In the limitd— 3, the individual integrals j J 2
in Eqg. (16) are given by Eqs(Al1)—(A3) in the Appendix. * ] dwe 41 dkkc gt (2.342¢10 )m
The result is 22
2\ —€
];(sub)zl 4 er;q) Q4 5 i 2log? Since the quark contribution has no logarithmic ultraviolet
P27 (2m) € divergences, the counterters¥ in Eq. (1) is the same as in

the pure-glue cadé]. If we had used a momentum cutaff
(18)  instead of dimensional regularization, we would need a
counterterm proportional taJnSA2 to cancel the quadratic
divergence from the quasiparticle teld®).

2

5 T
—§+2|0922+? ,

whered=3—-2¢ andQy=27Y%TI"(d/2). The last two inte-
grals in Eq.(17) are functions ofn, only and must therefore
be proportional tcmq Calculatlng the integrals numerically,
their contributions to Eq(17) are (2.166¢10°%)m; and If the temperature is much larger than the quark mass
(—1.267x 10" %)my, respectively. parametem,, the quark contribution to the free energy can
We next S|mpI|fy the Landau-damping terfd3). The  be expanded in powers ofi,/T. The integral in Eq.(9)

temperature-independent integral has ultraviolet divergencegvolves two energy and momentum scales: the “hard”
from the regiork— o with o~k. We must again isolate the scaleT and the “soft” scalem,. The terms in the high-
divergences by making subtractions. Our choice for the subtemperature expansion can receive contributions from both

Ill. HIGH-TEMPERATURE EXPANSION

traction integral is scales. Dimensional regularization makes it easy to separate
) K2L these contributions. The soft contribution is obtained by ex-
]:(sub): om? f f do w 4 ' panding the statistical factor #§“+1) in Eq.(9) in powers
Ld Udo TIK3(KZ+2m])  2kA(KZ+2m)) of w/T. Using the methods if6], one can show that the soft

(19 contribution toF,, vanishes with dimensional regularization.
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The hard contribution is obtained by expanding the loga- 1 (= Aé—
rithm in Eq. (9) in powers ofmZ. The first term in this F H——J’ dwf log (29
expansion is
1 After rescaling the energy— kw, we obtain
(l)_ —
4m J ch’ﬂl w?—K? Bw+1 @3 mg_
=——f de' klog 1+ f(w) k—f(w) ,
The integrand has single polesat =k and can be evalu- (30)
ated using the residue theorem. The momentum integrals can
be evaluated analytically and in the lindt—3 we obtain where
FO=E ey (24) 1 m
9 g a - f(w):1+| +i E—arctanw (31

The second term in the expansion is —, ) i
andf is the complex conjugate df Integrating ovek, we

@) 1 obtain
Fa __meLZm (o —k2)2+k2( 7K3) de 1l 1—d
s g, oY
o otk 1I ,otk|] 1 .7-"=—Em4 mé 04 2 2
TR0 =K o=k Y ok |ghe s 1 o oa W 2w d+1
(25) XJ dw{[f(w)](d+1/2)+[f_(w)](d+l/2)}. (32)
0
Using the residue theorem and collapsing the contour onto
the branch cuts from the logarithms, Eg5) reduces to Expanding around =3, we get
19 1 1 m2\ "¢ Q 1
@=om? | — q d
F qufk|P (?k(eﬂk-f—l }'q=ﬂm3 F) m[ f dw[fz(w)-i—fz(w)]
1fkd Pt Jiog el 6 fmd 2(w)log (@) + F2(w)log T( 33
“id), 40050 o) %%—0( %9 , dolf(@)logf(w) +fH(w)logf(w)];. (33

The double integral can be evaluated by first integrating oveThe integral off? can be evaluated analytically and is purely
k and then overo. Expanding arounce=0 and keeping imaginary. It is cancelled exactly by the integral f3f This

terms only throughe®, we obtain the finite result cancellation is in accord with the observation that the quark
contribution has no logarithmic ultraviolet divergences. The
]_-(2):2 log2—-1 ml (27  lastintegral in Eq(33) must be evaluated numerically. The
a 272 4 result is
The final result for the high-temperature expansion through Fq—(2.342¢ 10*2)m3, (34)
orderqu1 is the sum of the first term in E¢9) and the terms
(24) and (27): which is identical to thenj term in our complete expression
) (22) for the quark contribution to the free energy.
7m_, 1 272 2log2-1 ,
fq%—mT +6 q +qu. (28)
V. COMPARISON WITH WEAK-COUPLING EXPANSION

In this section we present the numerical results for the
one-loop HTL free energyl) with N.=3 andN;=3. The

It is useful to understand the behavior of the HTL freequark term is given in Eq22). The gluon term is given in
energy in the low-temperature limit whefe—0 with m,  Ref.[6]. It depends on the gluon mass parametgrand on
fixed. In this limit, 7, is proportional tamg. The coefficient & renormalization scalg; associated with a logarithmically
could be extracted directly from the final expressi@g) for ~ divergent integral over the three-momentum. We use the
Fq, but it is simpler to compute it from our original expres- weak-coupling limits of the gluon and quark mass param-
sion (8) for the quark contribution to the free energy. As eters[8]:
—0, the sum over the discrete Matsubara frequeneigs
=(2n+1)#T becomes an integral over the continuous Eu- 2_277(6+Nf) 2

: my=——g s(ra)T%, (35
clidean energyw: 9 9

IV. LOW-TEMPERATURE LIMIT
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Tl | | 1 F= B s Fot+ Fysi iy 22 3/2+]-" )’
B R b B
121 3~ \\\\ g 5/2
STt ag 3
et + F5 ?) +O(aglog ay) |. (39
I :
O e coefficients in this expansion wijl,=27T are
e The coefficients in thi ion wigh,= 27T
%o08; PN w0
0= 25V
0.6 | 5 7’ i 32
P 15 14 5 N 41
04r . . | : 2=~ Nt (41)
1 2 3 4 5
T/Tc 1 3/2
]-'3=30<1+ —Nf) , (42)
FIG. 2. The free energy for QCD witN¢=3 quarks as a func- 6
tion of T/T,. The HTL free energy is shown as a shaded band that
corresponds to varying.; and u, by a factor of 2 around their Fu=237.2+ :L5.97\|f—0.413\lf2
central values. The weak-coupling expansion through ordegrs 135 1 1
;2’2, a2, anda>? are shown as dashed lines labeled by 2, 3, 4 and n e 1+ ng> log a;s 1+ ng) }, 43
2 1 1/2
mézgas(ﬂa,)-rz, (36) Fs=—|1+ ng) [799.2+21.96\lf+1.926\lf].
(44)

where u, is the renormalization scale for the running cou-
pling constant. We use a parametrizationaQfu,) that in-
cludes the effects of two-loop running:

The predictions from the weak-coupling expansion with
=27T are compared to the HTL free energy in Fig. 2. The

expansions of the pressure truncated after ordersa?’?,

a?, and a2 are shown as the dashed lines labeled 2, 3, 4,
e ja) = 4_7T 1— 2P, logL 37) and 5. As successive terms in the weak-coupling expansion
siia BoL _(2)_ L/ are added, the predictions fluctuate wildly. In addition, the

sensitivity to the renormalization scale, increases at each
_ 2 _ 19 T 2,42 successive order. Of course, because of asymptotic freedom,
whereSo=11-3Ny, B1=51-%'N¢, andL=log(ud/Ags)-  1o"firot few terms in the weak-coupling expansion will ap-
pear to converge at sufficiently high temperature. However,
this occurs only at enormously high temperatures, where all
the corrections to the ideal gas are tiny. For example, for
N;=3, the @2 correction is smaller than the correction
fonly if ag<<37/128. If we use Eq(37) to extrapolate to high
temperature while ignoring the effects of heavier quark fla-
vors, this corresponds to a temperattire 500T...
We now compare the high-temperature expansion of the
1+ E‘Nf) T4 (39) HTL freg energy in Eq(28) with the weak-coupling expan-
32 sion. Using the value§35) and (36) for the thermal mass
parameters, we find that the, correction is overincluded by
To illustrate the sensitivity to the choices of the renormaliza-a factor of 12(3+ N¢)/(12+5N;). The a§’2 correction is in-
tion scales, we take their central values tohg=0.717my  cluded exactly in the leading HTL result. The overincluded
andu,=27T and we allow variations by a factor of 2. The «, correction and the large positiveZ’? correction combine
shaded band indicates the resulting range in predictions. Thgith higher order corrections in the HTL free energy to give
range of 7y comes predominantly from variation jm, at  a negative correction that rises slowly withas shown in
the highest temperatures shown and from variationsjat  Fig. 2.
the lowest temperatures shown. With our expressions from Lattice gauge theory has been used to calculate the equa-
my and ag, Fyr diverges either to+« or —« at u, tion of state of a quark-gluon plasma with=2[11,12 and
= Ams, depending on whether; is greater than or less than N;=4 [13] flavors of dynamical quarks. These calculations
our central value of 0.71m, . The free energy of aBU(3) indicate that the pressure, which is the negative of the free
gauge theory withN; massless quarks has been calculated irenergy, approaches that of an ideal gas from below. The
the weak-coupling expansion through or(zlé’f2 [1-3]: approach to the ideal gas is more rapid than the leading order

For the relation betweeh s and the critical temperatufg,
for the deconfinement phase transition, we use the r@sult
=1.05A 5 calculated foiN¢= 4 flavors of dynamical quarks
[10].

The leading-order HTL free energy witl;=3 is shown
in Fig 2. It is scaled by the free energy of an ideal gas o
quarks and gluons:

82
Fidea™ — 4_5
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HTL result. ForN¢=4, it reaches 80% of the value for an exactly. It is therefore possible that the HTL perturbative
ideal gas already at=2.5T.. For higher values off, the  expansion for the free energy will have much better conver-
leading order HTL result lies significantly below the lattice gence properties than the conventional weak-coupling ex-
results. This is not of great concern, because the differengeansion. To verify this, it will be necessary to extend the
can be accounted for by the next-to-leading order correctiogalculations of the free energy to next-to-leading order in
in HTL perturbation theory. At next-to-leading order, there HTL perturbation theory.

are two-loop diagrams and one-loop diagrams with HTL

counterterms. The contributions of ordey coming from the

hard momentum regions of the two-loop diagrams will re- ACKNOWLEDGMENTS

produce the ordes term in the conventional perturbative  This work was supported in part by the U.S. Department
series(39). The contribution from the HTL counterterm dia- Energy Division of High Energy Physicégrant DE-
gram will precisely cancel the order; term in the one-Ioop_ FG02-91-ER40690) by a Faculty Development Grant from
HTL free energy. Thus the next-to-leading order correctionye ppysics Department of the Ohio State University, by the
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+21N¢) Jas/r in the limit @g— 0. This has the correct sign e National Science Foundatidgrant PHY-980096/
and roughly the right magnitude to account for the discrep-

ancy with the lattice results.
APPENDIX: INTEGRALS

VI. CONCLUSIONS . . .
In this appendix, we collect the results for the integrals

We have completed the calculation of the free energy of dhat are required to calculate the contribution from quarks to
quark-gluon plasma to leading order in HTL perturbationthe one-loop HTL free energy. We use dimensional regular-
theory by calculating the quark contribution. The quark termization, so that power ultraviolet divergences are set to zero
has a quadratic ultraviolet divergence that vanishes with diand logarithmic ultraviolet divergences appear as poles in
mensional regularization, but it has no logarithmic ultravioletin the HTL free energy, the ultraviolet divergences are iso-
divergences. Comparing our result to the weak-coupling exkated in subtraction terms that must be expanded araund
pansions for the free energy, we find that the error is of order=0 through order®. The integrals required to evaluate the
a but the large correction proportional tos3’2 is included  subtractions in the quasiparticle terms are

. 1 1 1
fdkk2‘26m=——m4_25—+2'092__' (AD
. 16 € 2
" 1
726—:— 726_ -
fo dk (k24 m?)32 oM e+2|092 2}’ -
0 (k2+m2)3/2'Og mZ 2" & T o 9 o

The integrals required to evaluate the subtractions in the Landau-damping terms are

2

Fdwwrdkkﬂ*f;im*zf 4T (A4)
0 v k= w®+m? 4 € 6]
de fwdk czze KO kb L1002 ot g2 A5
| =m _— .
o w Y K= o2t 2 on—w e 0og 0g (A5)
[1] P. Arnold and C. Zhai, Phys. Rev. ), 7603(1994); 51, 1906 56, 8111(1997).

(1995. [5] J.P. Blaizot, E. lancu, and A. Rebhan, Phys. Rev. L&3.
[2] C. Zhai and B. Kastening, Phys. Rev.q2, 7232(1995. 2906 (1999; J.P. Blaizot, E. lancu, and A. Rebhan,
[3] E. Braaten and A. Nieto, Phys. Rev. Lef6, 1417 (1996; hep-ph/9910309.

Phys. Rev. D63, 3421(1996. [6] J.0. Andersen, E. Braaten, and M. Strickland, Phys. Rev. Lett.
[4] B. Kastening, Phys. Rev. B6, 8107(1997; T. Hatsudajbid. 83, 2139(1999; J.0O. Andersen, E. Braaten, and M. Strickland,

074016-6



HARD-THERMAL-LOOP RESUMMATION OF THE FRE . ..

Phys. Rev. D61, 014017(2000.
[7] E. Braaten and R.D. Pisarski, Phys. Rev. L&#.1338(1990);
Nucl. Phys.B337, 569 (1990.

[8] V.V. Klimov, Zh. Eksp. Teor. Fiz82, 336(1982 [Sov. Phys.

JETP55, 199 (1982]; H.A. Weldon, Phys. Rev. 26, 1394
(1982.

PHYSICAL REVIEW D 61 074016

[9] R.D. Pisarski, Physica A58 246 (1989.

[10] J. Fingberg, U.M. Heller, and F. Karsch, Nucl. Ph{392,
493 (1993.

[11] S. Gottliebet al, Phys. Rev. D65, 6852(1997).

[12] C.W. Bernardet al, Phys. Rev. D65, 6861(1997).

[13] J. Engelset al,, Phys. Lett. B396, 210(1997).

074016-7



