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Hard-thermal-loop resummation of the free energy of a quark-gluon plasma
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The quark contribution to the free energy of a hot quark-gluon plasma is calculated to leading order in
hard-thermal-loop~HTL! perturbation theory. This method selectively resums higher order corrections associ-
ated with plasma effects, such as screening, quasiparticles, and Landau damping. Comparing to the weak-
coupling expansion of QCD, the error in the one-loop HTL free energy is of orderas , but the largeas

3/2

correction from QCD plasma effects is included exactly.

PACS number~s!: 12.38.Mh, 11.10.Wx, 12.38.Cy
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I. INTRODUCTION

Experimental data from the BNL Relativistic Heavy Io
Collider ~RHIC! will soon become available. In order to de
termine if a quark-gluon plasma has been created, a ca
comparison of the predictions of hadronic models and Q
has to be made. It is therefore desirable to find a system
way to calculate the thermodynamic properties and sig
tures of a quark-gluon plasma within QCD. Asymptotic fre
dom suggests that at sufficiently high temperatures
straightforward perturbative expansion should suffice. Ho
ever, at experimentally accessible temperatures, perturb
QCD does not seem to be of any quantitative use@1–3#. The
problem is evident in the free energy of the quark-glu
plasma. The weak-coupling expansion has been calcul
through orderas

5/2 @1–3#. The successive approximations
the free energy show no sign of converging at temperatu
that are relevant for heavy-ion collisions.

One possibility for improving the convergence of the p
turbative predictions is to apply Pade´ approximants to the
series inas

1/2 @4#; however, this technique can only be a
plied if several terms in the perturbation series are kno
Another possibility is to use hard-thermal-loop~HTL! ap-
proximations within a self-consistentF-derivable framework
@5#. A third approach is to apply HTL perturbation theo
@6#, which is an extension of the resummation method
Braaten and Pisarski@7# into a systematic perturbative ex
pansion. In two previous papers@6#, we calculated the one
loop free energy of pure-glue QCD using HTL perturbati
theory. Here we extend that calculation to include quar
thus completing the calculation of the free energy of a
quark-gluon plasma to leading order in HTL perturbati
theory.

The paper is organized as follows. In the next section,
calculate the quark contribution to the free energy of a
quark-gluon plasma at one loop in HTL perturbation theo
In Sec. III, we carry out the high-temperature expansion
the free energy, and in Sec. IV we take the low-tempera
limit. In Sec. V, we compare the one-loop HTL free ener
with the weak-coupling expansion of QCD. We conclude

*Currently at: Physics Department, University of Washington,
attle, WA 98195-1560.
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Sec. VI. In the Appendix, we have collected the integrals t
are required in the calculations.

II. QUARK CONTRIBUTION TO HTL FREE ENERGY

The one-loop HTL free energy for anSU(Nc) gauge
theory withNf massless quarks is

FHTL5~Nc
221!@~d21!FT1FL#1NcNfFq1DF, ~1!

where FT and FL are the contributions to the free energ
from transverse and longitudinal gluons, respectively,Fq is
the contribution to the free energy from each flavor and co
of the quarks, andDF is a counterterm. The quark contribu
tion is given by

Fq52X
K

log det@K” 2S~K !#. ~2!

The sum-integral in Eq.~2! represents a dimensionally regu
larized integral over the momentumk and a sum over the
Matsubara frequenciesvn5(2n11)pT:

X

K

[T (
n52`

`

m32dE ddk

~2p!d. ~3!

The factor ofm32d, wherem is a renormalization scale, en
sures that the regularized free energy has the correct dim
sions even fordÞ3. The HTL quark self-energy in Eq.~2! is

S~K !5
mq

2

2k
log

ivn1k

ivn2k
g01

mq
2

k S 12
ivn

2k
log

ivn1k

ivn2kD k̂•g,

~4!

where k̂5k/k and mq is the thermal quark mass paramet
@8#.

We proceed to calculate the quark contribution to t
HTL free energy. The inverse quark propagator can be w
ten as

K” 2S~K !5A0~K !g02AS~K !k̂•g, ~5!

where
-
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A0~K !5 ivn2
mq

2

2k
log

ivn1k

ivn2k
, ~6!

AS~K !5k1
mq

2

k S 12
ivn

2k
log

ivn1k

ivn2kD . ~7!

We can write the quark contribution~2! as

Fq522X
K

log~k21vn
2!22X

K

logFAS
22A0

2

k21vn
2G , ~8!

where we have separated out the free energy of an idea
of massless fermions. The first sum-integral in Eq.~8! can be
evaluated analytically. In the second sum-integral, the s
over Matsubara frequencies can be expressed as a co
integral:

Fq52
7p2

180
T4

12E
k
E

C

dv

2p i
logF ~A02AS!~A01AS!

v22k2 G 1

ebv11
, ~9!

where the contourC encloses the pointsv5 ivn along the
imaginary axis in Fig. 1. We have introduced a conden
notation for the dimensionally regularized momentum in
gral:

E
k
5m32dE ddk

~2p!d . ~10!

The integrand in Eq.~9! has logarithmic branch cuts tha
run from2` to 2v1 , from 2v2 to v2 , from v1 to 1`,
and from2k to k, wherev6 are the quasiparticle dispersio
relations that satisfyA07AS50, or

05v67k2
mq

2

2k F S 17
v6

k D log
v61k

v62k
62G . ~11!

FIG. 1. The quark contribution to the HTL free energy can
expressed as an integral over a contourC that wraps around the
branch cuts of log@(A0

22AS
2)/(v22k2)#.
07401
as
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v1 is the dispersion relation for the standard quark mo
whose helicity equals its chirality.v2 is the dispersion rela-
tion for the plasmino, a collective mode whose helicity i
opposite to its chirality@8#. The integrand in Eq.~9! also has
branch cuts running from2k to k due to the logarithms in
Eqs. ~6! and ~7!. The contourC can be deformed to wrap
around the branch cuts as shown in Fig. 1. We identify
contributions from the branch cuts that end at6v1 as the
quasiparticle contribution toFq from the quark mode. We
identify the contribution fromk,uvu,v2 as the quasipar-
ticle contribution from the plasmino. The sum of these co
tributions is denoted byFq,qp:

Fq,qp524E
k
FT log~11e2bv1!1

1

2
v1

1T log
11e2bv2

11e2bk
1

1

2
~v22k!G . ~12!

We identify the remaining contribution fromuvu,k as the
Landau-damping term and denote it byFq,Ld :

Fq,Ld5
4

pEk
E

0

k

dvuqF 1

ebv11
2

1

2G . ~13!

The angleuq is

uq~v,k!5arctan

pmq
4

k2 Fvk 1
K2

2k2 LG
K212mq

21
mq

4

k2 F12
v

k
L2

K2

4k2 ~L22p2!G ,

~14!

where L5 log@(k1v)/(k2v)# and K25k22v2. The com-
plete quark contribution to the free energy is the sum of
quasiparticle term~12! and the Landau-damping term~13!.

We first simplify the quasiparticle term. The integral
v1 is ultraviolet divergent since the asymptotic behavior
the dispersion relationv1 is @9#

v1~k!→k1
mq

2

k
2

mq
4

2k3logS 2k2

mq
2 D . ~15!

The integral of (v22k) is convergent because the dispe
sion relationv2(k) approaches the light cone exponentia
fast ask→`. In order to extract the divergence analyticall
we make a subtraction that renders the integral finite ind
53 dimensions. The subtraction is then evaluated ana
cally using dimensional regularization. Our choice of su
traction integral for the quasiparticle term is
6-2
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Fq,qp
(sub)522E

k
FAk212mq

2

2
mq

4

2~k212mq
2!3/2S log

2~k212mq
2!

mq
2 21D G .

~16!

After subtracting this term from Eq.~12!, we can take the
limit d→3:

Fqp2Fqp
(sub)52

2T

p2E
0

`

dkk2F log~11e2bv1!

1 log
11e2bv2

11e2bk G
2

1

p2E
0

`

dkk2Fv12Ak212mq
2

1
mq

4

2~k212mq
2!3/2S log

2~k212mq
2!

mq
2 21D G

2
1

p2E
0

`

dkk2~v22k!. ~17!

If we impose a momentum cutoffk,L, our subtraction in-
tegral ~16! has power divergences proportional toL4 and
mq

2L2 and logarithmic divergences proportional tomq
4logL

and mq
4log2L. The quartic divergence is cancelled by t

usual renormalization of the vacuum energy density at z
temperature. Dimensional regularization throws away
power divergences and replaces the logarithmic divergen
by poles ind23. In the limit d→3, the individual integrals
in Eq. ~16! are given by Eqs.~A1!–~A3! in the Appendix.
The result is

Fq,qp
(sub)5

1

2
mq

4S 2mq
2

m2 D 2e Vd

~2p!d F 1

e2 1
2 log 2

e

2
5

2
12 log221

p2

6 G , ~18!

whered5322e andVd52pd/2/G(d/2). The last two inte-
grals in Eq.~17! are functions ofmq only and must therefore
be proportional tomq

4 . Calculating the integrals numerically
their contributions to Eq.~17! are (2.16631022)mq

4 and
(21.26731022)mq

4 , respectively.
We next simplify the Landau-damping term~13!. The

temperature-independent integral has ultraviolet divergen
from the regionk→` with v;k. We must again isolate th
divergences by making subtractions. Our choice for the s
traction integral is

Fq,Ld
(sub)522mq

4E
k
E

0

k

dvF v

k3~K212mq
2!

1
K2L

2k4~K212mq
2!G .
~19!
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Subtracting this from Eq.~13!, we can take the limitd→3:

Fq,Ld2Fq,Ld
(sub)5

2

p3E
0

`

dv
1

ebv11Ev

`

dkk2uq

2
1

p3E
0

`

dvE
v

`

dkk2Fuq2
pmq

4v

k3~K212mq
2!

2
pmq

4K2L

2k4~K212mq
2!G . ~20!

If we impose ultraviolet cutoffsv,L andk,L on the en-
ergy and momentum, the subtraction integral~19! has loga-
rithmic divergences proportional tomq

4logL and mq
4log2L.

They cancel against the corresponding divergences in
quasiparticle subtraction integral~16!. The subtraction inte-
gral in Eq. ~19! is evaluated in the limitd→3 using Eqs.
~A4!,~A5!:

Fq,Ld
(sub)52

1

2
mq

4S 2mq
2

m2 D 2e Vd

~2p!dF 1

e2 1
2 log 2

e
24 log 2

12 log221
p2

6 G . ~21!

The last integral in Eq.~20! is a function ofmq only and is
therefore proportional tomq

4 . Its contribution to Eq.~20! is
(7.52531023)mq

4 .
Adding Eqs.~17!, ~18!, ~20! and ~21!, our final result for

the quark contribution to the HTL free energy is

Fq52
2T

p2E
0

`

dkk2F log~11e2bv1!1 log
11e2bv2

11e2bk G
1

2

p3E
0

`

dv
1

ebv11
E

v

`

dkk2uq1~2.34231022!mq
4 .

~22!

Since the quark contribution has no logarithmic ultravio
divergences, the countertermDF in Eq. ~1! is the same as in
the pure-glue case@6#. If we had used a momentum cutoffL
instead of dimensional regularization, we would need
counterterm proportional tomq

2L2 to cancel the quadratic
divergence from the quasiparticle term~12!.

III. HIGH-TEMPERATURE EXPANSION

If the temperature is much larger than the quark m
parametermq , the quark contribution to the free energy ca
be expanded in powers ofmq /T. The integral in Eq.~9!
involves two energy and momentum scales: the ‘‘har
scaleT and the ‘‘soft’’ scalemq . The terms in the high-
temperature expansion can receive contributions from b
scales. Dimensional regularization makes it easy to sepa
these contributions. The soft contribution is obtained by
panding the statistical factor 1/(ebv11) in Eq.~9! in powers
of v/T. Using the methods in@6#, one can show that the so
contribution toFq vanishes with dimensional regularizatio
6-3
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The hard contribution is obtained by expanding the lo
rithm in Eq. ~9! in powers of mq

2 . The first term in this
expansion is

F q
(1)524mq

2E
k
E

C

dv

2p i

1

v22k2

1

ebv11
. ~23!

The integrand has single poles atv56k and can be evalu
ated using the residue theorem. The momentum integrals
be evaluated analytically and in the limitd→3 we obtain

F q
(1)5

1

6
mq

2T2. ~24!

The second term in the expansion is

F q
(2)522mq

4E
k
E

C

dv

2p i F 2

~v22k2!2 1
1

k2~v22k2!

2
v

k3~v22k2!
log

v1k

v2k
1

1

4k4log2
v1k

v2kG 1

ebv11
.

~25!

Using the residue theorem and collapsing the contour o
the branch cuts from the logarithms, Eq.~25! reduces to

F (2)52mq
4E

k
H 1

k2

]

]k S 1

ebk11
D

2
1

k4E
0

k

dv v
]

]v S 1

ebv11
D log

k1v

k2vJ . ~26!

The double integral can be evaluated by first integrating o
k and then overv. Expanding arounde50 and keeping
terms only throughe0, we obtain the finite result

F q
(2)5

2 log 221

2p2 mq
4 . ~27!

The final result for the high-temperature expansion throu
ordermq

4 is the sum of the first term in Eq.~9! and the terms
~24! and ~27!:

Fq→2
7p2

180
T41

1

6
mq

2T21
2 log 221

2p2 mq
4 . ~28!

IV. LOW-TEMPERATURE LIMIT

It is useful to understand the behavior of the HTL fr
energy in the low-temperature limit whereT→0 with mq

fixed. In this limit,Fq is proportional tomq
4 . The coefficient

could be extracted directly from the final expression~22! for
Fq , but it is simpler to compute it from our original expre
sion ~8! for the quark contribution to the free energy. AsT
→0, the sum over the discrete Matsubara frequenciesvn
5(2n11)pT becomes an integral over the continuous E
clidean energyv:
07401
-

an

to

r

h

-

Fq→2
1

pE2`

`

dvE
k
logFAS

22A0
2

k21v2G . ~29!

After rescaling the energyv→kv, we obtain

Fq52
2

pE0

`

dvE
k
k logF S 11

mq
2

k2 f ~v! D S 11
mq

2

k2 f̄ ~v! D G ,
~30!

where

f ~v!5
1

11 iv
1 i S p

2
2arctanv D ~31!

and f̄ is the complex conjugate off. Integrating overk, we
obtain

Fq52
2

p
mq

4S mq
2

m2D d23 Vd

~2p!d

GS d11

2 DGS 12d

2 D
d11

3E
0

`

dv$@ f ~v!# (d11/2)1@ f̄ ~v!# (d11/2)%. ~32!

Expanding aroundd53, we get

Fq5
1

2p
mq

4S mq
2

m2D 2e Vd

~2p!dH S 1

e
1

1

2D E
0

`

dv@ f 2~v!1 f̄ 2~v!#

2E
0

`

dv@ f 2~v!log f ~v!1 f̄ 2~v!log f̄ ~v!#J . ~33!

The integral off 2 can be evaluated analytically and is pure
imaginary. It is cancelled exactly by the integral off̄ 2. This
cancellation is in accord with the observation that the qu
contribution has no logarithmic ultraviolet divergences. T
last integral in Eq.~33! must be evaluated numerically. Th
result is

Fq→~2.34231022!mq
4 , ~34!

which is identical to themq
4 term in our complete expressio

~22! for the quark contribution to the free energy.

V. COMPARISON WITH WEAK-COUPLING EXPANSION

In this section we present the numerical results for
one-loop HTL free energy~1! with Nc53 andNf53. The
quark term is given in Eq.~22!. The gluon term is given in
Ref. @6#. It depends on the gluon mass parametermg and on
a renormalization scalem3 associated with a logarithmically
divergent integral over the three-momentum. We use
weak-coupling limits of the gluon and quark mass para
eters@8#:

mg
25

2p~61Nf !

9
as~m4!T2, ~35!
6-4
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mq
25

2p

3
as~m4!T2, ~36!

wherem4 is the renormalization scale for the running co
pling constant. We use a parametrization ofas(m4) that in-
cludes the effects of two-loop running:

as~m4!5
4p

b0L̄
S 12

2b1

b0
2

log L̄

L̄
D , ~37!

whereb05112 2
3 Nf , b15512 19

3 Nf , and L̄5 log(m4
2/LMS

2 ).
For the relation betweenLMS and the critical temperatureTc
for the deconfinement phase transition, we use the resuTc
51.05LMS calculated forNf54 flavors of dynamical quarks
@10#.

The leading-order HTL free energy withNf53 is shown
in Fig 2. It is scaled by the free energy of an ideal gas
quarks and gluons:

Fideal52
8p2

45 S 11
21

32
Nf DT4. ~38!

To illustrate the sensitivity to the choices of the renormali
tion scales, we take their central values to bem350.717mg
andm452pT and we allow variations by a factor of 2. Th
shaded band indicates the resulting range in predictions.
range ofFHTL comes predominantly from variation inm4 at
the highest temperatures shown and from variations inm3 at
the lowest temperatures shown. With our expressions f
mg and as , FHTL diverges either to1` or 2` at m4
5LMS, depending on whetherm3 is greater than or less tha
our central value of 0.717mg . The free energy of anSU(3)
gauge theory withNf massless quarks has been calculated
the weak-coupling expansion through orderas

5/2 @1–3#:

FIG. 2. The free energy for QCD withNf53 quarks as a func-
tion of T/Tc . The HTL free energy is shown as a shaded band
corresponds to varyingm3 and m4 by a factor of 2 around their
central values. The weak-coupling expansion through ordersas ,
as

3/2, as
2 , andas

5/2 are shown as dashed lines labeled by 2, 3, 4
5.
07401
f

-

he

m

n

F52
8p2

45
T4FF01F2

as

p
1F3S as

p D 3/2

1F4S as

p D 2

1F5S as

p D 5/2

1O~as
3logas!G . ~39!

The coefficients in this expansion withm452pT are

F0511
21

32
Nf , ~40!

F252
15

4 S 11
5

12
Nf D , ~41!

F3530S 11
1

6
Nf D 3/2

, ~42!

F45237.2115.97Nf20.413Nf
2

1
135

2 S 11
1

6
Nf D logFas

p S 11
1

6
Nf D G , ~43!

F552S 11
1

6
Nf D 1/2

@799.2121.96Nf11.926Nf
2#.

~44!

The predictions from the weak-coupling expansion withm4
52pT are compared to the HTL free energy in Fig. 2. T
expansions of the pressure truncated after ordersas , as

3/2,
as

2 , andas
5/2 are shown as the dashed lines labeled 2, 3

and 5. As successive terms in the weak-coupling expan
are added, the predictions fluctuate wildly. In addition, t
sensitivity to the renormalization scalem4 increases at each
successive order. Of course, because of asymptotic freed
the first few terms in the weak-coupling expansion will a
pear to converge at sufficiently high temperature. Howev
this occurs only at enormously high temperatures, where
the corrections to the ideal gas are tiny. For example,
Nf53, theas

3/2 correction is smaller than theas correction
only if as,3p/128. If we use Eq.~37! to extrapolate to high
temperature while ignoring the effects of heavier quark fl
vors, this corresponds to a temperatureT.500Tc .

We now compare the high-temperature expansion of
HTL free energy in Eq.~28! with the weak-coupling expan
sion. Using the values~35! and ~36! for the thermal mass
parameters, we find that theas correction is overincluded by
a factor of 12(31Nf)/(1215Nf). Theas

3/2 correction is in-
cluded exactly in the leading HTL result. The overinclud
as correction and the large positiveas

3/2 correction combine
with higher order corrections in the HTL free energy to gi
a negative correction that rises slowly withT as shown in
Fig. 2.

Lattice gauge theory has been used to calculate the e
tion of state of a quark-gluon plasma withNf52 @11,12# and
Nf54 @13# flavors of dynamical quarks. These calculatio
indicate that the pressure, which is the negative of the f
energy, approaches that of an ideal gas from below.
approach to the ideal gas is more rapid than the leading o

t

d

6-5
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HTL result. ForNf54, it reaches 80% of the value for a
ideal gas already atT52.5Tc . For higher values ofT, the
leading order HTL result lies significantly below the lattic
results. This is not of great concern, because the differe
can be accounted for by the next-to-leading order correc
in HTL perturbation theory. At next-to-leading order, the
are two-loop diagrams and one-loop diagrams with H
counterterms. The contributions of orderas coming from the
hard momentum regions of the two-loop diagrams will
produce the order-as term in the conventional perturbativ
series~39!. The contribution from the HTL counterterm dia
gram will precisely cancel the order-as term in the one-loop
HTL free energy. Thus the next-to-leading order correct
to FHTL /Fideal must approach @10(2417Nf)/(32
121Nf)#as /p in the limit as→0. This has the correct sig
and roughly the right magnitude to account for the discr
ancy with the lattice results.

VI. CONCLUSIONS

We have completed the calculation of the free energy o
quark-gluon plasma to leading order in HTL perturbati
theory by calculating the quark contribution. The quark te
has a quadratic ultraviolet divergence that vanishes with
mensional regularization, but it has no logarithmic ultravio
divergences. Comparing our result to the weak-coupling
pansions for the free energy, we find that the error is of or
as but the large correction proportional toas

3/2 is included
07401
ce
n

-

n

-

a

i-
t
x-
r

exactly. It is therefore possible that the HTL perturbati
expansion for the free energy will have much better conv
gence properties than the conventional weak-coupling
pansion. To verify this, it will be necessary to extend t
calculations of the free energy to next-to-leading order
HTL perturbation theory.
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APPENDIX: INTEGRALS

In this appendix, we collect the results for the integra
that are required to calculate the contribution from quarks
the one-loop HTL free energy. We use dimensional regu
ization, so that power ultraviolet divergences are set to z
and logarithmic ultraviolet divergences appear as poles ine.
In the HTL free energy, the ultraviolet divergences are is
lated in subtraction terms that must be expanded aroune
50 through ordere0. The integrals required to evaluate th
subtractions in the quasiparticle terms are
E
0

`

dkk222eAk21m252
1

16
m422eF1

e
12 log 22

1

2G , ~A1!

E
0

`

dkk222e
1

~k21m2!3/2
5

1

2
m22eF1

e
12 log 222G , ~A2!

E
0

`

dkk222e
1

~k21m2!3/2
log

k21m2

m2 5
1

2
m22eF 1

e2 241
p2

6
22 log2214 log 2G . ~A3!

The integrals required to evaluate the subtractions in the Landau-damping terms are

E
0

`

dv vE
v

`

dkk2122e
1

k22v21m25
1

4
m22eF 1

e2 1
p2

6 G , ~A4!

E
0

`

dvE
v

`

dk k2222e
k22v2

k22v21m2log
k1v

k2v
5m22eF log 2

e
22 log 21 log22G . ~A5!
,

ett.
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