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Erraticity analysis of multiparticle production

Zhen Cao
High Energy Astrophysics Institute, Department of Physics, University of Utah, Salt Lake City, Utah 84112

Rudolph C. Hwa
Institute of Theoretical Science and Department of Physics, University of Oregon, Eugene, Oregon 97403-5203
(Received 19 January 1999; revised manuscript received 26 August 1999; published 22 February 2000

Event-to-event fluctuations of the spatial patterns of the final states of high-energy collisions, referred to as
erraticity, are studied for the data generated by a soft-interaction model ealteds. The moment<C , do
not show simple power-law dependences on the bin size. New measures of erraticity are proposed that gen-
eralize the bin-size dependence. The method should be applied not only to the soft production data of NA22
and NA27 to check the dynamical content mfoms, but also to other collision processes, sucheds™
annihilation and heavy-ion collisions.

PACS numbes): 13.85.Hd, 24.60.Ky

I. INTRODUCTION study of phase transitions in magnetic systems by use of the

Progress in the study of multiparticle production has re_Ismg model[6], as well as to the characterization of heart-

cently been made in two distinct directions among man eat irr_egul_arities in ele_ctrocardiogram time sefiés
others. One is in finding measures of event-to-event fluctua- Multiparticle production at lowpy has always eluded
tions [1] that can probe the production dynamics more wst-pnnqples calculation bgcause of its nonperturbative na-
deeply than conventional observables, such as the multiplidire. Various models that simulate the process can generate
ity distribution and factorial momentg2]. Such measures the average quantities, but fail in getting correctly the fluc-
have been referred to as erraticf§], which quantifies the tuations from the averag¢g]. In particular, few models can
erratic nature of the event structure. The other direction is irfit the intermittency datgb]. To our knowledgecowms is the
the construction of a Monte Carlo generator, caliebvs ~ Only one that can reproduce those dpté (apart from its
[4], that simulates soft interactions in hadronic collisions caPrédecessoecco [8]). Since that model is tuned to fit the
pable of reproducing the intermittency daf]. EcomB data by the ad_]u_stment of several parameters, it is necessary
stands for eikonal color mutation branching, which are the© test its predictions on some new features of the production
key words of a model that is based on the parton modeProcess. Erraticity is such a feature. The fluctuation of final-
rather than the string model for lopy processes. In this Staté patterns presents a severe test of any model. .
paper we combine the two, USIEFOMB to generate events Ecowms includes many sources of fluctuations in hadronic
from which we calculate the erraticity measures. The resulfollisions. In the framework of the eikonal formalism it al-
should be of considerable interest, since, on the one hand, tHféWS for ﬂUCtU_atIOHS in impact parameter For anyb there
erraticity analysis of the NA22 datgb] is currently being IS the flu_ctuat|on of the_numbex of cut Pomerons. For any
carried out, and, on the other, it can motivate the investigas there is the fluctuation of the numben of partons. A
tion and comparison of erraticities in various different colli- Stochastic description of the generation of partons was later
sion processes, ranging froei e~ annihilation to heavy-ion  diven, after the original paper oecoms [4], providing an
collisions. even better fit of the Koba-Nielsen-OlesédNO) scaling

The study of erraticity originated in an attempt to under-data onC, with fewer parametergd]. For anym numbers of
stand possible chaotic behaviors in quark and gluon[jgts Partons th_e.c.olor dlstr!bunon along tr_\e rapidity axis can still
since QCD is intrinsically nonlinear. In the search for a meafluctuate initially. During the evolution process, the local
sure of chaos it was realized that the fluctuation of the hagSubprocesses of color mutation, spatial contraction and ex-
ronic final states of a parton jet is the only observable featur@@nsion, branching into neutral subclusters, and hadroniza-
of the QCD process that can replace the unpredictable trajed©n into particles or resonances can gll fluctuate. Taken to-
tories in classical nonlinear dynamics. A multiparticle final 9€ther the model can generate such widely fluctuating events
state in momentum space is a spatial pattern. Once a measuif@t fitting some average quantity such(elsor dn/dy does
is found to quantify the fluctuation of spatial patterns, thenot explore the full extent of its characteristics. The depen-
usefulness of the method goes far beyond the original purdence of normalized factorial momeritg on the bin size»,
pose of characterizing chaoticity in perturbative QCD pro-usually called intermittency, probes deeper, but it is never-
cesses. Many problems involve spatial patterns; they Ca}heless a measure that is averaged over aII_ events. Erraticity
range from phase transitions in condensed matter to galactié @ true measure of event-to-event fluctuations.
clustering in astrophysics. Even continuous time series can
be transformeq 'by discret'e mappin_g to spatial patt€fihs Il. ERRATICITY
Thus the erraticity analysis, which is the study of the fluc-
tuation of spatial patterns, is more general than the determi- There are various ways to characterize a spatial pattern.
nation of chaotic behavior. Indeed, we have applied it to théNVe shall use the horizontal factorial moments. Given the
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rapidity distribution of a particular event, we first convert it
to a distribution in the cumulative variab}¥[10,1], in terms
of which the average rapidity distributiadn/d X is uniform

in X. We then calculate from that distribution for that event

the normalized-:

Fe=(n(n—1)---(n—g+1))/(n)", 1)
where(- --) signifies(horizonta) average over all bins anmd
is the multiplicity in a bin. We emphasize that Eg4) does
not involve any average over evenks, does not fully de-
scribe the structure of an event, since at any figed is
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and then to determing, from X, using

924
dlnM’

Mq= 8
provided thatC, , has the scaling behavig#). In [1] it is
found thatu, is larger for quark jets than for gluon jets,
indicating that the branching process of the former is more
chaotic or, in other words, the event-to-event fluctuation is
more erratic.

If the momentsC, , do not have the exact scaling behav-
ior in M, as in Eq.(4), but have similar nonlinear depen-

insensitive to the rearrangement of the bins. However, it doedences oM, we can consider a generalized form of scaling:

capture some aspect of the fluctuations from bin to bin and is

adequate for our purpose.

Cp.q(M)=g(M) P9, ©)

Since F fluctuates from event to event, one obtains a

(vertical dlstrlbutlon P(F,) after many events. Let the ver-
tical average ofF determmed fromP(F,) be denoted by

(Fg)y - Then, in terms of the normalized moments for sepa-

rate events

Dy=Fq/(Fg)y» (2

we can define the verticg@th-order moments of the normal-
ized qth-order factorial(horizonta) moments:

Cp,q:<q)g>v- )

It should be stressed th&t, , does not involve thepXxq
moments of the multiplicityn because for each there is
only one numbeF  for each event. It is the fluctuation Bf;
from event to event that, , measures. The statistical errors
of Cp,
shaII explam below.

Erraticity refers to the power-law behavior G, ; [1,3]:

(4)

whereM is the number of bins & and the length irX space

q(p)
Cpg=M7H,

q are, however, more complicated to determine, as we

If Eq. (9) is approximately valid for a commag(M) for all
p andgq, it then follows from Eq.(7) that

2 q(M)ecfigIng(M), (10

where

d.
ﬁq:@w(p,q)lpzl- (11)

Despite the similarity between Eg&) and (11), g is dis-
tinctly different fromu, and should not be compared to one
another unlesg(M) =

If Eq. (10) is indeed good for a range gfvalues, then we
expect a linear dependence®f on 2, asM is varied. Let
the slope of such a dependence be denotedyi.e.,

Ror 12
wq_ (922 : ( )

Then we have
ﬁq:ﬁzwq- (13

is 1. y4(p) is referred to as the erraticity exponent. If the A variation of this scheme that makes use of an extra control

spatial pattern never changes from event to eveqg )
would be a delta function ab,=1 andC, , would be 1 at
all M, p, andgq, resulting ing,(p) =0. The largeryq(p) is,
the more erratic is the fluctuation of the spatial patterns.
Sinceyy(p) is an increasing function gf with increasing

slope, an efficient way to characterize erraticity with one

number(for everyq) is simply to use the slope at=1, i.e.,

d
Mq:d_p’r/fq(p)|p:1- 5

It is referred to as the entropy indgk]. Experimentally, it is
easier to determine first an entropylike quantity directly
from @ :

24=(PyIndy),, (6)
which follows from Eq.(3) and
34=dCpq/dp|p-1, (7)

parameter in the problem is considered i1&]. It is found
there that the entropy indices determined that way are as
effective as Lyapunov exponents in characterizing classical
nonlinear dynamical systems.

Ill. SCALING BEHAVIORS

The erraticity analysis described above involves only
measurable quantities, so it can be directly applied to the
experimental data. The NA22 data@= 22 GeV are ideally
suited for this type of analysis, sindg, fluctuates widely
from event to evenf5]. The nuclear collision data, such as
those of NA49, can also be studied, ut cuts should be
made to reduce the hadron multiplicity to be analyzed,
thereby enhancing the erraticity to be quantified.

Here we apply the analysis to hadronic collisions gener-
ated byecomB. The parameters are tuned to i), P,,
dn/dy, and(Fg), of the NA22 datd5]. Without any further
adjustment of the parameters in the model, we calculate
Cp.q(M), which are therefore our predictions for hadronic
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FIG. 1. Log-log plots ofC,, , versusM on the left side and versu, , on the right side. The lines on the left side are connected between
points to guide the eye, while the ones on the right side are linear fits.

collisions at 22 GeV. The results from simulating®Monte  is that not many events in the NA22 data have a bin multi-
Carlo events are shown on the left side of Fig. 1. plicity n=5, when the bin size is small and the event multi-
The statistical errors in Fig. 1 are calculated on the asplicity is only between 10 and 15. Statistical errors can be
sumption that the value &%, for each event is unique so that unambiguously determined only when the underlying distri-
the only source of errors arises from the event-to-event flucbution is smooth. However, when most of the events give
tuations. Thus the statistical errors are inversely proportionaFs=0 and only a few yield=5+# 0, no meaningful statistical
to N, whereN,, is the total number of events. Unfortu- error in{Fs) can be given. If the problem is severe {&s),
nately, that assumption is too strong for events with a totathen it is much worse fo¢F) for p>1.
multiplicity not too high, since the bin multiplicities in that In our simulation usingecomB the result in Fig. 1 shows
case fluctuate greatly from bin to bin. The effect of sucha kink at InM=3.8 forgq=4 and 5. That is due to the bin-
fluctuations orf is especially severe at high It shows up  to-bin fluctuations mentioned above. Such fluctuations do
when the bin numbeM is changed by a small amount, and not affect theq=2 and 3 cases, sinég, does not require bin
the averaggF,), would change by a large amount. That is multiplicities to be large when is small. The statistical er-
the phenomenon observed by NAR, where the values of rors calculated for thgg=4 and 5 cases are done using the
(Fg)y . for g=5, jump around erratically between neighbor- standard method, which is probably inadequate when the un-
ing values ofM, with the consequence that the overall un-derlying distribution is not smooth, but they give a rough
certainty is much greater than the error bars in the individuaidea. The kinks indicate that the overall errors are larger. The
points. The reason for that phenomenon of fluctuatifg) lines on the left side of Fig. 1 are drawn by connecting the
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FIG. 3. The open circles are f@; , and the solid points are for

FIG. 2. The slopes of the linear fits on the right side of Fig. 1 arey,,  The lines are linear fits, whose slopes r€2,2) and,,
plotted againsp for various values ofj. The lines are fits by a yegpectively.

quadratic formula.

o . AlthoughC, ,(M) do not satisfy Eq(4), we can consider
points just to guide the eye. the more general forng9). If the same functiong(M) is

From the pointS ShOWI’l, it is clear that the depel’ldences Céood enough in Ec(g) for all p and d, then it follows from
Cp.q ON M in the log-log plots are not very linear. Thus the gq. (14) that

power-law behavior in Eq4) is not well satisfied. Since the

general behaviors o, , are rather similar in shape, we can (P, ) =%(p,q)/#(2,2). (17)
regardC, , as the reference that carries the typical depen-

dence orM and examin€, ; vs C, ,whenM is varied as an  Using Eq.(11), we then have

implicit variable. The results are shown on the right side of

Fig. 1. The straight lines are linear fits of the points shown ﬁqZT/f(Z,Z)qu- (18)
and lend support to the scaling behavior

It should be noted that, whereag follows only from the

p,qxc)z(,(zp'q)- (14) scaling property of Eq(14), the determination of/(2,2),
and thereforéi,, requires knowledge aj(M) in Eq. (9).

The slopes of the fits arge(p,q), which are shown in Fig. 2. To determineg(M), we write it in the form

One may regarcv(p,q) as a representation of the erraticity

properties of the particle production data, when there is no Ing(M)=(InM)?2. (19

strict scaling law as in Eq4).

The behavior ofy(p,q) exhibited in Fig. 2 can be de- By varyinga, we can find a good linear behavior of® , vs
scribed analytically, if we fit the points by a quadratic for- Ing(M), as shown by the open circles in Fig. 3 fa1.8.
mula for eachy. The result is shown by the lines in Fig. 2. (The solid points should be ignored for nowlhe corre-
Evidently, the fits are very good. Since, as mentioned abovesponding value ofy(2,2) determined by the slope of the
the errors in the points fay=4 and 5 are hard to determine straight line fit is
precisely, it is prudent not to pursue the quantitative impli-
cations of those points in Fig. 2, even though they admit ¥(2,2)=0.119+0.001. (20)
smooth curves. In the following we shall put emphasis only
on theq=2 and 3 data points. The properties of the smoothUsing that in Eq(18) in conjunction with Eq(16) yields
behaviors can be further summarized by their derivatives at
p=1: ,=0.099+0.002, m3;=0.314+0.007. (21

C

d These values will be compared below with those calculated
Xq= d_pX(p1Q)|p:1' (19 by an alternative method.

We remark that in checking the validity of E¢Q) for
values ofp andq other than 2, one can improve the linearity
of the points for eaclp and g by slight adjustments of the
value ofa. If there is a range of possibtg M) that depends
X2=0.83+0.01, x3=2.64+x0.04. (16)  onpandqto yield the best fits, however small the variations

in a may be, the scheme defeats the point of defining a uni-

We suggest that these valuesﬁfbe used to compare with versal J(p,q). We thus propose that the emphasis of the
the experimental data. erraticity analysis should be placed on E@4), which is

The values ofy, for =2 and 3 are
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dences on the bin size. The two aspects of this paper con-

100 q=§ — R @) b . verge on the new erraticity measurgfp,q), xq, @q, and
Mg -

Zq 8 ‘5‘ o S the proposed measures of erraticity are, of course, more
6f d general than the application made here to soft production.
4 Event-to-event fluctuation has recently become an important

) theme in collisions of all varieties:e*e™ annihilation, lep-
[ o toproduction, hadronic collisions at very high energies where
T hard subprocesses are important, and heavy-ion collisions.

InM

by}

What was lacking previously is an efficient measure of such

fluctuations. The erraticity measures proposefilij3], now
generalized toe(p,q), Xé, wq, anduy, are well suited for
that purpose. They may be redundant, if strict scaliniyliis
good enough to give the erraticity indiceg(p,q). The
method of treating the less-strict scaling properties proposed
here may well be more generally applicable to a wide range
of collision processes amenable to erraticity study.

FIG. 4. (a) 2 vs InM for variousq; (b) 2 vs %, with the lines
being linear fits.

independent ofj(M), and that Eq(9) is examined only for
p=2,q=2 so that Eq(18) can be evaluated.

Since i1 is distinct from uq, we cannot compare our
result on, with the theoretical values ofi, found for
quark and gluon jet§l] or with the experimental values of
q determined fronpp collisions at 400 Ge\W (NA27) [11].

The values ofiq can also be determined independently ~ After the completion of this work, two groups of investi-
by use ofX%,(M). From the definition in Eq(6) we have gators have followed the suggestions made in this paper and
calculated ; as functions of IM, as shown in Fig. @&). Not  obtained results that are worth commenting on. One is by a
surprisingly, the dependences are not linear. However, whekefei group[12], who showed that the erraticity analysis of
3., is plotted againsk., in Fig. 4(b), they all fall into straight the NA27 data yields results that are “similar” to ours
lines. The slopes, which give defined in Eq.(12), are shown in this paper. A more critical paper is by a group in
w,=1.0 by definition and Wuhan[13], who investigated the effect of statistical fluc-
tuations. In the framework of a simple model what &ial.
have found is that when the event multiplicity is low, the
- . o . horizontal factorial moments are dominated by the statistical
by fitting. We resist the inclination to give the values®f  qctyations and are therefore ineffective in quantifying the
andws, since we have chosen to relinquish the quantitativeyent structure. In that case the momeRysare not suitable
study of the highers cases. If we examine Eq10) for 4 45 measures of dynamical fluctuations for erraticity analysis.
=2 only and plot, vs Ing(M) with a=1.8, shown by the The origin of the problem can easily be seen by the fol-
solid points in Fig. 3, we obtain a linear behavior with aJowing argument. If the event multiplicitil is low and the
slope number of binsM is high, then the average bin multiplicity
in an event,N/M, is <1. Thus only by a large fluctuation
can a bin haven=q so as to contribute t&,. Since Eq(1)

This value is consistent with that in E¢21). Of the two  does not depend on the locations of the few bins that con-
methods of determinin@Z, this latter approach IS more re- tribute, Fq does not describe the Spatial pattern of an event
liable, since the derivative ip at p=1 is done analytically ~Vvery well. This problem does not arise /M is large, as

in the definition of 3., in Eq. (7), whereas in the former Shown quantitatively if13].

approach the differentiation is done in E(q.5) using the The problem with |OW-mU|t|p|IC|ty events must be treated
fitted curve in Fig. 2. Substituting Eq23) into Eq.(13), we  in avery different way that is almost orthogonal to the use of
can determine the value @, from the value ofws in Eq.  the factorial moments. Such a method has already been
(22). The result is found [14]; however, since it is totally outside the scope of
this paper, it will not be presented here. The method dis-
cussed in this paper is, nevertheless, effective in analyzing
the dynamical fluctuations in high-multiplicity events,
whether in hadronic collisions at very high energies or
nuclear collisions at lower energies.

V. SOME FINAL REMARKS

ws=3.24+0.12 (22)

7,=0.095+0.004. (23)

7i3=0.308+0.024. (24)

The two values ofiz in Egs. (21) and (24) agree within
errors.

IV. CONCLUSION
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