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Gluonic states in two space dimensions

Gabriel Karl* and Jack Paton
Department of Physics (Theoretical), 1 Keble Road, Oxford OX1 3NP, United Kingdom

~Received 16 August 1999; published 17 February 2000!

We discuss the ‘‘spectroscopy’’ of gluonic states in systems with two space dimensions, using simple
models to mimic the results of lattice gauge theory computations. We first discuss the quantum numbers of
these systems, including charge conjugation. Two types of systems are discussed in detail: ‘‘gluelumps’’ which
have a heavy adjoint color charge at the origin and glueballs which are composed entirely of glue. Both
systems are discussed using the bag model and the flux-tube model. For glueballs the model spectra are
compared with the results of Teper. Both models capture many features of the numerical results.

PACS number~s!: 12.39.Ba, 12.39.Mk, 12.40.Yx
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I. INTRODUCTION

The numerical results of lattice Monte Carlo compu
tions are becoming increasingly reliable. This presents
challenge of understanding these results and the physics
derlying them. In this endeavor simple models are still ve
useful@1#. The use of lattice simulations allows the study
systems with varying numbers of colors and even differ
numbers of space dimensions@2# yielding more detailed test
of models. In this paper we adapt simple models of had
spectroscopy to such systems in the hope of understan
the lattice results. Earlier@4# we have used the bag model
understand the results of Michael@3# for a ‘‘gluelump’’ sys-
tem in three space dimensions. Here we use the bag m
and flux-tube model to understand the ‘‘spectroscopy’’
gluelumps in two space dimensions, where lattice results
not yet exist, and glueballs in two space dimensions, whe
detailed numerical study on the lattice was published by
per @2#. The lay-out of our paper is as follows: In Sec. II w
discuss the quantum numbers of states in two plus o
dimensional chromodynamics, and in particular the cha
conjugation quantum number of pure glue states. In Sec
we discuss a bag model for gluelumps in two space dim
sions. In these systems there is a heavy color charge a
origin which is neutralized by one or more gluons. This s
tem is the simplest one to treat in the bag model becaus
the absence of spurious states associated with center-of-
motion. Unfortunately there are as yet no lattice data w
which we can compare our results. In Sec. IV we disc
models of glueballs in two space dimensions. Here the pr
lem of spurious states in the bag model is dealt with by us
a harmonic-oscillator approximation. We also treat this s
tem in the flux-tube model~which has already been done
@5#, @6#, @1#! in a particularly transparent version of th
model in which masses are given analytically in terms o
system of oscillators. We also in Sec. IV extend the mode
give a prediction for the spectrum of gluelumps in two spa
dimensions. In Sec. V we compare the model spectra w
each other and with the lattice results of Teper@2#, and draw
conclusions.

*Permanent address: Dept of Physics, University of Guelph,
tario, Canada.
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II. QUANTUM NUMBERS OF PURE GLUE THEORY
STATES IN TWO SPACE DIMENSIONS

We first make a couple of general points about the m
tiplet structure and quantum numbers of ‘‘spectroscopy’’
two space dimensions for an arbitrary numberNC of colors.

As is well known, the irreducible representations of t
two-dimensional rotational group are one dimensional, ch
acterized by the integer angular momentum quantum num
m. Pure gauge theory is also invariant under the parity
erator,P:(x,y)→(x,2y) which transformsm to 2m, giv-
ing two-dimensional multiplets in all cases exceptm50. For
m50 the state is also characterized by its eigenvalue ofP.

In addition there is invariance under a suitably defin
‘‘charge conjugation’’ operation which changes a gluon fie
variable to its complex conjugate. If we use the real form
the (N221)-dimensional adjoint gluon representation ea
of the field variables will haveC561.

~1! The case of SU~2! gauge theory is special and we tre
it first. In terms of real fieldsg1 , g2 , andg3 , we requireC to
be such that the three gluon coupling, with color depende
e i jkgigjgk , be invariant. ~If this is the case the four gluon
coupling will be invariant automatically.! For nontrivialC
we therefore require two of the fields to have negativeC and
the third positive. The conventional choice would be to ta
g1 andg3 with C negative so that

C@g11 ig2 ,g12 ig2 ,g3#52@g12 ig2 ,g11 ig2 ,g3#, ~1!

and we can say loosely that the gluon has negativeC, though
strictly speaking this applies tog1 andg3 only, with theC of
g2 being positive.

As is well known, there exists for SU~2! @but not for
higher SU(N)# an operator related toC and similar to theG
parity of hadron flavor physics, of which all members of t
gluon multiplet are eigenfunctions with the same eigenval
This is the operator

G5C exp~ ipT2!,

where@T1 ,T2 ,T3# are the generators of SU~2!. We have

G@g1 ,g2 ,g3#51@g1 ,g2 ,g3#,
n-
©2000 The American Physical Society02-1
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so that there is no selection rule analogous to the had
physics selection rule that allows only an even number
pions~flavor G parity 21! to couple together. This is impor
tant to allow three gluon coupling. We can show imme
ately from the above that any local gauge invariant opera
which must necessarily be a color singlet combination of
gluon fields and their derivatives at a point, must haveC
511. This immediately follows from the fact thatC5G for
such a field andG is necessarily11. It follows that the
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physical states~created from the vacuum by local color sin
glet operators! must necessarily haveC511 in the case of
pure SU~2! gauge theory~in any number of dimensions an
in the absence of sources!.

~2! In the case of three colors, SU~3!, again using the rea
form of the adjoint representation we require th
C(gi)C(gj )C(gk)511 for all sets ~i,j,k! for which the
structure constantsf i jk are nonzero. Making the convention
choice ofg3 and g8 as the Abelian generators, these mu
have negativeC and we can, analogously to Eq.~1! take
C~g11 ig2 ,g12 ig2 ,g3 ,g41 ig5 ,g42 ig5 ,g61 ig7 ,g62 ig7 ,g8!

52~g12 ig2 ,g11 ig2 ,g3 ,g42 ig5 ,g41 ig5 ,g62 ig7 ,g61 ig7 ,g8!. ~2!
on
and
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he
Since there is no analog of theG operator of SU~2! we can
no longer conclude that physical pure glue states must
essarily have positiveC, and in fact both our models as we
as the lattice Monte Carlo calculation exhibit states of b
positive and negativeC.

~3! The case of general SU(N) is analogous to the cas
N53 above. The operatorC applied to the glue field opera
tors corresponding to all Abelian generators gives a nega
sign andC applied to any raising~lowering! operators gives
the corresponding lowering~raising! operator with a minus
sign.

III. BAG MODEL OF TWO DIMENSIONAL GLUELUMPS

We define the bag model in two space dimensions exa
analogously to the definition in three space dimensions.
‘‘gluelump’’ consists of an adjoint source at the origin and
the model we assume it is surrounded by a circular regio
which one or more approximately free gluons exist to n
tralize the color. As usual in the bag model we use co
Coulomb gauge, first treat noninteracting gluons confined
the bag, and then treat the effect of the instantaneous c
Coulomb interaction as a perturbation.

A. Gluon modes in the bag

The fields of gluon modes confined to a circular bag
radius R obey Maxwell’s equations in 211 dimensions
which are identical to the full Maxwell’s equations inx and
y with B in the z direction,E in the xy plane andE and B
independent ofz. Thus theB field is a scalar and theE field
is a two-component vector in the two space dimensio
Modes of definite frequencyk are given by~r, f are plane
polar coordinates!

B5exp~ imf!Jm~kr !;E5
1

ik S ]

2]y
,

]

]xDB,

where the mode frequencyk is determined by the boundar
conditions equivalent to the three-dimensional bound
conditions thatr•E and r3B vanish at the bag radiusR.
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@Jm(x) is a Bessel function#. The first of these conditions is
automatic and the second implies thatB50 at r 5R. Thus
we have the single condition thatJm(bmi)50 wherebmi is
the i th zero ofJm(x) and k5b/R. The lowest values ofb
for m50,1 . . . 4 are

m50: 2.4048, 5.5201, 8.6537, 11.7915,

m51: 3.8317, 7.0156, 10.1735,

m52: 5.1356, 8.4172, 11.619 88,

m53: 6.3802, 9.7610,

m54: 7.5883, 11.0649,

and ignoring for the moment the color Coulomb interacti
between gluon and source the one gluon bag energies
radii are determined by minimizing

E5
b

R
1LpR2,

whereL which has dimensionL23 is the two-dimensional
bag constant and\5c51. We get

R5S b

2pL D 1/3

,

Emin53S b2pL

4 D 1/3

. ~3!

Following the discussion of Sec. II above, we label the sta
umuC for nonzerom, and 0PC for m zero, so that we obtain
the ordering of the lowest one-gluon levels, ignoring t
color Coulomb and other interactions, as

022,12,22,022,32,12,42

with a comparatively small spacing between the 22 and first
excited 022 states, as well as between the 32 and first ex-
2-2
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TABLE I. Masses@in units of (s)1/2] and quantum numbers of some low-lying gluelumps in the b
model. States ofC511 do not exist for two colors.

umuC(mÞ0)
or 0PC

One-gluon states
~with color Coulomb!

One-gluon states
~no color Coulomb!

Two-gluon states
~no color Coulomb!

Three-gluon states
~no color Coulomb!

022 2.81, 4.86, 6.62 2.90, 5.04 6.27 6.03
011 4.62, 6.27, 6.47
012 6.47
121 3.73, 5.71 3.95, 5.91 5.47
11 5.47
22 4.72 4.80
21 6.27
32 5.55 5.55
42 6.15 6.23
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cited 12 state. In determining the overallC of a state we
assume here that the adjoint source has positive charge
jugation.

There may also be states in which the source is neu
ized by two or more gluons. The lowest such two-gluon st
will be made out of two ground-state gluons. It has quant
numbersmP501. However in SU~2! only the antisymmetric
coupling of three adjoints exists and since this state is s
metric in space it is forbidden by Bose symmetry. In all t
higher color groups it exists and hasC511 with our con-
vention on theC of the source. In this approximation it lie
just below the first 22 one-gluon state. The next two-gluo
state contains a ground state 022 gluon and a 12 gluon. In
SU~2! it has umuC512 and lies just below the lowest 32

one-gluon state. For the higher color groups it is degene
with an umuC511 state. In general the lowest states of qua
tum numbersumu6 @umu2 only for SU~2!# may be made from
one excited gluon and a ground-state gluon. The low
three-gluon state has quantum numbers 022, the same as the
ground state, and lies just below the lowest 42 one gluon
state. The only quantum numbers which we have not
generated are 012 and 021. The lowest 012 state may be
made from twom50 gluons, one withb52.4048 and one
with b55.5201 and is also approximately degenerate in
ergy with the lowest 42 one gluon state. The lowest 021

state, possible except in the case of two colors, lies con
erably higher in energy. The level ordering for all the
states is given in the second column of Table I, where
masses are given in terms of the string tension param
s. ~See Sec. III C below.!

B. Color Coulomb interactions

This ordering may be affected by the color Coulomb
teraction of the gluon or gluons with the source as well
self-energies and, in the case of the two- and three-gl
states, by the interactions between the gluons.

1. One-gluon states

We treat first the case of a single gluon plus source.
two space dimensions the color Coulomb interaction
tween two point adjoint charges takes the form~the value of
07400
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the Casimir operator for interaction of two adjoints in th
singlet state beingNC , the number of colors!:

V~r !5Ncas ln~ ur 12r 2u/r 0!,

where as5gs
2/2p and r 0 is an arbitrary length paramete

which just adds a constant to the potential. The total co
Coulomb energy is independent ofr 0 when self-energies are
taken into account. To see this, note that the source s
energy@in electrostatics this is 1/2QVQ(0)# depends onr 0
through 1/2Ncas ln r0, and the gluon self-energy, which is

2

**d2r 1d
2r 2E

2~r 1!E
2~r 2!

1

2
Ncas lnur 12r 2u/r 0

**d2r 1d
2r 2E

2~r 1!E
2~r 2!

,

also depends onr 0 through 1/2Ncas ln r0. Finally, the gluon-
source mutual energy is

*d2rE2~r !Ncas ln r /r 0

*d2rE2~r !
,

which depends onr 0 through2Ncas ln r0. Thus the terms in
ln r0 cancel, as claimed.

In the above, we have used the unconfined tw
dimensional Coulomb Green’s function

g~r 1,r 2!5 ln~ ur 12r 2u/r 0!.

This may be expanded as

ln r . /r 02 (
n51

`
1

n S r ,

r .
D n

cosn~f12f2!,

wheref1 and f2 are the polar angles ofr 1 and r 2 and r .

andr , are the larger and smaller of the radial variables. T
modification of the Green’s function to take account of t
confining boundary condition that the normal component
the netE field is zero on the bag boundary affects the ter
in the second sum only. So, neglecting the angular corr
tions in the gluon self-energy integral, we can replace
confining Green’s function by lnr. /r0. Since the result is
independent ofr 0 , as explained above, we take it equal
2-3
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the bag radiusR so that the Green’s function vanishes ar
5R. This gives the following expression for the total col
Coulomb energy, including self-energies~and ignoring an
infinite piece in the source self-energy!:

NcasS 1

2
ln R1

*0
Rdrr ^E2~r !& ln~r /R!

*0
Rdrr ^E2~r !&

2
*0

Rdrr ^E2~r !& ln~r /R!*0
r dr8r 8^E2~r 8!&

~*0
Rdrr ^E2~r !&!2 D .

We now change variables fromr ,r 8 to the dimensionless
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variablesx5kr, x85kr8, so that integrals go up to the re
evant value ofb. Using the value averaged over angles

^E2~r !&5S b

RD 2F S nJn~x!

x D 2

1~Jn8!2G ,
we get for the total Coulomb energy

Ncas~C1A2B!,

where
C5
1

2
ln R/b,

A5

*0
bdx x ln xF S nJn~x!

x
D 2

1~Jn8!2G
*0

bdx xF S nJn~x!

x
D 2

1~Jn8!2G ,

B5

*0
bdx x ln xF S nJn~x!

x
D 2

1~Jn8!2G*0
xdx xF S nJn~x!

x
D 2

1~Jn8!2G
F*0

bdx xXS nJn~x!

x
D 2

1~Jn8!2CG2 .
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There still seems to be a residual dependence on scale
the R/b51/k occuring inC has dimensions. This arises b
cause an infinite part of the source self-energy has been o
ted. This will not affect our results for the spacing of the b
model levels, but only change their absolute values. Un
in three dimensions there is no natural way of normaliz
the two-dimensional Coulomb potential.

2. States of two and more gluons

For a multigluon state with all gluons in the same spa
state it is not difficult to show that the color Coulomb pe
turbation is identical to that in the corresponding sing
gluon state. For example, consider a two-gluon state:
color Coulomb energy is given by~source self-energy!
12~gluon self-energy!12~gluon-source energy!1~gluon-
gluon interaction energy!. However, the gluon-source energ
is half the gluon-source energy in a one-gluon state, si
now the gluon and source couple to the adjoint represe
tion. Also, the gluon-gluon interaction energy, which wou
be 22 times the gluon self-energy in two-dimensional ele
trodynamics, contains a further factor of one half for t
same reason. Thus, the color Coulomb energy of such a
is again given by the combinationNcas(A2B1C8). Only
one of the two-gluon states listed, that containing one glu
in the ground state and one in the first excited state requ
ce
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a separate calculation of the color Coulomb correction to
energy. This is somewhat less than the Coulomb ene
when both gluons are in the ground state. Because it tu
out ~see Sec. C below! that the color Coulomb energies a
always small, we have not listed those for two and th
gluon states in the summary Table I.

C. Relations between parameters and bag model
gluelump spectrum

In two space dimensions the squared coupling constangs
2

has dimension of mass. In order to find the effect of t
Coulomb interaction relative to the unperturbed levels in
bag, we need to relate the bag constant andgs

2. In principle,
there should be only one independent constant setting
scale of masses in the confining gauge theory. We ge
approximate relationship as follows: Teper@2# finds that in
(211)-dimensional SU(Nc) lattice gauge theory the strin
tensions is related to the couplingg by

As'0.1975Ncg
2~12.60/Nc

2!.

Since the theory is super renormalizable it is plausible th
unlike in four dimensions, the lattice value ofg2 and the
continuum valuegs

2 describing the same physics are not th
different. We therefore assume this relation also for the c
2-4
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GLUONIC STATES IN TWO SPACE DIMENSIONS PHYSICAL REVIEW D61 074002
tinuum theory and takeas5gs
2/2p. Finally, we adapt to two

space dimensions the standard bag model argument to r
the bag constantL, the string tension~energy per unit length
of the ‘‘flux tube’’ between fundamental source and its an
source!, andas: For general ‘‘tube radius’’Rt , we have the
energy per unit length of the ‘‘tube’’ of the flux between th
fundamental source and antisource:

L~2Rt!1
1

2
E2~2Rt!,

whereE is the color electric field assumed constant acr
the diameter of the confined flux tube. Using Gauss’s th
rem with the color flux asE(2Rt) to express this as a func
tion of the variableRt only, and minimizing with respect to
Rt gives

Rt5S cNgs
2

8L D 1/2

,

s5A4pcNc
asL,

where cNc
5(Nc

221)/(2Nc) is the SU(Nc) Casimir in the
fundamental representation.

This last relation gives

L5
s2

2cNc
g2 ,

and we find approximately

L'0.2s3/2S 11
0.40

Nc
2 D .

Thus expression~3! gives the energies as

mb2/3s1/2S 11
0.13

Nc
2 D ~4!

with m'1.6. This gives the masses of the single gluon sta
in two space dimensions given in the third column of Ta
I. This column neglects self-energies and the color Coulo
interaction with the source. Masses are expressed in uni
As. We neglect a small positive correction of about 3%
Nc52 and smaller for largerNc .

Self-energies and the color Coulomb interaction of
gluon and the adjoint source at the origin alter these valu
These effects turn out to be small, so we shall first neg
their influence, by way of energy minimization, on the b
radiusR0 . The dependence of the Coulomb energy onR0
comes fromC ~see Sec. III B! which may be rewritten as

C5
1

2
ln R0 /b52

1

3
ln b1const5C81const.

We give in Table II the values ofA, B, and the totalT5A
2B1C8.

TakingasNc , in units ofs, to be about 0.8As our masses
of the lowest one gluon states, corrected for the color C
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lomb interaction as a small perturbation, are as given in
second column of Table I. We see that the color Coulo
perturbation has not changed the ordering of the one-gl
states. Its effect on states of two and more gluons is a
small. We have also neglected transitions between one-
two-gluon states inside the bag. We expect these effects t
even smaller than color Coulomb interactions except in
case of degenerate or near degenerate states of the
quantum numbers.

IV. MODELS OF GLUEBALLS

We next consider glueballs, i.e., systems with no co
source, first in the bag model in a simple approximation a
then in the flux-tube model. In each case we shall brie
refer to the corresponding model of gluelumps. In the cas
the bag model this will show how the extra approximation
this section affects the spectrum as discussed previo
without the simple approximation.

A. Bag model: Harmonic-oscillator approximation
to the bag model

The spectrum of a single gluon in the bag model in tw
space dimensions~b versusumu! has an approximate resem
blance to the spectrum of a two-dimensional harmonic os
lator ~energy versusumu!. In the bag model of pure glue state
one considers higher states which contain two or more g
ons in the fixed bag although for pure glue states there is
fixed source defining the bag position. A major difficul
with these states is that many of them are ‘‘spurious.’’
other words they are not genuine internal excitations of
system. This difficulty is easy to control for a harmoni
oscillator system where the internal modes and center
mass motion decouple. Therefore, we consider instead a
tailed two-dimensional harmonic-oscillator model to mim
the internal modes of the bag model.

The spectrum of the two-dimensional harmonic oscilla
is very simple: the ground state withm50 is at (\)v, the

TABLE II. The color Coulomb coefficientsA, B, C andT ~see
text!.

n b A B T

0 2.4048 0.51905 0.33991 20.1133
5.5201 0.99185 0.64171 20.2193
6.6537 1.33921 0.84616 20.2262

11.7915 1.60047 0.9935 20.2154
1 3.8317 0.69508 0.52478 20.2774

7.0156 1.1534 0.76387 20.2598
10.1735 1.46508 0.93160 20.2397

2 5.1356 1.13029 0.68466 20.0997
8.4172 1.4555 0.87170 20.1262

11.6199 1.6968 1.01097 20.1316
3 6.3802 1.4287 0.80633 0.0047

9.7610 1.6846 0.96107 20.0359
4 7.5883 1.6561 0.90372 0.0770

11.0649 1.8692 1.03664 0.0314
2-5
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GABRIEL KARL AND JACK PATON PHYSICAL REVIEW D 61 074002
lowest states ofm561 at 2(\)v, the first excited state with
m50 at 3v, which is also the position of the lowest stat
with m562, etc. At each principal quantum numbern and
energy (n11)v one has a set of states withm50,62,
64, . . . for n even orm561,63,65, . . . for n odd. ~See
Fig. 1.! The values ofb of Sec. III A are roughly equally
spaced byv'1.4 with values ofb displaced upwards byk
'0.7v from their harmonic-oscillator values. We interpretk
as a constant added to the harmonic-oscillator ‘‘gluon pot
tial.’’ The values ofb determined in this way may then b
summed and related to masses by the bag model relation~4!,
so that effectively we are taking the Hamiltonian to be p
portional to the two-thirds power of a harmonic oscillat
with the harmonic-oscillator energy shifted by a constantk.

With two particles in the harmonic-oscillator well the
ground state of the system is at 2v, corresponding to both
particles in the harmonic-oscillator ground state, and ot
states are obtained by putting each particle in a specific s
of the single particle oscillator. The resulting states may
separated into excitations of the internal degrees of freed
of the two-particle system and center-of-mass excitations
introducing appropriate internal coordinatesr 12r 2 and
center-of-mass coordinatesR5(r 11r 2)/2. With this simple
choice of coordinates, theinternal states of the two-particle
system are exactly the same as those of a single t
dimensional oscillator with ground state (m50) at v, first
excited states (m561) at 2v, etc. This spectrum is identica
to that of a single particle in the two-dimensional oscillat
If we interpret this spectrum as giving theb values in Eq.~4!
of a system of two confined ‘‘gluons,’’ we note that th
physical states are color singlets which must be symmetri
color space (F1•F2), and only spatial states which are sym
metric under interchange of the two ‘‘gluons’’ are allowe
by Bose symmetry. This rules out states withm odd which
are antisymmetric under the interchange 1↔2. So the only
physical states for two ‘‘gluons’’ in this model havem50,
62,64, . . . . Therefore for two ‘‘gluons’’ we have a groun
state atv, an excited (m50) state at 3v and an excitedm
562 doublet at 3v. All these states have positive charg
conjugation. There are higher states at 5v, 7v, . . .with simi-
lar quantum numbers (umu50,2,4,6,8, . . . , C511).

FIG. 1. Spectrum of two-dimensional oscillator~gluon!.
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For three ‘‘gluons’’the harmonic-oscillator analog co
tains three particles in a two-dimensional oscillator. Aft
eliminating center-of-mass motion there are two internal
ordinates, sayr5(r 12r 2)/&, l5(r 11r 222r 3)/A6 which
are two-dimensional vectors. The spatial wave functions
the three ‘‘gluon’’ system contain homogeneous polynomi
in r, l with definite angular and parity behavior and defin
permutation properties under the interchange~12! and ~13!.
The color wave functions of the three ‘‘gluon’’ system in
singlet state are either totally symmetricdi jkFi

(1)F j
(2)Fk

(3) or
totally antisymmetricf i jkFi

(1)F j
(2)Fk

(3) . The three ‘‘gluon’’
state with f i jk coupling has positive charge conjugatio
while the di jk coupling has negative charge conjugatio
Therefore, Bose symmetry for three ‘‘gluons’’ allows on
totally symmetric ~S! spatial wave functions forC521
states and totally antisymmetric spatial wave functions
C511 states. All other spatial states, which have mix
symmetry, do not correspond to physical~color singlet! glue-
balls. The lowest internal state is at 2v with anSwave func-
tion, and has quantum numbersumuPC5022. The parityP
521 because of the intrinsic parity of each gluon. The n
allowed color singlet three ‘‘gluon’’state is an excitation co
responding to the polynomialr21l2 and is also 022, at
energy 4v. Degenerate with it is a multiplet withm562
and C521 which has polynomial (r6r61l6l6) where
r65rx6 iry , etc. At one unit ofv higher,E55v one can
construct~cubic! three ‘‘gluon’’states ofm561,63, e.g.,
(r22l2)l112(r•l)r1 being a totally symmetric state o
m511 and, therefore,C521, corresponding to a multiple
with umuC512. One can construct similarly, at 5v, multi-
plets with umuC511,32,31. Thus we have found the lowes
states ofumuC511,12, higher in energy than the lowes
states ofumuC521,22. At E56v one can find states with
umuC5022,011,21,22,42 for the three ‘‘gluon’’ system. At
7v there are states with 11,12,31,32,51,52. One can also
construct states having quantum numbers 021 and 012 with
three ‘‘gluons,’’ but these are rather high atE58v and E
510v, respectively. For example, the state with 021 has a
totally antisymmetric wave function of type (r 1

22r 2
2)(r 2

2

2r 3
2)(r 3

22r 1
2) which is six units ofv above the ground stat

at 2v. However, these quantum numbers appear at lo
energies in the spectrum of four ‘‘gluon’’ states.

With four ‘‘gluons’’ there are eight independent ways
constructing a color singlet state in SU~3!. Of these eight
states three have negative charge conjugation. The t
color wave functions ofC521 transform like the antitriplet
3̄ representation of the permutation group of four objec
S4 . Therefore, to obey Bose statistics, aC521 state should
have an orbital wave function of the same3̄ symmetry. To
construct the lowest 012 state we require the wave functio
to be built from polynomials inr2, l2, s2, r•l, r•s, and
l•s, wherer and l are as in the three ‘‘gluon’’ case an
s5(r 11r 21r 323r 4)/A12. The coordinatesr, l, and s
transform like a triplet3 representation ofS4 . The scalar
productsr2, l2, . . . ,l•s transform like11213 of S4 . The
lowest polynomial which transforms like3̄ of S4 are quadrat-
ics in r2, l2, . . . l•s and occur in the Kronecke
2-6
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product3^ 2. Therefore, the lowest 012 four ‘‘gluon’’ state
@in SU~3!# is at 4v above the ground state of the four ‘‘glu
on’’ system, i.e., atE57v, somewhat lower than in the
three ‘‘gluon’’ sector~where it was at 10v!. The other set of
quantum numbers whose lowest state lay quite high in
three ‘‘gluon’’ sector was 021. This requires a color wave
function of positive charge conjugation. Of the five col
states withC511, one is totally symmetric under permut
tions and the other four form two doublets. Therefore,
spatial wave function of a 021 state should be either totall
symmetric or part of anS4 doublet. To obtain negative parit
one needs a factor ofr3l, l3s or s3r in the wave
function. These forms transform under permutations like3̄
representation ofS4 . In order to satisfy Bose statistics w
need to construct a doublet representation. This we can
with a fourth-order polynomial by taking a product of the3̄,
(r3l), etc. with a 3 constructed from the scalarsr2,
l2, . . . ,l•s. Therefore, the lowest 021 state with four
‘‘gluons’’ has E53v14v57v in this model. Therefore
we find that the lowest four gluon states of quantum numb
012 and 021 are degenerate atE57v, and these appear t
be the lowest states of these quantum numbers for any n
ber of gluons.

The spectrum of states for two, three, and four gluons
summarized in Fig. 2. The notation isumun

PC wheren is the
number of gluons and theP quantum number is of cours
omitted for umuÞ0. The lowest lying states are included f
all quantum numbers up toumu56 though the list of higher
excited states withn>4 is not complete. We could hav
used the harmonic-oscillator approximation also in calcu
ing the bag model gluelump spectrum, but this extra appro
mation is not necessary there as there is no problem of
rious degrees of freedom in that case. The effect would h
been to make exactly degenerate states which in the calc
tion of Sec. III were slightly separated in energy.

B. Flux-tube model of two dimensional glueballs

The flux-tube model@7# was invented as an opposite e
treme to the bag model. The bag model uses essentially

FIG. 2. Spectrum of glueballs in the harmonic-oscillator glu
model. Mass is proportional tos1/2(E1nk)2/3 wherek is a constant
andn is the number of gluons.
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same degrees of freedom, quarks and gluons, as perturb
theory. The flux-tube model, on the other hand, postula
that in the confining regime the appropriate gluonic degr
of freedom are the flux links of lattice Hamiltonian gaug
theory@8#. In this model the simplest pure glue states cons
of a loop of flux whose quantum dynamics gives rise to
spectrum of states. Reference@7# suggested that a nonrela
tivistic string Hamiltonian might capture the essence of
flux-tube dynamics. In the case of three space dimension
further adiabatic assumption was required to make the
tem tractable.

The corresponding model applied to two space dim
sions was considered in@5# for the case of color SU~2! and a
generalization for more than two colors was given in@6#. In
each case, the spatial configuration of the flux tube is
sumed to be expressible in the functional formr 5r (f) in
polar variables (r ,f) wherer (f) is expressed in a Fourie
series

r 5 (
n52`

n5`

r n exp~ inf!.

For SU~2! the corresponding nonrelativistic Hamiltonian is

H52psr 01
1

4pr 0s
pr 0

2 1
1

r 0
Hosc ~5!

with

Hosc5 (
nÞ0,61

unuan
1an1c, ~6!

whereHosc/r 0 is the Hamiltonian for deviation of the flux
tube shape~assumed small! from a circle, withan

1 and an

creating and annihilating quanta of the correspondingnth
vibration mode of the flux tube andc arising from the~renor-
malized! zero-point energy of the oscillators. Note that,
the summation overn, the valuesn561 may be excluded
since these correspond simply to a translation of the flux t
without changing its shape. It follows that there are no s
rious center-of-mass excitations in the flux-tube model. N
also thatHosc depends on variables which are independen
r 0 and p0 and, therefore, commutes with them. Variabl
may, therefore, be chosen to diagonalizeHosc for all r 0 ,pr 0

,
and the corresponding eigenvalues are

N5( ~ unu l n!1c,

where l n is the degree of excitation of thenth mode. The
difference between the case of two colors and those of m
than two colors is, in the flux tube model, the differen
between whether the flux-tube has or does not have an
entation arrow along its length. To the flux-tube shapeC:r
5r (f) there corresponds the nonlocal gauge-invariant pa
ordered trace

TrP expS i E
C
A•dr D ,
2-7
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GABRIEL KARL AND JACK PATON PHYSICAL REVIEW D 61 074002
whereA is the color vector potential operatorA il i and P
orders matrices in the expression around the pathC. This
operator acting on the~strong coupled! vacuum creates a line
of color electric flux ~in the fundamental representatio!
aroundP @8#. States of the flux-tube model are obtained
summing over pathsP with appropriate weightings@7#. In
color SU~2!, where thel’s are just Pauli matrices, this trac
is identical to the trace with all matrices replaced by th
complex conjugates, because in SU~2! the fundamental rep
resentation is isomorphic to its conjugate. Therefore,
trace operator necessarily has charge conjugation11 and so
all states of the flux tube model will have charge conjugat
11. It also follows that the trace overC is identical to that
over the reversed pathC8. This is what we mean by sayin
that the flux tube has no orientation.

For higher color groups, on the other hand, the pa
ordered trace is not identical to that with all matrices
placed by their conjugates and the operators for the pathC
andC8 are distinct. Thus bothC511 andC521 states are
possible in the case of more than two colors. In@6# the iden-
tical Hamiltonian is assumed to describe flux tubes of b
orientations and states of charge conjugation11 or 21 are
necessarily degenerate, corresponding to the sum and d
ence of flux-tube states of opposite orientation. Formally t
is equivalent to saying that the positive and negative ori
tation states live in different spaces connected by the ch
conjugation operator. The form of the flux-tube model d
scribed so far assumes

~1! Nonrelativistic quantum mechanics, as stated abov
~2! The coefficientsr n for nÞ0 are small enough so tha

the flux-tube shape exhibits only small deviations from c
cular. This is required both because a single-valued func
r (f) cannot describe all flux-tube shapes~e.g., those which
are self-intersecting! and also the harmonic approximation
the string potential energy is only valid in this case.

The first of these assumptions may plausibly be circu
vented by noting that the nonrelativistic Hamiltonian abo
may be regarded as the first two terms in an expansio
powers of 1/r 0 of H rel5AM2 with

M25~2psr 0!21pr 0

2 14psHosc. ~7!

We observe that in this last relativized form the mass squa
operator of the flux tube is simply that of an infinite set
harmonic oscillators, one for radial motion and the rest
deviations from the circular form. Eigenstates will be ch
acterized by the set of integer excitation numbers$ l n% with
corresponding energies

4ps~N1k!54psS l 0211 (
nÞ0

l nunu1kD ,

wherek is a new unknown~renormalized! zero-point energy
directly related to the mass of the ground-state glueball.
positive and negativen,l n may be zero or a positive intege
For the case ofn50 the corresponding radial excitatio
number l 0 must be odd, and, as stated above,n561 are
excluded from the sum. The oddness ofl 0 is required to
make the nonrelativistic Hamiltonian or the squared m
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operator Hermitian, since the radial variabler 0 must be posi-
tive and hence the wave function must vanish atr 050.

The angular momentum quantum number of the state
also easy to work out@5#. The operator for exciting one
quantum of thenth mode has angular momentumn. Thus the
states with no excitations other than excitation of the rad
moden50 havem50; those with one excitation of mod
n562,63 . . . have angular momentum quantum numb
m5n and for multiple excitations the contribution to th
angular momentum quantum number are additive. Star
with the case of color SU~2! @5# we immediately deduce the
following features of the two plus one-dimensional glueb
spectrum in the flux-tube model as we have defined it abo

~1! The mass of a state depends onN5 l 0211S(unu l n)
only, with the ground state havingN50, l 051. The squared
mass is a linear functionM254ps(N1k) of N.

~2! There are sequences of radial excitations,l 0
53,5,7 . . . equally spaced in squared mass and separate
8ps.

~3! The lowest states ofm52, which have oneunu52
quantum, have squared mass 8ps above the ground state
i.e., degenerate with the first radial excitation. For larg
umu53,4 . . . thelowest state differs from the ground sta
by 4psumu in squared mass.

~4! The lowest mass states are in order

N50: umuP501,

N52: umuP501,umu52,

N53: umu53,

N54: umuP501,umu52,umu54),

N55: umu51,umu55,umu55.

The lowest state of quantum numbers 02 hasN58 and is a
linear combination of states with nonzero excitation nu
bers,l u2u52, l u4u51. It lies in energy well above those liste
above.~All these states have of courseC511 as required
by the general theory.!

The spectrum of the SU~2! flux-tube model is given as the
C511 states of Fig. 3, which also incorporates the resu
for the spectrum of flux-tube Model II for more than tw
colors ~see below!. The notation is
(r n021PnÞ0,61unusign(n))PC with P present only form50.

Now going over to the case of more than two colors,
the relativized version of the model of@6# which we call
Model I, the radial and angular oscillators are all double
one corresponding to each of the two orientations of g
loop, and the mass eigenstates are also doubled to form
generateC561 states at eachN. In particular the SU~2!
states of (mP)5(01) correspond to a degenerate pa
(mPC)5(011),(022). Thus for this model of more than
two colors, the level ordering is

N50: umuPC5011,022,

N52: mPC5011,022,umuC526,
2-8
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GLUONIC STATES IN TWO SPACE DIMENSIONS PHYSICAL REVIEW D61 074002
N53: umuC536,

N54: mPC5011,022,umuC526,umuC546,

N55: umuC516,umuC556,umuC556.

The doubling of all oscillators as well as theC degeneracy of
all levels seems somewhat profligate, and perhaps unph
cal. In particular it would appear more natural if the sam
angular oscillator operators could be applied to a string
either orientation. We may then get away with doubling t
radial oscillators only. If, as seems very plausible, we ta
the lowest state to be nondegenerate and havingC511, the
creation operator formed from one radial oscillator, variab
r 1 ,pr 1

will produce clockwise excitations of the system a

that from the other radial oscillator with variablesr 2 ,pr 2
will

produce counter-clockwise excitations. We call this n
model for more than two colors Model II. The mass squa
operator of Model II is

M25~2ps!2~r 1
21r 2

2!5pr 1

2 1pr 2

2 14psHosc. ~8!

To obtain aC521 state in this case we must form a sta
antisymmetric inr 1 ,r 2 . Thus there is noC degeneracy of the
states unless there is some excitation in the radial coordin
The spectrum of Model II will be identical to that of th
two-color model with the exception that~1! the first radial
excitation of anyumu state will now house states of bothC
511 andC521 the latter containing the factorr 1

22r 2
2, ~2!

the second radial excitation of anyumu state will hold one
C521 state with wave function containing an extra fac
antisymmetric inr 1

2 andr 2
2 and twoC511 states containing

an extra factor symmetric inr 1
2 and r 2

2, and ~3! the third

FIG. 3. Spectrum of glueball states in the flux-tube model
two colors (C511 states only! and for more than two colors
~Model II!. The notation is (r n021PnÞ0,61u l nusign(tn))PC with P
present only form50. The squared mass is 4ps(N1k) wherek is
a constant.
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radial excitation will hold twoC51 and twoC5;1 states,
etc. The low-lying spectrum of Model II is shown in Fig 3

To conclude this section on the flux-tube model of glu
balls we emphasize again that our description of the fl
tube in terms of polar coordinates is to some extent an
physical restriction since it excludes reentrant curves. T
should not be a serious deficiency for states highly excite
the radial variables but is liable to be serious especially
the ground states of any set of quantum numbers. It is
feature that has forced the degeneracy inC of Model I since
curves given by single valuedr 5r (f) are necessarily ori-
ented. The second model with the two radial oscillators g
beyond this by postulating a nondegenerate nonorien
ground state. Of course, classically the ‘‘glue loop’’ in th
ground state just reduces to a point. Furthermore, the st
of maximum umu produced by exciting only then562 os-
cillators correspond classically to the limiting motions
which the loop lies on a rotating straight line. The quantu
states are held from collapsing by quantum fluctuations. I
plausible that, in a larger space of loops, because of th
quantum fluctuations the orientations of these states are
Another possible model would be simply to take the sp
trum of Model I but with the removal of theC521 states
corresponding to these limiting classical motions. It diffe
only slightly from Model II. ~It would unlike Model II give
a C521, umu53 state atN53 and the degeneracies o
some radially excited levels would be different.!

C. Extension of flux-tube model to two dimensional gluelumps

Having treated above the case of glueballs in the flux-tu
model ~‘‘glue loops’’!, the case of gluelumps is a straigh
forward generalization. We assume that the wave function
of gluelumps are given by linear combinations of loop trac
where the loop goes through the origin and the quantity
the trace contains an extra factor of al matrix corresponding
to the source at the origin. We note the following.

~1! For two colors the trace is necessarily odd~even! un-
der the replacement of Pauli matricesl1 , l3 (l2) by their
conjugates, i.e.,C is necessarily the same as for a sing
gluon field ~calledC521; see Sec. II!. For more than two
colors both values ofC are possible.

~2! We take the mass squared operator for the case of
colors to be given in terms of a parametrization of the lo
through the origin as a distorted circle with its center at~x,y!.
The polar coordinater of a point on the loop is defined as th
distance from the center~x,y! and the polar angleu is mea-
sured from the direction defined by the vector~x,y!. We have

r ~u!5Ax21y21 (
n52

`

r n sin~nu!,

where the Fourier expansion contains sines only to ens
that the curve goes through the origin. Then51 term is
omitted since it corresponds to rotation about the ori
which is also effected by a transformation of the variab
~x,y!.

~3! The relativised squared mass operator for two col
analogous to Eq.~7! is

r

2-9
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GABRIEL KARL AND JACK PATON PHYSICAL REVIEW D 61 074002
M25~2ps!2~x21y2!1px
21py

214psHosc8 , ~9!

where

Hosc8 5 (
n52

`

nbn
1bn

and bn ,bn
1 are the annihilation and creation operators

sinusoidal deviations from the circular shape. Apart from
arbitrary zero-point contribution the eigenvalues ofM2 are
again 4psN whereN is an integer.

~4! The corresponding spectrum for two colors is~are!
The spectrum of the~x,y! two-dimensional oscillator~re-

call Fig 1!: the ground state ofmPC5022 with N50, radial
excitations of the ground state separated from it in m
squared by even multiplesN of 4ps, the lowest-lying states
of umu51,2,3, . . . andnegativeC separated from the groun
state by 4psN with N51,2,3, . . . , andtheir radial excita-
tions again even multiples of 4ps above these.

States obtained from any of these two-dimensional os
lator states by excitation by an arbitrary number of units
the oscillators ofHosc, with further vibrational contribution
to the squared mass given by 4psSn52

` i nn where thei n are
positive integers or zero. In this case, unlike the case
glueballs in the flux-tube model, the angular moment
quantum number is not affected by the excitation of the lo
shape. The vibrational contribution to the parity of anumu
50 state is (21)11S i n.

The lowest state ofmPC5012 hasN52. The quantum
numbersmPC5021 do not occur untilN54.

~5! For more than two colors, we may modify the mod
for gluelumps to be analogous to either of the two cor
sponding glueball models I and II discussed above. As
glueballs, Model I will simply double all states introducin
C511 partners for all states. The analog of the more phy
cal Model II involves two radial variablesr 1 and r 2 @rather
the one radial variabler 5Ax21y2 of the SU~2! case# and
introduces extra states of oppositeC only at the level of the
first and higher radial excitations.

To summarize, the extension of the flux-tube model
two-dimensional gluelumps gives the lowest states hav
squared mass 4ps(N1k8) with quantum numbers as give
in Table III.

V. COMPARISON WITH LATTICE CALCULATION
AND CONCLUSIONS

The model calculations presented above can obviou
not be compared to experiment, but in the case of glueb

TABLE III. Spectrum of the lowest gluelumps in the flux-tub
model. The squared mass is 4ps(N1k8) wherek8 is a constant.

N States with two colors Additional states for Model II

0 022

1 12

2 022,012,22 011

3 12,12,32 11
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in two space dimensions extensive lattice Monte Carlo c
culations are published@2# for Nc52,3,4,5 colors, and in this
section we first examine how the two-dimensional glueb
spectra of the bag model and flux-tube model compare w
each other and with the lattice results. For convenience
reproduce Teper’s color SU~2! and SU~3! results in Table IV
~columns 2 and 3!. The results for the higher color group
are similar to SU~3! though Teper has attempted to extrac
dependence onNc .

We first note that we do not expect either model or inde
the lattice to give a completely accurate picture of the sp
trum. For one thing, it is clear on general grounds that in
full two plus one-dimensional theory only a few of the stat
of lowest mass can be stable, higher states being abl
decay. Thus the infinite tower of stable states produced
each model is at best an approximation. There is also
question of whether the higher states as determined on
lattice correctly incorporate decay channels and the shift
mass that they induce, since on the lattice the moment
final decay products are forced to be discrete. In addit
there is the problem that on a square lattice the quan
numberm is determined in a simple way only modulo 4
This may introduce substantial real ambiguity into t
present lattice results.~A method of resolving it is sug-
gested in the second item of Ref.@6#.! We also remind the
reader that each of our models has its own limitations wh
must necessarily restrict its accuracy even if it is basica
correct physically

We had to simplify the bag model substantially in order
solve in a simple way the problem of spurious center-
mass excitations. This we did through our oscillator mode
gluons. As the choice of a sharp bag radius is also a sim
fying assumption, we do not feel that replacing this with
harmonic oscillator does any further violence to the phys
The values of the two parametersv andk of our bag model
spectrum were determined approximately from the glu
modes in the bag~the values ofb Sec. III A!. Fitting the
exact modes of Sec. III to

m50: k1v,k13v,k15v . . . ,

m51: k12v,k14v . . . ,

etc., givesv'1.4 and k'0.7v as quoted in Sec. IV A.
These choices are correct to about60.3 the values ofb for
all of the lowest 14 modes listed in Sec. III. An extra ‘‘glu
on’’ therefore gives an extra contribution tob of k'0.7v so
that in Fig. 2 states with three ‘‘gluons’’ would be expecte
to be raised by about 0.7v compared to two ‘‘gluon’’ states
and four ‘‘gluon’’ states by about twice this amount. Th
overall constantm determined in Sec. III C to be'1.6 is also
quite uncertain. In the bag model column of Table IV w
have kept the suggested values ofv andk and increasedm
by a factor of 1.2 so that the bag model ground state of
system agrees with the lattice result for SU~3!. This leads to
the following formula for glueball masses which we use
the column marked ‘‘bag model’’ in Table IV:

M ~n8,n!54.3@~n81110.7n!/„112~0.7!…#2/3,
2-10
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TABLE IV. Glueball masses in units ofAs from the lattice as given by Teper@2# ~column 2! by the
harmonic bag model in column 3 and by the flux-tube model in column 4.

StateumuPC SU ~2! SU ~3! Bag (m51.9) Flux-tube (k51.5)

011 4.718~43! 4.329~41! 4.3 4.3
011* 6.83~10! 6.52~9! 6.4 6.6

011** 8.15~15! 8.23~17! 7.7 8.3
022 6.48~9! 6.1 6.6

022* 8.15~16! 8.0 8.3
022** 9.81~26! 9.7 9.7

021 9.95~32! 9.30~25! 11.0 10.9
012 10.52~28! 11.0 12.0

211,221 7.82~14!, 7.86~14! 7.13~12!, 7.36~11! 6.4 6.6
221* 8.80~20! 8.3 8.3
222 8.75~17! 8.0 8.3

222* ,212* 10.31~27!, 10.51~30! 9.7 9.7
111,121 10.42~34!, 11.13~42! 10.22~24!, 10.19~27! 8.9 9.0
122,112 9.86~23!, 10.41~36! 8.9 10.3

31 8.9 7.5
41 8.3 8.3
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wheren is here the number of gluons in the bag, andn8 is
the number of excitations of the oscillator system. Forn8
50 andn52 the formula gives the lattice ground-state ma
as required, and gives a reasonable fit to higher masses
emphasize that this formula is not a best fit to the lattice d

The flux-tube picture is expected to be accurate only
states which are physically large enough~compared to the
finite resolution necessary to justify the strong-coupling p
ture on which the flux-tube model is based!, i.e., it should be
least accurate for the states of lowest mass. This is exa
where our two versions I and II of the flux-tube model f
more than two colors differ most. Since Model I exhibits t
unphysical charge conjugation degeneracy of the gro
state we shall discard it and use only Model II in our co
parisons from now on. This model contains only one para
eter, the zero-point energy parameterk. In contrast to the
case of the bag model where an approximate estimate o
overall strength parameterm may be made, we can say ve
little aboutk. Its value may well be expected to be differe
in the case of two colors from the case of more than t
colors, and there may even be furtherNc dependence. We
ignore these effects as they do not affect the basic orde
of levels and present in Table IV masses for the flux-tu
model with k51.5 required again to agree with the lattic
ground state for SU~3!.

The first and somewhat surprising conclusion which m
be drawn from these comparisons is the similarity of the t
models certainly at the qualitative level and also the simi
ity of both models with the lattice data. For example,

~1! In theC511 sector, the models both give the grou
011 state with, at the first excited level, degenerate state
quantum numbers 011 and 21. In the lattice data the 01*
state is a little lower than the 21 state, but these are certain
the next twoC511 lattice states.

~2! The lowestC521 state of both models hasumuP

502. This also agrees with the lattice result. In the flux-tu
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model it is also degenerate with the first excitedC511
states. In the bag model it appears atE52v in Fig. 2
whereas the first excitedC511 states are atE53v. How-
ever, it is a three ‘‘gluon’’ state as opposed to the two ‘‘gl
on’’ states atE53v. This raisesE by about 0.7v, making it
just below the degenerate 011 and 21 pair. The lattice re-
sults give the lowest 022 state degenerate within errors wit
the first excited 011 state, and therefore~see above! a little
lower than the lowest 21 state.

~3! Both models agree with the lattice results in giving t
perhaps surprising result that the lowestumu51 states is
higher in mass than the lowestumu52 states.

~4! Both models also agree with the lattice in giving th
lowest states of quantum numbers 012 and 021 very high.
On the lattice the 021 is at 9.95~32! As in SU~2! and
9.30~25!As in SU~3! and the 012 @which does not exist in
SU~2!# at 10.52~28!As. These are both more than twice th
ground-state mass and are above no less than three sta
quantum numbers 011, at least two states of 21 and @for
SU~3!# two states of quantum numbers 22.

In more detail we observe that with the particular cho
k5v ~not the choicek50.7v of Table IV! in the harmonic
bag model the spectra inv of the bag and inN of the flux-
tube model are almost identical. One minor discrepancy
tween the two models is that in the bag model the 021 and
012 states are degenerate four ‘‘gluon’’ states atE57v
~i.e., with k5v would correspondN58 in the correspond-
ing flux-tube model!, whereas in the flux-tube model mod
the lowest 021 state is atN58 and the lowest 012 state
does not occur tillN510. The lattice data indeed give th
flux-tube model ordering for these two levels with rath
large errors, though the mass values for the flux-tube mo
as given in Table IV are somewhat higher than the latt
values. Indeed the fact that the 021 state of the flux tube
model is too high compared to the lattice was already no
2-11
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as one of the main discrepancies between the SU~2! flux tube
model and the lattice@5#. The harmonic bag gives a ver
similar value for the mass of this state. An interesting d
crepancy between the two models is that the flux-tube mo
gives an expected 31 state atN53, i.e., corresponding to a
mass of around 7.5As, whereas the corresponding ba
model state is expected to be somewhat higher, about 9As.
The lattice data would in this respect somewhat favor the
model, though the evidence is indirect. The quantum num
m is only easily determined on the lattice modulo 4, a
therefore, it would be hard to distinguishumu53 from umu
51. However, whatever its interpretation in the continuu
such a lattice state does not occur till around 10As.

We do not consider that a detailed fit with either mode
called for, since both models are at best qualitative. Such
would be driven by the lattice data points with the small
errors and would, therefore, not necessarily reflect the qu
tative situation. The sets of model mass values given
Table IV are obtained with the harmonic bag model para
etersv51.4 andk50.7v as explained above and an over
A
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constantm which is a factor 1.2 larger than the rough es
mate of Sec. III C. The flux-tube model fit uses the addit
constantk51.5.

We find the rather close resemblance between the
models somewhat surprising as they are based on very
ferent physics. Finally, we point out that the models predic
definite ordering of the gluelump levels in two space dime
sions. Though again the models agree in the ordering of
lowest few states, a comparison of Tables I and III do
reveal some discrepancies. A lattice calculation of the gl
lump spectrum in 211 dimensions might reveal which
model is a better description. Note that the gluelump ene
spectrum is arbitrary up to an overall additive constant,
only spacings between levels are physically significant.

ACKNOWLEDGMENTS

We thank Michael Teper for encouraging us to investig
the bag model in two dimensions. We thank PPARC a
NSERC, Canada for financial support.
@1# J. Paton, Invited Talk at Confinement III, Jefferson Lab., US
1998, to be published in the Proceedings.

@2# M. Teper, Phys. Rev. D59, 014512~1999!; and~private com-
munication!.

@3# M. Foster and C. Michael, Phys. Rev. D59, 094509~1999!.
@4# G. Karl and J. Paton, Phys. Rev. D60, 034015~1999!.
, @5# T. Moretto and M. Teper, hep-lat/9312035.
@6# R. Johnson and M. Teper, Nucl. Phys. B~Proc. Suppl.! 63, 197

~1998!.
@7# N. Isgur and J. Paton, Phys. Rev. D31, 2910~1985!.
@8# J. Kogut and L. Susskind, Phys. Rev. D11, 395 ~1975!.
2-12


