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Gluonic states in two space dimensions
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We discuss the “spectroscopy” of gluonic states in systems with two space dimensions, using simple
models to mimic the results of lattice gauge theory computations. We first discuss the quantum numbers of
these systems, including charge conjugation. Two types of systems are discussed in detail: “gluelumps” which
have a heavy adjoint color charge at the origin and glueballs which are composed entirely of glue. Both
systems are discussed using the bag model and the flux-tube model. For glueballs the model spectra are
compared with the results of Teper. Both models capture many features of the numerical results.

PACS numbes): 12.39.Ba, 12.39.Mk, 12.40.Yx

I. INTRODUCTION II. QUANTUM NUMBERS OF PURE GLUE THEORY
STATES IN TWO SPACE DIMENSIONS

The numerical results of lattice Monte Carlo computa- . first make a couple of general points about the mul-
tions are becoming increasingly reliable. This presents thﬁplet structure and quantum numbers of “spectroscopy” in
challenge of understanding these results and the physics ugy space dimensions for an arbitrary numbky of colors.
derlying them. In this endeavor simple models are still very  aq'is well known, the irreducible representations of the
useful[1]. The use of lattice simulations allows the study of y,,,_gimensional rotational group are one dimensional, char-
systems with varying numbers of colors and even different,iqri;eqd by the integer angular momentum quantum number
numbers of space dimensiof8 yielding more detailed tests Pure gauge theory is also invariant under the parity op-
of models. In this paper we adapt simple models of hadrorérator,P:(x,y)a(x,—y) which transforman to —m, giv-
spectroscopy to such systems in the hope of understanding, . gimensional multiplets in all cases except0. For
the lattice results. Earlig#] we have used the bag model to m=0 the state is also characterized by its eigenvaluB.of
understand the results of Mich3d] for a “gluelump” sys- In addition there is invariance under a suitably defined

terg IfT threke): spacg (Idlmens(ljons. Hzrehwe“use the bag Tocfjeéharge conjugation” operation which changes a gluon field
and flux-tube model to understand the “spectroscopy” of aijapie 10 its complex conjugate. If we use the real form of
gluelumps in two space dimensions, where lattice results d e (N2—1)-dimensional adjoint gluon representation each
not yet exist, and glueballs in two space dimensions, where 8¢ the field variables will hav€ = + 1

detailed numerical study on the Igttice was published by Te- (1) The case of S(2) gauge theory is special and we treat
per[2]. The lay-out of our paper is as follows: In Sec. Il we it first. In terms of real fieldg), , g,, andgs, we requireC to

g:rswfn:gr?ssiot:ael 2;:2)”;?;3 Rgm:ﬁrsagg ?;ate:rtilgult;\;othgucshsp e'e such that the three gluon coupling, with color dependence
y ’ P 9 ik9i0j9k, be invariant. (If this is the case the four gluon

conquatlon guantum number of pure glge states. In SQC' IIEoupling will be invariant automatically. For nontrivial C
we discuss a bag model for gluelumps in two space dlmer\;v

origin which is neutralized by one or more gluons. This sys- . :
ten% is the simplest one to tr)éat in the bag ?nodel becaus):a & andgs with C negative so that

the absence of spurious states associated with center-of-mass . ) ) )

motion. Unfortunately there are as yet no lattice data with ~ C[911192,01—192,093]1= ~[91~192,9:+192,93], (1)
which we can compare our results. In Sec. IV we discuss

models of glueballs in two space dimensions. Here the proband we can say loosely that the gluon has negativthough

lem of spurious states in the bag model is dealt with by usingtrictly speaking this applies @, andgs only, with theC of

a harmonic-oscillator approximation. We also treat this sysg, being positive.

tem in the flux-tube modewhich has already been done in  As is well known, there exists for S@) [but not for

[5], [6], [1]) in a particularly transparent version of this higher SUN)] an operator related t6 and similar to theG
model in which masses are given analytically in terms of aparity of hadron flavor physics, of which all members of the
system of oscillators. We also in Sec. IV extend the model tgyluon multiplet are eigenfunctions with the same eigenvalue.
give a prediction for the spectrum of gluelumps in two spaceThis is the operator

dimensions. In Sec. V we compare the model spectra with

each other and with the lattice results of Tef@ and draw G=CexpinT,),

conclusions.

where[T,,T,, T3] are the generators of $2). We have

*Permanent address: Dept of Physics, University of Guelph, On-
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so that there is no selection rule analogous to the hadrophysical stategcreated from the vacuum by local color sin-
physics selection rule that allows only an even number ofjlet operatorsmust necessarily have= +1 in the case of
pions (flavor G parity —1) to couple together. This is impor- Pure SU2) gauge theoryin any number of dimensions and
tant to allow three gluon coupling. We can show immedi- the absence of sourdes

: ) (2) In the case of three colors, $8), again using the real
ately from the above that any local gauge invariant operatorf,Orm of the adjoint representation we require that

which must necessarily be a color singlet combination of theb(gi)C(gj)C(gk)= +1 for all sets(i,j,k) for which the

gluon fields and their derivatives at a point, must h&e structure constant;, are nonzero. Making the conventional
=+ 1. This immediately follows from the fact th@=G for  choice ofg; and gg as the Abelian generators, these must
such a field andG is necessarily+1. It follows that the have negativeC and we can, analogously to EQ.) take

C(911192,91—1092,093,94+1095,94— 195,96 +197,96—197,9s)
= _(gl_igZagl+i921g3vg4_igSvg4+igSvgﬁ_ig7agG+ig7198)' (2)

Since there is no analog of ti& operator of SW2) we can  [J,(x) is a Bessel functioh The first of these conditions is
no longer conclude that physical pure glue states must ne@utomatic and the second implies th&t0 atr=R. Thus
essarily have positiv€, and in fact both our models as well we have the single condition that,(8.,;) =0 whereg,,; is
as the lattice Monte Carlo calculation exhibit states of boththe ith zero ofJ,,(x) andk= 8/R. The lowest values oB

positive and negativ€. form=0,1...4 are
(3) The case of general S| is analogous to the case
N=3 above. The operatd® applied to the glue field opera- m=0: 2.4048, 55201, 8.6537, 11.7915,
tors corresponding to all Abelian generators gives a negative
sign andC applied to any raisinglowering operators gives m=1: 3.8317, 7.0156, 10.1735,
the corresponding lowerin@raising operator with a minus
sign. m=2: 5.1356, 8.4172, 11.61988,
m=3: 6.3802, 9.7610,

Ill. BAG MODEL OF TWO DIMENSIONAL GLUELUMPS

We define the bag model in two space dimensions exactly m=4: 7.5883, 11.0649,

analogously to the definition in three space dimensions. The _ _ )
“gluelump” consists of an adjoint source at the origin and in @1d ignoring for the moment the color Coulomb interaction
the model we assume it is surrounded by a circular region ifpétween gluon and source the one gluon bag energies and
which one or more approximately free gluons exist to neuJadii are determined by minimizing

tralize the color. As usual in the bag model we use color

Coulomb gauge, first treat noninteracting gluons confined to E= E+A7TR2

the bag, and then treat the effect of the instantaneous color R '

Coulomb interaction as a perturbation. ) . . 3. . ]
where A which has dimensioh. ~° is the two-dimensional

A. Gluon modes in the bag bag constant anfi=c=1. We get
The fields of gluon modes confined to a circular bag of [ B w3

radius R obey Maxwell's equations in 21 dimensions “\2mA]

which are identical to the full Maxwell's equations xnand

y with B in the z direction, E in the xy plane andE and B BPmwA\ 3

independent of. Thus theB field is a scalar and thE field Emin=3(T) :

is a two-component vector in the two space dimensions.

Modes of definite frequencl are given by(r, ¢ are plane  poliowing the discussion of Sec. Il above, we label the states

()

polar coordinates |m|€ for nonzerom, and G’ for m zero, so that we obtain
10 9 4 the ordering of the lowest one-gluon levels, ignoring the
B=expima¢)J(kr);E= ?(—&, a_) , color Coulomb and other interactions, as
ik | —ay’ ax

0,1 ,2,0 3,14
where the mode frequendyis determined by the boundary
conditions equivalent to the three-dimensional boundaryith a comparatively small spacing between the&hd first
conditions thatr-E and rxXB vanish at the bag radiuR. excited 0~ states, as well as between the and first ex-
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TABLE |. Masses[in units of (¢)? and quantum numbers of some low-lying gluelumps in the bag
model. States o€=+1 do not exist for two colors.

[m|€(m+0) One-gluon states One-gluon states ~ Two-gluon states  Three-gluon states
or OP¢ (with color Coulomb (no color Coulomp (no color Coulomb (no color Coulombp
(Ve 2.81, 4.86, 6.62 2.90, 5.04 6.27 6.03
0t 4.62, 6.27, 6.47

0"~ 6.47
17t 3.73,5.71 3.95,5.91 5.47
1t 5.47
2" 4.72 4.80

2" 6.27
3" 5.55 5.55

4~ 6.15 6.23

cited 1~ state. In determining the overall of a state we the Casimir operator for interaction of two adjoints in the

assume here that the adjoint source has positive charge cofinglet state beindlc, the number of colops
jugation. _ _

There may also be states in which the source is neutral- V(r)=NcasIn(|ra=rl/ro),
ized by two or more gluons. The lowest such two-gluon stat

Svhere a.=g%/27 andr, is an arbitrary length parameter
will be made out of two ground-state gluons. It has quantu as= G o 0 y ‘engin p

Mvhich just adds a constant to the potential. The total color
numbersm”=0". However in SU2) only the antisymmetric Coulomb energy is independent jf when self-energies are

coupling of three adjoints exists and since this state is SYMaken into account. To see this, note that the source self-

metric in space it is forbidden by Bose symmetry. In all the : . g

. L . energy[in electrostatics this is 1QV(0)] depends o
higher color groups it exists and h&s=+1 with our con- . A
vention on theC of the source. In this approximation it lies through 1/2sasInto, and the gluon self-energy, which is

just below the first Z one-gluon state. The next two-gluon

1
state contains a ground state 0 gluon and a I gluon. In ffdzrldzrzEz(rl)Ez(rz)ENCaSIn|r1—r2|/r0
SU(2) it has|m|=1" and lies just below the lowest 3 _
i it i [ fd?r,d%r,E%(r,)EX(ry) ’
one-gluon state. For the higher color groups it is degenerate 14 T2 1 2

; C_1+

m;: r?Sr!rELré?mllis[ﬁrT; Igngl;ye?oerrgl&rs]I%vgségtli\]tgjeo;‘rg;an also depends on, through 1/N.aslnrg. Finally, the gluon-
one excited gluon and a ground-state gluon. The lowestU € mutual energy is

three-gluon state has quantum numbers Othe same as the JAZE3(r)NgagInrir,

ground state, and lies just below the lowest dne gluon — ,

state. The only quantum numbers which we have not yet JdrE=(r)

generated are 0 and 0 *. The Iowest 0 state may be which depends ong through—N.agInry. Thus the terms in
made from twom=0 gluons, one with3=2.4048 and one |\ "~ancel as claimed.

with 8=5.5201 and is also approximately degenerate in en- |°n the :albove we have used the unconfined two-
ergy with the lowest 4 one gluon state. The lowest 0 imensional Coulbmb Green'’s function

state, possible except in the case of two colors, lies considq

erably higher in energy. The level ordering for all these g(ryura)=In(jry—ryl/ro).
states is given in the second column of Table I, where the

masses are given in terms of the string tension parametdthis may be expanded as

o. (See Sec. llIC below.

n

Inr/ro— >, E(:—< cosn(¢,— ¢,),

B. Color Coulomb interactions n=1MN\rs

This ordering may be affected by the color Coulomb in-\yhere ¢, and ¢, are the polar angles of, andr, andr -
teraction of the gluon or gluons with the source as well asngr _ are the larger and smaller of the radial variables. The
self-energies and, in the case of the two- and three-gluogqgification of the Green’s function to take account of the
states, by the interactions between the gluons. confining boundary condition that the normal component of
the netE field is zero on the bag boundary affects the terms
in the second sum only. So, neglecting the angular correla-

We treat first the case of a single gluon plus source. Irtions in the gluon self-energy integral, we can replace the
two space dimensions the color Coulomb interaction beeonfining Green'’s function by In./ry. Since the result is
tween two point adjoint charges takes the fatitre value of  independent of;, as explained above, we take it equal to

1. One-gluon states
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the bag radiuRR so that the Green'’s function vanishesrat variablesx=kr, x"=kr’, so that integrals go up to the rel-

=R. This gives the following expression for the total color evant value of8. Using the value averaged over angles

Coulomb energy, including self-energiéand ignoring an

infinite piece in the source self-enejgy B\?
(EX(r))= (ﬁ)

(n%(x)
X

2
+(Jr',)2},

SRdrr(EX(r)In(r/R)
Neas| 5 InR+ SRdrr(E(r))

SRdrr(E2(r))In(r/R) [5dr'r"(EX(r"))
) (F3dre(EXn))? ' Neas(C+AB),

we get for the total Coulomb energy

We now change variables fromr’ to the dimensionless where

_l
C—Eln R/ B,
nJn(x)\?
fgdxxlnx( . )~|—(J,’1)2
A ndy(x))? |
f€d><><{( ) +<Ja)2]
X
nJy(x)\? nJa(x)\?
JBdx xInx . +(30)?| [Edx (J)?

There still seems to be a residual dependence on scale sinaeseparate calculation of the color Coulomb correction to its
the R/B=1/k occuring inC has dimensions. This arises be- energy. This is somewhat less than the Coulomb energy
cause an infinite part of the source self-energy has been omiivhen both gluons are in the ground state. Because it turns
ted. This will not affect our results for the spacing of the bagout (see Sec. C belowthat the color Coulomb energies are
model levels, but only change their absolute values. Unlikealways small, we have not listed those for two and three
in three dimensions there is no natural way of normalizinggluon states in the summary Table I.

the two-dimensional Coulomb potential.

C. Relations between parameters and bag model
2. States of two and more gluons gluelump spectrum

For a multigluon state with all gluons in the same spatial In two space dimensions the squared coupling congént
state it is not difficult to show that the color Coulomb per- has dimension of mass. In order to find the effect of the
turbation is identical to that in the corresponding singleCoulomb interaction relative to the unperturbed levels in the
gluon state. For example, consider a two-gluon state: Th@ag, we need to relate the bag constant gi'ldln principle,
color Coulomb energy is given bysource self-energy there should be only one independent constant setting the
+2(gluon  self-energy+2(gluon-source — energy-(gluon-  scale of masses in the confining gauge theory. We get an
gluon interaction energyHowever, the gluon-source energy approximate relationship as follows: Tedé finds that in

is half the gluon-source energy in a one-gluon state, since2+ 1)-dimensional SUY.) lattice gauge theory the string
now the gluon and source couple to the adjoint representaensiono is related to the coupling by

tion. Also, the gluon-gluon interaction energy, which would

be —2 times the gluon self-energy in two-dimensional elec- \/E~0.1975\|ng(1— .60/N§).

trodynamics, contains a further factor of one half for the

same reason. Thus, the color Coulomb energy of such a stafénce the theory is super renormalizable it is plausible that,
is again given by the combinatioN.as(A—B+C’). Only  unlike in four dimensions, the lattice value gf and the
one of the two-gluon states listed, that containing one gluorontinuum valueg§ describing the same physics are not that
in the ground state and one in the first excited state requiredifferent. We therefore assume this relation also for the con-
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tinuum theory and takes= gg/zﬂ-_ Finally, we adapt to two TABLE Il. The color Coulomb coefficients, B, C andT (see
space dimensions the standard bag model argument to reldxd-
the bag constam, the string tensiofienergy per unit length

of the “flux tube” between fundamental source and its anti-" B A B T
source, andas_: For general “tube radius'R;, we have the 2 4048 0.51905 0.33991 —0.1133
energy per unit length of the_“tube” of the flux between the 5.5201 0.99185 0.64171 —0.2193
fundamental source and antisource: 6.6537 133921 084616  —0.2262
1 11.7915 1.60047 0.9935 —0.2154
A(2R)+ 5 EZ(2R,), 1 3.8317 0.69508 0.52478  —0.2774
7.0156 1.1534 0.76387 —0.2598
whereE is the color electric field assumed constant across 10.1735 1.46508 0.93160  —0.2397
the diameter of the confined flux tube. Using Gauss's theo? 5.1356 1.13029 0.68466  —0.0997
rem with the color flux a€(2R;) to express this as a func- 8.4172 1.4555 0.87170  -0.1262
tion of the variableR; only, and minimizing with respect to 11.6199 1.6968 1.01097  -0.1316
R; gives 3 6.3802 1.4287 0.80633 0.0047
o 12 9.7610 1.6846 0.96107 —0.0359
o ( CNQS) 4 7.5883 1.6561 0.90372 0.0770
t 8A ' 11.0649 1.8692 1.03664 0.0314

o= /4mcy a\,

Ne™s lomb interaction as a small perturbation, are as given in the

where ¢y =(N2—1)/(2N,) is the SUN,) Casimir in the second column of Table I. We see that the color Coulomb
c perturbation has not changed the ordering of the one-gluon

states. Its effect on states of two and more gluons is also

small. We have also neglected transitions between one- and
o2 two-gluon states inside the bag. We expect these effects to be
even smaller than color Coulomb interactions except in the
case of degenerate or near degenerate states of the same
quantum numbers.

fundamental representation.
This last relation gives

- 2cn 0%

and we find approximately

A=~0.20%% 1+

0.40) IV. MODELS OF GLUEBALLS
5 .

c We next consider glueballs, i.e., systems with no color
source, first in the bag model in a simple approximation and
then in the flux-tube model. In each case we shall briefly

0_13) refer to the corresponding model of gluelumps. In the case of

Thus expressiofi3) gives the energies as

wB?at? (4)  the bag model this will show how the extra approximation of

this section affects the spectrum as discussed previously

: . . without the simple approximation.
with w~1.6. This gives the masses of the single gluon states Pie app

in two space dimensions given in the third column of Table
I. This column neglects self-energies and the color Coulomb
interaction with the source. Masses are expressed in units of
Jo. We neglect a small positive correction of about 3% for  The spectrum of a single gluon in the bag model in two
N.=2 and smaller for largeN, . space dimension&3 versus|m|) has an approximate resem-

Self-energies and the color Coulomb interaction of theblance to the spectrum of a two-dimensional harmonic oscil-
gluon and the adjoint source at the origin alter these valuesator (energy versugn|). In the bag model of pure glue states
These effects turn out to be small, so we shall first neglecone considers higher states which contain two or more glu-
their influence, by way of energy minimization, on the bagons in the fixed bag although for pure glue states there is no
radiusR,. The dependence of the Coulomb energyRyn  fixed source defining the bag position. A major difficulty
comes fromC (see Sec. Il B which may be rewritten as with these states is that many of them are “spurious.” In
other words they are not genuine internal excitations of the
system. This difficulty is easy to control for a harmonic-
oscillator system where the internal modes and center-of-
mass motion decouple. Therefore, we consider instead a de-
We give in Table Il the values oA, B, and the totall=A tailed two-dimensional harmonic-oscillator model to mimic
—-B+C'. the internal modes of the bag model.

Taking asN., in units ofo, to be about 0.8 our masses The spectrum of the two-dimensional harmonic oscillator
of the lowest one gluon states, corrected for the color Couis very simple: the ground state with=0 is at (:) w, the

1+

NG

A. Bag model: Harmonic-oscillator approximation
to the bag model

1 1
C= Eln Ro/B=— §In B+const=C’ +const.
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E For three “gluons”the harmonic-oscillator analog con-
o . . . . tains three particles in a two-dimensional oscillator. After
eliminating center-of-mass motion there are two internal co-
81 ' ’ ’ ’ ordinates, say=(r,—r,)/v2, A=(r;+r,—2r)/\/6 which
Tw- : * * * are two-dimensional vectors. The spatial wave functions of
6e- . . . the three “gluon” system contain homogeneous polynomials
- . . . in p, A with definite angular and parity behavior and definite
permutation properties under the interchaitg® and (13).
- : ’ The color wave functions of the three “gluon” system in a
P . singlet state are either totally symmetdg,FF(?F(® or
%] . totally antisymmetricf; FVFAF® . The three “gluon”
Tw- . state with f;;, coupling has positive charge conjugation,
while the dj; coupling has negative charge conjugation.
0 1 2 3 4 5 6 7 | Therefore, Bose symmetry for three “gluons” allows only
totally symmetric (S) spatial wave functions folC=—1
FIG. 1. Spectrum of two-dimensional oscillat@iuon. states and totally antisymmetric spatial wave functions for

C=+1 states. All other spatial states, which have mixed
lowest states ofn=*1 at 2(:) w, the first excited state with symmetry, do not correspond to physi¢ablor singlej glue-
m=0 at 3w, which is also the position of the lowest statesballs. The lowest internal state is ab 2vith an Swave func-
with m=+2, etc. At each principal quantum numbeand tion, and has quantum numbgra|°¢=0"". The parityP
energy fi+1)w one has a set of states with=0,*2, = —1 because of the intrinsic parity of each gluon. The next
+4,... forneven orm==*+1,+3,+5,... forn odd.(See allowed color singlet three “gluon”state is an excitation cor-
Fig. 1) The values of8 of Sec. lllA are roughly equally responding to the polynomigh®+ A2 and is also 0, at
spaced byw~ 1.4 with values ofB displaced upwards by energy 4. Degenerate with it is a multiplet witin=*2
~0.7w from their harmonic-oscillator values. We interpret and C=—1 which has polynomial . p-+\-\.) where
as a constant added to the harmonic-oscillator “gluon potenp.. = p,*ip,, etc. At one unit ofw higher,E=50 one can
tial.” The values of 8 determined in this way may then be construct(cubic) three “gluon”states ofm==*1,+3, e.g.,
summed and related to masses by the bag model rel@ipn (p>— A2\, +2(p-N)p.. being a totally symmetric state of
so that effectively we are taking the Hamiltonian to be pro-m= +1 and, thereforeC= —1, corresponding to a multiplet
portional to the two-thirds power of a harmonic oscillator with |m|C=1‘. One can construct similarly, atwb multi-
with the harmonic-oscillator energy shifted by a constant, plets with|m|=1",37,3". Thus we have found the lowest

With two particlesin the harmonic-oscillator well the states of|m|=1%,1", higher in energy than the lowest
ground state of the system is ab,2corresponding to both states ofim|®=2%,2". At E=6w one can find states with
particles in the harmonic-oscillator ground state, and otherm|C=o“,0++,2+,2‘,4‘ for the three “gluon” system. At
states are obtained by putting each particle in a specific statg, there are states with™17,37,37,57,5". One can also
of the single particle oscillator. The resulting states may beonstruct states having quantum numbers Gind 0"~ with
separated into excitations of the internal degrees of freedothree “gluons,” but these are rather high BEt=8w and E
of the two-particle system and center-of-mass excitations b= 10, respectively. For example, the state with"Ohas a
introducing appropriate internal coordinategs—r, and  totally antisymmetric wave function of typer{—r2)(r3
center-of-mass coordinatés= (r,+r,)/2. With this simple —r%)(r%—rf) which is six units ofw above the ground state
choice of coordinates, thieternal states of the two-particle 5 5, However, these quantum numbers appear at lower
system are exactly the same as those of a single WQsnergies in the spectrum of four “gluon” states.
dimensional oscillator with ground staten¢0) at o, first With four “gluons” there are eight independent ways of
excited statesmi= £ 1) at 2w, etc. This spectrum is identical constructing a color singlet state in ). Of these eight

to that of a single particle in the two-dimensional oscillator. giates three have negative charge conjugation. The three
If we interpret this spectrum as giving tievalues in Eq(4)  cqlor wave functions o€ = —1 transform like the antitriplet

of a system of two confined "gluons,” we note that the _representation of the permutation group of four objects
physical states are color singlets which must be symmetric i . Therefore, to obey Bose statisticsCa — 1 state should

color space ;- F,), and only spatial states which are sym- ) ) —
metric under interchange of the two “gluons” are allowed have an orbital wave function of the sarfBesymmetry. To
by Bose symmetry. This rules out states withodd which construc_t the lowest 0~ s_tate_wg reguwe the wave function
are antisymmetric under the interchange-2. So the only  t0 be built from polynomials i?, A% &? p-\, p- o, and
physical states for two “gluons” in this model have=0, -0, wherep and\ are as in the three “gluon” case and
+2,+4, ... .Therefore for two “gluons” we have a ground 0= (r1+r+r3=3r))/\12. The coordinatep, A, and o
state atw, an excited (n: O) state at @ and an excitedn transform like a trlplet3 representation 084. The scalar
—+2 doublet at 3. All these states have positive charge Productsp?, A%, ... \- o transform likel+2+3of S,. The
conjugation. There are higher states at Bw, . . .with simi-  lowest polynomial which transforms likéof S, are quadrat-
lar quantum numbergf|=0,2,4,6,8...,C=+1). ics in p?° A% ...\-o and occur in the Kronecker
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E same degrees of freedom, quarks and gluons, as perturbation
50l o 05 theory. The flux-tube model, on the other hand, postulates

that in the confining regime the appropriate gluonic degrees
of freedom are the flux links of lattice Hamiltonian gauge
theory[8]. In this model the simplest pure glue states consist
oOF ol o2 3 a4f of a loop of flux whose quantum dynamics gives rise to the
spectrum of states. Referengd suggested that a nonrela-
tivistic string Hamiltonian might capture the essence of the
flux-tube dynamics. In the case of three space dimensions, a
o] N further adiabatic assumption was required to make the sys-
tem tractable.

The corresponding model applied to two space dimen-
sions was considered [5] for the case of color S(2) and a
generalization for more than two colors was giveri6ih In
each case, the spatial configuration of the flux tube is as-

FIG. 2. Spectrum of glueballs in the harmonic-oscillator gluonsumed to be expressible in the functional formr(¢) in
model. Mass is proportional i@(E+ n«)?° wherex is a constant  polar variables I(, ) wherer (¢) is expressed in a Fourier
andn is the number of gluons. series
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product3® 2. Therefore, the lowest 0~ four “gluon” state B .
[in SU(3)] is at 4w above the ground state of the four “glu- r—n - Fnexping).

on” system, i.e., alE=7w, somewhat lower than in the

three “gluon” sector(where it was at 10). The other set of For SU2) the corresponding nonrelativistic Hamiltonian is
guantum numbers whose lowest state lay quite high in the

three “gluon” sector was 0. This requires a color wave B 1, 1

function of positive charge conjugation. Of the five color H=2moTo+ 411 oo Pro ™ EHOSC ®)
states withC= + 1, one is totally symmetric under permuta-

tions and the other four form two doublets. Therefore, thewith

spatial wave function of a 0" state should be either totally

symmetric or part of ai$, doublet. To obtain negative parity Hoo— Inja’a,+c 6)
one needs a factor gbxX\, AX o or oXp in the wave OS¢ WS

function. These forms transform under permutations lie a . I -

representation 085,. In order to satisfy Bose statistics we WN€r€Hosc/To is the Hamiltonian for deviation of the flux-
need to construct a doublet representation. This we can d&'P€ .shape(aalssumﬁ'clj smalifrom a C'frdﬁ" witha, anda,
with a fourth-order polynomial by taking a product of tBe creating and annihilating quanta of the corresponciig
(pXM), etc. with a3 constructed from the scalarg? V|brf'it|on mode o_f the flux tube armlansmg from therenor- _
A’; ’)\. ' Therefore. the lowest O° state with fm’” malized zero-point energy of the oscillators. Note that, in
N e et O ' . . the summation oven, the valuesn=*1 may be excluded
gluons” has E=3w+4w=7w in this model. Therefore,

we find that the lowest four gluon states of quantum numbersince these correspond simply to a translation of the flux tube

0"~ and 0 * are degenerate &= 7w, and these appear to without changing its shape. It follows that there are no spu-

be the lowest states of these quantum numbers for anv nu ri_ous center-of-mass excitations in the flux-tube model. Note
ber of gluons q Y NUNYso thatH oscdepends on variables which are independent of

The spectrum of states for two, three, and four gluons, i< 0 and po and, therefore, commutes with them. Variables

summarized in Fig. 2. The notation |i;|°© wheren is the may, therefore, be chosen to diagonalitg,for all ro,py,
. 2. N . .

number of gluons and thB quantum number is of course and the corresponding eigenvalues are

omitted for|m|# 0. The lowest lying states are included for

all quantum numbers up ton|=6 though the list of higher N=> (|n|l,)+c,

excited states witm=4 is not complete. We could have

used the harmonic-oscillator approximation also in Ca":u'atVVhereln is the degree of excitation of thath mode. The

ing the bag model gluelump spectrum, but this extra approXigjterence between the case of two colors and those of more
mation is not necessary there as there is no problem of spyran two colors is, in the flux tube model, the difference

rious degrees of freedom in that case. The effect would havgetween whether the flux-tube has or does not have an ori-

been to make exactly degenerate states which in the calculgs aiion arrow along its length. To the flux-tube sh&pe

tion of Sec. Il were slightly separated in energy. =r(¢) there corresponds the nonlocal gauge-invariant path-
ordered trace

B. Flux-tube model of two dimensional glueballs

The flux-tube model7] was invented as an opposite ex- Trp ex ij A-dr
treme to the bag model. The bag model uses essentially the c ’

074002-7



GABRIEL KARL AND JACK PATON PHYSICAL REVIEW D 61 074002

where A is the color vector potential operatér\; and P operator Hermitian, since the radial variabjgmust be posi-

orders matrices in the expression around the @&thThis  tive and hence the wave function must vanish @t 0.

operator acting on thestrong couplegivacuum creates a line The angular momentum quantum number of the states is

of color electric flux (in the fundamental representatjon also easy to work ouf5]. The operator for exciting one

aroundP [8]. States of the flux-tube model are obtained byquantum of thenth mode has angular momentumThus the

summing over path® with appropriate weighting7]. In  states with no excitations other than excitation of the radial

color SU?2), where the\’s are just Pauli matrices, this trace moden=0 havem=0; those with one excitation of mode

is identical to the trace with all matrices replaced by theirn==2,+#3 ... have angular momentum quantum number

complex conjugates, because in(@Uthe fundamental rep- m=n and for multiple excitations the contribution to the

resentation is isomorphic to its conjugate. Therefore, theangular momentum quantum number are additive. Starting

trace operator necessarily has charge conjugatibrand so  with the case of color S(2) [5] we immediately deduce the

all states of the flux tube model will have charge conjugatiorfollowing features of the two plus one-dimensional glueball

+1. It also follows that the trace ové is identical to that  spectrum in the flux-tube model as we have defined it above.

over the reversed pat@’. This is what we mean by saying (1) The mass of a state depends Ne&1,—1+3(|n|l,)

that the flux tube has no orientation. only, with the ground state having=0, |;=1. The squared
For higher color groups, on the other hand, the pathmass is a linear functioM?=4ma(N+k) of N.

ordered trace is not identical to that with all matrices re- (2) There are sequences of radial excitatiors,

placed by their conjugates and the operators for the paths =357 . .. equally spaced in squared mass and separated by

andC’ are distinct. Thus bot@= +1 andC= —1 states are 8rxg.

possible in the case of more than two colors[@hthe iden- (3) The lowest states ofn=2, which have ongn|=2

tical Hamiltonian is assumed to describe flux tubes of bothyuantum, have squared massd8above the ground state,

orientations and states of charge conjugatichor —1 are  je., degenerate with the first radial excitation. For larger

necessarily degenerate, corresponding to the sum and diffefimn|=3,4 . .. thelowest state differs from the ground state

ence of flux-tube states of opposite orientation. Formally thishy 477¢|m| in squared mass.

is equivalent to saying that the positive and negative orien- (4) The lowest mass states are in order

tation states live in different spaces connected by the charge

conjugation operator. The form of the flux-tube model de- N=0: |m/P=0",
scribed so far assumes
(1) Nonrelativistic quantum mechanics, as stated above, N=2: |m|P=0%,|m|=2,
(2) The coefficients , for n#0 are small enough so that
the flux-tube shape exhibits only small deviations from cir- N=3: |m|=3,
cular. This is required both because a single-valued function
r(¢) cannot describe all flux-tube shap@sg., those which N=4: |m|°’=0",|m|=2|m|=4),
are self-intersectingand also the harmonic approximation to
the string potential energy is only valid in this case. N=5: |m|=1|m|=5|m|=5.

The first of these assumptions may plausibly be circum-

vented by noting that the nonrelativistic Hamiltonian aboveThe lowest state of quantum numbers BasN=8 and is a
may be regarded as the first two terms in an expansion ifinear combination of states with nonzero excitation num-

powers of 1/, of H,g= JMZ with bers,lj;=2,14=1. It lies in energy well above those listed
) s above.(All these states have of cour§e=+1 as required
M*=(2mar o)+ p; +4moHosc. (7) by the general theory.

The spectrum of the S@) flux-tube model is given as the
We observe that in this last relativized form the mass squared = + 1 states of Fig. 3, which also incorporates the results

operator of the flux tube is simply that of an infinite set of for the spectrum of flux-tube Model Il for more than two

harmonic oscillators, one for radial motion and the rest forcolors (see below The notation is
deviations from the circular form. Eigenstates will be char-(rMo~1[1, . ,|n|'9"M)PC with P present only form=0.
acterized by the set of integer excitation numbgrg with Now going over to the case of more than two colors, in
corresponding energies the relativized version of the model ¢6] which we call
Model I, the radial and angular oscillators are all doubled,
_ _ one corresponding to each of the two orientations of glue
4ma(N+kj=4mailo 1+,§0 lolnl+k], loop, and trF])e masgs eigenstates are also doubled to form de-

generateC=*+1 states at eacN. In particular the SI)
wherek is a new unknowr{renormalizedl zero-point energy  states of (")=(0") correspond to a degenerate pair
directly related to the mass of the ground-state glueball. Fofm”©)=(0**),(0~ ). Thus for this model of more than
positive and negativa,l,, may be zero or a positive integer. two colors, the level ordering is
For the case oh=0 the corresponding radial excitation

numberl, must be odd, and, as stated abomes =1 are N=0: |m|P¢=0"",0"",
excluded from the sum. The oddness lgfis required to
make the nonrelativistic Hamiltonian or the squared mass N=2: mP¢=0%*0 ~,|m|®=2",
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radial excitation will hold twoC=1 and twoC=~1 states,
etc. The low-lying spectrum of Model Il is shown in Fig 3.
To conclude this section on the flux-tube model of glue-
balls we emphasize again that our description of the flux-
tube in terms of polar coordinates is to some extent an un-
physical restriction since it excludes reentrant curves. This
should not be a serious deficiency for states highly excited in
the radial variables but is liable to be serious especially for
the ground states of any set of quantum numbers. It is this
feature that has forced the degeneracgZiof Model | since
curves given by single valued=r(¢) are necessarily ori-
ented. The second model with the two radial oscillators goes
beyond this by postulating a nondegenerate nonoriented
ground state. Of course, classically the “glue loop” in the
ground state just reduces to a point. Furthermore, the states

@ty
’ of maximum|m| produced by exciting only the=*+2 os-
1 cillators correspond classically to the limiting motions in
which the loop lies on a rotating straight line. The quantum
states are held from collapsing by quantum fluctuations. It is
plausible that, in a larger space of loops, because of these
FIG. 3. Spectrum of glueball states in the flux-tube model forquantum fluctuations the orientations of these states are lost.
two colors C=+1 states only and for more than two colors Another possible model would be simply to take the spec-
(Model 11). The notation is ("0 I, .o q|l,/9)PC with P trum of Model | but with the removal of th€=—1 states
present only fom=0. The squared mass is#(N+k) wherekis  corresponding to these limiting classical motions. It differs

(0)++
1 2 3 4

5 |m|

a constant. only slightly from Model II. (It would unlike Model Il give
a C=-1, |m/=3 state atN=3 and the degeneracies of
N=3: |m|®=3~, some radially excited levels would be different.
—A- PC_n+t+ n— C_n=* C_p=*
N=4: m"®=07"",0"",|m|>=27,|m[>=4", C. Extension of flux-tube model to two dimensional gluelumps
N=5: |m|®=17%|m|®=5%|m|¢=5". Having treated above the case of glueballs in the flux-tube

model (“glue loops”), the case of gluelumps is a straight-
The doubling of all oscillators as well as tledegeneracy of  forward generalization. We assume that the wave functionals
all levels seems somewhat profligate, and perhaps unphysif gluelumps are given by linear combinations of loop traces
cal. In particular it would appear more natural if the samewhere the loop goes through the origin and the quantity in
angular oscillator operators could be applied to a string othe trace contains an extra factor of anatrix corresponding
either orientation. We may then get away with doubling theto the source at the origin. We note the following.
radial oscillators only. If, as seems very plausible, we take (1) For two colors the trace is necessarily dgaen un-
the lowest state to be nondegenerate and ha@irgt 1, the  der the replacement of Pauli matrices, A3 (\,) by their
creation operator formed from one radial oscillator, variablesonjugates, i.e.C is necessarily the same as for a single
r1,Pr, will produce clockwise excitations of the system andgluon field (calledC= —1; see Sec. J| For more than two
that from the other radial oscillator with variables p,, will  colors both values o€ are possible.
produce counter-clockwise excitations. We call this new (2) We take the mass squared operator for the case of two

model for more than two colors Model Il. The mass squaredIOrs to be given in terms of a parametrization of the loop
operator of Model Il is through the origin as a distorted circle with its centetay).

The polar coordinate of a point on the loop is defined as the
distance from the centék,y) and the polar angl® is mea-
sured from the direction defined by the vecteyy). We have
To obtain aC= —1 state in this case we must form a state
antisymmetric irr 1,r,. Thus there is n€ degeneracy of the
states unless there is some excitation in the radial coordinate.
The spectrum of Model Il will be identical to that of the
two-color model with the exception that) the first radial
excitation of any|m| state will now house states of bo@

M?=(2ma)’(ri+r3)=p; +p;,t4moHese. (8

r(0)=x2+y2+ >, r,sin(né),
n=2

where the Fourier expansion contains sines only to ensure
that the curve goes through the origin. The1 term is
=+1 andC=—1 the latter containing the factof—r5, (2)  omitted since it corresponds to rotation about the origin
the second radial excitation of angn| state will hold one  which is also effected by a transformation of the variables
C=—1 state with wave function containing an extra factor (x,y).

antisymmetric i andr and twoC= + 1 states containing (3) The relativised squared mass operator for two colors
an extra factor symmetric imf and rg, and (3) the third analogous to Eq.7) is
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TABLE lIl. Spectrum of the lowest gluelumps in the flux-tube in two space dimensions extensive lattice Monte Carlo cal-
model. The squared mass isré(N+k’) wherek’ is a constant.  culations are publishg@®] for N.=2,3,4,5 colors, and in this
section we first examine how the two-dimensional glueball

N States with two colors Additional states for Model Il spectra of the bag model and flux-tube model compare with
0 0-- each other and with the lattice results. For convenience we
1 1- reproduce Teper’s color SB) and SU3) re_sults in Table IV
5 002 o++ (columns 2 and B The results for the higher color groups
3 1,’1, 3', 1+ are similar to SIB) though Teper has attempted to extract a
T dependence oNl;.
We first note that we do not expect either model or indeed
M2=(270)2(x2+y?) + p)z(Jr p§+47TO-H£)sc1 (9) the lattice to givg a (.:o.mpletely accurate picture of the spec-
trum. For one thing, it is clear on general grounds that in the
where full two plus one-dimensional theory only a few of the states

of lowest mass can be stable, higher states being able to
) N decay. Thus the infinite tower of stable states produced by
Hos= nz:z nb, b, each model is at best an approximation. There is also the

question of whether the higher states as determined on the

and b,,,b; are the annihilation and creation operators forlattice correctly incorporate decay channels and the shifts in

sinusoidal deviations from the circular shape. Apart from arfnass that they induce, since on the lattice the momenta of
arbitrary zero-point contribution the eigenvalueshf are final d.ecay products are forced to be d|sc_rete. In addition
again 4roN whereN is an integer. there is the problem that on a square lattice the quantum

(4) The corresponding spectrum for two colors(@se numberm is determined in a simple way only modulo 4.
The spectrum of théx,y) two-dimensional oscillatofre- This may introduce substantial real ambiguity into the
call Fig 1): the ground state ahP©=0"" with N=0, radial ~ Present lattice results.(A method of resolving it is sug-

excitations of the ground state separated from it in mas§ested in the second item of R¢6].) We also remind the
squared by even multipleX of 4o, the lowest-lying states reader that each of our models has its own limitations which

of [m/=1,2,3 ... andnegativeC separated from the ground must necessarily restrict its accuracy even if it is basically

state by 4roN with N=1,2,3 . . ., andtheir radial excita- COTrect physically .
tions again even multiples of#r above these. We had to simplify the bag model substantially in order to

States obtained from any of these two-dimensional oscilSCIVe in @ simple way the problem of spurious center-of-
lator states by excitation by an arbitrary number of units inmass excitations. This we did through our oscillator model of

the oscillators oH ., with further vibrational contribution glgons. As the_ choice of a sharp bag radius IS also_ a s]mpll—
to the squared mass given byr&>.,_,i,n where the , are fying assumption, we do not feel that_ replacing this W'th. a
positive integers or zero. In this case. unlike the case ofdrmonic oscillator does any further violence to the physics.

glueballs in the flux-tube model, the angular momentum he values of the two parametarsand « of our bag model

guantum number is not affected by the excitation of the IoopSpeCtrum were determined approximately from the gluon

shape. The vibrational contribution to the parity of jan| ?x%?:?smlg dtehseo?aégéze”\l/atlgues off Sec. Il A). Fitting the
=0 state is 1), :

The lowest state om”=0"" hasN=2. The quantum
numbersm”©=0"" do not occur untiN=4.

(5) For more than two colors, we may modify the model
for gluelumps to be analogous to either of the two corre-
sponding glueball models | and Il discussed above. As for _ )
glueballs, Model | will simply double all states introducing €i¢ givesw~1.4 and x~0.7» as quoted in Sec. IVA.
C=+1 partners for all states. The analog of the more physi'nese choices are correct to abat.3 the values ofs for
cal Model Il involves two radial variables, andr, [rather aII”of the lowest 14 modes listed in Sec. Ill. An extra “glu-
the one radial variable= \x2+y?2 of the SU2) casd and on” therefore gives an extra contribution gof k~0.7w so

introduces extra states of opposeonly at the level of the ~that in Fig. 2 states with three “gluons” would be expected
first and higher radial excitations. to be raised by about Qw/compared to two “gluon” states

To summarize, the extension of the flux-tube model to@nd four “gluon” states by about twice this amount. The
verall constani. determined in Sec. Il C to be1.6 is also

two-dimensional gluelumps gives the lowest states havin% ; .
squared mass#a(N+k') with quantum numbers as given uite uncertain. In the bag model column of Table IV we

in Table IIl. have kept the suggested valueseofind k and increaseg:
by a factor of 1.2 so that the bag model ground state of the
system agrees with the lattice result for 8W This leads to
the following formula for glueball masses which we use in
the column marked “bag model” in Table IV:

The model calculations presented above can obviously
not be compared to experiment, but in the case of glueballs M(n’,n)=4.3(n’+1+0.7n)/(1+2(0.7)1%3

©

m=0: k+w,k+3w,k+5w...,

m=1: k+2w,k+4w...,

V. COMPARISON WITH LATTICE CALCULATION
AND CONCLUSIONS
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TABLE IV. Glueball masses in units of/c from the lattice as given by Tepé?] (column 2 by the
harmonic bag model in column 3 and by the flux-tube model in column 4.

State|m|P¢ SU (2) SU (3) Bag (vu=1.9) Flux-tube k=1.5)
ot* 4.71843) 4.32941) 4.3 4.3
oFt* 6.8310) 6.529) 6.4 6.6

QF ¥ 8.1515) 8.2317) 7.7 8.3
0~ 6.499) 6.1 6.6
0 * 8.1516) 8.0 8.3

0~ ~** 9.81(26) 9.7 9.7
0 * 9.9532) 9.3025) 11.0 10.9
ot~ 10.5228) 11.0 12.0

2ttt 7.8214), 7.8614) 7.1312), 7.3611) 6.4 6.6

27t 8.80(20) 8.3 8.3

27" 8.7517) 8.0 8.3

27 TR 24 —* 10.3127), 10.5%30) 9.7 9.7
1ttt 10.4234), 11.1342)  10.2224), 10.1927) 8.9 9.0
171" 9.8623), 10.4136) 8.9 10.3
3+ 8.9 75

4+ 8.3 8.3

wheren is here the number of gluons in the bag, aridis  model it is also degenerate with the first excit€e= + 1
the number of excitations of the oscillator system. Ror  states. In the bag model it appears Bt2w in Fig. 2
=0 andn=2 the formula gives the lattice ground-state massyhereas the first excite@= + 1 states are & =3w. How-
as required, and gives a reasonable fit to higher masses. \ger, it is a three “gluon” state as opposed to the two “glu-
emphasize that this formula is not a best fit to the lattice datapn” states aE =3w. This raise<E by about 0.%, making it
The flux-tube picture is expected to be accurate only folyst pelow the degenerate'0 and 2" pair. The lattice re-
states which are physically large enougtompared to the g its give the lowest 0~ state degenerate within errors with
finite resoll_Jtlon necessary to justlf_y the s_trong-couplmg PiCthe first excited 0 * state, and thereforesee aboviea little
ture on which the flux-tube model is bageide., it shpu]d be |Iower than the lowest 2 state.
least accurate for the states of lowest mass. This is exactly (3) Both models agree with the lattice results in giving the
where our two versions | and Il of the flux-tube model for h rprising result that the lowdst|=1 states i
more than two colors differ most. Since Model | exhibits the PE™aPS SUTPTSING Tesu at the 1o states 1s
unphysical charge conjugation degeneracy of the grounHIglher in mass than the Iowe|$h|f2 states._ o
state we shall discard it and use only Model Il in our com- (4 Both models also agree with the Iatt|c+e in giving the
parisons from now on. This model contains only one paramloWest states of quantum numbers0and 0" very high.
eter, the zero-point energy parameterin contrast to the On the lattice the 0" is at 9.9%32) Vo in SU2) and
case of the bag model where an approximate estimate of i®3025)\/o in SU(3) and the 0~ [which does not exist in
overall strength parameter may be made, we can say very SU(2)] at 10.5228)\/o. These are both more than twice the
little aboutk. Its value may well be expected to be different ground-state mass and are above no less than three states of
in the case of two colors from the case of more than twoguantum numbers 0", at least two states of 2 and [for
colors, and there may even be furthef dependence. We SU(3)] two states of quantum numbers 2
ignore these effects as they do not affect the basic ordering In more detail we observe that with the particular choice
of levels and present in Table IV masses for the flux-tubex= w (notthe choicex=0.7w of Table IV) in the harmonic
model with k=1.5 required again to agree with the lattice bag model the spectra ia of the bag and iN of the flux-
ground state for S(3B). tube model are almost identical. One minor discrepancy be-
The first and somewhat surprising conclusion which maytween the two models is that in the bag model the" Gand
be drawn from these comparisons is the similarity of the two0* ~ states are degenerate four “gluon” statesEat 7w
models certainly at the qualitative level and also the similar<i.e., with k= would correspondN=8 in the correspond-
ity of both models with the lattice data. For example, ing flux-tube model whereas in the flux-tube model model
(1) IntheC= +1 sector, the models both give the groundthe lowest 0 * state is atN=8 and the lowest O~ state
0" " state with, at the first excited level, degenerate states adoes not occur tilIN=10. The lattice data indeed give the
quantum numbers 0" and 2". In the lattice data the 0* flux-tube model ordering for these two levels with rather
state is a little lower than the*2state, but these are certainly large errors, though the mass values for the flux-tube model
the next twoC= +1 lattice states. as given in Table IV are somewhat higher than the lattice
(2) The lowestC=—1 state of both models hdsn|®  values. Indeed the fact that the 0 state of the flux tube
=0". This also agrees with the lattice result. In the flux-tubemodel is too high compared to the lattice was already noted
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as one of the main discrepancies between the2pilix tube  constantw which is a factor 1.2 larger than the rough esti-
model and the lattic¢5]. The harmonic bag gives a very mate of Sec. Ill C. The flux-tube model fit uses the additive
similar value for the mass of this state. An interesting dis-constantk=1.5.

crepancy between the two models is that the flux-tube model We find the rather close resemblance between the two
gives an expected3state atN=3, i.e., corresponding to a models somewhat surprising as they are based on very dif-
mass of around 7.5, whereas the corresponding bag ferent physics. Finally, we point out that the models predict a
model state is expected to be somewhat higher, abgut 9  definite ordering of the gluelump levels in two space dimen-
The lattice data would in this respect somewhat favor the bagions. Though again the models agree in the ordering of the
model, though the evidence is indirect. The quantum numbédpwest few states, a comparison of Tables | and Il does
m is only easily determined on the lattice modulo 4, andreveal some discrepancies. A lattice calculation of the glue-

therefore, it would be hard to distinguig|=3 from |[m| ~ lump spectrum in 21 dimensions might reveal which
=1. However, whatever its interpretation in the continuummodel is a better description. Note that the gluelump energy
such a lattice state does not occur till around/EO spectrum is arbitrary up to an overall additive constant, so

We do not consider that a detailed fit with either model isOnly spacings between levels are physically significant.
called for, since both models are at best qualitative. Such a fit
would be driven by the lattice data pointg with the smalles; ACKNOWLEDGMENTS
errors and would, therefore, not necessarily reflect the quali-
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