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Logarithmic expansion of electroweak corrections to four-fermion processes in the TeV region
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Starting from a theoretical representation of the electroweak component of four-fermion neutral current
processes that uses as theoretical input the experimental measurementsZapdhk, we consider the
asymptotic high energy behavior in the standard model at one loop of those gauge-invariant combinations of
self-energies, vertices and boxes that contribute all the different observables. We find that the logarithmic
contribution due to the renormalization group running of the various couplings is numerically overwhelmed by
single and double logarithmic terms of purely electrowé8kdakov-typg origin, whose separate relative
effects grow with energy, reaching the 10% size at about 1 TeV. We then propose a simple “effective”
parametrization that aims at describing the various observables in the TeV region, and discuss its validity both
beyond and below 1 TeV, in particular in the expected energy range of future linear electron-pasiramd
muon-muon colliders.

PACS numbeps): 12.15.Lk, 13.10+q

I. INTRODUCTION standard model framework and beyond it.
The second point that might be worthwhile to examine is
The construction of future lepton-antileptoh™(~) col-  that of the reliability of a perturbative description at the one

liders in energy ranges varying from a few hundreds of GeVioop level when the energy becomes very large, say beyond

(LC) to a few TeV(muon collide} is being thoroughly in- the 1 TeV orientative value. In particular, a problem that
vestigated at the momefit,2]. One of the key points of all might arise is that of having to perform a resummation that

existing proposals is the availability of extremely high lumi- takes into account higher order leading effects, as in the case
g prop y y hig of the running ofaqep. In fact, it is well known that this

nosities. These would lead to an experimgntal accuracy foﬁroblem is present in QED and QCD diagrams when Suda-
standard four fermion processg=. | |~ —ff) comparable kov logarithms of the type I0%u2 0% u? (whereJo? is
with that obtained at th& peak, thus allowing high precision the available energy and is the mass scale of the diagram
tests of electroweak models at one loop to be performed iappear in vertices and boxgd. In the standard model, loga-
the same spirit. rithms of a similar typgusually called “of Sudakov type)’

On the theoretical side, the possibility that such extremelyare also known to appedB,9]. In Ref. [9] the leading
precise measurements are performed requires imperativeisymptotic behavior growing like fo?/M§, ; was calculated
the existence of suitable computational programs that arfr the relevant observables. The physical origin of these
able to provide numerical predictions of comparable accudouble logarithms was also discussed. In this paper we also
racy, both for the standard modésM) case and, possibly, c_alculatezthe2 subleading terms, growing .Ilke a single loga-
for electroweak models of different origin. For CERNe ™ rithm Ing/My,;, whereMy, ; are the physical gauge boson

) . . masses. If the relative contribution coming from these dia-
collider LEP2 physics such programs already exist at the ONErams became large, typically beyond a “reasonable’” per-

loop level for the SM[3] and, at least in principle, their contage amountwhich could also be quantitatively fixed by
extrapolation to higher energies should be concelvablqmomedge of the requested theoretical accurathe neces-
There are, though, in our opinion, at least two points thakity for a resummation would become stringéand, to our
deserve special attention in this respect. knowledge, this study has not yet been performed

The first one is the importance of understanding the role The aim of this paper is precisely that of discussing the
of the several terms that contribute the various observableg,q previous points. In particular, we shall perform in Sec. Il
when the energy becomes very large. Atzhgeak, the most g explicit calculation of the coefficients of the three types of
spectacular one loop effects were provided by fermion coniogarithms that dominate the large energy behavior of the
tributions to gauge boson self-energigse Higgs effect is  giferent one loop gauge-invariant combinations that make
notoriously[4] screeney] with the exception of the signifi- 5 all observables of the process. These come from the
cant contribution due to the celebrat&db vertex[5]. When  renormalization grougRG) running of the gauge couplings
the energy increases and moves towards the 1 TeV regioand from the typically electroweak Sudakov-type effects.
this fermion dominance is apparently weakened, and bosonithe first ones generate linear logarithms, the second ones
effects of vertex and particularly of box type appear to risejinear and quadratic logarithms. As we shall show, the nu-
as first stressed in a previous pap@}. To confirm this rise  merical size of the various Sudakov logarithms largely over-
and to understand in a simple way its physical origin wouldwhelms that of the RG ones. Technically speaking, the main
be, in our opinion, an important achievement both within thecontribution turns out to be provided by diagrams with

0556-2821/2000/6%)/07300%14)/$15.00 61 073005-1 ©2000 The American Physical Society



M. BECCARIA et al. PHYSICAL REVIEW D 61 073005

bosons(those with aZ boson are relatively less importagnt fermions are supposed to be masslessprovided by four
more precisely by special combinations of the non-universatiifferent functions ofy? and # (the squared c.m. energy and
components of vertices and boxe®blique” self-energies  scattering angle The first one is the “photonic form factor”
are only contributing the RG compongnthus, at very high A (g% 6) which is subtracted aj?=0, whereas the three
energy, the relevance of “non-oblique” contributions ap- gther onesR;;(g% 6), V}?(q2,6), VZ7(q2 6) correspond-
pears essential, in opposition to the situation that is met 3hg to the one looZ, yZ andZy transitions, are subtracted

the Z peak. 2_p\2 ; i -
Having computed the various gauge-invariant combina—f;te(r]1t a'\s/l %’is'tlaézng?nn(;g&% ?)rr(]e fheepzrazastfslyo?al:g\%:(iegs_n
tions, we shall then evaluate in Sec. Il the asymptotic ex- ' b

pression of all the possible observablgg. cross sections sfervat|0ns. made by Degrassi and Sl[llrl,l'Z. These fu'nc—
and asymmetridsHere the reliability of the one loop expan- tl_ons receive two types of one Iqop contrlbutlon_s: ynlversal
sion appears to depend critically on the c.m. energy of thél-€- If-independent ones, coming from fermionic and
process. Typically, we find that, beyond a certain value thaP@Sonic self-energies as well as from a part of some vertex
depends on the chosen observable, femarate gauge- diagrams, and non-universal ones, coming from the remain-
invariant relative effects begin to cross the dangerous 10919 parts of the vertex diagrams and from the box diagrams.
value (orientatively chosen as a realistic limifrhis makes ~AS we shall see in the next subsection, some universal con-
the validity of the approximation rather doubtful if the re- tributions correspond to the running ef g7 andsg,. The
quested precision must be below the 1% level, and indicategther contributions lead asymptotically to the “Sudakov-
the need for a proper resummation already in the TeV rangdype” terms that we shall explicitly review in Appendix A.
As a by-product of our calculation, we shall propose inThe way these four functions enter the varigise™ — ff
Sec. IV a simple “effective” parametrization of all observ- observables will be shown in Sec. lll and in Appendix B.
ables, aiming to provide a satisfactory approximation of the
one loop component in the energy range between 1 TeV and . RG contributions to the gauge-invariant combinations
a few TeV. We shall also compare this expression with the ) _ i ) _ )
complete SM calculations in the region below 1 TeV and Following our previous discussion, we shall first consider
discuss its possible practical interest and its limitations irthe contributions ta\,, R, V from the class of diagrams
this not rigorously asymptotic regime, in the particular theo-that are supposed to reproduce the canonical RG asymptotic
retical framework provided by the SM. A final discussion behavior. In theR, gauge in which we are working there will
given in Sec. V will conclude the paper, and Appendixes Abe no contributions from théinite) boxes to this sector. A
and B will contain the analytic expressions of the most rel-simple request will select the possible contributions from
evant one loop diagramself-energies, vertices and boxes vertices. In fact, the various combinations that we consider
and the way they contribute to the various observables.  are all, as we stressed several times, gauge independent. But
the contribution from self-energies is not such, owing to the
set of bosonic “bubbles” that must be considered. Therefore

Il. ASYMPTOTIC EXPRESSIONS extra terms from vertices must be properly added. Since self-
OF THE GAUGE-INVARIANT RELEVANT energy contributions are of universal type, the same property
COMBINATIONS AT ONE LOOP must obtain for the selected vertices. In practice, this limits
A. Preliminary discussion the choice to vertices where twd’s are involved. Note that

since we shall be working in thé=1 't Hooft gauge, dia-

_ The starting point of our paper, which has been alreadyyams with would-be Goldstone bosons must not be ne-
illustrated in several previous referen¢ésl], is the choice lected in all self-energieéin fact, also, those with ghosts

of a theoretical representation of four fermion neutral curren ust be consideradin the universalcomponent of the ver-

processes, strictly valid at one loop, that uses as theoretic%es, the would-be contribution vanish@s practice, it must

input in addition to the conventionally defined electric oy he retained in the not universal component of vertices
charge, the extremely high precision measurements per-

formed on top of theZ resonance at LEP1 or the SLAC W|tgf|nal bt.) palrsi.t t be ref lated " .
Linear Collider(SLC). The consequences of this attitude, in ur prévious statement can be reformuiated exactly using

which the usual parameté, is replaced byZ peak observ- a previous definition that can be found in Ref2]. In fact, it
” .
ables(this does not introduce any appreciable theoretical er\-NOUId be easy to show that the amountsil/ vertices that

o . must be added to the various self-energies is fully provided
ror [10]), are that all the physical information for the processby the so-called “pinch” componerjt.3], and for more de-

'Jr_l_—’ff_(WherEf is eithelr a charged lepton, in which case 155 e defer to Ref[13]. Otherwise stated, the combina-
f=l, orau,d,s,c,b quark; andfor the momenall external  ions of self-energies and “pinch” vertices that make up the

RG behavior inZa, R, V correspond rigorously to what
was called “gauge-invariant self-energies” by Degrassi and
INote that our theoretical formalism cannot be applied in itsSirlin [11,17.
present formulation to the production of pairs for the simple In terms of Feynman diagrams, we must then consider the
reason that the necessary LEP1-SLC information does not exist ( Set represented in Figs. 1 and 2. The full expression of the
cannot be producédThe study of this process requires modifica- various self-energies and vertices of Figs. 1 and 2 can be
tions that are being studied. easily computed. One finds it in the Appendix of Ri],
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FIG. 1. Self-energy diagrams far,Z gauge bosons. It must be
understood that % or Z running inside the loop is accompanied by
its corresponding Goldstone boson and ghost states.

and we shall not rewrite it here since several other new
lengthy formulas will have to be written. From those expres-

sions one derives in a straightforward way theversal(i.e.,
6, |f-independent asymptotic behavior ofA,, R, V,
which read, forg®s> u?,
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FIG. 2. WW triangle contribution to they-ff, Z-ff vertex.
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In the previous equationd\ is the number of fermion fami-
lies, andu is a “reference” scale that will be chosen fol-
lowing practical arguments. In our special case, where a ma-
jor part of the theoretical input is fixed at th& mass, it
seems rather natural to fix, correspondingly, the value
=M. This sets the scale at which the asymptotic expression
should become validj>>M?3 . Note that, in order to follow
consistently this choice, we should replace the theoretical
input «(0) with a(M3), even in the photonic component.
This does not introduce any substantial theoretical error,
given the available accuracy of tlitheoretical determina-
tion of a(M2) [14]. Finally, choosingu=M; suggests also

to identify the parameters?, ¢ of Eqs(1)—(3) with the
experimentally measured quantitisgM2) andc?(M2) for
which we shall take, following the common attitude, the
LEP1 and SLAC Large DetectdBELD) averagdg 15]:

s?(M2)=0.2315718). (4)

To verify that Eqs.(1)—(3) do indeed reproduce the run-
ning of the various standard model couplings is now straight-
forward. The relevant expressions can be found in previous
references, e.g[16]. In order to make this discussion rea-
sonably self-consistent we write the two following formulas:

<RG><M2> 32 o’
2521

3
®)

oR9(q?)= a(RG)(,uz)/

2
q
(43— 8N) [In—

(6)

where u is the arbitrary reference scale. To derive the cor-
responding expressions fog%, s|2 is immediate using
the corresponding definitions (s’=€%/g?, g3=g%/[1
—(e?/g®)D).

One can thus realize that the RG runningR{ig?, §) is
that of g and that of ¢/s)V{39(q? 6) is exactly that of
sirfé,, as implied by the def|n|t|ons of Refgl0,11]: i.e.,

9P(9?,0) =15 —2Q;s%(q%6) @)

9%(u?)

1+ 96,72

9RO (g?) =g?(u?) /

with
P92, 0) =sir Oy o+ SCT:yZ,If(qzy 0)

—sl(Mz)

1+ v Z(g? 0)} (8

We have therefore derived the universal RG component of

the gauge invariant functionﬁa, R, V that leads to an
asymptotic (linean logarithmic behavior. From a formal
point of view, the existence of these components is due to
the ultravioletdivergenceof the generating Feynman dia-
grams(this is, of course, cancelled in the physical subtracted

Here also the contribution of the corresponding Goldstone bosons i8ombinations In fact, the coefficients of the logarithmic

to be added.

terms Ing? are exactly the sam@vith opposite sighas those
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W or Z exchange, Fig. 3; antt) boxes, Fig. 4. Before per-
forming the explicit calculation of the asymptotic behavior
of the diagrams represented in Figs. 2—4, a brief preliminary
discussion is now suited.

Infrared (IR) divergences arise in perturbative calcula-
tions from regions of integration over the momentlm
wherek is small compared to the typical scales of the pro-
cess. This is a well-known fact in QED for instance, where
the problem of an unphysical divergence is solved by giving
the photon a fictitious mass which acts as a cutoff for the IR
divergent integral. When redbremsstrahlungand virtual
contributions are summed, the dependence on this mass can-
cels and the final result is finite. Thiglouble logarithms
coming from these contributions are large and, growing with
the scale, can spoil perturbation theory and need to be re-
summed. They are usually called Sudakov double logarithms
[7]. In the case of electroweak corrections, similar logarithms
arise when the typical scale of the process considered is
much larger than the mass of the particles running in the
loops, typically theW(Z) masq8]. The expansion parameter
that results is then d/4ms?)In?(q?/M3), which is already
10% for energies|/q? of the order of 1 TeV. This kind of
Rorrection becomes therefore particularly relevant for next
generation of linear colliderd.C’s [2]). In the case of cor-
rections coming from loops witliV(Z)'s, there is no equiva-
of the divergent termsc1/(d—4) in the various diagrams. lent of “bremsstrahlung” like in QED or QCD: th&V(Z),
When we turn to the task of evaluating other possibleunlike the photon and the gluon, has a definite non-zero mass
asymptotic logarithmic contributions, we expect that theseand is experimentally detected like a separate particle. In this
will actually be produced by ultraviolefinite quantities, way the full dependence on thg(Z) mass is retained in the
more precisely by non-universal vertices and boxes, as wiltorrections.
be discussed in the following section, Sec. Il C. In conclusion, for the process that we consider here, i.e.

"I~ —ff in the limit of massless external fermions at the
one loop level, we expect three kinds of contributions to
C. Sudakov-type contributions become “large” in the asymptotig®>Mg, , region:
to the gauge-invariant combinations (i) Single logarithmg In(s/x?)] coming from UV diver-

gences which can be reabsorbed by running of bare param-
From the previous discussion we have learned that the seters.

of one loop contributions that have not been considered yet (jj) Single logarithmg In(s/m2,,)] coming from the ana-
must be ultraviolet finite. This simple statement already en{ogue of QED collinear divergences.

ables us to write the list of the remaining quantities, which (i) Double logarithms[In(s/m,,)] coming from the

with our choice of¢=1 gauge must be either vertices or 4na10gue of QED divergences that are of IR and collinear
boxes. More precisely, we shall find hefa) the “non- origin.

pinch™ component of the v_ertices_with twi/'s where the The double logarithmic contributions come from vertex
pure non-RG behavior survives, Fig.(®) vertices with one  cqrrections in which one gauge boson is exchanged and from
(direct and crossedboxes with twoZ's or two W's. The

FIG. 3. SingleW or Z exchange contribution to thg—ff_, Z-ff
vertex. Here also the contribution of the corresponding Goldston
bosons is to be added.

ot 7 ot i single collinear logarithms come also from vertex and box
diagrams. The single UV logarithms affect self-energies and
Y w2 the vertex. B
Let us consider/(Z)ff vertices first. Using the definition
wz
e D=4 (017, (VIDP, + VIDP U (p,)
. ; . ; wt =vi(PD) Y (VI PL+VIRTPrIUs(P2
(@) (b -
o _ With P, g= e )
FIG. 4. WW and ZZ box contributions toe*e™ —ff. In the ' 2
WW case diagran{a) contributes forl 3;= —%, whereas diagram
(b) contributes forl 3y=+ 3. In the ZZ case both diagrams contrib-
ute. we make an asymptotic expansion of the various vertices.
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Subtracting the “RG divergent component” of the vertices (projecting on the “photon,” ‘Z” Lorentz structures is then

that has been discussed previously, we obtain

1 92
fL=igsQ— 1672 2gfL Fmz] (10)
1 9 Qs Flmy]
T16m2 2 Q - W
1T
- 2=G[m 11
629 0 [my] (12)

1 2
Y —i — 9 2
Vir=1g9sQ} 62 —9trFIMz]

167° c
12
and
2
g g
Vi = SO~ 1672 zgfL Fmz] (13
1 g°gin
T 67 2 gy LM
1 Tac?
STt ;fL G[my] (14)
2
g g
VfZR:ngR To.2 zngF[mz] (15
where
2 2 2

Flml=—4 Inq—2+ln2q—2, G[m]=-4 |nq—2. (16)
m m m

Here f is the external fermion and’ its isospin partner.

&
Moreover,ge(tyr=— Qt(11S% ity =Ta )= Qy(rys® and

Qi— Qe =2Tz¢, Tgr=—Tzfr.
For the boxes, defining

U_I(pl)'}’,uPL,RuI(pZ)Uf(pS)V#PL,RUf(p4)EﬁL,R®ﬁL,Fl7)

straightforwardl.
For the various components we find the following
asymptotic expansions:

A= 40f:4D¥V+ ;;f;[gng?L]Dz (18)

AR = 424[9 9fr]D? (19

AR = %[gﬁegﬁwz (20)
7S'C

ARRI1= ‘;f;[ngg%RJDZ (22)

where the functions that appear above are

2

1 ,9° 1 1+cosf ¢?
— o+ I In—
29> My 9* 2 Mg

W_
DY'=——In

(22

1 1+cosé q

Z__
D qll cosé MZ'

(23

Equations(10)—(23) are the main results of this paper. They
contain in a compact form the leading asymptotic Sudakov-
type (double and single logarithmicontributions. Using the
procedure given if10] it is now straightforward to compute
the corresponding contributions to the four gauge-invariant

we have computed the corrections from direct and crossedombinations that also depend on the chosen final fermion.
box diagrams as a sum of projected amplitudes on the leftfhese are written in the complete form that is given in Ap-

right chiral basis:
AEI(_),)Tf~PL®ﬁL+ AEFOz,)?fﬁL@BRJF AFBz(E,)ifE’RWBL

+ARXI Pr®Pg

pendix A. For the practical purposes of our paper we shall

now write the numerical expressions f,, R, V that are
obtained by summing the RG contributions of E¢B—(3)
to those given in Appendix A. Taking the value s given
in EQ. (4) leads to the following result:
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(/'LZ) 2 2 2 2
A 1,(0%,0)— —— (- 700+1067)In—2+600Ir?—2—+2 10|rW 070|n?—z
2 _ 2
200|n2 400|n—0080| a +o49|n—1 Osel i 24
M2, 2 "'MZ, cosf "M2 24
(MZ) q2 2 2 2
—— +
R (0% 60)— (2373—1528In 696I|”M— 432'”2MW 213|r’M— 071|rFMZ
+|6.6417 0|2+1327|1_C°SH| il 0.03 127, il 25
BTy +13.27 I Iy ~0.03In 56 "2 (29
) , o a(p?) q g’ 2
V,z1.(0%0)=Vz,,,(9%0)— ype (13.15-3. 63In——7 37Ir‘v|—2 1.191 ——0 35Ir}v|—
+0.121Ir? 2+ 364|n2 a +729|n—| a 0.12 In—1+C050I il 26
M2 Mz 7wz, 02ty (29
(M) 9° 9° q° 9 q°
A (9%, 6)— (— 7oo+1067)|n—2+500|W+033|r?—f+195|rM—2 065In?—2
—2.001r? a 4.001 Cosel q2 |1 Cosal a 2
—W ”T“ 631N cos6 M2 @
(,u) q° q° 9 9 q°
Ru(9?,60)— (2373—1528In——796InM— 399Ir12——259l +086Ir12—
lu W W Z
+/6.641r? 2+1327|n—+0089| il +016In—1 Cosal i 28
M3, 2 M2, M cose M2 8
) 5 (MZ) 9 9
V,z1u(0%0)=Vz, (0% 0)— (13.15-3. 63)In——5 SSIW 179In°———l oom—
0.33Irf 9 3.641r7 a 729|1 COsel a 063|1 COS0| 9 29
* W+ W+ gz T8Ntz @9
(/-LZ) q2 q2 2 q2 2
Vz,1u(0?,0)— ype (1315—363)In—2 792|n,\77 100Inz—2— 087|rw+029|r?—2
364|n2 a 729|n—+cosal il 016|n—C030| i 30
Mz, 2"z, P M coss M2 =0
- a(u?) q° 9 9
A, (0% 0)— (— 700+1067)In +4.001 +067|r?—+160| 053Ir12—
1 4 W\/I_ q\/l_ M2
2.001r i 2,002, a 0.77 205, a 31
et VI 2 nM\Z,\,Jr T+coso M2 3
a(u?) q° q° q° q° q
Ri4(9?,60)— |(23 73-15. 28In——8 961 365|r?——3 641 +121|n2
Id 4 'ﬁ M2, r}vl_ M2
Je6art L+ 1327170 029|n—1+cosa| il 32
Mg 2 "MZ, > Mcose M2 (32
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2 2 2 2 2 2

V,z14(0?,0)— i“) (1315—363)Inq7 373'W 240Ir}v|—2— 09lllw+030Ir?7
26410 47201 00 & ) g Ltcost o 33
| 0% Inyz 1 2 "2, Mrcoss M2 33

(MZ) q2 2 2 2 2

VZ}’,|d(q2!0)*> A

(1315—363)In—2 847IW 082Ir12—7 162|W+054lrﬁ—2

q? —cosf @ 1+cosd @
+| 36417 Szt 29— c08%, 9 > —0.19In—— In—s (34)
My 2 My 1+cosf M3

We have left three scale parametgrdM,y,M; as evidence ductiono,, the related forward-backward asymmeftyg ,

of the different origin RG equation§RGE9, W diagramsZ  and the cross section for “light't,d,s,c,b productionos.
diagramg of the various contributions. In the first two lines  As we anticipated in the Introduction, we shall treat quark
of each expression there are the contributions coming fronproduction in the massless quark limit. This will introduce a
bubbles and vertices. In the RGE part of them, the contribueertain approximation in the treatment of the cross section
tions of fermionic and bosonic degrees of freedom are leffor b productionoy, where the effects of the non-vanishing
separated. In practice for numerical estimates we  set top quark mass in the asymptotic regime must be carefully
=M,=91.187 GeV. Finally, the contributions from the estimated. Since the contribution of, to o5 is relatively
WW andZZ box diagrams are systematically grouped in thesmall, we shall not treat this extra effect in this paper. We

last three terms inside the square brackets. shall rather postpone a complete rigorous discussiom,of
Equations (24)—(34) allow us to derive the leading effects to a forthcoming article.
asymptotic behavior of all relevant observablég. cross Collecting all our numerical formulas leads to the final
sections and asymmetrjesf the considered four-fermion asymptotic expressions of the previous observables, which
process. This will be done in the following section. read (N=3 is the number of fermion families angd®=M?2
~M{)

. ASYMPTOTIC EXPRESSION

OF THE PHYSICAL OBSERVABLES o= 0_2 (7 79N - 20. 58|nq 435, 27|
Starting from Eqs(24)—(34) it is now straightforward to
derive the asymptotic behavior of any given observable. In q2 2 q?
order to proceed in a systematic way, we shall start from the —4.59 Ir?M—2+ 4.79 In’\?— 1.43 InzW +- ”
very general formula w z z
(36)
d0'|f 4ar 2 3
Jcoss~ 3 Vi §(1+co§6)[(1—PP’)UH o2
AFB'lL:AEBY# —| (0.5 5. 90)In +10.19 m—
3
+(P'=P)U, ]+ Zcosa[(l—PP’)Ulz % % %
—0.08IF —5+1.25In— —0.004 Irf—— + - - -
MW nﬁ% MZ
L. . . 2
!vhlfere tl?e (1(||L:)51nt|tl(?ggij are gef|ned in terms of 05205 (9 8aN— 42, 66Inq 44658
A RAD VI V8D in Appendix B,P,P’ are the(con- Qi
ventionally defineyl longitudinal polarization degree of the 2 2 2
in_itial lepton and antilepton, andl; is the color factor for the —6.30 |rgq_2+ 7.25 Ir}% —203 |nzq_2 T } } _
ff channel which includes the appropriate QCD corrections w z z
to the input. (38)

From the previous equation, and from E¢&4)—(34), we
can now derive the asymptotic expansion of the relevant ob- The precise definition of the “Born’(B) quantities that
servables. We shall first consider the case of unpolarizedppear in these equations will be given in the forthcoming
beams and concentrate our attention on a set of “typical’section. The ellipses that appear in the brackets refer to the
observables that one expects to measure at future collidersnon-leading” terms. These could either be constants or
These will be the cross section for muéand/or tad pro-  O(1/g?) components whose asymptotic effect vanishes. At
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non-asymptotic energies, such terfirs particular the con- 40
stant$ should be discussed; we shall return to this point in

the following section.

Next, we consider the simplest case of full lepton longi-

PHYSICAL REVIEW D 61 073005

—— RG

- --- Sudakov linear
—-— Sudakov squared
Full

tudinal polarization and treat one simple observable: the lon- 20| TR
gitudinal polarization asymmetry for final lepton production, .
AR, - Using the same procedure leads to the following ex- 8

pressions: :g |
o, @ @ %
ALR”LL:ALR,,LLJ’_ E (182N—1979In?+3076lm § \\\\\\
9 9 9z 20 | Tl ,
—3.52IFf —5+0.78In—5 —0.17 I — + - - - Tl
3.5 W\/ 0.78 HN?Z 0 sz , —— \
%9 40 2 s 6 8 10
where the “Born” asymmetry will be defined later on. E (TeV)

Equations(36)—(39) are the physical predictions of this o o _
paper. Looking at their expressions one immediately notices FIG. f 7Logai|th[n|c contributions to the asymptotic cross sec-
the following main features: tiono(e’e —u"u") from Eq.(36).

(@) The coefficient of the RG linear logarithm is much
smaller than that of the Sudakov one. A naive expectation oguracy level, we can proceed following two different criteria.
an asymptotic behavior essentially reproduced by the R@he first one is a global one: if the tot@(«(u)/ ) correc-
logarithms would be therefore, at this stage, completeiftion remains below the 10% threshold, we can consider the
wrong. In other words, the high energy behavior of SM ob-perturbative expansion to be under control and the one loop
servables is only partially reabsorbed by the running of theapproximation to be a satisfactory one. The second point of
coupling constants. view, the most correct in our opinion, is that in which one

(b) The role of the Sudakov squared logarithm is numeri-requires thagll the different logarithmic effects individually
cally relevant in almost all the considered observables, wittsatisfy the previous 10% criterion. Starting from these re-
the exception of the muon asymmetry where it almost vangquirements, we have therefore examined how the relative
ishes. size of the various components in the considered observables

(c) Both the linear and the quadratic logarithmic termsvaries with energy, in an energy range where our asymptotic
are, separately taken, relatively “large.” However, at theexpansion might be reasonably accurate. Naively we would
considered one loop level, they have opposite sign and thexpect that this corresponds orientatively to energies of
overall contribution is smaller. This raises a few importantabout 1 TeV and beyond. In fact, we have verified by an
questions that we shall try now to investigate. exact one loop numerical calculation of the various observ-

The first question is that of whether the various logarith-ables, where all the contributions from the various diagrams
mic terms have separately a physical meaning. In our opinare retained without approximation, that the rigorous expres-
ion, at the considered one loop level, this must be evidentlgions are reproduced by our asymptotic expansions within a
the case. In fact, since the overall expansion is necessarifgw percent at most, in the energy range between 1 TeV and
gauge independent, the different powers of the logarithnmlO TeV (larger energy values seem to us not realjstwe
must satisfy the same requéabte that this applies, in gen- can therefore reasonably conclude that, in this energy range,
eral, to thesumof the separate contributions from vertices Egs.(36)—(38) contain the bulk of the one loop electroweak
and boxes A priori, one expects that a gauge-independengorrections, and can be used for a meaningful discussion of
quantity might(should have a physical meaning. For the RG the size of the various effects.
component, this is connected with the running of the cou- The results of our analysis are shown in Figs. 5-8. As one
plings. For the remaining terms, their origin is related, as wesees from inspection of these figures, the situation is quite
have seen previously, to the fact that a final siatées sup-  different for the two criteria and for the various observables.
posed to be experimentally detectable. To be more precise, we list the various cases separately:

The second question is that of the reliability of the one (& o, . Here the global relative effect remains below the
loop perturturbative electroweak corrections to the consid10% limit in the full range 1 TeW Jg?<10 TeV. How-
ered observables. This is fixed by the aimed theoretical acver, the individual Sudakov components both cross the
curacy, which in turn is dictated by the expected experimen*safety limit” practically in the full range.
tal precision. For futurd *1~ colliders we shall stick to a (b) 5. Here the global relative effect rises beyond the
conservative expectation of about 1 % experimefitala- “safety limit” at energies larger than 4 TeV. The separate
tive) accuracy. In this spirit, we shall assume a “reliability Sudakov contributions are over the limit in the full consid-
barrier” for one loop effects at the relative 10% level; of ered range.
course, these numbers can be easily changed without modi- (c) Agg , . Here the global relative effects remain always
fying the philosophy of the approach. Having fixed the ac-below the limit. The linear Sudakov crosses the limit at about
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FIG. 8. Logarithmic contributions to the asymptotic asymmetry

FIG. 6. Logarithmic contributions to the asymptotic asymmet
g ymp y WALR’M from Eq. (39).

Agg,, from Eq.(37).

energy region below. Here an asymptotic expansion is cer-
tainly less justified. We shall discuss the emerging picture in
the next section.

3 TeV (the quadratic one is almost absent in this ¢ase

(d) ALg,, - In principle, both global and individual rela-
tive effects are systematically well beyond the 10% limit in
the full range. A word of caution is, though, suited since for
this special observable the Born approximation is particu- IV. SIMPLE FORMULA FOR CROSS SECTIONS
larly small (=0.07). Moreover, the most important one loop AND ASYMMETRIES BELOW 1 TeV
effects are produced by diagrams, which only contribute

to the left-handed cross section and generate therefore paa(—sl?n t?sticpf;l(::]ssiosr??‘g(r)rz/sar\i,;ishggSes/zrtg\llgg aan dor\:vee lﬁ;\?e
ticularly large effects in this observable. ymp P

The conclusion of this preliminary investigation is that, in explicitly shown in Sec. lll that in the energy range beyond 1

the considered energy range beyond 1 TeV, the validity Ofrev, where the expansion is able to describe well the one

the one loop SM electroweak expansion is debatable. Théjoonpig%r(r)fcetﬁgg’n:h_?hreesl':lygmﬁfsfgﬁsovcgulﬁjogeapg:ggglgﬂ'
necessity of a two loop calculation, leading if possible to a : P y

resummation af Sudakov effects, appears to us strongly mc;gelevant f°f a possible future muon collider, operating in an
tivated. energy region of a few TeV. On the other hand, the simplic-

Having examined the situation that occurs in the region'ty and the well-established physical interpretation of the

beyond 1 TeV, we want now to turn our attention to thevanoys'terms O.f the expansion pushes us to investigate the
possibility of using them in the energy rangelow1 TeV,

where, in principle, the validity of an asymptotic expansion

50

. RG' ' ' is not guaranteed. In particular, we are interested in simple
---- Sudakov linear formulas that describe cross sections and asymmetries e.g. in
ol ey sared T the energy range 300 .Geil\/az<1. TeV, where the future
linear colliders(LC'’s) will be operating at an energy that we
assume to be of 500 GeV. For what concerns the experiment

accuracy, we shall stick to the previous conservative assump-
tion of a 1% precision, which is rather pessimistic compared
to the latest expectationd].

Our empirical procedure has been the following. We have
first plotted theexactSM predictions foio, andAgg , in the
considered energy regida full discussion ofos, which re-
quires a rigorous calculation of the top quark effects, will be
given in the annunciated following papeiThe calculation
has been made using the prograapazo[3].2 We have then
compared theropAzo one loop results with those of the

iy
o
T

Relative % deviation on &
L
[=]
T

=30 -

_50 L I L L
o]
E (TeV)

FIG. 7. Logarithmic contributions to the asymptotic cross sec- 2We thank G. Passarino for kindly providing us with the numeri-
tion o(e*e” —hadrons) from Eq(38). cal data.
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FIG. 9. Comparison between the asymptotic expressions fandAgg , , Egs.(36), (37), and the exact one loop calculation yrAzo.

simple asymptotic expansion, Eq86)—(38). A priori, we UB—UB W+UB 72+UB zz
expect that “some” modifications of our formulas are un-
avoidably requested. Ama®(M2) , Ty

The results of our first comparison are shown in Fig. 9. As =T 8ma(Mz)~
one sees, the difference between the full calculation and the q ‘
logarithmic approximation remains impressively practically 2_ 2 ~2

. . . q M z U
constant in the whole considered energy range. Tihisur % -
opinion remarkable fact allows us to conclude that the sim- (°—M2)2+T2M2 1403
plest modification of the logarithmic expansion obtained by
. .. . } FZ 2

adding a constant term seems sufficient to obtain a very ac +127_r_ q (42)
curate agreement. M2 (q2—M2)2+T2M2

For the two observables we therefore write
with v,=1— 4sI (Mz) For the forward-backward asymme-

try we write
o, —0' 1+—(c +logarithmg (40
B
OFp,
Als = (43
o O-M
Arg= AFB+ yp= (cgg+logarithms (41) with
B B,yZ B,ZZ
g =0 +o
where “logarithms” stands for the logarithmic terms of Egs. B TFB.T TFB.
(36)— (38) and where, in agreement with our overall philoso- r, q°— M% 1
phy, 0' andAFB are the Born level expressions in which =6ma(M3 )M 2
v z (q?°=M2)2+T2M2 1+72
we have setr= a(MZ) They are obtained, in a straightfor-
ward way, from the expressions given in E¢B2)—(B5), i F2 G 72
putting all 1-loop terms\a”, R|f, V,zit, Vz,r €qual to + 77— M2)2+ T2M2 ~5.2"
zero and replacing:(0) by a(M3). In the case of the lep- MZ (6%~ M2)*+TZMZ (1407
tonic cross section we used (44)
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The choice of the constants is, to some extent, arbitrary. We V. CONCLUSIONS

have fqllowgd the rather pragmatic gttltude of op.t|m|zm.g OUr |n this paper we have determined the energy growing
approximation in the 500 GeV regioftC domain. This  glectroweak logarithms of RGJV) and SudakovIR) origin
fixes the value$17] that appear in the asymptotic expansions of fouassless
fermion processes. We have shown tlitear and qua-
dratic Sudakov-type logarithms are numerically much more
important than RG-driven logarithms in the TeV region.
C,=—53.87, Cpp=—20.82. (45 Moreover, although the overall effect on the observables is
of the order of a few percent, the single contributions are of
the 10% order in this region. This supports the idea that next
The comparison of our simple effective expressions, Eqsorder calculations and/or resummations are needed. On the
(36)—(44), with TopAzo are shown again in Fig. 9. As one other hand, our simple one loop expansions might reveal to
sees, between 300 GeV and 1 TeV, the difference betwedpe unexpectedly useful in the energy regioglow 1 TeV,
the two calculations is at the permille level for both consid-since the correct energy dependence of the observables
ered observables. Therefore, our approximate expressio§§€ms to be properly described.
could be safely used to perform, e.g., preliminary analyses of 1€ fact that a satisfactory description of electroweak cor-
possible effects of competitor electroweak models. rections at asymptotic energies requires more complicated

. : . descriptions beyond the “naive” one loop approximation
As a final comment, we would like to notice that _the fact would not be, in our opinion, a surprising feature for a gauge

) . ) (?heory. For QED and QCD similar problems of higher order
exact corrections in #elatively) I.OW energy range can be . calculations and resummation have been notoriously already
due to the absence of structure like resonances in that_reg"fﬂeformed. Our personal impression is that a proper descrip-
(in our analysis we have ignored the small peak attthe tion of the genuine electroweak sector of the SM at the future
production threshold which is negligible in any case for therelevant energies in the TeV region requires an analogous
considered observables remarkable effort.

APPENDIX A: SUDAKOV-TYPE CONTRIBUTIONS

Final fermions f£b:

2 2 2— 2__ 2) 2 2
T(S) (2 a q o P o U —Ug¢ q a2 q
Al (a%,0)— —[6- 8y 25d]|nm\2,-v+ 12, (But280)In W\/*‘w |nm§ In Ve
AP T TP Y P PR LA LN
F LV VA L R VS v e
a Lo 12| ] q2I 1+cosé AL
2567Q;s%cd| (1 Ui (v Ingeing o A
3a | s? 2s? q®
R (02, 0)—— 2¢2- 5 —(1——)5 —(1——)5 In—p
It Ams?| m 3/ 3 /% M,
@ s? 2s? q° a{(2+3v|2+3v%)/ q° q°
- +1- =6+ 1- — 2 — —In?—
ams? Ox |1 3)5“ (1 3 )5" Mz T Ganscr |3z M%)
+ac2'|2q2+2| qzll_COS(9 S5, + 6, +|2q2+2I q2|1+cos¢95
27 | Mg, T2 Mz, Ot ) | Iy F2Ingz I A
| a I q2I 1+ cosé ”
312522 V1Y M2 M+ coso (A2)

3The simplest example would be provided by a class of models with anomalous triple gauge coi#B@js) [18]. Here, the effect of
the models is that of introducing linear terms of the tgPeA 2 [19], thus changing the energy dependence of the observables as a function

of the AGC parameters. Another application could be one that requires integration over a certain fraction of the energy range involving the
product of the cross section by known weight functions, like those encountered when computing QED convolution. This could be performed

in a rather economical way.
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2

VS (g2 - G- 12c2+2¢3( 5, + 25d))|nMﬂ7 -
W

1+ 2 2(8,+26 ))l 2 qz}
=C n®—s-
3 u d MW

yZIf
avi(1-v) alQivy @ _ 0 , @ g> 1—cosé
_( 1287533 + 8msc 3| —In W +2— In M\2N+2|HWV|I’]T (5#-1-5(,)
n |2q2 ol q2I 1+cosé 1 s q2| 1+ cosd N
" M\ZN M\ZNn 2 3 167 SSC3 Uf( UI)an n1+co50 ( )
q2
VE)(02,0)— 5 [3— 1267 28%(5, +25d)]|nT (1__5(5 +25d))|n2W}
W.
all-vi) = av an L) ac q° g®> 1-cosf
_(128n|Qf|s3c3‘ gmsc)| 2! M2 In m2) " 2as In? M&,”'”M_W'”T (8,+ 84)
+ In? il +2|n—q2| 1+cos) |, __ @ ( 12| q2 1+ cos WV
VPR vl R ooy Rl v ey (A%)

wheres, , g=1 for f=pu,u,d and 0 otherwise and;=1-4s? v;=1—4|Q;|s%.

In each of the above equations, we have successively added the contributions coming from triangles containing one or two
W, triangles containing ong, from the WW box and finally from theZZ box.

APPENDIX B: CONTRIBUTIONS TO THE VARIOUS OBSERVABLES

The general expression of thél ~— ff cross section can be written as

d 3 3
dc‘;'sfaz?/\/fqz §(1+co§0)[(1—PP’)U11+(P’—P)U2]_']+Zcose[(l—PP’)U12+(P’—P)U22']] (B1)
where
@2(0 2 2 ~~
(0)Q? q _Mz {31“} Z[ 3T’ } VUt
Uy——a—[1+2A00 6)]1+2[a(0
11 q [ a(q )] [a( )|Qf|] Z)2+ MZFZ)LMZ N¢M, (1+U )1/2(1+ )1/2
3r,][ 3ry
~ |Qf| Mz || NViM;
x| 1+A0Ma(g? 0)—R(q? 0) - 4s1c/{ = VD (0% 0) + v“f) 2.0
a(q%,0) (9%, 60)—4sc Z(0°%,0) (9°,6) ( 2 M2)7+ M2I2
(1) 42 v (1) o2 f|Qf| (1) 2
x| 1-2RM(q?,0) - 8si¢){ —=; VD (9%, 0)+ ——-VED(q?,0) (B2)
1+vj (1+v%)

U1,=2[a(0)|Q4l] il [3_11}1’2 S } [1+A00a(g?,6)-R(g?,0)]
2 e?(P=MD?+MITH)[Mz| [NMiMz] (145212147212 ' ’
3r,[ 3ry
M, || VM, 4v|v4

1 |Qf|
_ () y2 _ - (|f) (|f)
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Up=2[(0)|Qy]] 30 m[ S o
A AP (= MDT+MITD M| [NiMz| (115202143212
[3r, 3rf}
% 1+Z(|f)a(q2,0)—R(”)(qz,ﬁ) S| ||Qf|v(|f)( 2 0)‘| MMZ 2U~|’
v (2= M2)2+M2I2| (1+72)
(1) 42 (1) 42 f|Qf| (If) 2
x| 1-2R1D(g?,0)—4s,c;{ =~ V(9% ) + J(0?,0) (B4)
v (1+vf)
Ugo=2[a(0)|Q(l] il 30 1/2[ o o
f— a — = =
* MaP(@P =MD+ MITDH M| [NiMz| (145D M31+72)22
3r.} 3l
x| 1+A0Ma(g? 6)—RN(g? 6) - v<'f>( Sy MMz 21
v (q*=M2)?+MITZ| (1+v7)
_op(f)(q2 o) _ 2v| (If) z |Qf| viD (g2
U Ut

HereP,P’ are thelongitudinal polarization degrees of the initial lepton and antilepton, Afads the color factor for thdé f
channel which includes the appropriate QCD corrections to the input.
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