
PHYSICAL REVIEW D, VOLUME 61, 073005
Logarithmic expansion of electroweak corrections to four-fermion processes in the TeV region
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Starting from a theoretical representation of the electroweak component of four-fermion neutral current
processes that uses as theoretical input the experimental measurements at theZ peak, we consider the
asymptotic high energy behavior in the standard model at one loop of those gauge-invariant combinations of
self-energies, vertices and boxes that contribute all the different observables. We find that the logarithmic
contribution due to the renormalization group running of the various couplings is numerically overwhelmed by
single and double logarithmic terms of purely electroweak~Sudakov-type! origin, whose separate relative
effects grow with energy, reaching the 10% size at about 1 TeV. We then propose a simple ‘‘effective’’
parametrization that aims at describing the various observables in the TeV region, and discuss its validity both
beyond and below 1 TeV, in particular in the expected energy range of future linear electron-positron~LC! and
muon-muon colliders.

PACS number~s!: 12.15.Lk, 13.10.1q
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I. INTRODUCTION

The construction of future lepton-antilepton (l 1l 2) col-
liders in energy ranges varying from a few hundreds of G
~LC! to a few TeV~muon collider! is being thoroughly in-
vestigated at the moment@1,2#. One of the key points of al
existing proposals is the availability of extremely high lum
nosities. These would lead to an experimental accuracy

standard four fermion processes~i.e. l 1l 2→ f f̄ ) comparable
with that obtained at theZ peak, thus allowing high precisio
tests of electroweak models at one loop to be performe
the same spirit.

On the theoretical side, the possibility that such extrem
precise measurements are performed requires imperat
the existence of suitable computational programs that
able to provide numerical predictions of comparable ac
racy, both for the standard model~SM! case and, possibly
for electroweak models of different origin. For CERNe1e2

collider LEP2 physics such programs already exist at the
loop level for the SM@3# and, at least in principle, thei
extrapolation to higher energies should be conceiva
There are, though, in our opinion, at least two points t
deserve special attention in this respect.

The first one is the importance of understanding the r
of the several terms that contribute the various observa
when the energy becomes very large. At theZ peak, the most
spectacular one loop effects were provided by fermion c
tributions to gauge boson self-energies~the Higgs effect is
notoriously@4# screened!, with the exception of the signifi-
cant contribution due to the celebratedZbb̄ vertex@5#. When
the energy increases and moves towards the 1 TeV reg
this fermion dominance is apparently weakened, and bos
effects of vertex and particularly of box type appear to ri
as first stressed in a previous paper@6#. To confirm this rise
and to understand in a simple way its physical origin wo
be, in our opinion, an important achievement both within
0556-2821/2000/61~7!/073005~14!/$15.00 61 0730
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standard model framework and beyond it.
The second point that might be worthwhile to examine

that of the reliability of a perturbative description at the o
loop level when the energy becomes very large, say bey
the 1 TeV orientative value. In particular, a problem th
might arise is that of having to perform a resummation t
takes into account higher order leading effects, as in the c
of the running ofaQED . In fact, it is well known that this
problem is present in QED and QCD diagrams when Su
kov logarithms of the type lnq2/m2, ln2q2/m2 ~whereAq2 is
the available energy andm is the mass scale of the diagram!
appear in vertices and boxes@7#. In the standard model, loga
rithms of a similar type~usually called ‘‘of Sudakov type’’!
are also known to appear@8,9#. In Ref. @9# the leading
asymptotic behavior growing like ln2q2/MW,Z

2 was calculated
for the relevant observables. The physical origin of the
double logarithms was also discussed. In this paper we
calculate the subleading terms, growing like a single lo
rithm lnq2/MW,Z

2 , whereMW,Z are the physical gauge boso
masses. If the relative contribution coming from these d
grams became large, typically beyond a ‘‘reasonable’’ p
centage amount~which could also be quantitatively fixed b
knowledge of the requested theoretical accuracy!, the neces-
sity for a resummation would become stringent~and, to our
knowledge, this study has not yet been performed!.

The aim of this paper is precisely that of discussing
two previous points. In particular, we shall perform in Sec
an explicit calculation of the coefficients of the three types
logarithms that dominate the large energy behavior of
different one loop gauge-invariant combinations that ma
up all observables of the process. These come from
renormalization group~RG! running of the gauge coupling
and from the typically electroweak Sudakov-type effec
The first ones generate linear logarithms, the second o
linear and quadratic logarithms. As we shall show, the
merical size of the various Sudakov logarithms largely ov
whelms that of the RG ones. Technically speaking, the m
contribution turns out to be provided by diagrams withW
©2000 The American Physical Society05-1
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bosons~those with aZ boson are relatively less important!,
more precisely by special combinations of the non-unive
components of vertices and boxes~‘‘oblique’’ self-energies
are only contributing the RG component!. Thus, at very high
energy, the relevance of ‘‘non-oblique’’ contributions a
pears essential, in opposition to the situation that is me
the Z peak.

Having computed the various gauge-invariant combi
tions, we shall then evaluate in Sec. III the asymptotic
pression of all the possible observables~i.e. cross sections
and asymmetries!. Here the reliability of the one loop expan
sion appears to depend critically on the c.m. energy of
process. Typically, we find that, beyond a certain value t
depends on the chosen observable, theseparate gauge-
invariant relative effects begin to cross the dangerous 1
value ~orientatively chosen as a realistic limit!. This makes
the validity of the approximation rather doubtful if the r
quested precision must be below the 1% level, and indic
the need for a proper resummation already in the TeV ran

As a by-product of our calculation, we shall propose
Sec. IV a simple ‘‘effective’’ parametrization of all observ
ables, aiming to provide a satisfactory approximation of
one loop component in the energy range between 1 TeV
a few TeV. We shall also compare this expression with
complete SM calculations in the region below 1 TeV a
discuss its possible practical interest and its limitations
this not rigorously asymptotic regime, in the particular the
retical framework provided by the SM. A final discussio
given in Sec. V will conclude the paper, and Appendixes
and B will contain the analytic expressions of the most r
evant one loop diagrams~self-energies, vertices and boxe!
and the way they contribute to the various observables.

II. ASYMPTOTIC EXPRESSIONS
OF THE GAUGE-INVARIANT RELEVANT

COMBINATIONS AT ONE LOOP

A. Preliminary discussion

The starting point of our paper, which has been alrea
illustrated in several previous references@6,10#, is the choice
of a theoretical representation of four fermion neutral curr
processes, strictly valid at one loop, that uses as theore
input in addition to the conventionally defined electr
charge, the extremely high precision measurements
formed on top of theZ resonance at LEP1 or the SLA
Linear Collider~SLC!. The consequences of this attitude,
which the usual parameterGm is replaced byZ peak observ-
ables~this does not introduce any appreciable theoretical
ror @10#!, are that all the physical information for the proce
l 1l 2→ f f̄ ~wheref is either a charged lepton, in which ca
f [ l , or au,d,s,c,b quark,1 and for the momentall external

1Note that our theoretical formalism cannot be applied in

present formulation to the production oft t̄ pairs for the simple

reason that the necessary LEP1-SLC information does not exist t̄
cannot be produced!. The study of this process requires modific
tions that are being studied.
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fermions are supposed to be massless! is provided by four
different functions ofq2 andu ~the squared c.m. energy an
scattering angle!. The first one is the ‘‘photonic form factor’’
Da,l f (q

2,u) which is subtracted atq250, whereas the three
other ones,Rl f (q

2,u), Vl f
gZ(q2,u), Vl f

Zg(q2,u) correspond-
ing to the one loopZZ, gZ andZg transitions, are subtracte
at q25MZ

2 . All four functions are separately gauge indepe
dent, as discussed in Ref.@10# on the basis of previous ob
servations made by Degrassi and Sirlin@11,12#. These func-
tions receive two types of one loop contributions: univer
~i.e. l f -independent! ones, coming from fermionic and
bosonic self-energies as well as from a part of some ve
diagrams, and non-universal ones, coming from the rem
ing parts of the vertex diagrams and from the box diagra
As we shall see in the next subsection, some universal c
tributions correspond to the running ofa, gZ

2 and sW
2 . The

other contributions lead asymptotically to the ‘‘Sudako
type’’ terms that we shall explicitly review in Appendix A
The way these four functions enter the variouse1e2→ f f̄
observables will be shown in Sec. III and in Appendix B.

B. RG contributions to the gauge-invariant combinations

Following our previous discussion, we shall first consid
the contributions toD̃a , R, V from the class of diagrams
that are supposed to reproduce the canonical RG asymp
behavior. In theRj gauge in which we are working there wi
be no contributions from the~finite! boxes to this sector. A
simple request will select the possible contributions fro
vertices. In fact, the various combinations that we consi
are all, as we stressed several times, gauge independen
the contribution from self-energies is not such, owing to t
set of bosonic ‘‘bubbles’’ that must be considered. Theref
extra terms from vertices must be properly added. Since s
energy contributions are of universal type, the same prop
must obtain for the selected vertices. In practice, this lim
the choice to vertices where twoW’s are involved. Note that
since we shall be working in thej51 ’t Hooft gauge, dia-
grams with would-be Goldstone bosons must not be
glected in all self-energies~in fact, also, those with ghost
must be considered!. In theuniversalcomponent of the ver-
tices, the would-be contribution vanishes~in practice, it must
only be retained in the not universal component of vertic
with final bb̄ pairs!.

Our previous statement can be reformulated exactly us
a previous definition that can be found in Ref.@12#. In fact, it
would be easy to show that the amount ofWW vertices that
must be added to the various self-energies is fully provid
by the so-called ‘‘pinch’’ component@13#, and for more de-
tails we defer to Ref.@13#. Otherwise stated, the combina
tions of self-energies and ‘‘pinch’’ vertices that make up t
RG behavior inD̃a , R, V correspond rigorously to wha
was called ‘‘gauge-invariant self-energies’’ by Degrassi a
Sirlin @11,12#.

In terms of Feynman diagrams, we must then consider
set represented in Figs. 1 and 2. The full expression of
various self-energies and vertices of Figs. 1 and 2 can
easily computed. One finds it in the Appendix of Ref.@6#,
5-2
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LOGARITHMIC EXPANSION OF ELECTROWEAK . . . PHYSICAL REVIEW D61 073005
and we shall not rewrite it here since several other n
lengthy formulas will have to be written. From those expre
sions one derives in a straightforward way theuniversal~i.e.,
u, l f -independent! asymptotic behavior ofD̃a , R, V,
which read, forq2@m2,

D̃a
(RG)~q2,u!→ a~m2!

12p F32

3
N221G lnS q2

m2D ~1!

R(RG)~q2,u!→2
a~m2!

4ps2c2F20240c2132c4

9
N

1
122c2242c4

6 G lnS q2

m2D ~2!

c

s
VgZ

(RG)~q2,u!5
c

s
VZg

(RG)~q2,u!

→ a~m2!

3ps2 F10216c2

6
N1

1142c2

8 G
3 lnS q2

m2D . ~3!

FIG. 1. Self-energy diagrams forg,Z gauge bosons. It must b
understood that aW or Z running inside the loop is accompanied b
its corresponding Goldstone boson and ghost states.

FIG. 2. WW triangle contribution to theg-f f̄ , Z-f f̄ vertex.
Here also the contribution of the corresponding Goldstone boso
to be added.
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In the previous equations,N is the number of fermion fami-
lies, andm is a ‘‘reference’’ scale that will be chosen fo
lowing practical arguments. In our special case, where a
jor part of the theoretical input is fixed at theZ mass, it
seems rather natural to fix, correspondingly, the valuem
5MZ . This sets the scale at which the asymptotic express
should become valid,q2@MZ

2 . Note that, in order to follow
consistently this choice, we should replace the theoret
input a(0) with a(MZ

2), even in the photonic componen
This does not introduce any substantial theoretical er
given the available accuracy of the~theoretical! determina-
tion of a(MZ

2) @14#. Finally, choosingm5MZ suggests also
to identify the parameterss2, c2 of Eqs.~1!–~3! with the
experimentally measured quantitiessl

2(MZ
2) andcl

2(MZ
2) for

which we shall take, following the common attitude, th
LEP1 and SLAC Large Detector~SLD! average@15#:

sl
2~MZ

2!50.23157~18!. ~4!

To verify that Eqs.~1!–~3! do indeed reproduce the run
ning of the various standard model couplings is now straig
forward. The relevant expressions can be found in previ
references, e.g.,@16#. In order to make this discussion rea
sonably self-consistent we write the two following formula

a (RG)~q2!5a(RG)~m2!YH12Fa (RG)~m2!

12p S 32

3
N221DG lnq2

m2J
~5!

g2(RG)~q2!5g2~m2!YH11Fg2~m2!

96p2 ~4328N!G lnq2

m2J
~6!

wherem is the arbitrary reference scale. To derive the c
responding expressions forgZ

2 , sl
2 is immediate using

the corresponding definitions „sl
2[e2/g2, gZ

2[g2/@1
2(e2/g2)#….

One can thus realize that the RG running ofR(q2,u) is
that of gZ

2 and that of (c/s)VgZ
(RG)(q2,u) is exactly that of

sin2uW as implied by the definitions of Refs.@10,11#: i.e.,

gVl
(1)~q2,u!5I 3L22Qlsl

2~q2,u! ~7!

with

sl
2~q2,u!5sin2uW,01scF̃gZ,l f ~q2,u!

5sl
2~MZ

2!F11
c

s
Vl f

gZ~q2,u!G . ~8!

We have therefore derived the universal RG componen
the gauge invariant functionsD̃a , R, V that leads to an
asymptotic ~linear! logarithmic behavior. From a forma
point of view, the existence of these components is due
the ultravioletdivergenceof the generating Feynman dia
grams~this is, of course, cancelled in the physical subtrac
combinations!. In fact, the coefficients of the logarithmi
terms lnq2 are exactly the same~with opposite sign! as those
is
5-3
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M. BECCARIA et al. PHYSICAL REVIEW D 61 073005
of the divergent terms}1/(d24) in the various diagrams
When we turn to the task of evaluating other possi
asymptotic logarithmic contributions, we expect that the
will actually be produced by ultravioletfinite quantities,
more precisely by non-universal vertices and boxes, as
be discussed in the following section, Sec. II C.

C. Sudakov-type contributions
to the gauge-invariant combinations

From the previous discussion we have learned that the
of one loop contributions that have not been considered
must be ultraviolet finite. This simple statement already
ables us to write the list of the remaining quantities, wh
with our choice ofj51 gauge must be either vertices
boxes. More precisely, we shall find here~a! the ‘‘non-
pinch’’ component of the vertices with twoW’s where the
pure non-RG behavior survives, Fig. 2;~b! vertices with one

FIG. 3. SingleW or Z exchange contribution to theg-f f̄ , Z-f f̄
vertex. Here also the contribution of the corresponding Goldst
bosons is to be added.

FIG. 4. WW and ZZ box contributions toe1e2→ f f̄ . In the
WW case diagram~a! contributes forI 3 f52

1
2 , whereas diagram

~b! contributes forI 3 f51
1
2 . In theZZ case both diagrams contrib

ute.
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W or Z exchange, Fig. 3; and~c! boxes, Fig. 4. Before per
forming the explicit calculation of the asymptotic behavi
of the diagrams represented in Figs. 2–4, a brief prelimin
discussion is now suited.

Infrared ~IR! divergences arise in perturbative calcul
tions from regions of integration over the momentumk
wherek is small compared to the typical scales of the p
cess. This is a well-known fact in QED for instance, whe
the problem of an unphysical divergence is solved by giv
the photon a fictitious mass which acts as a cutoff for the
divergent integral. When real~bremsstrahlung! and virtual
contributions are summed, the dependence on this mass
cels and the final result is finite. The~double! logarithms
coming from these contributions are large and, growing w
the scale, can spoil perturbation theory and need to be
summed. They are usually called Sudakov double logarith
@7#. In the case of electroweak corrections, similar logarith
arise when the typical scale of the process considere
much larger than the mass of the particles running in
loops, typically theW(Z) mass@8#. The expansion paramete
that results is then (a/4ps2)ln2(q2/MW

2 ), which is already
10% for energiesAq2 of the order of 1 TeV. This kind of
correction becomes therefore particularly relevant for n
generation of linear colliders~LC’s @2#!. In the case of cor-
rections coming from loops withW(Z)’s, there is no equiva-
lent of ‘‘bremsstrahlung’’ like in QED or QCD: theW(Z),
unlike the photon and the gluon, has a definite non-zero m
and is experimentally detected like a separate particle. In
way the full dependence on theW(Z) mass is retained in the
corrections.

In conclusion, for the process that we consider here,
l 1l 2→ f f̄ in the limit of massless external fermions at th
one loop level, we expect three kinds of contributions
become ‘‘large’’ in the asymptoticq2@MW,Z

2 region:
~i! Single logarithms@ ln(s/m2)# coming from UV diver-

gences which can be reabsorbed by running of bare par
eters.

~ii ! Single logarithms@ ln(s/mZ,W
2 )# coming from the ana-

logue of QED collinear divergences.
~iii ! Double logarithms@ ln2(s/mZ,W

2 )# coming from the
analogue of QED divergences that are of IR and collin
origin.

The double logarithmic contributions come from vert
corrections in which one gauge boson is exchanged and f
~direct and crossed! boxes with twoZ’s or two W’s. The
single collinear logarithms come also from vertex and b
diagrams. The single UV logarithms affect self-energies a
the vertex.

Let us considerg(Z) f̄ f vertices first. Using the definition

Gm, f
g(Z)[ v̄ f~p1!gm~V f L

g(Z)PL1V f R
g(Z)PR!uf~p2!

with PL,R5
17g5

2
~9!

we make an asymptotic expansion of the various vertic

e

5-4
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Subtracting the ‘‘RG divergent component’’ of the vertic
that has been discussed previously, we obtain

V f L
g 5 igsQf2

1

16p2

g2

c2
gf L

2 F@mZ# ~10!

2
1

16p2

g2

2

Qf 8
Qf

F@mW#

2
1

16p2
g2

T3 f

Qf
G@mW# ~11!

V f R
g 5 igsQfS 2

1

16p2

g2

c2
gf R

2 F@mZ# D
~12!

and

V f L
Z 5 i

g

c
gf L2

1

16p2

g2

c2
gf L

2 F@mZ# ~13!

2
1

16p2

g2

2

gf 8L

gf L
F@mW#

2
1

16p2
g2

T3 fc
2

gf L
G@mW# ~14!

V f R
Z 5

g

c
gf RS 2

1

16p2

g2

c2
gf R

2 F@mZ# D ~15!

where

F@m#[24 ln
q2

m2
1 ln2

q2

m2
, G@m#[24 ln

q2

m2
. ~16!

Here f is the external fermion andf 8 its isospin partner.

Moreover,gf ( f 8)R52Qf ( f 8)s
2, gf ( f 8)L5T3

f ( f 8)2Qf ( f 8)s
2 and

Qf2Qf 852T3 f , T3 f52T3 f 8 .
For the boxes, defining

v̄ l~p1!gmPL,Rul~p2!ūf~p3!gmPL,Rv f~p4![ P̃L,R^ P̃L,R
~17!

we have computed the corrections from direct and cros
box diagrams as a sum of projected amplitudes on the
right chiral basis:

ALL,l f
Box P̃L ^ P̃L1ALR,l f

Box P̃L ^ P̃R1ARL,l f
Box P̃R^ P̃L

1ARR,l f
Box P̃R^ P̃R
07300
d
ft-

~projecting on the ‘‘photon,’’ ‘‘Z’’ Lorentz structures is then
straightforward!.

For the various components we find the followin
asymptotic expansions:

ALL,l f
Box 5

ae2

4ps4
D f

W1
ae2

ps4c4
@glL

2 gf L
2 #DZ ~18!

ALR,l f
Box 5

ae2

ps4c4
@glL

2 gf R
2 #DZ ~19!

ARL,l f
Box 5

ae2

ps4c4
@glR

2 gf L
2 #DZ ~20!

ARR,l f
Box 5

ae2

ps4c4
@glR

2 gf R
2 #DZ ~21!

where the functions that appear above are

Dm,d
W 52

1

2q2
ln2

q2

MW
2

2
1

q2
ln

12cosu

2
ln

q2

MW
2

Du
W5

1

2q2
ln2

q2

MW
2

1
1

q2
ln

11cosu

2
ln

q2

MW
2

~22!

DZ5
1

q2
ln

11cosu

12cosu
ln

q2

MZ
2

. ~23!

Equations~10!–~23! are the main results of this paper. The
contain in a compact form the leading asymptotic Sudak
type ~double and single logarithmic! contributions. Using the
procedure given in@10# it is now straightforward to compute
the corresponding contributions to the four gauge-invari
combinations that also depend on the chosen final ferm
These are written in the complete form that is given in A
pendix A. For the practical purposes of our paper we sh
now write the numerical expressions ofD̃a , R, V that are
obtained by summing the RG contributions of Eqs.~1!–~3!
to those given in Appendix A. Taking the value ofs2 given
in Eq. ~4! leads to the following result:
5-5
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D̃a,lm~q2,u!→ a~m2!

4p H ~27.00110.67!ln
q2

m2 16.00 ln2
q2

MW
2 12.10 ln

q2

MZ
220.70 ln2

q2

MZ
2

1F22.00 ln2
q2

MW
2 24.00 ln

12cosu

2
ln

q2

MW
2 10.49 ln

11cosu

11cosu
ln

q2

MZ
2G J ~24!

Rlm~q2,u!→ a~m2!

4p H ~23.73215.28!ln
q2

m226.96 ln
q2

MW
2 24.32 ln2

q2

MW
2 22.13 ln

q2

MZ
2 10.71 ln2

q2

MZ
2

1F6.64 ln2
q2

MW
2 113.27 ln

12cosu

2
ln

q2

MW
2 20.03 ln

11cosu

11cosu
ln

q2

MZ
2G J ~25!

VgZ,lm~q2,u!5VZg,lm~q2,u!→ a~m2!

4p H ~13.1523.63!ln
q2

m2 27.37 ln
q2

MW
2 21.19 ln2

q2

MW
2 20.35 ln

q2

MZ
2

10.12 ln2
q2

MZ
2 1F3.64 ln2

q2

MW
2 17.29 ln

12cosu

2
ln

q2

MW
2 20.12 ln

11cosu

11cosu
ln

q2

MZ
2G J ~26!

D̃a,lu~q2,u!→ a~m2!

4p H ~27.00110.67!ln
q2

m2 15.00 ln
q2

MW
2 10.33 ln2

q2

MW
2 11.95 ln

q2

MZ
220.65 ln2

q2

MZ
2

1F22.00 ln2
q2

MW
2 24.00 ln

11cosu

2
ln

q2

MW
2 20.63 ln

11cosu

11cosu
ln

q2

MZ
2G J ~27!

Rlu~q2,u!→ a~m2!

4p H ~23.73215.28!ln
q2

m2 27.96 ln
q2

MW
2 23.99 ln2

q2

MW
2 22.59 ln

q2

MZ
2 10.86 ln2

q2

MZ
2

1F6.64 ln2
q2

MW
2 113.27 ln

11cosu

2
ln

q2

MW
2 10.16 ln

11cosu

11cosu
ln

q2

MZ
2G J ~28!

VgZ,lu~q2,u!5VZg,lm~q2,u!→ a~m2!

4p H ~13.1523.63!ln
q2

m2 25.55 ln
q2

MW
2 21.79 ln2

q2

MW
2 21.00 ln

q2

MZ
2

10.33 ln2
q2

MZ
2 1F3.64 ln2

q2

MW
2 17.29 ln

11cosu

2
ln

q2

MW
2 10.63 ln

11cosu

11cosu
ln

q2

MZ
2G J ~29!

VZg,lu~q2,u!→ a~m2!

4p H ~13.1523.63!ln
q2

m2 27.92 ln
q2

MW
2 21.00 ln2

q2

MW
2 20.87 ln

q2

MZ
2 10.29 ln2

q2

MZ
2

1F3.64 ln2
q2

MW
2 17.29 ln

11cosu

2
ln

q2

MW
2 10.16 ln

11cosu

11cosu
ln

q2

MZ
2G J ~30!

D̃a,ld~q2,u!→ a~m2!

4p H ~27.00110.67!ln
q2

m2 14.00 ln
q2

MW
2 10.67 ln2

q2

MW
2 11.60 ln

q2

MZ
220.53 ln2

q2

MZ
2

1F22.00 ln2
q2

MW
2 24.00 ln

12cosu

2
ln

q2

MW
2 10.77 ln

11cosu

11cosu
ln

q2

MZ
2G J ~31!

Rld~q2,u!→ a~m2!

4p H ~23.73215.28!ln
q2

m2 28.96 ln
q2

MW
2 23.65 ln2

q2

MW
2 23.64 ln

q2

MZ
2 11.21 ln2

q2

MZ
2

1F6.64 ln2
q2

MW
2 113.27 ln

12cosu

2
ln

q2

MW
2 20.29 ln

11cosu

11cosu
ln

q2

MZ
2G J ~32!
073005-6
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VgZ,ld~q2,u!→ a~m2!

4p H ~13.1523.63!ln
q2

m2 23.73 ln
q2

MW
2 22.40 ln

q2

MW
2 20.91 ln

q2

MZ
2 10.30 ln2

q2

MZ
2

1F3.64 ln
q2

MW
2 17.29 ln

12cosu

2
ln

q2

MW
2 21.15 ln

11cosu

11cosu
ln

q2

MZ
2G J ~33!

VZg,ld~q2,u!→ a~m2!

4p H ~13.1523.63!ln
q2

m2 28.47 ln
q2

MW
2 20.82 ln2

q2

MW
2 21.62 ln

q2

MZ
2 10.54 ln2

q2

MZ
2

1F3.64 ln2
q2

MW
2 17.29 ln

12cosu

2
ln

q2

MW
2 20.19 ln

11cosu

11cosu
ln

q2

MZ
2G J . ~34!
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We have left three scale parametersm,MW ,MZ as evidence
of the different origin@RG equations~RGEs!, W diagrams,Z
diagrams# of the various contributions. In the first two line
of each expression there are the contributions coming f
bubbles and vertices. In the RGE part of them, the contri
tions of fermionic and bosonic degrees of freedom are
separated. In practice for numerical estimates we sem
5MZ591.187 GeV. Finally, the contributions from th
WW andZZ box diagrams are systematically grouped in t
last three terms inside the square brackets.

Equations ~24!–~34! allow us to derive the leading
asymptotic behavior of all relevant observables~i.e. cross
sections and asymmetries! of the considered four-fermion
process. This will be done in the following section.

III. ASYMPTOTIC EXPRESSION
OF THE PHYSICAL OBSERVABLES

Starting from Eqs.~24!–~34! it is now straightforward to
derive the asymptotic behavior of any given observable
order to proceed in a systematic way, we shall start from
very general formula

ds l f

d cosu
5

4p

3
N fq

2H 3

8
~11cos2u!@~12PP8!U11

1~P82P!U21#1
3

4
cosu@~12PP8!U12

1~P82P!U22#J ~35!

where the quantitiesUi j are defined in terms o
D̃ ( l f ), R( l f ), VgZ

( l f ) , VZg
( l f ) in Appendix B,P,P8 are the~con-

ventionally defined! longitudinal polarization degree of the
initial lepton and antilepton, andNf is the color factor for the
f f̄ channel which includes the appropriate QCD correctio
to the input.

From the previous equation, and from Eqs.~24!–~34!, we
can now derive the asymptotic expansion of the relevant
servables. We shall first consider the case of unpolari
beams and concentrate our attention on a set of ‘‘typic
observables that one expects to measure at future collid
These will be the cross section for muon~and/or tau! pro-
07300
m
-

ft

n
e

s

b-
d

’’
rs.

ductionsm , the related forward-backward asymmetryAFB,m
and the cross section for ‘‘light’’u,d,s,c,b productions5.

As we anticipated in the Introduction, we shall treat qua
production in the massless quark limit. This will introduce
certain approximation in the treatment of the cross sec
for b productionsb where the effects of the non-vanishin
top quark mass in the asymptotic regime must be caref
estimated. Since the contribution ofsb to s5 is relatively
small, we shall not treat this extra effect in this paper. W
shall rather postpone a complete rigorous discussion ofmt
effects to a forthcoming article.

Collecting all our numerical formulas leads to the fin
asymptotic expressions of the previous observables, wh
read (N53 is the number of fermion families andm25MZ

2

'MW
2 )

sm5sm
BF11

a

4pH ~7.72N220.58!ln
q2

m2 135.27 ln
q2

MW
2

24.59 ln2
q2

MW
2 14.79 ln

q2

MZ
2 21.43 ln2

q2

MZ
2 1•••J G

~36!

AFB,m5AFB,m
B 1

a

4pH ~0.54N25.90!ln
q2

m2 110.19 ln
q2

MW
2

20.08 ln2
q2

MW
2 11.25 ln

q2

MZ
2 20.004 ln2

q2

MZ
2 1•••J

~37!

s55s5
BF11

a

4pH ~9.88N242.66!ln
q2

m2 146.58 ln
q2

MW
2

26.30 ln2
q2

MW
2 17.25 ln

q2

MZ
2 22.03 ln2

q2

MZ
2 1•••J G .

~38!

The precise definition of the ‘‘Born’’~B! quantities that
appear in these equations will be given in the forthcom
section. The ellipses that appear in the brackets refer to
‘‘non-leading’’ terms. These could either be constants
O(1/q2) components whose asymptotic effect vanishes.
5-7
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non-asymptotic energies, such terms~in particular the con-
stants! should be discussed; we shall return to this point
the following section.

Next, we consider the simplest case of full lepton lon
tudinal polarization and treat one simple observable: the
gitudinal polarization asymmetry for final lepton productio
ALR,m . Using the same procedure leads to the following
pressions:

ALR,m5ALR,m
B 1

a

4pH ~1.82N219.79!ln
q2

m2 130.76 ln
q2

MW
2

23.52 ln2
q2

MW
2 10.78 ln

q2

MZ
2 20.17 ln2

q2

MZ
2 1•••J ,

~39!

where the ‘‘Born’’ asymmetry will be defined later on.
Equations~36!–~39! are the physical predictions of thi

paper. Looking at their expressions one immediately noti
the following main features:

~a! The coefficient of the RG linear logarithm is muc
smaller than that of the Sudakov one. A naive expectation
an asymptotic behavior essentially reproduced by the
logarithms would be therefore, at this stage, complet
wrong. In other words, the high energy behavior of SM o
servables is only partially reabsorbed by the running of
coupling constants.

~b! The role of the Sudakov squared logarithm is nume
cally relevant in almost all the considered observables, w
the exception of the muon asymmetry where it almost v
ishes.

~c! Both the linear and the quadratic logarithmic term
are, separately taken, relatively ‘‘large.’’ However, at t
considered one loop level, they have opposite sign and
overall contribution is smaller. This raises a few importa
questions that we shall try now to investigate.

The first question is that of whether the various logari
mic terms have separately a physical meaning. In our o
ion, at the considered one loop level, this must be evide
the case. In fact, since the overall expansion is necess
gauge independent, the different powers of the logarit
must satisfy the same request~note that this applies, in gen
eral, to thesumof the separate contributions from vertic
and boxes!. A priori, one expects that a gauge-independ
quantity might~should! have a physical meaning. For the R
component, this is connected with the running of the c
plings. For the remaining terms, their origin is related, as
have seen previously, to the fact that a final stateW is sup-
posed to be experimentally detectable.

The second question is that of the reliability of the o
loop perturturbative electroweak corrections to the cons
ered observables. This is fixed by the aimed theoretical
curacy, which in turn is dictated by the expected experim
tal precision. For futurel 1l 2 colliders we shall stick to a
conservative expectation of about 1 % experimental~rela-
tive! accuracy. In this spirit, we shall assume a ‘‘reliabili
barrier’’ for one loop effects at the relative 10% level;
course, these numbers can be easily changed without m
fying the philosophy of the approach. Having fixed the a
07300
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curacy level, we can proceed following two different criter
The first one is a global one: if the totalO„a(m)/p… correc-
tion remains below the 10% threshold, we can consider
perturbative expansion to be under control and the one l
approximation to be a satisfactory one. The second poin
view, the most correct in our opinion, is that in which on
requires thatall the different logarithmic effects individually
satisfy the previous 10% criterion. Starting from these
quirements, we have therefore examined how the rela
size of the various components in the considered observa
varies with energy, in an energy range where our asympt
expansion might be reasonably accurate. Naively we wo
expect that this corresponds orientatively to energies
about 1 TeV and beyond. In fact, we have verified by
exact one loop numerical calculation of the various obse
ables, where all the contributions from the various diagra
are retained without approximation, that the rigorous expr
sions are reproduced by our asymptotic expansions with
few percent at most, in the energy range between 1 TeV
10 TeV ~larger energy values seem to us not realistic!. We
can therefore reasonably conclude that, in this energy ra
Eqs.~36!–~38! contain the bulk of the one loop electrowea
corrections, and can be used for a meaningful discussio
the size of the various effects.

The results of our analysis are shown in Figs. 5–8. As o
sees from inspection of these figures, the situation is q
different for the two criteria and for the various observabl
To be more precise, we list the various cases separately

~a! sm . Here the global relative effect remains below t
10% limit in the full range 1 TeV,Aq2,10 TeV. How-
ever, the individual Sudakov components both cross
‘‘safety limit’’ practically in the full range.

~b! s5. Here the global relative effect rises beyond t
‘‘safety limit’’ at energies larger than 4 TeV. The separa
Sudakov contributions are over the limit in the full consi
ered range.

~c! AFB,m . Here the global relative effects remain alwa
below the limit. The linear Sudakov crosses the limit at ab

FIG. 5. Logarithmic contributions to the asymptotic cross s
tion s(e1e2→m1m2) from Eq. ~36!.
5-8
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LOGARITHMIC EXPANSION OF ELECTROWEAK . . . PHYSICAL REVIEW D61 073005
3 TeV ~the quadratic one is almost absent in this case!.
~d! ALR,m . In principle, both global and individual rela

tive effects are systematically well beyond the 10% limit
the full range. A word of caution is, though, suited since
this special observable the Born approximation is parti
larly small ('0.07). Moreover, the most important one loo
effects are produced byW diagrams, which only contribute
to the left-handed cross section and generate therefore
ticularly large effects in this observable.

The conclusion of this preliminary investigation is that,
the considered energy range beyond 1 TeV, the validity
the one loop SM electroweak expansion is debatable.
necessity of a two loop calculation, leading if possible to
resummation af Sudakov effects, appears to us strongly
tivated.

Having examined the situation that occurs in the reg
beyond 1 TeV, we want now to turn our attention to t

FIG. 6. Logarithmic contributions to the asymptotic asymme
AFB,m from Eq. ~37!.

FIG. 7. Logarithmic contributions to the asymptotic cross s
tion s(e1e2→hadrons) from Eq.~38!.
07300
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ar-

f
e

a
o-

n

energy region below. Here an asymptotic expansion is c
tainly less justified. We shall discuss the emerging picture
the next section.

IV. SIMPLE FORMULA FOR CROSS SECTIONS
AND ASYMMETRIES BELOW 1 TeV

In the previous sections we have derived a one lo
asymptotic expansion for various observables and we h
explicitly shown in Sec. III that in the energy range beyond
TeV, where the expansion is able to describe well the o
loop corrections, the reliability of the one loop approxim
tion is not evident. These conclusions would be particula
relevant for a possible future muon collider, operating in
energy region of a few TeV. On the other hand, the simp
ity and the well-established physical interpretation of t
various terms of the expansion pushes us to investigate
possibility of using them in the energy rangebelow1 TeV,
where, in principle, the validity of an asymptotic expansi
is not guaranteed. In particular, we are interested in sim
formulas that describe cross sections and asymmetries e
the energy range 300 GeV,Aq2,1 TeV, where the future
linear colliders~LC’s! will be operating at an energy that w
assume to be of 500 GeV. For what concerns the experim
accuracy, we shall stick to the previous conservative assu
tion of a 1% precision, which is rather pessimistic compa
to the latest expectations@1#.

Our empirical procedure has been the following. We ha
first plotted theexactSM predictions forsm andAFB,m in the
considered energy region~a full discussion ofs5, which re-
quires a rigorous calculation of the top quark effects, will
given in the annunciated following paper!. The calculation
has been made using the programTOPAZ0 @3#.2 We have then
compared theTOPAZ0 one loop results with those of th

2We thank G. Passarino for kindly providing us with the nume
cal data.

-

FIG. 8. Logarithmic contributions to the asymptotic asymme
ALR,m from Eq. ~39!.
5-9
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FIG. 9. Comparison between the asymptotic expressions forsm andAFB,m , Eqs.~36!, ~37!, and the exact one loop calculation byTOPAZ0.
n-
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m
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-

simple asymptotic expansion, Eqs.~36!–~38!. A priori, we
expect that ‘‘some’’ modifications of our formulas are u
avoidably requested.

The results of our first comparison are shown in Fig. 9.
one sees, the difference between the full calculation and
logarithmic approximation remains impressively practica
constant in the whole considered energy range. This~in our
opinion! remarkable fact allows us to conclude that the si
plest modification of the logarithmic expansion obtained
adding a constant term seems sufficient to obtain a very
curate agreement.

For the two observables we therefore write

sm5sm
BS 11

a

4p
~cm1 logarithms! D ~40!

AFB5AFB
B 1

a

4p
~cFB1 logarithms! ~41!

where ‘‘logarithms’’ stands for the logarithmic terms of Eq
~36!–~38! and where, in agreement with our overall philos
phy, sm

B andAFB,m
B are the Born level expressions in whic

we have seta5a(MZ
2). They are obtained, in a straightfo

ward way, from the expressions given in Eqs.~B2!–~B5!,
putting all 1-loop termsD̃a,l f , Rl f , VgZ,l f , VZg,l f equal to
zero and replacinga(0) by a(MZ

2). In the case of the lep
tonic cross section we used
07300
s
he

-
y
c-

-

sm
B5sm

B,gg1sm
B,gZ1sm

B,ZZ

5
4pa2~MZ

2!

3q2
18pa~MZ

2!
Gm

MZ

3
q22MZ

2

~q22MZ
2!21GZ

2MZ
2

ṽ l
2

11 ṽ l
2

112p
Gm

2

MZ
2

q2

~q22MZ
2!21GZ

2MZ
2

~42!

with ṽ l5124sl
2(MZ

2). For the forward-backward asymme
try we write

AFB,m
B 5

sFB,m
B

sm
B

~43!

with

sFB,m
B 5sFB,m

B,gZ 1sFB,m
B,ZZ

56pa~MZ
2!

Gm

MZ

q22MZ
2

~q22MZ
2!21GZ

2MZ
2

1

11 ṽ l
2

136p
Gm

2

MZ
2

q2

~q22MZ
2!21GZ

2MZ
2

ṽ2

~11 ṽ2!2
.

~44!
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The choice of the constants is, to some extent, arbitrary.
have followed the rather pragmatic attitude of optimizing o
approximation in the 500 GeV region~LC domain!. This
fixes the values@17#

cm5253.87, cFB5220.82. ~45!

The comparison of our simple effective expressions, E
~36!–~44!, with TOPAZ0 are shown again in Fig. 9. As on
sees, between 300 GeV and 1 TeV, the difference betw
the two calculations is at the permille level for both cons
ered observables. Therefore, our approximate express
could be safely used to perform, e.g., preliminary analyse
possible effects of competitor electroweak models.3

As a final comment, we would like to notice that the fa
that an asymptotic formula well describes the behavior of
exact corrections in a~relatively! low energy range can b
due to the absence of structure like resonances in that re
~in our analysis we have ignored the small peak at thet t̄
production threshold which is negligible in any case for t
considered observables!.
07300
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V. CONCLUSIONS

In this paper we have determined the energy grow
electroweak logarithms of RG~UV! and Sudakov~IR! origin
that appear in the asymptotic expansions of four~massless!
fermion processes. We have shown that~linear and qua-
dratic! Sudakov-type logarithms are numerically much mo
important than RG-driven logarithms in the TeV regio
Moreover, although the overall effect on the observable
of the order of a few percent, the single contributions are
the 10% order in this region. This supports the idea that n
order calculations and/or resummations are needed. On
other hand, our simple one loop expansions might revea
be unexpectedly useful in the energy regionbelow 1 TeV,
since the correct energy dependence of the observa
seems to be properly described.

The fact that a satisfactory description of electroweak c
rections at asymptotic energies requires more complica
descriptions beyond the ‘‘naive’’ one loop approximatio
would not be, in our opinion, a surprising feature for a gau
theory. For QED and QCD similar problems of higher ord
calculations and resummation have been notoriously alre
preformed. Our personal impression is that a proper desc
tion of the genuine electroweak sector of the SM at the fut
relevant energies in the TeV region requires an analog
remarkable effort.
nction
lving the

erformed
APPENDIX A: SUDAKOV-TYPE CONTRIBUTIONS

Final fermions fÞb:

D̃a,l f
(S) ~q2,u!→ a

4p
@62du22dd# ln

q2

MW
2 1

a

12p
~du12dd!ln2

q2

MW
2 1

a~22v l
22v f

2!

64ps2c2 S 3 ln
q2

MZ
22 ln2

q2

MZ
2D

2
a

2p F S ln2
q2

MW
2 12 ln

q2

MW
2 ln

12cosu

2 D ~dm1dd!1S ln2
q2

MW
2 12 ln

q2

MW
2 ln

11cosu

2 D duG
2

a

256pQfs
4c4F ~12v l

2!~12v f
2!S ln

q2

MZ
2ln

11cosu

11cosu D G ~A1!

Rl f
(S)~q2,u!→2

3a

4ps2F2c22dm2S 12
s2

3 D du2S 12
2s2

3 D ddG ln q2

MW
2

2
a

4ps2Fdm1S 12
s2

3 D du1S 12
2s2

3 D ddG ln2
q2

MW
2 2

a~213v l
213v f

2!

64ps2c2 S 3 ln
q2

MZ
2 2 ln2

q2

MZ
2D

1
ac2

2ps2F S ln2
q2

MW
2 12 ln

q2

MW
2 ln

12cosu

2 D ~dm1dd!1S ln2
q2

MW
2 12 ln

q2

MW
2 ln

11cosu

2 D duG
1I 3 f

a

2ps2c2S v lv f ln
q2

MZ
2 ln

11cosu

11cosu D ~A2!

3The simplest example would be provided by a class of models with anomalous triple gauge couplings~AGC’s! @18#. Here, the effect of
the models is that of introducing linear terms of the typeq2/L2 @19#, thus changing the energy dependence of the observables as a fu
of the AGC parameters. Another application could be one that requires integration over a certain fraction of the energy range invo
product of the cross section by known weight functions, like those encountered when computing QED convolution. This could be p
in a rather economical way.
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VgZ,l f
(S) ~q2,u!→ a

8pcsF „3212c212c2~du12dd!…ln
q2

MW
2 2S 11

2

3
c2~du12dd! D ln2

q2

MW
2 G

2S av l~12v l
2!

128ps3c3 1
auQf uv f

8psc D S 3 ln
q2

MZ
2 2 ln2

q2

MZ
2D 1

ac

2psF S ln2
q2

MW
2 12 ln

q2

MW
2 ln

12cosu

2 D ~dm1dd!

1S ln2
q2

MW
2 12 ln

q2

MW
2 ln

11cosu

2 D duG1I 3 f

a

16ps3c3S v f~12v l
2!ln

q2

MZ
2 ln

11cosu

11cosu D ~A3!

VZg,l f
(S) ~q2,u!→ a

8pcsF @3212c222s2~du12dd!# ln
q2

MW
2 2S 12

2

3
s2~du12dd! D ln2

q2

MW
2 G

2S av f~12v f
2!

128puQf us3c31
av l

8pscD S 3 ln
q2

MZ
22 ln2

q2

MZ
2D 1

ac

2psF S ln2
q2

MW
2 12 ln

q2

MW
2 ln

12cosu

2 D ~dm1dd!

1S ln2
q2

MW
2 12 ln

q2

MW
2 ln

11cosu

2 D duG1
a

32pQfs
3c3S v l~12v f

2!ln
q2

MZ
2ln

11cosu

11cosu D ~A4!

wheredm,u,d51 for f 5m,u,d and 0 otherwise andv l5124s2, v f5124uQf us2.
In each of the above equations, we have successively added the contributions coming from triangles containing on

W, triangles containing oneZ, from theWW box and finally from theZZ box.

APPENDIX B: CONTRIBUTIONS TO THE VARIOUS OBSERVABLES

The general expression of thel 1l 2→ f f̄ cross section can be written as

ds l f

d cosu
5

4p

3
N fq

2H 3

8
~11cos2u!@~12PP8!U111~P82P!U21#1

3

4
cosu@~12PP8!U121~P82P!U22#J ~B1!

where

U11

a2~0!Qf
2

q4 @112D̃ ( l f )a~q2,u!#12@a~0!uQf u#
q22MZ

2

q2
„~q22MZ

2!21MZ
2GZ

2
…

F3G l

MZ
G1/2F 3G f

NfMZ
G1/2 ṽ l ṽ f

~11 ṽ l
2!1/2~11 ṽ f
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~11 ṽ l
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HereP,P8 are thelongitudinalpolarization degrees of the initial lepton and antilepton, andNf is the color factor for thef f̄
channel which includes the appropriate QCD corrections to the input.
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