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Pion form factor in QCD at intermediate momentum transfers
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We present a quantitative analysis of the electromagnetic pion form factor in the light-cone sum rule
approach, including radiative corrections and higher-twist effects. The comparison to the existing data favors
the asymptotic profile of the pion distribution amplitude and allows us to estimate the deviation:
[fduug (u)])/[[fdu/ugi(u)]=1.1+0.1 at the scale of 1 GeV. Special attention is paid to the precise defi-
nition and interplay of soft and hard contributions at intermediate momentum transfer, and to the matching of
the sum rule to the perturbative QCD prediction. We observe a strong numerical cancellation between the soft
(end-poini contribution and power-suppressed hard contributions of higher twist, so that the total nonpertur-
bative correction to the usual PQCD result turns out to be of the order of 30%@%erl. Ge\~.

PACS numbegps): 13.40.Gp, 11.55.Hx, 12.38t

[. INTRODUCTION contribution to the sum rule due to the quark condensate and
find this correction to be small.

There is a clear tendency for QCD-oriented experimental The presentation is organized as follows. In Sec. Il we
studies to go for more and more exclusive channels. All furecall the basic ideas of the light-cone sum rule approach and
ture plans also call for very high luminosity and would there-derive the simplest sum rule. Section Ill is devoted to the
fore be perfectly suited for the investigation of exclusive andcalculation of the radiative correctlon.and separation of soft
semiexclusive reactions. A problem which hinders all at-2nd hard effects. As expected, we find that in @&
tempts to implement these projects is the lack of truly quanllmlt Fhe .form factor is dominated by the hard rescattering
titative QCD predictions. It is widely anticipate@ee e.g., contribution alone, while to Q* accuracy both soft and hard
[1-5]) that for experimentally accessible values of the mo-contributions have to be taken into account. Higher-twist
mentum transfer, the perturbative QCD factorization for hardcorrections to the light-cone sum rule are considered in Sec.
exclusive reactiong6] receives non-negligible corrections !V, while Sec. V contains the results of our numerical analy-
from the so-called soft, or end-point, contributions, whichSis. Matching of the sum rule with the NLO perturbative
are essentially nonperturbative. One practical difficulty isPredictions is discussed in Sec. VI. Finally, in Sec. VIl we
that soft corrections can in many cases be mimickeg- ~Summarize. The paper contains two appendixes where we
merically) by modifying the shape of hadron distribution am- collect some useful but bulky expressions and present the
plitudes. An agreement of perturbative predictions with the'elevant formulas for light-cone distributions of the pion.
data cannot, therefore, be used to claim the smallness of
end—point effgcts which havg to be estimated independently Il. METHOD OF LIGHT-CONE SUM RULES
using a certain nonperturbative approach. Creating a system-
atic framework for a study of soft end-point corrections is The approach is based on the study of the correlation
becoming, thus, increasingly timely. function [8]

It has been suggestéd] that the soft end-point contribu-
tion to the pion electromagnetic form factor can be estimated )
in a largely model-independent way within the framework of T ,,(P, ) =i J d*x€®(0| T{j5(0)j ST} =¥ (p)), (1)
light-cone sum rule§7]. The aim of the present paper is to
put this technique on a more quantitative footing. To this end 5 = cem. . — —
we calculate the radiative correction to the light-cone sumvherej,=dy,ysu andj,"=euy,u+eqdy,d is the quark
rule, elaborate on the scale dependence, and demonstr@t€ctromagnetic current. With?=m? and Q?= —g? fixed,
how the sum rule estimates of the end-point effects can natdhe correlation function(1) depends on a single invariant
rally be combined with the next leading ord@LO) QCD  variables=(p—q)?. The contribution of the pion intermedi-
perturbative calculation. In addition, we estimate the twist 6ate state equals

*On leave from Yerevan Physics Institute, 375036 Yerevan, Ar- TW(p,q)=2if7(p—q)ﬂp,,F7T(Q2) > 2

menia. mw—(p—q)z'
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P Substituting Eq(5) into the expansion of Eq.3) and inte-
grating overx, we obtain for the contribution of Fig. 4,

2if .p,.p, 2Q?
up (l-wp Tr= QZ_#S [1+ Q2-s n=§, {(On))

2Q2 n—1
f{‘fv “a’H' X - 1) ] + other Lorentz structures,
5 QZ_S
7
q P9 @)

(2
FIG. 1. The tree-level contribution to the correlation function in Where s=(p—aq) . To construct a sum rule, we make the
Eqg. (D). Borel transformation

wheref _ is the pion decay constant afd,(Q?) is the pion 1
electromagnetic form factor. On the other hand, at large m2—s
negative p—q)? andq? the correlation function can be cal- ”
culated in QCD, in full analogy with the* v* 7 transition

form factor. A common idea of all QCD sum rules is a o 1 ex — Q%IM?]
matching between the QCD calculation at Euclidean mo- (Q%2—s)"  (M)"I(n) ’
menta and the dispersion relation in terms of contributions of (8)
hadronic states, which allows one to estimate the hadronic

quantity of interest. The specifics of the light-cone sum rulesntroducing a new variablé? (the Borel parametgr and
are how exactly the QCD calculation and matching are donezquating the Borel-transformed versions of E@.and (7).

To illustrate this point, consider the contribution of the sim-For simplicity we neglect the continuum subtraction here.

— exg —m2/M?],

plest diagram in Fig. 1: Neglecting the pion mass, the result reads
1 eiqx .
TM=2—772J d4x7<0|[eud(0)m**mf,U(X) Fﬂ(QZ):eQZ’Mz{ 1+n=222’... (O
—eqd(x) 7,7, 75u(0)]| =" (p)). 3 "(n-1) 1 [ 22|
Expansion of the remaining nonlocal matrix elements around szl k_l) Fk+n| M2 } ©

the middle point in a formal Taylor series generates the Wil-
son operator-product expansion in contributions of local op-This sum rule is, however, completely unsatisfactory.

erators of increasing dimension: Indeed, QCD sum rules are generally expected to hold in
. - - a certain interval of values of the Borel parameter, such that
O;‘leﬂz _____ 4, =0(0)y,¥siD 1D, u(0),  (4) contributions of both higher resonances and higher orders of

the operator product expansiqg@®PE are simultaneously
suppressed. It is easy to see that in the present situation these

D,=d,—igA, being the covariant derivative aral, =D o ; ; -
nOu—'9 - g meoomm tIwo conditions are contradictory, unle€¥ is sufficiently
—D,, . Restricting ourselves for the moment to operators o

the | ¢ twist(highest L A ider th | small. Indeed, on the one hand, one has to Kdésmall, of
€ lowest twist( Ighest Lorentz spinwe consider the rel- the order of 1-2 Ge¥ to suppress the contribution of, e.g.,
evant reduced matrix elements

the a;-meson intermediate state. On the other hand, for a
fixed M? the higher-order terms on the right-hand side
(RHS) of the sum rule are enhanced by facto@)* and for
—ifp,(pX)((O)) + -+ - 5) Q?>M? the OPE expansion breaks down.
An escape suggested [ii] is to avoid the Wilson short-

They are re|ated, as first found ﬁﬁ], to the moments of the distance expansion altogether and write the answer for the
pion distribution amplitude: diagram in Fig. 1 directly in terms of the pion distribution
amplitude. The expansion parameter then becomesatisé

Xy, X, (0[O} s ()

2 Mg s gy e ey

— N . o iupx of the operators rather than their dimension. Using .
(0[d(0) ¥, ysu(x)| (P)>—'pufwf0 due and the definition of the pion distribution amplitude in Eq.
(6) we obtain to leading twist accuracy, instead of Ef), a
X @, (U,u2~x"2), compact expression

1
(o= [ aur-2ure . ®

The terms with oddh vanish because d parity.
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where ¢ (0)=(d/du)¢(U)|,.o=—¢.(1). The Borel

1 uge,(u
T#V=2ipr#pyj du_gDZAJr AN (10)  variableM? corresponds to thénverse distance at which
0 uQ-us the matching is done between the parton and hadron repre-
_ sentations.
whereu=1—u. Making, once again, the Borel transforma-  The expressions in Eqg14), (15) present a typical
tion, we get the simpledight-cone sum rulg4] “soft” or “end-point” contribution to the pion form factor
- which is sensitive to the pion wave function aoav normal-
N uQ? ization point and comes from large transverse distances of
FW(Q )—fodu@w(u)ex _W . (11) Ol‘derb~Sal/2.

To illustrate this point, write the four-dimensional integra-
This sum rule is perfectly well behaved @2 — and itis  tonin Eq.(1) as a product of 2 two-dimensional integrations
instructive to trace how the above-mentioned difficulties ofin longitudinal and transverseo p andq) coordinates. Leav-
the standard approach have been resolved. Because of tif§ the transverse integration intact, a short calculation gives
strong exponential suppression factor, the important regiofP” the RHS of Eq(11)
of integration over the momentum fraction variahiegets

. . . . . 2 102
shifted, in the largeQ? limit, to the end-point region *u o [t uM 1., uQ
~M?/Q?. In this regime, the virtuality of the quarkhe d*b Odu%(u) 4y &R ~guM b uM2/’
denominator in Eq(10)] remains all the time of ordevl?, as (16)

Q*—. The deficiency of the short-distance expansion is The distribution of transverse distances in the diagram in
now clearly seen as originating from the wrong expansiorrig. 1 s, thus, Gaussian, with the average transverse size
parameter Q*—s)/2 [cf. Eq. (7)], corresponding, effec- (n2)—4/uM?) controlled by the value of the Borel param-
tively, to the expansion around the symmetric pdilt  eter. One also sees that the scale of the distribution amplitude
=1/2. o in Egs.(13), (14) is determined by the weighted average of
To be somewhat more quantitative, we have to make théghe momentum transfe®? and the(inverse transverse dis-
usual continuum subtraction. This is trivial in the case atiznce between the quarks, as expected on general grounds
hand, since expressigf0) is easily converted to the form of 1),
a dispersion integral oves=(p—q)?. All we have to do is Including the continuum subtraction modifies this distri-
to truncate this integral at a certain threshejd called the  pytion rather significantly as the smallregion is dominated
interval of duallty The I’eSU|ﬂ.‘4] is that the integration over by high_mass excitations and gets Suppressed' After some
the momentum fraction is cut from below at the value algebra we obtain the sum rule equivalent to Etd) but
with an explicit separation of different transverse distances:

Uo=Q?/(sp+Q?). (12)
s . . . . . 1 1 Y 2/ M2
In addition, the pion distribution amplitude has to be taken at F.(Q?)= 4—f dzbf due,(u)e™ UM
the scale corresponding to the quark virtuality: ™ to
_ usp-uQ? _
#2=uQ2+uM2, (13) Xfo dte VM 35(b?)
Implementing these small improvements, we obtain the Q% ¢.(0) o [50,  _—gm2
leading-twist leading-order light-cone sum rdig - 470% d“b| dse
mQ 0
—, s
E (QZ):JldU(P " uu)eXp<—£)- 14 xJodt(s—t)Jo(\/bzt), (17)
T o m\ UM2

The crucial advantage of the light-cone sum rule approach | here J, is the Bessel function. The resulting transverse-

that it allows one to incorporate the information on the end-.r:séancg q;ﬁg'%g“%ﬁ%%:ﬂ?'cz)ﬁdb?ugggéa:ﬁe: gc))rEI SZ?\;V:]_
point behavior of the pion distribution amplitudeI 9. <. P p

eter is actually very weak and the overall scale of transverse
. R the integration region in distances is determined almost entirely by the value of the
¢,(U) ~ 1—u. In the limit Q“—o : : .
: S : continuum threshold. Because of this, fdr’>s, the pion
Eg. (14) shrinks to a pointi=1 so that one obtains distribution amplitude has to be taken at the sqafe-s,,
0P~ M?) [s rather than dtu?~M?2. The width of theb? distribution in -
F_(Q%)~ Pttt j osdsés/MZ, (15) Fig. 2 should be compared with the electromagnetic pion
T Q* 0 diameter squared: @&M?~2 fm?.

2A similar deficiency of the short-distance expansion in the case °It can be shown that this change of scale takes into account the
of heavy-to-light correlation functions is demonstrated9h continuum subtraction in the running coupling; c£1].
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FIG. 2. The transverse-distance separation between the quark
and the antiquark in the leading-order light-cone sum (@l in
the largeQ? limit for typical values of the sum rule parametexs
=0.7 GeV andM?=1.0 Ge\~.

Ill. RADIATIVE CORRECTIONS FIG. 3. The radiative corrections to the correlation function in
Eq. (1). Dashed lines denote virtual gluons.
A. General case

In order to improve the accuracy of the light-cone sume¢,, with the hard scattering amplitude
rule (14), one has to calculate th®(«,) radiative correc- L
tions to Fhe Ieadlng—ordgr correlation funct|(?10)..The cor- Tfﬁ=2iprupvf dU(p,.,(u,,u)( Ho(Q2,s,U)
responding Feynman diagrams are shown in Fig. 3. The cal- 0
culation is straightforward, albeit tedious, and technically
similar to the calculation of the radiative correction to the T asCr H.(Q2s,u )] (18)
v* v* 7 transition form factor for different photon virtuali- 4 A
ties[12]. We handle ultraviolet and infrared collinear diver-
gences by djmen_sional regularization in the modified mini-Where the leading-order result was already given in(EQ),
mal subtraction {1S) scheme. Because of the fact that the
diagrams contain twgs matrices(one from the axial-vector
vertex and one from the pion projectiorthere is novys )
ambiguity. We have also checked that the collinear diver- Ho(Q ’S'U)ZUQZ——US' (19
gences are absorbed in the definition of the scale-dependent
pion distribution amplitudep .

Our result for the twist 2 part of the correlation function and the radiative correction to the hard scattering amplitude
(1) to O(«s) can be represented in a form of convolution of equals

QZ
uu(Q?+s)3(uQ?-us)

uQ?-us

PE

H.(Q%,s,u,u)= —9uu(Q?+5)2—[Q%U(3u—2) + Q2s(5—6uu) +s2u(3u—2)]In

uQ?-us

PE:

+[Q%Uuu+Q2s(1+2uu)+ sfuu]in?

204 21 2 RS
+Uu[ —2Q"u+5Q“s+s(1+2u)]ln 5
o

2 2

—ugQ41+u)+ sU]ln?i2 +Uu[Q*(1+2u)+5Q%— 232u]|nQ—2 —uQy Q2u+s(1+ u)]anQ—2 . (20
M M M

To obtain the radiative correction to the light-cone sum ruleFqr, one has to calculate the imaginary parttdf in the
variables. The resulting expression is presented in Appendix A. After continuum subtraction and Borel transformation, the
sum rule reads

Ff)(QZ):folduww(u.mmw—uo)féi%«u,MZ.sOH@(uo—u)fﬁ‘;ﬁu,Mz.s@n, (21)

where
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2 a 7T2 2 2 2 2
Fu,M? s5)= exp(—i 1+-—Cg 9+—+3InQ—+3lni—ln Q —In? i
uM? 4m 3 n? up? o p? o up?
a s ds e—s,/M2 2 _
+—SC,:(j_o % 5s+Q?| 1+2In—0 | +2 L sln=?
4w uQ%u u(Q+s) ,LL u S
202 Q%+s 2M?+Q%*+s - - w0 dsQPesIM? s
+ R + Q In P In P +JUQ ULQZ— 2u| Q?-s+sin—|+| —Q?+5s
u S M? w? 0 uu(Q?+s)3 w?
2 2
s  s(Q%*+s s u - u—u
+2(Q2—S)In—2—(Q—2)(—3+2In—2 In%]JrZ—geSO”‘"zln—pzoln — 0) (22)
© p I u 0 Ug
and
s dsQe M s s
F@ (UM2,50) = - (f —— {2/ Q%-s+sin— |+ | —Q%+5s+2(Q%—s)In—
M0 =7 Cel ] u(Q%+s)° u? p?
s(Q%+s s UoUg S
—(Q—Z) —3+2in— | In 2 - 2e oM 21022 —3|In 2. 23)
M z M uu M M

Herepzin—us and po—UQz—uso (1-ulug)Q% The ToO interpret the leading term, we notice that the integral
superscript (2)” indicates the leading twist 2 contribution. f5°dse SM? can be related to the pion decay constant
Higher-twist terms will be added in the next section. Wethrough the QCD sum rulgL3]

interpret the parts of Eq(21) with F{2)(u,M?,sy) and

F@)(u,M2s,) as “hard” and “soft” contributions to the 2 1 ®yse M 1 <0|as/7TG2|0>
pion form factor, respectively, defined with the explicit cut- ™ ax2 o se = ™ 12M2
off in the momentum fractiom=ug~1—S,/Q%. This sepa-
ration will be discussed in detail below. 176 —
+ VD magqq)’+ - -. (26)

B. Study case: Asymptotic distribution amplitude
. . L . The perturbative correction and the gluon- and quark-
For the asympiotic shape of the pion distribution ampll'condensate contributions involve an extra powergfand

a _ _ _ ; ; i - . ! .
Frl:dt(:\ :ap{gé)'a_t@g(iorrue)c;gﬁ ?:nmggs']lm g;aﬁgonnelgfgﬂgﬂ are absent, therefore, in our approximation. Substituting
i iativ i ily yu y'fsod SIM?_, 4772F2 | we obtain

with the simple result

8masf2
So 2 SQ4 CZSCF 2 Fas( 2 S'w
as 2 — —sIM T Q) — , (27
FI(Q%) 6f0 dse (S+Q2)4I1+ 4|36 Q2
5 5 which coincides with the classical resid].
—In2? 2Q +i+ Q_ (24) It is easy to see that th@(1/Q?) contribution to the form
s Q2 s factor comes entirely from the term which we have identified

as “hard,” while all power-suppressed corrections involve

All the scale-dependent logarithmic terms cancel in this case?0th hard and soft contributions. In particular, we obtain, to
as expected. For larg@?>s, one can expand the sum rule O(1/Q*) accuracy,

(24) in powers of 102 uo
Fo Q)= JO dug i u) Figd u,M? so)

3aC S 6 (s
FAQH=— ZFJ ‘dse M4 —4f ‘dsse M’ 30.Co [s s s
2mQ* Jo Q*Jo = zFfoolse*S’MZ 1- —|1+2=
a,c ’IT2 Q2 27TQ s
- =~ 6
x[ = {10 3 +In? < }+O(1/Q ). . . o?
+In—+{3-2Inh—|In . (28
(25) w? u?] So—S
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The soft part is then just what is left when this hard contri-
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> SOl , , s so dsse IM? [ s
bution is subtracted from the total result in E85). Notice + —CFJ ——F— | 2Inh— -3
that the separation of soft and hard contributions depends on 4m 0 Q* %
the collinear factorization scale, even for the asymptotic dis- —,
tribution amplitude. We will elaborate on this dependence in % fldu ¢x(U)—Ue’(0)
what follows. 0 u?
In the local duality limitM?—o one obtains
2 2> g fld @x(U) 31
Fas,har(eQz):SaSCFso _ S0 1_3_77_ n; 0 UT . (3D
& 2mwQ? Q? 2 6
The scale dependence cancels to the required accuracy, since
Q? u? o Q? ] [14]
+In—|n—+|n—+2|n— (29
So So So Sy _
d | as| (1 e (W)+ue(l) ¢ (u)
and dinu ”O’ﬂ)_?[fodu u? B 1
FassoftQ?) = 330 3a$CF s §+In2'u—2—ln2Q—2 1,
Q4 47-rQ4 2 So w? —§<P,T(1) : (32
2 2
+2 In/:—+3 Ins_] , (300  The contribution of hard rescattering equals
0 0

wheresy=472f2 ; cf. Eq.(26). Note that theD(1/Q*) hard
contribution is Iarge and negative, while the soft radiative
correction O(as/Q%) is positive, unlesQ?>sy,u2. This
implies considerable cancellations in the sum of the soft and
hard contributions so that in order to make their separation
physically meaningful one must assume a low value of the
factorization scafeu?~s,.

Finally, notice the double-logarithmic contribution
~ In?Q?s in Eq. (24) which is reminiscent of the Sudakov
logarithms discussed ifL0]. A typical size of these correc-
tions is of the order of 1AQ%s, which for s,~0.7—

0.8 GeV? and Q?~1-10 Ge\? is much less than

In 2Q%/A%cp With Agep~200 MeV, as usually assumed. For
this reason, exponentiation of Sudakov corrections is nu-
merically not important in the present approach.

C. 1/Q? expansion in the general case

For a generic pion distribution amplitude the NLO light-
cone sum rulg21) again simplifies considerably upon the

o s dse M (1 o _(u
_5ch ° 5 f du(’oi)
0 Q 0 u

o s dsse M s
+—C¢ —i(2In—-3
4 Q* w?

1l ea(u)—ue (0)
0 u

S 1 @n(u)
2 In;—B) fo duT]

so dse IM?

+ 4_CF‘P (O)I

2
M

s Q?
2In——3)|n30_5—250], (33

expansion in powers of Q2. We obtain, toO(1/Q% accu- and the soft contribution is identified as the difference
racy, FSMQ?) =F .(Q?%) —F"¥YQ?). Note the term proportional

a so dse SM? (1 o (U)
Fw(QZ)ZﬁCFL % jdu —

so dsse IM?

as

to ¢.(0)=—¢.(1) in the last line of Eq.33) which is
concentrated at the end point but enters as part of the hard
0 u contribution.

A few comments are in order concerning this expansion.
First, consider the leading asympto@c(l/Qz) term. Substi-

tuting, as abovef Xdse ¥™*—472f2 , this contribution can

be rewritten as

1 5 S , S
X —9+§7T +In—2—ln -
M Q

_Bradf, Jdv S(vfdu W 3y
0 0

v u

9Q?

“It is easy to see that fop?=Q? there are double-logarithmic V\{hgre we used thafédv go?f(v_)/v=$. This express_ion is
contributions~ In %(Q%sy) to Egs.(29) and(30) which have oppo-  similar, but does not yet coincide with the perturbative QCD

site sign and partially cancel in the sum. result[6]
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e
o

o
S

e
[

Q° F,(Q%. M%) [GeV?]

e
o

FIG. 4. The relative contributions of hatdashed curvgsand soft(dotted curveksregions in the leading-twist light-cone sum ryil)
for the pion form factorthe sum: solid lines The upper figures correspond to asymptotic and the lower figures to the Chernyak-Zhitnitsky
(C2) pion distribution amplitude. The three figures from left to right correspond to the choice of factorizationuéea®?, u?=s,, and

u2=uQ?+uM?2, respectively.

8rafll r1 0 (u)’2 line in Eq. (33 corresponds to the particular definiti¢2al)
F_(Q?)= ST j du—| . (35)  with a rigid cutoff in momentum fraction. Although such a
9Q? 0 u ‘ definition is the most intuitive one, it is not unique and, as

seen from Egs(31), (33), introduces rather cumbersome

1 1 ! H H
It is easy to convince oneself that the missing corrections toSUrface terms” ~¢z(0) which appear both in hard and

the asymptotic pion distribution amplitude in the first inte- SOft contributions and cancel in their sum. An interesting
gral inyEqF.)(34) a?s well as the missir?g nonperturbative cor- alternativeg] 14] which we do not pursue in detail in this work

. ) . is to define the separation between hard and soft contribu-
et ooty e s e e o hraglons order by order  he @ expansion using plus i
9 : tributions” to regularize the divergent momentum-fraction

tions are difficult to evaluate directly, one may ftry to im- integrals. To the accuracy of E(1), this procedure corre-
prove the light-cone sum rule by combining it with the 5445 o the definition of the hard contribution as given in
kr_10wn fL_JII NLO pe_zrturbanve calculation. Such a possibility ine first three lines in Eq33), omitting the “surface term.”
will be discussed in Sec. VI. _ The soft contribution is given then by the second line in Eq.
Second, the structure of ti@(1/Q*) power correction to (30).
the pion form factor is very similar to the heavy quark limit [ ast but not least, having in mind that the separation of
of the light-cone sum rule foB— mev decay considered in hard and soft contributions is ambiguous, one may add them
[14]. In particular, note the LF weight factor in the integral together and consider their sum as a ‘total nonperturbative’
over the pion distribution amplitude, the structure of doublePOwer correction to each order in theQt/ expansion. In-
logarithms, and, finally, the cancellation of the collinear fac-spection of Eqs(25), (29), (30) suggests that soft and hard
torization scale dependence by the same mechanism. In bo@@rrections in general have opposite signs and partially can-
cases, the distinction between soft and hard contributiongel in the sum. We postpone the detailed discussion of this
necessitates a kind of genera]ized “p|us_distribu[ion” Sub_iSSUG to Sec. VI where we summarize our numerical results.
traction of divergent integrals over the pion distribution am-
plitude atu—1, as is done in the second line of E&3).
This feature seems to be general, whereas the distribution of Results of the numerical evaluation of the sum r{##)
finite terms~ ¢/ (0) between the hard and the soft contribu- are shown in Fig. 4 by solid curves, feg=0.7 GeV* and
tions is arbitrary. The expression for such terms in the lasfor a typical value of the Borel parametdt?=1.0 Ge\~.

D. Numerical estimates
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1.0

0.8
0.7

0.6
A
=0.5
\

0.4

a) b) )

0.3

0.2 FIG. 6. The light-cone expansion of the quark propagator in the
0.1 correlation function(1).
0.0

2 4 6 8 10 12 U4 Physically, the higher-order terms of the light-cone expan-
Q sion take into account both the transverse momentum of the
FIG. 5. Average momentum fractianas a function ofQ? for ~ quark-antiquark state and the contributions of higher Fock
the asymptotic(solid curve and CZ (dashed curvedistribution ~ States in the pion wave function. As explained 1], these
amplitudes aM2=1.0 Ge\2. The scale isu?=(1—u)Q2+uM?2. two effects are indistinguishable due to QCD equations of
motion.
g?esg?tog:r?doglg:gu(t:opn%ﬁ)rngtt)%rss ;fredlgﬁga/sﬁdb)?eég\{\t/elg gﬁc- Next to the leading twist 2 term, the correlation function
dashed curves, respectively. The results are plotted using t (1:) receves several twist 4 cqntr|but|o?1$:.|rst of all, one
asymptotic ¢®{u)=6u(l—u) and the CZ ¢¥(u,u has to take into account the_tW|st4 components of the quark-
—1 GeV)=30uu(2u—1)? pion distribution amplitudes, for 2ntiuark matrix element0|d(0)y, ysu(x)| 7" (p)) in the
three different choices of the factorization scalg? d_|agram in Fig. 1. Furthermore, the gluo.n emission from the
—Q2, u?=s, (see the discussion abdveand u2=u2 virtual quark should be included, yielding the diagram of
—UQ'2+uM2 (;ccordin to Eq(13. In all calculations Lijn Fig. 6(a) with the twist 4 quark-antiquark-gluon distribution
this paper W’e Use the ?WO-|ng QbD running coupling Withamplitudes _of the pion. To calculate this diagram, one makes
AB_ 336 MeV corresponding 1as (1 GeV)-0.48 and use of the light-cone expansion of the quark propagdi6}
MS P g 1o : given in Appendix A. The definitions of all relevant twist 4

a5(Sg) =0.59. two- and three-particle distribution amplitud 17| are
It is seen that hard contribution to the form factor deﬁnedcollected in Appgndix B P §5,17]

with a “natural” momentum-fraction cutoff remains small The corresponding célculation has been carried o[#]n

and negativefor the main part of the interesting region of o\ vict 4 contribution to the correlation functiéh) can be

Q2. B : .

Furthermore, in Fig. 5 we show the average value of thé’vrltten in the following compact form:
momentum fractiom in the integral in Eq(21) calculated as 1 (4)

a function of Q? for the asymptotic(solid curve and CZ TW=2ip p,f f du_U(P—(u) (36)
(dashed curvedistribution amplitudes. This average value e KT lo T (uQ%—us)?’

turns out to be very large, and, contrary to usual expecta-

tions, does not depend significantly on the shape of the piowhere

distribution amplitude. "

The negative contribution of the hard-rescattering mecha- e®W(u)= _4< 91(U)—f dvg,(v)
nism may appear unexpected and counterintuitive. We em- 0
phasize, however, that the separation between hard and soft B
terms is ambiguous and depends on their definition — this is, f“ fu

+ dal daz
0 0

+2ug,(u)

o) +2¢, (a;)

in fact, the main lesson to be learned from our analysis. Note as
that the scale dependence is much more pronounced for hard
and soft contributions taken separately than for their sum. 1-2u+a;—a,
(@)
IV. HIGHER-TWIST CORRECTIONS a3
A. Twist 4 contrlb-utlons - n @L(“i)]l 37)
The operator-product expansion of the correlation func-

tion (1) near the light cone®=0 can be continued beyond R
the leading twist 2 approximatioi10). This procedure yields is a combination of twist 4 distribution amplitudes of the
higher-twist corrections to the light-cone sum r(@d). They  pion. The explicit expression fap® is given in Appendix
are suppressed by additional inverse powersdfandQ?.  B.

5If the momentum-fraction-dependent scalg is used, it is im- ®Twist 3 contributions to Eq(1) are proportional tan> and van-
plied thatag(u,) is inserted inside the integrals. ish in the chiral limit adopted here.

073004-8



PION FORM FACTOR IN QCD AT INTERMEDIAE . .. PHYSICAL REVIEW D 61 073004

20 S0 . Q8
W2y -2 —s/M
FOQY = 3 0% [ Tdse oy
8s 6s
s 1‘&*@) 49

revealing atQ?—o the 1Q* behavior. Taking in addition
the local duality limitM?— o yields an estimate

1.0 GeV?)?
QZ

206%(Sg)So
3Q4

FEQ?)= (41

B. Factorizable twist 6 contributions

FIG. 7. Quark condensate corrections to the correlation function An estimate of the twist 6 contribution to the light-cone
in Eq. (2). sum rule presents a new result of this paper. This calculation

is interesting for several reasons. As is well kno{r8],

The twist 4 correction to the light-cone sum rule is easilytwist 4 operators are ‘irreducible’ in the sense that they can-
obtained by taking the imaginary part of E®6) in s=(p  not be factorized in a product of gauge-invariant operators of
—q)? and subtracting the continuum abosg After Borel  lower twist. This property is special and limited to twist 4.
transformation one obtains Several light-cone operators of twist 6 exist which can be

factorized as a product of two gauge-invariant twist 3 opera-
tors (or, alternatively, one twist 2 and one twis}. Sand-
(4)(u) qu . .
F*(Q f du exp( wiched between the vacuum and one-pion state, such opera-
uMZ tors generally produce two types of contributions:
Factorizable in terms of a low-twist two-particle distribution

Uop™(ug) e amplitude times quarkor gluon condensate and nonfactor-

4+ ——— e S0/M7, (38 . . . . . . . -

Q2 |z_ab!e, \{vh|ch give rise to genuine tywst 6 multlpa}rton pion
distribution amplitudes. We emphasize that factorizable con-
tributions have to be subtracted in the construction of multi-

The second term on the RHS of HG8) has not been taken parton distribution amplitudes similarly as disconnected dia-

into account ir{4]. It appears as a “surface term” when the grams proportional to the quark condensate should not be
correlation function with a denominator q{up) taken into account in the nucleon matrix elemétoq|N)
=(—uQ2+ us)" with _n>1 is convertgd(lntegratlng by corresponding to the nuclean term.

parts into a canonical dispersion integraTl ,,(s,Q?) In the present context, arguments based on conformal
=1/mwfds Im T#V(s,QZ)/(s—s). Adding the expression in  symmetry suggest that contributions of higher Fock states
Eq. (38) to the leading twist 2 contributiof21) one obtains are strongly suppressed at-1 and their contributions to
the light-cone sum rule foF ,(Q?) to twist 4 accuracy. As the sum rule are, probably, negligible. Factorizable contribu-
seen from Eq(38), all twist 4 effects have to be identified tions, on the other hand, are expected to supply the missing
(to our accuracyas part of the soft contribution to the form nonperturbative corrections in the sum rule in the la@fe-

factor. Sincee™(u)~(1—u) at u—1 (see Appendix B limit and can be large. They are also of principal interest and
the twist 4 corrections are of order@ in the large®? indicate, as we will see, certain limitations for the light-cone
limit. sum rule approach.

Assuming asymptotic expressions for the quark- Guided by the existence of large quark condensate correc-
antiquark-gluon distribution amplitudd45,17,18 one ob- tions ~(0|qq|0)? in classical QCD sum rule calculations of

tains a compact expression the pion form factof20,21], in this paper we concentrate on
factorizable contributions of twist 6 four-quark operators,
(4) 20 2 20 €9,
¢ (U)= 7 % (wuu(3u—2), (39

(0]a(v1X) ¥,9(v2X)G(03X) ¥, ¥59(v4X) | 7 (P))

where 5%(1 GeV)=0.2 GeV is a scale-dependent param- b= —

eter determining the pion coupling to the local quark- _1_2<0|qq|0><O|[Q(01X)%V7’5Q(04X)
antiquark-gluon operatdsee Appendix B for the definition 1
The twist 4 correction to the sum rule simplifies in this case - -

o | Him THie simpiies +A(v5X) 0,4, 750020017 (9))— 759,440/ q0l|0)
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X<O|[a(le) 75Q(U4X)—a(vsx) y5q(v2X) ]| 7 (p)) so that the corresponding contributions to the sum rule ap-
4’2 pear to be proportional to the quark condensate squared.
(42) We start from the light-cone expansion of the quark

which involve the quark condensate and the two existing’roPagator(see Appendix A which contains contributions
two-particle pion distribution amplitudes of twist 3, and ~ Proportional to the covariant derivatii2“G,, of the gluon
@, see Appendix B. Definitions of both of them include the field strength. They are reduced to a quark-antiquark pair due

normalization factor to the QCD equations of motion. One quadntiquark from
this pair can be combined with an antiquagkiark from the
2 2 _ initial currents forming a quark condensate as in Fidb),6
po=———=——(qq), 43 6(0).
metmg o f2 A straightforward calculation gives

|
Figs. 60),6(c)_ (H‘D 1 1 (1—uv)(u—2) vu?
T Figs. &b :2|pﬂp,,as7TC,:N—fmu7Tf duf dvvv| 2¢p(U) st .
c o Jo [a—(1-uv)p]® [g—uvp]

1 { uv—3 v 392v(2+u) 392uv ])
o, (u [ + .

+ = — - (44

3 g—(1-uv)pl® [g-uvp]® [g—(1-uv)p]® [g—uvp]®
Another source of the factorizable twist 6 contribution is provided by the four-quark operators in the light-cone expansion of
Eq. (1) with a perturbative gluon exchange between two currésge Fig. 7. The technique of this expansion is explained in
[16,22). A lengthy but equally straightforward calculation yields

0.7_q (qa) Lot
TP 7=8ip ,p,asmCr— ,Tf,,f dufd Uy—————+ - (U)———————
o = OIPuPrasTCRTg Sl o G4 00| ) r T e 2 g (1w p

@ (U)

v(upg—q?) ] s

[q—(1-uv)p]®

In addition, we have considered the twist 6 parts of the two- and three-particle matrix elements corresponding to the diagrams
of Fig. 1 and Fig. Ba) and have not found any factorizable contributions. The sum of @gsand(45) represents, therefore,
the complete answer for the factorizable twist 6 contributions of four-quark operators.

The corresponding correction to the light-cone sum rule can be obtained following the standard procedure, that is, taking the
imaginary part ins=(p—q)?, subtracting the continuum aboge=s, in the dispersion integral, and performing the Borel
transformation. Because of large dimension of the denominators in(#&t)sand (45), one ends up with a rather complicated
structure of surface terms atsy. The final answer can be written as

s Ce — o d2 2 d3 2
F$)<Q2>=%<qq>uw fo ds f2<s,Q2>@[®(s0—s>e-S’M 1+f3(5,Q?) - S3[<s0—s)e-S’M 1], (46)
where
fo45,Q%) =159 505,02+ 59 /(s,Q?), (47)
with
Figs. 60,60« 42y > [* duf s _ 2s
2 (Q7) 2Q2(Q2+S)fs/(Q2+s) u3<u Q2+s) 22 WelWF| 153 %(u)l
1 1 du Q? .
—2(Q2+S)fQ2/(Q2+s) E<U Q2+S>[2U<Pp(u) 30.(U)],
i 2s (1 du|— ) us
f;g'7(S,Q2):—& S/(Q2+S) ? U()Dp(u)+§()po(u)(1_u_Q2>‘|l (48)
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_ s? (1 du s 11 du Q2
f £10- 60,6005, Q2) = — — | u- 2+u ,,u——f — | u———] g (u),
3 (s,Q%) 60 ) st Ut s (2+We.(U)-¢ P TP s ®q(U)
fFig 7( QZ) 232 ! du ( ) 1 U(QZJFS) (49)
(5,0 =— — — e ()| 1- ———].
* 3Q*) 5029 ¥ f 2Q2

It is easy to see that the expressions in Eg8) and (49  pion created by the interpolation current in E@), corre-
receive contributions from both haw<u, and softu>u,  sponding to the sum of twé functions; sed?25,26.’
regions, which we do not write separately in this case. The

hard contribution takes into account the integration region

corresponding to a large momentunQ flowing through the V. NUMERICAL ANALYSIS

gluon line and can be thought of as part of the hard mecha-

. — Combining the twist 2 calculatiof2l) with the twist 4
nism contribution to the form factor generated by product of . . i . .
two twist 3 distribution amplitudes,g with “wronyg? quark corrections in Eq(38) and twist 6 in Eq(46), we are now in

helicities [23,24). In the light-cone sum rule approach one a position to evaluate the complete light-cone sum rule for

distribution amplitude is present directly, and the second onéhe pion form factor:
is modelled using the duality approximation, as in the lead-
ing twist. 2y () A2 n2 4)A2 p2 (6)/ 2 N2
Inserting the asymptotic expressions for the distribution Fo(QO)=F(QLMA+FZAQEMY +FAQLM )(;52)
amplitudesp,(u) =1 ande,(u) =6u(1—u) and integrating
over u one obtains the expansions
To avoid misunderstanding, note that terms of higher twist
are not suppressed, in general, by increasing powerss, 1/
but rather by increasing powers of the Borel parameter. In
particular, all twists contribute to @* accuracy, with main
contributions coming from the soft region, in agreement with
the general wisdongsee also Sec. )llithat such corrections
come from large transverse distances. Timgmerica) hier-
., (50)  archy of contributions of different twist is, therefore, a self-
consistency check for the light-cone sum rule approach.
There are several input parameters which should be speci-
o o . ) ) fied in the sum rule. First of all, the pion duality intensgl
substltguon of which in Eq(46) yields 'Te twist 6 correction  —g 7 Ge\? is determined by fitting the two-point sum rule
to the light-cone sum rule to th®(1/Q") accuracy: (26) to the pion decay constarit,=133 MeV. This sum
rule is reliable for the corresponding Borel paramel‘{fta}pt
2 =0.7-1.0 GeV. Having in mind that in the light-cone sum
) (51) rule for the same pion channel the Borel parameter should be
' larger, typically of ordeerzMgpt/(u>, we assume 0.8
<M?<1.5 GeV as a fiducial interval. We have checked
that changings, by =0.1 Ge\? does not produce a signifi-

f(s.QD =t
24> QZ Q4

Fa(8,Q0) = — — +—
Q Qf

F(G)(QZ):4aSTFCF _ 2:(0.2 Ge\?

Nf2Q* Q?

much smaller thar () cant effect, so that we stick to the above standard value
Most importantly, theO(1/Q?) contributions have can- [13,20,2] in what follows.
celled. Inspection of Eqs(48) and (49) reveals that all The principal input is provided by the leading twist dis-

0O(1/Q?) contributions in individual diagrams originate from tribution amplitude(see Appendix B
the “hard” integration regionu<ug and their cancellation
involves both diagrams and both distribution functiaps

and‘Pp’ In agreement W'tm,23]' 2 . . A detailed comparison with the results [#3,24] goes beyond
The observed cancellation @(1/Q) corrections is N0t e tasks of this paper. In particular, one may ask whether light-

entirely trivial. One might fear that factorization of a local ¢one QCD sum rules can be used to calculate an effective infrared
quark condensate brings us back to the deficiency of theytoff in the hard scattering contribution obtained[28,24. To
standard QCD sum rule approach discussed in Sec. Il: Exgddress this issue one has to construct a different sum rule, using a
pansion of local operators messes up the power counting ighiral-odd interpolating current for the pion. Interpretation of Eq.
the momentum transfer, as observed0,21]. In other lan-  (51) in this context is difficult because of possible contamination by
guage, factorization of the quark condensate is equivalent tthe a; meson. We thank M. Beneke and G. Buchalla for the dis-
using a very bad model for the distribution amplitude of thecussion which initiated our interest in this problem.
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0.8 0.8
0.7 0.7 ///
0.6 0.6
FIG. 8. The Borel parameter
°§°'5 “";0'5 dependence of the light-cone sum
o4 o4 rule for the asymptotidleft) and
o o CZ (right) distribution amplitudes,

0.3 atQ?=1, 3, and 10 Ge¥shown
by dashed, solid, and dotted

. 0.2 .
. curves, respectively.

0.1 0.1

%8 10 12z 14 18 18 20 %% 10 12z 14 16 18 20
M? M®

<p7,(u,,u)=6uU[l+a2(,u)C§”2(u—U) region U>ug) dominated higher-_twi_st corrections ip the
sum rule. The scale dependence is, in fact, rather mild.

+a,(uw)CIu—u)+---1, (53 The Borel parameter dependence of the sum rule is shown

in Fig. 8 for three different values d2. As can be seen
from this figure, the prediction for the form factor is suffi-
where the coefficients, present the main nonperturbative ciently stable.
input of interest. Taking into account the poor accuracy of The relative contributions of different twists to the sum
the present data as well as the considerable uncertainties fQile are shown as a function 6 in Fig. 9. The twist 4
the sum rules themselves, we cannot aim to distinguish becontribution does not exceed 25-30 % of the total result
tween contributions of different Gegenbauer polynomialswhile the twist 6 correction is negligibly small. This hierar-
We put, therefore, alh,, n=4,6, ..., tozero and consider chy reveals a good convergence of the light-cone expansion,
the valuesa,=0 (asymptotic distributionanda,(1 GeV)  atleast alQ?>>1 Ge\2. For lower values of)? the higher-
=2/3 (CZ distribution as the two extreme alternatives. Cal- twist corrections become unstable and the approach breaks
culations in this section are done taking into account thejown.
anomalous dimension df, to one-loop accuracy; see Ap-  Finally, in Fig. 10 we compare the light-cone sum rule
pendix B. Our main goal will be to determire, from the  calculation with the available experimental data in the inter-
comparison of the sum rule results with the experimentalal 1<Q?<7 Ge\? taken from[27,28. The dashed and
data. dotted curves correspond to the asymptotic and CZ distribu-

The higher-twist distribution amplitudes and relevant pa-tion amplitudes, respectively. The solid curve presents the
rameters represent another set of inputs. They are listed isest fit, yielding
Appendix B. The uncertainty in higher-twist corrections
turns out to be sufficiently small and does not influence our
final results.

Finally, one has to specify the renormalization and factor-
ization scaleu. For this numerical analysis we use the with y?=13.9 for 14 degrees of freedom. The first error
u-dependent scalt—:yﬁz(l—u)QeruM2 for the leading comes from the experimental uncertainty, whereas the sec-
twist 2 contributions and simply take?=M? for the soft-  ond error corresponds to the variation of the Borel parameter.

as®Ru=1 GeV)=0.12+0.07'9%, (54)

0.7 0.7

FIG. 9. The relative impor-
tance of contributions of different
twist in the light-cone sum rule for
the asymptotic (left) and CZ
(right) twist 2 distribution ampli-
tudes. Twist 2(dashed curves
twist 4 (dot-dashed curves and
twist 6 (dotted curvep contribu-
tions and their sun{solid curve
are plotted aM?=1 Ge\~.
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0.7 2
....................... 27Crag(u)fs,
P Th(xy, Q)= ———
0.6 e NQ“(1—x)(1—y)
08 x| 1+ aS(M)Tl(x,y,Qzluz)er :

s

(58)

The remaindei=3),(Q?) is suppressed by a power G
and presents a true nonperturbative “higher twist” correc-
tion to the usual perturbative result based on collinear fac-
torization.

Making the substitutior{57) we effectively take into ac-
2 3 o} 5 6 count all higher-order corrections to the sum ruléd/Q?)

Q accuracy and neglect such corrections for power-suppressed
terms. This procedure tacitly implies that the numerical ef-
fect of the replacemertb7) is more important than of uncal-
culated (higher-order and higher-twist corrections to
F(&) £Q?). Such an assumption is natural, but in fact flawed
because of potential double counting of perturbative contri-
butions of soft regions. As one signal for this problem, one
may notice that the perturbative QCD expression suffers
from infrared renormalons in high orddr30], which have to

du be cancelled by the corresponding renormalon contributions
J — ¢ (Uu=1GeV)=336+02173%. (55 to F@)(Q?. Using a full resummed expression for

u F(2)(Q?) together with the leading-order expression for
FPZ)D(QZ) destroys this intricate cancellation and is, there-

0.0
1

FIG. 10. The light-cone sum rule predictions for the pion elec-
tromagnetic form factor using asymptotic distribution amplitude
(dashed curve CZ distribution(dotted curve, and fit to the data
(solid curve.

This value for the coefficierd, translates to the estimate
for the characteristic integral:

non

VI. MATCHING WITH THE NLO PERTURBATIVE fore, not fully consistent theoretically. This is a usual diffi-
CALCULATION culty of making a separation between “perturbative” and
“nonperturbative” contributions, which has been discussed

0t d et d the full perturbati in much detail recently in context of the calculation of power
present form does not yet reproduce the Tull perturbalive ez, e ctions to deep inelastic scattering, Drell-Yan processes,

sult in the asymptonc limiQ . Th_e missing terms cor- o ent shapes ie" e~ annihilation, and inclusived decays
respond to higher-order corrections in the light-cone expan 30,31]

sion and are difficult to calculate directly. Instead, one ca
make a matching of the light-cone sum rule to the NLO
perturbative calculation by following the standard logic of

the asymptotic expansid29]. To this end, write the twist 2 defineFﬁ%%p(Qz) as the contribution coming from the soft

contribution to the sum rule defined in EQ1) as a sum of region, and replace the “hard” contribution to the light-cone

two terr_ns, ad‘;"”g and subtractln.g th_e Igadmg asympton%um rule by the perturbative expression restricted to the same
expression aQ“—co [see Eq(31), first line]:

hard region. A difficulty in this case is that the soft-hard
F@(Q?2)=F@(0?)+F@ (Q2?), separathn in the sum rule involves a cutoff in one momen-
7 (Q7)=Fper Q7+ Frond Q) tum fraction only and becomes ambiguous when applied to

As discussed in Sec. llI C the light-cone sum rule in the

An alternative and theoretically better defined possibility
is to make a separation between soft and hard contributions
to the pion form factor with an explicit cutoff, as in Sec. Il

the fully factorized expressio(b7) involving two momen-

@ o dse M (1 o (u) -
Ffa?e)n(Qz):ﬁCFfo f quf=  tum fractions

Q? 0 u In the present paper we consider the first possibility be-
cause of its relative simplicity. We take into account the
Fg%)np( Q%) =F®(Q?) - FE)Q[(QZ)_ (56)  radiative correction to the hard-scattering keff3g-35 and

the complete NLO evolution of the pion distribution ampli-

Following the arguments df6] one can prove that higher- tude[36]; see Appendix B. To this accuracy,
order corrections to the sum rule must assemble themselves

to reproduce the factorized expression
P P Foer Q%)= Fpod Q%)+ Fpe2(Q?), (59
1 1
FRQ)= [ ax | aye.m Tuixy. @2 menty.m.
(57 8A natural solution would be to introduce a cutoff in the trans-
verse quark-antiquark separation rather than in the momentum frac-

with tion.
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where 0.7

f2
F;&(Q%=8msw2>§|1+a5°<u2>+ak0m2>|2

(60)
and[35]

16f2
Frac(Q?)= Q—;a§w2>[1+ as(u?)+ay(u?)]

a5 O(n?)+ay o(uh) + 2 a?kom}

X
+8f727 2 2) 2|25 LO 2)+91 LO 2)

— ~|=a =a

Q2 s(w 36 7?2 (n 1574 (n FIG. 11. The nonperturbative correction to the pion form factor

(dotted curve combined with the NLO perturbation theofgum:
Lo, 2 Lo, 2 MZ solid curveg, compared with the pure light-cone sum rule result
X[1+az (u)+as (u )]In—2 (dashed curve An asymptotic pion distribution amplitude is as-
Q sumed. The gray band shows the scale dependence of the hard-
2 scattering contribution; see text.

9
+Z[1+a'2‘0(,u2)+a'go(uz)]2In'u—2+6.58
Q tempting a renormalization group resummation. This allows

+24-991'50(M2)+21-4?za'2'o(,u2)]2 us to minimize the problem with the double counting of in-
o, » L0, 2i1 frared regions.
+32.8%a, (1) +32.55a, (u°)] The numerical results are shown in Fig. 11 assuming the
asymptotic pion distribution amplitude at the scale of 1 GeV.
+53.37a§o(,u2)ako(uz) _ (61) The result of the calculation using E(62) and k=1/2 is

shown by the solid curve with the shaded band correspond-
o ~ ing to variation of the scale parameterin the given range.
Note that we do not distinguish between the renormalizatiorThe dotted curve presents the nonperturbative contribution

and factorization scales. and the dashed curve is the “pure” light-cone sum rule cal-
The complete expression for the form factor reads, regylation with the same parameters. The difference between
spectively, the solid and the dashed curves presents, therefore, the net
effect of the substitutiort57).
2y 2 (2) (02 M2 402 M2
F Q%) =Fped Q) +Frgnd Q% M%) +FZ7(Q%,M?) The nonperturbativépower-suppressedcontribution to
+F®(Q2,M?2), (62)  the pion form factor shown by the dotted curve in Fig. 11

presents considerable interest by itself. It is, obviously, inde-

where we have taken into account that twist 4 and twist g*endent of whether the substitutio7) is used(cf. discus-
corrections to the light-cone sum rule receive n@&ton-  Sion at the end of Sec. lll)Cand turns out to be comfortably
tributions to our accuracy. small. This smallness may appear to be unexpected after we
For the numerical analysis, we still have to specify thehave found large softend-poin corrections in Sec. Ill, and
factorization scale. Since after the subtraction of thdS due to a strong cancellation between the leading-order soft
asymptotic 102 contribution the sum rule contribution is contribution to the sum ruléfirst line in Eq.(25)] and the
dominated by soft contributions, we choose the fixed scaléarge radiative correctiofisecond line in Eq(25)] corre-
w?~M?=1 Ge\? for simplicity. For the perturbative con- sponding to the sum of soft and hard contributions @1/
tribution we use accuracy. As seen from Eq&9), (30) the large negative

hard contribution~1/Q* plays the most important role in
w?=kQ%+M?, M?2=1 Ge\?, (63) this cancellation.
Since according to our analysis the pion distribution am-
with parametelk in the range plitude does not differ significantly from the asymptotic dis-
tribution, the theoretical uncertainty in the light-cone sum
1/4< k<1. (64) rule calculation of the nonperturbative correction to the pion
form factor is dominated by dependence on the Borel param-
Note that with small values ok the scale is almosQ? eter, as illustrated in Fig. 12.
independent. Effectively, this choice amounts to doing the With the central values of parameters, the nonperturbative
perturbative expansion to fixegecond order and not at- correction can be parametrized in the region<Q?
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0.2 This determination is dominated by the “pure” light-cone
0.18 sum rule result in which case we included the data points at
0.16 lower valuesQ? having higher accuracy. The situation will

change when sufficiently precise data@it>2-3 GeV be-

N 0.14 come available. In this region the NLO perturbative predic-
‘© 012 tion complemented by the “higher-twist” power-suppressed
£ 01 correction in Eq.(65 becomes, from our point of view, a
N""' — preferable description, with potential theoretical accuracy of
< the order of 10%. Note that the theoretical status of our result
0.06 for the nonperturbativésoft + hard correction is similar to
0.04 model (or sum rule determinations of matrix elements of
0.02 higher-twist operators in deep inelastic scattering.

0.0

VII. CONCLUSIONS

FIG. 12. The light-cone sum rule prediction for the nonpertur-  Elaborating on the earlier propodal] we have given in
bative correction to the pion form factor. The gray band shows thehjs paper a detailed quantitative analysis of the pion form
SensitiVity of the result to variation of the Borel parameter within factor in the region of intermediate momentum transfers in
0.8 GeV¥<M?<1.5 Ge\,. The white line is the calculation for the the light-cone sum rule approach and also combining this
standard reference vaIlMe2=_1 Ge\? assumed throughout this pa- technique with a complete existing NLO perturbative calcu-
per and the dashed curve is the(85). lation. Our results support the shape of the pion distribution

amplitude that is close to the asymptotic expression and are
<15 GeV as inconsistent with the CZ-type distributions. Our final esti-
) NP ) 42 mate for the parametexr, characterizing the deviation from
Q Frond Q%) =Q?/(1.7046+ 1.06620°+ 0.021M)") the asymptotic form is given in E{67).2°
(65 Another important conclusion of our analysis is that the
nonperturbative contribution to the pion form factor turns out
to be rather moderate and does not exceed 30% in th@*ull
range; see Fig. 11 and Fig. 12. One has to have in mind,

(all numbers in GeY, and the theoretical err¢the gray area
in Fig. 12 roughly corresponds to the uncertainty in the

overall normalization of ordet-25%. h h . o bative” and *
Choosing, as above, a model for the distribution ampli-'O€Ver, that separation of “perturbative” and ‘nonpertur-
' ' bative” contributions is theoretically not well defined be-

tude at the scale 1 GeV as a sum of the leading term and thceause QCD perturbation theory is divergdBo]. A fully

second Gegenbauer polynomial, and fitting the paramem"tfweoreticall consistent approach necessarily has to introduce
a,(1 GeV) to the data, we find catly bp . Aty .
an explicit scale separation, and in particular consider soft
and hard contributions to the pion form factor separately. We
have presented a detailed study of the soft-hard separation
g implemented with a hard momentum fraction cutoff in Sec.
u B B Ill. One finds that soft contributions are generally very large
j T‘P”(u’”_l GeV)=2.82+0.72+0.09+0.09. and the smallness of the total nonperturbative correction is
(66)  due to cancellations between soft and hard terms of higher
twist. Thus, somewhat paradoxically, the nonperturbative ef-
The first error comes from the experimental uncertainty, thdects in the pion form factor can be small and the soft con-
second error corresponds to uncertainty of the nonperturbdributions large, simultaneously.
tive contribution(mainly dependence on the Borel param- TO summarize, we believe that the light-cone sum rule
eten, and the third error is the scale dependence of the NL@pproach presents a powerful and theoretically consistent
perturbative result. Combining the two estimates in E§8) ~ framework to the analysis of hard exclusive reactions for
and (66) and adding the errors in quadrature, we obtain agntermediate momentum transfers. The main and essential
our final result assumption of the method is duality, i.e., that the pion con-
tribution can be isolated from the correlation function by
a,(u=1 GeV=0.1+0.1, integrating the QCD spectral density in a certain energy
range—the interval of duality. While the numerical accuracy
of this approximation can be disputed, it satisfies all known

a)(u=1 GeV)=—0.06+0.24+0.03+0.03,

du
f —o¢(Uuu=1 GeV)=3.3+0.3. (67)
u
1%The smallness of nonasymptotic contributionsstois in agree-
ment with the light-cone sum rule analygi39] for the y* ya®°
9The given parametrization should not be used for larger values afransition form factor, compared with the CLEO d&#]. For a
Q? since it has the wrong asymptotic behavior. recent update including NLO effects sigtl].
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QCD constraints and provides a perfect laboratory for the study of different interaction mechanisms involving several scales.
In particular, the scale dependence of the soft-hard separation studied in this work is of general validity.
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APPENDIX A

Here we collect some useful formulas.
The imaginary part of the radiative correctibh to the hard scattering amplitude reads

ey Y
1 IMH(Q%s,u,u)=| —9+ 1772+3|n[Qz/M2]—|n[QZ/MZJ?%L?,|n i —In? i 5(p)
T 3 U,u,2 U,LL2
2f—2Q%+3p+55+2(Q%*+p+s)In[—plu?
+®[_p]Q{ Q°+3p : (Qs_p )
(Q7+s)°uu
Q¥ —(Q*+s)In[s/u?]+u(Q*~s+sIn[s/u?])} Q*(Q*—s+slIn[s/u?])
20[ - ~ 2 =
+20[=p] (Q%+s)%uu +200p] (Q%+5s)%u
Q?s(—3+2In[s/u?]) d ) Q*In[s/u?] d )
+ Q2970 dp('”[P/M 10[p])+2 Q2+ 97 dp(ln[ pl n10[—p])
4 d
2% L 07— i1 p)), (A1)

(Q?+s)2u dp

wherep=Q?u—us.
The light-cone expansion of the quark propagator is derived it

S(x,0)=—i(0|T{a(x)q(0)}|0)

I'(d/2)x I'(d/2—1) 1
:2772(_X2)d/2 16772(_X2)d/21f

d u{UXaH,,G‘”(ux) +uo,,G*(ux)X
0

_ N rdi2-2) ([ (- 1) . i »
+2IUUf(XpD)\G (UX)}—WJO duii UU—E DMG (UX))/,,'FEUU(].—ZU)X#DDVG (ux)

My D“D, Gy
uue,u.uaﬁx,u. N Y Vs

5 T (A2)

where G#?=g,G*"3(\?/2), Tr(\®\P)=26%", andd is the space-time dimension. Only the terms proportional to the one-
gluon-field strength and its first covariant derivative are shown for brevity.

APPENDIX B

Here we define the light-cone distribution amplitudes of the pion and specify their parameters. The leading twist 2
amplitude¢ (u) and the twist 4 amplitudeg;(u) andg,(u) enter the light-cone expansion of the matrix element
2

Xp
X, — pxﬂ

. 1 . 1 .
(OIG(0) 7, ysa) | (P} =i, T | due P + gy )] 1, ) | e, e

The QCD equations of motions relage andg, to the quark-antiquark-gluon twist 4 distributiogs, ¢, , TPH ,ande, . The
latter are defined by the matrix elemehis]
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Ry, pax _p on i .

(01d(=%) 775G ag(0X)UCO] 7" (P)) =P, == =1 f Dajg)(aj)e P
+(aaPp— 9upPa) f f Daip, (aj)e™Pxrla), (B2)

oy .= an,B_ p,BXa ~ —ipxr(a;

<0|d<—X>mGap(vx>u(x)lw+(p)>=pquﬂf Dap|(a;)e P
+<9tapﬁ—gtﬁpafwf Dajp, (a;)e”Pxrad, (B3)

WhereGaB 2eaﬁpAGP>‘ and the following abbreviations are tion[a,(1.0 GeV)=2/3, a,-,=0]. In next-to-leading or-

used: der[36] the evolution requires an infinite sum of coefficients:
(@)= a1~ ay+vag, ay () =a;°(1?)Pa(u?) + Qad u?),
Da;=daydaydasd(l-ai—ay— as), al(u?) = a0 u?)Pa(1?) + Qugl 12)
and +a5°(u?) Qo 1),
oLy= gaﬁ—%. a8c(4?) = Qai o #7) + 85%(1?) Qi 2 1?)

+a;°(u?)Qaa(n?), k=3, (BY)
The distribution amplitudes are usually constructed using ¢
the formalism of the conformal expansifb|. To achieve a jith the following notation:
reasonable accuracy one tries to retain a few first terms of

this expansion in addition to the leading asymptotic term. 1 (1) B ag(u?)
The most familiar example is the twist 2 pion distributi@j Pu(ud)=~ ( +22 (0)) ( 1—- =%
_ 41280 B3 ag(p?)
@(U,m)=6Uu[1+a,(1)CYAu—u)+as(u)Cy u—u)
. (2k+3)
+een (B4) Qnl m )Zm

where two orders of the conformal expansion in Gegenbauer

_ 32 o : (n+2)(n+1)
polynomialsC;“ are explicitly shown, with

> 7 (1)
X Z(an+3)  Chn Sk,

3
CIAx) =5 (5x*~1), (0)_ (0
? Sen( 4D =T
n FOEN Oy
Ci/z( X)= (21X4 14x%+1). 2oy 1+ (10— 4O,
CMS(,MO) K n
(B5) 1- 5 ,
ag(u)

The coefficients,, determine the nonasymptotic partof, .

Their scale dependence is given in the leading order by YO — Bo+4CeA,

(1
Cin = (N3 Gy ke n+3)

Lo ( s(Mz))y“ 1o Lo B6
B (1) ={ 5 (i) (wa). (BO) 2Ce[ Axy— t(k+2)+ y(1)]
, ) ) (n+1)(n+2) '
where 8p=11- 5N, and the anomalous dimensions are
) N+l A Ir/}(k+n+4 w(k—n T+ 2u(k—n)
(o)_ - kn— —Y\ 5 —-n
CF{ —(n+1)(n+2) 4(2‘,1 k) . (B?) 2 2
—i(k+2)— (1), (B9)

In the numerical analysis in this paper we use, in particular,
the asymptotic distributioifall a,=0) and the CZ distribu- where
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d 38
W2)= g [InT(2)], B1=102= = Ng,

y=0, 9=111.03, 4{P=150.28.

(B10)

Expressions for the twist 4 distributions including the next-
to-leading corrections in conformal spin have been derived

in [15,17:

(€]

S T _
g, (u)= 562u2u+ 5526 uu(2+13uu)

6 _
+10u3(2—3u+ guz)ln u+10u®

— 6
2—3u+§u2 Inul,

X

10 — —
gz(u)=§52uu(u—u), (B11)
€D||(01i):12052€(a1—012)“1“2“3-
2 2|1
¢, (@) =305%(a1—az)ag §+2€(1_203) ,
~ 1
go||(ai)=—12052a1a2a3 §+e(1—3a3) ,
~ ) 5 1
@, (a))=306az(1— a3) §+26(1—2a3) .
(B12)

To this accuracy, the specific combinati@d7) of twist 4
distribution amplitudes reads

20 .
o®(u)= 3 5%u®u(3u—2)—46%eu(2+ 11u—26u?

+13u3) —85%€[u3(10— 15u+6u?)In (u)

+ud(1+3u+6ud)in(1—u)]. (B13)
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(950G 1, y"ul0)=i 8% 1, (B14)
The second parameterin Egs.(B11) and(B12) is respon-
sible for the first nonasymptotic corrections. QCD sum rule
estimates yiel#°~0.2 Ge\? [37,39 and e~0.5[15]. The
scale dependence of these parameters is givgd By

o (p3) = ) o (p1),
S 1
S( 2) 10/8g
(e (ud)=| ZEZ) (e (ud).
as(ﬂl)

(B15)

Finally, we should include in our list the twist 3 distribution
amplitudese, and ¢, used in the calculation of the twist 6
corrections. These distributions parametrize the following
matrix elements:

_ 1 .
(O[G(O)i v | ()=, | due gy w),

— i
<O|d(o)aaﬂ75u(x)| 7T+(p)>: é(paxﬂ_ pﬂxa)f'rr/*l’ﬂ'

1 )
X fo due ""P*p_(u),
(B16)

where M7=m§/(mu+ mg). The well-known asymptotic

form of these distributions
ep(W)=1, @, (u)=6uu, (B17)

is sufficient for the approximation adopted in this paper. The

relation (43), Egether with the standard value of the quark

condensate(qq)(1 GeV)=(—240 MeV), yields wu.(u

=1 GeV)=1.56 GeV. Note that the normalization of the

twist 6 correction is effectively determined by the product

The normalizations of all these distributions are determinedxs(u)(aq>2(u) having in total a negligible anomalous di-

by a single nonperturbative paramet&rdefined as

mension.
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