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Pion form factor in QCD at intermediate momentum transfers
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We present a quantitative analysis of the electromagnetic pion form factor in the light-cone sum rule
approach, including radiative corrections and higher-twist effects. The comparison to the existing data favors
the asymptotic profile of the pion distribution amplitude and allows us to estimate the deviation:
@*du/ufp(u)#/@*du/ufp

as(u)#51.160.1 at the scale of 1 GeV. Special attention is paid to the precise defi-
nition and interplay of soft and hard contributions at intermediate momentum transfer, and to the matching of
the sum rule to the perturbative QCD prediction. We observe a strong numerical cancellation between the soft
~end-point! contribution and power-suppressed hard contributions of higher twist, so that the total nonpertur-
bative correction to the usual PQCD result turns out to be of the order of 30% forQ2;1 GeV2.

PACS number~s!: 13.40.Gp, 11.55.Hx, 12.38.2t
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I. INTRODUCTION

There is a clear tendency for QCD-oriented experimen
studies to go for more and more exclusive channels. All
ture plans also call for very high luminosity and would the
fore be perfectly suited for the investigation of exclusive a
semiexclusive reactions. A problem which hinders all
tempts to implement these projects is the lack of truly qu
titative QCD predictions. It is widely anticipated~see e.g.,
@1–5#! that for experimentally accessible values of the m
mentum transfer, the perturbative QCD factorization for h
exclusive reactions@6# receives non-negligible correction
from the so-called soft, or end-point, contributions, whi
are essentially nonperturbative. One practical difficulty
that soft corrections can in many cases be mimicked~nu-
merically! by modifying the shape of hadron distribution am
plitudes. An agreement of perturbative predictions with
data cannot, therefore, be used to claim the smallnes
end-point effects which have to be estimated independe
using a certain nonperturbative approach. Creating a sys
atic framework for a study of soft end-point corrections
becoming, thus, increasingly timely.

It has been suggested@4# that the soft end-point contribu
tion to the pion electromagnetic form factor can be estima
in a largely model-independent way within the framework
light-cone sum rules@7#. The aim of the present paper is
put this technique on a more quantitative footing. To this e
we calculate the radiative correction to the light-cone s
rule, elaborate on the scale dependence, and demons
how the sum rule estimates of the end-point effects can n
rally be combined with the next leading order~NLO! QCD
perturbative calculation. In addition, we estimate the twis

*On leave from Yerevan Physics Institute, 375036 Yerevan,
menia.
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contribution to the sum rule due to the quark condensate
find this correction to be small.

The presentation is organized as follows. In Sec. II
recall the basic ideas of the light-cone sum rule approach
derive the simplest sum rule. Section III is devoted to t
calculation of the radiative correction and separation of s
and hard effects. As expected, we find that in theQ2→`
limit the form factor is dominated by the hard rescatteri
contribution alone, while to 1/Q4 accuracy both soft and har
contributions have to be taken into account. Higher-tw
corrections to the light-cone sum rule are considered in S
IV, while Sec. V contains the results of our numerical ana
sis. Matching of the sum rule with the NLO perturbativ
predictions is discussed in Sec. VI. Finally, in Sec. VII w
summarize. The paper contains two appendixes where
collect some useful but bulky expressions and present
relevant formulas for light-cone distributions of the pion.

II. METHOD OF LIGHT-CONE SUM RULES

The approach is based on the study of the correla
function @8#

Tmn~p,q!5 i E d4xeiqx^0uT$ j m
5 ~0! j n

em~x!%up1~p!&, ~1!

where j m
5 5d̄gmg5u and j n

em5euūgnu1edd̄gnd is the quark
electromagnetic current. Withp25mp

2 andQ252q2 fixed,
the correlation function~1! depends on a single invarian
variables5(p2q)2. The contribution of the pion intermedi
ate state equals

Tmn~p,q!52i f p~p2q!mpnFp~Q2!
1

mp
2 2~p2q!2

, ~2!-
©2000 The American Physical Society04-1
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where f p is the pion decay constant andFp(Q2) is the pion
electromagnetic form factor. On the other hand, at la
negative (p2q)2 andq2 the correlation function can be ca
culated in QCD, in full analogy with theg* g* p transition
form factor. A common idea of all QCD sum rules is
matching between the QCD calculation at Euclidean m
menta and the dispersion relation in terms of contributions
hadronic states, which allows one to estimate the hadro
quantity of interest. The specifics of the light-cone sum ru
are how exactly the QCD calculation and matching are do
To illustrate this point, consider the contribution of the sim
plest diagram in Fig. 1:

Tmn5
1

2p2E d4x
eiqx

x4
^0u@eud̄~0!gmx”gng5u~x!

2edd̄~x!gnx”gmg5u~0!#up1~p!&. ~3!

Expansion of the remaining nonlocal matrix elements aro
the middle point in a formal Taylor series generates the W
son operator-product expansion in contributions of local
erators of increasing dimension:

Om,m1 ,m2 , . . . ,mn

n 5d̄~0!gmg5iDJ m1
••• iDJ mn

u~0!, ~4!

Dm5]m2 igAm being the covariant derivative andDJ m5DQ m

2DW m . Restricting ourselves for the moment to operators
the lowest twist~highest Lorentz spin! we consider the rel-
evant reduced matrix elements

xm1
•••xmn

^0uOm,m1 ,m2 , . . . ,mn

n up1~p!&

5 i f ppm~px!n^^On&&1•••. ~5!

They are related, as first found in@6#, to the moments of the
pion distribution amplitude:

^0ud̄~0!gmg5u~x!up1~p!&5 ipm f pE
0

1

due2 iupx

3wp~u,m2;x22!,

^^On&&5E
0

1

du~122u!nwp~u!. ~6!

FIG. 1. The tree-level contribution to the correlation function
Eq. ~1!.
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Substituting Eq.~5! into the expansion of Eq.~3! and inte-
grating overx, we obtain for the contribution of Fig. 1,1

Tmn5
2i f ppmpn

Q22s
H 11

2Q2

Q22s
(

n52,4, . . .
^^On&&

3S 2Q2

Q22s
21D n21J 1other Lorentz structures,

~7!

where s5(p2q)2. To construct a sum rule, we make th
Borel transformation

1

mp
2 2s

→ exp@2mp
2 /M2#,

1

~Q22s!n
→ 1

~M2!n21G~n!
exp@2Q2/M2#,

~8!

introducing a new variableM2 ~the Borel parameter!, and
equating the Borel-transformed versions of Eqs.~2! and ~7!.
For simplicity we neglect the continuum subtraction he
Neglecting the pion mass, the result reads

Fp~Q2!5e2Q2/M2H 11 (
n52,4, . . .

^^On&&

3 (
k51

n S n21

k21D 1

G~k11! S 22Q2

M2 D kJ . ~9!

This sum rule is, however, completely unsatisfactory.
Indeed, QCD sum rules are generally expected to hold

a certain interval of values of the Borel parameter, such t
contributions of both higher resonances and higher order
the operator product expansion~OPE! are simultaneously
suppressed. It is easy to see that in the present situation t
two conditions are contradictory, unlessQ2 is sufficiently
small. Indeed, on the one hand, one has to keepM2 small, of
the order of 1–2 GeV2, to suppress the contribution of, e.g
the a1-meson intermediate state. On the other hand, fo
fixed M2 the higher-order terms on the right-hand si
~RHS! of the sum rule are enhanced by factors (Q2)k and for
Q2.M2 the OPE expansion breaks down.

An escape suggested in@7# is to avoid the Wilson short-
distance expansion altogether and write the answer for
diagram in Fig. 1 directly in terms of the pion distributio
amplitude. The expansion parameter then becomes thetwist
of the operators rather than their dimension. Using Eq.~3!
and the definition of the pion distribution amplitude in E
~6! we obtain to leading twist accuracy, instead of Eq.~7!, a
compact expression

1The terms with oddn vanish because ofG parity.
4-2
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Tmn52i f ppmpnE
0

1

du
uwp~u!

ūQ22us
1•••, ~10!

where ū512u. Making, once again, the Borel transform
tion, we get the simplestlight-cone sum rule@4#

Fp~Q2!5E
0

1

duwp~u!expS 2
ūQ2

uM2D . ~11!

This sum rule is perfectly well behaved atQ2→` and it is
instructive to trace how the above-mentioned difficulties
the standard approach have been resolved. Because o
strong exponential suppression factor, the important reg
of integration over the momentum fraction variableu gets
shifted, in the large-Q2 limit, to the end-point region 12u
;M2/Q2. In this regime, the virtuality of the quark@the
denominator in Eq.~10!# remains all the time of orderM2, as
Q2→`. The deficiency of the short-distance expansion
now clearly seen as originating from the wrong expans
parameter (Q22s)/2 @cf. Eq. ~7!#, corresponding, effec
tively, to the expansion around the symmetric point2 u
51/2.

To be somewhat more quantitative, we have to make
usual continuum subtraction. This is trivial in the case
hand, since expression~10! is easily converted to the form o
a dispersion integral overs5(p2q)2. All we have to do is
to truncate this integral at a certain thresholds0, called the
interval of duality. The result@4# is that the integration ove
the momentum fraction is cut from below at the value

u05Q2/~s01Q2!. ~12!

In addition, the pion distribution amplitude has to be taken
the scale corresponding to the quark virtuality:

mu
25ūQ21uM2. ~13!

Implementing these small improvements, we obtain
leading-twist leading-order light-cone sum rule@4#

Fp~Q2!5E
u0

1

duwp~u,mu!expS 2
ūQ2

uM2D . ~14!

The crucial advantage of the light-cone sum rule approac
that it allows one to incorporate the information on the en
point behavior of the pion distribution amplitud

wp(u) ;
u→1

12u. In the limit Q2→` the integration region in
Eq. ~14! shrinks to a pointu51 so that one obtains

Fp~Q2!;
wp8 ~0,m2;M2!

Q4 E
0

s0
sdse2s/M2

, ~15!

2A similar deficiency of the short-distance expansion in the c
of heavy-to-light correlation functions is demonstrated in@9#.
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where wp8 (0)[(d/du)wp(u)uu→052wp8 (1). The Borel
variableM2 corresponds to the~inverse! distance at which
the matching is done between the parton and hadron re
sentations.

The expressions in Eqs.~14!, ~15! present a typical
‘‘soft’’ or ‘‘end-point’’ contribution to the pion form factor
which is sensitive to the pion wave function at alow normal-
ization point and comes from large transverse distance
orderb;s0

21/2.
To illustrate this point, write the four-dimensional integr

tion in Eq.~1! as a product of 2 two-dimensional integratio
in longitudinal and transverse~to p andq) coordinates. Leav-
ing the transverse integration intact, a short calculation gi
for the RHS of Eq.~11!

E d2bE
0

1

duwp~u!
uM2

4p
expS 2

1

4
uM2b22

ūQ2

uM2D .

~16!
The distribution of transverse distances in the diagram

Fig. 1 is, thus, Gaussian, with the average transverse
^b2&54/(uM2) controlled by the value of the Borel param
eter. One also sees that the scale of the distribution ampli
in Eqs.~13!, ~14! is determined by the weighted average
the momentum transferQ2 and the~inverse! transverse dis-
tance between the quarks, as expected on general gro
@10#.

Including the continuum subtraction modifies this dist
bution rather significantly as the small-b region is dominated
by high-mass excitations and gets suppressed. After s
algebra we obtain the sum rule equivalent to Eq.~14! but
with an explicit separation of different transverse distanc

Fp~Q2!5
1

4pE d2bE
u0

1

duwp~u!e2ūQ2/(uM2)

3E
0

us02ūQ2

dte2t/(uM2)J0~Ab2t !

——→
Q2→` wp8 ~0!

4pQ4E d2bE
0

s0
dse2s/M2

3E
0

s

dt~s2t !J0~Ab2t !, ~17!

where J0 is the Bessel function. The resulting transvers
distance distribution~normalized to unity atb50) is shown
in Fig. 2. The dependence on bothQ2 and the Borel param-
eter is actually very weak and the overall scale of transve
distances is determined almost entirely by the value of
continuum threshold. Because of this, forM2@s0 the pion
distribution amplitude has to be taken at the scalem2;s0,
rather than at3 m2;M2. The width of theb2 distribution in
Fig. 2 should be compared with the electromagnetic p
diameter squared: (2Rp

em)2;2 fm2.

e 3It can be shown that this change of scale takes into account
continuum subtraction in the running coupling; cf.@11#.
4-3
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III. RADIATIVE CORRECTIONS

A. General case

In order to improve the accuracy of the light-cone su
rule ~14!, one has to calculate theO(as) radiative correc-
tions to the leading-order correlation function~10!. The cor-
responding Feynman diagrams are shown in Fig. 3. The
culation is straightforward, albeit tedious, and technica
similar to the calculation of the radiative correction to t
g* g* p transition form factor for different photon virtuali
ties @12#. We handle ultraviolet and infrared collinear dive
gences by dimensional regularization in the modified m
mal subtraction (MS) scheme. Because of the fact that t
diagrams contain twog5 matrices~one from the axial-vector
vertex and one from the pion projection!, there is nog5
ambiguity. We have also checked that the collinear div
gences are absorbed in the definition of the scale-depen
pion distribution amplitudewp .

Our result for the twist 2 part of the correlation functio
~1! to O(as) can be represented in a form of convolution

FIG. 2. The transverse-distance separation between the q
and the antiquark in the leading-order light-cone sum rule~14! in
the large-Q2 limit for typical values of the sum rule parameterss0

50.7 GeV2 andM251.0 GeV2.
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wp with the hard scattering amplitude

Tmn
(2)52i f ppmpnE

0

1

duwp~u,m!H H0~Q2,s,u!

1
asCF

4p
H1~Q2,s,u,m!J , ~18!

where the leading-order result was already given in Eq.~10!,

H0~Q2,s,u!5
u

ūQ22us
, ~19!

and the radiative correction to the hard scattering amplit
equals

rk

FIG. 3. The radiative corrections to the correlation function
Eq. ~1!. Dashed lines denote virtual gluons.
on, the
H1~Q2,s,u,m!5
Q2

uū~Q21s!3~ ūQ22us!
F29uū~Q21s!22@Q4ū~3ū22!1Q2s~526uū!1s2u~3u22!# lnS ūQ22us

m2 D
1@Q4ūu1Q2s~112uū!1s2ūu# ln2S ūQ22us

m2 D 1u@22Q4ū15Q2s1s2~112ū!# ln
s

m2

2us@Q2~11ū!1sū# ln2
s

m2
1ū@Q4~112u!15Q2s22s2u# ln

Q2

m2
2ūQ2@Q2u1s~11u!# ln2

Q2

m2G . ~20!

To obtain the radiative correction to the light-cone sum rule forFp , one has to calculate the imaginary part ofH1 in the
variables. The resulting expression is presented in Appendix A. After continuum subtraction and Borel transformati
sum rule reads

Fp
(2)~Q2!5E

0

1

duwp~u,m!@Q~u2u0!F soft
(2)~u,M2,s0!1Q~u02u!F hard

(2) ~u,M2,s0!#, ~21!

where
4-4
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F soft
(2)~u,M2,s0!5expS 2

ūQ2

uM2D H 11
as

4p
CFF291

p2

3
13 ln

Q2

m2
13 ln

ūQ2

um2
2 ln2

Q2

m2
2 ln2

ūQ2

um2G J
1

as

4p
CFXE

ūQ2/u

s0 dsQ2e2s/M2

u~Q21s!3 F5s1Q2S 112 ln
2r

m2 D 12S Q2

ū
1sD ln

2r

s

1
2Q2

u S Q21s

s
1

2M21Q21s

M2
ln

2r

s D ln
2r

m2 G1E
0

ūQ2/u dsQ2e2s/M2

uū~Q21s!3 H 2uS Q22s1s ln
s

m2D 1F2Q215s

12~Q22s!ln
s

m2
2

s~Q21s!

M2 S 2312 ln
s

m2D G ln
r

m2J 12
u0

2

u2
e2s0 /M2

ln
2r0

m2
ln

u2u0

ū0

C ~22!

and

F hard
(2) ~u,M2,s0!5

as

4p
CFXE

0

s0 dsQ2e2s/M2

ū~Q21s!3 H 2S Q22s1s ln
s

m2D 1
1

u F2Q215s12~Q22s!ln
s

m2

2
s~Q21s!

M2 S 2312 ln
s

m2D G ln
r

m2J 2
u0ū0

uū
e2s0 /M2S 2 ln

s0

m2
23D ln

r0

m2
C. ~23!
.
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Here r5ūQ22us and r05ūQ22us05(12u/u0)Q2. The
superscript ‘‘~2!’’ indicates the leading twist 2 contribution
Higher-twist terms will be added in the next section. W
interpret the parts of Eq.~21! with F hard

(2) (u,M2,s0) and
F soft

(2)(u,M2,s0) as ‘‘hard’’ and ‘‘soft’’ contributions to the
pion form factor, respectively, defined with the explicit cu
off in the momentum fractionu5u0;12s0 /Q2. This sepa-
ration will be discussed in detail below.

B. Study case: Asymptotic distribution amplitude

For the asymptotic shape of the pion distribution amp
tude wp

as(u)56u(12u) the momentum-fraction integratio
in the radiative correction can easily be done analytica
with the simple result

Fp
as~Q2!56E

0

s0
dse2s/M2 sQ4

~s1Q2!4 H 11
asCF

4p Fp2

3
26

2 ln2
Q2

s
1

s

Q2
1

Q2

s G J . ~24!

All the scale-dependent logarithmic terms cancel in this ca
as expected. For largeQ2@s0 one can expand the sum ru
~24! in powers of 1/Q2:

Fp
as~Q2!5

3asCF

2pQ2 E0

s0
dse2s/M2

1
6

Q4E0

s0
dsse2s/M2

3H 12
asCF

4p F102
p2

3
1 ln2

Q2

s G J 1O~1/Q6!.

~25!
07300
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To interpret the leading term, we notice that the integ
*0

s0dse2s/M2
can be related to the pion decay consta

through the QCD sum rule@13#

f p
2 5

1

4p2 E0

s0
dse2s/M2S 11

as

p D1
^0uas /pG2u0&

12M2

1
176

81M4
pas^q̄q&21•••. ~26!

The perturbative correction and the gluon- and qua
condensate contributions involve an extra power ofas and
are absent, therefore, in our approximation. Substitut
*0

s0dse2s/M2→4p2f p
2 , we obtain

Fp
as~Q2!→

8pasf p
2

Q2
, ~27!

which coincides with the classical result@6#.
It is easy to see that theO(1/Q2) contribution to the form

factor comes entirely from the term which we have identifi
as ‘‘hard,’’ while all power-suppressed corrections invol
both hard and soft contributions. In particular, we obtain,
O(1/Q4) accuracy,

Fp
as, hard~Q2![E

0

u0
duwp

as~u!F hard
(2) ~u,M2,s0!

5
3asCF

2pQ2 E0

s0
dse2s/M2H 12

s

Q2 F112
s0

s

1 ln
s

m2
1S 322 ln

s

m2D ln
Q2

s02sG J . ~28!
4-5
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The soft part is then just what is left when this hard con
bution is subtracted from the total result in Eq.~25!. Notice
that the separation of soft and hard contributions depend
the collinear factorization scale, even for the asymptotic d
tribution amplitude. We will elaborate on this dependence
what follows.

In the local duality limitM2→` one obtains

Fp
as, hard~Q2!5

3asCF

2pQ2
s0H 12

s0

Q2 F13

2
2

p2

6

1 ln
Q2

s0
ln

m2

s0
1 ln

m2

s0
12 ln

Q2

s0
G J ~29!

and

Fp
as,soft~Q2!5

3s0
2

Q4
1

3asCF

4pQ4
s0

2H 5

2
1 ln 2

m2

s0
2 ln 2

Q2

m2

12 ln
m2

s0
13 ln

Q2

s0
J , ~30!

wheres0.4p2f p
2 ; cf. Eq. ~26!. Note that theO(1/Q4) hard

contribution is large and negative, while the soft radiat
correction O(as /Q4) is positive, unlessQ2@s0 ,m2. This
implies considerable cancellations in the sum of the soft
hard contributions so that in order to make their separa
physically meaningful one must assume a low value of
factorization scale4 m2;s0.

Finally, notice the double-logarithmic contributio
; ln 2Q2/s in Eq. ~24! which is reminiscent of the Sudako
logarithms discussed in@10#. A typical size of these correc
tions is of the order of ln2Q2/s0 which for s0;0.7–
0.8 GeV2 and Q2;1 –10 GeV2 is much less than
ln 2Q2/LQCD

2 with LQCD;200 MeV, as usually assumed. F
this reason, exponentiation of Sudakov corrections is
merically not important in the present approach.

C. 1ÕQ2 expansion in the general case

For a generic pion distribution amplitude the NLO ligh
cone sum rule~21! again simplifies considerably upon th
expansion in powers of 1/Q2. We obtain, toO(1/Q4) accu-
racy,

Fp~Q2!5
as

2p
CFE

0

s0 dse2s/M2

Q2 E
0

1

du
wp~u!

ū

1wp8 ~0!E
0

s0 dsse2s/M2

Q4 F11
as

4p
CF

3S 291
1

3
p21 ln

s

m2
2 ln 2

s

Q2D G
4It is easy to see that form25Q2 there are double-logarithmic

contributions; ln 2(Q2/s0) to Eqs.~29! and~30! which have oppo-
site sign and partially cancel in the sum.
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as

4p
CFE

0

s0 dsse2s/M2

Q4 H S 2 ln
s

m2
23D

3E
0

1

duFwp~u!2ūw8~0!

ū2 G
1S 2 ln

s

m2
28D E

0

1

du
wp~u!

ū
J . ~31!

The scale dependence cancels to the required accuracy,
@14#

d

d ln m
wp8 ~0,m!5

as

p H E
0

1

duFwp~u!1ūwp8 ~1!

ū2
1

wp~u!

ū
G

2
1

2
wp8 ~1!J . ~32!

The contribution of hard rescattering equals

Fp
hard~Q2!5

as

2p
CFE

0

s0 dse2s/M2

Q2 E
0

1

du
wp~u!

ū

1
as

4p
CFE

0

s0 dsse2s/M2

Q4 H S 2 ln
s

m2
23D

3E
0

1

duFwp~u!2ūwp8 ~0!

ū2 G
1S 2 ln

s

m2
28D E

0

1

du
wp~u!

ū
J

1
as

4p
CFwp8 ~0!E

0

s0 dse2s/M2

Q4

3H sS 2 ln
s

m2
23D ln

Q2

s02s
22s0J , ~33!

and the soft contribution is identified as the differen
Fp

soft(Q2)5Fp(Q2)2Fp
hard(Q2). Note the term proportiona

to wp8 (0)52wp8 (1) in the last line of Eq.~33! which is
concentrated at the end point but enters as part of the
contribution.

A few comments are in order concerning this expansi
First, consider the leading asymptoticO(1/Q2) term. Substi-
tuting, as above,*0

s0dse2s/M2→4p2f p
2 , this contribution can

be rewritten as

Fp~Q2!5
8pasf p

2

9Q2 E
0

1

dv
wp

as~v !

v̄
E

0

1

du
wp~u!

ū
, ~34!

where we used that*0
1dvwp

as(v)/ v̄53. This expression is
similar, but does not yet coincide with the perturbative QC
result @6#
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FIG. 4. The relative contributions of hard~dashed curves! and soft~dotted curves! regions in the leading-twist light-cone sum rule~21!
for the pion form factor~the sum: solid lines!. The upper figures correspond to asymptotic and the lower figures to the Chernyak-Zhit
~CZ! pion distribution amplitude. The three figures from left to right correspond to the choice of factorization scalem25Q2, m25s0, and

m25ūQ21uM2, respectively.
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Fp~Q2!5
8pasf p

2

9Q2 U E
0

1

du
wp~u!

ū
U2

. ~35!

It is easy to convince oneself that the missing correction
the asymptotic pion distribution amplitude in the first int
gral in Eq. ~34! as well as the missing nonperturbative co
rections to f p are supplied by eventual higher-order a
higher-twist corrections to the sum rule. Since such corr
tions are difficult to evaluate directly, one may try to im
prove the light-cone sum rule by combining it with th
known full NLO perturbative calculation. Such a possibili
will be discussed in Sec. VI.

Second, the structure of theO(1/Q4) power correction to
the pion form factor is very similar to the heavy quark lim
of the light-cone sum rule forB→pen decay considered in
@14#. In particular, note the 1/ū2 weight factor in the integra
over the pion distribution amplitude, the structure of dou
logarithms, and, finally, the cancellation of the collinear fa
torization scale dependence by the same mechanism. In
cases, the distinction between soft and hard contributi
necessitates a kind of generalized ‘‘plus-distribution’’ su
traction of divergent integrals over the pion distribution a
plitude atu→1, as is done in the second line of Eq.~33!.
This feature seems to be general, whereas the distributio
finite terms;wp8 (0) between the hard and the soft contrib
tions is arbitrary. The expression for such terms in the
07300
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e
-
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s

-
-

of

st

line in Eq. ~33! corresponds to the particular definition~21!
with a rigid cutoff in momentum fraction. Although such
definition is the most intuitive one, it is not unique and,
seen from Eqs.~31!, ~33!, introduces rather cumbersom
‘‘surface terms’’ ;wp8 (0) which appear both in hard an
soft contributions and cancel in their sum. An interesti
alternative@14# which we do not pursue in detail in this wor
is to define the separation between hard and soft contr
tions order by order in the 1/Q2 expansion using ‘‘plus dis-
tributions’’ to regularize the divergent momentum-fractio
integrals. To the accuracy of Eq.~31!, this procedure corre-
sponds to the definition of the hard contribution as given
the first three lines in Eq.~33!, omitting the ‘‘surface term.’’
The soft contribution is given then by the second line in E
~31!.

Last but not least, having in mind that the separation
hard and soft contributions is ambiguous, one may add th
together and consider their sum as a ‘total nonperturbat
power correction to each order in the 1/Q2 expansion. In-
spection of Eqs.~25!, ~29!, ~30! suggests that soft and har
corrections in general have opposite signs and partially c
cel in the sum. We postpone the detailed discussion of
issue to Sec. VI where we summarize our numerical resu

D. Numerical estimates

Results of the numerical evaluation of the sum rule~21!
are shown in Fig. 4 by solid curves, fors050.7 GeV2 and
for a typical value of the Borel parameterM251.0 GeV2.
4-7
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~The choice of input parameters is discussed below in S
V.! Soft and hard contributions are shown by dotted a
dashed curves, respectively. The results are plotted using
asymptotic wp

as(u)56u(12u) and the CZ wp
CZ(u,m

51 GeV)530ūu(2u21)2 pion distribution amplitudes, for
three different choices of the factorization scale,m2

5Q2, m25s0 ~see the discussion above!, and m25mu
2

5ūQ21uM2, according to Eq.~13!.5 In all calculations in
this paper we use the two-loop QCD running coupling w
LMS

(3)
5336 MeV corresponding toas(1 GeV)50.48 and

as(s0)50.59.
It is seen that hard contribution to the form factor defin

with a ‘‘natural’’ momentum-fraction cutoff remains sma
and negativefor the main part of the interesting region o
Q2.

Furthermore, in Fig. 5 we show the average value of
momentum fractionu in the integral in Eq.~21! calculated as
a function of Q2 for the asymptotic~solid curve! and CZ
~dashed curve! distribution amplitudes. This average valu
turns out to be very large, and, contrary to usual expe
tions, does not depend significantly on the shape of the p
distribution amplitude.

The negative contribution of the hard-rescattering mec
nism may appear unexpected and counterintuitive. We
phasize, however, that the separation between hard and
terms is ambiguous and depends on their definition — this
in fact, the main lesson to be learned from our analysis. N
that the scale dependence is much more pronounced for
and soft contributions taken separately than for their sum

IV. HIGHER-TWIST CORRECTIONS

A. Twist 4 contributions

The operator-product expansion of the correlation fu
tion ~1! near the light conex250 can be continued beyon
the leading twist 2 approximation~10!. This procedure yields
higher-twist corrections to the light-cone sum rule~21!. They
are suppressed by additional inverse powers ofM2 andQ2.

5If the momentum-fraction-dependent scalemu is used, it is im-
plied thatas(mu) is inserted inside theu integrals.

FIG. 5. Average momentum fractionu as a function ofQ2 for
the asymptotic~solid curve! and CZ ~dashed curve! distribution
amplitudes atM251.0 GeV2. The scale ism25(12u)Q21uM2.
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Physically, the higher-order terms of the light-cone expa
sion take into account both the transverse momentum of
quark-antiquark state and the contributions of higher Fo
states in the pion wave function. As explained in@15#, these
two effects are indistinguishable due to QCD equations
motion.

Next to the leading twist 2 term, the correlation functio
~1! receives several twist 4 contributions.6 First of all, one
has to take into account the twist 4 components of the qu
antiquark matrix element̂0ud̄(0)gmg5u(x)up1(p)& in the
diagram in Fig. 1. Furthermore, the gluon emission from
virtual quark should be included, yielding the diagram
Fig. 6~a! with the twist 4 quark-antiquark-gluon distributio
amplitudes of the pion. To calculate this diagram, one ma
use of the light-cone expansion of the quark propagator@16#
given in Appendix A. The definitions of all relevant twist
two- and three-particle distribution amplitudes@15,17# are
collected in Appendix B.

The corresponding calculation has been carried out in@4#.
The twist 4 contribution to the correlation function~1! can be
written in the following compact form:

Tmn
(4)52ipmpn f pE

0

1

du
uw (4)~u!

~ ūQ22us!2
, ~36!

where

w (4)~u!524S g1~u!2E
0

u

dvg2~v ! D 12ug2~u!

1E
0

u

da1E
0

ū
da2F w̃ i~a i !12w̃'~a i !

a3

1
122u1a12a2

a3
2 @w i~a i !

1w'~a i !#G
a3512a12a2

~37!

is a combination of twist 4 distribution amplitudes of th
pion. The explicit expression forw (4) is given in Appendix
B.

6Twist 3 contributions to Eq.~1! are proportional tomp
2 and van-

ish in the chiral limit adopted here.

FIG. 6. The light-cone expansion of the quark propagator in
correlation function~1!.
4-8
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The twist 4 correction to the light-cone sum rule is eas
obtained by taking the imaginary part of Eq.~36! in s5(p
2q)2 and subtracting the continuum aboves0. After Borel
transformation one obtains

Fp
(4)~Q2!5E

u0

1

du
w (4)~u!

uM2
expS 2

ūQ2

uM2D
1

u0w (4)~u0!

Q2
e2s0 /M2

. ~38!

The second term on the RHS of Eq.~38! has not been taken
into account in@4#. It appears as a ‘‘surface term’’ when th
correlation function with a denominator (q2up)2n

5(2ūQ21us)n with n.1 is converted~integrating by
parts! into a canonical dispersion integralTmn(s,Q2)
51/p*ds̃ Im Tmn( s̃,Q2)/( s̃2s). Adding the expression in
Eq. ~38! to the leading twist 2 contribution~21! one obtains
the light-cone sum rule forFp(Q2) to twist 4 accuracy. As
seen from Eq.~38!, all twist 4 effects have to be identifie
~to our accuracy! as part of the soft contribution to the form
factor. Sincew (4)(u);(12u) at u→1 ~see Appendix B!,
the twist 4 corrections are of order 1/Q4 in the large-Q2

limit.
Assuming asymptotic expressions for the qua

antiquark-gluon distribution amplitudes@15,17,18# one ob-
tains a compact expression

w (4)~u!5
20

3
d2~m!u2ū~3u22!, ~39!

whered2(1 GeV).0.2 GeV2 is a scale-dependent param
eter determining the pion coupling to the local qua
antiquark-gluon operator~see Appendix B for the definition!.
The twist 4 correction to the sum rule simplifies in this ca
to

FIG. 7. Quark condensate corrections to the correlation func
in Eq. ~1!.
07300
-

-

e

Fp
(4)~Q2!5

20

3
d2~m!E

0

s0
dse2s/M2 Q8

~Q21s!6

3S 12
8s

Q2
1

6s2

Q4 D , ~40!

revealing atQ2→` the 1/Q4 behavior. Taking in addition
the local duality limitM2→` yields an estimate

Fp
(4)~Q2!5

20d2~s0!s0

3Q4
;S 1.0 GeV2

Q2 D 2

. ~41!

B. Factorizable twist 6 contributions

An estimate of the twist 6 contribution to the light-con
sum rule presents a new result of this paper. This calcula
is interesting for several reasons. As is well known@19#,
twist 4 operators are ‘irreducible’ in the sense that they c
not be factorized in a product of gauge-invariant operators
lower twist. This property is special and limited to twist
Several light-cone operators of twist 6 exist which can
factorized as a product of two gauge-invariant twist 3 ope
tors ~or, alternatively, one twist 2 and one twist 4!. Sand-
wiched between the vacuum and one-pion state, such op
tors generally produce two types of contribution
Factorizable in terms of a low-twist two-particle distributio
amplitude times quark~or gluon! condensate and nonfacto
izable, which give rise to genuine twist 6 multiparton pio
distribution amplitudes. We emphasize that factorizable c
tributions have to be subtracted in the construction of mu
parton distribution amplitudes similarly as disconnected d
grams proportional to the quark condensate should no
taken into account in the nucleon matrix element^Nuq̄quN&
corresponding to the nucleons term.

In the present context, arguments based on confor
symmetry suggest that contributions of higher Fock sta
are strongly suppressed atu→1 and their contributions to
the sum rule are, probably, negligible. Factorizable contri
tions, on the other hand, are expected to supply the mis
nonperturbative corrections in the sum rule in the large-Q2

limit and can be large. They are also of principal interest a
indicate, as we will see, certain limitations for the light-co
sum rule approach.

Guided by the existence of large quark condensate cor
tions ;^0uq̄qu0&2 in classical QCD sum rule calculations o
the pion form factor@20,21#, in this paper we concentrate o
factorizable contributions of twist 6 four-quark operato
e.g.,

^0uq̄~v1x!gmq~v2x!q̄~v3x!gng5q~v4x!up1~p!&

5
i

12
^0uq̄qu0&^0u@ q̄~v1x!smng5q~v4x!

1q̄~v3x!smng5q~v2x!#up1~p!&2
1

12
gmn^0uq̄qu0&

n

4-9
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3^0u@ q̄~v1x!g5q~v4x!2q̄~v3x!g5q~v2x!#up1~p!&,

~42!

which involve the quark condensate and the two exist
two-particle pion distribution amplitudes of twist 3,wp and
ws ; see Appendix B. Definitions of both of them include th
normalization factor

mp5
mp

2

mu1md
52

2

f p
2 ^q̄q&, ~43!
07300
g

so that the corresponding contributions to the sum rule
pear to be proportional to the quark condensate squared

We start from the light-cone expansion of the qua
propagator~see Appendix A! which contains contributions
proportional to the covariant derivativeDaGan of the gluon
field strength. They are reduced to a quark-antiquark pair
to the QCD equations of motion. One quark~antiquark! from
this pair can be combined with an antiquark~quark! from the
initial currents forming a quark condensate as in Figs. 6~b!,
6~c!.

A straightforward calculation gives
sion of
in

iagrams
,

king the
el
d

T mn
Figs. 6~b!,6~c!52ipmpnaspCF

^q̄q&
Nc

f pmpE
0

1

duE
0

1

dvvv̄S 2wp~u!H ~12uv !~u22!

@q2~12uv !p#6
1

vu2

@q2uvp#6J
1

1

3
ws~u!H uv23

@q2~12uv !p#6
2

uv

@q2uvp#6
1

3q2v~21u!

@q2~12uv !p#8
2

3q2uv

@q2uvp#8J D . ~44!

Another source of the factorizable twist 6 contribution is provided by the four-quark operators in the light-cone expan
Eq. ~1! with a perturbative gluon exchange between two currents~see Fig. 7!. The technique of this expansion is explained
@16,22#. A lengthy but equally straightforward calculation yields

T mn
Fig. 758ipmpnaspCF

^q̄q&
Nc

mp f pE
0

1

duE
0

1

dvvFwp~u!
ū

@q2~12uv !p#6
1

1

2
ws~u!

1

@q2~12uv !p#6

1ws~u!
v~ ūpq2q2!

@q2~12uv !p#8G . ~45!

In addition, we have considered the twist 6 parts of the two- and three-particle matrix elements corresponding to the d
of Fig. 1 and Fig. 5~a! and have not found any factorizable contributions. The sum of Eqs.~44! and~45! represents, therefore
the complete answer for the factorizable twist 6 contributions of four-quark operators.

The corresponding correction to the light-cone sum rule can be obtained following the standard procedure, that is, ta
imaginary part ins5(p2q)2, subtracting the continuum aboves5s0 in the dispersion integral, and performing the Bor
transformation. Because of large dimension of the denominators in Eqs.~44! and~45!, one ends up with a rather complicate
structure of surface terms ats5s0. The final answer can be written as

Fp
(6)~Q2!5

aspCF

Nc
^q̄q&mpE

0

`

dsF f 2~s,Q2!
d2

ds2
@Q~s02s!e2s/M2

#1 f 3~s,Q2!
d3

ds3
@Q~s02s!e2s/M2

#G , ~46!

where

f 2,3~s,Q2!5 f 2,3
Figs. 6~b!,6~c!~s,Q2!1 f 2,3

Fig. 7~s,Q2!, ~47!

with

f 2
Figs. 6~b!,6~c!~s,Q2!5

s

2Q2~Q21s!
E

s/(Q21s)

1 du

u3 S u2
s

Q21s
D F2~22u!wp~u!1S 11

2s

3Q2D ws~u!G
2

1

2~Q21s!
E

Q2/(Q21s)

1 du

u3 S u2
Q2

Q21s
D @2uwp~u!2 1

3 ws~u!#,

f 2
Fig. 7~s,Q2!52

2s

Q4Es/(Q21s)

1 du

u2 F ūwp~u!1 1
2 ws~u!S 12

ūs

uQ2D G , ~48!
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f 3
Fig. 6~b!,6~c!~s,Q2!5

s2

6Q4Es/(Q21s)

1 du

u4 S u2
s

Q21s
D ~21u!ws~u!2

1

6EQ2/(Q21s)

1 du

u3 S u2
Q2

Q21s
D ws~u!,

f 3
Fig. 7~s,Q2!52

2s2

3Q4Es/(Q21s)

1 du

u3
ws~u!S 12

ū~Q21s!

2Q2 D . ~49!
h
io

h
o

e
on
ad

io

-

al
th
E
g

t
he

for

ist
/
. In

ith

lf-

eci-

e

be

d
-
lue

s-

ht-
ared

ing a
q.
by
is-
It is easy to see that the expressions in Eqs.~48! and ~49!
receive contributions from both hardu,u0 and softu.u0
regions, which we do not write separately in this case. T
hard contribution takes into account the integration reg
corresponding to a large momentum;Q flowing through the
gluon line and can be thought of as part of the hard mec
nism contribution to the form factor generated by product
two twist 3 distribution amplitudes, with ‘‘wrong’’ quark
helicities @23,24#. In the light-cone sum rule approach on
distribution amplitude is present directly, and the second
is modelled using the duality approximation, as in the le
ing twist.

Inserting the asymptotic expressions for the distribut
amplitudeswp(u)51 andws(u)56u(12u) and integrating
over u one obtains the expansions

f 2~s,Q2!52
1

Q2
1

s

Q4 S 522 ln
Q2

s D1•••,

f 3~s,Q2!52
s

Q2
1

s2

Q4 S 32 ln
Q2

s D1•••, ~50!

substitution of which in Eq.~46! yields the twist 6 correction
to the light-cone sum rule to theO(1/Q4) accuracy:

Fp
(6)~Q2!5

4aspCF

Ncf p
2 Q4

^q̄q&2.S 0.2 GeV2

Q2 D 2

, ~51!

much smaller thanFp
(4) .

Most importantly, theO(1/Q2) contributions have can
celled. Inspection of Eqs.~48! and ~49! reveals that all
O(1/Q2) contributions in individual diagrams originate from
the ‘‘hard’’ integration regionu,u0 and their cancellation
involves both diagrams and both distribution functionsws

andwp , in agreement with@23#.
The observed cancellation ofO(1/Q2) corrections is not

entirely trivial. One might fear that factorization of a loc
quark condensate brings us back to the deficiency of
standard QCD sum rule approach discussed in Sec. II:
pansion of local operators messes up the power countin
the momentum transfer, as observed in@20,21#. In other lan-
guage, factorization of the quark condensate is equivalen
using a very bad model for the distribution amplitude of t
07300
e
n

a-
f

e
-

n

e
x-
in

to

pion created by the interpolation current in Eq.~1!, corre-
sponding to the sum of twod functions; see@25,26#.7

V. NUMERICAL ANALYSIS

Combining the twist 2 calculation~21! with the twist 4
corrections in Eq.~38! and twist 6 in Eq.~46!, we are now in
a position to evaluate the complete light-cone sum rule
the pion form factor:

Fp~Q2!5Fp
(2)~Q2,M2!1Fp

(4)~Q2,M2!1Fp
(6)~Q2,M2!.

~52!

To avoid misunderstanding, note that terms of higher tw
are not suppressed, in general, by increasing powers of 1Q2,
but rather by increasing powers of the Borel parameter
particular, all twists contribute to 1/Q4 accuracy, with main
contributions coming from the soft region, in agreement w
the general wisdom~see also Sec. II! that such corrections
come from large transverse distances. The~numerical! hier-
archy of contributions of different twist is, therefore, a se
consistency check for the light-cone sum rule approach.

There are several input parameters which should be sp
fied in the sum rule. First of all, the pion duality intervals0
50.7 GeV2 is determined by fitting the two-point sum rul
~26! to the pion decay constantf p5133 MeV. This sum
rule is reliable for the corresponding Borel parameterM2pt

2

50.7–1.0 GeV2. Having in mind that in the light-cone sum
rule for the same pion channel the Borel parameter should
larger, typically of orderM2.M2pt

2 /^u&, we assume 0.8
,M2,1.5 GeV2 as a fiducial interval. We have checke
that changings0 by 60.1 GeV2 does not produce a signifi
cant effect, so that we stick to the above standard va
@13,20,21# in what follows.

The principal input is provided by the leading twist di
tribution amplitude~see Appendix B!

7A detailed comparison with the results of@23,24# goes beyond
the tasks of this paper. In particular, one may ask whether lig
cone QCD sum rules can be used to calculate an effective infr
cutoff in the hard scattering contribution obtained in@23,24#. To
address this issue one has to construct a different sum rule, us
chiral-odd interpolating current for the pion. Interpretation of E
~51! in this context is difficult because of possible contamination
the a1 meson. We thank M. Beneke and G. Buchalla for the d
cussion which initiated our interest in this problem.
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FIG. 8. The Borel paramete
dependence of the light-cone su
rule for the asymptotic~left! and
CZ ~right! distribution amplitudes,
at Q251, 3, and 10 GeV2 shown
by dashed, solid, and dotte
curves, respectively.
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wp~u,m!56uū@11a2~m!C2
3/2~u2ū!

1a4~m!C4
3/2~u2ū!1•••#, ~53!

where the coefficientsan present the main nonperturbativ
input of interest. Taking into account the poor accuracy
the present data as well as the considerable uncertaintie
the sum rules themselves, we cannot aim to distinguish
tween contributions of different Gegenbauer polynomia
We put, therefore, allan , n54,6, . . . , tozero and conside
the valuesa250 ~asymptotic distribution! and a2(1 GeV)
52/3 ~CZ distribution! as the two extreme alternatives. Ca
culations in this section are done taking into account
anomalous dimension ofa2 to one-loop accuracy; see Ap
pendix B. Our main goal will be to determinea2 from the
comparison of the sum rule results with the experimen
data.

The higher-twist distribution amplitudes and relevant p
rameters represent another set of inputs. They are liste
Appendix B. The uncertainty in higher-twist correction
turns out to be sufficiently small and does not influence
final results.

Finally, one has to specify the renormalization and fact
ization scalem. For this numerical analysis we use th
u-dependent scalemu

25(12u)Q21uM2 for the leading
twist 2 contributions and simply takem25M2 for the soft-
07300
f
in

e-
.

e

l

-
in

r

-

region (u.u0) dominated higher-twist corrections in th
sum rule. The scale dependence is, in fact, rather mild.

The Borel parameter dependence of the sum rule is sh
in Fig. 8 for three different values ofQ2. As can be seen
from this figure, the prediction for the form factor is suffi
ciently stable.

The relative contributions of different twists to the su
rule are shown as a function ofQ2 in Fig. 9. The twist 4
contribution does not exceed 25–30 % of the total res
while the twist 6 correction is negligibly small. This hiera
chy reveals a good convergence of the light-cone expans
at least atQ2.1 GeV2. For lower values ofQ2 the higher-
twist corrections become unstable and the approach br
down.

Finally, in Fig. 10 we compare the light-cone sum ru
calculation with the available experimental data in the int
val 1,Q2,7 GeV2 taken from @27,28#. The dashed and
dotted curves correspond to the asymptotic and CZ distr
tion amplitudes, respectively. The solid curve presents
best fit, yielding

a2
LCSR~m51 GeV!50.1260.0720.07

10.05, ~54!

with x2513.9 for 14 degrees of freedom. The first err
comes from the experimental uncertainty, whereas the
ond error corresponds to the variation of the Borel parame
t

FIG. 9. The relative impor-

tance of contributions of differen
twist in the light-cone sum rule for
the asymptotic ~left! and CZ
~right! twist 2 distribution ampli-
tudes. Twist 2 ~dashed curves!,
twist 4 ~dot-dashed curves!, and
twist 6 ~dotted curves! contribu-
tions and their sum~solid curve!
are plotted atM251 GeV2.
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This value for the coefficienta2 translates to the estimat
for the characteristic integral:

E du

ū
wp~u,m51 GeV!53.3660.2120.21

10.15. ~55!

VI. MATCHING WITH THE NLO PERTURBATIVE
CALCULATION

As discussed in Sec. III C the light-cone sum rule in t
present form does not yet reproduce the full perturbative
sult in the asymptotic limitQ2→`. The missing terms cor
respond to higher-order corrections in the light-cone exp
sion and are difficult to calculate directly. Instead, one c
make a matching of the light-cone sum rule to the NL
perturbative calculation by following the standard logic
the asymptotic expansion@29#. To this end, write the twist 2
contribution to the sum rule defined in Eq.~21! as a sum of
two terms, adding and subtracting the leading asympt
expression atQ2→` @see Eq.~31!, first line#:

Fp
(2)~Q2!5Fpert

(2) ~Q2!1Fnonp
(2) ~Q2!,

Fpert
(2) ~Q2!5

as

2p
CFE

0

s0 dse2s/M2

Q2 E
0

1

du
wp~u!

ū
,

Fnonp
(2) ~Q2!5Fp

(2)~Q2!2Fpert
(2) ~Q2!. ~56!

Following the arguments of@6# one can prove that higher
order corrections to the sum rule must assemble themse
to reproduce the factorized expression

Fpert
(2) ~Q2!⇒E

0

1

dxE
0

1

dywp~x,m!TH~x,y,Q2,m!wp~y,m!,

~57!

with

FIG. 10. The light-cone sum rule predictions for the pion ele
tromagnetic form factor using asymptotic distribution amplitu
~dashed curve!, CZ distribution~dotted curve!, and fit to the data
~solid curve!.
07300
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es

TH~x,y,Q2,m2!5
2pCFas~m! f p

2

NcQ
2~12x!~12y!

3F11
as~m!

p
T1~x,y,Q2/m2!1•••G .

~58!

The remainderFnonp
(2) (Q2) is suppressed by a power ofQ2

and presents a true nonperturbative ‘‘higher twist’’ corre
tion to the usual perturbative result based on collinear f
torization.

Making the substitution~57! we effectively take into ac-
count all higher-order corrections to the sum rule toO(1/Q2)
accuracy and neglect such corrections for power-suppre
terms. This procedure tacitly implies that the numerical
fect of the replacement~57! is more important than of uncal
culated ~higher-order and higher-twist! corrections to
Fnonp

(2) (Q2). Such an assumption is natural, but in fact flaw
because of potential double counting of perturbative con
butions of soft regions. As one signal for this problem, o
may notice that the perturbative QCD expression suff
from infrared renormalons in high orders@30#, which have to
be cancelled by the corresponding renormalon contributi
to Fnonp

(2) (Q2). Using a full resummed expression fo
Fpert

(2) (Q2) together with the leading-order expression f
Fnonp

(2) (Q2) destroys this intricate cancellation and is, the
fore, not fully consistent theoretically. This is a usual dif
culty of making a separation between ‘‘perturbative’’ an
‘‘nonperturbative’’ contributions, which has been discuss
in much detail recently in context of the calculation of pow
corrections to deep inelastic scattering, Drell-Yan proces
event shapes ine1e2 annihilation, and inclusiveB decays
@30,31#.

An alternative and theoretically better defined possibil
is to make a separation between soft and hard contribut
to the pion form factor with an explicit cutoff, as in Sec. II
define Fnonp

(2) (Q2) as the contribution coming from the so
region, and replace the ‘‘hard’’ contribution to the light-con
sum rule by the perturbative expression restricted to the s
hard region. A difficulty in this case is that the soft-ha
separation in the sum rule involves a cutoff in one mom
tum fraction only and becomes ambiguous when applied
the fully factorized expression~57! involving two momen-
tum fractions.8

In the present paper we consider the first possibility
cause of its relative simplicity. We take into account t
radiative correction to the hard-scattering kernel@32–35# and
the complete NLO evolution of the pion distribution amp
tude @36#; see Appendix B. To this accuracy,

Fpert~Q2!5Fpert
LO ~Q2!1Fpert

NLO~Q2!, ~59!

8A natural solution would be to introduce a cutoff in the tran
verse quark-antiquark separation rather than in the momentum
tion.

-
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where

Fpert
LO ~Q2!58pas~m2!

f p
2

Q2
u11a2

LO~m2!1a4
LO~m2!u2

~60!

and @35#

Fpert
NLO~Q2!5

16f p
2

Q2
aS

2~m2!@11a2
LO~m2!1a4

LO~m2!#

3Fa2
NLO~m2!1a4

NLO~m2!1 (
k53

`

a2k
NLO~m2!G

18
f p

2

Q2
aS

2~m2!H 2

3 F25

6
a2

LO~m2!1
91

15
a4

LO~m2!G
3@11a2

LO~m2!1a4
LO~m2!# ln

m2

Q2

1
9

4
@11a2

LO~m2!1a4
LO~m2!#2 ln

m2

Q2
16.58

124.99a2
LO~m2!121.43@a2

LO~m2!#2

132.81a4
LO~m2!132.55@a4

LO~m2!#2

153.37a2
LO~m2!a4

LO~m2!J . ~61!

Note that we do not distinguish between the renormaliza
and factorization scales.

The complete expression for the form factor reads,
spectively,

Fp~Q2!5Fpert~Q2!1Fnonp
(2) ~Q2,M2!1Fp

(4)~Q2,M2!

1Fp
(6)~Q2,M2!, ~62!

where we have taken into account that twist 4 and twis
corrections to the light-cone sum rule receive no 1/Q2 con-
tributions to our accuracy.

For the numerical analysis, we still have to specify t
factorization scale. Since after the subtraction of
asymptotic 1/Q2 contribution the sum rule contribution i
dominated by soft contributions, we choose the fixed sc
m2;M251 GeV2 for simplicity. For the perturbative con
tribution we use

m25kQ21M2, M251 GeV2, ~63!

with parameterk in the range

1/4,k,1. ~64!

Note that with small values ofk the scale is almostQ2

independent. Effectively, this choice amounts to doing
perturbative expansion to fixed~second! order and not at-
07300
n

-

6

e

le

e

tempting a renormalization group resummation. This allo
us to minimize the problem with the double counting of i
frared regions.

The numerical results are shown in Fig. 11 assuming
asymptotic pion distribution amplitude at the scale of 1 Ge
The result of the calculation using Eq.~62! and k51/2 is
shown by the solid curve with the shaded band correspo
ing to variation of the scale parameterk in the given range.
The dotted curve presents the nonperturbative contribu
and the dashed curve is the ‘‘pure’’ light-cone sum rule c
culation with the same parameters. The difference betw
the solid and the dashed curves presents, therefore, the
effect of the substitution~57!.

The nonperturbative~power-suppressed! contribution to
the pion form factor shown by the dotted curve in Fig.
presents considerable interest by itself. It is, obviously, in
pendent of whether the substitution~57! is used~cf. discus-
sion at the end of Sec. III C!, and turns out to be comfortabl
small. This smallness may appear to be unexpected afte
have found large soft~end-point! corrections in Sec. III, and
is due to a strong cancellation between the leading-order
contribution to the sum rule@first line in Eq. ~25!# and the
large radiative correction@second line in Eq.~25!# corre-
sponding to the sum of soft and hard contributions to 1/Q4

accuracy. As seen from Eqs.~29!, ~30! the large negative
hard contribution;1/Q4 plays the most important role in
this cancellation.

Since according to our analysis the pion distribution a
plitude does not differ significantly from the asymptotic di
tribution, the theoretical uncertainty in the light-cone su
rule calculation of the nonperturbative correction to the p
form factor is dominated by dependence on the Borel par
eter, as illustrated in Fig. 12.

With the central values of parameters, the nonperturba
correction can be parametrized in the region 1,Q2

FIG. 11. The nonperturbative correction to the pion form fac
~dotted curve! combined with the NLO perturbation theory~sum:
solid curve!, compared with the pure light-cone sum rule res
~dashed curve!. An asymptotic pion distribution amplitude is as
sumed. The gray band shows the scale dependence of the
scattering contribution; see text.
4-14
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,15 GeV2 as9

Q2Fnonp~Q2!5Q2/~1.704611.0662Q210.0219Q4!2

~65!

~all numbers in GeV!, and the theoretical error~the gray area
in Fig. 12! roughly corresponds to the uncertainty in t
overall normalization of order625%.

Choosing, as above, a model for the distribution am
tude at the scale 1 GeV as a sum of the leading term and
second Gegenbauer polynomial, and fitting the param
a2(1 GeV) to the data, we find

a2~m51 GeV!520.0660.2460.0360.03,

E du

ū
wp~u,m51 GeV!52.8260.7260.0960.09.

~66!

The first error comes from the experimental uncertainty,
second error corresponds to uncertainty of the nonpertu
tive contribution ~mainly dependence on the Borel param
eter!, and the third error is the scale dependence of the N
perturbative result. Combining the two estimates in Eqs.~54!
and ~66! and adding the errors in quadrature, we obtain
our final result

a2~m51 GeV!50.160.1,

E du

ū
wp~u,m51 GeV!53.360.3. ~67!

9The given parametrization should not be used for larger value
Q2 since it has the wrong asymptotic behavior.

FIG. 12. The light-cone sum rule prediction for the nonpert
bative correction to the pion form factor. The gray band shows
sensitivity of the result to variation of the Borel parameter with
0.8 GeV2,M2,1.5 GeV2. The white line is the calculation for the
standard reference valueM251 GeV2 assumed throughout this pa
per and the dashed curve is the fit~65!.
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This determination is dominated by the ‘‘pure’’ light-con
sum rule result in which case we included the data point
lower valuesQ2 having higher accuracy. The situation wi
change when sufficiently precise data atQ2.2 –3 GeV2 be-
come available. In this region the NLO perturbative pred
tion complemented by the ‘‘higher-twist’’ power-suppress
correction in Eq.~65! becomes, from our point of view, a
preferable description, with potential theoretical accuracy
the order of 10%. Note that the theoretical status of our re
for the nonperturbative~soft 1 hard! correction is similar to
model ~or sum rule! determinations of matrix elements o
higher-twist operators in deep inelastic scattering.

VII. CONCLUSIONS

Elaborating on the earlier proposal@4# we have given in
this paper a detailed quantitative analysis of the pion fo
factor in the region of intermediate momentum transfers
the light-cone sum rule approach and also combining
technique with a complete existing NLO perturbative calc
lation. Our results support the shape of the pion distribut
amplitude that is close to the asymptotic expression and
inconsistent with the CZ-type distributions. Our final es
mate for the parametera2 characterizing the deviation from
the asymptotic form is given in Eq.~67!.10

Another important conclusion of our analysis is that t
nonperturbative contribution to the pion form factor turns o
to be rather moderate and does not exceed 30% in the fulQ2

range; see Fig. 11 and Fig. 12. One has to have in m
however, that separation of ‘‘perturbative’’ and ‘‘nonpertu
bative’’ contributions is theoretically not well defined be
cause QCD perturbation theory is divergent@30#. A fully
theoretically consistent approach necessarily has to introd
an explicit scale separation, and in particular consider s
and hard contributions to the pion form factor separately.
have presented a detailed study of the soft-hard separa
implemented with a hard momentum fraction cutoff in Se
III. One finds that soft contributions are generally very lar
and the smallness of the total nonperturbative correctio
due to cancellations between soft and hard terms of hig
twist. Thus, somewhat paradoxically, the nonperturbative
fects in the pion form factor can be small and the soft co
tributions large, simultaneously.

To summarize, we believe that the light-cone sum r
approach presents a powerful and theoretically consis
framework to the analysis of hard exclusive reactions
intermediate momentum transfers. The main and esse
assumption of the method is duality, i.e., that the pion c
tribution can be isolated from the correlation function
integrating the QCD spectral density in a certain ene
range—the interval of duality. While the numerical accura
of this approximation can be disputed, it satisfies all kno

of

10The smallness of nonasymptotic contributions towp is in agree-
ment with the light-cone sum rule analysis@39# for the g* gp0

transition form factor, compared with the CLEO data@40#. For a
recent update including NLO effects see@41#.

-
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QCD constraints and provides a perfect laboratory for the study of different interaction mechanisms involving severa
In particular, the scale dependence of the soft-hard separation studied in this work is of general validity.
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APPENDIX A

Here we collect some useful formulas.
The imaginary part of the radiative correctionH1 to the hard scattering amplitude reads

1

p
Im H1~Q2,s,u,m!5S 291

1

3
p213 ln @Q2/m2#2 ln @Q2/m2#213 ln F ūQ2

um2G2 ln 2F ūQ2

um2G D d~r!

1Q@2r#
Q2$22Q213r15s12~Q21r1s!ln @2r/m2#%

~Q21s!3ūu

12Q@2r#
Q2$2~Q21s!ln @s/m2#1u~Q22s1s ln @s/m2# !%

~Q21s!3ūu
12Q@r#

Q2~Q22s1s ln @s/m2# !

~Q21s!3ū

1
Q2s~2312 ln @s/m2# !

~Q21s!2ū

d

dr
~ ln @r/m2#Q@r#!12

Q4 ln @s/m2#

~Q21s!2u

d

dr
~ ln @2r/m2#Q@2r#!

22
Q4

~Q21s!2u

d

dr
~ ln 2@2r/m2#Q@2r#!, ~A1!

wherer5Q2ū2us.
The light-cone expansion of the quark propagator is derived in@16#:

S~x,0![2 i ^0uT$q~x!q̄~0!%u0&

5
G~d/2!x”

2p2~2x2!d/2
1

G~d/221!

16p2~2x2!d/221E0

1

du$ūx”smnGmn~ux!1usmnGmn~ux!x”

12i ūux”xrDlGrl~ux!%2
G~d/222!

16p2~2x2!d/222E0

1

duH i S ūu2
1

2DDmGmn~ux!gn1
i

2
ūu~122u!xmD” DnGmn~ux!

1
1

2
ūuemnabxmDaDlGlbgng5J 1•••, ~A2!

whereGmn5gsG
mna(la/2), Tr(lalb)52dab, and d is the space-time dimension. Only the terms proportional to the o

gluon-field strength and its first covariant derivative are shown for brevity.

APPENDIX B

Here we define the light-cone distribution amplitudes of the pion and specify their parameters. The leading
amplitudewp(u) and the twist 4 amplitudesg1(u) andg2(u) enter the light-cone expansion of the matrix element

^0ud̄~0!gmg5u~x!up1~p!&5 ipm f pE
0

1

due2 iupx@wp~u!1x2g1~u!#1 f pS xm2
x2pm

px D E
0

1

due2 iupxg2~u!. ~B1!

The QCD equations of motions relateg1 andg2 to the quark-antiquark-gluon twist 4 distributionsw i , w' , w̃ i , andw̃' . The
latter are defined by the matrix elements@15#
073004-16
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^0ud̄~2x!gmg5Gab~vx!u~x!up1~p!&5pm

paxb2pbxa

px
f pE Da iw i~a i !e

2 ipxt(a i )

1~gma
' pb2gmb

' pa! f pE Da iw'~a i !e
2 ipxt(a i ), ~B2!

^0ud̄~2x!gmiG̃ab~vx!u~x!up1~p!&5pm

paxb2pbxa

px
f pE Da i w̃ i~a i !e

2 ipxt(a i )

1~gma
' pb2gmb

' pa! f pE Da i w̃'~a i !e
2 ipxt(a i ), ~B3!
e

in

s
m

u

la

ts:

whereG̃ab5 1

2 eabrlGrl and the following abbreviations ar
used:

t~a i !5a12a21va3 ,

Da i5da2da2da3d~12a12a22a3!,

and

gab
' 5gab2

xapb1xbpa

px
.

The distribution amplitudes are usually constructed us
the formalism of the conformal expansion@15#. To achieve a
reasonable accuracy one tries to retain a few first term
this expansion in addition to the leading asymptotic ter
The most familiar example is the twist 2 pion distribution@6#

wp~u,m!56uū@11a2~m!C2
3/2~u2ū!1a4~m!C4

3/2~u2ū!

1•••#, ~B4!

where two orders of the conformal expansion in Gegenba
polynomialsCn

3/2 are explicitly shown, with

C2
3/2~x!5

3

2
~5x221!,

C4
3/2~x!5

15

8
~21x4214x211!.

~B5!

The coefficientsan determine the nonasymptotic part ofwp .
Their scale dependence is given in the leading order by

an
LO~m2!5S as~m2!

as~m1! D
2gn

(0)/b0

an
LO~m1!, ~B6!

whereb05112 2
3 NF , and the anomalous dimensions are

gn
(0)5CFF31

2

~n11!~n12!
24S (

k51

n11
1

kD G . ~B7!

In the numerical analysis in this paper we use, in particu
the asymptotic distribution~all an50) and the CZ distribu-
07300
g

of
.

er

r,

tion @a2(1.0 GeV)52/3, an.250#. In next-to-leading or-
der@36# the evolution requires an infinite sum of coefficien

a2
NLO~m2!5a2

LO~m2!P2~m2!1Q20~m2!,

a4
NLO~m2!5a4

LO~m2!P4~m2!1Q40~m2!

1a2
LO~m2!Q42~m2!,

a2k
NLO~m2!5Q2k 0~m2!1a2

LO~m2!Q2k 2~m2!

1a4
LO~m2!Q2k 4~m2!, k>3, ~B8!

with the following notation:

Pk~m2!5
1

4 S gk
(1)

2b0
1

b1

b0
2
gk

(0)D S 12
as~m0

2!

as~m2!
D ,

Qkn~m2!5
~2k13!

~k11!~k12!

3
~n12!~n11!

2~2n13!
Ckn

(1)Skn~m2!,

Skn~m2!5
gk

(0)2gn
(0)

gk
(0)2gn

(0)1b0

3F12S as~m0
2!

as~m2!
D 11(gk

(0)
2gn

(0))/b0G ,

Ckn
(1)5~2n13!Fgn

(0)2b014CFAkn

~k2n!~k1n13!

1
2CF@Akn2c~k12!1c~1!#

~n11!~n12!
G ,

Akn5cS k1n14

2 D2cS k2n

2 D12c~k2n!

2c~k12!2c~1!, ~B9!

where
4-17
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c~z!5
d

dz
@ ln G~z!#, b151022

38

3
NF ,

g0
(1)50, g2

(1)5111.03, g4
(1)5150.28.

~B10!

Expressions for the twist 4 distributions including the ne
to-leading corrections in conformal spin have been deri
in @15,17#:

g1~u!5
5

2
d2ū2u1

1

2
d2eF ūu~2113ūu!

110u3S 223u1
6

5
u2D ln u110ū3

3S 223ū1
6

5
ū2D ln ūG ,

g2~u!5
10

3
d2ūu~u2ū!, ~B11!

w i~a i !5120d2e~a12a2!a1a2a3 ,

w'~a i !530d2~a12a2!a3
2F1

3
12e~122a3!G ,

w̃ i~a i !52120d2a1a2a3F1

3
1e~123a3!G ,

w̃'~a i !530d2a3
2~12a3!F1

3
12e~122a3!G .

~B12!

To this accuracy, the specific combination~37! of twist 4
distribution amplitudes reads

w (4)~u!5
20

3
d2u2ū~3u22!24d2eu~2111u226u2

113u3!28d2e@u3~10215u16u2!ln ~u!

1ū3~113u16u2!ln ~12u!#. ~B13!

The normalizations of all these distributions are determin
by a single nonperturbative parameterd2 defined as
07300
-
d

d

^pugsd̄G̃amgauu0&5 id2f pqm . ~B14!

The second parametere in Eqs.~B11! and ~B12! is respon-
sible for the first nonasymptotic corrections. QCD sum ru
estimates yieldd2'0.2 GeV2 @37,38# ande'0.5 @15#. The
scale dependence of these parameters is given by@15#

d2~m2
2!5S as~m2

2!

as~m1
2!
D 32/(9b0)

d2~m1
2!,

~d2e!~m2
2!5S as~m2

2!

as~m1
2!
D 10/b0

~d2e!~m1
2!.

~B15!

Finally, we should include in our list the twist 3 distributio
amplitudeswp andws used in the calculation of the twist
corrections. These distributions parametrize the follow
matrix elements:

^0ud̄~0!ig5u~x!up1~p!&5 f pmpE
0

1

due2 iupxwp~u!,

^0ud̄~0!sabg5u~x!up1~p!&5
i

6
~paxb2pbxa! f pmp

3E
0

1

due2 iupxws~u!,

~B16!

where mp5mp
2 /(mu1md). The well-known asymptotic

form of these distributions

wp~u!51, ws~u!56uū, ~B17!

is sufficient for the approximation adopted in this paper. T
relation ~43!, together with the standard value of the qua
condensate ^q̄q&(1 GeV)5(2240 MeV)3, yields mp(m
51 GeV).1.56 GeV. Note that the normalization of th
twist 6 correction is effectively determined by the produ
as(m)^q̄q&2(m) having in total a negligible anomalous d
mension.
t.
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