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New form of the Kerr solution
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A new form of the Kerr solution is presented. The solution involves a time coordinate which represents the
local proper time for free-falling observers on a set of simple trajectories. Many physical phenomena are
particularly clear when related to this time coordinate. The chosen coordinates also ensure that the solution is
well behaved at the horizon. The solution is well suited to the tetrad formalism and a convenient null tetrad is
presented. The Dirac Hamiltonian in a Kerr background is also given and, for one choice of tetrad, it takes on
a simple, Hermitian form.

PACS numbe(s): 04.20.Jb, 04.70.Bw

- INTRODUCTION. X=(1-(2M/IN'200, %=(1,000 @

The Kerr solution has been of central importance in astrogefines a radial geodesic with const#nand ¢. The proper
physics ever since it was realized that accretion processegne along these paths coincides withand the geodesic
would tend to spin up a black hole to near its critical rotationequation is simply
rate[1]. A number of forms of the Kerr solution currently
exist in the literature. Most of these are contained in Chan- F=—M/r2. (5)
drasekhar’s work2], and useful summaries are contained in
the books by Krameet al.[3] and d'Inverno[4]. The pur-  physics as seen by these observers is almost entirely New-
pose of this paper is to present a new form of the solutiononjan, making this gauge a very useful one for introducing
which has already proved to be useful in numerical simulasome of the more difficult concepts of black hole physics.
tions of accretion processes. The form is a direct extension ofne various gauge choices leading to this form of the

the Schwarzschild solution when written as Schwarzschild solution also carry through in the presence of
VIECIRE: matter and provide a simple system for the study of the for-
ds?=dt2— ( dr+(T> dt) —r2(d6%+ sir26d ¢2). gﬁatlon of spherically symmetric clustd] and black holes
1) A further useful feature of the time coordinate in Ef)

) o . is that it enables the Dirac equation in a Schwarzschild back-
(Natural units have been employgdhis is obtained from  ground to be cast in a simple Hamiltonian fof&i. Indeed,

the Eddington-Finkelstein form the full Dirac equation is obtained by adding a single term
H, to the free-particle Hamiltonian in Minkowski spacetime.
2M\ — 4M 2M . " i
d?=|1- ——|dt2— —dtdr—|1+— This additional term is
r r r
X dr2—r2(d6?+sirfg d¢?). @) Hy =1 (2M/1) Y39, +3/(4r) )
=i(2M/r)Y% =34, (r¥4y). (6)

by the coordinate transformation

12 A useful feature of this gauge is that the measure on surfaces
L) ) ) of constant is the same as that of Minkowski spacetime, so
2M one can employ standard techniques from quantum theory

with little modification. One subtlety is that the Hamiltonian
In both metricy lies in the range €&r <o, andf and¢ take s not self-adjoint due to the presence of the singularity. This
their usual meaning. manifests itself as a decay in the wavefunction as current
The metric(1) has a number of nice featurs], many of  density is sucked onto the singular{ty].
which extend to the Kerr case. The solution is well-behaved The time coordinatéin the metric of Eq(1) has many of
at the horizon, so can be employed safely to analyze physicahe properties of a global, Newtonian time. This suggests that
processes near the horizon, and indeed insifig]itAnother  an attempt to find an analogue for the Kerr solution might
useful feature is that the tintecoincides with the proper time fail due to its angular momentum. The key to understanding
of observers free-falling along radial trajectories startinghow to achieve a suitable generalization is the realization
from rest at infinity. This is possible because the velocitythat it is only the local properties afthat make it so conve-
vector nient for describing the physics of the solution. The natural
extension for the Kerr solution is therefore to look for a
convenient set of reference observers which generalizes the
*Email address: C.Doran@mrao.cam.ac.uk idea of a family of observers on radial trajectories. In Secs. II

t=t+2(2Mr)Y2—4MIn| 1+
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and Il we present a new form of the Kerr solution and showThe vectomw; also plays a crucial role in separating the Dirac
that it has many of the desired properties. In Sec. IV we giveequation in a Kerr background, and is the timelike eigenvec-
various tetrad forms of the solution, and present a Hermitiaror of the electromagnetic stress-energy tensor for the Kerr-
form of the Dirac Hamiltonian in a Kerr background. Newman analogue of our form.

Throughout we use Latin letters for spacetime indices and

Greek letters for tetrad indices, and use the signaiyg
=diag(+ —— —). Natural unitsc=G=A=1 are employed
throughout.

Il. THE KERR SOLUTION

The new form of the Kerr solution can be written in
Cartesian-type coordinates,X,y,z) in a manner analogous
to the Kerr-Schild forn{2,4]. In this coordinate system our

new form of the solution is

dSZZ ﬂijdXide_

2c S
7aivj+azvivj)dx'dxl, (7)

where 7;; is the Minkowski metric,

2Mr 1/2

e 20 o
a?z2

pP=r2+ —— 9)

anda andM constants. The functionis given implicitly by
rf—r?(x>+y?+z°—a?) —a’z’=0, (10

and we restrict to 0<r <, with r =0 describing the disk

z=0, x’+y?<a?. The maximally extended Kerr solution

(wherer is allowed to take negative valuesill not be con-
sidered here.
The two vectors in the metri7) are

O . S (11)
' ‘a2+r2' a2+r?
and
rx ry z
o (p24 A2\12 <
aj=(r2+a? 0’a2+r2'a2+r2’r)' (12

IIl. SPHEROIDAL COORDINATES

The nature of the metri7) is more clearly revealed if we
introduce oblate spheroidal coordinatesd, ¢), where

z
cosf= v OsfOsnw (15)
y
tanq§=; 0<¢<2m, (16)
so thatp recovers its standard definition
p’=r?+a’coge. (17

The use of the symbolsand # here are standard, though one
must be aware that whe =0 (flat space these reduce to
oblate spheroidatoordinates, and not spherical polar coor-
dinates. This is clear from the fact thatdoes not equal
V"(X2+y2+ 22).

In terms of ¢,r,6,¢) coordinates our new form of the
Kerr solution is

2

2 p ; 2492
ds?=dt’— (r2+a2)l/2dr+a(dt—aS|r120d¢) —p2do
—(r?+a?)sirfod ¢>. (18)

This neatly generalizes the Schwarzschild form of Eg,
replacingy(2M/r) with y(2Mr)/p, and introducing a rota-
tional component. The line element can be simplified further
by introducing the hyperbolic coordinate via a sinhz=r,
though this can make some equations harder to interpret and
will not be employed here. The metrit8) is obtained from

the advanced Eddington-Finkelstein form of the Kerr solu-
tion,

Mr

p?

2
ds?=|1—

)dvz—Zdv dr

2Mr — _
+—,(2asir’9)dv d¢p+2asinfodr dp—p°d6?
p

These two vectors play an important role in studying physics

in a Kerr background. They are related to the two principal

null directionsn.. by

n.=(r’+a®Yy, = (apv,+a;). (13

For computations it is useful to note that the contravariant
components of the spacelike vector in brackets are the same

as those of-ga;,

2)1/2 0

apv'+a'=—(r’+a

rx ry z 14
a2+r2’a?+r2’r)

_ ( (r?+a?)sirfg+ zg(azsin“a) d¢?, (19
p

via the coordinate transformation

dr
dt=dv— 20
v 1+ (2Mr/(r?+a?))Y? (20
dg=do adr (21)
r24+ a2+ (2Mr(r2+a?)4?
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This transformation is well-defined for all though the in- techniques described [B] this tetrad provides a very pow-
tegrals involved do not appear to have a simple closed formerful way of analyzing and visualizing motion in a Kerr
The velocity vector background.
- ] A further tetrad is provided by reverting to the original
xX'=(1,—a(r’+a®)¥%p,0,0, x=(1,0,00 (220 Cartesian-type coordinates of E) and writing

defines an infalling geodesic with constahand ¢, and zero @ ,

velocity at infinity. The existence of these geodesics is a key et =4~ ;Uiaj 7", (28)

property of the solution. The time coordinat@ow has the

simple interpretation of recording the local proper time forwherev; and a; are as defined at Eq¢l1l) and (12). The

observers in free-fall along trajectories of constarand ¢. inverse is found to be

As in the spherical case, many physical phenomena are sim-

plest to interpret when expressed in terms of this time coor-

dinate. An example of this is provided in the following sec-

tion, where we show that the time coordinate produces a

Dirac Hamiltonian which is Hermitian in form. The differ- This final form of tetrad is the simplest to use when con-

ence between this free-fall velocity and the veloaity(de-  structing the Dirac equation in a Kerr background. We will

fined by the gravitational fieldsalso provides a local defini- not go through the details here but will just present the final

tion of the angular velocity contained in the gravitational form of the equation in a Hamiltonian form. Following the

field. conventions of ltzykson and Zubgr] we denote the Dirac-
Pauli matrix representation of the Dirac algebra{h¥} and

IV. TETRADS AND THE DIRAC EQUATION write o'=9%y', i=1...3.Sincee) =4, premultiplying

the Dirac equation by, is all that is required to bring it into

The metric(18) lends itself very naturally to the tetrad 5mijtonian form. When this is done, the Dirac equation in a
formalism. From the principal null directions of EQL3) one oy background becomes

can construct the following null tetrad, expressed in
(t,r,0,¢) coordinates: o= —iaiﬂil//+m7’o¢+|:h<l// (30)

eLL=5LL+;n'laj5‘;ka. (29)

i where

(r?+a%r?+a?—[2Mr(r?+a?1"20,a)

r2+a?

(23 F'Kllf: . (r3+a2r)Y4 4, (r3+a2r) ¥4y

. 1
n'=——(?+a?—(r’+a%—[2Mr(r>+a?]¥20,a acosd
2p2( ( )= L2Mr( )] ) —acosor a4 9, (ry) — 5 (r2+a?2ysy

(24)

(31
m = ;(ia sin#,0,1j csch). (259 and
J2(r +ia cosé) o

) a,=—siNga;+Cospa,. (32

In this frame the Weyl scalar¥,, ¥,, ¥5; and ¥, all

vanish, and The measure on hypersurfaces of constégtgain the same
as that of Minkowski spacetime, since the covariant volume
M element is simply

Vo= . (26)

(r—iacosf) dx dy dx=p?sin6dr dode. (33)

A second tetrad, better suited to computations of mattelyg with the Schwarzschild case the interaction Hamiltonian

eodesics, is given b ~ . .
g 9 y Hy is not self-adjoint when integrated over these hypersur-
e%=(1,0,0,0 faces. This is because the singularity causes a boundary term
to be present when the Hamiltonian is integrated.

eli=(a,pl(r>+a?¥2 0,— aasirth)

(27) V. CONCLUSIONS
e?=(0,0p,0) The Kerr solution is of central importance in astrophysics
as ever more compelling evidence points to the existence of
e%=(0,0,0(r?+ a®)Yzsin g). black holes rotating at near their critical r4&. Any form of

the solution which aids physical understanding of rotating
This defines a frame for all values of the coordingtso is  black holes is clearly beneficial. The form of the solution
valid inside and outside the horizon. Combined with thepresented here has a number of features which achieve this
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aim. The solution is well suited for studying processes neathe equations also permits many techniques from quantum
the horizon, and the compact form of the spin connection fofield theory to be carried over to a gravitational background
the tetrad of Eq(28) makes it particularly good for numeri- with little modification. The lack of self-adjointness due to
cal computation. It should also be noted that this gauge adhe source itself is also natural in this framework, as the
mits a simple generalization to a time-dependent form whictsingularity is a natural sink for the current. In the non-
looks well-suited to the study of accretion and the formationrotating case the physical processes resulting from the pres-
of rotating black holes. ence of this sink are quite simple to analyf#d. The Kerr

A more complete exposition of the features of this gaugecase is considerably more complicated, due both to the na-
including the derivation of the Dirac Hamiltonian will be ture of the fields inside the inner horizon, and to the structure
presented elsewhere. One reason for not highlighting more aif the singularity. One interesting point to note is that the
the advantages here is that many of the theoretical manipwsink region is described by=0, and so represents a disk,
lations which exploit these properties have been performedather than just a ring of matter. This in part supports the
utilizing Hestenes’ spacetime algeb®,9]. This language results of earlier calculations described[8], though much
fully exposes much of the intricate algebraic structure of thework remains on this issue.
Kerr solution and brings with it a number of insights. These
are hard to describe without employing spacetime algebra ACKNOWLEDGMENTS
and so will be presented unadulterated in a separate paper.
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