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New form of the Kerr solution

Chris Doran*
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~Received 28 October 1999; published 25 February 2000!

A new form of the Kerr solution is presented. The solution involves a time coordinate which represents the
local proper time for free-falling observers on a set of simple trajectories. Many physical phenomena are
particularly clear when related to this time coordinate. The chosen coordinates also ensure that the solution is
well behaved at the horizon. The solution is well suited to the tetrad formalism and a convenient null tetrad is
presented. The Dirac Hamiltonian in a Kerr background is also given and, for one choice of tetrad, it takes on
a simple, Hermitian form.

PACS number~s!: 04.20.Jb, 04.70.Bw
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I. INTRODUCTION

The Kerr solution has been of central importance in as
physics ever since it was realized that accretion proce
would tend to spin up a black hole to near its critical rotati
rate @1#. A number of forms of the Kerr solution currentl
exist in the literature. Most of these are contained in Ch
drasekhar’s work@2#, and useful summaries are contained
the books by Krameret al. @3# and d’Inverno@4#. The pur-
pose of this paper is to present a new form of the solut
which has already proved to be useful in numerical simu
tions of accretion processes. The form is a direct extensio
the Schwarzschild solution when written as

ds25dt22S dr1S 2M

r D 1/2

dtD 2

2r 2~du21sin2udf2!.

~1!

~Natural units have been employed.! This is obtained from
the Eddington-Finkelstein form

ds25S 12
2M

r Dd t̄22
4M

r
d t̄ dr2S 11

2M

r D
3dr22r 2~du21sin2u df2!. ~2!

by the coordinate transformation

t5 t̄ 12~2Mr !1/224M lnS 11S r

2M D 1/2D . ~3!

In both metricsr lies in the range 0,r ,`, andu andf take
their usual meaning.

The metric~1! has a number of nice features@5#, many of
which extend to the Kerr case. The solution is well-behav
at the horizon, so can be employed safely to analyze phys
processes near the horizon, and indeed inside it@5#. Another
useful feature is that the timet coincides with the proper time
of observers free-falling along radial trajectories start
from rest at infinity. This is possible because the veloc
vector
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ẋi5„1,2~2M /r !1/2,0,0…, ẋi5~1,0,0,0! ~4!

defines a radial geodesic with constantu andf. The proper
time along these paths coincides witht, and the geodesic
equation is simply

r̈ 52M /r 2. ~5!

Physics as seen by these observers is almost entirely N
tonian, making this gauge a very useful one for introduc
some of the more difficult concepts of black hole physi
The various gauge choices leading to this form of t
Schwarzschild solution also carry through in the presence
matter and provide a simple system for the study of the f
mation of spherically symmetric clusters@6# and black holes
@5#.

A further useful feature of the time coordinate in Eq.~1!
is that it enables the Dirac equation in a Schwarzschild ba
ground to be cast in a simple Hamiltonian form@5#. Indeed,
the full Dirac equation is obtained by adding a single te
ĤI to the free-particle Hamiltonian in Minkowski spacetim
This additional term is

ĤIc5 i ~2M /r !1/2
„] rc13/~4r !c…

5 i ~2M /r !1/2r 23/4] r~r 3/4c!. ~6!

A useful feature of this gauge is that the measure on surfa
of constantt is the same as that of Minkowski spacetime,
one can employ standard techniques from quantum the
with little modification. One subtlety is that the Hamiltonia
is not self-adjoint due to the presence of the singularity. T
manifests itself as a decay in the wavefunction as curr
density is sucked onto the singularity@5#.

The time coordinatet in the metric of Eq.~1! has many of
the properties of a global, Newtonian time. This suggests
an attempt to find an analogue for the Kerr solution mig
fail due to its angular momentum. The key to understand
how to achieve a suitable generalization is the realizat
that it is only the local properties oft that make it so conve-
nient for describing the physics of the solution. The natu
extension for the Kerr solution is therefore to look for
convenient set of reference observers which generalizes
idea of a family of observers on radial trajectories. In Secs
©2000 The American Physical Society03-1
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and III we present a new form of the Kerr solution and sh
that it has many of the desired properties. In Sec. IV we g
various tetrad forms of the solution, and present a Hermi
form of the Dirac Hamiltonian in a Kerr background
Throughout we use Latin letters for spacetime indices
Greek letters for tetrad indices, and use the signaturehab
5diag(1222). Natural unitsc5G5\51 are employed
throughout.

II. THE KERR SOLUTION

The new form of the Kerr solution can be written
Cartesian-type coordinates (t,x,y,z) in a manner analogou
to the Kerr-Schild form@2,4#. In this coordinate system ou
new form of the solution is

ds25h i j dxidxj2S 2a

r
aiv j1a2v iv j Ddxidxj , ~7!

whereh i j is the Minkowski metric,

a5
~2Mr !1/2

r
~8!

r25r 21
a2z2

r 2
, ~9!

anda andM constants. The functionr is given implicitly by

r 42r 2~x21y21z22a2!2a2z250, ~10!

and we restrictr to 0,r ,`, with r 50 describing the disk
z50, x21y2<a2. The maximally extended Kerr solutio
~wherer is allowed to take negative values! will not be con-
sidered here.

The two vectors in the metric~7! are

v i5S 1,
ay

a21r 2
,

2ax

a21r 2
,0D ~11!

and

ai5~r 21a2!1/2S 0,
rx

a21r 2
,

ry

a21r 2
,
z

r D . ~12!

These two vectors play an important role in studying phys
in a Kerr background. They are related to the two princi
null directionsn6 by

n65~r 21a2!1/2v i6~arv i1ai !. ~13!

For computations it is useful to note that the contravari
components of the spacelike vector in brackets are the s
as those of2ai ,

arv i1ai52~r 21a2!1/2S 0,
rx

a21r 2
,

ry

a21r 2
,
z

r D . ~14!
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The vectorv i also plays a crucial role in separating the Dir
equation in a Kerr background, and is the timelike eigenv
tor of the electromagnetic stress-energy tensor for the K
Newman analogue of our form.

III. SPHEROIDAL COORDINATES

The nature of the metric~7! is more clearly revealed if we
introduce oblate spheroidal coordinates (r ,u,f), where

cosu5
z

r
0<u<p ~15!

tanf5
y

x
0<f,2p, ~16!

so thatr recovers its standard definition

r25r 21a2cos2u. ~17!

The use of the symbolsr andu here are standard, though on
must be aware that whenM50 ~flat space! these reduce to
oblate spheroidalcoordinates, and not spherical polar coo
dinates. This is clear from the fact thatr does not equal
A(x21y21z2).

In terms of (t,r ,u,f) coordinates our new form of the
Kerr solution is

ds25dt22S r

~r 21a2!1/2
dr1a~dt2a sin2u df!D 2

2r2du2

2~r 21a2!sin2udf2. ~18!

This neatly generalizes the Schwarzschild form of Eq.~1!,
replacingA(2M /r ) with A(2Mr )/r, and introducing a rota-
tional component. The line element can be simplified furth
by introducing the hyperbolic coordinateh via a sinhh5r,
though this can make some equations harder to interpret
will not be employed here. The metric~18! is obtained from
the advanced Eddington-Finkelstein form of the Kerr so
tion,

ds25S 12
2Mr

r2 D dv222 dv dr

1
2Mr

r2
~2a sin2u!dv df̄12a sin2u dr df̄2r2du2

2S ~r 21a2!sin2u1
2Mr

r2
~a2sin4u!D df̄2, ~19!

via the coordinate transformation

dt5dv2
dr

11„2Mr /~r 21a2!…1/2
~20!

df5df̄2
a dr

r 21a21„2Mr ~r 21a2!…1/2
. ~21!
3-2
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This transformation is well-defined for allr, though the in-
tegrals involved do not appear to have a simple closed fo

The velocity vector

ẋi5„1,2a~r 21a2!1/2/r,0,0…, ẋi5~1,0,0,0! ~22!

defines an infalling geodesic with constantu andf, and zero
velocity at infinity. The existence of these geodesics is a
property of the solution. The time coordinatet now has the
simple interpretation of recording the local proper time
observers in free-fall along trajectories of constantu andf.
As in the spherical case, many physical phenomena are
plest to interpret when expressed in terms of this time co
dinate. An example of this is provided in the following se
tion, where we show that the time coordinate produce
Dirac Hamiltonian which is Hermitian in form. The differ
ence between this free-fall velocity and the velocityv i ~de-
fined by the gravitational fields! also provides a local defini
tion of the angular velocity contained in the gravitation
field.

IV. TETRADS AND THE DIRAC EQUATION

The metric~18! lends itself very naturally to the tetra
formalism. From the principal null directions of Eq.~13! one
can construct the following null tetrad, expressed
(t,r ,u,f) coordinates:

l i5
1

r 21a2
„r 21a2,r 21a22@2Mr ~r 21a2!#1/2,0,a…

~23!

ni5
1

2r2
„r 21a2,2~r 21a2!2@2Mr ~r 21a2!#1/2,0,a…

~24!

mi5
1

A2~r 1 ia cosu!
~ ia sinu,0,1,i cscu!. ~25!

In this frame the Weyl scalarsC0 , C1 , C3 and C4 all
vanish, and

C252
M

~r 2 ia cosu!3
. ~26!

A second tetrad, better suited to computations of ma
geodesics, is given by

e0
i5~1,0,0,0!

e1
i5„a,r/~r 21a2!1/2,0,2aa sin2u…

~27!

e2
i5~0,0,r,0!

e3
i5„0,0,0,~r 21a2!1/2sinu….

This defines a frame for all values of the coordinater, so is
valid inside and outside the horizon. Combined with t
06750
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techniques described in@5# this tetrad provides a very pow
erful way of analyzing and visualizing motion in a Ke
background.

A further tetrad is provided by reverting to the origin
Cartesian-type coordinates of Eq.~7! and writing

em
i5d i

m2
a

r
v iajh

j m, ~28!

wherev i and ai are as defined at Eqs.~11! and ~12!. The
inverse is found to be

em
i 5dm

i 1
a

r
h i j ajdm

k vk . ~29!

This final form of tetrad is the simplest to use when co
structing the Dirac equation in a Kerr background. We w
not go through the details here but will just present the fi
form of the equation in a Hamiltonian form. Following th
conventions of Itzykson and Zuber@7# we denote the Dirac-
Pauli matrix representation of the Dirac algebra by$gm% and
write a i5g0g i , i 51 . . . 3. Since em

0 5dm
0 , premultiplying

the Dirac equation byg0 is all that is required to bring it into
Hamiltonian form. When this is done, the Dirac equation in
Kerr background becomes

i ] tc52 ia i] ic1mg0c1ĤKc ~30!

where

ĤKc5
A2M

r2 S ~r 31a2r !1/4i ] r@~r 31a2r !1/4c#

2a cosur 1/4afi ] r~r 1/4c!2
a cosu

2
~r 21a2!1/2g5c D

~31!

and

af52sinfa11cosfa2 . ~32!

The measure on hypersurfaces of constantt is again the same
as that of Minkowski spacetime, since the covariant volu
element is simply

dx dy dx5r2sinu dr du df. ~33!

As with the Schwarzschild case the interaction Hamilton
ĤK is not self-adjoint when integrated over these hypers
faces. This is because the singularity causes a boundary
to be present when the Hamiltonian is integrated.

V. CONCLUSIONS

The Kerr solution is of central importance in astrophys
as ever more compelling evidence points to the existenc
black holes rotating at near their critical rate@8#. Any form of
the solution which aids physical understanding of rotat
black holes is clearly beneficial. The form of the solutio
presented here has a number of features which achieve
3-3



ea
fo
-
a
ic
io

ge
e
e
ip
e

th
se
b

pe
o
il
o

tum
nd
to
the
n-
res-

na-
ure
he
k,
the

l to
s-

BRIEF REPORTS PHYSICAL REVIEW D 61 067503
aim. The solution is well suited for studying processes n
the horizon, and the compact form of the spin connection
the tetrad of Eq.~28! makes it particularly good for numeri
cal computation. It should also be noted that this gauge
mits a simple generalization to a time-dependent form wh
looks well-suited to the study of accretion and the format
of rotating black holes.

A more complete exposition of the features of this gau
including the derivation of the Dirac Hamiltonian will b
presented elsewhere. One reason for not highlighting mor
the advantages here is that many of the theoretical man
lations which exploit these properties have been perform
utilizing Hestenes’ spacetime algebra@5,9#. This language
fully exposes much of the intricate algebraic structure of
Kerr solution and brings with it a number of insights. The
are hard to describe without employing spacetime alge
and so will be presented unadulterated in a separate pa

The fact that the time coordinate measured by a family
free-falling observers brings the Dirac equation into Ham
tonian form is suggestive of a deeper principle. This form
s

R

ki,

06750
r
r

d-
h
n

,

of
u-
d

e

ra
r.
f
-
f

the equations also permits many techniques from quan
field theory to be carried over to a gravitational backgrou
with little modification. The lack of self-adjointness due
the source itself is also natural in this framework, as
singularity is a natural sink for the current. In the no
rotating case the physical processes resulting from the p
ence of this sink are quite simple to analyze@5#. The Kerr
case is considerably more complicated, due both to the
ture of the fields inside the inner horizon, and to the struct
of the singularity. One interesting point to note is that t
sink region is described byr 50, and so represents a dis
rather than just a ring of matter. This in part supports
results of earlier calculations described in@8#, though much
work remains on this issue.
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