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Nonsingular two and three dimensional string cosmologies are constructed using the exact conformal field
theories corresponding to SO~2,1!/SO~1,1! and SO~2,2!/SO~2,1!. All semiclassical curvature singularities are
canceled in the exact theories for both of these cosets, but some new quantum curvature singularities emerge.
However, considering different patches of the global manifolds allows the construction of nonsingular space-
times with a cosmological interpretation. In both two and three dimensions, we construct nonsingular oscillat-
ing cosmologies, nonsingular expanding and inflationary cosmologies including a de Sitter~exponential! stage
with a positive scalar curvature as well as nonsingular contracting and deflationary cosmologies. We analyze
these cosmologies in detail with respect to the behavior of the scale factors, the scalar curvature, and the string
coupling. The sign of the scalar curvature is changed by the quantum corrections in oscillating cosmologies and
evolves with time in the nonoscillating cases. Similarities between the two and three dimensional cases suggest
a general picture for higher dimensional coset cosmologies: anisotropy seems to be a generic unavoidable
feature, cosmological singularities are generically avoided; and it is possible to construct nonsingular cosmolo-
gies where some spatial dimensions are experiencing inflation while the others experience deflation.

PACS number~s!: 11.25.Hf, 04.20.2q, 98.80.2k
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I. INTRODUCTION AND RESULTS

Fundamental string effects are most important near
Planck scale; thus, it seems that early cosmology will be
most likely area to test string theory. The classical and qu
tum string dynamics and their associated effects in a w
class of string backgrounds~conformally and nonconfor-
mally invariant! have been widely investigated by th
present authors@1,2#. New insights and new physical phe
nomena with respect to string propagation in flat spacet
~and with respect to quantum fields in curved spacetim!
have been uncovered@2#. Conformal invariance simplifies
the mathematics of the problem but the physics rema
mainly unchanged. For low and high mass the string m
spectrum in conformal and nonconformal backgrounds
the same@3#.

Fundamental quantum strings demand a conformally
variant background for quantum consistency~conformal in-
variance is a necessary although not sufficient condition
consistency!. However, most curved spacetimes that we
historically of physical interest in general relativity and co
mology are not conformally invariant. For instance, bla
hole spacetimes and Friedmann-Robertson-Walker unive
are not of this type. In string theory, a large number of g
eralizations of these general relativity solutions have b
obtained as solutions of the renormalization gro
b-function equations~low energy effective string equations!.
These solutions involve, in addition to the metric, a num
of massless fields including the dilaton and antisymme
tensor fields. Theb-function equations are the basis for mo
0556-2821/2000/61~6!/066003~10!/$15.00 61 0660
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investigations in string cosmology. However, they are p
turbative and only known to the lowest orders ina8, and,
therefore, the corresponding solutions are only ensured t
conformally invariant to the lowest orders ina8. It is not
generally clear how the higher order corrections will chan
these solutions, and possible nonperturbative solutions s
to be completely missed in this framework.

A different approach to string cosmology is based
group manifolds and coset spaces and the correspon
Wess-Zumino-Witten~WZW! @4# and gauged WZW models
@5#. These models provide new curved backgrounds that
conformally invariant to all orders in 1/k ~wherek;1/a8 is
the level of the WZW model!. In the case of group mani
folds, these models are generally too simple to desc
physically interesting and realistic cosmologies. This is e
emplified by the well-studiedSL(2,R) WZW model, which
describes anti–de Sitter space. For the coset spaces, o
other hand, the models are generally so complicated that
difficult even to extract what they describe from a manife
spacetime point of view. In fact, the exact~all orders in 1/k)
metric, dilaton, etc., have only been obtained in a limit
number of low-dimensional cases~for a review of such so-
lutions, see Refs.@6,7#!. And in most of these cases, th
physical spacetime properties have not really been extra
so far. Most studies of coset space gauged WZW models
restrict themselves to lowest order in 1/k, and are thus essen
tially equivalent to the studies based on theb-function equa-
tions.

The purpose of the present paper is to show that inter
ing nontrivial and nonsingular cosmologies can be obtain
©2000 The American Physical Society03-1
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from the cosets SO~2,1!/SO~1,1! and SO~2,2!/SO~2,1!. Vari-
ous aspects of string theory on these cosets have been i
tigated in the literature, see for instance Refs.@4#– @14#. Cos-
mological interpretations have been considered in R
@12,13,15#, but mostly to lowest order in 1/k.

The two dimensional coset SO~2,1!/SO~1,1!, to all orders
in 1/k, has been given a cosmological interpretation in@13#,
but only in one of the coordinate patches of the global ma
fold. In this paper, we consider all coordinate patches and
shall show that the more interesting cosmologies actu
appear in the coordinate patches considered here.

As for the three dimensional coset SO~2,2!/SO~2,1!, a
cosmological interpretation was attempted in@12#, but only
in certain coordinate patches and only to the first order
1/k. The cosmologies obtained in@12#, however, are com-
pletely changed in the exact theory. Moreover, we show
the more interesting cosmologies are obtained in coordin
patches other than those considered in@12#.

Interestingly enough, quantum corrections not only can
the semiclassical singularities but also change the sign o
scalar curvature for oscillatory cosmologies, which is po
tive in the semiclassical regime (k→`) and becomes nega
tive for the value ofk dictated by conformal invariance. I
nonoscillating cosmologies the scalar curvature evolves f
positive for large and negatives timest to negative neart
50.

The paper is organized as follows. In Sec. II, we consi
the two-dimensional SO~2,1!/SO~1,1! coset. We first re-
analyze, in Sec. II A, the oscillating cosmology already co
sidered in@13#. We point out the quantum effects on th
scalar curvature concerning the singularities and the s
We also compare with standard 111 anti–de Sitter space
Sections II B and II C are devoted to the construction of n
singular nonoscillating cosmologies, obtained from oth
patches of the global manifold. Both deflationary and infl
tionary cosmologies are constructed. The correspond
scale factors, Hubble functions, string couplings, etc.,
analyzed in detail. In particular, we obtain a nonsingular c
mology going through a de Sitter-like phase of inflation.

In Sec. III, we consider the three-dimensional SO~2,2!/
SO~2,1! coset. Starting from the highly nontrivial exact me
ric and dilaton@11#, we first derive a relatively simple ex
pression for the scalar curvature, showing thatall
semiclassical curvature singularities have disappeared~but
some new quantum curvature singularities have appea!.
This closely resembles the situation in the two-dimensio
case. In Sec. III A, we construct a nonsingular anisotro
oscillating cosmology. We analyze in some detail the sc
factors and the scalar curvature, but the string coupling
unfortunately not very well behaved in this case. More int
estingly, in Sec. III B, we construct a nonsingular nonosc
lating anisotropic cosmology by considering a different c
ordinate patch@which actually belongs to the SO~3,1!/
SO~2,1! coset#. One scale factor, in this case, experience
phase of inflationary expansion while the other scale fac
experiences deflationary contraction. Moreover, during
phase the string coupling is completely well behaved. Co
parison of the two and three dimensional cases strongly
dicates that this latter cosmology is a model for the hig
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dimensional SO~D-1,2!/SO~D-1,1! or SO~D,1!/SO~D-1,1!
cosets.

Finally, in Sec. IV, we give our concluding remarks.

II. TWO-DIMENSIONAL COSET

The SO~2,1!/SO~1,1! metric and dilaton, to all orders in
1/k, are given by@9#

ds252~k22!F db2

4~b221!
2b~b!

b21

b11
dx2G , ~2.1!

F~b!5 ln
b11

Ab~b!
1const, ~2.2!

where

b~b![S 12
2

k

b21

b11D 21

. ~2.3!

In these (b,x) coordinates, the global manifold is

2`,b,`, 2`,x,`.

The scalar curvature is given by

R~b!5
4

k22

k~k24!1k~k22!b

@k121~k22!b#2
. ~2.4!

We see here the presence of new quantum curvature si
larities at

b52
k12

k22
~2.5!

plus coordinate singularities~horizons! at b561.
In the semiclassical limit (k→`), the scalar curvature

reduces to

R~b! 5
k→`4

k

1

11b
. ~2.6!

Comparison of Eqs.~2.4! and ~2.6! shows that in the semi
classical limit the quantum curvature singularities coale
with the coordinate singularities~horizons! at b561.

The fact that the semiclassical curvature singularities
come reduced to coordinate singularities, and that new
vature singularities appear in the exact~all orders in 1/k)
theory, will turn out to hold also for the three-dimension
cosets to be discussed in the next section.

For conformal invariance we demand that

CS SO~2,1!

SO~1,1! D526 ~2.7!

leading tok59/4. Thus the curvature singularity~2.6! is lo-
cated atb5217, that is, in the coordinate patch to the left
the left horizon in the (b2x) diagram. Clearly, it is then
possible to construct nonsingular spacetimes by conside
3-2
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NONSINGULAR STRING COSMOLOGIES FROM EXACT . . . PHYSICAL REVIEW D 61 066003
the other coordinate patches. In the present case, we ar
terested in constructing simple cosmological spacetimes
which we mean spacetimes with signature (21) and line
element of the form

ds252dt21A2~ t ! dx2, ~2.8!

wheret plays the role of cosmic time,x is the spatial coor-
dinate, andA(t) is the scale factor.

A. Oscillating cosmology

Considering the coordinate patch between the two h
zons,ubu<1, and using the parametrizationb5cos 2t, we get
the cosmology@13#

ds25
1

2 S 2dt21
tan2 t

11 8
9 tan2 t

dx2D ~2.9!

F~ t !5 ln~cos2 t A11 8
9 tan2 t !1const.

~2.10!

The scalar curvature

R~ t !5272
42cos2 t

~81cos2 t !2
~2.11!

is oscillating, finite, and always negative

R~ t !P@2 9
2 , 2 8

3 #, ^R~ t !&52
5

A2
'23.53.

~2.12!

It is an interesting observation that the quantum correcti
not only cancel the semiclassical curvature singularities,
also change the sign of the scalar curvature, since semi
sically (k→`)

R~ t !→ 4

k

1

11cos 2t
~2.13!

is always positive~and sometimes positive infinity!. We shall
see in the next section that this feature also holds in
three-dimensional case.

There is a remarkable similarity between the cosmolo
~2.9! and the ordinary two-dimensional anti–de Sitter spa
time

dsAdS
2 5

1

2
~2dt21sin2 t dx2!, ~2.14!

where the overall factor 1/2 is included for convenience
direct comparison of the scale factors, Hubble functions, e
reveals that there is almost no difference between the
cosmologies~2.9! and ~2.14!. The main difference is found
in the scalar curvature, which is constant and negative for
anti–de Sitter cosmology~2.14!, while it is oscillating and
negative for the coset cosmology~2.9! as we see from Eq
~2.11!.
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Finally we make a few comments about the dilaton~2.10!.
In the present notation and conventions, the low-energyk
→`) effective action is

S5E dxE dt A2g eFFR1~¹F!22
1

12
HabgHabg

1
2

k
1•••G ~2.15!

such that the string-couplingg is given by

gs5e2F/25~cos2 t A11 8
9 tan2 t !21/2 ~2.16!

up to an arbitrary positive multiplicative constant. It follow
that we should strictly speaking only trust the cosmologi
solution in the regions neart50, t56p, t562p, etc. That
is to say, in the regions where the scale factor is small. In
other regions where the scale factor is large, we should
pect that string-loop corrections will be important and pos
bly change the solution dramatically. Thus, concentrating
the region aroundt50, the line-element equation~2.9! de-
scribes a universe experiencing deflationary contrac
~negativet) followed by deflationary expansion~positive t)
and always with negative scalar curvature.

B. Deflationary cosmology

The oscillating cosmology~2.9! was obtained for the
valuek59/4, corresponding to conformal invariance. How
ever, by using other values ofk, it is possible to construc
other types of nonsingular cosmologies. In that case, con
mal invariance must be ensured by adding other confor
field theories. Moreover, problems with unitarity will poss
bly appear in such cases. In this subsection, we shall not
with these problems, but instead concentrate on the poss
cosmologies that can be obtained by keepingk arbitrary.

Takingk52uku,0, we observe that the curvature sing
larity ~2.6! is located between the two horizonsb561. It is
then possible to construct nonsingular spacetimes by spe
izing to the two patches outside the horizons.

Consider first the patchb>1 using the parametrization
b5cosh 2t. Then Eqs.~2.1!–~2.3! become

ds252~21uku!S 2dt21
tanh2t

11~2/uku!tanh2 t
dx2D ,

~2.17!

F~ t !5 lnS cosh2 t A11
2

uku
tanh2 t D 1const.

~2.18!

Notice that it is crucial to include the overall prefactor 2k
22) in the line element to get the desired signature.

In this case the scalar curvature is given by

R~ t !52
2uku

21uku
~21uku!cosh2 t11

@~21uku!cosh2 t22#2
, ~2.19!
3-3
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while the Hubble function and its derivative become

H~ t !5
Ȧ~ t !

A~ t !
5

cosht

~cosh2 t1~2/uku!sinh2 t !sinht
, ~2.20!

Ḣ~ t !52uku
~21uku!~cosh2 t1sinh2 t !cosh2 t22

@~21uku!cosh2 t22#2sinh2t
.

~2.21!

It follows that the universe has negative scalar curvature
it is always deflationary (Ḣ,0). More precisely, starting
from flat Minkowski space (t52`), the universe experi-
ences deflationary contraction untilt50. Still deflationary, it
then expands and approaches flat Minkowski space agai
t→` ~see Fig. 1!.

The string coupling in this case is given by

gs5e2F/25@cosh2 t A11~2/uku!tanh2 t #21/2

~2.22!

which is always finite and in fact goes to zero fort→6`
~see Fig. 2!. Thus, this nonsingular cosmology should
trusted everywhere.

C. Inflationary cosmology

A more interesting cosmology can be constructed by c
sidering the patchb<21 ~and still k,0) instead ofb>1.
Using the parametrizationb52cosh 2t, Eqs.~2.1!–~2.3! be-
come

ds252~21uku!S 2dt21
coth2t

11~2/uku!coth2 t
dx2D ,

~2.23!

F~ t !5 ln~sinh2 t A11~2/uku!coth2 t !1const.
~2.24!

The scalar curvature is now given by

FIG. 1. The scale factor~2.17! as a function of time. Here
shown fork521. This cosmology is always deflationary.
06600
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R~ t !5
2uku

21uku
~21uku!sinh2 t21

@~21uku!sinh2 t12#2
, ~2.25!

while the Hubble function and its derivative become

H~ t !52
sinht

~sinh2 t1~2/uku!cosh2 t !cosht
, ~2.26!

Ḣ~ t !5uku
~21uku!~cosh2 t1sinh2 t !sinh2 t22

@~21uku!sinh2 t12#2cosh2 t
.

~2.27!

Now the situation is a little more complicated than in theb
>1 patch. However, notice that

R~ t !.0 ⇔ cosh2 t.
31uku
21uku

~2.28!

as well as

Ḣ~ t !.0 ⇔ cosh2 t.
1

4
~31A1116/~21uku!!.

~2.29!

Thus the universe starts out as flat Minkowski space at

52`. It then experiences inflationary (Ḣ.0) expansion
with positive scalar curvature. Just before the scale fac
reaches its maximal value att50, the scalar curvature be
comes negative and the expansion becomes deflationary
t.0, the evolution is simply time-reversed~see Fig. 3!.

It is particularly interesting that the universe is inflatio
ary (Ḣ.0) with positive scalar curvature for~large! nega-
tive t. This suggests that the universe goes through so
kind of de Sitter phase. This is confirmed by expanding
scale factor for large negativet

A~ t !5A coth2t

11~2/uku!coth2 t
'A uku

21ukuS 11
2uku

21uku
e2tD ,

t!0; ~2.30!

FIG. 2. The string coupling~2.22! corresponding to Fig. 1. The
string coupling is finite for allt.
3-4
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thus there is in fact an element of exponential expansion
Finally, let us consider the string coupling also in th

case. It is given by

gs5e2F/25S sinh2 t A11
2

uku
coth2t D 21/2

~2.31!

which is finite everywhere except neart50 ~see Fig. 4!. In
particular, the string coupling is finite during the phase
inflationary expansion.

III. THREE-DIMENSIONAL COSET

The SO~2,2!/SO~2,1! metric and dilaton, to all orders in
1/k, are given by@11#

ds252~k22!F db2

4~b221!
1guu du21gvv dv2

12 guv du dvG , ~3.1!

F~b,u,v !5 ln
~b221!~v2u22!

Ab~b,u,v !
1const, ~3.2!

where

guu~b,u,v !5
b~b,u,v !

4u~v2u22!2 Fb21

b11
~v2u22!2

v22

k21G ,
gvv~b,u,v !52

b~b,u,v !

4v~v2u22!2 Fb11

b21
~v2u22!1

u12

k21G ,
guv~b,u,v !5

b~b,u,v !

4~v2u22!2

1

k21
, ~3.3!

and the functionb(b,u,v) is given by

FIG. 3. The scale factor~2.23! as a function of time. Here
shown fork521. This cosmology is expanding and inflationa
for large negativet.
06600
f

b21~b,u,v !511
1

~k21!~v2u22!

3Fb21

b11
~u12!2

b11

b21
~v22!2

2

k21G .
~3.4!

In the (b,u,v) coordinates, the global manifold for SO~2,2!/
SO~2,1! is @10,11#

b2.1 and uv.0,

b2,1 and uv,0, excluding 0,v,u12,2.

However, other regions in the (b,u,v) space can be reache
by going for instance to the SO~3,1!/SO~2,1! coset, for which
the metric and dilaton are formally the same as above.
more details, see Refs.@10,11#.

The general expression for the scalar curvature, co
sponding to the metric~3.3!, is quite complicated. It is mos
conveniently written as a fourth order polynomium inb di-
vided by the square of a second order polynomium inb:

R~b,u,v !5
4

k22

c01c1b1c2b21c3b31c4b4

~d01d1b1d2b2!2
,

~3.5!

where the coefficientsci anddj are functions of the remain
ing coordinates (u,v) and the parameterk

ci5ci~u,v;k!, i 50,1,2,3,4,

dj5dj~u,v;k!, j 50,1,2.

Their explicit expressions are given in the Appendix.
In the semiclassical limit (k→`), the scalar curvature

reduces to

R~b,u,v ! 5
k→`4

k

31b22v~b11!2u~b21!

~v2u22!~b221!
~3.6!

FIG. 4. The string coupling~2.31! corresponding to Fig. 3. The
string coupling is finite everywhere except neart50.
3-5
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in agreement with Ref.@10#.
Comparison of the semiclassical expression~3.6! and the

exact expression~3.5! for the scalar curvature shows thatall
semiclassical curvature singularities (b51, b521, andv
5u12) have disappeared, but that new quantum curva
singularities have appeared. The situation is thus comple
analogous to the two-dimensional case: the semiclass
curvature singularities become coordinate singularities~hori-
zons!, but new quantum curvature singularities have a
peared elsewhere. The curvature singularities in the e
geometry correspond to the zeroes of the denominator in
~3.5!, which describe a surface in the (b,u,v) space

2F ~12b!2

k21
112b2Gu1F ~11b!2

k21
112b2Gv

52 F11
1

~k21!2G ~12b2!14
11b2

k21
. ~3.7!

The solutions of this equation precisely correspond to
singularities of the functionb(b,u,v).

By considering different values ofk, one can move the
singularity surface around in the global manifold. It is th
possible, as in the two-dimensional case, to construct n
singular spacetimes by considering a single coordinate pa
Notice that for conformal invariance we should demand t

CS SO~2,2!

SO~2,1! D526, ~3.8!

leading tok5(3965A13)/23.

A. Oscillating cosmology

Consider first the case wherek5(3915A13)/23
'2.48 . . . . It isthen possible to construct a cosmology
the coordinate patch

ubu<1, u>0, v<0 ~3.9!

using the parametrization

b5cos2t, u52x2, v522y2. ~3.10!

The metric and dilaton are given by

ds252~k22!@2dt21gxx dx21gyy dy212 gxy dx dy#
~3.11!

F~ t,x,y!5 ln
~x21y211!cos2 tsin2 t

Ab~ t,x,y!
1const, ~3.12!
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where (gxx ,gyy ,gxy) and b(t,x,y) are obtained from Eqs
~3.3! and ~3.4!

gxx~ t,x,y!5
b~ t,x,y!

~x21y211!2 F ~x21y211!tan2 t1
y211

k21 G ,
gyy~ t,x,y!5

b~ t,x,y!

~x21y211!2 F ~x21y211!cot2 t1
x211

k21 G ,
gxy~ t,x,y!52

b~ t,x,y!

~x21y211!2

xy

k21
, ~3.13!

as well as

b21~ t,x,y!511
~11x2!tan2 t1~11y2!cot2 t1~k21!21

~k21!~x21y211!
.

~3.14!

It is easy to see that this is a nonsingular cosmology witt
playing the role of cosmic time, (x,y) as the spatial coordi-
nates, and the signature is (211), as it should be. The fac
that the cosmology is nonsingular follows since, in the co
dinate patch~3.9! considered here and fork'2.48, the Eq.
~3.7! has no real solutions since the left hand side is ob
ously negative while the right hand side is positive. The c
mology is however somewhat complicated, it is periodic
time, but nonhomogeneous and highly nonisotropic. In fa
the ‘‘scale factors’’ for the two spatial directions are osc
lating with a phase difference ofp/2.

To gain a little more insight into this cosmology, we co
sider the region near the spatial ‘‘origin’’ (x,y)5(0,0). The
scalar curvature reduces to

R~ t,0,0!5
1

k22

c̃01 c̃2cos2 2t1 c̃4cos4 2t

@k22~k22!2cos2 2t#2
, ~3.15!

where the coefficients (c̃0 ,c̃2 ,c̃4) are given by

c̃05k2@2~k21!21213~k21!16~k21!2#,

c̃25~k22!2@2~k21!2114230~k21!

24~k21!2#,

c̃452~k22!4@~k21!2112#. ~3.16!

It follows that
R~ t,0,0!PF2~k21!1223~k21!21

k22
,

2~k21!21213~k21!16~k21!2

k2~k22!
G'@23.1435 . . . , 22.2988 . . . #

~3.17!
3-6
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as well as

^R~ t,0,0!&5
1

k22 S 122k

k21
1

k222

kAk21
D '22.7126 . . . ,

~3.18!

where the numerical values were obtained fork5(39
15A13)/23. As in the two-dimensional case, we noti
therefore that the quantum corrections changed the sig
the curvature since semiclassically (k→`)

R~ t,0,0! 5
k→`4

k

31cos2 2t

2sin2 2t
~3.19!

is always positive~and sometimes positive infinity!.
In the region near (x,y)5(0,0), one can further defin

scale factors:

A~ t !5Agxx~ t,0,0!5Ab~ t,0,0!S tan2t1
1

k21D ,

~3.20!
on

o

re

la

a
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of

B~ t !5Agyy~ t,0,0!5Ab~ t,0,0!S cot2 t1
1

k21D .

~3.21!

That is,

A~ t !5usintuA ~k21!sin2 t1cos2 t

@~k21!1~k21!2122#cos2t sin2t11
,

~3.22!

B~ t !5ucostuA ~k21!cos2 t1sin2 t

@~k21!1~k21!2122#cos2 t sin2 t11
,

~3.23!

both of which oscillate between 0 andAk21'1.216 . . . .
with a phase difference ofp/2.
Finally, let us return to the dilaton@for generic (t,x,y)]. The string coupling is given by

gs5e2F/25F ~x21y211!cos2 t sin2 t

Ab~ t,x,y!
G21/2

5@~x21y211!ucost sintu#21/2
•Fcos2 tsin2 t

1
~11x2!sin4 t1~11y2!cos4 t1~k21!21cos2 tsin2 t

~k21!~x21y211!
G21/4

. ~3.24!
et
r

Thus the string coupling blows up att50, t56p/2,
t56p, etc. It means that we should only trust the soluti
in the intermediate regions wheregs is not large.

B. Nonoscillating cosmologies

In the previous subsection we obtained an oscillating c
mology using the valuek5(3915A13)/23'2.48 . . . ,cor-
responding to conformal invariance. Most formulas we
however, presented keepingk arbitrary, and the oscillating
cosmologies in fact exist for arbitraryk.2. In this subsec-
tion we shall show that it is possible to construct nonsingu
three-dimensional nonoscillating cosmologies whenk,1.
Interestingly enough, the condition~3.8! of conformal invari-
ance gives rise to the possibilityk5(3925A13)/23
'0.912 . . . , but in thefollowing we just keepk arbitrary but
less than 1. Possible problems with unitarity will not be de
with here.

Thus we takek,1 and consider first the patch

b>1, u>0, v<0 ~3.25!

and use the parametrization
s-

,

r

lt

b5cosh 2t, u52x2, v522y2, ~3.26!

Actually the patch~3.25! is not part of the global manifold
for SO~2,2!/ SO~2,1!, so one has to go to the de Sitter cos
SO~3,1!/SO~2,1! instead@10,11#. The general expressions fo
the metric and dilaton Eqs.~3.1!–~3.4! are, however, un-
changed.

Using the parametrization~3.26!, the new metric and di-
laton are

ds252~22k!~2dt21gxx dx21gyy dy2

12 gxy dx dy!, ~3.27!

F~ t,x,y!5 ln
~x21y211!cosh2 t sinh2 t

Ab~ t,x,y!
1const,

~3.28!

where now
3-7
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gxx~ t,x,y!5
b~ t,x,y!

~x21y211!2 F ~x21y211!tanh2t1
y211

12k G ,
gyy~ t,x,y!5

b~ t,x,y!

~x21y211!2 F ~x21y211!coth2 t1
x211

12k G ,
gxy~ t,x,y!52

b~ t,x,y!

~x21y211!2

xy

12k
, ~3.29!

and the functionb(t,x,y) is given by

b21~ t,x,y!

511
~11x2!tanh2 t1~11y2!coth2 t1~12k!21

~12k!~x21y211!
.

~3.30!

Notice the similarity with Eqs.~3.11!–~3.14!: trigonometric
functions became hyperbolic functions andk21 became 1
2k. Since we now consider the case wherek,1, it is then
clear that Eqs.~3.27!–~3.30! describes a cosmology with th
correct signature (211). Furthermore, it is easily see
from Eq. ~3.7! that the cosmology is nonsingular. Th
change from trigonometric functions to hyperbolic functio
obviously has dramatic consequences. The cosmolog
however still nonisotropic and nonhomogeneous, but it is
longer oscillating. In fact, the time-dependence of the me
actually disappears fort→6`, i.e., the universe become
static in these limits~however, the dilaton stays time
dependent!. More precisely, both ‘‘scale factors’’ start ou
with constant values att52`. Then one of them increase
monotonically towards a maximal value, while the other o
decreases monotonically to zero fort→02 . For t.0, their
behavior is simply time-reversed.

As in the previous subsection, it is useful to consider
more detail the region near the spatial origin (x,y)5(0,0).
The scalar curvature then reduces to

R~ t,0,0!52
1

22k

c̃01 c̃2cosh2 2t1 c̃4cosh4 2t

@k22~22k!2cosh2 2t#2
,

~3.31!

with the coefficients (c̃0 ,c̃2 ,c̃4) are still given by Eq.~3.16!.
It follows that

R~6`,0,0!5
2~12k!2112

22k
<~A321!2'0.536 . . . ,

~3.32!

R~0,0,0!5
23~12k!21222~12k!

22k
,21,

~3.33!

where the numerical values were obtained using the fact
k,1. Thus the scalar curvature is either positive or nega
~depending on the precise value ofk,1) for large utu, but
always becomes negative forutu close to zero.
06600
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As for the oscillating cosmology in the previous subse
tion, let us define scale factors analogous to Eqs.~3.20! and
~3.21!. In the present case, one obtains

A~ t !

5usinhtuA ~12k!sinh2 t1cosh2 t

@~12k!1~12k!2112#cosh2 t sinh2 t11
,

~3.34!

B~ t !5coshtA ~12k!cosh2 t1sinh2 t

@~12k!1~12k!2112#cosh2 t sinh2t11
~3.35!

~see Fig. 5!. It follows that

A~0!50, B~0!5A12k, A~6`!5B~6`!5A12k

22k
.

~3.36!

A careful analysis of the corresponding Hubble functio
and their derivatives shows that fort,,0, one scale factor
is contracting and deflationary while the other scale facto
expanding and inflationary. This is most easily seen from
expansions

A~ t !'A12k

22kS 122
12k

22k
e2tD , t,,0, ~3.37!

B~ t !'A12k

22kS 112
12k

22k
e2tD , t,,0,

~3.38!

and still taking into account thatk,1.
It is interesting that the scale factorA(t) is very similar to

the scale factor of the deflationary two-dimensional cosm
ogy of Sec. II B, while the scale factorB(t) is very similar to
the scale factor of the inflationary two-dimensional cosm
ogy of Sec. II C. In particular, the scale factorB(t) has an
element of exponential expansion as seen from Eq.~3.38!. In

FIG. 5. The two scale factors~3.34! and~3.35! as a function of
time. Here shown fork521. For large negativet, one scale factor
is expanding and inflationary while the other scale factor is c
tracting and deflationary.
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that sense, the two-dimensional coset comprises all the main features of the three-dimensional coset.
The string coupling in this case@generic (t,x,y)# is given by

gs5e2F/25F ~x21y211!cosh2 t sinh2 t

Ab~ t,x,y!
G21/2

5@~x21y211!cosht usinhtu#21/2
•Fcosh2 t sinh2 t

1
~11x2!sinh4 t1~11y2!cosh4 t1~12k!21cosh2 t sinh2 t

~12k!~x21y211!
G21/4

~3.39!
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which is finite everywhere except neart50. Asymptotically
(t→6`) it goes to zero~see Fig. 6!. Thus the solution
should be trusted everywhere except neart50.

It is also possible to construct a nonsingular nonoscil
ing cosmology in the patch

b<21, u>0, v<0, ~3.40!

using the parametrization

b52cosh 2t, u52x2, v522y2, ~3.41!

and still takingk,1 @also in this case one has to go to the
Sitter coset SO~3,1!/SO~2,2!; see Ref.@10,11##. However, the
resulting cosmology is identical to the previous one, up to
interchange ofx andy.

IV. CONCLUSIONS

The cosmological geometries found in this paper are ex
conformal field theories. That is, they describe string vac
Physically, these are spacetimes where the~massless! dilaton
and gravitons fields are present. We find that such manifo
provide nonsingular spacetimes with cosmological interp
tation. These are of two types: oscillating and nonoscillat
cosmologies. The nonoscillating metrics start as Minkow
spacetimes for early times, evolve through inflationary
pansion~with positive scalar curvature!, then pass through a
deflationary contraction ending as a Minkowski spaceti
for late times.

FIG. 6. The string coupling~3.39! corresponding to Fig. 5. The
string coupling is finite everywhere except neart50.
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All cosmological spacetimes from these cosets str
vacua turn to be anisotropic. This seems to be a general
unavoidable feature of string vacua cosmologies. Physica
this must be related to the masslessness of the matter so
of these geometries. Notice that de Sitter spacetime in g
eral relativity is exactly isotropic and has a nonzero cosm
logical constant as matter source.

The coset string cosmologies studied in this paper co
spond to analogies of de Sitter spacetime in string vacua
general relativity, the global de Sitter manifold describes
contracting phase~for t<0) and then an expanding univers
for t>0. Only the expanding patch describes the physi
space. Similarly, in string cosmologies one should not c
sider the physical space as the whole global manifold
only a part of it.~The situation is somehow analogous to t
Schwarzschild black hole in general relativity. The glob
Kruskal manifold describes a black hole and its ‘mirror’ di
connected space; only half of the global manifold descri
the physical space@the exterior plus the interior of the blac
hole#.! It is a generic feature of coset string cosmologies t
the inflationary expanding phase, when it appears it doe
for t,0.

In both two and three dimensions, the coset cosmolog
considered in this paper are related to each other by com
nations of simple translationst→t1p/2, analytic continua-
tion t→ i t , and changes of the levelk. This can be seen
directly from the explicit expressions for the metric, dilato
and string coupling, and follows more generally from t
fact that the different cosmologies correspond to differ
coordinate patches of the same global manifold. It w
shown in Refs.@8,10# that the transformations relating th
different patches are generalized T-duality transformatio
in the sense that different patches arise from different ga
fixings in the gauged WZW construction. The dualities
question are thus generalizations of the well-known duali
relating vector and axial gaugings in the two-dimensio
case@9#.

The similarities between the two and three dimensio
cases studied here suggest a general picture for the fou
mensional cosmologies; anisotropy seems to be a generi
unavoidable feature and cosmological singularities are
nerically avoided. For coset dimensions higher than four, i
possible to construct nonsingular cosmologies with four
mensions inflating while the others~internal ones! deflate.
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APPENDIX A

In this Appendix we list the explicit expressions for the coefficients appearing in the scalar curvature~3.5!

c0~u,v;k!5~u21v2!@12~k21!1~k21!2#22uv@252~k21!1~k21!2#1~v2u!@2~k21!221812~k21!

25~k21!2#2~k21!2322~k21!22214~k21!212202~k21!16~k21!2, ~A1!

c1~u,v;k!5~v22u2!@322~k21!1~k21!2#1~v1u!@22~k21!22110~k21!212816~k21!22~k21!2#, ~A2!

c2~u,v;k!5~v21u2!@32~k21!2~k21!2#22uv@51~k21!2~k21!2#1~v2u!@16~k21!21230110~k21!

14~k21!2#12~k21!23236~k21!21160222~k21!24~k21!2, ~A3!

c3~u,v;k!5~v22u2!@12~k21!2#2~v1u!@22~k21!2222~k21!211822~k21!22~k21!2#, ~A4!

c4~u,v;k!5~v2u!@~k21!2224~k21!211624~k21!1~k21!2#2~k21!2312~k21!2212~k21!21

2817~k21!22~k21!2, ~A5!

as well as

d0~u,v;k!5~v2u!k22k @11~k21!21#,

d1~u,v;k!52 ~v1u!, ~A6!

d2~u,v;k!5~v2u!~22k!22~22k! @12~k21!21#.
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