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Nonsingular two and three dimensional string cosmologies are constructed using the exact conformal field
theories corresponding to $901)/SQ(1,1) and S@2,2/SO(2,1). All semiclassical curvature singularities are
canceled in the exact theories for both of these cosets, but some new quantum curvature singularities emerge.
However, considering different patches of the global manifolds allows the construction of nonsingular space-
times with a cosmological interpretation. In both two and three dimensions, we construct nonsingular oscillat-
ing cosmologies, nonsingular expanding and inflationary cosmologies including a d€eifienential stage
with a positive scalar curvature as well as nonsingular contracting and deflationary cosmologies. We analyze
these cosmologies in detail with respect to the behavior of the scale factors, the scalar curvature, and the string
coupling. The sign of the scalar curvature is changed by the quantum corrections in oscillating cosmologies and
evolves with time in the nonoscillating cases. Similarities between the two and three dimensional cases suggest
a general picture for higher dimensional coset cosmologies: anisotropy seems to be a generic unavoidable
feature, cosmological singularities are generically avoided; and it is possible to construct nonsingular cosmolo-
gies where some spatial dimensions are experiencing inflation while the others experience deflation.

PACS numbes): 11.25.Hf, 04.20-q, 98.80—k

I. INTRODUCTION AND RESULTS investigations in string cosmology. However, they are per-
turbative and only known to the lowest ordersdt, and,
Fundamental string effects are most important near théherefore, the corresponding solutions are only ensured to be
Planck scale; thus, it seems that early cosmology will be theonformally invariant to the lowest orders iua’. It is not
most likely area to test string theory. The classical and quangenerally clear how the higher order corrections will change
tum string dynamics and their associated effects in a wid¢hese solutions, and possible nonperturbative solutions seem
class of string background&onformally and nonconfor- to be completely missed in this framework.
mally invarian} have been widely investigated by the A different approach to string cosmology is based on
present author§l,2]. New insights and new physical phe- group manifolds and coset spaces and the corresponding
nomena with respect to string propagation in flat spacetim&Vess-Zumino-Witted WZW) [4] and gauged WZW models
(and with respect to quantum fields in curved spacetime[5]. These models provide new curved backgrounds that are
have been uncovere®]. Conformal invariance simplifies conformally invariant to all orders in R/(wherek~1/a’ is
the mathematics of the problem but the physics remainghe level of the WZW modgl In the case of group mani-
mainly unchanged. For low and high mass the string masfolds, these models are generally too simple to describe
spectrum in conformal and nonconformal backgrounds ar@hysically interesting and realistic cosmologies. This is ex-
the samd 3]. emplified by the well-studie&L(2,R) WZW model, which
Fundamental quantum strings demand a conformally indescribes anti—de Sitter space. For the coset spaces, on the
variant background for quantum consistericgnformal in-  other hand, the models are generally so complicated that it is
variance is a necessary although not sufficient condition fodifficult even to extract what they describe from a manifest
consistency. However, most curved spacetimes that werespacetime point of view. In fact, the exdetl orders in 1K)
historically of physical interest in general relativity and cos- metric, dilaton, etc., have only been obtained in a limited
mology are not conformally invariant. For instance, blacknumber of low-dimensional casé¢fr a review of such so-
hole spacetimes and Friedmann-Robertson-Walker universédstions, see Refs[6,7]). And in most of these cases, the
are not of this type. In string theory, a large number of genphysical spacetime properties have not really been extracted
eralizations of these general relativity solutions have beeso far. Most studies of coset space gauged WZW models still
obtained as solutions of the renormalization grouprestrictthemselves to lowest order irkland are thus essen-
B-function equationglow energy effective string equations tially equivalent to the studies based on Bunction equa-
These solutions involve, in addition to the metric, a numbettions.
of massless fields including the dilaton and antisymmetric The purpose of the present paper is to show that interest-
tensor fields. Th@g-function equations are the basis for mosting nontrivial and nonsingular cosmologies can be obtained
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from the cosets S@,1)/SQ(1,1) and S@2,2/S0O2,1). Vari- dimensional S@D-1,2/SOD-1,1) or SAD,1)/SOD-1,1)
ous aspects of string theory on these cosets have been invessets.

tigated in the literature, see for instance R@43- [14]. Cos- Finally, in Sec. IV, we give our concluding remarks.
mological interpretations have been considered in Refs.
[12,13,19, but mostly to lowest order in &/ Il. TWO-DIMENSIONAL COSET

The two dimensional coset $9)1)/SQ(1,1), to all orders . . .
in 1/k, has been given a cosmological interpretatioflig], 1/kTgfeS%2éi)/bS}g]l’l) metric and dilaton, to all orders in
but only in one of the coordinate patches of the global mani-—" 9

fold. In this paper, we consider all coordinate patches and we db? b—1
shall show that the more interesting cosmologies actually ds?=2(k—2)| ————B(b) —— dx?|, (2.1
appear in the coordinate patches considered here. 4(b*-1) b+1

As for the three dimensional coset &®)/S0O2,1), a
cosmological interpretation was attempted 12], but only b+1
in certain coordinate patches and only to the first order in <I>(b)=lnm+const, 2.2
1/k. The cosmologies obtained [12], however, are com- B
pletely changed in the exact theory. Moreover, we show thaynere
the more interesting cosmologies are obtained in coordinate
patches other than those consideredlig). 2 b-1
Interestingly enough, quantum corrections not only cancel B(b)= ( 1- kK b+r1
the semiclassical singularities but also change the sign of the
scalar curvature for oscillatory cosmologies, which is posi-n these b,x) coordinates, the global manifold is
tive in the semiclassical regimé-{-«) and becomes nega-
tive for the value ofk dictated by conformal invariance. In —oo<ph<ow, —oIx<m,
nonoscillating cosmologies the scalar curvature evolves from o
positive for large and negatives timégo negative neat ~ The scalar curvature is given by
=0.
The paper is organized as follows. In Sec. Il, we consider R(b)= 4 k(k—4)+k(k-=2)b 2.4
the two-dimensional SQ@,1)/SO(1,1) coset. We first re- k=2 [k+2+(k—2)b]2 "’ '
analyze, in Sec. Il A, the oscillating cosmology already con-
sidered in[13]. We point out the quantum effects on the We see here the presence of new quantum curvature singu-
scalar curvature concerning the singularities and the sigrarities at
We also compare with standard+Il anti—de Sitter space.
Sections 11 B and Il C are devoted to the construction of non- b= _ k+2 2.5
singular nonoscillating cosmologies, obtained from other k—2 '
patches of the global manifold. Both deflationary and infla-
tionary cosmologies are constructed. The correspondinglus coordinate singularitie$orizons atb=+1.
scale factors, Hubble functions, string couplings, etc., are In the semiclassical limitK—c), the scalar curvature
analyzed in detail. In particular, we obtain a nonsingular cos¥educes to
mology going through a de Sitter-like phase of inflation.
In Sec. lll, we consider the three-dimensional (3Q)/ k—egq 1
SQO2,1) coset. Starting from the highly nontrivial exact met- R(b) = K 1+b" (2.6
ric and dilaton[11], we first derive a relatively simple ex-
pression for the scalar curvature, showing thal Comparison of Egs(2.4) and (2.6) shows that in the semi-
semiclassical curvature singularities have disappedoetl  classical limit the quantum curvature singularities coalesce
some new quantum curvature singularities have appgaredyith the coordinate singularitiorizong atb=+1.
This closely resembles the situation in the two-dimensional The fact that the semiclassical curvature singularities be-
case. In Sec. IllA, we construct a nonsingular anisotropiccome reduced to coordinate singularities, and that new cur-
oscillating cosmology. We analyze in some detail the scal&ature singularities appear in the exdatl orders in 1K)
factors and the scalar curvature, but the string coupling isheory, will turn out to hold also for the three-dimensional
unfortunately not very well behaved in this case. More inter-cosets to be discussed in the next section.
estingly, in Sec. llI B, we construct a nonsingular nonoscil-  For conformal invariance we demand that
lating anisotropic cosmology by considering a different co-
ordinate patch[which actually belongs to the S&1)/ Sa2D)|
S0O2,1) coset. One scale factor, in this case, experiences a SQ(1,1) =2
phase of inflationary expansion while the other scale factor
experiences deflationary contraction. Moreover, during thideading tok=9/4. Thus the curvature singularit2.6) is lo-
phase the string coupling is completely well behaved. Comeated ab= —17, that is, in the coordinate patch to the left of
parison of the two and three dimensional cases strongly inthe left horizon in the I§—x) diagram. Clearly, it is then
dicates that this latter cosmology is a model for the higheipossible to construct nonsingular spacetimes by considering
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the other coordinate patches. In the present case, we are in- Finally we make a few comments about the dilatari0).
terested in constructing simple cosmological spacetimes, bin the present notation and conventions, the low-enekgy (
which we mean spacetimes with signature ) and line  —x) effective action is

element of the form

1
ds?=—d2+ A2(t) dx?, (2.9 S=f dXJ dt V=g €’|R+(VP)?— 5H g, H™?
wheret plays the role of cosmic timex is the spatial coor- 2
dinate, andA(t) is the scale factor. + E+ - } (2.195
A. Oscillating cosmology such that the string-coupling is given by
Considering the coordinate patch between the two hori-
zons,|b|<1, and using the parametrizatibr= cos 2, we get gs=e ®?=(cogt Vi+itartt )2 (2.16

the cosmology13]
up to an arbitrary positive multiplicative constant. It follows

42— } _d+ tarf t dx2 59 that we should strictly speaking only trust the cosmological
2 1+ Starft X (2.9 solution in the regions near=0, t= *= 7, t=*+ 2, etc. That
is to say, in the regions where the scale factor is small. In the
other regions where the scale factor is large, we should ex-
d(t)=In(co$t 1+ Etarft )+const. g g

pect that string-loop corrections will be important and possi-
(2.10 bly change the solution dramatically. Thus, concentrating on
the region around=0, the line-element equatio{2.9) de-
scribes a universe experiencing deflationary contraction
4—colt (negativet) followed by deflationary expansiafpositive t)

R(t)y=—72 ——— (2.1) and always with negative scalar curvature.
(8+cogt)?

The scalar curvature

is oscillating, finite, and always negative B. Deflationary cosmology

The oscillating cosmology2.9) was obtained for the
5 value k=9/4, corresponding to conformal invariance. How-
Rye[—3, —51, (R(t)=-— ﬁ~—3-53- ever, by using other values &f it is possible to construct
(2.12 other types of nonsingular cosmologies. In that case, confor-
' mal invariance must be ensured by adding other conformal

It is an interesting observation that the quantum correctiond€ld theories. Moreover, problems with unitarity will possi-
not only cancel the semiclassical curvature singularities, bufly @ppear in such cases. In this subsection, we shall not deal
also change the sign of the scalar curvature, since semicla4ith these problems, but instead concentrate on the possible

sically (k— =) cosmologies that can be obtained by keegiraybitrary.
Takingk= —|k| <0, we observe that the curvature singu-
1 larity (2.6) is located between the two horizobss = 1. It is
R(t)— k 1+cos2 (2.13  then possible to construct nonsingular spacetimes by special-
izing to the two patches outside the horizons.
is always positivéand sometimes positive infinityWe shall Consider first the patch=1 using the parametrization

see in the next section that this feature also holds in th®=cosh2. Then Eqs(2.1)—(2.3) become
three-dimensional case.

There is a remarkable similarity between the cosmology ds2=2(2+|K|) tanift dx2
(2.9 and the ordinary two-dimensional anti—de Sitter space- 1+ (2/|k|)tant? t '
time (2.17

1 .
dsids=§(—dt2+sm2t dx®), (2.149 <I>(t)=|n(cosr?t \/1+%tanh’-t

where the overall factor 1/2 is included for convenience. A (218
direct comparison of the scale factors, Hubble functions, etCyqtice that it is crucial to include the overall prefactork2(
reveals that there is almost no difference between the two_2) in the line element to get the desired signature.
cosmologieq2.9) and(2.14). The main difference is found In this case the scalar curvature is given by

in the scalar curvature, which is constant and negative for the
anti—de Sitter cosmology?2.14), while it is oscillating and
negative for the coset cosmolo@®.9 as we see from Eq. R(t)=— 2[k| _(2+|k]cosHt+1 ,
(2.1D). 2+[k| [(2+]k|)cosRt—2]2

—dt?+

+const.
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FIG. 1. The scale factof2.17) as a function of time. Here FIG. 2. The string coupling2.22 corresponding to Fig. 1. The

shown fork=—1. This cosmology is always deflationary. string coupling is finite for alt.
while the Hubble function and its derivative become 2|k|  (2+]|k|)sinFPt—1
R(t)= - , (2.25
. 2+[K[ [(2+|K|)sinfRt+2]2
B A(t) B cosht
H(t= A(t) _(cosﬁH—(2/|k|)sinr?t)sinht' (220 \yhile the Hubble function and its derivative become
) (cosfFt+ sint? t)cosf H(D) oIt 2.26
. 2+ cosltt+sintr t)cosht—2 =- ) .
H(t)=—|K| (2:+kI)( ) _ (sint? t+ (2/|k|)costt t)cosht
[(2+]|k|)cosltt—2]?sinkPt
(2.21 o =IK (2+|K|)(cosR t+sint t)sint t—2
It follows that the universe has negative scalar curvature and [(2+]K|)sinf? t+2]%costf t
it is always deflationary H<0). More precisely, starting (229

from flat Minkowski space t(= —), the universe experi- Now the situation is a little more complicated than in the
ences deflationary contraction urtti 0. Still deflationary, it =1 patch. However, notice that

then expands and approaches flat Minkowski space again for

t—o (see Fig. L +1k]
The string coupling in this case is given by RHO>0 < cosr?t>2+|k| (2.28
gs=e ®?=[costft 1+ (2/k|)tanift ]~? as well as
(2.22

. 1
o o _ H(t)>0 < cosft>—(3+1+16/2+]K|)).
which is always finite and in fact goes to zero ter + oo 4

(see Fig. 2 Thus, this nonsingular cosmology should be (2.29

trusted everywhere. Thus the universe starts out as flat Minkowski spacé at

=—o. It then experiences inflationaryH(>0) expansion
with positive scalar curvature. Just before the scale factor

A more interesting cosmology can be constructed by confeaches its maximal value &t 0, the scalar curvature be-
sidering the patcth<—1 (and stillk<Q) instead ofo=1. comes negative and the expansion becomes deflationary. For
Using the parametrization= —cosh 2, Egs.(2.1)—(2.3) be-  t>0, the evolution is simply time-reverse¢see Fig. 3.

C. Inflationary cosmology

come It is particularly interesting that the universe is inflation-
ary (H>0) with positive scalar curvature fdtarge nega-
ds=2(2+ |K|)| —dt? cotttt 5 tive t. This suggests that the universe goes through some
1+ (2/|K|)cott? t ' kind of de Sitter phase. This is confirmed by expanding the

(2.23  scale factor for large negative

e / (Pt (TR (. 2l
®(t)=In(sinkPt 1+ (2/k|)coth*t )+ const. Alt) = cot 1 Zt)
(2.24) ® 1+ (2/k|)cotrt Y 2+ (K[| T )

The scalar curvature is now given by t<0; (2.30

066003-4
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0.58

FIG. 3. The scale factof2.23 as a function of time. Here

shown fork=—1. This cosmology is expanding and inflationary

for large negative.

thus there is in fact an element of exponential expansion.
Finally, let us consider the string coupling also in this

case. It is given by

5 —172
sinfft \/1+ mcothzt ) (2.31)

which is finite everywhere except near 0 (see Fig. 4. In

ge=e ®P2=
S
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t
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FIG. 4. The string coupling2.31) corresponding to Fig. 3. The
string coupling is finite everywhere except néar0.

BHb U =1H G )

27

(3.9

b+
“p=1®

In the (b,u,v) coordinates, the global manifold for $82)/

particular, the string coupling is finite during the phase ofSO2,1) is [10,11

inflationary expansion.

Ill. THREE-DIMENSIONAL COSET

The SG2,2/S0O(2,1) metric and dilaton, to all orders in
1Kk, are given hy[11]

2
—2(k— 2 2
ds?=2(k—2) 4(b2_1)+guu du’+g,, dv
+2 g, du dv], (3.2
®(b,u,v) Ir(bz_l)(v_u_2)+const (3.2
,U,0)=1N , .
VB(b,u,v)
where
guu(b!uiv)_4u(v_u_2)2 b+1(U_U_2)_m}i
B(b!uyv) b+1 u+2
gvu(b1u-v):_4v(v_u_2)2 b_l(U—U—2)+m},
b,u, 1
Juy(b,uv)= pouL) (3.3

4(v—u—2)? k=1

and the functiord(b,u,v) is given by

b?>1 and uv>0,
b?<1 and uv<0, excluding GKv<u+2<2.

However, other regions in thé(u,v) space can be reached
by going for instance to the §8,1)/SO(2,1) coset, for which

the metric and dilaton are formally the same as above. For

more details, see Refkl0,11].
The general expression for the scalar curvature, corre-
sponding to the metri¢3.3), is quite complicated. It is most
conveniently written as a fourth order polynomiumbrdi-
vided by the square of a second order polynomiurb:in

4  cotcib+cyb?+cgbd+c bt

R(b,u,v)=
) g Tyt dybt ab?)?

(3.5

where the coefficients; andd; are functions of the remain-
ing coordinates ,v) and the parametede

ci=ci(u,v;k), i=0,1,2,3,4,
dj=d;(u,v;k), j=0,1,2.

Their explicit expressions are given in the Appendix.
In the semiclassical limit K—), the scalar curvature
reduces to

a(h )kjﬁf 3+b%—v(b+1)—u(b—1)
(bthv) =3 (v—u—2)(b2—1)

(3.6
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in agreement with Ref.10]. where @yx.9yy.9xy) and B(t,x,y) are obtained from Egs.
Comparison of the semiclassical expresd8m) and the (3.3 and(3.4)

exact expressiofB.5) for the scalar curvature shows thedt

semiclassical curvature singularitieb=1, b=—1, andv B(1,X,y)

=u+2) have disappeared, but that new quantum curvature Ixx(t,X,Y) =

2+1
(x2+y2+1)tar12t~l—y }

. . A (X%+y2+1)2 k-1
singularities have appeared. The situation is thus completely
analogous to the two-dimensional case: the semiclassical Bltxy) 241
curvature singularities become coordinate singularifiesi- _ XY 2, .2 X+
zong, but new quantum curvature singularities have ap- Gyy(tXY) (X2+y2+1)2 (x*+y*+1cot t+ k—1]
peared elsewhere. The curvature singularities in the exact
geometry correspond to the zeroes of the denominator in Eq. Bt.X.Y) X
(3.5, which describe a surface in the,(1,v) space (t,x,y)=— X0y y (3.13
ng 1 ’y 2 2 2 k_ 1
(X2+y2+1) 1
(1-b)? ) (1+b)? )
- K1 +1-b%lu+ K1 +1-b°|v as well as
1 L p2 . (1+x?)tarf t+(1+y?)coft+(k—1)" 1
- _p2 Bt xy)=1+ .
2 {1+ 1) (1-b%)+4 1 (3.7 (=1 (C+y2+ 1)

(3.19
The solutions of this equation precisely correspond to the o ) )
singularities of the functiorg(b,u,v). It is easy to see that th|§ is a nonsingular cosmology \tv!th
By considering different values d€ one can move the playing the role of cosmic timex(y) as the spatial coordi-
singularity surface around in the global manifold. It is thennates, and the signature is (+ +), as it should be. The fact
possible, as in the two-dimensional case, to construct norfhat the cosmology is nonsingular follows since, in the coor-
singular spacetimes by considering a single coordinate patcHinate patch(3.9) considered here and fdr~2.48, the Eq.

Notice that for conformal invariance we should demand thaf3.7) has no real solutions since the left hand side is obvi-
ously negative while the right hand side is positive. The cos-

SQ2,2 mology is however somewhat complicated, it is periodic in
SQ(2,1) =26, (3.8 time, but nonhomogeneous and highly nonisotropic. In fact,
the “scale factors” for the two spatial directions are oscil-
leading tok=(39+5,/13)/23. lating with a phase difference of/2.
To gain a little more insight into this cosmology, we con-
A. Oscillating cosmology sider the region near the spatial “origin’k(y) =(0,0). The
, i scalar curvature reduces to
Consider first the case where&k=(39+513)/23
~2.48 .. - It isthen possible to construct a cosmology in 1 Tyt+C,c08 2t+3C,c0¢ 2t
the coordinate patch R(t,0,0) = , (3.19
k=2 [k2—(k—2)2%cog 2t]?
|b|<1, u=0, v<0 (3.9
using the parametrization where the coefficientscg,c,,c,) are given by
b=cos2, u=2x2, v=-2y2. (3.10 Co=K[—(k=1)"'—=13(k—1)+6(k—1)?],
The metric and dilaton are given by Cy=(k—2)q2(k—1)"1+4—30(k—1)
ds?=2(k—2)[ — dt?+ gy dx2+gyy dy?+2 Oxy dx dy] —4(k—1)2],
(3.11
= _9\4 _ -1
B(txy)=I (X2 +y?+1)cos tsin t + const, (3.12 Ca=—(k=2)7(k=1)"+2]. (3.19
X, y)=In const, (3.
Y VB(L,X,y) It follows that
|
—(k—1)+2-3(k—1)"1 —(k—1)"1-13k—-1)+6(k—1)2
R(t,0,0) e ( ) ( ) , ( ) A Al ) ~[-3.14%..., —2.298...]
k=2 k(k—2)
(3.17

066003-6
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as well as

1
B(t)=V0gy,(t,0,00= \/,B(t,0,0)( c012t+m) _

)~—2.7123 e (3.2)
(3.18

where the numerical values were obtained for (39

+54/13)/23. As in the two-dimensional case, we notice

therefore that the quantum corrections changed the sign of \/ (k—1)sir? t+cogt

the curvature since semiclassically-§ ) A(t)=|sint| - ,
[(k—1)+(k—1)"*—2]cost sirft+1

(.00 = 1 [1-2k k-2
(REOO=3 =51 %=1 "\t

That is,

- 0)kj°°4 3+ cod 2t 319 3.22
o K 2sir? 2t '
is always positivd6and sometimes positive infinity B(1)=|cost] \/ (k—1)cos' t+sir’ t
In the region nearX,y)=(0,0), one can further define [(k—1)+(k—1)"'=2]cot sit+1’

scale factors: (3.23

A(t) = \/gxx(tao10) = \/B(LO-O)

1
tanzt+m), both of which oscillate between 0 ank—1~1.216. . ..

(3.20  with a phase difference of/2.

Finally, let us return to the dilatoffor generic €,x,y)]. The string coupling is given by

x2+y2+1)coft sirtt| 2
g=e *2= (Cry 1) =[(x?*+y?+1)|cost sint|]]"Y? | coStsirft
VB(tX,Y)
+(1+x2)sin4t+(1+y2)cos“t+(k—1)*1cos’-tsin2t o (3.2
(k—1)(x2+y2+1) ' '
|
Thus the string coupling blows up &t=0, t==*7/2, b=cosh2, u=2x2 v=-2y? (3.26

t= =+, etc. It means that we should only trust the solution

in the intermediate regions whegg is not large.

Actually the patch(3.25 is not part of the global manifold

for SO(2,2/ SO2,1), so one has to go to the de Sitter coset

SO3,1)/S0O2,1) instead 10,11]. The general expressions for
In the previous subsection we obtained an oscillating costhe metric and dilaton Eqg3.1)—(3.4) are, however, un-

mology using the valu&=(39+513)/23<2.48 ... ,cor-  changed.

responding to conformal invariance. Most formulas were, Using the parametrizatio(8.26), the new metric and di-

however, presented keepitgarbitrary, and the oscillating |aton are

cosmologies in fact exist for arbitray>2. In this subsec-

tion we shall show that it is possible to construct nonsingular

three-dimensional nonoscillating cosmologies wHen1. ds?=2(2—k)(—dt?+gy, dX*+g,, dy?

Interestingly enough, the conditid8.8) of conformal invari-

ance gives rise to the possibilitk=(39—513)/23 T2 gy dx dy), (3.27

~0.912 ..., butin thefollowing we just keefk arbitrary but

less than 1. Possible problems with unitarity will not be dealt )
with here (x?>+y%+1)costtt sink?t
' d(t,x,y)=In

B. Nonoscillating cosmologies

+const,

Thus we tak&k<1 and consider first the patch JB(t,X,y)
b=1, u=0, v<0 (3.29 %28
and use the parametrization where now
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A-B
CoBaxy) [, y2+1
gXX(t’X'y)_(XZﬂ/—2+1)2 (x“+y +1)tanh2t+ﬁ , 1.
2r
B(taxvy) 2 2 X2+1 i
gyy(t,X,y)—()(zﬂ/—2+j-)2 (x +y +1)C0thzt+ 11—k’
0.8
IB(t!XIy) Xy 0.6
ng(t!XIy): - 2 2 2 L (329
(x*+y?+1)% 1=K
and the function3(t,x,y) is given by o)
-1
B (txy) - - - — ¢
(1+X2)tanh7't+(1+y2)cothzt+(1—k)_1 FIG. 5. The two scale factor8.34 and(3.35 as a function of
=1+ . time. Here shown fok= —1. For large negative one scale factor
(1-k)(x*+y?+1) is expanding and inflationary while the other scale factor is con-

(3.30 tracting and deflationary.

Notice the similarity with Eqs(3.11)—(3.14): trigonometric As for the oscillating cosmology in the previous subsec-
functions became hyperbolic functions ake 1 became 1  tion, let us define scale factors analogous to E8=20 and
—k. Since we now consider the case where1, it is then  (3.21. In the present case, one obtains
clear that Eqs(3.27)—(3.30 describes a cosmology with the (t)
correct signature { + +). Furthermore, it is easily seen
from Eq. (3.7) that the cosmology is nonsingular. The
|sinht]| \/
[(1-k)+

(1—k)sini t+cosif t
(1-k)~'+2]cosKt sinfPt+1’

change from trigonometric functions to hyperbolic functions _
obviously has dramatic consequences. The cosmology is

however still nonisotropic and nonhomogeneous, but it is no (3.34
longer oscillating. In fact, the time-dependence of the metric

actually disappears for— *, i.e., the universe becomes (1—k)cosi t+sint?t

static in these limits(however, the dilaton stays time- B(t)=cosht — Eya—
dependent More precisely, both “scale factors” start out [(1=k)+(1-k) “+2]costtt sintrt+1

with constant values dt= —o. Then one of them increases (3.39
monotonically towards a maximal value, while the other ON&see Fig. 5. It follows that
decreases monotonically to zero for-0_ . Fort>0, their

behavior is simply time-reversed. 1-k
As in the previous subsection, it is useful to consider in A(0)=0, B(0)=v1—k, A(x®)=B(*£=)=\/5—.
more detail the region near the spatial originy)=(0,0).

The scalar curvature then reduces to (3.3
o _ A careful analysis of the corresponding Hubble functions
1 co+c,cosht 2t+c,cosH 2t and their derivatives shows that forx <0, one scale factor
R(1,0,0)=~ 2k [k2— (2—k)2cosR 2t]2 ’ is contracting and deflationary while the other scale factor is
(3.31) expand_ing and inflationary. This is most easily seen from the
expansions
with the coefficients ¢,,¢,,c,4) are still given by Eq(3.16). K 1k
It follows that A(t)~ \/—( 1-2 —— %, t<<0, (3.37)
. 2—k 2—k
R(ioo,0,0)z%s(\/ﬁ—l)zwo.S:ﬁ..., 1—k 1—k
(3.3 B(t)~ \[ﬂ(l‘f-z 5k 62t>, t<<0,
(3.39
—-3(1-k) " 1-2—(1-k)
R(0,0,00= 5K -1, and still taking into account that<1.
(3.33 It is interesting that the scale facta(t) is very similar to

the scale factor of the deflationary two-dimensional cosmol-
where the numerical values were obtained using the fact thatgy of Sec. Il B, while the scale fact@&(t) is very similar to
k<1. Thus the scalar curvature is either positive or negativehe scale factor of the inflationary two-dimensional cosmol-
(depending on the precise value lof 1) for large|t|, but  ogy of Sec. IIC. In particular, the scale factB(t) has an
always becomes negative flit close to zero. element of exponential expansion as seen from(&&9. In
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that sense, the two-dimensional coset comprises all the main features of the three-dimensional coset.
The string coupling in this cadgeneric ,x,y)] is given by

P . -1/2
g=e *2= (C+y*+1)costft sinfrt =[(x?*+y?+1)cosht |sinht|]" Y| costt sint?t
VB(t.X,Y)
. (1+x2)sinH t+ (1+y?)cosH t+ (1—k) “‘cosKt sint?t] (2.39
(1—K)(x>+y2+1) '

|
which is finite everywhere except neiax 0. Asymptotically All cosmological spacetimes from these cosets string
(t— +) it goes to zero(see Fig. & Thus the solution Vvacua turn to be anisotropic. This seems to be a general and
should be trusted everywhere except nigad. unavoidable feature of string vacua cosmologies. Physically,

It is also possible to construct a nonsingular nonoscillatthis must be related to the masslessness of the matter sources

ing cosmology in the patch of these geometries. Notice that de Sitter spacetime in gen-

eral relativity is exactly isotropic and has a nonzero cosmo-

b=<-1, u=0, v=<0, (3.40 logical constant as matter source.
The coset string cosmologies studied in this paper corre-

using the parametrization spond to analogies of de Sitter spacetime in string vacua. In

general relativity, the global de Sitter manifold describes a

b=-cosh2, u=2x% v=-2y? (3.41)  contracting phaséfor t<0) and then an expanding universe

for t=0. Only the expanding patch describes the physical
and still takingk<<1 [also in this case one has to go to the despace. Similarly, in string cosmologies one should not con-
Sitter coset S(B,1)/SO(2,2); see Ref[10,11]]. However, the sider the physical space as the whole global manifold but
resulting cosmology is identical to the previous one, up to aPnly a part of it.(The situation is somehow analogous to the
interchange ok andy. Schwarzschild black hole in general relativity. The global
Kruskal manifold describes a black hole and its ‘mirror’ dis-
connected space; only half of the global manifold describes
the physical spacghe exterior plus the interior of the black

The cosmological geometries found in this paper are exadtol€l.) It is a generic feature of coset string cosmologies that
conformal field theories. That is, they describe string vacuathe inflationary expanding phase, when it appears it does so
Physically, these are spacetimes where(thasslessdilaton for t<0. ) ) i
and gravitons fields are present. We find that such manifolds !n Poth two and three dimensions, the coset cosmologies
provide nonsingular spacetimes with cosmological interpreconsidered in this paper are related to each other by combi-
tation. These are of two types: oscillating and nonoscillating'aons of simple translatiorts—t+ /2, analytic continua-
cosmologies. The nonoscillating metrics start as Minkowskio" t—it, and changes of the levéd This can be seen
spacetimes for early times, evolve through inflationary eX_dwectly_from the gxphcn expressions for the metric, dilaton,
pansion(with positive scalar curvature then pass through a and string cou_plmg, and foIIows_ more generally fro_m the
deflationary contraction ending as a Minkowski spacetimefaCt that the different cosmologies correspond_ to different

) coordinate patches of the same global manifold. It was
for late times. shown in Refs[8,10] that the transformations relating the
different patches are generalized T-duality transformations,
in the sense that different patches arise from different gauge
fixings in the gauged WZW construction. The dualities in
question are thus generalizations of the well-known dualities
relating vector and axial gaugings in the two-dimensional
case[9].

The similarities between the two and three dimensional
cases studied here suggest a general picture for the four di-
mensional cosmologies; anisotropy seems to be a generically
unavoidable feature and cosmological singularities are ge-
nerically avoided. For coset dimensions higher than four, it is
possible to construct nonsingular cosmologies with four di-
mensions inflating while the othefmternal onesdeflate.

IV. CONCLUSIONS
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APPENDIX A
In this Appendix we list the explicit expressions for the coefficients appearing in the scalar cur@Bire
Co(u,v;K)=(u?2+v?)[1—(k—1)+ (k—1)?]—2uv[ —5—(k— 1)+ (k—1)?]+ (v —u)[ - (k—1) "2+ 8+2(k—1)
—5(k—1)?2]—(k—1) " 3—2(k—1) 2—14k—1) 1-20—(k—1)+6(k—1)?, (A1)
ci(u,v;kK)=(w2-u?)[3—-2(k—1)+(k—1)?2]+(v+u)[—2(k—1) 2+ 10k—1)"1—8+6(k—1)—2(k—1)?], (A2)
co(u,v:k)=(v2+u?)[3—(k—1)—(k—1)?]—2uv[5+ (k—1)— (k—1)?]+ (v —u)[16(k—1) =30+ 10(k—1)
+4(k—1)2]+2(k—1)"3-36(k—1) *+60—22(k—1)—4(k—1)?, (A3)
c3(u,v;K)=(w2—u?)[1—(k—1)2]—(v+u)[—2(k—1)"2=2(k—1)"1+8—2(k—1)—2(k—1)?], (Ad)

ci(uv:k)=(v—u)[(k—1)"?—4(k—1)"*+6—4(k—1)+(k—1)?]—(k—1) 3+2(k—1) " ?+2(k—1)"*

—8+7(k—1)—2(k—1)2, (A5)
as well as
do(U,v;K)=(v—u)k—2k [1+(k—1)"1],
dy(u,v;k)=2 (v+u), (AB)
do(u,v;k)=(v—u)(2—k)—2(2—k) [1—(k—1)"1].
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