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We derive the full Kaluza-Klein spectrum of type IIB supergravity compactified on AdS53T11 with T11

5SU(2)3SU(2)/U(1). From the knowledge of the spectrum and general multiplet shortening conditions, we
make a refined test of the AdS-CFT correspondence, by comparison between various shortenings ofSU(2,2u1)
supermultiplets on AdS5 and different families of boundary operators with protected dimensions. Additional
towers of long multiplets with rational dimensions, that are not protected by supersymmetry, are also predicted
from the supergravity analysis to occur in the SCFT at leading order inN andgsN.
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I. INTRODUCTION

One of the most fascinating properties of the Ad
conformal field theory~CFT! correspondence@1,2,3# is the
deep relation between supergravity and gauge theory dyn
ics, at least in the regime where the supergravity approxi
tion ~small space time curvature! is a reliable description of a
more fundamental theory such as string orM theory @4,5#.
This occurs in the regime wheregsN ~gs being the string
coupling! and/orN are large.

Although many tests have been performed in the cas
maximal supersymmetry, relating for instance, the dynam
of N coincidentD3 branes~for largeN! and type IIB super-
gravity compactified on AdS53S5 @4#, much less is known
on the dual theories for a lower number of supersymmet
@6#, where the candidate models exhibit a far richer struct
since they contain a variety of matter multiplets with ad
tional symmetries other than the originalR symmetry dic-
tated by the supersymmetry algebra@7#.

A particularly interesting class of models is obtained
assuming that S5 is replaced by a five-dimensional cos
manifold X55G/H with some Killing spinors. As shown in
@8# there is a unique such manifoldX55Tpq5SU(2)
3SU(2)/U(1) with p5q51, wherep andq define the em-
bedding of theH5U(1) group into the twoSU(2) groups.
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The supergravity theory on AdS53T11 is anN52 supergrav-
ity theory with a matter gauge groupG5SU(2)3SU(2).
The corresponding four dimensional conformal field theo
must then be@9# an N51 Yang Mills theory with a flavor
symmetryG such that an accurate test of the AdS-CFT c
respondence could be made using the knowledge of the
tire spectrum of the supergravity side of this theory.

The conformal field theory description of type IIB o
AdS53T11 was constructed by Klebanov and Witten@9# and
it was the first example of a conformal theory describi
branes at conifold singularities. The same theory was la
reobtained by Morrison and Plesser@10# by adopting a gen-
eral method of studying branes at singularities@11#. In fact,
under certain conditions, a conical singularity in a Cala
Yau space of complex dimensionn can be described by a
cone over an Einstein manifoldX2n21 . In the case ofX5

5T11 such construction gives rise to a conformal field theo
with ‘‘singleton’’ @12# degrees of freedomA and B each a
doublet of the factor groupsSU(2)3SU(2) and with con-
formal anomalous dimensionDA,B53/4. Moreover the
gauge groupG is SU(N)3SU(N) and the two singleton
~chiral! multiplets are respectively in the (N,N̄) and (N̄,N)
of G.

A set of chiral operators of this theory which are the an
logue of the Kaluza-Klein~KK ! excitations of theN54
Yang-Mills theory with SU(N) gauge group is given by
Tr(AB)k with R-chargek and in the (k/2,k/2) representation
of SU(2)3SU(2). The existence of this~infinite in the
large N, gsN limit ! family of chiral operators~massiveN
52 hypermultiplets in the supergravity language! has been
©2000 The American Physical Society01-1
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confirmed by Gubser@13# by a study of the eigenvalues o
the scalar Laplacian when performing harmonic analysis
type IIB supergravity on AdS53T11.

Moreover, the matching of gravitational andR-symmetry
anomalies in the two theories has been also proved in
@13#.

This paper analyzes the complete spectrum of the
states on AdS53T11 and infers its multiplet structure as don
in previous investigations for maximal supersymmetry.
that case the KK spectrum, analyzed in terms of AdS rep
sentations in@14,15#, was interpreted in terms ofN51 con-
formal superfields in@3# and in terms of theN54 ones in
@16# and @17#. The multiplet shortening conditions@18# can
be inferred from the knowledge of all the mass matrices
the KK spectrum@19,20#. In the case of theSU(2,2u1) su-
peralgebra, the shortening is proven to correspond to th
types of shortening of the appropriate representations, as
cussed in@21# and @22#: massless AdS multiplets, sho
AdS multiplets, and semilong AdS multiplets. These mult
lets, in the conformal field theory language, correspond
respectively conserved, chiral, and semiconserved su
fields which have all protected dimensions and which the
fore correspond to very particular shortening conditions
the KK context.

We show a full and detailed correspondence between
the CFT operators and the KK modes for the conformal
erators of preserved scaling dimension. We also show
there exist other operators related to long multiplets but h
ing nonrenormalized conformal dimension in the supergr
ity limit. Interestingly enough, these operators seem to be
lowest dimensional ones for a given structure appearing
the supersymmetric Born-Infeld action of theD3-brane on
AdS53T11 @23,24,25,26#.

The paper is organized as follows. In Sec. II the harmo
analysis type of IIB supergravity on AdS53T11 is performed
and the complete mass spectrum of the theory is exhibited
Sec. III properties ofN51 four-dimensional supersymme
ric field theories are recalled, in particular the superfield
alization of different short and long superconformal mu
plets of theSU(2,2u1) superalgebra. In Sec. IV a comparis
of superfields of protected dimensions and states in the
spectrum is made using the formulas giving the ma
conformal dimension relations as predicted by the AdS/C
correspondence.

II. HARMONIC ANALYSIS ON T 11

In this section we give a summary of the derivation of t
full mass spectrum of type IIB supergravity compactified
AdS53T11 obtained by KK harmonic expansion on T11.
Since our main goal here is the comparison of the mass s
trum with the composite operators of the CFT at the bou
ary of AdS5, we just sketch the general procedure and po
pone a detailed derivation of our results to a forthcom
publication@27#. Partial results were obtained in@13,28# us-
ing different methods.
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A. Harmonic expansion

Let us start with a short discussion of the T11 geometry.1

We consider two copies ofSU(2) with generatorsTA ,T̂A ,
(A51 . . . 3): @TA ,TB#5eAB

CTC .
We decompose the Lie algebraG of SU(2)3SU(2) with

respect to the diagonal generator

TH[T31T̂3 , ~2.1!

asG5H1K, where the subalgebraH is made of the single
generatorTH and the coset algebraK contains the generator
Ti ( i 51,2), T̂s (s51,2), and

T55T32T̂3 . ~2.2!

In terms of this new basis the commutation relations are

@Ti ,Tj #5
1

2
e i j ~TH1T5!, @ T̂s ,T̂t#5

1

2
est~TH2T5!,

@T5 ,Ti #5@TH ,Ti #5e i
jTj , @T5T̂s#5@TH ,T̂s#5es

tT̂t ,

@Ti ,T̂s#5@T5 ,TH#50. ~2.3!

We introduce the coset representativeL of SU(2)
3SU(2)/UH(1), UH(1) being the diagonal subgroup ofG
generated byTH ,

L~yi ,ys,y5!5exp~Tiy
i !exp~ T̂sy

s!exp~T5y5!, ~2.4!

and constructs the left invariant form on the coset

L21dL5v iTi1vsT̂s1v5T51vHTH , ~2.5!

where the one-forms$v i ,vs,v5,vH% satisfy the Maurer-
Cartan equations~MCE’s!

dvL1
1

2
CSP

L vSvP50, L,P,S[$ i ,s,5,H%. ~2.6!

The one-formsvK[$v i ,vs,v5% are K valued and can be
identified with the five vielbeins ofG/H5T11, while vH is
H valued and is called theH connection of the coset man
fold. It is convenient to rescale thevK and define as viel-
beinsVa[(Vi ,Vs,V5):

Vi5av i , Vs5bvs, V55cv5, ~2.7!

where a,b,c are real rescaling factors which will be dete
mined by requiring that T11 is an Einstein space@29,30#.

Once we have the vielbeins, we may construct the R
mann connection one-formBab[2Bba (a,b5 i ,s,5), impos-
ing the torsion-free condition

dVa2BabVb50. ~2.8!

By comparison with the MCE’s~2.6!, one finds

1For details about the notations and conventions see the Ap
dix.
1-2
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Bi j 52e i j FvH1S c2
a2

4cDV5G , B5i5
a2

4c
e i j Vj ,

Bst52estFvH2S c2
b2

4cDV5G , B5s52
b2

4c
estVt ,

~2.9!

Bis50.

Consequently, the curvature two-form, defined as

Rab5dBab2B c
a Bcb, ~2.10!

turns out to be

Ri j 5S a22
3

16

a4

c2DViVj1
a2b2

16c2 e i j estVsVt,

Rst5S b22
3

16

b4

c2DVsVt1
a2b2

16c2 este i j ViVj ,

Ris5
a2b2

16c2 e i j estVjVt , ~2.11!

Ri55
a4

16c2 ViV5,

Rs55
a4

16c2 VsV5.

The Ricci tensors are now easily computed. We find

R k
i 5S 1

2
a22

a4

16c2D dk
i , R t

s 5S 1

2
b22

b4

16c2D d t
s ,

R 5
5 5

a4

8c2 . ~2.12!

In order to have an Einstein space with Ricci tensor

R b
a 52e2db

a , ~2.13!

we must have

a25b256e2, and c25
9

4
e2. ~2.14!

An essential tool for the computation of the Laplac
Beltrami invariant operators on T11 is the covariant deriva-
tive D[(Di ,Ds ,D5). Starting from the definition

D5d1BabTab[d1B, ~2.15!

where Tab are theSO(5) generators written as matrice
(Tab)

cd52dab
cd , settingB5vH1M , one can write

D5DH1M , ~2.16!

where theH-covariant derivative is defined by

DH5d1vH ~2.17!
06600
-

and the matrix of one-formsM can be computed from Eq
~2.9!

Mi j 52S c2
a2

4cDV5e i j , M5i5
a2

4c
e i j Vj ,

Mst5S c2
a2

4cDV5est, M5s52
a2

4c
estVt ,

Mis50. ~2.18!

The usefulness of the decomposition~2.16!, ~2.17!, ~2.18!
lies in the fact that the action ofDH on the basic harmonic
represented by the T11 coset representativeL21 can be com-
puted algebraically. Indeed one has quite generally@30,31#

DH52r ~a!TaVa[2a~TiV
i1T̂sV

s!2cT5V5,
~2.19!

wherer ( i )5r (s)5a, r (5)5c are the rescalings andTa are
the coset generators of T11.

In summary, the covariant derivative on the basic h
monic L21 can be written as follows:

DL215„2r ~a!TaVa1MabTab…L
21, ~2.20!

or, in components, using Eq.~2.18!,

DiL
215S 2aTi2

a2

2c
e i

jT5 j DL21,

DsL
215S 2aTs1

a2

2c
es

tT5tDL21, ~2.21!

D5L215X2cT522S c2
a2

4cD ~T122T34!CL21.

In a KK compactification, after the linearization of th
equations of motion of the field fluctuations, one is left wi
a differential equation on the ten-dimensional fiel
f@l1 ,l2#

@L# (x,y)

~hx
@L#1�y

@l1 ,l2#
!f@l1 ,l2#

@L# ~x,y!50. ~2.22!

Here the fieldf@l1 ,l2#
@L# (x,y) transforms irreducibly in the

representations@L#[@E0 ,s1 ,s2# of SU(2,2)'O(4,2) and
@l1 ,l2# of SO(5) and it depends on the coordinatesx of
AdS5 andy of T11. hx is the kinetic operator for a field o
quantum number@L# in five dimensional AdS space and�y
is the kinetic operator for a field of spin@l1 ,l2# in the
internal space T11. ~In the following we omit the index@L#
on the fields.!

Expandingf@l1 ,l2#(x,y) in the harmonics of T11 trans-

forming irreducibly under the isometry group of T11, one is
reduced to the problem of computing the action of�y on the
harmonics, whose eigenvalues define the AdS mass.
�y is a Laplace-Beltrami operator on T11 and it is con-

structed, for every representation@l1 ,l2#, in terms of the
covariant derivative onG/H. Since the covariant derivative
acts algebraically on the basic vector or spinor harmonicL21

~in terms of which any harmonic can be constructed!, the
1-3
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CERESOLE, DALL’AGATA, D’AURIA, AND FERRARA PHYSICAL REVIEW D 61 066001
problem of the mass spectrum computation is reduced,
Eqs.~2.20!, ~2.21! to a purely algebraic problem.

The explicit evaluation of the linearized equation~2.22!
for the five-dimensional case has been given in@32# and we
will adopt the same notations therein to denote the fi
dimensional space-time fields appearing in the harmonic
pansion. Note that Eq.~2.22! has been evaluated in@32#
around the background solution presented in@8#:

Fabcde5eeabcde, R b
a 52e2db

a ,

Fmnpqr52eemnpqr, R n
m 522e2dn

m , ~2.23!

B5AMN50, cM5x50,

where the fieldFabcde and Fmnpqr is the projection on T11

and AdS5 of the ten-dimensional five-formF defined asF
5dA4 , A4 being the real self-dual four-form of type IIIB
supergravity. The other fields of type IIB supergravity a
the metricGMN(x,y) with internal and space-time compo
nentsgab(y),gmn(x) whose Ricci tensors in this backgroun
are given in Eq.~2.23! and the complex 0-form and 2-formB
andAMN @the fermionic fieldscM andl are obviously zero
in the background~2.23!#.

The harmonics on the coset space T11 are labeled by two
kinds of indices, the first labelling the particular represen
tion of the isometry groupSU(2)3SU(2)3UR(1) and the
other referring to the representation of the subgroupH
[UH(1). Theharmonic is thus denoted byY(q)

( j ,l ,r )(y) where
j , l are the spin quantum numbers of the twoSU(2) in a
given representation,q is theUH(1) charge andr denotes the
UR(1) quantum number associated to the generatorT5 or-
thogonal toTH . We can identifyr as theR-symmetry quan-
tum number@13,28#.

Now we observe thatUH(1) is necessarily a subgroup o
SO(5), thetangent group of T11. The embedding formula o
UH(1) in a given representation ofSO(5) labeled by indices
L, S is given by@30,31#

~TH! S
L 5CH

ab~Tab! S
L , ~2.24!

where the structure constantsCH
ab are derived from the alge

bra ~2.3! andTab are theSO(5) generators.
In the vector representation ofSO(5) we find

~TH!ab5CHab5S e i j

est

0
D , ~2.25!

while for the spinor representation we get

~TH!5CH
ab~Tab!52

1

4
CH

ab~gab!52
1

2
~g121g34!

5 i S 0

0

1

21

D , ~2.26!
06600
ia
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whereg are theSO(5) gamma matrices.
The above results imply that anSO(5) field

f@l1 ,l2#(x,y) can be split into the direct sum ofUH(1) one-

dimensional fragments labeled by theUH(1) chargeq. From
Eqs. ~2.25! and ~2.26! it follows that the five-dimensiona
and four-dimensionalSO(5) representations break und
UH(1) as

5→1% 21% 1% 21% 0 @l1 ,l2#5@1,0#,
~2.27!

4→1% 21% 0% 0 @l1 ,l2#5@1/2,1/2#.

From Eq. ~2.27! we easily find the analogous breakin
law for antisymmetric tensors (@l1 ,l2#5@1,1#), symmetric
traceless tensors (@l1 ,l2#5@2,0#) and spin tensors
(@l1 ,l2#5@3/2,1/2#) by taking suitable combinations:

10→61% 61% 62% 0% 0% 0% 0

@l1 ,l2#5@1,1#,

16→62% 62% 61% 61% 61% 61% 0% 0% 0% 0

@l1 ,l2#5F3

2
,
1

2G , ~2.28!

14→62% 62% 62% 61% 61% 0% 0% 0% 0

@l1 ,l2#5@2,0#.

Actually it is often more convenient to write down th
harmonic expansion in terms of theSO(5) harmonics
Y@l1 ,l2#

( j ,l ) whose fragments are theY(q)
( j ,l ,r ) introduced before.

The generic fieldf@l1 ,l2#(x,y) can be expanded in thes
harmonics as follows:

fab...~x,y!5(
~n!

(
~m!

f~n!~m!~x!Yab...
~n!~m!~y!, ~2.29!

wherea,b, . . . areSO(5) tensor~or spinor! indices of the
representation@l1 ,l2#, (n) is a shorthand notation fo
( j ,l ,r ) and m labels the representation space of (j ,l ,r ). In
our casem coincides with the labelling of theUH(1) frag-
ments. It is well known@30,31# that the irrepses ofSU(2)
3SU(2) appearing in the expansion~2.29! are only those
which contain, when reduced with respect toUH(1), a
chargeq also appearing in the decomposition of@l1 ,l2#
underUH(1).

It is easy to see which are the constraints onj ,l ,r select-
ing the allowed representations~n! appearing in Eq.~2.29!.
We write a generic representation ofSU(2)3SU(2) in the
Young tableaux formalism:
1-4
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~2.30!

A particular component of Eq.~2.30! can be written as

~2.31!

and we have

2 j 5m11m2 , 2l 5n11n2 ,
~2.32!

2 j 35m22m1 , 2l 35n22n1 .

Furthermore, recalling the definitions~2.1!, ~2.2!, we get

THY~q!
~ j ,l ,r !5 iqY~q!

~ j ,l ,r ![ i ~ j 31 l 3!Y~q!
~ j ,l ,r ! ,

~2.33!

T5Y~q!
~ j ,l ,r !5 irY ~q!

~ j ,l ,r ![ i ~ j 32 l 3!Y~q!
~ j ,l ,r ! .

Hence

2 j 35q1r[m22m1 ,
~2.34!

2l 35q2r[n22n1 .

Now we observe that as long asm22m1 and n22n1 are
even or odd, the same is true form11m2 and n11n2 .
Therefore the parity of 2j and 2l is the same as that of 2j 3
and 2l 3 and since 2j 312l 352q can be even or odd, th
same is true for 2j 12l . It follows that j andl must either be
both integers or both half-integers. This means that thq
value of anyUH(1) fragment of theSO(5) fields is always
contained in anySO(5) harmonic in the irrep (j ,l ) provided
that j andl are both integers or half-integers. Sinceq1r and
q2r are related to the third component of the ‘‘angular m
mentum’’ of the twoSU(2) factors, one also has the cond
tions uq1r u<2 j and uq2r u<2l . The two above conditions
select the harmonics appearing in the expansion.

In order to be specific it is now convenient to list all th
five-dimensional space-time fields appearing in the harmo
expansion together with the corresponding ten-dimensio
fields, with AdS5 indices and/or internal indices, followin
the notations of@32#. We group them according to the appr
priateSO(5) bosonic~Y! or fermionic ~J! harmonic.

Note that the ten-dimensional fieldshm
m(x,y),

Amnrs(x,y), Amnra(x,y) are not part of the above list since
as shown in@32#, they appear algebraically in the linearize
equations of motion and thus can be eliminated in terms
the other propagating fields.
06600
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To obtain the mass spectrum of the above fields we m
apply the Laplace-Beltrami operator to the harmonic exp
sion. We list such operators for theSO(5) harmonics2

Y@l1 ,l2#
( j ,l ) :

�yY@0,0#[hY, ~2.35a!

�yY@1,0#[2DaD[aYb] , ~2.35b!

�yY@1,1#[.dYabV
aVb, ~2.35c!

�yY@2,0#[3DcD(cYab) , ~2.35d!

�yY@1/2,1/2#[D” J, ~2.35e!

�yY@3/2,1/2#[gabcDbJc . ~2.35f!

The explicit computation of the mass matrices deriv
from the above Laplace-Beltrami differential operators w
not be worked out here and we refer the interested reade
@27#. We can give however as an example the computa
involving scalar harmonicsY@0,0#

( j ,l ) 5Yq50
j ,l ,r which is straight-

forward. In this case the five-dimensional invariant opera
is simply the covariant Laplacian:

h5DaDa[DiDi1DsDs1D5D5 . ~2.36!

From Eq.~2.25! and the fact thatTabL
21[TabYq50

j ,l ,r [0,
we obtain the following result:

hYq50
j ,l ,r 5„2a2~TiTi1TsTs!2c2T5T5…Yq50

j ,l ,r . ~2.37!

Let us now evaluate Eq.~2.37!. We set

Ti52
i

2
s i , Ts52

i

2
ŝs ,

~2.38!

T55T32T̂35
i

2
~ ŝ32s3!,

wheres and ŝ are ordinary Pauli matrices. Using the rel
tions

2Notice that the operator on the two-formY5YabV
aVb is of the

first order, like the fermionic ones. Indeed it is the square root of
usual second order operatorDaD [aYb] :

DaD @aYbc]V
bVc5

1

3* d* d~YabV
aVb!,

where

* dY5
1

2
eab

cdeDcYdeV
aVb.

Hence1
2 eab

cdeDcYde56 iA3ADcD @cYab] .
1-5
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TABLE I. Fields appearing in the harmonic expansion.

10D hmn ha
a Aabcd B Amn

5D Hmn p b B amn Y

10D ham Amabc Ama

5D Bm fm am Ya

10D Amnab Aab

5D bmn
6 a Y@ab#

10D hab

5D f Y(ab)

10D l c (a) cm

5D l c (L) cm J

10D ca

5D c (T) Ja

TABLE II. Graviton multiplet.E0511AH014.

(s1 ,s2) E0
(s) R symm. Field Mass

L . ~1,1! E011 r H mn H0

L . ~1,1/2! E011/2 r 21 cm
L 221AH014

L . ~1/2,1! E011/2 r 11 cm
R 221AH014

. ~1/2,1! E013/2 r 21 cm
R 222AH014

~1,1/2! E013/2 r 11 cm
L 222AH014

L . ~1/2,1/2! E0 r fm H01422AH014
~1/2,1/2! E011 r 12 am H013

. ~1/2,1/2! E011 r 22 am H013
~1/2,1/2! E012 r Bm H01412AH014

~1,0! E011 r bmn
1 AH014

. ~0,1! E011 r bmn
2 2AH014

~1/2,0! E011/2 r 11 lL 1/22AH014
. ~0,1/2! E011/2 r 21 lR 1/22AH014

~1/2,0! E013/2 r 21 lL 1/21AH014
~0,1/2! E013/2 r 11 lR 1/21AH014
~0,0! E011 r B H0

TABLE III. Gravitino multiplet I. E05AH0
21421/2.

(s1 ,s2) E0
(s) R symm. Field Mass

. ~1,1/2! E011 r cm
L

231AH0
214

. ~1/2,1/2! E011/2 r 11 fm H0
21724AH0

214
. ~1/2,1/2! E013/2 r 21 am H0

21422AH0
214

d . ~1,0! E011/2 r 21 amn 22AH0
214

~1,0! E013/2 r 11 bmn
1 12AH0

214
d . ~1/2,0! E0 r cL

(T) 25/21AH0
214

d . ~1/2,0! E011 r 22 cL
(T) 23/21AH0

214
. ~0,1/2! E011 r lR 3/22AH0

214
~1/2,0! E011 r 12 cL

(T) 23/21AH0
214

~1/2,0! E012 r cL
(T) 21/21AH0

214
d . ~0,0! E011/2 r 21 a H0

21424AH0
214

~0,0! E013/2 r 11 a H0
21122AH0

214
06600
TABLE IV. Gravitino multiplet II. E055/21AH0
114.

(s1 ,s2) E0
(s) R symm. Field Mass

~1,1/2! E011 r cm
L

232AH0
114

~1/2,1/2! E011/2 r 11 am H0
11412AH0

114
~1/2,1/2! E013/2 r 21 Bm H0

11714AH0
114

~1,0! E011/2 r 21 bmn
1 11AH0

114
~1,0! E013/2 r 11 amn 21AH0

114
~1/2,0! E0 r cL

(T) 21/22AH0
114

~1/2,0! E011 r 22 cL
(T) 23/22AH0

114
~0,1/2! E011 r lR 3/21AH0

114
~1/2,0! E011 r 12 cL

(T) 23/22AH0
114

~1/2,0! E012 r cL
(T) 25/22AH0

114
~0,0! E011/2 r 21 a H0

11112AH0
114

~0,0! E013/2 r 11 a H0
11414AH0

114

TABLE V. Gravitino multiplet III. E0521/21AH0
114.

(s1 ,s2) E0
(s) R symm. Field Mass

. ~1/2,1! E011 r cm
R

231AH0
114

. ~1/2,1/2! E011/2 r 21 fm H0
11724AH0

114
~1/2,1/2! E013/2 r 11 am H0

11422AH0
114

. ~0,1! E011/2 r 11 amn 22AH0
114

. ~0,1! E013/2 r 21 bmn
2 12AH0

114
. ~0,1/2! E0 r cR

(T) 25/21AH0
114

. ~0,1/2! E011 r 12 cR
(T) 23/21AH0

114
~1/2,0! E011 r lL 3/22AH0

114
~0,1/2! E011 r 22 cR

(T) 23/21AH0
114

~0,1/2! E012 r cR
(T) 21/21AH0

114
~0,0! E011/2 r 11 a H0

11424AH0
114

~0,0! E013/2 r 21 a H0
11122AH0

114

TABLE VI. Gravitino multiplet IV. E055/21AH0
214.

(s1 ,s2) E0
(s) R symm. Field Mass

. ~1/2,1! E011 r cm
R

232AH0
214

. ~1/2,1/2! E011/2 r 21 am H0
21412AH0

214
~1/2,1/2! E013/2 r 11 Bm H0

21714AH0
214

. ~0,1! E011/2 r 11 bmn
2 11AH0

214
. ~0,1! E013/2 r 21 amn 21AH0

214
. ~0,1/2! E0 r cR

(T) 21/22AH0
214

. ~0,1/2! E011 r 12 cR
(T) 23/22AH0

214
~1/2,0! E011 r lL 3/21AH0

214
~0,1/2! E011 r 22 cR

(T) 23/22AH0
214

~0,1/2! E012 r cR
(T) 25/22AH0

214
~0,0! E011/2 r 11 a H0

21112AH0
214

~0,0! E013/2 r 21 a H0
21414AH0

214
1-6
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~2.39!

~2.40!

~the same is true forŝ! and observing that on a Young tableaux thes’s act like a derivative~Leibnitz rule!, we find on the first
tableaux of Eq.~2.31!

~2.41!
first

the

nal

ei-
An analogous result holds when acting withŝ1ŝ11ŝ2ŝ2 on
the second tableaux of Eq.~2.31!, with j↔ l .

Furthermore, the eigenvalue of (ŝ32s3)2 on Eq. ~2.31!
is

~m22m11n22n1!254~ j 31 l 3!2. ~2.42!

For a scalar,q50 and so, from Eq.~2.34!, we have

j 352 l 35r /2. ~2.43!

Therefore, we find

hY~0!
~ j ,l ,r !5Fa2 j ~ j 11!1b2l ~ l 11!

1~4c22a22b2!
r 2

4 GY~0!
~ j ,l ,r ! . ~2.44!

Substituting the values ofa, b, andc given in Eq.~2.14!, we
obtain

hY~0!
~ j ,l ,r !5H0~ j ,l ,r !Y~0!

~ j ,l ,r ! , ~2.45!

where

TABLE VII. Vector multiplet I. E05AH01422.

(s1 ,s2) E0
(s) R symm. Field Mass

L . ~1/2,1/2! E011 r fm H011226AH014
L d . ~1/2,0! E011/2 r 21 cL

(L) 7/22AH014
L . ~0,1/2! E011/2 r 11 cR

(L) 7/22AH014
. ~0,1/2! E013/2 r 21 cR

(L) 5/22AH014
~1/2,0! E013/2 r 11 cL

(L) 5/22AH014
L d . ~0,0! E0 r b H011628AH014

d . ~0,0! E011 r 22 f H01926AH014
~0,0! E011 r 12 f H01926AH014
~0,0! E012 r f H01424AH014
06600
H0~ j ,l ,r ![6S j ~ j 11!1 l ~ l 11!2
r 2

8 D ~2.46!

is the eigenvalue of the Laplacian. The same result was
given in @13# using differential methods.

When the harmonic is not scalar,qÞ0, the computation
of the Laplace-Beltrami operators is more involved since
covariant derivative~2.21! is valued in theSO(5) Lie alge-
bra in the given representation@l1 ,l2#.

B. Spectrum and multiplet structure

We begin by the spectrum deriving from thescalar har-
monic that appears in the expansion of the ten-dimensio
fieldshmn(x,y), B(x,y), ha

a(x,y), Aabcd(x,y) andAmn . The
masses of the corresponding five-dimensional fields~see
Table I! are thus given in terms of the scalar harmonic
genvalueH0( j ,l ,r ) given in Eq.~2.46!. They are

m2~Hmn!5H0 , ~2.47!

m2~B!5H0 , ~2.48!

m2~p,b!5H011668AH014, ~2.49!

m2~amn!581H064AH014. ~2.50!

TABLE VIII. Vector multiplet II. E05AH01414.

(s1 ,s2) E0
(s) R symm. Field Mass

~1/2,1/2! E011 r Bm H011216AH014
~1/2,0! E011/2 r 21 cL

(L) 5/21AH014
~0,1/2! E011/2 r 11 cR

(L) 5/21AH014
~0,1/2! E013/2 r 21 cR

(L) 7/21AH014
~1/2,0! E013/2 r 11 cL

(L) 7/21AH014
~0,0! E0 r f H01414AH014
~0,0! E011 r 22 f H01916AH014
~0,0! E011 r 12 f H01916AH014
~0,0! E012 r p H011618AH014
1-7
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Note that while the Laplacian acts diagonally on the Ad5
fieldsHmn(x) andB(x), the eigenvalues forp(x) andb(x),
which appear entangled in the linearized equations of mo
@32,33#, have been obtained after diagonalization of a two
two matrix. With an abuse of notation, in Tables II–X w
will call p, b the linear combinations given by the plus
minus signs in Eq.~2.49!.

For thevector harmonicwe have found four eigenvalue

l@1,0#5$31H0~ j ,l ,r 62!,H01462AH014%

and the mass spectrum of the sixteen vectors is thus

m2~am!5 H 31H0~ j ,l ,r 62!,

H01462AH014,
~2.51!

m2~Bm ,wm!5H H0~ j ,l ,r 62!1764AH014,

H011266AH014,

H01462AH014.
~2.52!

In fact, as the Laplace-Beltrami operator acts diagonally
the complex vector fieldam(x) we get for it eight mass val
ues. Furthermore, the vectorsBm(x), wm(x) get mixed in the
linearized equations of motion, and upon diagonalization
find two extra masses for each eigenvalue. Here also we
the same names for the linear combinations with plus
minus sign respectively in the mass formulas~2.52!.

TABLE IX. Vector Multiplet III. E05AH0
111411.

(s1 ,s2) E0
(s) R symm. Field Mass

~1/2,1/2! E011 r am H0
1113

~1/2,0! E011/2 r 21 cL
(T) 11/22AH0

1114
~0,1/2! E011/2 r 11 cR

(T) 21/21AH0
1114

~0,1/2! E03/2 r 21 cR
(T) 1/21AH0

1114
d ~1/2,0! E013/2 r 11 cL

(T) 21/22AH0
1114

~0,0! E0 r a H0
111122AH0

1114
~0,0! E011 r 22 f H0

11

d ~0,0! E011 r 12 f H0
11

d ~0,0! E012 r a H0
111112AH0

1114

TABLE X. Vector Multiplet IV. E05AH0
221411.

(s1 ,s2) E0
(s) R symm. Field Mass

. ~1/2,1/2! E011 r am H0
2213

d . ~1/2,0! E011/2 r 21 cL
(T) 21/21AH0

2214
. ~0,1/2! E011/2 r 11 cR

(T) 11/22AH0
2214

. ~0,1/2! E013/2 r 21 cR
(T) 21/22AH0

2214
~1/2,0! E013/2 r 11 cL

(T) 1/21AH0
2214

d . ~0,0! E0 r a H0
221122AH0

2214
d . ~0,0! E011 r 22 B H0

22

~0,0! E011 r 12 f H0
22

~0,0! E012 r a H0
221112AH0

2214
06600
n
y

n

e
se
r

For theantisymmetric tensor harmonicswe get six eigen-
values from the Laplace Beltrami operator* d

l@1,1#5$ i „16AH0~ j ,l ,r 62!14…,6 iAH014%

and the masses

m2~bmn!5H H014,
H014,

51H0~ j ,l ,r 62!62AH0~ j ,l ,r 62!14,
~2.53!

m2~a!5H H01464AH014,

H0~ j ,l ,r 62!1162AH0~ j ,l ,r 62!14,
~2.54!

The spinor harmonicseigenvalues ofD” are synthetically

l@1/2,1/2#5H 6
1

2
6AH0~r 61!14J .

The masses for the spinors and gravitinos are given
terms ofD” by a numerical shift

gravitino: m~cm!5D” 2
5

2
,

dilatino: m~l!5D” 11, ~2.55!

longitudinal spinors: m~c~L !!5D” 13.

We have not yet calculated either the eigenvalues ofD” cor-
responding to the vector-spinor harmonicJa which produce
AdS5 spinors c (T), or the eigenvalues of the symmetr
traceless harmonicY(ab)

(v) . However, we knowa priori how
many states we obtain in these two cases, and by a coun
argument we can circumvent the problem of the expl
computation of the eigenvalues of their mass matrices.
the vector spinors we have in principle a matrix of rank 2
that becomes 16316 due to the irreducibility condition, and
further gets to 12312, once the transversality conditio
DaJa50 is imposed. In this way we are left with 12 non
trivial ~nonlongitudinal! eigenvalues and thus we expe
12 c (T) spinors. In an analogous way, the traceless symm
ric tensorY(ab)

(n) gives a 14314 mass matrix out of which five
eigenvalues are longitudinal leaving 9 nontrivial eigenvalu

If we match the bosonic and fermionic degrees of fre
dom including the 12112 ~right! left-handed spinorsc (T)

and the 9 real fieldsf of the traceless symmetric tensor w
find 128 bosonic degrees of freedom and 128 fermionic on
Therefore, once we have correctly and unambiguously
signed all the fields except thec (T) andf to supermultiplets
of SU(2,2u1), the remaining degrees of freedom ofc (T) and
f are uniquely assigned to the supermultiplets for th
completion.

In Tables II–X we have arranged our results inSU(2,2u1)
supermultiplets by an exhaustion principle, starting from
highest spin of the supermultiplet. Each state of such mu
plets is labeled by theSU(2,2) quantum numbers (E0 ,s1 ,s2)
1-8
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other than the internal symmetry attributes~j,l,r !. As ex-
plained in Sec. III,E0 , the AdS energy, is identified with th
conformal dimensionD. Taking into account theE0 value of
each state and itsR symmetry, we are able to fit unambigu
ously every mass at the proper place. For this purpose
essential to use the relations between the conformal wei
D and the masses given by

spin 2: D521A41m~2!
2 ,

spin 3/2: D521um~3/2!13/2u,

spin 1: D521A11m~1!
2 ,

~2.56!
two-form: D521um~2 f !u,

spin 1/2: D6526um~1/2!u,

spin 0: D6526A41m~0!
2

~where D is equal to theE0 value of the state!. The sign
ambiguity in the spin~0, 1/2! dimensions is present becau
the unitarity boundE0>11s allows the possibilityE0,2
for such states. The spin 0 case and its implications w
analyzed in@33# and noticed also in@22#. There is no such
ambiguity in all the other cases.

In the theory at hand, the chiral primary Tr(AB) has the
scalars withE053/2, E01155/2 coming from theD6 di-
mensions of the samek51 mass value. The fermionic par
ner is massless so there are no fermions withE0,2.

We have found nine families of supermultiplets: o
graviton multiplet, four gravitino multiplets, and four vecto
multiplets which are reported in Tables II–X.

These are organized as follows.
In the first column we give the (s1 ,s2) spin quantum

numbers of the state.
In the second column we give theE0 value of the state,

where, according to the standard nomenclature, the valu
E0 is referred to as theE0 of the multiplet and belongs to
vector field, a spin 1/2 field or to a scalar field for the gra
ton, gravitino, and vector multiplets, respectively. The oth
states have anE0 value shifted in a range of62 ~in 1/2
steps! with respect to theE0 of the multiplet.

In the third column we write theR symmetry of the state
where the valuer is assigned to the highest spin stater
5r h.s.), the other states havingR symmetry shifted in a
range of62 ~in integer steps!.

In the fourth column we give the right association of th
particularSU(2,2u1) state to the field obtained from the K
spectrum, according to the notations explained above.

In the fifth column we give the mass of the state3 in terms
of the ubiquitous expressionH0 , whereH0 is evaluated at a
value r corresponding to thatR symmetry of the multiplet
defined as theR symmetry of the highest spinr 5r h.s.. We

3According to Eq.~2.56! we give here the mass for the fermio
and two-form fields, while for all the other bosons we give the m
squared.
06600
is
ts

re

of
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r

t

note that in all the formulas giving the mass spectru
~2.47!–~2.55!, theR symmetryr refers to the particular stat
we are considering. There,H0 appears to have dependen
on the r of the state which is different for different state
However, when arranging the states in supermultiplets
SU(2,2u1), it is convenient to express ther of the state in
terms of theR symmetry of the supermultipletr 5r h.s., de-
fined as theR symmetry of the highest spin. In this case,
the masses can be expressed in terms of anH0 which has the
same dependence onr 5r h.s. for all the members of the mul
tiplet. For the graviton multiplet and the first two families o
vector multiplets all the masses are written in terms ofH0
[H0( j ,l ,r ); and for the last two families of vectors all th
masses are given in terms ofH0

6[H0( j ,l ,r 61) and for the
last two families of vectors all the masses are given in ter
of H0

66[H0( j ,l ,r 62). Indeed, if we compute the confor
mal weightD of the state from the mass values, it turns o
to be expressed in terms ofH0 ,H0

6 ,H0
66 which are the same

for every state of the multiplet, as it must be. Of course,
value ofD in terms ofH0 ,H0

6 ,H0
66 can be computed from

Eq. ~2.56! and we have given for each multiplet the confo
mal weight of the lowest state labeled byE0 in terms ofH0 .

The multiplets of Tables II–X are long multiplets o
SU(2,2u1) when theSU(2)3SU(2) quantum numbersj , l
and theR-symmetry values are generic. However, it is w
known from group theory@5,22# that shortening of the mul-
tiplets can occur in correspondence with particular values
the SU(2,2u1) quantum numbers giving rise to chiral~d!,
semilong~!! or massless~L! multiplets. The above symbol
have been used in the columns at the left of the tables
denote the surviving states in the shortened multiplets
particular, the absence of these symbols in Table IV me
that no shortening of any kind can occur for the graviti
multiplet II. Notice that shortenings are indicated only f
positive values of the~shifted! R symmetryr, namely whenr
satisfies the following inequalities~see Sec. IV!:

r>0 Tables II, VII, VIII,

r 11>0 Tables IV, V,

r 21>0 Tables III, VI,

r 12>0 Table IX,

r 22>0 Table X. ~2.57!

In fact, these shortened multiplets are the most interestin
light of the correspondence with the CFT at the bounda
We give the discussion of the shortenings in Sec. IV, afte
preliminary introduction to the representation of superco
formal superfields in CFT and the discussion of the conf
mal operators of protected scaling dimensions.

III. CFT AND SU„2,2z1… REPRESENTATIONS

A. SU„2,2z1… conformal superfields

The AdS-CFT correspondence@1,2,3# gives a relation be-
tween the particle states in AdS5, classified in this case by

s

1-9
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the SU(2,2u1) superalgebra and the realization of the ve
same representations@2,3,12# in terms of conformal fields on
the boundaryM̃45]AdS5.

In this way, the highest weight representations
SU(2,2u1) correspond toprimary superconformal fields on
the boundary and a generic state on the bulk, labeled by
quantum numbers@5,34,35# D(E0 ,s1 ,s2ur ) related toU(1)
3SU(2)3SU(2)3UR(1),SU(2,2)3UR(1), is mapped
to a primary conformal fieldO(s1,s2)

D,r (x) with scaling dimen-

sion D5E0 , Lorentz quantum numbers (s1 ,s2) andR sym-
metry r. E0 is the AdS energy level and its relation to th
AdS mass depends on the spin of the state. We recall
the relevant cases@3,5,16#

S 1

2
,
1

2D m25~E021!~E023!,

~0,0! m25E0~E024!,

~1,0!,~0,1! m25~E022!2, ~3.1!

~1,1! m25E0~E024!,

S 1

2
,0D ,S 0,

1

2D
S 1

2
,1D ,S 1,

1

2D J m5uE022u.

It is crucial in our discussion to classify states correspo
ing to short multiplets because in this case the confor
dimensionD is protectedand it allows a stringent test be
tween the supergravity theory and the conformal field the
realization. Here, protected means thatD is related to theR
charge which is quantized in terms of the isometry gener
of UR(1) and therefore it is exact to all orders in th
N21,(gsN)21 expansion. However, we note that unlike t
N54 theory @24,36#, operators with protected dimension
have conformal dimension different from their free-fie
value.

N51 superfields with protected and unprotected dim
sions have been discussed by many authors@3,5,22,37#. We
would like to remind here just their field theory realizatio
which will become especially important in comparing co
formal operators with the particular model described by
type IIB theory compactified on AdS53T11.

A generic conformal primary superfield is classified by
SL(2,C) representation (s1 ,s2), a dimensionE0 and an
R-symmetry charger. These are the quantum numbers of t
q50 component of the superfield. All descendants are gi
by theq expansion which also dictates their spin,R symme-
try r and scaling dimensionD, since qa has (s1 ,s2)
5(1/2,0), D521/2, r 51 ~so q̄ȧ has (s1 ,s2)5(0,1/2), D
521/2, r 521!. For a generic primary conformal field th
dimension is not protected since it can take any valueD
>21s11s2 (s1s2Þ0) or D>11s (s1s250) due to unitar-
ity bounds of the irrepses ofSU(2,2) @44#. SU(2,2u1) re-
quires the additional unitarity bounds
06600
f

ur

re
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or
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e

n

212s12E0<
3

2
r<E02222s2 , ~3.2!

E0>11s (E05 3
2ur u), E05s15s25r 50 ~identity represen-

tation!, which restrict the allowed values of theR-symmetry
charge@22,34,35#.

Operators with protected dimensions fall in four categ
ries ~as discussed in@5,22,37#!.
~1! Chiral superfields: S. They satisfy the condition

D̄ ȧS~a1 ...a2s1
!~x,q,q̄ !50. ~3.3!

For thems250 ~s150 if antichiral! andr 5 2
3 D ~r 52 2

3 D if
antichiral!. These superfields contain the~massless on the
boundary! freesingletonrepresentations forD511s. These
multiplets have 4(2s11) degrees of freedom.
~2! Semichiral superfields: Ua1 ...a2s1 ,ȧ1 ...ȧ2s2

. They satisfy

the condition

D̄ (ȧU ȧ1 ...ȧ2s2
)a1 ...a2s1

~x,q,q̄ !50, ~3.4!

and for themr 5 2
3 (D12s2). If s250 the above superfield

becomes chiral. For examples251/2 would correspond to
semichiral superfield whose lowest component is a rig
handed spin 1/2 and its highest spin is a vector field witr
5 2

3 D2 1
3 .

~3! Conserved superfields: J(s1 ,s2) . They satisfy

Da1Ja1 ...a2s1
,ȧ1 ...ȧ2s2

~x,q,q̄ !50 ~3.5!

and

D̄ ȧ1Ja1 ...a2s1
,ȧ1 ...ȧ2s2

~x,q,q̄ !50 ~3.6!

~or D̄2Ja1 ...a2s1
50 if s250! and for themr 5 2

3 (s12s2), D

521s11s2 .
~4! Semiconserved superfields: L (s1 ,s2) . They satisfy

D̄ ȧ1La1 ...a2s1
,ȧ1 ...ȧ2s2

~x,q,q̄ !50 ~3.7!

or

D̄2La1 ...a2s1
~x,q,q̄ !50 for s250. ~3.8!

Their R symmetry isr 5 2
3 (D2222s2). A semiconserved

superfield becomes conserved if it is left and right semic
served in which caseD521s11s2 and r 5 2

3 (s12s2).
Operators of type~1!, ~2! and ~4! have protected~but

anomalous! dimensions in a non-trivial conformal field
theory. They are short or semishort because some of
fields in theq expansion are missing. In the language of@22#
the ~1! and~2! superfields correspond to the shortening co
ditions n2

150 (n1
150), ~3! correspond ton1

25n2
250 and

~4! to n2
250 (n1

250).
In the AdS-CFT correspondence all these superfields

respond to KK states with multiplet shortening and typica
1-10
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they occur when there is a lowering in the rank of the m
matrix and rational values ofE0 are obtained. Conserve
current multiplets correspond to massless fields in Ad5.
They can only occur for fields whose mass is protected b
symmetry~such as gauge fields! and there is only a finite
number of them corresponding to the gauge fields of
SU(2,2u1)3SU(2)3SU(2) algebra and possibly Betti mu
tiplets @38,39#. While the massless vectors of the isome
group correspond to theUR(1) and flavor symmetry of the
boundary gauge theory, the Betti multiplet, as recen
shown by Klebanov and Witten@33#, corresponds to the
Ub(1) baryonic current multiplet of the boundary CF
There are also two complex moduli related toB and Aab
wrapped on a 2-cycle of T11 @9#, giving two hypermultiplets
with E053 andr 52. Massive KK states with arbitrary irra
tional value ofE0 correspond to generic conformal field o
erators with anomalous dimension.

It is easy to relate operators of different type by superfi
multiplication. By multiplying a chiral (s1,0) by an antichiral
(0,s2) primary one gets a generic superfield with (s1 ,s2),
D5Dc1Da and r 52/3(Dc2Da). By multiplying a con-
served currentsuperfieldJa1 . . .a2s1

,ȧ1 . . . ȧ2s2

by a chiral scalar

superfield one gets a semiconserved superfield withD5Dc

121s11s2 @r 52/3(D2222s2)#.
In a KK theory only particular values of (s1 ,s2) can oc-

cur, because the theory in higher dimensions has only sp
spin 3/2 fields and lower. This implies that for bosons on
~0,0!, ~1,0!, ~0,1!, ~1/2,1/2!, ~1,1! representations and for fer
mions only ~1/2,0!, ~0,1/2!, ~1,1/2!, ~1/2,1! representations
can occur. This drastically limits the spin of conformal s
perfields. Indeed, for chiral oness50,1/2, while for non-
chiral s1 ,s2<1/2.

B. CFT analysis of AdS5ÃT11 compactification

In the conformal field theory@9# which, at least for large
N and gsN, is dual to type IIB supergravity on AdS53T11

the basic superfields are the gauge fields4 Wa of SU(N)
3SU(N) and two doublets of chiral superfieldsA, B which
are in the (N,N̄) and (N̄,N) of SU(N)3SU(N) and in the
(1/2,0)r 51,(0,1/2)r 51 of the global symmetry group
SU(2)3SU(2)3UR(1). At the conformal point these su
perfields have anomalous dimensionD53/4 and
R-symmetry r 51/2. The chiralWa superfield hasD53/2,
r 51.

The superpotential@9# W5le i j eklTr(AiBkAjBl) has D
53, r 52 and plays an important role in the discussion, sin
it determines to some extent both the chiral spectrum as
as the marginal deformations of the SCFT. It is related
some of theD53 flavor singlet chiral operators which ar
discussed later.

Let us specify the superspace gauge transformation
the above superfields. Following@40#, we introduce Lie al-
gebra valued chiral parametersL1 ,L2 of the two factors of
G5SU(N)3SU(N). Then, underG gauge transformations

4Below we use standard superfield notations@40#.
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eV1→eiL1eV1e2 i L̄1,

eV2→eiL2eV2e2 i L̄2,
~3.9!

A→eiL1Ae2 iL2,

B→eiL2Be2 iL1

and we define

W1a5D̄D̄~eV1Dae2V1!,
~3.10!

W2a5D̄D̄~eV2Dae2V2!,

whereV1 and V2 are superfields Lie algebra valued in th
two G factors andV5V11V2 . Gauge covariant combina
tions are therefore

Wa~AB!k5Wa
1~AB!k, ~3.11!

Wa~BA!k5Wa
2~BA!k, ~3.12!

AeVĀe2V5AeV2Āe2V1, ~3.13!

BeVB̄e2V5BeV1Be2V2. ~3.14!

Formulas~3.11! and ~3.13! transform as

X→eiL1Xe2 iL1 ~3.15!

while Eqs.~3.12! and ~3.14! transform as

Y→eiL2Ye2 iL2. ~3.16!

We can multiply Eqs.~3.13! and ~3.14! as

AeV2ĀB̄e2V2B, ~3.17!

which transforms asX or

BeV1B̄Āe2V1A, ~3.18!

which transforms asY and thus build gauge covariant com
binations asWa

1X or Wa
2Y.

If a symmetryA↔B is required, then symmetrization ex
changing Eq.~3.11! with Eq. ~3.12!, Eq. ~3.13! with Eq.
~3.14! or Eq. ~3.17! with Eq. ~3.18! will occur.

We will now consider sets of towers of superfields, l
beled by an integer numberk which correspond tochiral and
(semi)conservedgauge invariant superfields and havin
therefore protected dimensions. As we will see in the n
section, these conformal operators are precisely those co
sponding to AdS-KK states undergoing multiplet shortenin

Let us first consider chiral superfields. There are th
infinite sequences of them, corresponding tohypermultiplets
and tensor multipletsin the AdS bulk.
1-11
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They are given as5

Sk5Tr~AB!k, Dk5
3

2
k, r 5k, k.0, ~3.19!

Tk5Tr„Wa~AB!k
…, Dk5

3

2
~k11!, r 5k11, k.0,

~3.20!

Fk5Tr„WaWa~AB!k
…, Dk531

3

2
k, r 5k12.

~3.21!

The series~3.19! was anticipated by Klebanov, Witten@9#
and shown to occur in the KK modes of the supergrav
theory by Gubser@13#, who also discussed descendants
the series~3.21!.

The series~3.20!, ~3.21! has been constructed by th
knowledge of the full mass spectrum and the shorten
conditions.6

It is useful to note that in the Eq.~3.20! and Eq.~3.21!
towers, we find operators of the type

Bab
k 5Tr„Fab~AB!k

…, Dk521
3

2
k ~k.0!,

~3.22!

fk5Tr„FabFab~AB!k
…, Dk541

3

2
k, ~3.23!

as descendants.Fab ,F ȧḃ refer in the spinor notation to th
dual and anti-self-dual parts of the field strengthFmn .

Even more interesting is the appearance of~semi!con-
served superfields corresponding in the language of@22# to
semilong multiplets in AdS5. These superfields explain th

5Here and in what follows we always mean symmetrized trace
symmetrizedSU(2)3SU(2) indices.

6Chiral operators of the type Tr(Wa1
...Wap

) cannot appear in the
KK spectrum forp.2 since such operators haveD53/2p, r 5p,
j 5 l 50 and therefore are incompatible with the spectrum of
UR(1) charge on T11 ~see next section!. For p52 the chiral opera-
tors Tr„Wa1

Wa2
(AB)k

… are allowed but they contain two irreduc
ible parts: one symmetric@~1, 0! spin one# and the other antisym
metric @~0, 0! spin zero#. However, following an observation o
Aharony~as quoted in@41#! only the scalar term is a chiral primar
operator. This is due to the superspace identity

D̄D̄@eVDa~e2VWbeV!e2V#5@Wa ,Wb#,

where the symmetry of the left hand side derives from the
lowing superspace Bianchi identity eVDa(e2VWaeV)e2V

5D̄ ȧ(eVW̄ȧe2V). Therefore, the other term is not chiral prima
since

Tr„W(aWb)~AB!k
…5D̄D̄Tr„eVDa~e2VWbeV!e2V~AB!k

….
06600
y
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appearance of KK towers with~spin 1! vector fields and
~spin 2! tensor fields with protected dimensions.

In superfield language such fields are given by superfie
containing terms of the form

Jaȧ
k 5Tr„Jaȧ~AB!k

…,H j 5 l 5
k

2
, r 5k,

D531
3

2
k,

~3.24!

Jk5Tr„J~AB!k
…,H j 5 l 11,l 5

k

2
, r 5k,

D521
3

2
k,

~3.25!

I k5Tr„JW2~AB!k
…H j 5 l 11,l 5

k

2
, r 5k12,

D551
3

2
k,

~3.26!

where

Jaȧ5WaeVW̄ȧe2V ~D53!, ~3.27!

J5A~eVĀ!e2V ~D52!, ~3.28!

and satisfying

D̄ ȧJaȧ
k 50, D̄D̄Jk50, D̄D̄I k50. ~3.29!

Analogous structures appear withB replacingA in Eq. ~3.28!
and j↔ l in Eqs.~3.25! and~3.26!. Note that thenon-gauge-
invariant operators in Eqs.~3.24!–~3.26! behave as if they
would have conformal dimension 3 and 2 respectively wh
the gauge singlet is formed. This is because the shorte
condition implies that operators starting with structures as
Eqs. ~3.24!, ~3.25!, and ~3.26! have dimension given by 3
13/2k, 213/2k and 513/2k respectively.

The highest spin states contained in Eqs.~3.24!, ~3.25!,
and~3.26! aredescendantswith spin 2 andD5413/2k, spin
1 with D5313/2k, and spin 1 withD5613/2k. These are
massive recursions of the graviton, massless gauge bo
and massive vector fields respectively. The AdS masse
the above states are given by

spin 2: Mk5A3

2
kS 3

2
k14D , ~3.30!

spin 1: Mk5A3

2
kS 3

2
k12D ,

~3.31!

spin 1: Mk5AS 3

2
k15D S 3

2
k13D .

~3.32!

The first two masses vanish for thek50 level corresponding
to theconservedcurrents TrJaȧ ,Tr J of the superconforma

d

e

-
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field theory with flavor groupG5SU(2)3SU(2), while the
third mass does not vanish atk50.

For the spin 3/2 massive tower we do not expect to
vanishing gravitino mass whenk50, since the massles
gravitino is already contained in the graviton tower. In sp
of this, there are semiconserved superfields correspondin
shortened massive gravitino towers.

These are

L ȧ
1k5Tr„eVW̄ȧe2V~AB!k

…H j 5 l , r 5k21,

D5
3

2
1

3

2
k ~k.0!,

~3.33!

L ȧ
2k5Tr„eVW̄ȧe2VW2~AB!k

…H j 5 l , r 5k11,

D5
9

2
1

3

2
k,

~3.34!

La
3k5Tr„Wa~AeVĀe2V!

3~AB!k
…H j 5 l 11, r 5k11,

D5
7

2
1

3

2
k,

~3.35!

which satisfyD ȧL ȧ50 andD2La50, respectively.
We note in particular that the tower analogous to E

~3.33!, in type IIB supergravity on AdS53S5, is @3,16,17,26#

L ȧ
1k5Tr~eVWȧe2Vf~ i 1 ...f ik!! ~3.36!

in thek-fold symmetric ofSU(3). Fork.1 these superfields
are semiconserved but fork51, unlike in our case, they be
come conserved, corresponding to the fact that on S5 an ad-
ditional SU(3) triplet of massless gravitinos is required b
N54 supersymmetry.

In this case the exact operatorL ȧ
11 is

L ȧ
115Tr@~eVW̄ȧe2Vfa!1D̄ ȧ~eVf̄be2V!~eVf̄ce2V!eabc#

~3.37!

which satisfies

D̄ ȧL ȧ
115D2L ȧ

1150 ~3.38!

as a consequence of the equations of motion forWa ,fa and
the identity

D2@e2VD̄ ȧ~eVf̄ae2V!eV#5@f̄a,W̄ȧ#. ~3.39!

The above superfields~3.33!–~3.35! are the lowest non-
chiral operators of more general towers with irrational sc
ing dimensions described by

Oȧ
1nk5Tr„eVW̄ȧe2V~AeVĀe2V!n~AB!k

…, ~3.40!

Oȧ
2nk5Tr„eVW̄ȧe2V~AeVĀe2V!nW2~AB!k

…,
~3.41!
06600
t
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Oa
3nk5Tr„Wa~AeVĀe2V!n~AB!k

…, ~3.42!

with G representation

Oȧ
1nk : S k

2
1n,

k

2D , r 5k21, ~3.43!

Oȧ
2nk : S k

2
1n,

k

2D , r 5k11, ~3.44!

Oa
3nk : S k

2
1n,

k

2D , r 5k11. ~3.45!

The multiplets in Eqs.~3.19!–~3.21!, ~3.24!–~3.26!, and
~3.33!–~3.35! are shortened multiplets with protected dime
sions because of supersymmetry through nonrenormaliza
theorems. However we will see that a peculiar phenome
of N51 which can be learned from the AdS-CFT correspo
dence is that there exist also infinite towers of long mu
plets with rational dimensions, at least forN andgsN large,
which in principle are not expected to have protected dim
sions.

A typical tower which is not expected to have protect
dimension is the massive tower

Qk5Tr„W2eVW̄2e2V~AB!k
…, ~3.46!

which contains the descendant Tr„FabFabF̄ ȧḃF̄ ȧḃ(AB)k
….

Supergravity predicts for itD5813/2k.
We just note that the analogous operator in type IIB

AdS53S5 was a descendant of a chiral primary~showing up
at first atp54 level@14,16,17,26#! and therefore having pro
tected dimensions because ofN54 supersymmetry
@24,36,43#.

The identification of such long multiplets with superco
formal operators will be given in the next section. Operat
whoseR symmetry is not related to the top components
one of the twoSU(2) factors~see Sec. IV! are for instance
towers of the form

Tr@~AeVĀe2V!n1~eVB̄e2VB!n2~AB!k#, ~3.47!

which havej 5k/21nl , l 5k/21n2 and r 5k. These opera-
tors have all irrational dimensions unlessn1 ,n2 are consecu-
tive terms in a particular sequence described in@13#.

It is worthwhile to point out that in this gauge theory w
have no realization of the semichiral superfields descri
before and indeed we do not find on the supergravity s
any shortened multiplet satisfying ther 52/3(E012s2) con-
dition (s2Þ0). The reason is that such superfields cor
spond to nonunitary modules.

IV. AdS-CFT CORRESPONDENCE

In Secs. II and III we have described the KK spectru
with its multiplet structure and the CFT operators with pr
tected dimensions. We would like now to present the m
tiplet shortening conditions and analyze the corresponde
of these states with the boundary field theory operat
1-13
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shown in the last section. This is an important nontriv
check for the AdS-CFT correspondence. On the other ha
supergravity seems to suggest additional dynamical inpu
the extent that, in the largeN, gsN limit, it predicts that
certain towers of long multiplets have rational dimensio
suggesting the presence of some hidden symmetry. This
ter may perhaps be explained in the context of Born-Inf
theory which relatesD-brane dynamics to AdS supergravi
in the largeN limit.

From the point of view of theSU(2,2u1) multiplet struc-
ture, the shortening conditions correspond to saturation
some of the inequalities describing the unitarity bounds@22#.
These become relations betweenE0 and the otherSU(2,2u1)
quantum numbers.

In the KK context, we do not knowa priori the multiplet
structure of the KK states and the shortening conditio
merely derive from the disappearance of some harmonic
the field expansion. This reduces the rank of the mass m
ces and thus some of the states drop from the multiplet.
relevant fact is that these shortening conditions must b
one to one correspondence with those deriving from
SU(2,2u1) group theoretical analysis.

As discussed in the previous section, the shortening c
ditions can be read as the following relations on t
SU(2,2u1) quantum numbers already given in Sec. III A

~anti! chiral E051
3

2
r S 2

3

2
r D , ~4.1!

conserved E0521s11s2 , ~s12s2!5
3

2
r ,

~4.2!

semiconserved E05
3

2
r 12s212 ~or s2→s1 ,r→2r !.

~4.3!

This means that the corresponding conformal dimens
must have a rational value. As it can easily be seen from
mass spectrum presented in Sec. II, this implies that only
specificG quantum numbers we can retrieve such short m
tiplets. Actually, a rational scaling dimension can be fou
only if H0( j ,l ,r )14 is a perfect square of a rational numbe
Two possible sets of values for which such a condition
satisfied are

j 5 l 5U r2U5 k

2
, ~4.4!

j 5 l 215U r2U5 k

2
or l 5 j 215U r2U5 k

2
. ~4.5!

We will also examine briefly the case

j 5 l 5
r 22

2
, r>2, ~4.6!

which for most multiplets leads to a violation of inequali
~3.2!, but in one case gives a consistent shortening of
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vector multiplet III. We will show that these three cases a
the relevant ones. Indeed, in the first caseH0( j ,l ,r )5 9

4 r 2

16ur u and thusH0( j ,l ,r )145(3ur /2u12)2, in the second
H0( j ,l ,r )5 9

4 r 2112ur u112 and thus H0( j ,l ,r )14
5(3ur /2u14)2, while in the third case we have
H0( j ,l ,r )5 9

4 r 226r and thusH0( j ,l ,r )145„3(r /2)22…2.
Of course there are other possible solutions, but we w

see that only those presented above correspond to mult
shortening.

Looking at Tables II–X we see that for the graviton a
type I and II vector multiplets~VM ! E0 is given in terms of
H0( j ,l ,r ) while for gravitino multiplet of type I, IV and II,

III E0 is given in terms ofH
7

[H0( j ,l ,r 71) respectively.
Analogously, for the type III and IV VM,E0 is given in
terms of H0

66[H0( j ,l ,r 62) respectively. As a conse
quence the conditions for rational values ofE0 ~protected
dimensions! are different for different multiplets.

Let us examine the conditions~4.4!, ~4.5!, and~4.6! sepa-
rately.

Condition ~4.4! for the various multiplets reads

Gravition and type I and II VM j 5 l 5U r2U[ k

2
, ~4.7!

type I gravitino j 5 l 5Ur 21

2 U[ k

2
,

~4.8!

type II gravitino j 5 l 5Ur 11

2 U[ k

2
,

~4.9!

type III gravitino j 5 l 5Ur 11

2 U[ k

2
,

~4.10!

type IV gravitino j 5 l 5Ur 21

2 U[ k

2
,

~4.11!

type III VM j 5 l 5Ur 12

2 U[ k

2
,

~4.12!

type IV VM j 5 l 5Ur 22

2 U[ k

2
.

~4.13!

HerekPZ1 identifies theSU(2)3SU(2) representations o
the multiplet; it is obvious that all the multiplets obeyin
condition ~4.4! are in the irrep (k/2,k/2).

Substituting in theE0 value of the multiplet given in
Tables II–XH014, H0

614, andH0
6614 with (3/2k12)2

we find the following values ofE0 for the various multiplets:

Gravition multiplet E05
3

2
k13[6

3

2
r 13, ~4.14!
1-14
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type I LH gravitino E05
3

2
k1

3

2
[H 3

2
r ,

2
3

2
r 13,

~4.15!

type II DH gravitino E05
3

2
k1

9

2
[H 3

2
r 16,

2
3

2
r 13,

~4.16!

type III RH gravitino E05
3

2
k1

3

2
[H 3

2
r 13,

2
3

2
r ,

~4.17!

type IV RH gravitino E05
3

2
k1

9

2
[H 3

2
r 13,

2
3

2
r 16,

~4.18!

type I VM E05
3

2
k[6

3

2
r ,

~4.19!

type II VM E05
3

2
k16[6

3

2
r 16,

~4.20!

type III VM E05
3

2
k13[H 3

2
r 16,

2
3

2
r ,

~4.21!

type IV VM E05
3

2
k13[H 3

2
r ,

2
3

2
r 16,

~4.22!

where the upper and lower choices on the right hand s
refer to positive or negative arguments of the absolute va
in Eqs.~4.7!–~4.13!.

Using Eqs.~4.1!–~4.3! we see that under condition~4.4!
we obtain the following: a chiral tensor multiplet from type
LH gravitino ~4.15! ~or an antichiral one from type III RH
gravitino!; one hypermultiplet~for both signs ofr! from type
06600
e
es

I VM ~4.19!, and another hypermultiplet from type IV VM
~4.22! ~or from type III VM if r ,22!; a semilong graviton
multiplet from Eq.~4.14! ~for both signs ofr!, two semilong
gravitino from type III and IV~or from type I if r ,1 and
type II if r ,21 respectively!, and IV RH gravitino multip-
lets from the two equations~4.17! and ~4.18!; for k50 ~G-
singlet!, we also obtain from Eq.~4.14! a short massless
graviton multiplet withE053, r 50. In this case only four
states survive: the massless graviton, two massless grav
~with r 561 depending on the chirality!, and one massles
vector. This latter, being anSU(2)3SU(2)3UR(1) singlet,
must be identified with theR-symmetry Killing vector.

Note that Eqs.~4.16!, ~4.20!, and~4.21! do not correspond
to any shortening condition, yet we have a rational value
E0 belonging to a long multiplet.

It is now easy to find the correspondence between
supermultiplets obeying condition~4.7!–~4.13! and the pri-
mary conformal superfields on the CFT side discussed in
previous section. Given the values ofE0 andk ~or r! we have
immediately that the two hypermultiplets from Eqs.~4.19!
and ~4.22! are in correspondence with the chiral superfie
Sk and Fk ~3.19! and ~3.21!; the tensor multiplet from Eq.
~4.15! corresponds to the chiral superfieldTk of Eq. ~3.20!;
the semilong graviton multiplet from Eq.~4.14!, associated
with the semiconserved superfieldJaȧ

k of Eq. ~3.24! @in par-
ticular the massless graviton multiplet„k50 in Eq. ~4.14!…
corresponds to the conserved superfieldJaȧ

0 #; finally, the two
semilong graviton multiplets from Eqs.~4.17! and~4.18! can
be put in correspondence with the semiconserved superfi
L ȧ

1,k andL ȧ
2k of Eqs.~3.33! and ~3.34!.

We note that the type I vector series in Table VII forj
5 l 5r 50, see Eq.~4.19!, degenerates into the identity rep
resentation, sinceE050. However, as follows from the sam
table, another unitary representation, a massless vector
tiplet, appears in the spectrum. Indeed, forj 5 l 5r 50, the
multiplet bosonic mass squared eigenvalues arem(1)

2 50,
m(0)

2 50, m(0)
2 523, m(0)

2 524. The eigenvaluem(0)
2 50

gives two possible values forE0 : E050 andE054. If we
choose theE050 branch, the other modes~scalars withE0

51,2 and vector withE051! are gauge modes and decoup
from the physical Hilbert space, thus the multiplet is a gau
module@44#. If we choose theE054 branch, we get a uni-
tary representation with a scalar withE052 and a vector
with E053 as physical states, while the other modes~scalars
with E053,4! decouple from the physical Hilbert space. Th
massless vector multiplet is the so calledBetti multipletof
KK supergravity, related to the fact that a (p11)-form ~in
this casep53! couples to ap-brane wrapped on a nontrivia
p-cycle which in this case is related tob351, the third Betti
number of T11 @33,45#. The general occurrence of such Be
multiplets in the KK context was widely discussed in@38#. In
the case of AdS43M111, such a multiplet is related tob2
51 @39,46#, corresponding to the M theory three-form wit
one component on AdS4 and two components on M111 and it
was found in the KK context in@20#. Incidentally, in the
language of@47#, the Betti massless vector@D(3,1/2,1/2)#
1-15
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isa zero center module7 of the conformal groupSU(2,2),
since all the Casimir vanishCI5CII 5CIII 50 as is the case
for the identityD(0,0,0), the gauge moduleD(1,1/2,1/2),
the massless scalarsD(4,0,0) appearing in the hypermultip
let Sk for k50 ~3.19! and the spin one singletonD(2,1,0)
1D(2,0,1) representations@44,47,49#. The geometrical ori-
gin of this gauge field coupled to a wrappedD3 brane on T11

has recently been discussed in@33# together with its interpre-
tation as baryon current in the AdS-CFT correspondence

The boundary superfield corresponding to the Betti m
tiplet is

U5Tr AeVĀe2V2Tr BeVB̄e2V ~D2U5D̄2U50!.
~4.23!

Its q50 component is a scalarUuq505AĀ2BB̄ with E0

52(m(0)
2 524) and the baryon current is theusmū compo-

nent with D5E01153(m(1)
2 50) @33#. Note that all KK

states are neutral under theUB(1), andthus it lies outside
the T11 isometry.

Beside shortened multiplets, there are CFT supercon
mal operators with rational dimensions that are associa
with the long multiplets of Eqs.~4.16!, ~4.20!, and ~4.21!.
Indeed we may construct the following superfields8 all in the
(k/2,k/2) of G:

Pa
k 5Tr„WaeVW̄2e2V~AB!k

… D5
3

2
k1

9

2
,

r 5k21, k.0, ~4.24!

Qk5Tr„W2eVW̄2e2V~AB!k
… D5

3

2
k16, r 5k,

~4.25!

Rk5Tr„eVW̄2e2V~AB!k
… D5

3

2
k13,

r 5k22, k.0. ~4.26!

Let us now discuss the shortening conditions when
G-quantum numbers satisfy condition~4.5!.

In this case Eqs.~4.7!–~4.13! are replaced by the analo
gous equations

Graviton and type I and II VM l 5 j 215U r2U[ k

2
,

~4.27!

7A zero center module also appears in the graviton multiplet of
OSp(6u4) superalgebra@47#. In fact this multiplet contains an
O(6) singlet massless vector other than theO(6) gauge fields. This
agrees with the geometrical interpretation ofN56 supergravity as
the low-energy limit of type IIA string theory on AdS43CP3, the
latter being obtained by Hopf reducing M-theory on AdS43S7 @48#.

8The Qk massive tower was also considered in@13#.
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type I gravitino l 5 j 215Ur 21

2 U[ k

2
,

~4.28!

type II gravitino l 5 j 215Ur 11

2 U[ k

2
,

~4.29!

type III gravitino l 5 j 215Ur 11

2 U[ k

2
,

~4.30!

type IV gravitino l 5 j 215Ur 21

2 U[ k

2
,

~4.31!

type III VM l 5 j 215Ur 12

2 U[ k

2
,

~4.32!

type IV VM l 5 j 215Ur 22

2 U[ k

2
~4.33!

~or j↔ l ! where all the states have the representation (k/2
11,k/2) if j 5 l 11 or in the (k/2,k/211) if l 5 j 11.

Proceeding as before we now substituteH014, H0
614,

H0
6614 with (3/2k14)2 in the E0 value of the various

multiplets given in Tables II–X and we obtain for each mu
tiplet the following rational values ofE0 :

Graviton multiplet E05
3

2
k15[

3

2
r 15, ~4.34!

type I LH gravitino E05
3

2
k1

7

2
[

3

2
r 12,

~4.35!

type II LH gravitino E05
3

2
k1

13

2
[

3

2
r 18,

~4.36!

type III RH gravitino E05
3

2
k1

7

2
[

3

2
r 15,

~4.37!

type IV RH gravitino E05
3

2
k1

13

2
[

3

2
r 15,

~4.38!

type I VM E05
3

2
k12[

3

2
r 12,

~4.39!

type II VM E05
3

2
k18[

3

2
r 18,

~4.40!

e
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type III VM E05
3

2
k15[

3

2
r 18,

~4.41!

type IV VM E05
3

2
k15[

3

2
r 12,

~4.42!

where we have limited ourselves to the positive branch of
expressions in the absolute values appearing in Eqs.~4.28!–
~4.33!.

By Eq. ~4.1! we see that there are no chiral supermu
plets when condition~4.5! holds. However we have that Eq
~4.35!, ~4.39!, and ~4.42! give the condition~4.3! for semi-
long multiplets, all the other values ofE0 corresponding to
long multiplets with rational dimensions.

Thus we have one semilong type I L.H. gravitino corr
sponding to the semiconserved superfield~3.35!; one semi-
long type I VM corresponding to the semiconserved sup
field Jk of Eq. ~3.25! which, in the particular casek50,
becomes a conserved superfieldJ corresponding to the mass
less type I VM withE052, r 50 @these correspond to th
SU(2)3SU(2) Killing vectors#; one semilong type IV VM
corresponding to the semiconserved superfieldI k of Eq.
~3.26!.

Furthermore we have long multiplets from Eqs.~4.34!,
~4.36!, ~4.37!, ~4.38!, ~4.40!, ~4.41! corresponding respec
tively to the following superconformal fields with rationa
dimensions:

Ck5Tr„AeVĀe2VJaȧ~AB!k
…, E05

3

2
k15, r 5k,

~4.43!

Dk5Tr„WaeVW̄2e2VAeVĀe2V~AB!k
…,

E05
3

2
k1

13

2
, r 5k21, ~4.44!

Ek5Tr„W2eVW̄2e2VAeVĀe2V~AB!k
…,

E05
3

2
k18, r 5k, ~4.45!

Fk5Tr„eVW̄2e2VAeVĀe2V~AB!k
…,

E05
3

2
k15, r 5k22, ~4.46!
06600
e

-

-

r-

Gk5Tr„eVW̄ȧe2VAeVĀe2V~AB!k
…,

E05
3

2
k1

7

2
, r 5k21, ~4.47!

Hk5Tr„eVW̄ȧe2VW2AeVĀe2V~AB!k
…,

E05
3

2
k1

13

2
, r 5k11. ~4.48!

It must be noted thatGk coincides withOȧ
1nk for n51 and

Hk coincides withOa
2nk for n51. Moreover,Dk coincides

with the operatorŌa
2nk for n51 andk50.

Inspection of the above list shows that these families
the lowest dimensional operators of a given structure, w
building blocks given byWa , A, Ā, B and B̄.

It should also be stressed that, although these opera
have given quantum numbers ofSU(2)3SU(2), and of
SU(2,2u1)E0 ,s1 ,s2 ,r , we have not discussed the most ge
eral form of these operators due to further mixing in terms
the constituent singleton fieldsWa , A, B. For instance, we
have not written terms involvingDaA or DaB, which cer-
tainly occur in the completion of some of the above ope
tors @for example the ones includingJaȧ

k which contain both

WaWȧ andDaAD̄ȧĀ ~or A↔B!#.
Finally, we analyze the Eq.~4.6! condition. In this case

the only multiplet which does not violate the Eq.~3.2! in-
equality is the type III vector multiplet, for which we ge
E05 3

2 r 12. This apparently could be interpreted as short
ing to a semilong vector multiplet. However, the states
such multiplet do not appear in the KK expansion, while t
states which are complementary to them form a chiral hyp
multiplet which is allowed by the KK analysis.9 Its lowest
state is thef field with E0

(s)5E0115 3
2 r (s), which is indeed

the group theoretical condition for the shortening to a ch
multiplet of the type given in Eq.~3.19!. The k50 (r s52)
chiral multiplet has as a last component a complex mass
scalar related to theAab 2-form wrapped on the nontrivia
2-cycle of T11, giving a second complex modulus other th
the dilatonB for type IIB on AdS53T11. Note that there is
another massless scalar in the seriesSk ~3.19! for k52. This
corresponds to the spinj 5 l 51 in the harmonic expansion in
the internal metrichab .

We would also like to remark that there are many mo
operators in the gauge theory which do not correspond to
supergravity KK mode, even though these multiplets m
have spin less than two. A typical example is the Konis
~massive vector! superfield@50#

K5Tr~AeVĀe2V!1Tr~BeVB̄e2V!, ~4.49!

with r 50 and in theG singlet j 5 l 50.

9Physically, the exclusion of the semilong multiplet can also
seen by the fact that it would contain an additional massless ve
for j 5 l 5r 50 which does not correspond to any symmetry besi
the isometry and baryon symmetry.
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This superfield has anomalous dimension@42#. However,
inspection of the supergravity spectrum shows that the m
tiplets with j 5 l 5r 50 must have rational dimension an
indeed they were identified withQk50 in Eq. ~3.46! with
E056 and the Betti multipletU in Eq. ~4.23! with E052.

This state of affairs is resolved by the fact thatK is ex-
pected to have a divergent dimensionD in the largeN, gsN
limit, as presumably happens in theN54 theory so that it
should correspond to a string state.

The Konishi multiplet@50# is a long multiplet whoseD̄2

is a chiral superfield which is a linear combination of t
superpotential W5e i j ekl Tr(AiBkAjBl) and Tr(WaWa).
This implies that neitherW nor Tr(WaWa) are chiral prima-
ries but rather a combination orthogonal toD̄D̄K. It is the
latter superfield which appears in the supergravity spect
and coincides with the chiral dilation multipletFk with k
50. This is an example of operator mixing alluded to befo

Finally we observe that the knowledge of the flavor a
R-symmetry anomalies in the gauge theory allows one
completely fix the low energy effective action of type II
supergravity on AdS53T11 at least in the sector of the mas
less vector multiplets@5#. In fact this relies on the computa
tion of the bulk Chern-Simons term of the several gau
factors involved@51#

dLSDE FL`FS`AD, ~4.50!

where l51, . . . ,8 with UR(1), Ub(1) and SUA(2)
3SUB(2) gauge factors.

Because of the AdS-CFT correspondence, the ga
variation of such Chern-Simons terms must precisely ma
at least in leading order inN, the current anomalies of th
boundary gauge theory@3,5,52,13,53#. Moreover, the mixed
gravitational gauge Chern-Simons terms

cLE AL`Tr R`R ~4.51!

@whereL here runs only over theU(1) factors of the bulk
gauge fields# should be nonleading since they are related
string corrections in the AdS-CFT correspondence@53#. Be-
cause of the particular matter content of the model@9#, all
coefficients are in principle proportional toN2 and thus lead-
ing in the AdS-CFT duality.

So it is crucial thatcL50, i.e., thatUR(1),Ub(1) are
traceless@13#. The only non-vanishingdLSD coefficients are

drAA5drBB , dbAA52dbBB , drrr , drbb ~4.52!
tt

Y
’’
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and thus they determine~up to two derivatives! the low en-
ergy effective action.
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APPENDIX: NOTATIONS AND CONVENTIONS

Consider AdS53T11. We call M, N the curved ten-
dimensional indices,m,n/m,n the curved or flat AdS5 ones
andab/a,b the curved or flatT11 ones. In the four dimen-
sional CFTa, . . . andȧ,... arespinorial indices.

Our ten-dimensional metric is the mostly minush
5$12¯2%, so that the internal space has a negative d
nite metric. For ease of construction, we have also use
negative metric to raise and lower theSU(2)3SU(2) Lie-
algebra indices.

Furthermore, for theSU(2) algebras we have define
e1235e1251.

The SO(5) gamma matrices are

g15S 1

1

21

21

D , g25S 2 i

i

i

2 i

D ,

~A1!

g35S 1

21

21

1

D , g45S i

i

i

i

D ,

~A2!

g55S i

i

2 i

21

D . ~A3!
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