PHYSICAL REVIEW D, VOLUME 61, 066001

Spectrum of type 1IB supergravity on AdSsX T Predictions on /=1 SCFT'’s

Anna Ceresole
Dipartimento di Fisica, Politecnico di Torino, C.so Duca degli Abruzzi, 24, 1-10129 Torino, Italy
and Istituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy

Gianguido Dall’Agata
Dipartimento di Fisica Teorica, Universitdi Torino, Torino, ltaly
and Istituto Nazionale di Fisica Nucleare, Sezione di Torino, via P. Giuria 1, 1-10125 Torino, Italy

Riccardo D'Aurid
Dipartimento di Fisica, Politecnico di Torino, C.so Duca degli Abruzzi, 24, 1-10129 Torino, Italy
and lIstituto Nazionale di Fisica Nucleare, Sezione di Torino, Torino, Italy

Sergio Ferrara
TH Division, CERN, 1211 Geneva 23, Switzerland
and Ecole Normale Superieure, Laboratoire de Physiqueofiige, 24 rue Lhomond. F-75231 Paris CEDEX 05, France
(Received 14 June 1999; published 14 February 2000

We derive the full Kaluza-Klein spectrum of type IIB supergravity compactified ong&d3* with T*!
=SU(2)xSU(2)/U(1). From the knowledge of the spectrum and general multiplet shortening conditions, we
make a refined test of the AdS-CFT correspondence, by comparison between various shortepiis(@sai )
supermultiplets on Ads$Sand different families of boundary operators with protected dimensions. Additional
towers of long multiplets with rational dimensions, that are not protected by supersymmetry, are also predicted
from the supergravity analysis to occur in the SCFT at leading ordsrandggN.

PACS numbd(s): 04.05+h, 04.65+e

. INTRODUCTION The supergravity theory on A¢&T!is anA/=2 supergrav-

One of the most fascinating properties of the Ads-1Y theory with a matter gauge group=SU(2)xSU(2).

conformal field theory(CFT) correspondencl,2,3 is the The corresponding four dimensio_nal conformgl field theory
deep relation between supergravity and gauge theory dynanf?ust then be9] an /=1 Yang Mills theory with a flavor
ics, at least in the regime where the supergravity approximasYMMmetryG such that an accurate test of the AdS-CFT cor-
tion (small space time curvaturis a reliable description of a '€Spondence could be made using the knowledge of the en-
more fundamental theory such as stringhdrtheory[4,5].  tiré spectrum of the supergravity side of this theory.
This occurs in the regime whemN (g being the string The cﬁ)nformal field theory description of t_ype I1IB on
coupling and/orN are large. AdS5><T was constructed by Klebanov and Wittgd] anq _
Although many tests have been performed in the case df Was the first example of a conformal theory describing
maximal supersymmetry, relating for instance, the dynamic?ra”esj at conifold §|ngular|t|es. The same the_ory was later
of N coincidentD3 branesfor largeN) and type I1IB super- "€obtained by Morrison and Plesg&0] by adopting a gen-
gravity compactified on AdS<S® [4], much less is known eral method. of studylng branes _at sm_gularllﬁ.é?.]_. In fact, .
on the dual theories for a lower number of supersymmetriednder certain conditions, a conical singularity in a Calabi-
[6], where the candidate models exhibit a far richer structure’ @U SPace of complex dimensiancan be described by a
since they contain a variety of matter multiplets with addi-0N< Over an Einstein manifoldz,,. In the case oXs
tional symmetries other than the originglsymmetry dic- =1 such construction gives rise to a conformal field theory
tated by the supersymmetry algelhd. with “singleton” [12] degrees of freedom and B each a
A particularly interesting class of models is obtained bydoublet of the factor groupSU(2) < SU(2) and with con-
assuming that Sis replaced by a five-dimensional coset formal anomalous dimensiom\,g=3/4. Moreover the
manifold Xs=G/H with some Killing spinors. As shown in gauge groupg is SU(N) <X SU(N) and the two singleton
[8] there is a unique such manifolXs=TP9=SU(2) (chiral) multiplets are respectively in theN(N) and (N,N)
X SU(2)/U(1) with p=qg=1, wherep andq define the em- of G.
bedding of theH=U(1) group into the twdSU(2) groups. A set of chiral operators of this theory which are the ana-
logue of the Kaluza-Klein(KK) excitations of theN=4
Yang-Mills theory with SU(N) gauge group is given by

*Email address: ceresole@athena.polito.it Tr(AB)X with R-chargek and in the k/2 k/2) representation
TEmail address: dallagat@to.infn.it of SU(2)XSU(2). The existence of this(infinite in the
*Email address: dauria@polito.it large N, gsN limit) family of chiral operatorgmassive/ N
SEmail address: sergio.ferrara@cern.ch =2 hypermultiplets in the supergravity languadms been
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confirmed by Gubsef13] by a study of the eigenvalues of A. Harmonic expansion
the scalar Laplacian when performing harmonic analysis of | ot s start with a short discussion of th&! Geometry!

. ll A
type IIB supergravity on AdST™. o We consider two copies ddU(2) with generatorsi,Tx,
Moreover, the matching of gravitational afdsymmetry gA—l 3):[Ta,Tal= easT
—+---9)-LlalBlT€aB lcC-

anomalies in the two theories has been also proved in Ref. We decompose the Lie algebtaof SU(2)x SU(2) with

[13]. -
. espect to the diagonal generator
This paper analyzes the complete spectrum of the KI{ P g d
11 i ; ; -
states on AdSXT™ and infers its multiplet structure as done Ty=Ta+Ts, (2.2

in previous investigations for maximal supersymmetry. In
that case the KK spectrum, analyzed in terms of AdS repreas G=H+K, where the subalgebiid is made of the single
sentations 14,15, was interpreted in terms gf=1 con-  generatoiT, and the coset algebta contains the generators
formal superfields if3] and in terms of the\V’=4 ones in T, (i=1,2), T, (s=1,2), and

[16] and[17]. The multiplet shortening conditiorj4.8] can .

be inferred from the knowledge of all the mass matrices in Ts=T3—Ts. (2.2
the KK spectrun[19,2q._ In t.he case of théU(2,31) su- In terms of this new basis the commutation relations are
peralgebra, the shortening is proven to correspond to three

types of shortening of the appropriate representations, as dis- 1 o 1

cussed in[21] and [22]: massless AdS multiplets, short  [Ti.Tj]1= 5 €j(Tu+Ts), [Ts,Ti=5 € Tu=Ts),

AdS multiplets, and semilong AdS multiplets. These multip-

lets, in the conformal field theory language, correspond to [Ts,Ti1=[Ty, Ti]=€!T

. . ) [TsTsl=[Tu. Tsl=€Ti,
respectively conserved, chiral, and semiconserved super-

i

fields which have all protecte_d dlmen5|ons_and Wh|9h ther_e- [T, ,'T'S]=[T5,TH]=0. 2.3
fore correspond to very particular shortening conditions in
the KK context. We introduce the coset representatide of SU(2)

We show a full and detailed correspondence between alk SU(2)/Uy(1), Uy(1) being the diagonal subgroup Gf
the CFT operators and the KK modes for the conformal opgenerated by,
erators of preserved scaling dimension. We also show that _ _ N
there exist other operators related to long multiplets but hav- L(y.ysy®) =expTiy)exp Ty )expTsy®), (2.4
ing nonrenormalized conformal dimension in the supergrav-

Lo . and constructs the left invariant form on the coset
ity limit. Interestingly enough, these operators seem to be the

lowest dimensiongl ones for a giverl structure appearing in L ldL= o T,+ 0T+ 0®Ts+ 0"y, (2.5
the supersymmetric Born-Infeld action of tiE3-brane on _
AdS; X T [23,24,25,26 where the one-formgw',w® w° "} satisfy the Maurer-

The paper is organized as follows. In Sec. Il the harmonicCartan equationVICE’s)
analysis type of IIB supergravity on Ag8T! is performed 1
and the complete mass spectrum of the theory is exhibited. In do+ ECQHwEwH=0, ALY ={i,s,5H}. (2.6
Sec. Ill properties of\V=1 four-dimensional supersymmet-

ric field theories are recalled, in particular the superfield "The one-formswX={w',w%,»% are K valued and can be
alization of different short and long superconformal multi-;antified with the five \’/ieI’beins ofs/H=T while " is

plets of theSU(2,21) superalgebra. In Sec. IV a comparison i yajued and is called thel connection of the coset mani-
of superfields of protected dimensions and states in the KKq|q. |t is convenient to rescale theX and define as viel-
spectrum is made using the formulas giving the masspeinsva= (V' vs Vv5):

conformal dimension relations as predicted by the AdS/CFT ‘ '

correspondence. Vi=aw', V°=boe®, V°=coe®, 2.7

where a,b,c are real rescaling factors which will be deter-
mined by requiring that # is an Einstein spaci29,30.
Once we have the vielbeins, we may construct the Rie-

_ _ _ o mann connection one-for#*’= — 5°2 (a,b=i,s,5), impos-
In this section we give a summary of the derivation of theing the torsion-free condition

full mass spectrum of type IIB supergravity compactified on

AdS;x T obtained by KK harmonic expansion ont'T dVa— B2V, =0. 2.9
Since our main goal here is the comparison of the mass spec- ) ) )

trum with the composite operators of the CFT at the boungBY comparison with the MCE'¢2.6), one finds

ary of AdS;, we just sketch the general procedure and post-

pone a detailed derivation of our results to a forthcoming

publication[27]. Partial results were obtained 3,28 us- IFor details about the notations and conventions see the Appen-
ing different methods. dix.

Il. HARMONIC ANALYSISON T 1
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y - a a .
ij — _ _ij H _ 5 5i_ — _ij
B ello™+|c 4C)V’ B 4CEVJ,
b2 b2
St__ st H_ _ 5 5S__ —_st
B elw (C 40)\/}’ B 4CE Vi,
(2.9
B's=0.
Consequently, the curvature two-form, defined as
Rab=dpB3b— 32 b, (2.10
turns out to be
3 at i a’b? .
Rij: _1_6? VV+1& EEVSVt,
RS'=| b?— 3 b—4 AVARS a’b” €SIV, Vi
16 ¢ 1 e
a’p?
R'S=WG'JES‘V]VI, (211)
4
a )
i5_ i\/5
Re=1e2VIV?,
4
a
s5_ 5
R 16c2VW'

The Ricci tensors are now easily computed. We find

o1 a* | . 1 b*
lez Eaz— _1&:2)5:(, Rst:(zbz_ _1&:2)6\?,
5 a*
RE:W' (2.12)

In order to have an Einstein space with Ricci tensor
R%,=2e?5, (2.13

we must have

9
a’=b%=6e?, and czzzez. (2.149

An essential tool for the computation of the Laplace-
Beltrami invariant operators on'¥is the covariant deriva-

tive D=(D, ,Ds,Ds). Starting from the definition

D=d+ BT, ,=d+ B, (2.15

where T,, are theSOQ(5) generators written as matrices

(Tap) 9= — 658, settingB=w"+M, one can write

D=D"+M, (2.1
where theH-covariant derivative is defined by
PH=d+ " (2.17
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and the matrix of one-formM can be computed from Eq.
(2.9

Mil = — C_a_2 Vol M5i:a_26iiv.

4c ' 4c I

2

2
a
st |~ 5_st
M (C 4C)Ve,

a
5s__ _ — _st

M 4c € Vt y

Mis=0. (2.18
The usefulness of the decompositi@16), (2.17), (2.18

lies in the fact that the action @" on the basic harmonic

represented by the*¥coset representativie™* can be com-
puted algebraically. Indeed one has quite genefaity31]

DH=—r(a)T,Vi=—a(T,V + TV —cTsV5,
(2.19

wherer (i)=r(s)=a, r(5)=c are the rescalings arit, are
the coset generators of- T

In summary, the covariant derivative on the basic har-
monic L~ can be written as follows:

DL 1=(—r(a)T,V3+M3T, )L 1, (2.20
or, in components, using E¢2.18),
DL 1= —aT-—a—zejT- Lt
i i 2¢c i '5j ’
2
-1 a t -1
DL t=| —aTet 56 Ts L, (2.2

2

Dsle(_CTS_Z Cc— R (le_T34))Ll.

In a KK compactification, after the linearization of the

equations of motion of the field fluctuations, one is left with
a differential

By ap (%)

equation on the ten-dimensional fields

O+ gl oy)=0. (2.2

Here the fieldcﬁ%fl]’)\z](x,y) transforms irreducibly in the
representation$ A |=[Eq,s;,S,] of SU(2,2)~0(4,2) and
[A1,A5] of SO(5) and it depends on the coordinate®f
AdS; andy of T [, is the kinetic operator for a field of
quantum numbefrA] in five dimensional AdS space aix,
is the kinetic operator for a field of spip\{,\,] in the
internal space . (In the following we omit the indeXA]
on the fields).

Expandinggﬁ[xlv)\z](x,y) in the harmonics of ¥ trans-

forming irreducibly under the isometry group of*T one is
» reduced to the problem of computing the actiorgfon the
harmonics, whose eigenvalues define the AdS mass.

X, is a Laplace-Beltrami operator on*Tand it is con-

structed, for every representatipih,,\,], in terms of the
covariant derivative oiG/H. Since the covariant derivative
acts algebraically on the basic vector or spinor harmbnit
(in terms of which any harmonic can be construgtetie
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problem of the mass spectrum computation is reduced, viawherey are theSO(5) gamma matrices.

Egs.(2.20), (2.2]) to a purely algebraic problem.
The explicit evaluation of the linearized equatith22)
for the five-dimensional case has been giveh3#] and we

The above results imply that anSO(5) field
¢[M,xz](x,y) can be split into the direct sum &f(1) one-

dimensional fragments labeled by tbig,(1) chargeg. From

will adopt the same notations therein to denote the fiveggs, (2.25 and (2.26 it follows that the five-dimensional
dimensional space-time fields appearing in the harmonic exsnq four-dimensionalSO(5) representations break under

pansion. Note that Eq2.22 has been evaluated if82]
around the background solution presentedi@h

_ a __ 2
Fabcde™ €€apcder  Rp=26€ 5%*

R™ =—2e?5, (2.23

anpqr: —€€mnpgrs
B=Aun=0, #¥n=x=0,

where the fieldF ;cqe and F g, iS the projection on i
and AdS of the ten-dimensional five-formr defined ask
=dA,, A, being the real self-dual four-form of type IIIB

supergravity. The other fields of type IIB supergravity are

the metricGy,n(X,y) with internal and space-time compo-

nentsg,z(Y),d,,(X) whose Ricci tensors in this background

are given in Eq(2.23 and the complex O-form and 2-forBh
and A,y [the fermionic fieldsy,, and\ are obviously zero
in the background2.23)].

The harmonics on the coset spacé a@re labeled by two

kinds of indices, the first labelling the particular representa-

tion of the isometry grouBU(2) X SU(2)X Ug(1) and the
other referring to the representation of the subgrddip
=Uy(1). Theharmonic is thus denoted bsfls-"(y) where
j, | are the spin quantum numbers of the t8&J(2) in a

given representatiom, is theU (1) charge and denotes the
Ug(1) quantum number associated to the generatoor-

thogonal toTy . We can identifyr as theR-symmetry quan-
tum numbe13,28|.

Now we observe thadt),;(1) is necessarily a subgroup of
SQ(5), thetangent group of . The embedding formula of
Uy(1) in a given representation 8Q(5) labeled by indices
A, 3 is given by[30,3]

(2.29

where the structure constar@§” are derived from the alge-
bra (2.3 andT,, are theSO(5) generators.
In the vector representation &O(5) we find

(Ti) s =C3(Tap) s,

Eij

(Th)ab=Chab= (2.29

€st )

0
while for the spinor representation we get

1

1
(Th)=CE(Tap) = = 7 CH(Yan) = = 5 (712+ 730

0

(2.26

Uu(1) as

5-1@—1@1e—160 [N, \,]=[1,0],
(2.27)

4-18-18080 [Ny,\o]=[1/2,1/7.

From Eq.(2.27) we easily find the analogous breaking
law for antisymmetric tensorg X1,\>]=[1,1]), symmetric
traceless tensors [X1,A»]=[2,0]) and spin tensors
([N1,N2]=[3/2,1/2) by taking suitable combinations:

10-*+10+x1e+2¢60600040

[A1,A2]=[1,1],

16-*+20+x2¢0*x1letle*t1e 160006050

31
[)\1,)\2]:[5,5}, (2.28

14— 202020 *10*x100000040

[)\11)\2]:[210]'

Actually it is often more convenient to write down the
harmonic expansion in terms of th8(Q(5) harmonics

YS\’P’)\Z] whose fragments are thégg)"r) introduced before.

The generic fieldcﬁ[klyxz](x,y) can be expanded in these
harmonics as follows:

¢>ab.._<x,y>:§ (Em) By m¥ Y5 ™ (y),  (2.29

wherea,b, ... areSQ(5) tensor(or spinoy indices of the
representation[Aq,\5], (v) is a shorthand notation for
(j,I,r) andm labels the representation space ¢fi{r). In
our casem coincides with the labelling of th&),(1) frag-
ments. It is well knowr[30,3]] that the irrepses o8U(2)
X SU(2) appearing in the expansid@2.29 are only those
which contain, when reduced with respect th,(1), a
chargeq also appearing in the decomposition [0f;,A5]
underUy(1).

It is easy to see which are the constraintsjdnr select-
ing the allowed representatioris) appearing in Eq(2.29.
We write a generic representation $1J(2) X SU(2) in the
Young tableaux formalism:
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] To obtain the mass spectrum of the above fields we must
(4,0) = ® . (2.30 apply the Laplace-Beltrami operator to the harmonic expan-
' sion. We list such operators for th8QO(5) harmonic$
2j 21 vy
RERPIN
A particular component of Eq2.30 can be written as Xy Yoq=0Y, (2.353
&yY[l,O]EZDaD[aYb] , (235b
oo jn 2. (2@ 1. (1]2]...]2
my m2 ni nz ng[lvl]E*dYabVaVb, (2-35O
(2.31
and we have Xy Y[20=3DDYap) . (2.350
2j=m1+m2, 2|:n1+n2, —
(2.32) XyYr12,12=DPE, (2.35¢
2j3=my,—my, 2l3=n,—n;. .
3 2 1 3=N—M ng[a/z,l/z]EYab%bﬂc- (2.351)

Furthermore, recalling the definitiort.1), (2.2), we get
The explicit computation of the mass matrices derived
from the above Laplace-Beltrami differential operators will
not be worked out here and we refer the interested reader to
(2.33 [27]. We can give however as an example the computation
TsYgi{)l'r):irYEg’)"r)Ei(J'a—|3)YE£')I'”- involving sca!ar harmonic'yfgy'o)f Yg':ro Whiph is. straight-
forward. In this case the five-dimensional invariant operator
is simply the covariant Laplacian:

i) L) —: il
TVl =gV =i a1 Y,

Hence
2j3=q+r=my,—m;, 0 =D*D,=D'D;+ D°Ds+ D°Ds. (2.36
(2.39
2ly=q—r=n,—n,. From Eq.(2.25 and the fact thall pl ~1=T,,Y,(=0,
we obtain the following result:
Now we observe that as long @s,—m; and n,—n; are OYLLh=(—a%(TTi+ TTo) —c®TsTs) YELL . (2.37)
even or odd, the same is true fon,+m, and n;+n,.
Therefore the parity of and 2 is the same as that ofj2 Let us now evaluate Eq2.37). We set
and 25 and since P23+2l3=2q can be even or odd, the ) _
same is true for P+ 2. It follows thatj and| must either be T—_ly T-_'l4o
both integers or both half-integers. This means thatghe : 270 s 273
value of anyUy(1) fragment of theSsQ(5) fields is always (2.39
contained in anysO(5) harmonic in the irrepj(!) provided 0
thatj andl are both integers or half-integers. Sirge r and Ts=T3=T3=5 (03~ 03),

g—r are related to the third component of the “angular mo-

mentum” of the twoSU(2) factors, one also has the condi- where s and & are ordinary Pauli matrices. Using the rela-
tions|gq+r|<2j and|g—r|=<2l. The two above conditions tjons

select the harmonics appearing in the expansion.

In order to be specific it is now convenient to list all the
five-dimensional space-time fields appearing in the harmonic2N fice that th ‘ the two-forifie Y. VA is of th
expansion together with the corresponding ten-dimensiongl & Clel T R T ded it the square oot of the
fields, with AdS indices and/or internal indices, following | ’ d order operatbfD Y . q
the notations of32]. We group them according to the appro- “>1&' S€¢O" P [a”bl*
priate SO(5) bosonic(Y) or fermionic(Z) harmonic. fDa'D[ach]VbVC:E* d*d(YVaVP),

Note that the ten-dimensional fieldsh/(x,y), 3
ALpe(XY), A,La(X,Y) are not part of the above list since, where
as shown in32], they appear algebraically in the linearized
equations of motion and thus can be eliminated in terms of
the other propagating fields. Hences €,°°D,Y ge= +iv3VD DY oy

1
* dezeadeeDcheVaVb.
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TABLE I. Fields appearing in the harmonic expansion. TABLE IV. Gravitino multiplet Il. Eq=5/2+ W
10D h,, h3 Aavcda B AL (s1,8,) EY Rsymm. Field Mass
i(t))D :M A7T Ab S (3,112 Eotl r Vi —3-\Hg+4
o by (,;;abc a v, (1212  Ep+12  r+1 a, H§ +4+ 2@
LoD o o “ (12112  Eg+32 -1 B, H +7+4\Hj +4
e ab (1,0 Eo+1/2 r—1 b, 1+Hg +4
5D by a Yiab] (1,0  Eo+3/2  r+1 a,, 2+ VHo 14
10D hap (/2,0 Eo r M —1/2-\Hg +4
5D ¢ Y (ab) (12,0  Eg+1 r—2 P —3/2-\Hj +4
10D Y Pa) b, 0,1/2 Eo+1 r AR 32+ JHy +4
5D A yv Yu E (12,0  Eo+1 r+2 M 32— JH, +4
10D A (1/2,0 Eot+2 r YD —5/2—\Hg +4
5D (™ = (0,0 Eo+1/2 r—1 a He+1+2Hj+4
00  Eg+32  r+1 a  Hi+4+4Hj+4

TABLE Il. Graviton multiplet.Eq=1+ \Hy+4.

© -
(s1,8)  EBg? Rsymm. Field Mass TABLE V. Gravitino multiplet Ill. Eg= — 1/2+ JHg + 4.
O % (1) Eg+1l r H,, H
. ° i > (s1,S)) E® R symm. Field Mass
O Kk (L12 Ep+1/2 r-1 R —2+VHo+4 1,52 0 ymm.
R
O x  (1/2,) Ey+1/2 r+1 (ﬂ/r:’ —2+Hyt+4 * (1/2,2 Eo+1 r (plr\: _3+W
* (1/2,]) E0+3/2 r—1 l/jf_" _2_\/H0+4 * (1/2,1/3 E0+1/2 r—1 ¢M Hg+7_4 /Hg+4
(L12 Eo+32 r+l g, —2-VHot4 (12,112 Eo+3/2 r+1  a, Hi+4—-2JHi+4
O ok (R212 Bt 4 HotA=20Hetd 0 Egr12 r4l oa,,  2- A +4
(1/2,1/3 E0+l r+2 aM Ho+3 * (0'1) E0+3/2 r—1 bi} 17\@
* (2,12 Eotl r-2  a, Ho+3 e -
* (0,12 Eo r a —5/2+\JH +4
(12,12 Eo+2 r B, Ho+4+2/Ho+4 :
i *x (01/2 Ey+1 r+2 g =32+ \H, +4
(1,0 Eo+1 r . VHo+4 R 0
* O Eetl ot b, (A4 (120 Eotl T A 3/2-Ho +4
) v 0 _ (T) — +
120 Eo+12 r+1 N\ 12— JHo+4 012 Eotl r=2 e —324yHo +4
*x (012 Eg+12 -1 g 12— \Ho+4 OL2 B2 o grl /24 Ho 4
0172 Eq+32 r+1 \g L2+ \Ho+4 00 Bot32 r=1 a  Hy+1-2yHg+4
00  Eo+1 r B Ho
TABLE Ill. Gravitino multiplet I. Eq= yHy +4—1/2. TABLE VI. Gravitino multiplet IV. Eg=5/2+ {H, +4.
(s1,8) EY  Rsymm. Field Mass (51,5)) ES)  Rsymm. Field Mass
* (1,1/2 Ey+1 r Wy —3+H, +4 *x (112) Ep+1 r o -3—\H, +4
*x (1/21/2 Eg+1/2 r+1 ¢, Ho+7—-4Hy+4 * (1/21/2 Ey+1/2 r-1 a, Ho+4+2yHy+4

* (12102 Eg+32 r—-1 a, Hy+4-2\JH,+4 (12112 Eq+3/2 r+1 B, Hy+7+4\H,+4

® X (1,0 Ep+1/2 r-1 a, 2—\H, +4 * (0 Eetl2 r+1 b, 1+\Hy +4
(1,0 Eg+3/2 r+1 b}, 1-\H, +4 * (01D Eet32 r-1 a,, 2+\Hq +4
® x (120 E r M 5+ H,+4  * (012  E r gr) —12-Hg +4
® x (120 Ep+1 r-2 ¢ 32+ H,+4 K (012 Etl  r+2 ¢ —32-JH,+4
* (0,1/2 Ey+1 r AR 3/2—JH, +4 (12,0 Ep+1 r N 3/2+\Hy +4
(120 Eg+1 r+2 ¢ —3/2+H, +4 012  Eetl -2 g —8/2-\H, 4
(12,0 Eg+2 r M _1/2+ JH, +4 012 Eq+2 r Q) —52—\H, +4
® X (00 FEp+r12 r-1 a Hy+4—4H,+4 00  Eg+1/2 r+1 a  Ho+1+2yHy+4
(0,0 Eg+3/2 r+1 a Hy+1-2JH,+4 00  Eg+32 r-1 a  Ho+4+4yHy +4
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al N 0-2 N —l 03 N

(the same is true fad) and observing that on a Young tableaux éhe act like a derivativéLeibnitz rulg, we find on the first
tableaux of Eq(2.3))

(2.39

(2.40

(2mi(ma + 1) + 2ma(my + 1)) | =

(o101 + 0202)| | .. =

= 400 +1) - (s)?) (2.43)

An analogous result holds when acting witho; + 6,6, on r2
the second tableaux of E¢R.31), with j«<I. Ho(1,Ln) =6l j(i+D+I(+1) -5
Furthermore, the eigenvalue of{— o3)? on Eq.(2.31)
1S is the eigenvalue of the Laplacian. The same result was first
given in[13] using differential methods.

(2.42 When the harmonic is not scalag# 0, the computation
of the Laplace-Beltrami operators is more involved since the
covariant derivativeg2.21) is valued in theSO(5) Lie alge-
bra in the given representatigi;,\5].

(2.49

(My—my+n,—ny)?=4(j3+13)%

For a scalarg=0 and so, from Eq(2.34), we have

ja=—lz=r/2. (2.43
B. Spectrum and multiplet structure
Therefore, we find . -
We begin by the spectrum deriving from tkealar har-
monic that appears in the expansion of the ten-dimensional
DYEB)'J): a2j(j+l)+b2|(|+1) fieldsh,,(x,y), B(x,y), hg(x’.y)’ A_abcd(_XaY) a_ndA#V._ The
masses of the corresponding five-dimensional fidlsise
r2] Table |) are thus given in terms of the scalar harmonic ei-
+(4c2—a2—b2)z Y. (244 genvalueH(j,1,r) given in Eq.(2.46. They are
. - . . mz(Huv): HO! (24D
Substituting the values &, b, andc given in Eq.(2.14), we
obtain m2(B)=H,, (2.48
OYh " =Ho(i.1.1) Y, (2.49 m?(m,b) = Ho+ 16=8\Ho+ 4, (2.49
where mz(aMV)ZS'i‘ Hox4+Hg+4. (2.50
TABLE VII. Vector multiplet I. Eg=yHo+4—2. TABLE VIII. Vector multiplet Il. Eq=+Hg+4+4.
(s1,82) EY Rsymm. Field Mass (s1,87) EY Rsymm. Field Mass
o * (1/2,1/2 Eg+1 r b, Ho+12—6\Ho+4 (11212  Ey+1 r B, Ho+t12+6\Hy+4
O @ %k (120 Ey+1/2 r-1 L 72— Ho+ 4 (12,0 Eo+1/2 r—1 (L) 5/2+ JHo+ 4
O Kk (012 Ee+12 r+1  y© 72— Ho+4 012  Eg+1/2 r+1 Q) 5/2+ JHo+ 4
* (0,12 Ey+32 r-1 & 52— Hot4 (0172  Eo+3/2 r-1 &) 712+ \Ho+4
(1120 Eg+3/2 r+1 L 52— Ho+4 (1120  E+3/2 r+1 PO 712+ Ho+ 4
¢ @ % (00 Eo r b Hy+16—-8yHy+4 (0,0 Eo r ¢ Ho+4+4\Hy+4
® kx (00 Eyp+tl r-2 ¢ Ho+9—6Hy+4 0,0 Eo+1 r—2 & Hot+9+6\VHo+4
0,0 Ep+1 r+2 ¢ Hy+9-6yHy+4 0,0 Eo+1 r+2 ¢ Ho+9+6{Ho+4
(0,0 Eg+2 r ¢ Ho+4—4Hy+4 (0,0 Eo+2 r T Ho+16+8yHo+4
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TABLE IX. Vector Multiplet Ill. Eq=Hg " +4+1. For theantisymmetric tensor harmoniege get six eigen-
values from the Laplace Beltrami operatat
(51,5)) ES  Rsymm. Field Mass
Mag={i(@d=VHo(j,l,r=2)+4),=iJHy+4
(12,12 Eo+1 r a, Hi*+3 = {10 VHo(] J+4),xiVHo+4)
(12,0 Eg+1/2 r-1 (M +1/2—\H; T +4 and the masses
012 Eo+l2 r+1 & —12+HjT+4
012 BB -1 g w2+ HI +4 Hot+4,
® (120 Eyt32 r+1 ¢ —12-JHI +4 m?(b,,)=4 Hot4,
(070) EO r a Hg++l_2 /Ha'++4 5+H0(],I,riZ)iZ\/Ho(J,l,ri2)+4,
0,0 Eo+1 r—2 ¢ HS™ (2.53
® (00 Etl r+2 ¢ Ho "
Ho+4+4\Ho+4
® (00 Ey+2 r a H{'+1+2yHj T +4 2(a)=1 °© o
° ° ° M@= ol r=2)+ 1+ 2VAg( T.r£2) 7 4,

(2.59
Note that while the Laplacian acts diagonally on the AdS h . h . | D heticall
fieldsH,,(x) andB(x), the eigenvalues forr(x) andb(x), The spinor harmoniceigenvalues ofp are synthetically
which appear entangled in the linearized equations of motion 1
[32,33, have been obtained after diagonalization of a two by )\[1/2,1/22[ T+ VHo(rx1)+4;.
two matrix. With an abuse of notation, in Tables II-X we 2
will call #, b the linear combinations given by the plus or
minus signs in Eq(2.49.
For thevector harmoniove have found four eigenvalues

The masses for the spinors and gravitinos are given in
terms of D by a numerical shift

5
N1g=13+Ho(j,l,r£2),Ho+4+2{Ho+4} gravitino: m(wﬂ)=@—§,
and the mass spectrum of the sixteen vectors is thus I

pectiu X v 'S thu dilatino: m(\)=D+1, (2.55

m?(a,)= 311 22). (2.51) longitudinal spinors: m(y“))=D+3

W= Ho+4%2\Hot4, ' g PINOTS: :
We have not yet calculated either the eigenvalue® afor-
Ho(j,l,r£2)+7x4\Hy+4, responding to the vector-spinor harmofg which produce

m2(B,L,<p,L)= Ho+12+6\Hy+4, AdS; spinors 47, or the eigenvalues of the symmetric

Hot4+2\Ho1 4. traceless harmoni¥ (), . However, we knowa priori how

(2.52 many states we obtain in these two cases, and by a counting
argument we can circumvent the problem of the explicit
In fact, as the Laplace-Beltrami operator acts diagonally orfomputation of the eigenvalues of their mass matrices. For
the complex vector fielé,(x) we get for it eight mass val- the vector spinors we have in principle a matrix of rank 20,
ues. Furthermore, the vectdss(x), ¢,(x) get mixed in the that becomes 1616 due to the irreducibility condition, and
linearized equations of motion, and upon diagonalization wéurther gets to 112, once the transversality condition
find two extra masses for each eigenvalue. Here also we uge®Z,=0 is imposed. In this way we are left with 12 non-
the same names for the linear combinations with plus ofrivial (nonlongitudinal eigenvalues and thus we expect

minus sign respectively in the mass formu(@s2. 12 ‘D spinors. In an analogous way, the traceless symmet-
ric tensorYfg)b) gives a 14 14 mass matrix out of which five
TABLE X. Vector Multiplet IV. Eq= yHy ~+4+1. eigenvalues are longitudinal leaving 9 nontrivial eigenvalues.
If we match the bosonic and fermionic degrees of free-
(s1,52) E§)  Rsymm. Field Mass dom including the 12 12 (right) left-handed spinorgy(™

and the 9 real fieldg of the traceless symmetric tensor we

* (1/2,1/2 Ey+1 r a, Hy, +3 fi . e
ind 12 ni r ffr m and 128 fermionic ones.
® % (120 E,+12 r—1 O i A4 d 128 bosonic degrees of freedom and 128 fermionic ones

) 0 _ Therefore, once we have correctly and unambiguously as-
* (012 Eptlz v+l  yp' +12-yH, +4 signed all the fields except th&™ and ¢ to supermultiplets

* (O Eg+32 r-1 R —u2-\H, +4 of SU(2,2/1), the remaining degrees of freedomydf” and
(120 Eo+3/2 r+1 P 1/2+\H, +4 ¢ are uniquely assigned to the supermultiplets for their
® x (00 Eo r a Hy +1-2yH, +4  completion.
® X (00 Ey+1 r—2 B Ho ™ In Tables 1I-X we have arranged our resultsSibi(2,21)
(0,0 Eg+1 r+2 ¢ Ho ™ supermultiplets by an exhaustion principle, starting from the
0,0 Eg+2 r a Hy +1+2H, +4 highest spin of the supermultiplet. Each state of such multi-

plets is labeled by th8U(2,2) quantum number£(,s;,s,)
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other than the internal symmetry attributgd,r). As ex- note that in all the formulas giving the mass spectrum
plained in Sec. llIEy, the AdS energy, is identified with the (2.47)—(2.55), the R symmetryr refers to the particular state
conformal dimensior. Taking into account th&, value of  we are considering. Therél, appears to have dependence
each state and iR symmetry, we are able to fit unambigu- on ther of the state which is different for different states.
ously every mass at the proper place. For this purpose it islowever, when arranging the states in supermultiplets of
essential to use the relations between the conformal weigh8U(2,2/1), it is convenient to express theof the state in

A and the masses given by terms of theR symmetry of the supermultiplet=r"*, de-
fined as theR symmetry of the highest spin. In this case, all
spin 2 A=2+4+m},, the masses can be expressed in terms ¢4 gwhich has the
same dependence ors ™S for all the members of the mul-
spin 3/2: A=2+[mgp,+3/2, tiplet. For the graviton multiplet and the first two families of
vector multiplets all the masses are written in termdHgf
spin 10 A=2+1+m3,, =Ho(j,1,r); and for the last two families of vectors all the
(2.56  masses are given in terms f; =Hq(j,l,r = 1) and for the
two-form:  A=2+[my )|, last two families of vectors all the masses are given in terms

of Hy “=Hy(j,l,r£2). Indeed, if we compute the confor-
mal weightA of the state from the mass values, it turns out
to be expressed in terms Hfy,Hy ,H, = which are the same
for every state of the multiplet, as it must be. Of course, the
value of A in terms ofHy,Hy ,Hy = can be computed from
Eqg. (2.56 and we have given for each multiplet the confor-

spin 1/2: AL =2x|myp),
spin 0: AL=2xJ4+mp,

(where A is equal to theE, value of the state The sign
ambiguity in the spin0, 1/2) dimensions is present because ' X
the unitarity boundE,=1+s allows the possibilityEy< 2 mal weight o_f the lowest state labeled By in terms _ofHo.
for such states. The spin O case and its implications were 1he multiplets of Tables 1I-X are long multiplets of
analyzed in[33] and noticed also ifi22]. There is no such SU(2,31) when theSU(2)x SU(2) quantum number, |
ambiguity in all the other cases. and theR-symmetry values are generic. quever, it is well
In the theory at hand, the chiral primary 7B) has the known from group theory5,22] that shortening of the mul-
scalars withE=3/2, Eq+ 1="5/2 coming from theA . di- tiplets can occur in correspondence with particular values of
mensions of the same=1 mass value. The fermionic part- the SU(2,21) quantum numbers giving rise to chire®),

ner is massless so there are no fermions \Eigh: 2. semilong(x) or massles$< ) multiplets. The above symbols
We have found nine families of supermultiplets: Onehave been used in the columns at the left of the tables to

graviton multiplet, four gravitino multiplets, and four vector denpte the surviving states in the shortened multiplets. In

multiplets which are reported in Tables ll—X. particular, the absence of these symbols in Table IV means
These are organized as follows. that.no shorten!ng of any kind can occur fgr the gravitino
In the first column we give thes{,s,) spin quantum mulpplet Il. Notice that_ shortenings are indicated only for

numbers of the state. positive values of théshifted R symmetryr, namely whernr

In the second column we give thg, value of the state, satisfies the following inequalitifsee Sec. IY.

where, according to the standard nomenclature, the value of r=0 TablesIl. VIL. VI
E, is referred to as th&, of the multiplet and belongs to a o ’
vector field, a spin 1/2 field or to a scalar field for the gravi- r+1=0 TableslV, V,
ton, gravitino, and vector multiplets, respectively. The other
states have ait, value shifted in a range of2 (in 1/2 r—1=0 Tables I, VI,
step$ with respect to thde,, of the multiplet.
In the third column we write th&® symmetry of the state r+2=0 TablelX,
where the value is assigned to the highest spin state (
=r"s), the other states havinB symmetry shifted in a r—2=0 Table X. (2.57)

range of£2 (in integer steps
In the fourth column we give the right association of that|n fact, these shortened multiplets are the most interesting in
particularSU(2,21) state to the field obtained from the KK  light of the correspondence with the CFT at the boundary.
spectrum, according to the notations explained above.  We give the discussion of the shortenings in Sec. IV, after a
In the fifth column we give the mass of the sthiteterms  preliminary introduction to the representation of supercon-
of the ubiquitous expressidf,, whereH is evaluated at a formal superfields in CFT and the discussion of the confor-
valuer corresponding to thaR symmetry of the multiplet mal operators of protected scaling dimensions.
defined as th&k symmetry of the highest spin=r"s. We

lll. CFT AND SU(2,41) REPRESENTATIONS

A. SU(2,21) conformal superfields
3According to Eq.(2.56 we give here the mass for the fermion (223D P

and two-form fields, while for all the other bosons we give the mass The AdS-CFT correspondentg,2,3] gives a relation be-
squared. tween the particle states in AglSclassified in this case by
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the SU(2,21) superalgebra and the realization of the very 3
same representatiofi,3,17 in terms of conformal fields on 2425~ Bos5r<Eg—2-2sy, (3.2
the boundaryM ,= JAdSs.

In this way, the highest weight representations ofEy=1+s (Eo=3|r|), Eo=s,=s,=r=0 (identity represen-
SU(2,21) correspond tgrimary superconformal fields on tation), which restrict the allowed values of tiesymmetry
the boundary and a generic state on the bulk, labeled by fouwtharge[22,34,35.
quantum numberf5,34,33 D(Eq,S;,S,|r) related toU (1) Operators with protected dimensions fall in four catego-
X SU(2)X SU(2)X Ug(1)CSU(2,2)XUg(1), is mapped ries(as discussed ifb,22,37).
to a primary conformal field{.! s \(x) with scaling dimen- (1) Chiral superfieldsS. They satisfy the condition
sionA=E,, Lorentz quantum humbersl(,sz) andR sym- —

metry r. Eq is the AdS energy level and its relation to the DS, . s, (x,, ﬁ) 0. 3.3
AdS mass depends on the spin of the state. We recall here
the relevant casg$,5,16 For thems,=0 (s, =0 if antichira) andr=3A (r=—3A if
antichira). These superfields contain thimassless on the
1 1 2 (B —1)(E.—3 boundary free singletonrepresentations fak = 1+s. These
2'p/ M =(BEo=1)(Eo=3), multiplets have 4(8+ 1) degrees of freedom.
(2) Semichiral superfieldsU, 4, a,. o, - They satisfy
S S,
(0,00 m*=Eq(Eq—4), the condition
(1,0,(0,) m?*=(Eo—2)% (3. Diala, iy yar s, (%, 9,9)=0, (3.4
( 1 252) 1 2s)
(1Y) m?=Eq(Eo—4), and for themr =2(A+2s,). If s,=0 the above superfield
becomes chiral. For exampk=1/2 would correspond to
1 ol lo 1 semichiral superfield whose lowest component is a right-
27\ Y handed spin 1/2 and its highest spin is a vector field with
(5’1 ( 115) (3) Conserved superfieldd(s s, . They satisfy
D - 9)= .
It is crucial in our discussion to classify states correspond- Jal'““ZSf“l'““ZSz(X’ 3,8)=0 @9
ing to short multiplets because in this case the conformal d
dimensionA is protectedand it allows a stringent test be- an
tween the supergravity theory and the conformal field theory - —
realization. Here, protected means thais related to theR b 1‘]%---&251@1---&252()("9"9)_0 (3.6

charge which is quantized in terms of the isometry generator
of Ur(1) and therefore it is exact to all orders in the (or D2J,

~1,(gsN) ! expansion. However, we note that unlike the
/\/—4 theory[24,36, operators with protected dimensions
have conformal dimension different from their free-field
value. — _
N=1 superfields with protected and unprotected dimen- DL, g ity irg (X 0, 0) =0 (3.7
sions have been discussed by many auth®)s,22,37. We
would like to remind here just their field theory realization, or
which will become especially important in comparing con- o
formal operators with the particular model described by the D°L ..o (x U, i}) 0 for s,=0. (3.8
type 1IB theory compactified on AdS T

A generic conformal primary superfield is classified by anNTheir R symmetry isr= %(A—Z— 252)_ A semiconserved
SL(2,C) representation §,s,), a dimensionE, and an  superfield becomes conserved if it is left and right semicon-
R-symmetry charge. These are the quantum numbers of theserved in which casa =2+s;+s, andr=2(s;—s,).
¥=0 component of the superfield. All descendants are given Operators of type1), (2) and (4) have protectedbut
by the & expansion which also dictates their spgfthsymme-  anomalous dimensions in a non-trivial conformal field
try r and scaling dimensiom\, since 9, has 6;,S;) theory. They are short or semishort because some of the
=(1/2,0),A=—-1/2,r=1 (so 9, has 6;,s,)=(0,1/2),A fields in the? expansion are missing. In the languag¢ ]
=—1/2,r=—1). For a generic primary conformal field the the (1) and(2) superfields correspond to the shortening con-
dimension is not protected since it can take any value ditionsny =0 (n; =0), (3) correspond ta; =n, =0 and
=2+5;+5S; (5:5,#0) or A=1+5s (5;5,=0) due to unitar- (4) ton, =0 (n; =0).
ity bounds of the irrepses dBU(2,2) [44]. SU(2,21) re- In the AdS-CFT correspondence all these superfields cor-
quires the additional unitarity bounds respond to KK states with multiplet shortening and typically

=0 if s,=0) and for themr=2(s;—s,), A

..az,sl
=2+s;+S,.
(4) Semiconserved superfieldss, s, . They satisfy
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they occur when there is a lowering in the rank of the mass
matrix and rational values oE, are obtained. Conserved
current multiplets correspond to massless fields in AdS
They can only occur for fields whose mass is protected by a

eVigihigVig—ids

eVo_, glhagVag—is

symmetry (such as gauge fielfland there is only a finite . . (3.9
number of them corresponding to the gauge fields of the A—eMAeT M,

SU(2,21)x SU(2) X SU(2) algebra and possibly Betti mul-

tiplets [38,39. While the massless vectors of the isometry B—e'2Be M1

group correspond to thgz(1) and flavor symmetry of the
boundary gauge theory, the Betti multiplet, as recentlyand we define
shown by Klebanov and Witteh33], corresponds to the
U,(1) baryonic current multiplet of the boundary CFT. Wla:ﬁ(eleae—Vl),
There are also two complex moduli related Boand A,y (3.10
wrapped on a 2-cycle offf [9], giving two hypermultiplets W,,=DD(e"2D e V2)
with Eq=3 andr =2. Massive KK states with arbitrary irra- 2a @ '
tional value ofE, correspond to generic conformal field op-
erators with anomalous dimension.

It is easy to relate operators of different type by superfiel
multiplication. By multiplying a chiral §;,0) by an antichiral

whereV, andV, are superfields Lie algebra valued in the
wo G factors andv=V;+V,. Gauge covariant combina-
ions are therefore

(0,s,) primary one gets a generic superfield withy (S,), k_ /L k

A=A®+A? and r=2/3(A°—A?%). By multiplying a con- W, (AB)“=W,(AB)*, (3.11
served currems;uperfield]al g iy i by a chiral scalar Wa(BA)k:Wi(BA)k, (3.12
superfield one gets a semiconserved superfield WithA°©

+2+s;+S, [r=2/3(A—2-25s,)]. AeVAe V=AezAe V1, 3.13

In a KK theory only particular values ofs(,s,) can oc-
cur, because the theory in higher dimensions has only spin 2, Vv Vie v
spin 3/2 fields and lower. This implies that for bosons only Be'Be "=Be"'Be "2 (3.1
(0,0, (1,0, (0,1, (1/2,1/2, (1,1) representations and for fer-
mions only (1/2,0, (0,1/2, (1,1/2, (1/2,1) representations Formulas(3.11) and(3.13 transform as
can occur. This drastically limits the spin of conformal su- Ao —iA
perfields. Indeed, for chiral ones=0,1/2, while for non- X—eliXe (3.19

chiral s;,s,<1/2. .
1=z while Egs.(3.12 and(3.14) transform as

B. CFT analysis of AdSXT! compactification Y ety gife, (3.16

In the conformal field theory9] which, at least for large
N and gN, is dual to type IIB supergravity on AdXT**  We can multiply Egs(3.13 and(3.14 as
the basic superfields are the gauge fitldg, of SU(N) L
XSUN) and two doublets of chiral superfields B which Ae2ABe V2B, (3.17
are in the N,N) and (N,N) of SU(N) X SU(N) and in the )
(1/2,0)r=1,(0,1/2)r=1 of the global symmetry group Which transforms aX or
SU(2)XSU(2)XUg(1). At the conformal point these su-
perfields have anomalous dimensiol\=3/4 and
R-symmetryr =1/2. The chiralW, superfield hasA =3/2,

r=1 . i Kl which transforms a¥ and thus build gauge covariant com-
The superpotential9] W=N\e" e“Tr(A;BA;B|) has A binations asiVtX or W2Y

=3,r=2 and plays an important role in the discussion, since If a symmetryA< B is required, then symmetrization ex-
it determines to some extent both the chiral spectrum as Weﬂhanging Eq.(3.11 with Eq. (3 1’2) Eq. (3.13 with Eq

as the marginal deformations of the SCFT. It is related to(3_14) or Eq.(3.17 with Eq. (3.18 will occur.

some of theA =3 flavor singlet chiral operators which are We will now consider sets of towers of superfields, la-
discussed later. bg

BeiBAe V1A, (3.19

Let us specify the superspace gauge transformations eled by an integer numb&mwhich correspond tchiral and
the above superfields. Followifg0], we introduce Lie al- emiconservedgauge invariant superfields and. having

gebra valued chiral parametets A, of the two factors of therefore protected dimensions. As we will see in the next
2 ; section, these conformal operators are precisely those corre-
G=SU(N) X SU(N). Then, undelG gauge transformations P P y

sponding to AdS-KK states undergoing multiplet shortening.

Let us first consider chiral superfields. There are three
infinite sequences of them, correspondindnypermultiplets
“Below we use standard superfield notati®4@]. andtensor multipletsn the AdS bulk.
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They are given & appearance of KK towers witlispin 1) vector fields and
(spin 2 tensor fields with protected dimensions.
In superfield language such fields are given by superfields

3
K__ k k— — =
S'=Tr(AB), Af=gk, r=k k>0, (319 containing terms of the form

k
3 P _
TK=Tr(W,(AB)), Ak:i(lﬁ—l)' r=k+1, k>0, ) ) j—I—E, r=k,
(320) ‘]ad:Tr(‘]ad(AB) ): 3 (324)
A=3+ Ek,
3
Ok=Tr(W*W,(AB)Y), Ak:3+§k, r=k+2. )
. _k _k,
(3.21 ) ) j=1+1] 1 r
The serie€3.19 was anticipated by Klebanov, Witt¢a] P=TrI(AB), 3 (329

and shown to occur in the KK modes of the supergravity A=2+ Ek’
theory by Gubsef13], who also discussed descendants of

the serieq3.21). k

The series(3.20, (3.21) has been constructed by the j=l+1ll=5 r=k+2,
knowledge of the full mass spectrum and the shortening |k=Tr(JW?(AB)) (3.26
conditions® A=5+§k

It is useful to note that in the Eq3.20 and Eq.(3.21) 2"

towers, we find operators of the type

3 where
BYs=Tr(F4(AB)Y), A¥=2+_k (k>0), _
2 (3.22 J=W,e"W.e ™V (A=3), (3.27
J=A(eVA)e™V (A=2), (3.28

3
k_— a k k_—
¢ =Tr(F ,5F F(AB)Y), A¥=4+ Ek' (3.23 and satisfying

as descendants.,z,F, refer in the spinor notation to the Da‘]';d:(), DDJ*=0, DDI*=0. 3.29
dual and anti-self-dual parts of the field strengt)y, .

Even more interesting is the appearance(sgmjcon-
served superfields corresponding in the languagg2?f to
semilong multiplets in Ad$S These superfields explain the

Analogous structures appear wlBtreplacingA in Eq. (3.28
andj <« in Egs.(3.25 and(3.26. Note that thenon-gauge-
invariant operators in Eqs(3.24—(3.26) behave as if they
would have conformal dimension 3 and 2 respectively when
the gauge singlet is formed. This is because the shortening
condition implies that operators starting with structures as in
®Here and in what follows we always mean symmetrized trace andEgs. (3.24), (3.25, and (3.26) have dimension given by 3
symmetrizedSU(2) X SU(2) indices. +3/2k, 2+ 3/2k and 5+ 3/2k respectively.
®Chiral operators of the type TW,,..-W,,) cannot appear in the The highest spin states contained in E(&24, (3.25,
KK spectrum forp>2 since such operators have=3/2p, r=p,  and(3.26) aredescendantwith spin 2 andA =4+ 3/2k, spin
j=1=0 and therefore are incompatible with the spectrum of thel with A =3+ 3/2, and spin 1 withA =6+ 3/2. These are
Ug(1) charge on ¥ (see next sectionFor p=2 the chiral opera- massive recursions of the graviton, massless gauge boson,
tors T(W, W,,(AB)¥) are allowed but they contain two irreduc- and massive vector fields respectively. The AdS masses of
ible parts: one symmetrig1, 0) spin ong and the other antisym- the above states are given by
metric [(0, 0 spin zerd. However, following an observation of

Aharony(as quoted if41]) only the scalar term is a chiral primary . . k_ /g §
operator. This is due to the superspace identity spin 2: M 2 k 2 k+4], (330
. ) K 3 /3
DD[e"D (e "Wze¥)e V]=[W,, W], spin 1: M*= > §k+2 ,
(3.3)
where the symmetry of the left hand side derives from the fol-
lowing superspace Bianchi identitye’D%(e VW, e")e™V 3 3
—gv—. pﬁvp yer ( “ ) _ spin 1: Mk:\/—k+5 —k+3].
=D, (e"W*e™"). Therefore, the other term is not chiral primary 2 2
since (3.32
_ The first two masses vanish for thke=0 level corresponding
Tr(W W) (AB)*)=DDTr(e"D (e~ YWe)e V(AB)¥). to theconservecturrents Td,,,,, TrJ of the superconformal
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field theory with flavor grougs =SU(2) X SU(2), while the 03k=Tr(w (AeVKe—V)n(AB)k)’ (3.42)
third mass does not vanish lat=0. “ “

For the spin 3/2 massive tower we do not expect to gefnith G representation
vanishing gravitino mass whek=0, since the massless

gravitino is already contained in the graviton tower. In spite me K k _
of this, there are semiconserved superfields corresponding to O, 2 +n, 5 = k=1, 343
shortened massive gravitino towers.
These are e [ K Kk
o™ | =+n,5], r=k+1, (3.44
i=l, r=k—1, 2 2
L*=Tr(e"W,e V(AB)¥) 3 3 K
a @ A=>+2k (k>0), ank. [ K0 K) 2
2 ' 2 (333 Oa . 2+n,2 , r=k+1. (343
_ The multiplets in Eqs(3.19—(3.21), (3.249—-(3.26, and
i=1, r=k+1,  (3.33—(3.35 are shortened multiplets with protected dimen-
L2*=Tr(e"W,e YW2(AB)¥) 9 3 sions because of supersymmetry through nonrenormalization
“ A= 5" Ek’ theorems. However we will see that a peculiar phenomenon
(3.34 of /=1 which can be learned from the AdS-CFT correspon-
' dence is that there exist also infinite towers of long multi-
L3k =Tr(W, (AeVAe ) plets with rational dimensions, at least fdrandggN large,
@ “« which in principle are not expected to have protected dimen-
j=1+1, r=k+1, sions.
A typical tower which is not expected to have protected
k
X(AB)Y) A Z+ Ek, (339 gimension is the massive tower

272
, . , Q=Tr(W2e"W?e~V(AB)), (3.46
which satisfyD“L ;=0 andD?L =0, respectively. ‘

We note in particular that the tower analogous to EQ.yhich contains the descendant(FF[,ﬁF“'BEdBE“'B(AB)k).

_ We just note that the analogous operator in type IIB on
1k _ VAN o=V g : . h
Lo =Tr(e"Wee "ebi, ..gy0) (3.39 AdS;xS® was a descendant of a chiral primashowing up

. . ! at first atp=4 level[14,16,17,2§) and therefore having pro-
in thek-fold symmetric ofSU(3). Fork>1 these superfields . aq gimensiong becauseqs} oNV=4 supersymr?wgtry
are semiconserved but f&= 1, unlike in our case, they be- [24,36,43.
come conserved, corresponding to the fact that darSad- The identification of such long multiplets with supercon-
ditional SU(3) triplet of massless gravitinos is required by ¢4ma| operators will be given in the next section. Operators
N=4 supersymmetry. L whoseR symmetry is not related to the top components of

In this case the exact operatof’ is one of the twoSU(2) factors(see Sec. IV are for instance

1 _ _ — _ towers of the form
L, =T (e"W,e Vo) +D (¢ e V) (e'p% V) eanc]

(3.37) T (AeVAe V)"1i(eVBe VB)"2(AB)¥],  (3.47
which satisfies which havej =k/2+n,, | =k/2+n, andr=k. These opera-
— 1 o 11 tors have all irrational dimensions unlasg n, are consecu-
DLy =D"L.=0 (3389 tive terms in a particular sequence describefLia.

It is worthwhile to point out that in this gauge theory we
have no realization of the semichiral superfields described
before and indeed we do not find on the supergravity side
any shortened multiplet satisfying the=2/3(Eq+ 2s,) con-
dition (s,#0). The reason is that such superfields corre-
spond to nonunitary modules.

as a consequence of the equations of motionNgr, ¢, and
the identity

D2[e VD, (eVp?e V)eV]=[¢2W,].  (3.39

The above superfield8.33—(3.395 are the lowest non-

chiral operators of more general towers with irrational scal-
ing dimensions described by IV. AdS-CFT CORRESPONDENCE

In Secs. Il and Il we have described the KK spectrum
with its multiplet structure and the CFT operators with pro-
_ - tected dimensions. We would like now to present the mul-
02 =Tr(e"W, e V(AeAe V)"WZ(AB)Y), tiplet shortening conditions and analyze the correspondence

(3.41) of these states with the boundary field theory operators

O =Tr(e"W,e V(Ae'Ae )"(AB)"),  (3.40
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shown in the last section. This is an important nontrivialvector multiplet 1ll. We will show that these three cases are
check for the AdS-CFT correspondence. On the other handhe relevant ones. Indeed, in the first casg(j,|,r)=23r?
supergravity seems to suggest additional dynamical inputs te-6|r| and thusH(j,l,r)+4=(3|r/2|+2)?, in the second

the extent that, in the larghl, g,N limit, it predicts that Hgo(j,l,r)=32r?+12r|+12 and thus Hq(j,l,r)+4
certain towers of long multiplets have rational dimensions,=(3|r/2|+4)?, while in the third case we have
suggesting the presence of some hidden symmetry. This laHq(j,I,r)=2r?—6r and thusHq(j,l,r) +4=(3(r/2)—2)2.

ter may perhaps be explained in the context of Born-Infeld Of course there are other possible solutions, but we will
theory which relate®-brane dynamics to AdS supergravity see that only those presented above correspond to multiplet
in the largeN limit. shortening.

From the point of view of th&§U(2,21) multiplet struc- Looking at Tables 1I-X we see that for the graviton and
ture, the shortening conditions correspond to saturation ofype | and Il vector multiplet§VM) Eg is given in terms of
some of the inequalities describing the unitarity bouf2s. Ho(j,l,r) while for gravitino multiplet of type I, IV and II,
These become relations betwdgnand the otheBU(2,21) E, is given in terms oH =H,(j,I,r ¥ 1) respectively.
guantum numbers. o , Analogously, for the type Il and IV VME, is given in

In the KK context, we do not know priori the multiplet o115 of HI*=Ho(j.I,r+2) respectively. As a conse-

structlurg O.f ”}e Klihstzqes and the shfortenln% Cond'F'On%uence the conditions for rational values B§ (protected
merely derve irom the disappearance of Some harmonics | imensiong are different for different multiplets.

the field expansion. This reduces the rank of the mass matri- . s

. Let us examine the conditiord.4), (4.5), and(4.6) sepa-
ces and thus some of the states drop from the multiplet. ThFater .4, (4.9 (4.6 sep
relevant fact is that these shortening conditions must be in Coﬁdition(4 4 for the various multiplets reads
one to one correspondence with those deriving from the '

SU(2,21) group theoretical analysis. rl Kk
As discussed in the previous section, the shortening conGravition and type | and Il VM j=I= 5=3 4.7
ditions can be read as the following relations on the
SU(2,21) quantum numbers already given in Sec. Il A 1l K
3 3 type | gravitino j=I= =7
(anti) chiral E0=+§r (—Er , (4.7 4.8
. r+1| k
conserved Eo=2+s;+S;, (S1-S)= 5T, type Il gravitino j=I=|——=7,
4.2 (4.9
_ 3 » _ r+1 k
semiconserved E0=§r+232+2 (or s,—Sq,r——r). type Il gravitino j=I= =37
4.3 (4.10
This means that the corresponding conformal dimension r—1l k
must have a rational value. As it can easily be seen from the type IV gravitino j=I= =3
mass spectrum presented in Sec. Il, this implies that only for
o ! (4.1)
specificG quantum numbers we can retrieve such short mul-
tiplets. Actually, a rational scaling dimension can be found reol Kk
only if Ho(j,l,r)+4 is a perfect square of a rational number. mvM i=l=l—1/=—=
. . g . type J )
Two possible sets of values for which such a condition is 2] 2
satisfied are (4.12
i r_x type IV VM 1= 2=k
(4.13
ri k i ri k ) - )
j=l-1= 5|=5 or I=j—1= 3= 7 (4.5 Herek e 7, identifies theSU(2) X SU(2) representations of
the multiplet; it is obvious that all the multiplets obeying
We will also examine briefly the case condition (4.4) are in the irrep k/2 k/2).
Substituting in theE, value of the multiplet given in
. r—2 Tables Il-XHg+4, Hy +4, andH, “ +4 with (3/X+2)?
j=1= - =2 (4.6)  we find the following values o, for the various multiplets:

which for most multiplets leads to a violation of inequality

3 3
(3.2, but in one case gives a consistent shortening of the Gravition multiplet Eo=7k+3 2 r+s, 4.14

2
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(3 I VM (4.19, and another hypermultiplet from type IV VM
3 3 50 (4.22 (or from type Il VM if r<—2); a semilong graviton
type | LH gravitino Eo=§k+ 5= 3 mul'u_p_let from Eq.(4.14 (for both signs of), tvv_o semilong
—>r+3 gravitino from type lll and IV(or from type | ifr<1 and
. 2 ' type Il if r<—1 respectively, and IV RH gravitino multip-
(4.19 lets from the two equationgt.17) and (4.18); for k=0 (G-
(3 single), we also obtain from Eq(4.14 a short massless
Zr+6, graviton multiplet withEy=3, r=0. In this case only four
2 states survive: the massless graviton, two massless gravitini
3 (with r==*=1 depending on the chiralityand one massless
- §r+3, vector. This latter, being aBU(2) X SU(2) X Ug(1) singlet,
(4.16) must be identified with th&-symmetry Killing vector.
Note that Eqs(4.16), (4.20), and(4.21) do not correspond

N 3 9
type Il DH gravitino Eo=zk+ §E<

(3 to any shortening condition, yet we have a rational value of
3 3 |23 E, belonging to a long multiplet.
type Il RH gravitino Eo=§k+ §E< 3 It is now easy to find the correspondence between the
——r, supermultiplets obeying conditio@.7)—(4.13 and the pri-
.2 mary conformal superfields on the CFT side discussed in the
(4.17 previous section. Given the valueskf andk (or r) we have
3 immediately that the two hypermultiplets from Ed4.19
§r+3, and(4.22 are in correspondence with the chiral superfields

S¢ and K (3.19 and (3.21); the tensor multiplet from Eq.
(4.15 corresponds to the chiral superfield of Eq. (3.20;
2 the semilong graviton multiplet from Ed@4.14), associated
(4.18  with the semiconserved superfie]@d of Eq. (3.249) [in par-
ticular the massless graviton multipléé=0 in Eq. (4.14)
3 3 corresponds to the conserved superfild]; finally, the two
type | VM Eozikz iir' semilong graviton multiplets from Eq&t.17) and(4.18 can
be put in correspondence with the semiconserved superfields
L andL? of Egs.(3.33 and(3.34).
We note that the type | vector series in Table VII for
type Il VM E0=§k+65i§r+6 =|l=r=0, see Eq(4.19, degenerates into the identity rep-
2 2 ' resentation, sincEy=0. However, as follows from the same
(4.20  table, another unitary representation, a massless vector mul-
tiplet, appears in the spectrum. Indeed, ferl=r=0, the
multiplet bosonic mass squared eigenvalues rszg=0,
Zr+6, Mfey=0, Mi,=—3, mf,=—4. The eigenvaluem?,=0
gives two possible values fdg,: E,=0 andEy=4. If we
choose theey=0 branch, the other modédscalars withE,
=1,2 and vector wittEy=1) are gauge modes and decouple
(4.21)  from the physical Hilbert space, thus the multiplet is a gauge
module[44]. If we choose thé€Ey=4 branch, we get a uni-
(3 tary representation with a scalar witt,=2 and a vector
3 with Eq=3 as physical states, while the other mots=alars
type IV.VM  Eo=Zk+ 3= 3 with Eo=3,4) decouple from the physical Hilbert space. This
—=r+6, massless vector multiplet is the so callBdtti multiplet of
L2 4.22 KK supergravity, related to the fact that @ 1)-form (in
' this casgp=3) couples to g-brane wrapped on a nontrivial
p-cycle which in this case is related ba=1, the third Betti
where the upper and lower choices on the right hand sideumber of #[33,45. The general occurrence of such Betti

refer to positive or negative arguments of the absolute valuesultiplets in the KK context was widely discussed 88]. In

in Egs.(4.7—(4.13. the case of Adg<M, such a multiplet is related tb,
Using Egs.(4.1)—(4.3) we see that under conditidd.4) =1 [39,44], corresponding to the M theory three-form with

we obtain the following: a chiral tensor multiplet from type | one component on AdSnd two components on ¥t and it

LH gravitino (4.15 (or an antichiral one from type Ill RH was found in the KK context if20]. Incidentally, in the

gravitino); one hypermultipletfor both signs of) from type  language off47], the Betti massless vect¢D(3,1/2,1/2)

3 9
type IV RH gravitino E0:§k+iz

(4.19

3
type 1l VM EO=§k+35<
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isa zero center moduleof the conformal groupSU(2,2), r—1] k
since all the Casimir vanise,=C;,=C;,, =0 as is the case type | gravitino 1=j—-1=|—— =z,
for the identityD(0,0,0), the gauge module(1,1/2,1/2), (4.28
the massless scalay4,0,0) appearing in the hypermultip-
let S¢ for k=0 (3.19 and the spin one singleton(2,1,0) r+11 k
+D(2,0,1) representatiorigi4,47,49. The geometrical ori- type Il gravitino |=j—1= > =3
gin of this gauge field coupled to a wrapp@@ brane on T 4.29
has recently been discussed &8] together with its interpre- '
tation as baryon current in the AdS-CFT correspondence. r+1l Kk
The boundary superfield corresponding to the Betti mul- type Il gravitino |=j—1= =3
tiplet is (4.30
U=TrAe'Ae V-TrBe'Be vV (D2U=D%=0). r—1 k
(4.23 type IV gravitino |=j—1= - =3
. - = (4.30
Its =0 component is a scaldt| ;_,=AA—BB with E,
=2(m(20)= —4) and the baryon current is ttér, 6 compo- r+2| k
nent with A=Eq+1=3(m¢;,=0) [33]. Note that all KK type Il VM I=j-1=\——=7,
states are neutral under thi;(1), andthus it lies outside (4.32
the T isometry.
Beside shortened multiplets, there are CFT superconfor- r—2/ k
mal operators with rational dimensions that are associated ype IV.VM  I=j-1=|——=3
with the long multiplets of Eqs(4.16), (4.20, and (4.21). (4.33

Indeed we may construct the following superfiéld in the
(k/2ki2) of G: (or j«—1) where all the states have the representaticf2 (
+1k/2) if j=1+1 orin the k/2k/2+1) if I=j+1.
Proceeding as before we now substititg+4, Hy +4,
Ho ~+4 with (3/X%+4)? in the E, value of the various
multiplets given in Tables II-X and we obtain for each mul-

tiplet the following rational values dEg:

_ 3.9
PL=Tr(W,e"W?e V(AB)") A=Zk+3,
r=k—1, k>0, (4.24

3 3
— 3 ; : _ _
Qk=Tr(W2e"W2e V(AB)) A= §k+6, r=k, Graviton multiplet E0—5k+ 5= Er +5, (4.39

(4.25 3 2 3
3 type | LH gravitino EO=§k+ §E§r+2,
R=Tr(e"W2e V(AB)¥) A= Sk+3, (4.35
3 13 3
r=k—2,k>0. (4.26 type Il LH gravitino Eg=zk+ —>-=>r+8,
Let us now discuss the shortening conditions when the (4.36
G-quantum numbers satisfy conditigh.5). 3 7 3
In this case Eqs(4.7)—(4.13 are replaced by the analo- type Il RH gravitino Ey==k+—==r+5,
gous equations 22 2 437
4.3
ri k
Graviton and type | and Il VM |=j—1= —‘E—, . 3 13 3
2| 2 type IV RH gravitino Eo=sk+ 5-=2r+5,
(4.27 438
; ] _ ] 3 3
A zero center module also appears in the graviton multiplet of the type | VM EO=§ k+2= > r+2,
OSp(6|4) superalgebrd47]. In fact this multiplet contains an
0O(6) singlet massless vector other than @) gauge fields. This (4.39
agrees with the geometrical interpretation/df 6 supergravity as 3 3
the low-energy limit of type IIA string theory on AdS CP3, the = Kk+8="r+
latter being obtained by Hopf reducing M-theory on AdS’ [48]. type Il VM Eo 2 k+8 2 r+s,
8The QX massive tower was also considered 113]. (4.40
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3 3 k_ Vi, o VA VA R—V k
type 11l VM E0=§k+555r+8, G =Tr(e"W,e  YAe'Ae  Y(AB)Y),

3 7
(4.4 Fomgktyp, =kt 4
3 3 H*=Tr(e"W,e YW?Ae'Ae V(AB)Y),
type IV VM Eq=ok+5=2r+2, 3 .13
(4.42 Fompkt g, rekel e

. N It must be noted thaG* coincides withO'" for n=1 and
where we have limited ourselves to the positive branch of th%k coincides withO2™ for n=1. Moreover.D¥ coincides

expressions in the absolute values appearing in @q28— —
(4.%3). PP J with the operatol02" for n=1 andk=0.

By Eq. (4.1) we see that there are no chiral supermulti- Nspection of the above list shows that these families are
plets when conditiori4.5) holds. However we have that Eqs. the lowest dimensional operatars of a given structure, with
(4.35, (4.39, and (4.42 give the condition(4.3) for semi-  building blocks given by, , A, A, B andB.
long multiplets, all the other values &, corresponding to It shpuld also be stressed that, although these operators
long multiplets with rational dimensions. have given quantum numbers &U(2)xSU(2), and of

Thus we have one semilong type | L.H. gravitino corre-SU(2,21)Eo,S;,s,.1, we have not discussed the most gen-
sponding to the semiconserved superfi@B5); one semi- eral form pf thesg operators due to further mixing in terms of
long type | VM corresponding to the semiconserved superthe constituent singleton field#/, , A, B. For instance, we
field J of Eq. (3.25 which, in the particular case=0, have not written terms involvin@ ,A or D,B, which cer-
becomes a conserved superfidicorresponding to the mass- tainly occur in the completion of some of the above opera-
less type | VM withEq=2, r=0 [these correspond to the tors [for example the ones includin.id which contain both
SU(2)xSU(2) Killing vectors]; one semilong type IVVM W _W., and DaAEdK (or A—B)].
corresponding to the semiconserved superfigidof Eq. Finally, we analyze the Eq4.6) condition. In this case
(3.26). the only multiplet which does not violate the E@®.2) in-

Furthermore we have long multiplets from Ed4.34),  equality is the type Il vector multiplet, for which we get
(4.36), (4.37), (4.38, (4.40, (4.41) corresponding respec- E,=2r+2. This apparently could be interpreted as shorten-
tively to the following superconformal fields with rational ing to a semilong vector multiplet. However, the states of
dimensions: such multiplet do not appear in the KK expansion, while the

states which are complementary to them form a chiral hyper-
multiplet which is allowed by the KK analysfsits lowest
. state is thap field with EY=Ey+ 1= 2r(®), which is indeed
K VAV K _ _ the group theoretical condition for the shortening to a chiral

C'=TrAe’Ae Joa(AB)),  Eo=37k+5, 1=k, multiplet of the type given in Eq3.19. Thek=0 (r5=2)

(4.43 chiral multiplet has as a last component a complex massless
scalar related to thé,, 2-form wrapped on the nontrivial
2-cycle of T, giving a second complex modulus other than
the dilatonB for type IIB on AdS$X T Note that there is

DX=Tr(W,e"W2e VAe'Ae V(AB)Y), another massless scalar in the se8&¢3.19 for k=2. This
corresponds to the spjr=1=1 in the harmonic expansion in
3 13 the internal metrid,,, .
E0=§k+ > r=k—1, (4.49 We would also like to remark that there are many more

operators in the gauge theory which do not correspond to any
supergravity KK mode, even though these multiplets may
have spin less than two. A typical example is the Konishi

EX=Tr(W?e'W’e VAe'AeV(AB)Y), (massive vectgrsuperfield[50]
3 _ VAa—V VEa-V
E0=§k+8, r=Kk, (4.45 K=Tr(Ae'Ae ¥)+Tr(Be'Be ), (4.49

with r=0 and in theG singletj=1=0.

k_ ViA2a—VA VA R—V k
Fi=Tr(e"We "Ae’Ae "(AB)Y), Physically, the exclusion of the semilong multiplet can also be

3 seen by the fact that it would contain an additional massless vector
Ey=-k+5, r=k-2, (4.40 for i= I =r=0 which does not correspond to any symmetry besides
2 the isometry and baryon symmetry.
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This superfield has anomalous dimensjdg@]. However, and thus they determin@p to two derivativesthe low en-
inspection of the supergravity spectrum shows that the mulergy effective action.
tiplets with j=1=r=0 must have rational dimension and
indeed they were identified witQ*=° in Eq. (3.46 with
Ey,=6 and the Betti multiplet/ in Eq. (4.23 with Ey=2.
This state of affairs is resolved by the fact thais ex- We would like to thank I. Klebanov, M. Porrati, and es-
pected to have a divergent dimensiarin the largeN, gsN pecially A. Zaffaroni for discussions. A.C. is grateful to
limit, as presumably happens in tté=4 theory so that it CERN for the kind hospitality during the early stages of this
should correspond to a string state. work. This research is supported in part by EEC under TMR
The Konishi multiplef{50] is a long multiplet whos®?2 contract ERBFMRX-CT96-0045(Politecnico di Torino,
is a chiral superfield which is a linear combination of the LNF Frascati, LPTENS Panisnd by DOE grant DE-FGO3-
superpotential W= €'l ¥ Tr(A;B,A;B)) and Trw*w,).  91ER40662.
This implies that neitheyV nor Tr(W*W,) are chiral prima-
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ries but rather a combination orthogonal@K. It is the APPENDIX: NOTATIONS AND CONVENTIONS
latter superfield which appears in the supergravity spectrum ] n
and coincides with the chiral dilation multiple* with k Consider Ad§XT™. We call M, N the curved ten-

=0. This is an example of operator mixing alluded to before dimensional indicesy, v/m,n thfl curved or flat Adsones
Finally we observe that the knowledge of the flavor and@nd @/a,b the curved or flaff*" ones. In the four dimen-

R-symmetry anomalies in the gauge theory allows one tgional CFTa, ... anda,... arespinorial indices.
completely fix the low energy effective action of type IIB ~ Our ten-dimensional metric is the mostly minug
supergravity on AdSx<T! at least in the sector of the mass- ={+ —*—}, so that the internal space has a negative defi-

less vector multiplet§5]. In fact this relies on the computa- Nite metric. For ease of construction, we have also used a
tion of the bulk Chern-Simons term of the several gauge'egative metric to raise and lower tldJ(2) X SU(2) Lie-

factors involved 51] algebra indices.
Furthermore, for theSU(2) algebras we have defined
Ares A el 121
dAEAf FEARSAAS, (4.50 The SO(5) gamma matrices are

where A=1,...,8 with Ug(1l), Uy(1) and SUA(2)

X SUg(2) gauge factors. 1 _ !
Because of the AdS-CFT correspondence, the gauge 1 |
variation of such Chern-Simons terms must precisely match, Y1~ -1 v V2T i ’
at least in leading order iN, the current anomalies of the
boundary gauge theofy3,5,52,13,58 Moreover, the mixed -1 -
gravitational gauge Chern-Simons terms (AL)
cAf AMTIRAR (4.51) 1 !
-1 i
[where A here runs only over theJ(1) factors of the bulk L ] IS ’
gauge field$ should be nonleading since they are related to 1 i
string corrections in the AdS-CFT correspondeftg]. Be- (A2)
cause of the particular matter content of the md@d) all
coefficients are in principle proportional M7 and thus lead- ]
ing in the AdS-CFT duality. !
So it is crucial thatc, =0, i.e., thatUg(1),Uy(1) are i
traceles§13]. The only non-vanishing ys, coefficients are V5= i . (A3)
diaa=0dree,  dpaa=—dpse, drrs dipp (4.52 -1
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