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We construct simple twistor-like actions describing superparticles propagating on a coset superspace
OSp(14)/S0(@,3) (containing theD =4 anti—de Sitter space as a bosonic subsparea supergroup mani-
fold OSp(14) and, generically, on OSp[an). Making two different contractions of the superparticle model
on the OSp(14) supermanifold we get massless superparticles in Minkowski superspace without and with
tensorial central charges. Using a suitable parametrization of Q8p) ve obtain even Sp(®-valued Cartan
forms which are quadratic in Grassmann coordinates of O2pj1 This result may simplify the structure of
brane actions in super—anti—de Sit{&dS) backgrounds. For instance, the twistor-like actions constructed
with the use of the even OSp|@n) Cartan forms as supervielbeins are quadratic in fermionic variables. We
also show that the free bosonic twistor particle action describes massless particles propagating in arbitrary
space-times with a conformally flat metric, in particular, in Minkowski space and AdS space. Applications of
these results to the theory of higher spin fields and to superbranes in AdS superbackgrounds are mentioned.

PACS numbsdis): 11.15-q

[. INTRODUCTION theory) correspondence conjectyi@ which attracted a great
deal of attention over the last two yedsee Ref[4] for an

Conformal (supeisymmetry plays an important role in exhaustive list of referencesOn the other hand the AdS
the theory of fundamental interactions based on fieldspace is the one where higher spin fields may nontrivially
theoretical models as well as on the theory of fundamentadnteract with each othef5]. In some aspects the technique
extended objectstrings, etd. Conformal geometrical struc- developed for the description of the theory of higher spin
ture allows one to replace space-time geometry by twistofields in Minkowski[6] and AdS spacep7] resembles the
geometry, where twistors are fundamental conformal spinorésupeltwistor approactig]. o
[SU(2,2) spinors forD = 4] and space-time variables become N this respect it is tempting to look for possible links
twistor composite$1]. Such a construction allows for a su- Petween these different manifestations of conformal symme-
persymmetric extensiof2] where superspace variables are rY; AdS spaces, twistors, and their supersymmetric generali-
replaced by primary supertwistor coordinafg8U(2,4N) ~ Zations. Motivated by the problem of finding a simple 1;orm
supertwistors in th® =4 casé. of the action for a superstring propagating in the A8S”

In this paper we shall discuss twistors describing anti—dé@UPerbackgrounfd], in recent papergl0] a massive bosonic
Sitter (AdS) geometry. The isometry of the AdSuper- twistor particle model in an AdSspace has been proposed
spaces acts on tHeupeJAdS boundary as the group fu- and its classical and quantum properties have been
penconformal transformations, and, therefore, provides théonsidered. In Refs. [12,13 an OSp(18) supertwistor

group-theoretical basis for the AdS/CREonformal field ~Model has been proposed for the description ob a4
massless superparticle with the infinite spectrum of quantum

states being described by fields of arbitrary integer and half
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central chargeZ;,q (m,n=0,1,2,3) which extends thal massless superparticle in flat=1, D=4 superspace, and
=1, D=4 super-Poincar'e algebra. One can show thain Sec. Ill B we construct a twistorlike action for the descrip-
OSp(18) is a superextension of ti2=4 conformal group tion of the dynamics of a superparticle in the super-AdS
which contains as a subsupergroup e 1, D=4 super- Space OSp(|#)/S0O(1,3). The action has a simple quadratic
Poincarealgebra enlarged it . It is natural to assume form in fermions and, hence, it should not be hard to perform
that the superparticle with tensorial central charges and thiés quantization. However, in contrast to the bosonic AdS
particle on the AdS space are different truncations of thesuperparticle we have not managed to find a complete su-
dynamics of a superparticle propagating in the supergroupertwistor version of this model.
manifold of the isometries of the corresponding AdS super- In Sec. IV we construct a twistorlike action for a super-
spaceg13]. particle on the supergroup manifold OSp4). This action is
An aim of this paper is to construct such a model in thealso quadratic in fermions, and upon an appropriate trunca-
supergroup manifold OSp{4) and demonstrate how it is tion it reduces to the models of Sec. IlI.
related to theD=4 twistor superparticle model of higher ~ In Sec. V we describe a superparticle propagating on
spins[12,13, and to a superparticle on the AdSuperspace OSp(12n) and show that it preserves12-1 supersymme-
OSp(14)/SO(1,3). Another motivation for this study has tries associated with Grassmann generators of O2p{1
been to find a way of constructing simple worldvolume ac- The OSp(]4) superalgebra and its Cartan forms required
tions describing the dynamics of superbranes propagating if®r the construction of the actions are given in the Appendix.
AdS superbackgrounds, i.e., to make a progress in solving & particular, we present a simple form of the super-pdS
vital AdS/CFT correspondence problgiv—20. supervielbeins and spin connection which are polynomials of
Using a suitable parametrization of OSp2f) we have only the second order in Grassmann coordinates. We also
found a simple form of the even OSgEh) Cartan forms. present Cartan forms of the supergroup O$p(} which
They are only quadratic in Grassmann coordinates. This hagan be made quadratic in Grassmann variables by an appro-
allowed us to construct simple actions quadratic in fermiongriate rescaling of the latter in the Appendix.
for superparticles propagating on OSKYSO(1,3),

0OSp(14) and, generically, on OSp|an). Il. TWISTOR-LIKE BOSONIC PARTICLES
The most interesting examples of the OSj2i) super- . .
groups seem to be OSH@2) and OSp(I64). In Refs. We start by recalling the form of an action for massless

D=4 particles which serves as a dynamical basis for the
transform from the space-time to the twistor description. The
action is

[22—247 it has been shown that OSHER) and OSp([i64)
contain the supergroup structures =11 M theory and
D=10 superstrings. In particular, OSP@R) and
OSp(164) are extensions of the supergroups d
SU(2,34), OSp(84), and OSp(2/8) which are isome- s:J dT)\A(gm)AAfA—xm(T):J Ao NdxX™(7),
tries of, respectively, AdS< S°, AdS, xS, and AdSx S° dr

superspace$Reducing OSp(f32) and OSp([i64) down to

the AdS supergroups one may hope to get simpler expreSihere x

sions for the Cartan forms of the latter, which might simplify Minkowski space,\A(7) is a commuting two-component

the structure of actions for branes in corresponding AdS su- . m _ ~m . .
perbackgroundfl4—20.* uWeyl spinor, andos , ,= 0, , are the Pauli matrices.

The plan of the paper is as follows. In Sec. Il we review From Eg.(2.1) we derive that the canonical conjugate
properties of the twistor formulation of bosonic particle me-momentum o™(7) is
chanics and demonstrate that the single twistor particle ac-
tion generically 'describgs particles propagating jn arbitrary pm:)\amf: pAA:Eme;\nA: ?\AYA, (2.2
space-times which admit a conformally flat metric, such as 2
flat Minkowski space and the AdS space. o ) ] B 5.

In Sec. Il A we consider the supertwistor description of aWhose square is identically zero sincé\®e =0, i.e.,

Pmp™=0. (2.3

(2.1

M(7)(m=0,1,2,3) is a particle trajectory iD=4

2An OSp(164)-invariant superparticlelike model has been dis-We therefore conclude that the particle is massless.
cussed in Ref[24] (see also Ref[25] and references thergin In the action(2.1) we can make the change of variables by
3We should remark that the notation Osp(8,is a somewhat introducing the second commuting spinor
confusing name for the Adjuaternionic supergroup described, in
a complex parametrization, by the mte_rsectlon Qf two complgx su- MA:”\A( O-m)AAXmEi)\AXAA (2.9
pergroups SU(4]4) and OSp(§;C), with bosonic sectors being,
respectively, the spinorial covering of O(6,&pace-timgand the gy its complex conjugate
spinorial covering Sp(2)=USp(4,C) of O(5) (the internal sec-
tor).
“The Cartan forms on supercosets of SU[R)2relevant to the
construction of brane actions on AdS superbackgrounds were cal-"The two-component spinor indices are raised and lowered by the
culated in the early 1980 21]. unit antisymmetric matrices"B=e,5, €"B=¢€xpz.
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A= — iXABrB- (2.5 From Eq.(2.10 we find that the components of the vier-
bein one-forme?=dx™e?, are
The four-component spinors

r )
§>6f‘dx+

R
- _ _ _ a __
Zy=(ai®), 2= (AN (2.6 &= dxTen= ?) sr. (219
are called twistors.

, Note that the coordinates,r transform nonlinearly under
In terms of Eq.(2.6) the action(2.1) takes the form

the action of the AdSisometry group SO(2,3) which is the
- - conformal symmetry of the boundaxry
Szif drz*dz,+1(7)Z2*Z,], 2.7 |
i qi iy iij._'jiz%
where we have added the second term with the Lagrange X =a+ayX;+apX FaxX;—2(xax +R re’
multiplier 1(7) which produces the constraint _
_ or =(2x;ax—ap)r, (2.12
z°z,=0. (2.9 o _
_ where aj;, ayy, ap, and al are parameters of, respec-
This constraint implies thatt, and ua are determined by tively, D=3 translations, Lorentz rotations, dilatation, and
Egs. (2.4 and (2.5). But, as we shall see below, this flat conformal boosts, witfI; M;;, D, andK; being the cor-
space solution of the twistor constrai@t8) is not the unique  responding generators of the &8 algebra {,j=0,1,2)
one. The Adg space is also admissible, as well as any spacgsee the Appendix
with a conformally flat metric. We can now substitute E@2.11) into Eq. (2.9). The ac-
Passing from the actio(2.1) to Eq. (2.7) we have per- tion takes the form
formed the twistor transform, Eq&2.2), (2.4), and(2.5) be-
ing the basic twistor relationd]. The action(2.7) is invari-
ant under the conformal SU(2,2)S0O(2,4) transformations, S:f dr
since the twistors are in the fundamental representation of
the conformal group. The choice of twistor variables demon- | et us try to carry out the twistor transform of this action
strates how conformal symmetry appears in the theory ofn a way similar to that considered above for the flat target

free massless particles. _ _ space. To this end we redefineas
We can generalize the actid@.1) to describe a massless

particle propagating in a curve@ravitational background. . r\12

For this purpose we introduce the vierbein one-faf(x) )\A=(§) Na- (2.14
=dx™e% (x) with the indexa=0,1,2,3 corresponding to lo-

cal SQ1,3 transformations in the tangent space of the backThe action(2.13 takes the form

ground. Equatiori2.1) takes the form

)\0'3“

. (2.13

r

r —
(ﬁ))\ﬂ'i)\XI‘F

2

Xaii&TXi + )A\U3)_A\(?TI’ . (2.1

r

S o[
S:f dT)\O’a)\e;o"Tszf Ao \e? (2.9 T

In the limit r —o one obtains the twistor-like massless par-
ticle in three-dimensional Minkowski space, i.e., on the

In particular, one can consider an Adspace as a back- boundary of Ad$. The complex Weyl spinok describes a

ground where the particle propagates. Let us mention that BAir of two-component redb =3 spinors which turn out to

different formulation ofmassiveparticle mechanics on AdS be proportional to each other on the mass shell. In the limit
has been considered in RE26]. r—oo the action(2.15 is still invariant under thé =3 con-

The AdS, particle. To consider a particle in the Ags formal group Sp(43O(3,2)/Z, supplemented by Q) rota-

background we should specify the form eff(x). A conve-  tions corresponding to the phase transformations.of

nient choice of local coordinates and of the form of the met- [N what follows we shall, however, keeffinite and make
ric on AdS, is the change of variable

Note that\ still transforms under a spinor representation of
SO(1,3»-SL(2C).

r\? . - [R)? - R?
dsz=dxmdx“eﬁ1eﬁnab=(§> dx'r;ijdxH—(?) dr?, x3=——. (2.16
(2.10 .
_ Then the action(2.15 formally becomes the same as Eq.
wherex™=(x',r)(i=0,1,2) are coordinates of the Ag&nd  (2.1) in the flat case
R is the AdS radius, whose inverse square is the constant
AdS, curvature(or the cosmological constaniThe coordi- o= [ driforoxi+iods = | drfotrgzm
natesx are associated with the three-dimensional boundary S~ | dTACAIX+Noghd x*]= | dTNomhd X,
of AdS, when the radial coordinatetends to infinity. (2.17
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wherex™=(x',x3). The essential difference is that upon the 4o R)\?2 o 4 (52| R szmdAn
redefinition(2.14) the SL(2C) spinors\ transformnonlin- 133 [Ax;j X!+ (dx) 7] = s3] @ 9X mn-
early under the action of the isometry group &CB) via the (2.22
radial coordinate .

We can now make the twistor transform of the action We have thus shown that the twistor constrd®) has
(2.17 by introducing two solutions which correspond to the twistor transform of

the flat D=4 Minkowski space and of AdS both spaces
2.18 being conformally flat. This observation allows us to con-
' clude that any other space whose metric is conformally flat
N ) should also arise as a corresponding solution of the twistor
and combining\ and u into the twistor constraint(2.8). We now turn to the supersymmetrization of
the action(2.9).

2 LA
A= TN XAp

Za:()\AilaA)- (219)
. TWISTOR-LIKE N=1, D=4 SUPERPARTICLES

The pure twistor form of the actiof2.17) is the same as Eq.
(2.9, and, hence, it is invariant under the group SU(2,2),,
~S0(2,4) of the conformal transformations actilgearly
on the twistor(2.19. The twistor Z, is in the fundamental
representation of S@2,2).

As it has been explained in detail[ih0] for the particle in e(z)=dzMe, = (ea,eA,EA)' 3.1)
AdSs, the linear conformal S(2,2) transformations ofZ,,
induce nonlinear transformations of the AdS coordinates WhereZM:(Xm’gAEA) are coordinates which parametrize a

andr when the twistor components are relatedxtoandr  (5rget superspace in which the particle propagat®sind its

through Eqs(2.14), (2.16), and(2.18 complex conjugate®® are Grassmann-odd Weyl spinor co-
ordinates.

The form of the action(2.9) is suitable for a straightfor-
ard supersymmetric generalization. To this end we should
considere? as a vector component of the supervielbein one
form

2

1/2 o R .
Z,= (—) ()\A,—ix'aiAB)\BH —a5®\g|. (2.20
R r A. A superparticle in flat superspace

In the case under consideration we thus find the nonlinear In the case of fiat target superspace

conformal S@2,4) transformations of the AdSspace coor- a— dy@— i forld O+ i Ay SA_dpA  BA_dBA
dinates, with the isometry group $83) [see EQq.(2.12)] e'=dX~i00°df+id0 070, e'=df", e da(é 2)
being a subgroup of the conformal group. The conformal '
transformations ok™=x',x3 [wherex® was defined in Eq. Substitutinge® from Eqg.(3.2) into the action(2.9) we can
(2.16)] are similar to the conformal transformations of the transform it _|nto the pure supertwistor action by introducing
Minkowski space coordinates. They are the supertwistof2]

Z4=ahx) (33

XM= all+afi ", +apX™+ amx"X, — 2(Xpag)X™,
(229 and its conjugate

where af, ay", ap » and ay are parameters of, respec- ZA= (WP Na LX), (3.4)

tively, D=4 translations, Lorentz rotations, dilatation, and

conformal boosts, witHl,,, M,,, D, andK, the corre- where now

sponding generators of the &) algebra (,n=0,1,2,3) _ _

(see the Appendix UA=INA(Xaa—10404) (3.5
Substituting the expressidi2.16) for x3 into Eqg. (2.27),

one can deduce the explicit form of the conformal transfor—and

mations of the coordinate Then the S@,3) isometry trans-

formations(2.12 of the AdS coordinates are obtained by

putting to zero all parameters in E@.21) which carry the 50 supertwistorization the actid@.9) with the superviel-
index 3, the remaining ones beira and all those with bein (3.2) takes the form similar to Eq2.7)
three-dimensional indicdsj=0,1,2.

The observation that the AdS spaces are conformally ) _ _
transformed according to E¢R.21) implies that these mani- S=|f d7[ZAdZ 4+ 1(7)Z1Z 4], (3.7
folds are conformally flat. For instance, the Ad&etric
(2.10 becomes conformally flat upon the redefinition of thewhere now the supertwistor constraint is
coordinater just as in Eq(2.16 (which we made to perform o L
the twistor transform ZAZ 4= "\ a— uaN+2xx=0. (3.9

Y=0"\A,  x=6\A. (3.6
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For further details on twistor superparticles in flat superspacéremember that the index 3 corresponds to the radial coordi-
we refer the reader to the pap¢2s27—33 and proceed with nater of AdS,).

constructing an action for a superparticle propagating in the We can now substitute E¢3.12 into Eq.(3.11) and cal-
coset superspace OSp#)/SO(1,3) whose bosonic sub- culate the explicit form of the supervielbeifs and the su-

space is Adga perconnectior)2®, using a trick, described, for example, in
Ref.[14], or by the method presented in the Appendix. In the
B. The superparticle on OSK1]4)/SO(1,3) Majorana spinor representation the expressions for the Car-

tan forms are given in the Appendix. In the two-component

To get an explicit form of the particle action on gpingr formalism the supervielbein fortl18) or (A21) of
OSp(14)/SO(1,3) we should know an explicit form of the he Appendix can be written as follows:

supervielbein(3.1), which is part of the Cartan forms on
OSp(14). The components of the latter can be computed
using the method of nonlinear realizatior&t—37.

The Cartan forms of the supergroup OSjg{)Land corre-
sponding Cartan forms for the supercoset O$${4SO(1,3)  \yhere
were calculated in38—-41. Below we present simpler ex-
pressions for the Cartan forms which allow to write down a _ i _ 1
simple form of the AdS superparticle action, since our choice P(66%)=1— 7R 0°— 6°) + 3IRZ 6°¢°, (3.19
of the parametrization of the supercoset differs from that |
used in Refs[39,41]. o A — ==

To derive the Cartan forms on OSpé)/SO(1,3) we 6°=6"06n,
take the supercoset element in the form

E2=P(62,6%)[e3(x)—i®0?DO +iDO 0],
(3.14

K(2M) = B(x)F(8)=B(x™e (" %Y (3.9 o 3IR

whereB(x™) is the purely bosonic matrix taking its values in (3.16

the coset SO(2,3)/S0O(1,3), i.e., it is associated with the

bosonic Adg space locally parametrized by coordinaxgs ) T

The Grassmann coordinatéé and 6* extend Ad$ to the D=d+ w0y, 0=, (0% 0?).
coset superspace, a@ andQ, are the odd generators of

OSp(14) (see the Appendix To get the action for the superparticle in the super-AdS

The Cartan form on OSp(4)/S0O(1,3) is background we should simply substitute Eg.14) into Eq.
(2.9.

%K‘ldK= E%(2)P,+EAZ)Qa+ QAEA(2) + 0%(2)M .

s:f Ao AP(62,69)[e*~i0*DO+iDO 20 ].
(3.10 317
It takes values in the OSp[4) superalgebra. —
The one-formsE'= (E?, EA,EA) are the supervielbeins The ponnomEIP(az,ez) can be ab_sorbed by properly re-
and Q2® is the S@1,3) connection on the coset superspace.scaled\ and\, namely, A = VP(6% 6°)\. Then the action

In the representatio(8.9) the Cartan forn(3.10 is takes an even simpler form which is quadratic in fermions
A _c-1/p-1 -1 _ — —
K *dK=F *(B "dB)F+F “dF=F "DF, (3.11) S:jAaaA[ea—i®aaD®+iD®oa®]

where the purely bosonic Cartan foBn 'dB takes values in . .
the S@2,3) algebra and describes a vierbeft{x) and a spin = f Aaa/T[ea— i0c2dO +id® o260
connectionw®”(x) on the bosonic AdSspace

1 +iw”(X)O(0P0pet+ o0 O]. (3.18
—B ldB=e*P,+ w® M. (3.12
! If in Eq. (3.18 there were no terms containing the spin con-

) ) ) nectionw®® the action(3.18 could be completely supertwist-
Depending on trge choice &{(x) one can get different forms  4i;64 in the same way as we have done in the case of the
of €%(x) and »*(x). For instance, the coset elemdd(x)  ads, particle and of the superparticle in flat superspace.
can be chosen in such a way tie(x) in Eq.(3.12 is the  However, the term witho® does not allow one to perform

same as in Eq(2.11) and the connectiow™(x) is the complete supertwistorization of E¢B.18 in terms of
free supertwistors, at least in a straightforward way.
wiaziei wli=0 (3.13 Using the notion of Killing spinors on AdS spaces one
R™’ ' can replace in Eq3.18 the covariant differentiaD with the
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ordinary one. To this end it is convenient to switch to the IV. THE SUPERPARTICLE ON OSp (1|4)

four-component Majorana spinor formalism

A=A D), O%=(0,,0M).

We now turn to the construction of the action for a super-
particle propagating on the supergroup manifold O$f4)1
locally parametrized by the supercoset OSg)1SO(1,3)

By definition (see, for instance, Ref42]) AdS Killing ~ coordinatex™ and ¢, and by six S@L,3) group coordinates

spinors satisfy the condition

@ B @ 1 a a Y B

1
dK g+ S (0 yap) K

y™'=—y™" This model is intended to produce, upon an
appropriate contraction, the superparticles in flat superspace
and on super-AdsSconsidered above, as well as the super-
particle with tensorial central charggk2,13.

By analogy with Eqgs(2.9) and (3.17), to construct the
OSp(14) superparticle Lagrangian we take the pullback
onto the particle world line of the even Cartan superforms
Edsp and ngsp given in the AppendiXEq. (A8)]. These
forms comprise the bosonic $8)3) part of the supervielbein

1
+ ﬁ(eaya)“yKyﬁ) CP=0, 319  on OSp(14). We contract them with commuting spinor bi-

linears\ y,\ andfyabx. The OSp(14) superparticle action

whereK“4(x) is a bosonic Killing spinor matrix an@fis Is
an arbitrary constant spinor. If in E¢3.20 we replace®

with @=K(x)®y (where O,=K '®) [15] the action

(3.18 takes the form

al 1+

11— i — —
g ® — a ®
S 2] AyAle 2R®> 0y KdK}

or (upon an appropriate rescaling &fand®)

1 b a 3.
SOszzj {E (X:H)Ub (Y))\'Ya)\
+[Q%(X, 0)utug?+ (U~ Ldu)@IN yaph )
(4.2

Using the defining relations for the $03) matricesu,? and
vg” (A10) we can make the redefinition

1 — L — ~ A ~
SzngVaA[ea—'VaKd@K]- (3.20 UP(Y)N YA =R yph, where A*=MBuy (4.2

Note that in Eq(3.20 the variable® is regarded as inde-
pendent, while® =K(x)O is composed fron® ¢ and the

Thenuy?(y) remains only in one term of the actidd.l),
and the latter takes the form

Killing matrix K(x) whose exact dependence on the AdS 1 o
coordinatesx™ can be found by solving the Killing spinor Sosf—f E3(X, )N Yok
eguation (3.19 [42]. Taking this into account, the term 2

1©0y*KdOy in Eg. (3.17 can be rewritten

i@Kyf’&d@KKE&(x), whereK?:(x) are S@2,3) Killing vec-
tors on AdS (b,c=0,1,2,3,4, y*=1). Then the superviel-

bein

1 = ~
as +§f [Q2%(x,0)+ (duu 13PNy N, (4.3

We observe that the first integral in E@.3) is nothing but
the action(3.17) for the superparticle on the coset superspace
OSp(14)/S0(1,3), and the second term contains the spin

a:ea_iG)KVB&d@KKEE (3.2)  connection of OSp(|4)/SO(1,3) extended by the $03)

Cartan formduu™?!. In Eq. (4.3 the dependence of the ac-

takes the form similar to one of the parametrizations considtion on the S@1,3) group manifold coordinateg™" remains

ered in Ref[39].

only in duu™2.

It would be interesting to understand whether the AdS Since by an appropriate choice of Grassmann coordinates

superparticle action in any of its forms can be completelythe Cartan forms?(x,6) and Q2°(x,6) can be made qua-
supertwistorized, i.e., written in the for(8.7), using an ap- dratic in ¢ [see Egs.(A21) and (A22)] we see that the
propriate choice of AdS supercoordinates. If it is possibleOSp(14) action(4.3) is quadraticin fermions. If we drop
then the AdS superparticle model would acquire the manifeshe second integral of Eq4.3) we get the action for the

superconformal SU(2}2) symmetry. In any case, the use of superparticle considered in Sec. lll B, and if we then take the

commuting spinors, whose bilinears replace the conventiondimit when the Adg radius goes to infinity, the action further
particle momentum, and the suitable choice of the parametrireduces to the superparticle action in fiet 1, D=4 super-
zation of the supercoset space O9@(1S0O(1,3) have al- space. Another way of truncating the actigh3) is to per-
lowed us to get a simple form of the action for a superparform the following contraction of the OSp|4) superalgebra
ticle propagating in the AdS superbackground, which is(Al). Let us in Eq.(Al) rescale the generatorsl,, of
bilinear in fermionic variables. SQ1,3 as
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M ap=RZp, (4.4 From Eq.(4.8) we get the canonical momenta conjugate
to XM= (x™ z™" ¢%) as
and consider the limiR— o of the algebraic relation@\1)—
(A4). Then the generatorZ,, become tensorial central 5S 1— .
charges which commute with all other generators, and the W:PMZEKFO\E:\A- (4.10
anticommutator of the supercharges becomes T

{Qa,QB}z—2(Cya)aBPa+(Cyab)aBZab. (4.5 Multiplying Eq. (4.10 by the matrix EiM inverse toEE\,I
[wherel=(l,«)] we obtain OSp(f4) covariant momenta

The Sd1,3) coordinateyy™" become central charge coordi- P— EFAPM:(PI P.) such that

nates.
In the limit R—o the supervielbeirE?(x, #) reduces to

the “flat” one-form (3.2 1— .
32 SATA=P=E(X)Py, P,=Ef(X)Py=0.

E3=dx*—i0y3d6 (4.6) (4.1
and the superconnectiof)3"=R[Q%°+(duu™*)?"] be-  Equations(4.10 and (4.11) imply that the expressions for
comes the momenta are constraints on the superparticle phase space
) variables. For instance, the covariant momentum compo-
— f the Grassmann variab® are zero. These are
02P— dvabt —gr2abdg. 4 nentsP, o : _
z Y 267/ 0 .0 Grassmann constraints on the dynamics of the OBI(4u-

perparticle, which include first-class constraints generating
Substituting Eqs(4.6) and(4.7) into Eq.(4.3) we get the  the x symmetry of the OSp(%) superparticle.
action for a particle with tensorial central chardd®,13. It is well known that, as it occurs fdd=1, D=4 super-
The quantization of this superparticle model has shown tgarticles in an arbitrary supergravity background, the AdS
produce an infinite tower of free massless states with arbisuperpartide possesses two-parameter local fermianic
trary integer and half integer spin, with the spin degrees ofymmetry, which means that such superparticles preserve
freedom associated with the central charge coordingdtés  half the supersymmetry of a target-space vacuum. In contrast
For a detailed analysis of the model we refer the reader tg this, as we shall prove in the next section, the O$$)(1
Refs.[12,13. superparticle possesses threesymmetries and, in general,
Since the higher-spin fields can interact if they do not ”VGthe Superpartide propaga’[ing on the OSQ@D supergroup
in Minkowski space but in an anti—de Sitter spd&d, it  manifold has (2—1) x symmetries and thus describes
seems of interest to study the possibility of generalizing thEBogomo|’nyi_PraSad_SommerfiekﬂBPS states with only
OSp(14) superparticle model based on the actid® to  one broken supersymmetry.
include interactions, and then to perform its quantization to | Ref.[12] the superparticle models with such a symme-
check whether such a model can be considered as a classi¢g} property have been obtained in flat superspaces with ad-
counterpart of the theory of interacting higher-spin fields. ditional tensorial central charge coordinates. Here we ob-
To conclude this section we demonstrate that O$5(1 serve that this unusual feature is also inherent to
covariant momenta associated with the OS@jlcoordi-  superparticles propagating in more complicated superspaces.
natesx™, y™", and¢* generate the OSp(4) superalgebré. Because of the Maurer-Cartan equatiordsE{iE/NE

Let us rewrite the actio.3) as =0) for the Cartan formsE}\,I the generalized momenta
1 o form, under the Poisson brackets, the OS@jlsuperalge-
S= _f erDXE}Vl(x,a,z)aTXM, (4.9 bra, which can be quantized by taking an appropriate order-
2 ing of X andP in the definition of Eq.(4.11):

wherel’, are &
[Pr.P3t=Ci3" Pk, (4.12

FI:(ya! 7ab)1 (49)

the index!| stands for vectoa and tensorab indices, and

XM=(x"z™" 6%). E},(x,0,z) are the OSp(|4) Cartan

form componentsE? and Q2°, which correspond to the
bosonic generator®, and M, of OSp(14) (see the Ap-

pendix.

where Cij'A< are OSp(14) superalgebra structure constants
[see Eq(A1)].

From Egs.(4.11) and (4.12 we see that upon the transi-
tion to Dirac brackets the bilinears &f, (4.11) become gen-
erators of the Sp(4)ySO(2,3) subalgebra of OSp@),

which implies thath , will not commute with respect to the
Dirac brackets

8In Ref. [45] similar covariant momenta were used to make the 1
Hamiltonian analysis and the quantization of superparticles propa- _
L ) [N Aglo=55Cas-
gating in harmonic superspaces. 2R
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Q= P(y)+i0*DOPP,(66), (5.6)

correspond to the twistorlike variables of the superparticle

model with tensorial central charggs2,13.

where »*?(y) are Sp(d) Cartan forms, P,(#6) and

From this analysis we conclude that the commutationP,(66) are polynomials ine‘”CaBeﬁ [see Egs(A40) and
properties of the superparticle covariant momenta reflect théA41)], andD is the Sp(2) covariant derivative

structure of the global symmetries of the OSj()Lsuperpar-

ticle action. To quantize the model one should consider the
OSp(14) coordinates and momenta as “generalized” ca-

@ B
Do*=d 0"+ 50 4(y) 0%, 5.7

nonical variables, with graded commutation relations defined

by the OSp(14) superalgebré4.12. The detailed study of
the model based on the actioh.3) is in progress.

V. THE SUPERPARTICLE ON OSp(1|2N)
AS A DYNAMICAL MODEL FOR EXOTIC BPS STATES

We now generalize the OSpldl) superparticle action
(4.1, (4.3 or (4.8 to the case of the supermanifold

OSp(12n) whose parametrization we choose to be of the

form [see the Appendix for the details on the OS[(i)
superalgebrh

G(y,0)=B(y)F(8)=B(y)e ", (5.0

where y*#=yA% are coordinates of the Spi® subgroup
generated by symmetric operatdvk,;=Mg,, and whose
element is denoted d@&(y); #“ are Grassmann coordinates
andQ, are Grassmann generators of OS2 transform-
ing under the fundamental representation of $p(2avhich
we call the spinor representation,(3=1, . . . ).

The OSp(]2n) Cartan forms are

%g‘l(y,a)dg(y'g)z %[F_l(B_ldB)F+F‘1d|:]

=F 'DF=E“Q,+ EQC'BM
a’ 9 af+
(5.2)

To have the connection with the OSp4) case discussed
in Sec. IV and the Appendix we note that for=2 M,z can
be written in terms of S@,3) covariant generatorB, and
M ,p, as follows:

1
M,p=—2(Cy%),pPat ﬁ(CYab)aﬁMab- (5.3

Then the OSp(f#) Cartan forms presented in EGA8) are
related toQ*? in Eq. (5.2) in the following way:

Qab 1

Eds= —(Cy)apQ, Qo= ﬁ(c’yab)aﬁﬂaﬁ-

(5.9

The matrix C,; plays the role of the Sp(® invariant
metric.

The OSp(12n) Cartan forms(5.2) computed in the Ap-
pendix have the form

E*=Do+iDo\“0P) 9,P1(00), (5.9

wherea is a dimensional constant factor in the OS|R11)
superalgebrgA23), which in the OSp(f4) case(Al) is «
=4/R.

The form of Eq.(5.6) prompts us that the polynomi&l,
can be hidden into rescal@= \/P,6, then forQ*# we get
the simple expression

Q=0 (y)+i0*DOP), (5.8)
The action for a superparticle moving on OS[Hd),
which generalizes Eq4.3), has the form

1 1 s
S= _f xaxﬂmﬁzzj dAGQ%, (5.9

2
where) , is an auxiliary bosonic Sp® “spinor” variable,
and Q*¥=d 70" is the pullback of the even Cartan form
(5.6) or (5.8 on the superparticle world line.

Let us now analyze the-symmetry properties of the ac-
tion (5.9 by considering its general variation. A simple way
to vary the action(5.9) with respect to OSp(|2n) coordi-
natesXM=(y“#, %) and the auxiliary variabla, is to use
Maurer-Cartan equationgintegrability conditions for Eq.
(5.2]d(G 1dG)=G *dG/\G 1dG which imply

o
dE”‘+§E’3/\QB“=O, (5.10

d0P+ 20N f=—IENEP,
(5.1

and the expression for th¥M variation of the differential
forms
80 =idQ+disQ is0=6XxMQ0y. (5.12
Modulo a boundary term the variation of the acti@9)
obtained in this way takes the form

5S=f 5>\am/’>\,3—f 1D>\aiéaaﬁ>\,;
M

—'Ef (E“N) (i sEP)N g, (5.13
where the basis in the space of variations is chosen to be
i 500%# andi sE¢ instead of more conventionay“? and 56°.

Note thati sE“ corresponds to the variation of the action
with respect to Grassmann coordinat@$. Putting o\,
=0, i;0*¥=0 we thus observe that only one of the 2

065009-8



OSp SUPERGROUP MANIFOLDS, SUPERPARTICLES. PHYSICAL REVIEW D 61 065009

linearly independent fermionic variations, namelyE“\,,  which we obtained, may be helpful in making a progress in
effects the variation of the action. This implies that otherthis direction.
2n—1 fermionic variations are fermionie-symmetries of

the dynamical system described by the acti@®). The ACKNOWLEDGMENTS
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Thus, we conclude that an unusual property of a twistor
like superparticle with tensorial central charge coordinate
[12] to preserve all but one target-space supersymmetries
inherent to the superparticle model on the OS@() super-
group manifold as well. APPENDIX

When the explicit expressior{s.5 and(5.6) for the Car- We use the “almost plus” signature—(,+, . ..,+) of
tan forms on OSp([Rn) are obtained, one straightforwardly ina Minkowski metric?® (a,b=0,1,2,3) .
gets the explicit expressions also for the Cartan forms on any ’ A
coset superspace OSpRh)/H, whereH is a bosonic sub- TheOSp(1 4) superalgebra

group of OSp(12n). These expressions are the same as Eqs. —j [Map,Mcal= 7adMbet 76cM ad— 7acMpa— 7pdM ac,

(5.5 and(5.6) but with »*# depending only on the bosonic (A1)
coordinates of the supercosgsee also Eqs(A43) and
(A44)]. Using the OSp(f2n)/H Cartan forms one can con- —i[Map,Pcl= m5cPa— 7acPb (A2)

struct various types of actions for superparticles and super-
branes propagating on the corresponding coset supermani- i
folds. [Pa,Ppl= =2 Map, (A3)

VI. CONCLUSION

1
By taking a suitable parametrization of the supergroup {Qa:Qpt=—2(Cy*)apPat ﬁ(CVab)aﬁM abs
manifold OSp(12n) we have found a simple form of the
OSp(12n) Cartan superforms such that the ones which take i
values in the bosonic subalgebra Spj2f OSp(12n) are [Map,Qol=— EQﬁ(?’ab)’Ba, (A4)
quadratic in Grassmann coordinates. We have used these
Cartan forms to construct simple twistorlike actiamghich 1
are quadratlc in fermionsfor describing superparticles Yab==(Ya¥b— YbYa): (A5)
propagating on the coset superspace O8H(BO(1,3), on 2
the supergroup manifold OSp@), and, in general, on
OSp(12n) supermanifolds. The OSp[4) superparticle
model has been shown to produegon a truncationeither
the standard massleBs=4 superparticle or the generalized
masslesdD =4 superparticle with tensorial central chargesThe generator$/,;, form the S@1,3) subalgebrgAl), and
[12,13 whose quantization gives rise to massless free field 5, andP, form the S@2,3) subalgebra of OSp(4). Q,
of arbitrary (half)integer spin. are four Majorana spinor generators of OS@(L The pa-
We have also shown that the massless particle on,AdSrameterR is the AdS radius, andC 4 is the charge conju-
=S0(2,3)/S0O(1,3) can be describdwith a particular gation matrix such that
choice of twistor variablesas a freeD =4 twistor particle. A
direction of further study can be to analyze the 0$p{1 Yop=Y3a=Car(¥) 5.
superparticle model in detail and to look for its role as a . - .
classical counterpart in the theory of interacting higher-spin  The parameteray;, ay;, ap, anday (2.12 of SO2,3)
fields [5—8] requiring a finite AdS radius. acting as the conformal transformations on the boundary of
Another interesting problem is to generalize the results oAdS, (associated with the coordinatg§ correspond to the
this paper to the case of superstrings and superbranes progallowing linear combinations oM, and P, .
gating in AdS superbackgrounds with the aim to find a Three-dimensional translations
simple form of superbrane actions on AdS. The simple fer- _ )
mionic structure of OSp(/B2) and OSp([l64) Cartan forms, ap—I;=P;—M;3 =012,

[PaQul= 55 Qul7a)". (A6)
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L. 1;]=0. £ = DI — ——G0ADO(.0)"
. IRV T Ta
SQ(1,2) rotations
N [ 2 —
ay—M; . + 2><3!R6yabD0(yab9)"‘— a—Rzpea(aa)z
Dilatation (A13)
aD*) D = P3 .

or by using the Fierz identity
Special conformal transformatiorisonformal boosts

1
__.A _— .ab
al K= P+ M. CagCr)s=7 Ve Ya)as— g ¥y Yaas,  (Al4)

Note that the S(,4) algebra has the same structure as 2 _
SQO(2,3) in Egs. (A1)—(A3) but with indicesa,b, . .., run- E“=Do% 1+ —99 5(06)*
. 3R 5IR
ning from O to 4.
TheOSp(1 4) Cartan forms We choose the parametriza- N
tion of an OSp(14) group elemen6G(x, 8,y) as follows: - ﬁapee (A15)

_ — i6Q
G=K(x,0)U(y), K(x,0)=B(x)e"™, (A7) where D is a covariant differential on the bosonic AdS

whereK (x, ) =B(x)€'*? is a group element corresponding SPace defined as

to the coset superspace OSp{)l/SO(1,3), B(x) is a group

element  corresponding to the bosonic AdS D=d+3w B(X) yapt == 1 €3(X) yo= D+iea
=S0(2,3)/S0(1,3) ant(y) is an element of SQ@,3) gen- 2R &7 2R

erated byM ,,, with the antisymmetrig/2® being six param- (A16)
eters of the S(,3) transformations. We do not need to - ) i

specify the representation &(x) andU(y). Note that the Adg Killing spinors (3.19 are defined to be

The 0Sn(14)  Cartan  forms G-ldG=E2 covariantly constant with respect , i.e., DK=0.
Qe N Eg- ()? are osa The vector supervielbein is
ospV'ab OSp< a

a =Eb(X ) u(y) a_ ad a2 1 - EY oYY
oS ’ b ’ = — -
p E?=e%(X) ~1 0y D6~ 55 =267 D6(66)
Q3= Q°(x, 0)utug®+ (u™ tdu)@®, (A8) 1
=07 DO(0Y Ypch),
8s= EP(X,0)v (), TR ¢

whereuy?(y) andv*(y) are matrices of, respectively, the or [upon applying the Fierz identit{A14)]
vector and the spinor representation of ($@). They are
defined by the relations

Up(Y)Pa=U"'PpU(Y), v%(Y)Q.=U"'QgU(y),
(A9) Equation(A17) can be further rewritten as

E3=e?(x)—i ﬂyaDH( 1+ ﬁee) (A17)

and are related to each other by the standard expression 1
E2=e?(x (1— ==00— 06 2)
Yl (Y)=0(Y) 70 (¥). (A10 P17 2R" 23RO
E3(x,6), Q23°(x,6), andE%(x,6) are Cartan form& ~*dK
corresponding to the coset superspace ORBP(50(1,3).
The OSp(14) Maurer-Cartan equations are

—i6y*D 6

1+ ﬁee) (A18)

whereD=d+ % ©?°(x) y,,. The SQ1,3 connection is

2
dE“+— EB/\QB =0, (A11) 1
0= 0?(x)+ 5 GyabD6+ T2 (07 DO (07 yc6)

2 -
dQP+ 2 QINQP=—ENEP. Lo
(A12) ~oxaire (07 POy veat)

The OSp(1 4)/SO(1,3) supervielbeins and spin connec- — ab(x) + i_— ab
tion. The spinorial supervielbein is @) 2R07 bo

1+ ﬁw) (A19)
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wheree?(x) and w?®(x) are the vierbein and the spin con- where y*¥=y#* are Sp(d) coordinates. The OSp[an)
nection on AdS. Cartan forms are
Note that in Eqs(A17) and(A19) we can make the fol-

lowing change of the Grassmann coordinates:

2671y, 0)d0(y, 0)= T [F (B~ 'dB)F +F1dF]

P\
0= 1+—0a) 0. (A20)

3R

=F 'DF=E“Q,+ 1Qaﬁl\/l
al o af -

Then, because of the symmetry properties of the Dirac ma- (A25)
trices y® and y2°, the Cartan forms become bilinear @ _ .
Let us start with computing the " *dF term of Eq.(A25).

E3=e?(x)—i® y*DO, (A21) L in

_ 1 n
P F (0)(:“:(9) n O(n+1)|Ad0Q(d0Q)
02P= 2%(x) + 550 2D . 1
(A22) sg“QaJer;'BMa[,, (A26)
The OSp(12n) superalgebra andOSp(12n) Cartan  where

forms. The generators of the OSg@n) superalgebra are a
symmetric  bosonic  (spintensor M, z=Mg, (a AdsA=[A,B]. (A27)
=1,...,2) and a Zr-component Grassmann spin@r,, B N
which satisfy the followinglanticommutation relations: To calculate the form§);” and € (A26), note that

Adyo(d0Q)=[d0Q,0Q]=—do“0AM 5, (A28)

[Map .M y51==ia[Cy(oMp) s+ CsaMp),l,

Ad3d0Q=[[d#Q,6Q],6Q]

[Mag,Q,]=—1aC,,Qp, (A23)
’ ’ =—-iad6®996,Q,, (A29)

a = M ap?
(Qu:Qef=Map Adl(d0Q)=[[[d#Q.6Q],6Q],6Q]
whereC 5= —Cg, is a constant X 2n antisymmetric ma-
trix (symplectic metrit. Note that to have the correspon- z_(_mg )[deQ 6Q]
dence with the form of OSp(4) superalgebréAl) the fac-
tor « should be chosen to be=4/R. ia

Whenn=2%2 C can be regarded as a charge conjuga- = —(—HVGY)AdHQ(dGQ),
tion matrix and Q, as a spinor representation of a 2
D-dimensional pseudo-rotation group S@{—t) with an

4 _

appropriately chosen number of dimensidhsand timelike Adyo(doQ)=[[[[d#Q.,6Q],6Q].6Q],6Q]
dimensionst of space-time. For instance, wher=16 the

generator®),, of OSp(1,32) can be associated with(&Q0 =— (— 076 )[[da Q,60Q],60Q]
Majorana spinors ilD=11 or two S@1,9 Majorana-Weyl

spinors of the same or opposite chiralitiesDn=10. This i 5

makes the OSp(1,32) supergroup to be related to M theory = —(;0707)Ad0Q(d0Q),

and superstring theories. OSp(1,32) is a subgroup of
OSp(164), and the two supergroups are extensions of therhus we arrive at the recursion relation
isometry  supergroups  SU(28, OSp(84), and
OSp(2,64) of D=10 andD =11 AdS superspacég2-24. 142 [l |
From a perspective dD =11 supergravity and M theory Adyy (d0Q) =~ ?0797 Adyo(deQ) for =1
the OSp(132) superalgebra contains the SO(1,10) covariant (A30)
bosonic  generators P,,M,=—My, and M,
=M, A tracti f OSp(IB2 d th M and can express all higher commutators through either Eq.
[a;--ag) - A CONTACHON O p([B2) produces the (A28) or Eq.(A29) multiplied by a corresponding power of
algebra[43,44 with M, andM,_ ..., becoming tensorial (ial2 676.).
central charges. In suchya way we arrive at the generic expression for the
To compute the OSp(2n) Cartan forms we choose the forms (A26):
following parametrization of the OSp[an) supergroup el-
ement

a
- Er=dg+id 6 0'8)9[;2| 0(2|T3)
G(y,0)=B(y)F(6)=B(y)e' ", (A24) (A31)
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1 fia ! Q= (y)+i61*DOPIP,(06), A39
Qa,B_ —j da(aaﬁ)zl h (2| +2)| ayay (y) 2( ) ( )
(A32) where
H |
. . o la
To calculate the first term in E4A25) P.(00)= 'n:°(2I+—3)! -0 07) , (A40)
1 -1 -1 -1 1 af —_ra 1 af . I
TFTABTHB)F=F 1 S0 M 5 |F=Eg+ S O5"M o085 o
(A33) 2TV EI=0 ) 2 7 )
. . . (A41)
we note that because“?(y) is symmetric the following
relation holds: and
1 a e 2 a B
007007 =5 670,(6w)". (A34) Do*=do"+5 wp(y) 6", (A42)

The polynomialP, (A41) can be hidden into rescale@
=/P,6, so thatQ*? become bilinear in Grassmann vari-
ables

Then one finds

) 9Q2(wM) for 1=1.

1+21 fa
AdHQ Z(WM) 676
(A35) Q= 0"P(y)+i0“DOA. (A43)

2

It is then not hard to veriffyusing the Maurer-Cartan equa-
tions(5.10 and(5.11)] that the odd Cartan form#38) take
the form

Using Eqg.(A35) we get the following expressions for the
forms (A33):

ta E“=P(0?)DO*—

ia
P(@?)=+/1+ §®Bﬁ.

i '
0 0,
A37 Having in hand the OSp(2n) Cartan forms it is straight-
(A37) forward to get the Cartan forms corresponding to any coset

Note that in Eqs(A36) and (A37) the polynomials in SUperspace OSpKZLn)'/H with H being a bosonic subgroup
670, are the same as in Eq#31) and(A32). Thus, insert-  0f OSp(12n). To this end in Eqs(A43) and (A44) one
ing Egs.(A31), (A32), (A36), and(A37) into Eq. (A25) we should simply put to zero all parameteré? corresponding

get the following expressions for the OSpeh) Cartan 0 the subgroupH. Then »*# will depend only on the
forms: bosonic coordinates of the supercoset O$p()Y/H, and

Eq. (A43) will contain the even supervielbeins and the spin
connection of OSp(/2n)/H.

Eg¢= (gw) O*DP(0?), (A44)

2

|
'Om 9707), (A36)

where
Q5P =wA(y)

- —(aw)(aaﬁ 35

(21+2)1

E“=Dg*+iDo\ 6P 6,P,(00), (A38)
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