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We construct simple twistor-like actions describing superparticles propagating on a coset superspace
OSp(1u4)/SO(1,3) ~containing theD54 anti–de Sitter space as a bosonic subspace!, on a supergroup mani-
fold OSp(1u4) and, generically, on OSp(1u2n). Making two different contractions of the superparticle model
on the OSp(1u4) supermanifold we get massless superparticles in Minkowski superspace without and with
tensorial central charges. Using a suitable parametrization of OSp(1u2n) we obtain even Sp(2n)-valued Cartan
forms which are quadratic in Grassmann coordinates of OSp(1u2n). This result may simplify the structure of
brane actions in super–anti–de Sitter~AdS! backgrounds. For instance, the twistor-like actions constructed
with the use of the even OSp(1u2n) Cartan forms as supervielbeins are quadratic in fermionic variables. We
also show that the free bosonic twistor particle action describes massless particles propagating in arbitrary
space-times with a conformally flat metric, in particular, in Minkowski space and AdS space. Applications of
these results to the theory of higher spin fields and to superbranes in AdS superbackgrounds are mentioned.

PACS number~s!: 11.15.2q
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I. INTRODUCTION

Conformal ~super!symmetry plays an important role i
the theory of fundamental interactions based on fie
theoretical models as well as on the theory of fundame
extended objects~strings, etc.!. Conformal geometrical struc
ture allows one to replace space-time geometry by twis
geometry, where twistors are fundamental conformal spin
@SU~2,2! spinors forD54# and space-time variables becom
twistor composites@1#. Such a construction allows for a su
persymmetric extension@2# where superspace variables a
replaced by primary supertwistor coordinates@SU(2,2uN)
supertwistors in theD54 case#.

In this paper we shall discuss twistors describing anti–
Sitter ~AdS! geometry. The isometry of the AdS~super-
spaces acts on the~super!AdS boundary as the group of~su-
per!conformal transformations, and, therefore, provides
group-theoretical basis for the AdS/CFT~conformal field
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theory! correspondence conjecture@3# which attracted a grea
deal of attention over the last two years~see Ref.@4# for an
exhaustive list of references!. On the other hand the AdS
space is the one where higher spin fields may nontrivia
interact with each other@5#. In some aspects the techniqu
developed for the description of the theory of higher sp
fields in Minkowski @6# and AdS spaces@7# resembles the
~super!twistor approach@8#.

In this respect it is tempting to look for possible link
between these different manifestations of conformal symm
try, AdS spaces, twistors, and their supersymmetric gene
zations. Motivated by the problem of finding a simple for
of the action for a superstring propagating in the AdS53S5

superbackground@9#, in recent papers@10# a massive bosonic
twistor particle model in an AdS5 space has been propose
and its classical and quantum properties have b
considered.1 In Refs. @12,13# an OSp(1u8) supertwistor
model has been proposed for the description of aD54
massless superparticle with the infinite spectrum of quan
states being described by fields of arbitrary integer and
integer spin. The helicity degrees of freedom of the sup
particle have been found to be associated with the tenso
,

,

,
,

1The authors of Ref.@9# called supertwistors ‘‘quarks.’’ It should
be mentioned that one of the present authors~J.L.! suggested a long
time ago to relate supertwistors~with opposite grading! to quark
degrees of freedom@11#.
©2000 The American Physical Society09-1
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central chargeZ[mn] (m,n50,1,2,3) which extends theN
51, D54 super-Poincar’e algebra. One can show t
OSp(1u8) is a superextension of theD54 conformal group
which contains as a subsupergroup theN51, D54 super-
Poincare´ algebra enlarged withZ[mn] . It is natural to assume
that the superparticle with tensorial central charges and
particle on the AdS space are different truncations of
dynamics of a superparticle propagating in the supergr
manifold of the isometries of the corresponding AdS sup
space@13#.

An aim of this paper is to construct such a model in t
supergroup manifold OSp(1u4) and demonstrate how it i
related to theD54 twistor superparticle model of highe
spins@12,13#, and to a superparticle on the AdS4 superspace
OSp(1u4)/SO(1,3). Another motivation for this study ha
been to find a way of constructing simple worldvolume a
tions describing the dynamics of superbranes propagatin
AdS superbackgrounds, i.e., to make a progress in solvin
vital AdS/CFT correspondence problem@14–20#.

Using a suitable parametrization of OSp(1u2n) we have
found a simple form of the even OSp(1u2n) Cartan forms.
They are only quadratic in Grassmann coordinates. This
allowed us to construct simple actions quadratic in fermio
for superparticles propagating on OSp(1u4)/SO(1,3),
OSp(1u4) and, generically, on OSp(1u2n).

The most interesting examples of the OSp(1u2n) super-
groups seem to be OSp(1u32) and OSp(1u64). In Refs.
@22–24#2 it has been shown that OSp(1u32) and OSp(1u64)
contain the supergroup structures ofD511 M theory and
D510 superstrings. In particular, OSp(1u32) and
OSp(1u64) are extensions of the supergrou
SU(2,2u4), OSp(8u4), and OSp(2,6u4) which are isome-
tries of, respectively, AdS53S5, AdS43S7, and AdS73S5

superspaces.3 Reducing OSp(1u32) and OSp(1u64) down to
the AdS supergroups one may hope to get simpler exp
sions for the Cartan forms of the latter, which might simpl
the structure of actions for branes in corresponding AdS
perbackgrounds@14–20#.4

The plan of the paper is as follows. In Sec. II we revie
properties of the twistor formulation of bosonic particle m
chanics and demonstrate that the single twistor particle
tion generically describes particles propagating in arbitr
space-times which admit a conformally flat metric, such
flat Minkowski space and the AdS space.

In Sec. III A we consider the supertwistor description o

2An OSp(1u64)-invariant superparticlelike model has been d
cussed in Ref.@24# ~see also Ref.@25# and references therein!.

3We should remark that the notation Osp(6,2u4) is a somewhat
confusing name for the AdS7 quaternionic supergroup described,
a complex parametrization, by the intersection of two complex
pergroups SU(4,4u4) and OSp(8u4;C), with bosonic sectors being
respectively, the spinorial covering of O(6,2)~space-time! and the
spinorial covering Sp(2;H)5USp(4;C) of O(5) ~the internal sec-
tor!.

4The Cartan forms on supercosets of SU(2,2uN) relevant to the
construction of brane actions on AdS superbackgrounds were
culated in the early 1980’s@21#.
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massless superparticle in flatN51, D54 superspace, and
in Sec. III B we construct a twistorlike action for the descri
tion of the dynamics of a superparticle in the super-A
space OSp(1u4)/SO(1,3). The action has a simple quadra
form in fermions and, hence, it should not be hard to perfo
its quantization. However, in contrast to the bosonic Ad4
superparticle we have not managed to find a complete
pertwistor version of this model.

In Sec. IV we construct a twistorlike action for a supe
particle on the supergroup manifold OSp(1u4). This action is
also quadratic in fermions, and upon an appropriate trun
tion it reduces to the models of Sec. III.

In Sec. V we describe a superparticle propagating
OSp(1u2n) and show that it preserves 2n21 supersymme-
tries associated with Grassmann generators of OSp(1u2n).

The OSp(1u4) superalgebra and its Cartan forms requir
for the construction of the actions are given in the Append
In particular, we present a simple form of the super-Ad4
supervielbeins and spin connection which are polynomials
only the second order in Grassmann coordinates. We
present Cartan forms of the supergroup OSp(1u2n) which
can be made quadratic in Grassmann variables by an ap
priate rescaling of the latter in the Appendix.

II. TWISTOR-LIKE BOSONIC PARTICLES

We start by recalling the form of an action for massle
D54 particles which serves as a dynamical basis for
transform from the space-time to the twistor description. T
action is

S5E dt lA~sm!AȦl̄ Ȧ
d

dt
xm~t!5E lsml̄dxm~t!,

~2.1!

where xm(t)(m50,1,2,3) is a particle trajectory inD54
Minkowski space,lA(t) is a commuting two-componen
Weyl spinor, andsAȦ

m
5s̄ ȦA

m are the Pauli matrices.
From Eq. ~2.1! we derive that the canonical conjuga

momentum ofxm(t) is

pm5lsml̄⇒pAȦ5
1

2
pmsAȦ

m
5lAl̄ Ȧ , ~2.2!

whose square is identically zero sincelAlBeAB[0,5 i.e.,

pmpm50. ~2.3!

We therefore conclude that the particle is massless.
In the action~2.1! we can make the change of variables

introducing the second commuting spinor

m̄ Ȧ5 ilA~sm!AȦxm[ ilAxAȦ ~2.4!

and its complex conjugate

-

-

al-
5The two-component spinor indices are raised and lowered by

unit antisymmetric matriceseAB5eAB , e ȦḂ5e ȦḂ .
9-2
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mA52 ixAḂl̄ Ḃ. ~2.5!

The four-component spinors

Za5~lA ,m̄ Ȧ!, Z̄a5~mA,l̄ Ȧ! ~2.6!

are called twistors.
In terms of Eq.~2.6! the action~2.1! takes the form

S5 i E dt@ Z̄adZa1 l ~t!Z̄aZa#, ~2.7!

where we have added the second term with the Lagra
multiplier l (t) which produces the constraint

Z̄aZa50. ~2.8!

This constraint implies thatmA and m̄ Ȧ are determined by
Eqs. ~2.4! and ~2.5!. But, as we shall see below, this fla
space solution of the twistor constraint~2.8! is not the unique
one. The AdS4 space is also admissible, as well as any sp
with a conformally flat metric.

Passing from the action~2.1! to Eq. ~2.7! we have per-
formed the twistor transform, Eqs.~2.2!, ~2.4!, and~2.5! be-
ing the basic twistor relations@1#. The action~2.7! is invari-
ant under the conformal SU(2,2);SO(2,4) transformations
since the twistors are in the fundamental representation
the conformal group. The choice of twistor variables dem
strates how conformal symmetry appears in the theory
free massless particles.

We can generalize the action~2.1! to describe a massles
particle propagating in a curved~gravitational! background.
For this purpose we introduce the vierbein one-formea(x)
5dxmem

a (x) with the indexa50,1,2,3 corresponding to lo
cal SO~1,3! transformations in the tangent space of the ba
ground. Equation~2.1! takes the form

S5E dt lsal̄em
a ]tx

m5E lsal̄ea. ~2.9!

Note thatl still transforms under a spinor representation
SO(1,3);SL(2,C).

In particular, one can consider an AdS4 space as a back
ground where the particle propagates. Let us mention th
different formulation ofmassiveparticle mechanics on AdS4
has been considered in Ref.@26#.

The AdS4 particle. To consider a particle in the AdS4

background we should specify the form ofem
a (x). A conve-

nient choice of local coordinates and of the form of the m
ric on AdS4 is

ds25dxmdxnem
a en

bhab5S r

RD 2

dxih i j dxj1S R

r D 2

dr2,

~2.10!

wherexm5(xi ,r )( i 50,1,2) are coordinates of the AdS4, and
R is the AdS4 radius, whose inverse square is the const
AdS4 curvature~or the cosmological constant!. The coordi-
natesxi are associated with the three-dimensional bound
of AdS4 when the radial coordinater tends to infinity.
06500
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From Eq.~2.10! we find that the components of the vie
bein one-formea5dxmem

a are

ea5dxmem
a 5S r

RD d i
adxi1S R

r D d3
adr. ~2.11!

Note that the coordinatesxi ,r transform nonlinearly unde
the action of the AdS4 isometry group SO(2,3) which is th
conformal symmetry of the boundaryxi

dxi5aP
i 1aM

i j xj1aDxi1aK
i xjxj22~xjaK

j !xi1R2
aK

i

r 2 ,

dr 5~2xiaK
i 2aD!r , ~2.12!

where aP
i , aM

i j , aD , and aK
j are parameters of, respec

tively, D53 translations, Lorentz rotations, dilatation, an
conformal boosts, withP i , Mi j , D, andK j being the cor-
responding generators of the SO~2,3! algebra (i , j 50,1,2)
~see the Appendix!.

We can now substitute Eq.~2.11! into Eq. ~2.9!. The ac-
tion takes the form

S5E dtF S r

RDls i l̄ ẋi1S R

r Dls3l̄ ṙ G . ~2.13!

Let us try to carry out the twistor transform of this actio
in a way similar to that considered above for the flat tar
space. To this end we redefinel as

l̂A5S r

RD 1/2

lA . ~2.14!

The action~2.13! takes the form

S5E dtF l̂s il
R]tx

i1S R

r D 2

l̂s3lR]tr G . ~2.15!

In the limit r→` one obtains the twistor-like massless pa
ticle in three-dimensional Minkowski space, i.e., on t
boundary of AdS4. The complex Weyl spinorl̂ describes a
pair of two-component realD53 spinors which turn out to
be proportional to each other on the mass shell. In the li
r→` the action~2.15! is still invariant under theD53 con-
formal group Sp(4)5O(3,2)/Z2 supplemented by O~2! rota-
tions corresponding to the phase transformations ofl̂.

In what follows we shall, however, keepr finite and make
the change of variable

x̂352
R2

r
. ~2.16!

Then the action~2.15! formally becomes the same as E
~2.1! in the flat case

S5E dt@l̂s il
R]tx

i1l̂s3lR]tx̂
3#5E dt l̂smlR]tx̂

m,

~2.17!
9-3
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wherex̂m5(xi ,x̂3). The essential difference is that upon t
redefinition~2.14! the SL(2,C) spinorsl̂ transformnonlin-
early under the action of the isometry group SO~2,3! via the
radial coordinater.

We can now make the twistor transform of the acti
~2.17! by introducing

mC Ȧ5 i l̂Ax̂AȦ ~2.18!

and combiningl̂ andmC into the twistor

Za5~ l̂A ,mC Ȧ!. ~2.19!

The pure twistor form of the action~2.17! is the same as Eq
~2.9!, and, hence, it is invariant under the group SU(2
;SO(2,4) of the conformal transformations actinglinearly
on the twistor~2.19!. The twistorZa is in the fundamenta
representation of SU~2,2!.

As it has been explained in detail in@10# for the particle in
AdS5, the linear conformal SU~2,2! transformations ofZa
induce nonlinear transformations of the AdS coordinatesxi

and r when the twistor components are related toxi and r
through Eqs.~2.14!, ~2.16!, and~2.18!

Za5S r

RD 1/2S lA ,2 ix is i
ȦBlB1 i

R2

r
s3

ȦBlBD . ~2.20!

In the case under consideration we thus find the nonlin
conformal SO~2,4! transformations of the AdS4 space coor-
dinates, with the isometry group SO~2,3! @see Eq.~2.12!#
being a subgroup of the conformal group. The conform
transformations ofx̂m5xi ,x̂3 @where x̂3 was defined in Eq.
~2.16!# are similar to the conformal transformations of t
Minkowski space coordinates. They are

d x̂m5aP
m1aM

mnx̂n1aDx̂m1aK
mx̂nx̂n22~ x̂naK

n !x̂m,
~2.21!

where aP
m , aM

mn , aD , and aK
m are parameters of, respe

tively, D54 translations, Lorentz rotations, dilatation, a
conformal boosts, withPm , Mmn , D, and Km the corre-
sponding generators of the SO~2,4! algebra (m,n50,1,2,3)
~see the Appendix!.

Substituting the expression~2.16! for x̂3 into Eq. ~2.21!,
one can deduce the explicit form of the conformal transf
mations of the coordinater. Then the SO~2,3! isometry trans-
formations~2.12! of the AdS4 coordinates are obtained b
putting to zero all parameters in Eq.~2.21! which carry the
index 3, the remaining ones beingaD and all those with
three-dimensional indicesi , j 50,1,2.

The observation that the AdS spaces are conform
transformed according to Eq.~2.21! implies that these mani
folds are conformally flat. For instance, the AdS4 metric
~2.10! becomes conformally flat upon the redefinition of t
coordinater just as in Eq.~2.16! ~which we made to perform
the twistor transform!
06500
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ds25S R

x̂3D 2

@dxih i j dxj1~dx̂3!2#5S R

x̂3D 2

dx̂mdx̂nhmn .

~2.22!

We have thus shown that the twistor constraint~2.8! has
two solutions which correspond to the twistor transform
the flat D54 Minkowski space and of AdS4, both spaces
being conformally flat. This observation allows us to co
clude that any other space whose metric is conformally
should also arise as a corresponding solution of the twi
constraint~2.8!. We now turn to the supersymmetrization
the action~2.9!.

III. TWISTOR-LIKE NÄ1, DÄ4 SUPERPARTICLES

The form of the action~2.9! is suitable for a straightfor-
ward supersymmetric generalization. To this end we sho
considerea as a vector component of the supervielbein o
form

eI~z!5dzMeM
I5~ea,eA,ēȦ!, ~3.1!

wherezM5(xm,uA,ū Ȧ) are coordinates which parametrize
target superspace in which the particle propagates.uA and its
complex conjugateū Ȧ are Grassmann-odd Weyl spinor c
ordinates.

A. A superparticle in flat superspace

In the case of flat target superspace

ea5dxa2 iusadū1 i du saū, eA5duA, ēȦ5dū Ȧ.
~3.2!

Substitutingea from Eq.~3.2! into the action~2.9! we can
transform it into the pure supertwistor action by introduci
the supertwistor@2#

ZA5~lA ,m̄ Ȧ,x! ~3.3!

and its conjugate

Z̄A5~mA,l̄ Ȧ ,x̄ !, ~3.4!

where now

m̄ Ȧ5 ilA~xAȦ2 iuAū Ȧ! ~3.5!

and

x5uAlA , x̄5 ū Ȧl̄ Ȧ . ~3.6!

Upon supertwistorization the action~2.9! with the superviel-
bein ~3.2! takes the form similar to Eq.~2.7!

S5 i E dt@ Z̄AdZA1 l ~t!Z̄AZA#, ~3.7!

where now the supertwistor constraint is

Z̄AZA5mAlA2m̄ Ȧl̄ Ȧ12x̄x50. ~3.8!
9-4
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For further details on twistor superparticles in flat supersp
we refer the reader to the papers@2,27–33# and proceed with
constructing an action for a superparticle propagating in
coset superspace OSp(1u4)/SO(1,3) whose bosonic sub
space is AdS4.

B. The superparticle on OSp„1z4…ÕSO„1,3…

To get an explicit form of the particle action o
OSp(1u4)/SO(1,3) we should know an explicit form of th
supervielbein~3.1!, which is part of the Cartan forms o
OSp(1u4). The components of the latter can be compu
using the method of nonlinear realizations@34–37#.

The Cartan forms of the supergroup OSp(1u4) and corre-
sponding Cartan forms for the supercoset OSp(1u4)/SO(1,3)
were calculated in@38–41#. Below we present simpler ex
pressions for the Cartan forms which allow to write down
simple form of the AdS superparticle action, since our cho
of the parametrization of the supercoset differs from t
used in Refs.@39,41#.

To derive the Cartan forms on OSp(1u4)/SO(1,3) we
take the supercoset element in the form

K~zM !5B~x!F~u!5B~xm!ei (uAQA1 ūȦQ̄Ȧ), ~3.9!

whereB(xm) is the purely bosonic matrix taking its values
the coset SO(2,3)/SO(1,3), i.e., it is associated with
bosonic AdS4 space locally parametrized by coordinatesxm.
The Grassmann coordinatesuA and ū Ȧ extend AdS4 to the
coset superspace, andQA and Q̄Ȧ are the odd generators o
OSp(1u4) ~see the Appendix!.

The Cartan form on OSp(1u4)/SO(1,3) is

1

i
K21dK5Ea~z!Pa1EA~z!QA1QȦĒȦ~z!1Vab~z!Mab .

~3.10!

It takes values in the OSp(1u4) superalgebra.
The one-formsEI5(Ea,EA,ĒȦ) are the supervielbein

andVab is the SO~1,3! connection on the coset superspa
In the representation~3.9! the Cartan form~3.10! is

K21dK5F21~B21dB!F1F21dF[F21DF, ~3.11!

where the purely bosonic Cartan formB21dB takes values in
the SO~2,3! algebra and describes a vierbeinea(x) and a spin
connectionvab(x) on the bosonic AdS4 space

1

i
B21dB5eaPa1vabMab . ~3.12!

Depending on the choice ofB(x) one can get different forms
of ea(x) and vab(x). For instance, the coset elementB(x)
can be chosen in such a way thatea(x) in Eq. ~3.12! is the
same as in Eq.~2.11! and the connectionvab(x) is

v i35
1

R
ei , v i j 50 ~3.13!
06500
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~remember that the index 3 corresponds to the radial coo
nater of AdS4).

We can now substitute Eq.~3.12! into Eq. ~3.11! and cal-
culate the explicit form of the supervielbeinsEI and the su-
perconnectionVab, using a trick, described, for example,
Ref. @14#, or by the method presented in the Appendix. In t
Majorana spinor representation the expressions for the C
tan forms are given in the Appendix. In the two-compone
spinor formalism the supervielbein form~A18! or ~A21! of
the Appendix can be written as follows:

Ea5P~u2,ū2!@ea~x!2 iQsaDQ̄1 iDQsaQ̄#,
~3.14!

where

P~u2,ū2!512
i

2R
~u22 ū2!1

1

3!R2 u2ū2, ~3.15!

u2[uAuA , ū2[ū Ȧū Ȧ,

Q5S 11
i

3!R
~u22 ū2!

P~u2,ū2!
D 1/2

u,

~3.16!

D5d1vbcsbc , sab5
1

4
~sas̄b2sbs̄a!.

To get the action for the superparticle in the super-A
background we should simply substitute Eq.~3.14! into Eq.
~2.9!.

S5E lsal̄P~u2,ū2!@ea2 iQsaDQ̄1 iDQsaQ̄#.

~3.17!

The polynomialP(u2,ū2) can be absorbed by properly re

scaledl and l̄, namely,L5AP(u2,ū2)l. Then the action
takes an even simpler form which is quadratic in fermion

S5E LsaL̄@ea2 iQsaDQ̄1 iDQsaQ̄#

5E LsaL̄@ea2 iQsadQ̄1 idQsaQ̄

1 ivbc~x!Q~sas̄bc1sbcs̄
a!Q̄#. ~3.18!

If in Eq. ~3.18! there were no terms containing the spin co
nectionvbc the action~3.18! could be completely supertwist
orized in the same way as we have done in the case of
AdS4 particle and of the superparticle in flat superspa
However, the term withvbc does not allow one to perform
the complete supertwistorization of Eq.~3.18! in terms of
free supertwistors, at least in a straightforward way.

Using the notion of Killing spinors on AdS spaces o
can replace in Eq.~3.18! the covariant differentialD with the
9-5
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ordinary one. To this end it is convenient to switch to t
four-component Majorana spinor formalism

La5~lA ,l̄ Ȧ!, Qa5~QA ,Q̄ Ȧ!.

By definition ~see, for instance, Ref.@42#! AdS Killing
spinors satisfy the condition

DKa
bCb5S DKa

b1
1

2R
~eaga!a

gKg
bDCb

5S dKa
b1

1

2
~vabgab!

a
gKg

b

1
1

2R
~eaga!a

gKg
bDCb50, ~3.19!

whereKa
b(x) is a bosonic Killing spinor matrix andCb is

an arbitrary constant spinor. If in Eq.~3.20! we replaceQ
with Q5K(x)QK ~where QK[K21Q) @15# the action
~3.18! takes the form

S5
1

2E L̄gaLFeaS 11
i

2R
Q̄Q D2 i Q̄gaK dQKG

or ~upon an appropriate rescaling ofL andQ)

S5
1

2E L̄gaL@ea2 i Q̄gaK dQK#. ~3.20!

Note that in Eq.~3.20! the variableQK is regarded as inde
pendent, whileQ5K(x)QK is composed fromQK and the
Killing matrix K(x) whose exact dependence on the Ad4
coordinatesxm can be found by solving the Killing spino
equation ~3.19! @42#. Taking this into account, the term

i Q̄gaK dQK in Eq. ~3.17! can be rewritten as

i Q̄Kg b̂ĉdQKKb̂ĉ
a (x), whereKb̂ĉ

a (x) are SO~2,3! Killing vec-

tors on AdS4 (b̂,ĉ50,1,2,3,4, g451). Then the superviel-
bein

Ea5ea2 i Q̄Kg b̂ĉdQKKb̂ĉ
a

~3.21!

takes the form similar to one of the parametrizations con
ered in Ref.@39#.

It would be interesting to understand whether the A
superparticle action in any of its forms can be complet
supertwistorized, i.e., written in the form~3.7!, using an ap-
propriate choice of AdS supercoordinates. If it is possib
then the AdS superparticle model would acquire the mani
superconformal SU(2,2u1) symmetry. In any case, the use
commuting spinors, whose bilinears replace the conventio
particle momentum, and the suitable choice of the param
zation of the supercoset space OSp(1u4)/SO(1,3) have al-
lowed us to get a simple form of the action for a superp
ticle propagating in the AdS superbackground, which
bilinear in fermionic variables.
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IV. THE SUPERPARTICLE ON OSp „1z4…

We now turn to the construction of the action for a sup
particle propagating on the supergroup manifold OSp(1u4)
locally parametrized by the supercoset OSp(1u4)/SO(1,3)
coordinatesxm andu, and by six SO~1,3! group coordinates
ymn52ymn. This model is intended to produce, upon
appropriate contraction, the superparticles in flat supersp
and on super-AdS4 considered above, as well as the sup
particle with tensorial central charges@12,13#.

By analogy with Eqs.~2.9! and ~3.17!, to construct the
OSp(1u4) superparticle Lagrangian we take the pullba
onto the particle world line of the even Cartan superfor
EOSp

a and VOSp
ab given in the Appendix@Eq. ~A8!#. These

forms comprise the bosonic SO~2,3! part of the supervielbein
on OSp(1u4). We contract them with commuting spinor b
linearsl̄gal andl̄gabl. The OSp(1u4) superparticle action
is

SOSp5
1

2E $Eb~x,u!ub
a~y!l̄gal

1@Vcd~x,u!uc
aud

a1~u21du!ab#l̄gabl%.

~4.1!

Using the defining relations for the SO~1,3! matricesub
a and

vb
a ~A10! we can make the redefinition

ub
a~y!l̄gal5 l̄̂gbl̂, where l̂a5lbvb

a. ~4.2!

Then ub
a(y) remains only in one term of the action~4.1!,

and the latter takes the form

SOSp5
1

2E Ea~x,u!l̄̂gal̂

1
1

2E @Vab~x,u!1~duu21!ab#l̄̂gabl̂. ~4.3!

We observe that the first integral in Eq.~4.3! is nothing but
the action~3.17! for the superparticle on the coset superspa
OSp(1u4)/SO(1,3), and the second term contains the s
connection of OSp(1u4)/SO(1,3) extended by the SO~1,3!
Cartan formduu21. In Eq. ~4.3! the dependence of the ac
tion on the SO~1,3! group manifold coordinatesymn remains
only in duu21.

Since by an appropriate choice of Grassmann coordin
the Cartan formsEa(x,u) and Vab(x,u) can be made qua
dratic in u @see Eqs.~A21! and ~A22!# we see that the
OSp(1u4) action~4.3! is quadratic in fermions. If we drop
the second integral of Eq.~4.3! we get the action for the
superparticle considered in Sec. III B, and if we then take
limit when the AdS4 radius goes to infinity, the action furthe
reduces to the superparticle action in flatN51, D54 super-
space. Another way of truncating the action~4.3! is to per-
form the following contraction of the OSp(1u4) superalgebra
~A1!. Let us in Eq. ~A1! rescale the generatorsMab of
SO~1,3! as
9-6



l
th

i-

t
rb
o

r

ive

th

t
s

.

te

r
pace
po-

ing

dS

erve
rast

l,

s

e-
ad-
ob-
to
ces.

a

er-

ts

i-

the
p

OSp SUPERGROUP MANIFOLDS, SUPERPARTICLES, . . . PHYSICAL REVIEW D 61 065009
Mab5RZab , ~4.4!

and consider the limitR→` of the algebraic relations~A1!–
~A4!. Then the generatorsZab become tensorial centra
charges which commute with all other generators, and
anticommutator of the supercharges becomes

$Qa ,Qb%522~Cga!abPa1~Cgab!abZab . ~4.5!

The SO~1,3! coordinatesymn become central charge coord
nates.

In the limit R→` the supervielbeinEa(x,u) reduces to
the ‘‘flat’’ one-form ~3.2!

EZ
a5dxa2 i ūgadu ~4.6!

and the superconnectionVZ
ab5R@Vab1(duu21)ab# be-

comes

VZ
ab5dyab1

i

2
ūgabdu. ~4.7!

Substituting Eqs.~4.6! and~4.7! into Eq. ~4.3! we get the
action for a particle with tensorial central charges@12,13#.
The quantization of this superparticle model has shown
produce an infinite tower of free massless states with a
trary integer and half integer spin, with the spin degrees
freedom associated with the central charge coordinatesymn.
For a detailed analysis of the model we refer the reade
Refs.@12,13#.

Since the higher-spin fields can interact if they do not l
in Minkowski space but in an anti–de Sitter space@5#, it
seems of interest to study the possibility of generalizing
OSp(1u4) superparticle model based on the action~4.3! to
include interactions, and then to perform its quantization
check whether such a model can be considered as a clas
counterpart of the theory of interacting higher-spin fields

To conclude this section we demonstrate that OSp(1u4)
covariant momenta associated with the OSp(1u4) coordi-
natesxm, ymn, andua generate the OSp(1u4) superalgebra.6

Let us rewrite the action~4.3! as

S5
1

2E dt l̄̂G I l̂EM
I ~x,u,z!]tX

M, ~4.8!

whereG I are

G I5~ga , gab!, ~4.9!

the indexI stands for vectora and tensorab indices, and
XM[(xm,zmn,ua). EM

I (x,u,z) are the OSp(1u4) Cartan
form componentsEa and Vab, which correspond to the
bosonic generatorsPa and Mab of OSp(1u4) ~see the Ap-
pendix!.

6In Ref. @45# similar covariant momenta were used to make
Hamiltonian analysis and the quantization of superparticles pro
gating in harmonic superspaces.
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From Eq.~4.8! we get the canonical momenta conjuga
to XM[(xm,zmn,ua) as

dS

d~]tX
M !

5PM5
1

2
l̄̂G I l̂EM

I . ~4.10!

Multiplying Eq. ~4.10! by the matrix EÎ
M inverse to EM

Î

@where Î 5(I ,a)# we obtain OSp(1u4) covariant momenta
PÎ5EÎ

M
PM5(PI ,Pa) such that

1

2
l̄̂G I l̂5PI[EI

M~X!PM , Pa5Ea
M~X!PM50.

~4.11!

Equations~4.10! and ~4.11! imply that the expressions fo
the momenta are constraints on the superparticle phase s
variables. For instance, the covariant momentum com
nentsPa of the Grassmann variableua are zero. These are
Grassmann constraints on the dynamics of the OSp(1u4) su-
perparticle, which include first-class constraints generat
the k symmetry of the OSp(1u4) superparticle.

It is well known that, as it occurs forN51, D54 super-
particles in an arbitrary supergravity background, the A
superparticle possesses two-parameter local fermionick
symmetry, which means that such superparticles pres
half the supersymmetry of a target-space vacuum. In cont
to this, as we shall prove in the next section, the OSp(1u4)
superparticle possesses threek symmetries and, in genera
the superparticle propagating on the OSp(1u2n) supergroup
manifold has (2n21) k symmetries and thus describe
Bogomol’nyi-Prasad-Sommerfield~BPS! states with only
one broken supersymmetry.

In Ref. @12# the superparticle models with such a symm
try property have been obtained in flat superspaces with
ditional tensorial central charge coordinates. Here we
serve that this unusual feature is also inherent
superparticles propagating in more complicated superspa

Because of the Maurer-Cartan equations (dE2 iE`E

50) for the Cartan formsEM
Î the generalized moment

form, under the Poisson brackets, the OSp(1u4) superalge-
bra, which can be quantized by taking an appropriate ord
ing of X andP in the definition of Eq.~4.11!:

@PÎ ,PĴ%5CÎ Ĵ
K̂PK̂ , ~4.12!

where CÎ Ĵ
K̂ are OSp(1u4) superalgebra structure constan

@see Eq.~A1!#.
From Eqs.~4.11! and ~4.12! we see that upon the trans

tion to Dirac brackets the bilinears ofl̂a ~4.11! become gen-
erators of the Sp(4);SO(2,3) subalgebra of OSp(1u4),
which implies thatl̂a will not commute with respect to the
Dirac brackets

@la ,lb#D5
1

2R
Cab .a-
9-7
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Note that atR→` la become commuting variables, whic
correspond to the twistorlike variables of the superpart
model with tensorial central charges@12,13#.

From this analysis we conclude that the commutat
properties of the superparticle covariant momenta reflect
structure of the global symmetries of the OSp(1u4) superpar-
ticle action. To quantize the model one should consider
OSp(1u4) coordinates and momenta as ‘‘generalized’’ c
nonical variables, with graded commutation relations defin
by the OSp(1u4) superalgebra~4.12!. The detailed study of
the model based on the action~4.3! is in progress.

V. THE SUPERPARTICLE ON OSp „1z2N…

AS A DYNAMICAL MODEL FOR EXOTIC BPS STATES

We now generalize the OSp(1u4) superparticle action
~4.1!, ~4.3! or ~4.8! to the case of the supermanifo
OSp(1u2n) whose parametrization we choose to be of
form @see the Appendix for the details on the OSp(1u2n)
superalgebra#

G~y,u!5B~y!F~u!5B~y!eiuaQa, ~5.1!

where yab5yba are coordinates of the Sp(2n) subgroup
generated by symmetric operatorsMab5Mba , and whose
element is denoted asB(y); ua are Grassmann coordinate
andQa are Grassmann generators of OSp(1u2n) transform-
ing under the fundamental representation of Sp(2n), which
we call the spinor representation (a,b51, . . . ,2n).

The OSp(1u2n) Cartan forms are

1

i
G 21~y,u!dG~y,u![

1

i
@F21~B21dB!F1F21dF#

[F21DF5EaQa1
1

2
VabMab .

~5.2!

To have the connection with the OSp(1u4) case discusse
in Sec. IV and the Appendix we note that forn52 Mab can
be written in terms of SO~1,3! covariant generatorsPa and
Mab as follows:

Mab522~Cga!abPa1
1

R
~Cgab!abMab . ~5.3!

Then the OSp(1u4) Cartan forms presented in Eq.~A8! are
related toVab in Eq. ~5.2! in the following way:

EOSp
a 52~Cga!abVab, VOSp

ab 5
1

2R
~Cgab!abVab.

~5.4!

The matrix Cab plays the role of the Sp(2n) invariant
metric.

The OSp(1u2n) Cartan forms~5.2! computed in the Ap-
pendix have the form

Ea5Dua1 iDu (aub)ubP1~uu!, ~5.5!
06500
e

n
e

e
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d

e

Vab5vab~y!1 iu (aDub)P2~uu!, ~5.6!

where vab(y) are Sp(2n) Cartan forms, P1(uu) and
P2(uu) are polynomials inuaCabub @see Eqs.~A40! and
~A41!#, andD is the Sp(2n) covariant derivative

Dua5dua1
a

2
va

b~y!ub, ~5.7!

wherea is a dimensional constant factor in the OSp(1u2n)
superalgebra~A23!, which in the OSp(1u4) case~A1! is a
54/R.

The form of Eq.~5.6! prompts us that the polynomialP2

can be hidden into rescaledQ5AP2u, then forVab we get
the simple expression

Vab5vab~y!1 iQ (aDQb). ~5.8!

The action for a superparticle moving on OSp(1u2n),
which generalizes Eq.~4.3!, has the form

S5
1

2E lalbVab[
1

2E dtlalbVt
ab , ~5.9!

wherela is an auxiliary bosonic Sp(2n) ‘‘spinor’’ variable,
and Vab5dtVt

ab is the pullback of the even Cartan form
~5.6! or ~5.8! on the superparticle world line.

Let us now analyze thek-symmetry properties of the ac
tion ~5.9! by considering its general variation. A simple wa
to vary the action~5.9! with respect to OSp(1u2n) coordi-
natesXM5(yab,ua) and the auxiliary variablel, is to use
Maurer-Cartan equations@integrability conditions for Eq.
~5.2!# d(G 21dG)5G 21dG`G 21dG which imply

dEa1
a

2
Eb`Vb

a50, ~5.10!

dVab1
a

2
Vag`Vg

b52 iEa`Eb,

~5.11!

and the expression for theXM variation of the differential
forms

dV5 i ddV1didV i dV[dXMVM . ~5.12!

Modulo a boundary term the variation of the action~5.9!
obtained in this way takes the form

dS5E dlaVablb2E
M 1

Dlai dVablb

2
i

2E ~Eala!~ i dEb!lb , ~5.13!

where the basis in the space of variations is chosen to
i dVab andi dEa instead of more conventionaldyab anddua.

Note thati dEa corresponds to the variation of the actio
with respect to Grassmann coordinatesua. Putting dla
50, i dVab50 we thus observe that only one of the 2n
9-8
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linearly independent fermionic variations, namely,i dEala ,
effects the variation of the action. This implies that oth
2n21 fermionic variations are fermionick-symmetries of
the dynamical system described by the action~5.9!. The
k-symmetry transformations are defined in such a way
i dEala vanishes~see Refs.@12,13#!

i dVab50, dla50, i dEa5k Im I
a , I 51, . . . ,~2n21!,

~5.14!

where them I
a are 2n21 Sp(2n) spinors orthogonal tola

m I
ala50, I 51, . . . ,~2n21!. ~5.15!

Thus, we conclude that an unusual property of a twist
like superparticle with tensorial central charge coordina
@12# to preserve all but one target-space supersymmetrie
inherent to the superparticle model on the OSp(1u2n) super-
group manifold as well.

When the explicit expressions~5.5! and~5.6! for the Car-
tan forms on OSp(1u2n) are obtained, one straightforward
gets the explicit expressions also for the Cartan forms on
coset superspace OSp(1u2n)/H, whereH is a bosonic sub-
group of OSp(1u2n). These expressions are the same as E
~5.5! and ~5.6! but with vab depending only on the bosoni
coordinates of the supercoset@see also Eqs.~A43! and
~A44!#. Using the OSp(1u2n)/H Cartan forms one can con
struct various types of actions for superparticles and su
branes propagating on the corresponding coset superm
folds.

VI. CONCLUSION

By taking a suitable parametrization of the supergro
manifold OSp(1u2n) we have found a simple form of th
OSp(1u2n) Cartan superforms such that the ones which t
values in the bosonic subalgebra Sp(2n) of OSp(1u2n) are
quadratic in Grassmann coordinates. We have used t
Cartan forms to construct simple twistorlike actions~which
are quadratic in fermions! for describing superparticle
propagating on the coset superspace OSp(1u4)/SO(1,3), on
the supergroup manifold OSp(1u4), and, in general, on
OSp(1u2n) supermanifolds. The OSp(1u4) superparticle
model has been shown to produce~upon a truncation! either
the standard masslessD54 superparticle or the generalize
masslessD54 superparticle with tensorial central charg
@12,13# whose quantization gives rise to massless free fie
of arbitrary ~half!integer spin.

We have also shown that the massless particle on A4
5SO(2,3)/SO(1,3) can be described~with a particular
choice of twistor variables! as a freeD54 twistor particle. A
direction of further study can be to analyze the OSp(1u4)
superparticle model in detail and to look for its role as
classical counterpart in the theory of interacting higher-s
fields @5–8# requiring a finite AdS radius.

Another interesting problem is to generalize the results
this paper to the case of superstrings and superbranes p
gating in AdS superbackgrounds with the aim to find
simple form of superbrane actions on AdS. The simple f
mionic structure of OSp(1u32) and OSp(1u64) Cartan forms,
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which we obtained, may be helpful in making a progress
this direction.
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APPENDIX

We use the ‘‘almost plus’’ signature (2,1, . . . ,1) of
the Minkowski metrichab (a,b50,1,2,3).

TheOSp(1u 4) superalgebra.

2 i @Mab ,Mcd#5hadMbc1hbcMad2hacMbd2hbdMac ,
~A1!

2 i @Mab ,Pc#5hbcPa2hacPb , ~A2!

@Pa ,Pb#5
i

R2
Mab, ~A3!

$Qa ,Qb%522~Cga!abPa1
1

R
~Cgab!abMab ,

@Mab ,Qa#52
i

2
Qb~gab!

b
a , ~A4!

gab5
1

2
~gagb2gbga!, ~A5!

@Pa ,Qa#52
i

2R
Qb~ga!b

a . ~A6!

The generatorsMab form the SO~1,3! subalgebra~A1!, and
Mab andPa form the SO~2,3! subalgebra of OSp(1u4). Qa
are four Majorana spinor generators of OSp(1u4). The pa-
rameterR is the AdS4 radius, andCab is the charge conju-
gation matrix such that

gab
a 5gba

a [Cag~ga!g
b .

The parametersaP
i , aM

i j , aD , andaK
i ~2.12! of SO~2,3!

acting as the conformal transformations on the boundary
AdS4 ~associated with the coordinatesxi) correspond to the
following linear combinations ofMab andPa .

Three-dimensional translations

aP
i →P i5Pi2Mi3 i 50,1,2,
9-9
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@P i ,P j #50.

SO~1,2! rotations

aM
i j →Mi j .

Dilatation

aD→D5P3 .

Special conformal transformations~conformal boosts!

aK
i →Ki5Pi1Mi3 .

Note that the SO~2,4! algebra has the same structure
SO~2,3! in Eqs. ~A1!–~A3! but with indicesa,b, . . . , run-
ning from 0 to 4.

TheOSp(1u 4) Cartan forms. We choose the parametriza
tion of an OSp(1u4) group elementG(x,u,y) as follows:

G5K~x,u!U~y!, K~x,u!5B~x!eiuQ, ~A7!

whereK(x,u)5B(x)eiuQ is a group element correspondin
to the coset superspace OSp(1u4)/SO(1,3), B(x) is a group
element corresponding to the bosonic Ad4
5SO(2,3)/SO(1,3) andU(y) is an element of SO~1,3! gen-
erated byMab with the antisymmetricyab being six param-
eters of the SO~1,3! transformations. We do not need
specify the representation ofB(x) andU(y).

The OSp(1u4) Cartan forms G21dG5EOSp
a Pa

1VOSp
ab Mab1EOSp

a Qa are

EOSp
a 5Eb~x,u!ub

a~y!,

VOSp
ab 5Vcd~x,u!uc

aud
a1~u21du!ab, ~A8!

EOSp
a 5Eb~x,u!vb

a~y!,

whereub
a(y) and vb

a(y) are matrices of, respectively, th
vector and the spinor representation of SO~1,3!. They are
defined by the relations

ub
a~y!Pa5U21PbU~y!, vb

a~y!Qa5U21QbU~y!,
~A9!

and are related to each other by the standard expression

gaub
a~y!5v~y!gbv~y!. ~A10!

Ea(x,u), Vab(x,u), andEa(x,u) are Cartan formsK21dK
corresponding to the coset superspace OSp(1u4)/SO(1,3).
The OSp(1u4) Maurer-Cartan equations are

dEa1
2

R
Eb`Vb

a50, ~A11!

dVab1
2

R
Vag`Vg

b52 iEa`Eb.

~A12!

The OSp(1u 4)/SO(1,3)supervielbeins and spin conne
tion. The spinorial supervielbein is
06500
s

Ea5Dua2
i

3!R
ūgaDu~gau!a

1
i

233!R
ūgabDu~gabu!a2

2

5!R2Dua~ ūu!2

~A13!

or by using the Fierz identity

Ca(bCg)d5
1

4
gbg

a ~ga!ad2
1

8
gbg

ab~gab!ad , ~A14!

Ea5DuaS 11
i

3R
ūu2

2

5!R2 ~ ūu!2D
2

i

3R
ūDuua, ~A15!

where D is a covariant differential on the bosonic AdS4
space defined as

D5d1
1

2
vab~x!gab1

1

2R
ea~x!ga[D1

1

2R
eaga .

~A16!

Note that the AdS4 Killing spinors ~3.19! are defined to be
covariantly constant with respect toD, i.e., DK50.

The vector supervielbein is

Ea5ea~x!2 i ūgaDu2
1

233!R
ūgaDu~ūu!

1
1

4!R
ūgbcDu~ūgagbcu!,

or @upon applying the Fierz identity~A14!#

Ea5ea~x!2 iugaDuS 11
i

3!R
ūu D . ~A17!

Equation~A17! can be further rewritten as

Ea5ea~x!S 12
i

2R
ūu2

1

2•3!R2 ~ ūu!2D
2 iugaDuS 11

i

3!R
ūu D , ~A18!

whereD5d1 1
2 vab(x)gab . The SO~1,3! connection is

Vab5vab~x!1
i

2R
ūgabDu1

1

4!R2 ~ ūgcDu!~ ūgabgcu!

2
1

234!R2 ~ ūgcdDu!~ ūgabgcdu!

5vab~x!1
i

2R
ūgabDuS 11

i

3!R
ūu D , ~A19!
9-10
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whereea(x) and vab(x) are the vierbein and the spin con
nection on AdS4.

Note that in Eqs.~A17! and ~A19! we can make the fol-
lowing change of the Grassmann coordinates:

Qa5S 11
i

3!R
ūu D 1/2

ua. ~A20!

Then, because of the symmetry properties of the Dirac
tricesga andgab, the Cartan forms become bilinear inQ

Ea5ea~x!2 iQgaDQ, ~A21!

Vab5vab~x!1
i

2R
Q̄gabDQ.

~A22!

The OSp(1u 2n) superalgebra andOSp(1u2n) Cartan
forms.The generators of the OSp(1u2n) superalgebra are
symmetric bosonic ~spin!tensor Mab5Mba (a
51, . . . ,2n) and a 2n-component Grassmann spinorQa ,
which satisfy the following~anti!commutation relations:

@Mab ,Mgd#52 ia@Cg(aMb)d1Cd(aMb)g#,

@Mab ,Qg#52 iaCg(aQb) , ~A23!

$Qa ,Qb%5Mab ,

whereCab52Cba is a constant 2n32n antisymmetric ma-
trix ~symplectic metric!. Note that to have the correspon
dence with the form of OSp(1u4) superalgebra~A1! the fac-
tor a should be chosen to bea54/R.

When n52k/2, C can be regarded as a charge conju
tion matrix and Qa as a spinor representation of
D-dimensional pseudo-rotation group SO(t,D2t) with an
appropriately chosen number of dimensionsD and timelike
dimensionst of space-time. For instance, whenn516 the
generatorsQa of OSp(1,32) can be associated with SO~1,10!
Majorana spinors inD511 or two SO~1,9! Majorana-Weyl
spinors of the same or opposite chiralities inD510. This
makes the OSp(1,32) supergroup to be related to M the
and superstring theories. OSp(1,32) is a subgroup
OSp(1u64), and the two supergroups are extensions of
isometry supergroups SU(2,2u4), OSp(8u4), and
OSp(2,6u4) of D510 andD511 AdS superspaces@22–24#.

From a perspective ofD511 supergravity and M theory
the OSp(1u32) superalgebra contains the SO(1,10) covari
bosonic generators Pa ,Mab52Mba and Ma1•••a5

5M [a1•••a5] . A contraction of OSp(1u32) produces the M

algebra@43,44# with Mab and Ma1•••a5
becoming tensoria

central charges.
To compute the OSp(1u2n) Cartan forms we choose th

following parametrization of the OSp(1u2n) supergroup el-
ement

G~y,u!5B~y!F~u!5B~y!eiuaQa, ~A24!
06500
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where yab5yba are Sp(2n) coordinates. The OSp(1u2n)
Cartan forms are

1

i
G 21~y,u!dG~y,u![

1

i
@F21~B21dB!F1F21dF#

[F21DF5EaQa1
1

2
VabMab .

~A25!

Let us start with computing theF21dF term of Eq.~A25!.

1

i
F21~u!dF~u!5Sn50

`
i n

~n11!!
AduQ

n ~duQ!

[E aQa1
1

2
V1

abMab , ~A26!

where

AdBA[@A,B#. ~A27!

To calculate the formsV1
ab andE a ~A26!, note that

AduQ~du Q![@du Q,uQ#52du (aub)Mab , ~A28!

AduQ
2 du Q[@@du Q,uQ#,uQ#

52 ia du (bua)ubQa , ~A29!

AduQ
3 ~du Q![@@@du Q,uQ#,uQ#,uQ#

52S ia

2
ugugD @du Q,uQ#

52S ia

2
ugugDAduQ~du Q!,

AduQ
4 ~du Q![@@@@du Q,uQ#,uQ#,uQ#,uQ#

52S ia

2
ugugD @@du Q,uQ#,uQ#

52S ia

2
ugugDAduQ

2 ~du Q!.

Thus we arrive at the recursion relation

AduQ
l 12~du Q!52S ia

2
ugugDAduQ

l ~du Q! for l>1

~A30!

and can express all higher commutators through either
~A28! or Eq. ~A29! multiplied by a corresponding power o
( ia/2 ugug).

In such a way we arrive at the generic expression for
forms ~A26!:

E a5dua1 i du (aub)ubS l 50
n21 a

~2l 13!! S ia

2
ugugD l

,

~A31!
9-11
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V1
ab52 i du (aub)S l 51

n21 1

~2l 12!! S ia

2
ugugD l

.

~A32!

To calculate the first term in Eq.~A25!

1

i
F21~B21dB!F5F21S 1

2
vabMabDF[E0

a1
1

2
V0

abMab

~A33!

we note that becausevab(y) is symmetric the following
relation holds:

ubugvg
(aub)5

1

2
ugug~uv!a. ~A34!

Then one finds

AduQ
l 12 1

2
~vM !52S ia

2
ugugDAduQ

l 1

2
~vM ! for l>1.

~A35!

Using Eq. ~A35! we get the following expressions for th
forms ~A33!:

E0
a5

a

2
~uv!aS l 50

n21 1

~2l 11!! S ia

2
ugugD l

, ~A36!

V0
ab5vab~y!

2
ia

2
~uv!(aub)S l 50

n21 1

~2l 12!! S ia

2
ugugD l

.

~A37!

Note that in Eqs.~A36! and ~A37! the polynomials in
ugug are the same as in Eqs.~A31! and~A32!. Thus, insert-
ing Eqs.~A31!, ~A32!, ~A36!, and~A37! into Eq. ~A25! we
get the following expressions for the OSp(1u2n) Cartan
forms:

Ea5Dua1 iDu (aub)ubP1~uu!, ~A38!
-
d

B

Y
’’

06500
Vab5vab~y!1 iu (aDub)P2~uu!, ~A39!

where

P1~uu!5S l 50
n a

~2l 13!! S ia

2
ugugD l

, ~A40!

P2~uu!5S l 50
n 1

~2l 12!! S ia

2
ugugD l

,

~A41!

and

Dua5dua1
a

2
va

b~y!ub. ~A42!

The polynomialP2 ~A41! can be hidden into rescaledQ
5AP2u, so thatVab become bilinear in Grassmann var
ables

Vab5vab~y!1 iQ (aDQb). ~A43!

It is then not hard to verify@using the Maurer-Cartan equa
tions ~5.10! and~5.11!# that the odd Cartan forms~A38! take
the form

Ea5P~Q2!DQa2QaDP~Q2!, ~A44!

where

P~Q2!5A11
ia

8
QbQb.

Having in hand the OSp(1u2n) Cartan forms it is straight-
forward to get the Cartan forms corresponding to any co
superspace OSp(1u2n)/H with H being a bosonic subgrou
of OSp(1u2n). To this end in Eqs.~A43! and ~A44! one
should simply put to zero all parametersyab corresponding
to the subgroupH. Then vab will depend only on the
bosonic coordinates of the supercoset OSp(1u2n)/H, and
Eq. ~A43! will contain the even supervielbeins and the sp
connection of OSp(1u2n)/H.
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