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Different dynamical symmetry breaking patterns are explored for the two dimengtémabdel with higher
order derivative terms. The one-loop saddle point expansion predicts a rather involved phase structure and a
new Gaussian critical line. This vacuum structure is corroborated by the Monte Carlo method, as well. Analo-
gies with the structure of solids, the density wave phases and the effects of the quenched impurities are
mentioned. The unitarity of the time evolution operator in real time is established by means of the reflection
positivity.
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[. INTRODUCTION putation and the Monte Carlo program for the numerical
simulation to have a more complete picture. The higher order
The condensates occurring in quantum field theory arelerivatives lead in general to the appearance of additional
usually homogeneous and are composed of particles witharticles with negative norm and complex energy. It is
Vanishing momentum. In this manner the momentum of thepOinted out that our model possesses the reflection pOSitiVity
excitations is conserved even when a particle is borrowedhich in turn assures the existence of the positive norm Hil-
from or lended to the vacuum. But the momentum Conservabert space and the Unitarity of the time evolution Operator in
tion observed experimentally at finite energies is actually noMinkowski space-time.
incompatible with certain inhomogeneous vacuua so long as The organization of the paper is the following. Section II
the momentum of the condensed particles is beyond the ol§ontains our motivation in choosing the model investigated.
servational range_ The eiementary excitations in solids arghe tree |eVe| vacuum Is |dent|f|ed in Sec. Ill. The action Is
described by the Bloch waves which can be rearranged intteWritten in terms of the Bloch waves corresponding to the
different sub-Brillouin zones in such a manner that the BlocHifferent periodic vacuua in Sec. IV. We diagonalize the qua-
momentum, the momentum counted from the center of th&ratic part of the action and determine the elementary exci-
sub-Brillouin zone, is conserved. More formally, the pres-tations for the simplest inhomogeneous vacuum in Sec. V.
ence of a crystalline ground state restricts the translations a&ection VI contains the demonstration of the one-loop renor-
symmetries such that the primitive unit cells are mapped inténalizability of our model. The analytical results are com-
each other. The conserved quantum number due to suchpPared with a Monte Carlo computation in Sec. VII. The issue
restricted Symmetry group is the Bioch momentum. The um_of the Unitarity -iS discussed in Sec. VIII. F|na”y Sec. IX is
klapp processes which take place at the length scale of tHer the conclusions.
primitive unit cell change the sub-Brilllouin zone and can be
interpreted as a change of the type of the excitations. Return- Il. THE MODEL
ing now to quantum field theory, one might send the size of
the primitive unit cell to zero. If this is possible then the ~ Our model is an extension of the Landau-Ginzburg model
space-time structure of the momentum non-conserving unfor a scalar order parameter by adding higher order deriva-
klapp process is not resolved by finite measurements anéves to the action,
their interpretation as a flavor changing process becomes
compatible with the experiments. g 1 (2m)?
In order to gain more insight into the role the inhomoge- S[d’(x)]:i A% 59, pOOK| —z 1 | 9,b(X)
neity of the vacuum plays in forming the dynamics of the
excitations we consider a generic model with higher order
derivative terms in the action for a scalar field in two dimen- +V(¢’(X))i' @
sions and present its phase structure, the excitation spectrum
anq the particle content when the vacuum possesses a mquhere the kinetic energy contains the functions
lation and becomes inhomogeneous. We use the saddle point
approximation in the one-loop order in the analytical com-

m? A
K(z)=1+cyz+c,2%, V(¢)=7¢2+Z¢4, 2
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As far as the dimensionless parametgrandc, are con- (2)2
cerned, we have two different motivations for their introduc- e(p)=V"(0)+ P2’C( - TDZ) : 3
tion. One is based on the fact that we are always confronted
in Nature with effective theories where the high energy par-
ticle exchanges generate a number of operators in the actiokhe O(p”) term produces a non-trivial local minimum pt
which are perturbatively non-renormalizable. As an example= Pmin~\,ac for C,, ¢,>0. Thusc, andc, correspond to a
consider a renormalizable model for a heavy and light parvan der Waals force. We shall go further in this work and ask
ticle, described by the field® and ¢, respectively and the Wwhat happens wheg, reaches so large values that the mini-
bare actiorS,[ ¢,®]. The effective action for the asymptotic mum of the dispersion relatioe(p) turns out to be negative.
states below the threshold of the heavy particle is given byfhe corresponding vacuum will be the condensate of par-
Seil #1=So[ ¢, D =0]+AS ¢], whereAS ¢] contains all ticles with momentum aroungd,,;, and will display the pe-
effective vertices generated by the heavy particle exchangeod length\ ,,.~ [
processes. In this manner we can never be sure that the ac- The hand-waving argument to retain the higher order de-
tion corresponding to the interactions in a given energy rangevative terms of Eq(1) from the multitude of other contri-
is actually limited by the renormalizability even thought the butions inAS[ ¢] is the following. Let us start witlkt,=0
“Theory of Everything” is supposed to be finite or renor- when the vacuum is homogeneous fr<0. On the con-
malizable. The higher order derivative terms of our modeltrary, for c,>0 an instability opens by increasing the mo-
may arise fromA S ¢]. The decoupling theorefii] helps us  mentum of the condensed particles and the ultraviolet cutoff
out from the problem of a too general action with nonrenor-stabilizes the vacuurf8] where particles with momentum at
malizable terms by asserting that the nonrenormalizable couhe cutoff are found. Models with such an instability were
pling constants are small, being suppressed by the power studied in Refs[4,5] and[6] in three and four dimensions. If
the light and the heavy particle mass ratio. The mddlgla  the inhomogeneous vacuum is supposed to be formed at mo-
slight extension of an effective theory for the Higgs bosonmentum scales below the cutoff then we need another stabi-
[2], retains some of the suppressed nonrenormalizable terntigation mechanism. For this end we retain ©¢4°) term
arising from a hitherto unknown super heavy particle ex-with c,>0. We believe that the higher order terms in the
change. gradient will modify the shape of the saddle point only leav-
The question, left open by the conclusion of the decouding the qualitative features of the inhomogeneous vacuum
pling theorem, and which motivates the present work isunchanged. In other words, the kinetic energy is generic. The
whether the smallness of the non-renormalizable couplingresent work can be considered as the continuation of Ref.
constants is really sufficient to render them unimportant iff6] where a new gaussian ultraviolet fixed point was found in
the effective theory. We shall find that certain higher orderthe one-loop approximation far,=0. We simplify in this
derivative terms may become relevant when their couplingvork the issue of the renormalizability by choosing lower
constants exceed a threshold value. In other words, we mighlimension,d=2, but the multitude of different phases is
be forced to consider non-renormalizable terms in our effecexplored by allowingc,#0.
tive theories if the heavy particle is not exceedingly far from  The allusion made above at the Landau-Ginzburg model
the observational energy. The other motivation to study thés based on the similarity of the functiongu) and x(u).
model (1) with non-renormalizable terms is the suspicion The nontrivial absolute minima provide the mechanism of
that the perturbatively non-renormalizable terms might turnthe spontaneousp&0) or dynamical p#0) symmetry
out to be relevant by a non-perturbative mechanism and abreaking generated by the potential in the internal space or
tually allow the removal of the cutoff. If this is happened to the kinetic energy in the externgnd internal space, re-
be the case then our model with non-vanishiggandc, is  spectively. Our interest in this work is to explore the differ-
as justified as the usual one whose action is quadratic in thent dynamical symmetry breaking patterns provided by the
gradient, a possibility motivating the authors of Re&X]. generic action1) and to suggest a mean-field treatment for
What kind of heavy particle exchange is behind the highethe phase transitions with modulated ground sfate
order derivative terms of our action? As mentioned above, The questions addressed here and their tentative answers
our interest is in theories with inhomogeneous vacuum. Suchave certain relevance both in solid state and high energy
a ground state which is modulated with a period lengfl. ~ physics. The nontrivial, periodic vacuum generated by the
is the result of a force which is attractive far>\,,. and  higher order derivative terms may offer a new point of view
repulsive wherx<i,,.. When the particle whose exchange in understanding the origin of the crystalline structure in sol-
generates this force is eliminated, its effects are kept in théls. In fact, consider the coupled system of electrons, ions
choice of the vertices iIMS[ ¢»]. The momentum indepen- and photons. It is already an effective theory because the
dent ultra-local(i.e., non-derivativeterms which contribute lower lying electrons of the ions are represented by the in-
to the local potential in the action can not generate such aertion of different charge distributions and form factors for
strong distance dependence in the interaction. But it is eashe ions. We introduce chemical potentials for the electrons
to see that the higher order terms in the derivative are just foand the ions in order to realize electrically neutral matter
this role, to lower the action for modes whose characteristiavith finite density. Finally we eliminate the heaviest degrees
momentum scale ip~1/A,,.. In fact, consider the eigen- of freedom, the ions. This is opposite to the usual Born-
values of the second functional derivative of the actionOppenheimer approximation but it generates a local effective
evaluated in the trivial vacuur(x))=0, interaction. This effective theory for electrons and photons
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contains higher order derivative terms for the photon fieldgument showing the relation between the van der Waals
which yields the periodic, crystalline ground state. Anotherforces and the higher order derivatives in the action repre-
appearances of this mechanism where strong van der Waa3§Nts a simple, effective theory motivated alternative of Fey-

forces are acting are the antiferromagnets and the charge BF@n's argument about the rotofi]. The instability lead-

. . . Ing to the formation of an inhomogeneous ground state when
density wave phases. In the latter the effective theory is obé ) <0 iS a quantum phase transition where a non-

tained by eliminating the valence electrons and has periodig|zssical soft modé11] shows up ap~pi.

tree level ground statg8]. The massless case witt{pmin) The periodic vacuum of our model supports frustrations
>0 may as well represent a superfluid system wvaith, as  for certain choice of the coupling constants. To see this we
the roton momenturf9]. In this context our quantitative ar- write the lattice regularized version of E(.) in the form

1
SLe(01=2 [—§¢<x>DK(D>¢<x>+V(¢<x>>

=2 [¢><x>

A¢(X)+E (B[ p(x+e,)+ d(x—e,)]+C[o(x+2e,)+ d(x—2e,)]+ D[ p(x+3e,)
m

+¢(x—3e,) )+ g (E[p(x+e,+e,)+d(x+e,—e,)+ p(x+e,—e,)+ d(x—e,—e,)]
mFEV

+F[p(x+2e,+e,)+d(x+2e,—e,)+ d(x—2e,+e,)+ p(x—2¢e,—¢,)])+G E (p(x+e,+e,+e,)
MFVFEP

+3¢(x+e,+e,—e,)+3d(x+e,—e,—e,)+d(x—e,—e,—e,))

A 4
+70°00 1, @

where A=m?/2+d—(2d%+d)c,+(4d%+6d%c,, B= In fact, suppose that we use say lattice regulator which
—1/2+2dc,— (6d2+3d—3/2)c,, C=E/2=—c,/2+3dc,,  breaks the continuous translation invariance and the momen-
and D=F/3=G=—c,/2. The possibility of having either tum of the condensed particles is close to the cutoff, in which
sign for these coefficients indicates the competition betweegase the continuum description is not applicable at the length
the nearest- and beyond nearest-neighbor interactions and thgale of the vacuum and there is no reason to expect gapless
possible presence of frustrations as lattice defects of the p&xcitations. This is another manifestation of the apparent ho-
riodic vacuum. When the amplitude of the periodic vacuummegeneity of the modulated vacuum with shrinking period

is large the motion of the frustration is rather slow and thelengrzh' ! works d 4o th lcati .
model offers a semiclassical description of the quenched dis- There are several Works | ev_ote to the app ications 0
order. models with higher order derivatives. The canonical formal-

S S . ism for Lagrangians with higher order derivatives has been
The usual strategy in high energy physics is to introduce ) . .
field variable for each particle. But models with inhomoge-Workecj out in Ref[12] and been applied to QEL3,14,

neous vacuua may display more involved particle-field asgrawty [16], the Higgs sector of the standard mofi#] and

. b loiting th vial d ) he ul Chern-Simons theoriegl7]. The present paper is close in
signments by exploiting the non-trivial dynamics at the ul-gpirit ang the method followed to the nonperturbative lattice

traviolet cutoff scale. In fact, there are several dispersiony 4y of the effects of the higher derivative terms for a scalar
relations and particle like-elementary excitations in SO“dparticIe[Z]. But contrary to that paper where the continuum
state physics, such as the acoustical and the optical phonofigit is sought in the symmetrical and the ferromagnetic
and the massless or massive excitations in antiferromagnetﬁhase by keeping both the particle mass and the scale in-
In both examples the dynamics is rather non-trivial at thequced by the higher order derivative terms finite we shall
ultraviolet cutoff. Can we keep such a more unified descriptonsider the phase with inhomogeneous vacuum whose
tion of several particles by means of a single quantum fieldength scale does shrink to zero with the cutoff.

in a renormalizable model? In this case the dynamics at the The higher order derivative terms may generate new tric-

cutoff can be pushed at infinitely high energies and it is notitical point, called the Lifshitz point. One can see this in the

obvious that the construction converges. Our answer to thigyclidean field theory given by the Lagrangian
question is affirmative up to the one-loop order of the per-
turbation expansion. Another interesting aspect of the model
considered is the possibility of breaking continuous external _a 2, ©2 4,92 5,91 4, 96 ¢
symmetries without generating massless Goldstone modes. L 2 (Ou)™+ 2 )™+ 2 ¢t 41 ¢t 6! ¢
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It is well known that the modet,=0, g¢>0 possesses a have stable vacuum in the Minkowski space-time this prob-
tricritical point which is atg,=g,=0 in the mean-field ap- lem may only arise from the inconsistent truncation of the
proximation. Forg,>0 the phase transition following the effective Lagrangiarl).
sign of g, is changed is of second order. Whgp<O then One encounters a similar problem in the Schwinger-
the crossing of the ling,=5g3/8g¢ corresponds to a first Dyson resummation procedure, as well. The effective action
order phase transition whose latent heat vanishegas which approximates the Wilsonian renormalized action in
—0~. A similar tricritical point is generated by the compet- the infrared limit, as the cutoff tends to zero, has a non-trivial
ing derivative terms fogg=0 atg,=c,;=0, according to an Momentum dependent piece which is quadratic in the field,
e-expansion like renormalization group methd®] and the  the self energy. When the self energy is considered in a
solution of the spherical moddlL9]. Phase transitions of hon-perturbative manner then its momentum dependence
different type coincide here. The change of the sigmyef May create new poles. These are usually ignored since they
induces a second order phase transition wher0. ($(x))  Imply that the self energy, coming from the radiative correc-
is inhomogeneous far; <0, and its wave vector approaches tions is as important as the origingf kinetic energy term.
zero asc;— 0. All of these studies deal with the quantum But their proper treatment leads to the question of the con-
or statistical physics of the fluctuations around the trivialSistence of the truncation of the effective action.
vacuum,{$(x))=0. We go beyond this level by allowing This point of view opens a general question. All theory
the condensation in the ground state and considering tH&€ know in physics is effective only and contains higher
fluctuations around a periodically modulated mean fielgorder derivatives, whatever small coefficients they may have.
((x)). How can we make sure that the studies restricted to the mod-
The interference of the cutoff and the derivative terms€!S with the usual kinetic energy reflect what happens in the
leads to commensurate-incommensurate transifigay as  effective theories? The answer to this question involves the

well. The simplest1+1)-dimensional model of these transi- Verification of the usual universality scenario in the mixed
tions is based on the lattice potential enefgg] framework of the static and the dynamical renormalization

group, where the fixed point is in the ultraviolet for the spa-
tial momenta and in the infrared for the energy. Instead of
z g 2mé(x) embarking this important but extremely involved issue we
— _ _ 2_ 2 S
U_g 2(¢(X+1) P(x)+9) 200 b . (6 restrict ourselves in this work to show that our model is
consistent in real time and the runaway modes can be ex-

_ _ cluded in a nonperturbative manner.
For largeg the value of the field tends to take integer mul-

tiples of b, the period length of the second term in the po-
tential. Whenz is chosen to be large then the average incre-
ment of the field at neighboring site8, is close tos. The We start the semiclassical solution of our model by deter-
configurations which minimize the energy are governed bymining the minimum of the lattice action. This is in principle

the competition between the conflicting requirements of thea rather involved numerical problem, the minimization of
two contributions in Eq(6). The ratio 5/b plotted against Ed. (4). To circumvent this complication we shall seek the
/b exhibits a characteristic, discontinuous structure, calledree level, mean-field vacuum in the form

the devil's staircase. Similar competition is expected be-

Ill. TREE LEVEL VACUUM

tween the period length of the vacux),. introduced at Eq. dar M
(3) and the lattice spacing in the solution of the equation of ~ ®mr(X) = ép+ ¢y cog K 21 xE+0), K=2mg
motion of Eq.(4). Our model offers a translation invariant . @

realization of the commensurate-incommensurate transitions.

Furthermore the sign of ,( (X)) is given by the dynamical where the amplitudesby, by, the relative primesN, 1

breqk@own of the space inversion symmetry instead by thesM =<N/2, the phase@ and the number of the antiferromag-
explicit symmetry breaking termj, in Eq. (6).

We close this section by mentioning a formal problemnet|c directionsd,e=1,2 serve as the variational parameters

which poses a serious threat in using actions with higheF0 minimize the action. We have naturally to confine our

derivative termg13]. The inverse propagat¢8) has several study into regions far from the critical points, i.e. above the
roots as the function gb2. Each of them yields #&not nec- Glnzbu_rg temperature in order_to apply this _method._The
essarily simple pole for the energy integrals which is passeog;ha:sgLs(;alled(fa;ac—),:fjro-, agtlffgi-znd fe;ﬂ[jmggiegc for
by the integration contour during the Wick rotation of the —ljﬁ Thgéctiokr'w densitIH(,d HM N)—”&LZ on a Iglttice
perturbation series into Minkowski space-time. When the 7'H- YO, ML) = :

. . . L XL with m?<0 is so=—m?*/4\, for dag=0.
real part of the Euclidean energy at a simple pole is non For the computation of the action fo,>0 we restrict

vanishing then the Wick rotation produces a particle mode 2 |
with complex energy and with amplitude which growths Oro_ursel\_/es o the_casm <0. The mea_n-fleld vacuum con-
decreases exponentially in time. Even if the Euclidean theor;f)gurat'on is an eigenvector of the lattice box operator,

is stable we have to make sure that such runaway amplitudes

are canceled after the Wick rotatiph4,15. Since the origi- _ (K _
nal theory, the source of our effective model was supposed to Hebur() 4dAFS'n2( 7| (Pmr() = ), ®)
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that gives

—OK(D) ¢me(x) = MZ(M,N,dar ,2,Ca) (pmp(X) = ¢H()9,)

with
K K
M 2:4dAFS|nZ(E> |: 1_4dA|:S|r|2(E> C2

. (10

K
2)%

+ 16d,§Fsin4(

The dependence of the eigenvald in the parameters

M,N,dag,Co,c4 Will be suppressed in the expressions be-

low. The action density to minimize is

m? C,(N) 1
s=>5 ﬁ+T<m2+M2>¢.2H+x(Z¢ﬁ
3C3(N) 3C,(N) C4(N)
T udint —5 — Padt — 5 ik,
(11
where we introduced the notation
1 N Ml dar
Co(N)=|= > cod|2m—+6 (12)
N =1 N

Notice the M-independence of the sum for the relative

primesM,N. Direct computation gives

1+cos 26 9aF
SEEEAT N=2,
C,y(N)= 2

27 9aF, N>2,
cosSG)dAF
. N=3,
Cs(N)= 4 (13
0, N# 3,
( 3+4cosZ9+cos40)dAF
 N=2,
8
3+cos 46\ 9aF
CaN)=9{ |—%—| N=4
8
3\ darF
(—) , N=3 or N>4.
\ \8

The dependence df,, in N will not be shown explicitly

PHYSICAL REVIEW D61 065008

1
s=A-X+ =X-B-X,

5 (14)
where
o4 1/ m? A1 3
X= 2 A2 me ) B2l 4)
(15
By the help of the shifty = X+ X, where
1 [-2m?>-3M?
XoTgN | —2me+ M2 (10
we obtains= 3 Y-B-Y+s,,. The rotation matrix
o cosO sin®) L
RO=| _gine  coso (17
with ® = /4 diagonalizes the quadratic form,
A A
s=—Z(Y1—Y2)2+ §(Y1+Y2)2+sm. (18)

The minimum is the result of the competition between the
negative and the positive eigenvalue, i.e., the trend to in-
creasd Y1—Y?| and to decreasg/®+ Y?|. The result is that
the minimum is reached at the boundary of the quadxant
=0, X?=0, i.e., there is no ferrimagnetic phase realized.
Thus the mean-field vacuum is found at the minimum of the
following two functions:

1 A
S(67.00= 5 M dfi+ 7 b,

2 1 2 2 42 M 4
5(0:¢|H)=§C2(m +M )¢|H+ZC4¢|H- (19
The vacuum is antiferromagnetic when
Cg 2\ 2
with the action density
Cg M2 2
S:SOC_4 1+ W—) (21)

below. One can see from the above construction that the N=3: The minimization of the action with respect

mean-field solution of a modep' requires the coefficients
C,withn=1,...]. So the limitN—«, the regular depen-
dence orN sets on folN>1.

The action density corresponding to different choicell of
is obtained as follows:

N=2: The phase paramete is redundant in this case.
We choosef=0, what setsC,=C,=1, and write

yields the condition<;/>H¢|3H sin 30=0, whose solutionsgy

=0, ¢,5=0, and #=0,7/3 correspond to the anti-, ferro-
and ferrimagnetic phases, respectively. The transformation
60— 0+ /3, and¢y— — ¢y leaves the mean field action in-
variant and it is sufficient to consider the caée 0 to ex-
plore the ferrimagnetic phase. The action density in the ferro-
and antiferromagnetic phases is given by Ed) for 6+0.
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TABLE I. The antiferromagnetic action densits(dar,N)/s(O,N). The phase angle has been chosen to
be 6= m/4 for N=4 to minimize the action and=sin#/N, N>4. Sinces(0,N)<0 the antiferromagnetic
phase is preferred against the ferromagnetic one whenever the corresponding expression in the table is larger

than 1.
dar=1 dar=2
N=2 A1-4c,+16c,)\ 2 8(1—8c,+64c,) |’
m m
N=3 L[ 3(1-3c,+9cy)\’ . 6(1-6c,4+36c,) |
e e
N=4 2(1-2cy+4cy)\? 4(1—4cy+16c,) | 2
W Lt =
m
N>4 L[ 42(1-4Sc,+16s%cy) | o 8sA(1-8s%c,+64sc,) |’
3 1+ > gl 1+ >
m m

The antiferromagnetic phase is preferred for &) and the
corresponding action density is E@®1). For #=0 we have

thereby increasing the period length of the vacuum. At a
certain threshold value the minimum gt,;, becomes so
to minimize Eq.(11) numerically. shallow that the potential energy turns the vacuum homoge-
N=4: The minimization with respect yields ¢}, sin4¢  neous and the system undergoes a ferromagnetic phase tran-
=0, showing the possibility of the ferrimagnetic phase whersition. Notice the usual signatures of the commensurate-
6=n/4. Since the action is an even function of the ampli-incommensurate transitions, the *“devil's staircase”
tudes ¢y, and ¢, for evenN we have the expressiaiid) structure. This is a competition between two length scales,
where the cutoffa and the period length of the condensaig.,

M\, .= Na. (25)

A 1 ( m? 3C,

N1
T2 Cz(mz—l-/\/lz))' B:§(3c2 1) 22

that results in The period length in lattice spacing unit$\(c,,c,)/
M(c5,c,) is shown in Fig. 1 as the function of,. It “locks-

in,” i.e., stays constant in a larger commensurate interval
where the relative primeld andM are small. The long strips
corresponding to theN=2 and 4 phases show a strong

“lock-in" effect, contrasted with the gradual change of the

m?(1—3C3%)—3C3M?

M?C,(C4—3C,)+ C,CyM 2) '
(23

1
X0~ X(ecz—c,) (

The rotation (17) satisfying the condition co2=(1

period length for other values ®i. The numerator and the

—C,)I6C, transforms the action into the diagonal form with denominator as the functions of are non-monotonic in the

the eigenvalues: same time.
)\ 2 2 6 1 1 1 1 | 1 1 1 1
5 (1+Cy+ \(1+Cy)?+36C5-4Cy), (24 o5 |
5 __": L

indicating that one of the normal modes is again unstable.
Due to the negative eigenvalue anel® < /4, the mini-
mum is always reached at the boundary of the quadxant

4.5
4

=0, X?=0, i.e., there is no ferrimagnetic phase. The con- = 3.5 - -
dition for the antiferromagnetic phase and the expression of 2 3 d L
the action density are given by EqR0) and (21). 25 - 7 |

N>4: The procedure is the same as fd9=4, with the . |
only difference is thaC;=0 and there is n@-dependence s

in the sumsC, andC,.

Phase structureThe resulting action densities are sum-
marized in Table |. The, dependence of the period length
of the vacuum forc,=2 andN=<N,,x= 32 is shown in Fig.
1. The general trend is that the increasecgfpushes the
minimum of the dispersion relatiomp,,;, towards zero
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1 : : : : : : : ! : distinguishing feature of the antiferromagnetic vacuua is

G their inhomogeneity and the nonconservation of the momen-
tum of the excitations. We introduce in this section a conve-
nient formalism for the description of the elementary excita-
tions. Following the solid state analogies we rewrite our
action by means of the Bloch waves which take the non-

0.9

0.8

0.7

0.8

S o5 conservation of the momentum into account.
Brillouin zones First we split the first Brillouin zone

0.4 4

0.3 - B={pM;|puliw, n=12 (26)

0.2 4§

of the d dimensionalN antiferromagnetic phase intd“ar
017 sub-zones within which the Bloch momentum is conserved.
o1 In the relativistic case whed,g=d, we find
. . r_ly - N (o)< =~

FIG. 2. The mean field phase structure in tieg,€,) plane. F BL=1pu:lp,— P, ()< N[ (27

denotes the ferromagnetic phase. The lower edges of the phases
with M=1 andM>1 are indicated by solid and dashed lines, re-

X ) where the center of the sub-zorV ,is given b
spectively. The values dfi,d,e are shown foiM =1 at the right. n () 9 y

The phase structure in the plane,(c,) is depicted in PN (g)= 2_7Tn (a) (28)
Fig. 2. We identified the mean-field paramet@iss N4 K’ N~
=32, M, anddug for each point in the planecg,c,). The

points where we enter into a phase with=1 by increasing N terms of the integer valued vectoy,()=0, ... N—1,
c, are indicated by the solid lines, the other phase boundaries

are shown by dotted lines. The increaseNgf,, makes the a=1+2, nM(Q)Nu—l_ (29)
dotted lines denser without changing the solid lines or popu- w

lating the white area. The vacuum in the upper left region is ) )
ferromagnetic. The lower right part of thg, c,>0 quad- In other words, the integer component vecioi(a) gives
rant contains the inhomogeneous vacuua, each of them sitthe center of the sub-zorg], in units of 2a/N. In the same
ated in slightly tilted strips with increasifg/M as we move time, it can be considered as dRbase number. In this case
upwards. The narrow triangular phase between he2 its value labels the corresponding sub-zones. In the nonrela-
relativistic and non-relativistic phase is a relativistic phaseivistic case,dar<d, we have
with N=3, see Fig. 3. It is interesting that the relativistic
vacuua are realized fod=2 and 3 only. We found no fer- ,nr_ In _ p(N) m
rimagnetic phase for the parameters considered. Bo=1puilpu =Py (a)l< 2 M= ar [Pl 71> dag)

(30)

IV. EXCITATION BANDS ) ) _ )
In the next step we introduce a field variable in real space
The study of the more detailed structure of the dynamicswvhich is responsible for the fluctuations in each sub-zone,

starts with the determination of the possible excitations. The

dip .
ot - %(X):L 2n)e e Xp(p)

0.09

0.08 - dp -~ ~
- | e ® OB @
1

0.07

0.08

305 - by the help of the Fourier transform

0.04

1 .
$(p)= 7 2 & "), (32

0.03 A

0.02
and its restriction into the sub-zonesg,(p)=¢(p
+PMN)(a)). The computation what follows is considerably
00 015 02 02 03 035 04 045 05 055 08 simplified if the N9AF Fourier transforms are extended over
the first Brillouin zone as periodic functions,

FIG. 3. The zoom into the mean field phase diagram with the
regions characterizing the different behavior of the propagator. ¢a(f)) = ¢Q(T)+ PN (B)), (33

0.01 A

065008-7



MARIANNE DUFOUR FOURNIER AND JANOS POLONYI PHYSICAL REVIEW D361 065008

where 8 is an arbitrary sub-zone index. The tilde on a mo-of the original lattice. The umklapp processes where a non-

mentum variable will always denote that the given momenvanishing momentum is exchanged with the vacuum take the

tum is in the sub-zong;. The path integral is then written as momentum from one sub-zone to another. To separate the
sub-zone preserving and changing processes from each other

—S¢]_ =\ a-S[,] we rewrite the momentum integrals in E§5) as a sum over
l_p[ f de(p)e 1;[ [p[ J ¢a(P)e (34 the sub-zones and integration withify,

with N9ar
10 d% f dpf(p)= gl df(p+PM(a)). (37)
LS 0= | s~ PIPPK(=P2) +11(p)
4 4 The summa_tion_can be organized in a more transparent man-
. %( 1—[ f —pkd¢(|0k)) (277)“5( E pk> ner by considering the group
k=1 J (2m) X .

(35) ZdAF N =Q® ]___[ ZN (38)
=1
where

which describes the shift of the momentum in the periodic,
Pz(p)=42 sinz& (36) dar dimensional region of the Brillouin zone. This group
u 2 makes its appearance by considering the act@®® as a
. matrix element of an operator in the function space span by
denotes the momentum square on the lattice. . o~ .
Flavor algebra The NYF sub-zones introduced above the “wave functions” ¢,(p). It is advantageous to use the

correspond to the different excitation bands of the coars@lane wave baSiHD(N)(CV)+E>:~|a,B> in which the matrix
grained lattice whose lattice sites represent the primitive cellglement of the field operatab,(p) is defined by

(B',9'|¢o(p)|B,a)=(PN(B)+q+ PN (a)+p—PMN(B)=q")po(p)
=6(PMN(B)+PMN(a)—PN(B"))5(q+P—7") da(p)
=(y) g p8(Q+Pp—0") bu(P), (39)

where the periodicity33) was used in the second line. The

1
~ d — 2 2 2
symbol ¢, (p) stands for operator when sandwiched between LS ¢]=(0,0 §¢(0)[P K(=P%)+m]$(0)
the basis vectors and for function in the c-number expres-
sions. We introduced here a representationZQ):F,N by

A
+—¢*0)|0,0 42
means ofN9AF x N9AF matrices, 4 $1(0)[0.0 42

where the operato#(0) is given by

dar
(Y9 p.o= I1 5a'p_+a#, L(modN) » (40) g¢ d9p -
A 0= | 5ra0=3 | Grsed®. @3

constructed in such a manner thett describes the effect of glementary rearrangements yield
the exchange of the momentudi™)(a) on the index label-

ing the sub-Brillouin zones. We shall need later a relation 10 d% o 5
arising from the Abelian nature of the grodp, . n. LI @p]=tr Ef qu(— p)[K(p)+m?]d(p)
( 1 A 4 ddB
(I') et pmodny, g+ pmodn = (YT (¥*) "o = (Mo g + = j K (B ) 245
(a1) 2 kl;[l Wﬂb(pk) (27) Ek Pk (
(44)

wherel is an arbitrary product of thg matrices. The action . _

can now be rewritten in @ more compact notation as whered= ¢,v*, and the matricek(p) andm? are given by
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% D)= 2rp(N) D —p2rpN) D ~
K 6(P)= 8., P PM (@) +PIK(= P PM () +P]), p—2 sl 52
~2 _ 2
=4 . 45
n1a,B a,Brn ( ) a!]d
The action(44) includesNYF fields whose flavor mixing is M2, = m2+ 3\ b2
handled by the matrices, . In fact, the real space expres- ~ MF 1
sion is —2m? ferromagnetic,
1 (21)2 | —2m?-3M 2(1,2dAF,Co,C4)  antiferromagnetic.
S 41= f ddxtr(gam(x)/C(TD)w(x) (53)
The propagator can be written as
+V(h(x)). (46)
G l=mye+PA1-cP?+c,PY), (54)
In lattice regularization the lattice sites correspond to th
primitive unit cells of the original vacuum. Our goal, to trade
the momentum non-conservation on an inhomogeneous Ga,5(5)=5a,ﬂG(P(2)(a)+5)- (55)

vacuum into a multiplicity of excitation bands over a homo-

geneous vacuum, is completed. The long wavelength fluctuations give

V. ELEMENTARY EXCITATIONS G;’};(B) =3, slMye(@)+Z(a)p?+0(pH],  (56)

We determine in this section the elementary excitationgyhere

which are the eigenfunctions of the second functional deriva-

tive of the action, evaluated at the tree level vacuum. We

choose our tree level vacuum in the phase be

b0=3 e, (47)
We need the eigenvectors of
~ 5
G.p(P)= SOl
3¢al ~P)Ss(P) ,_
= (K(p)+m?+31d?),, 4. (48)

The propagator can formally be written as

NYar

G(p)= gl Y (PN (P yl(p), (49)
where

(K(p)+m?+ 3N (p)=No(P)¥a(p).  (50)

mae(@)=mye+ M3(1,2n1(@)+ny(@),c,y,c4) (57)

and

1 a=1,
@)= 1 gc,—a8c, a=4.

(58)

The inverse propagator always has a local minimum at
P2=0. For certain values of, andc, it may develop an-
other minimum atP?=7P2>0 when considered as a func-
tion of 2. This minimum is realized kinematically fqP?
=8 only, when it is reached on a closed line in the Brillouin
zone, cf. Fig. 6, a structure reminiscent of the roton spectrum
[9]. Thus the van der Waals-type force, represented by the
choicec,>0 leads directly to the appearance of the addi-
tional minima of the dispersion relation interpreted as
rotons[10].

To follow this in detail, cf. Fig. 3, we start with the con-
dition for the extremum,

d
ﬁefl(p) =2sinp,(1—2c,P?+3c,PY. (59
M

The diagonalization of the quadratic part of the action for aApart of the pointg, = p/(f)(a) which are always solutions,
given Bloch wave number provides the propagator and théhe root of the expression in the parentheses yields another

corresponding band structure,(p).

We start with small values df,, i.e. we are either in the
ferromagnetic or in thi&N=d,-=2 antiferromagnetic phase,
when ® =46, 14y, or ®,=5,444, respectively. Since

yizl the inverse propagator is
G (p) =My +P*K(—p), (5D

where

extremum,

C2

p2=Z|1+/1-34 (60)
r 3(:4 2

so long as

Ca< 3 (61
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The extremum a17>2=7>r2 is always a minimum. To se- In fact, Eq.(67) is negative between the roots and the inverse
lect the other minima we need the second derivative matrixpropagator goes below its value &2=0 according to Eq.
(54).

It is shown in Fig. 3 that the line of degenerate local
minima appears within the region bounded by the part ab of
the parabola P, Eq61) and the line segments bc and ac,

—8sinp, sinp,(c,—3c,P?). (62)  defined by the first and the second inequalities of E68)
and (66), respectively. The line of degenerate minima turns

The sub-zonesr=1 and 4 contain particle like excitations gut to be absolute minimum below the parab¢td) and
because the centers of these sub-zones are local minima, ghove the line segment bc and the ferro- antiferromagnetic

#*G™(p)

_ _ 2 4
PP, 25,,,€08p,(1—2¢,P+3c,P7)

) phase boundary. The absolute minimum of the inverse
G UP) 1y pyy =26 propagator is degenerate and lies on a closed line in either
Ip,ap, [p=PEL) ™ < phase forc,> 1/4 when the inequality68) is trivially satis-
fied.

2 As the value ofc, is increased in the antiferromagnetic

G 1(p)lp=P<2)(4): —26,,,(1—16c,+192,). phase the inverse propagator keeps its minimumpat
(63) =(,m) so long as the second inequality of E§6) is vio-
lated. The absolute minimum is degenerate and found along
In contrary, the other sub-zones contain saddle point onlya closed loop arounp= (7, 7) whenc, is further increased.
and do not support particle like excitations, We may avoid the phadd= 3 by choosing large enough
and arrive at thé\=2 nonrelativistic phase without modify-
ing the propagator at the phase transition. The value of the

IPLIP,

2 2
G H(P)jp=p@)(2)=—

G H(P)p=pP@)(2)

ap19p1 PP, lattice momentum at the minimum, E(0), is a monotoni-
) cally decreasing function af, and reaches 4 for
== G H(P)jp-piaya) ¢, 1
dp1dpP1 C4=—2— = 69)
2 6 48

G_l(p) 2) . . . . .
Ip=Pt2(3) the line S of Fig. 3. At this point the degenerate minima of

the inverse propagator form a square and for larger values of
c, it is deformed into a closed loop aroumpd=0.

The further increase af, brings us to the higheX phase
boundaries and the situation becomes more involved.

We turn now to the question of the critical points. Ac-
cording to Eqs(53) and(57) the second order phase transi-
tion is reached when botm?>—0 and M ?—0 for m?<0.

Let us take

N IP29P2
——2(1-8c,+48,). (64

When ¢, is small enough therP?>8 and the inverse
propagator possesses two discrete minimapatP(®)(1)
=(0,0) and atp=P?)(4)=(, 7). The absolute minimum
is at

(0,0 ferromagnetic, 65
= (,7) antiferromagnetic. (65 M?2=—pi@?%, m?=—pla’ (70)
As the value ofc4 is gradua”y increased from Zer@rz The first equation and EC{J.O) assert that the criticality is
reaches the value 8 and it is better to follow what happens ikeached either for
the two phases separately. In the ferromagnetic phase the

degenerate local minima are found along a closed loop in the Co B 1

vicinity of the point p=(a,7) when Eq.(60) reaches the Ca= [K > 4K} (7
allowed kinematical regime?2<8, for Adasir? 5| 6daesin’| 5
C2 C L or asN/M — . Both cases require the vicinity of the ferro-
24< C4,  and 12 192<C4' (66) antiferromagnetic transition line, the value of andc, is

finite in the first case and diverging in the second. Since
This line becomes the absolute minimum when the smalleC,(N)=C3(N) (21) shows thatu},>0 is needed to reach

root of the expression this phase transition. Thus the ferro-antiferromagnetic transi-
tion line is critical in the mean-field approximation.
1-c,P?+c P! (67) We close this section with a remark about the Goldstone
modes. The inhomogeneous vacuum breaks the external
as the function ofP? turns out to be smaller than 8, symmetries and we find Goldstone modes for the models in
the continuum. The lattice regulator reduces the space-time
2< c; 1 symmetries into a discrete group and there is no reason to
Cs Or ¢y< . (68 > . .
16 8 64 expect massless phonons in the antiferromagnetic phases.
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But the strength of the breaking of the continuous part of the The ultraviolet divergences are identified in two steps.
space-time symmetries 8(M/N). Thus the continuous ki- First we expand in the field dependence and write the loop
nematical symmetries are restored WM —c and the contribution as

Goldstone theorem is regained asymptotically, Mpmin)

=0O(M/N). An important consequence of this gradual resto- 1 d [ 3ntrd?
ration of the Goldstone theorem is the absence of long range ; EJ (2W)d‘r R(p)+m2
modes and the possibility of supporting the periodic vacuum R

in two dimensions whem is finite. This does not mean a tg recover the usual one-loop resummation in the effective
long range order because the non-trivial part of the vacuumotential. In the second step we expand the integrals in the

n

: (78

is squeezed within the distanbee/ M —0. lattice spacin,
VI. ONE-LOOP RENORMALIZATION ddf) ~ o~ o~y
. . . , 2“*"J ——tr(K(p)+m3) "
It is shown in this section that the one-loop effective po- lpl<=/N(27)
tential of our model can be made finite by the introduction of 4
p

an appropriate mass counterterm and the ferro- _f
antiferromagnetic transition remains a critical line on the B H,|<7,,N,31(27r)El
one-loop level.

It is straightforward to derive the Feynman rules for Eq.
(44) and to compute the radiative corrections. The one-loop X
effective potential, the generating function for the one par-
ticle irreducible(1PI) vertices,

> §P2(a2[P<N><a)+BJ>K
—p1on

m
= (79
a

1 ~
— 2P@PM(a) +P))

We have at most a logarithmic divergence in two dimensions

= 4 (n=1) and the dimensionless inverse propagator, the inte-
V(@)= — > d, D, grand of the left hand side, has a finitealihdependent
n=0 My T, " minimum. Let us write the smallest eigenvalue of the inverse
X TOPEM (), .. PM(a) (72 propagator around its minimum as
= N — 2 "2 25
can be written in the one-loop approximation as Ny (Pmint P) =M+ Zop~+O(a p*), (80)
10 d% ey , with m3=a’m?., what allows us to identify the divergent
Vet(P) =Viree P) + EJ (Z—W)dtr'n[’C(D)er +3nd?], part of the loop integral fod=2,
73
73 1 f d%p 1 -
where 2 ) |p|<mina (277)? m2,. +Zop?

1. 1 A . .
Vied @) =tr 5/C(O)d>2+ §m2r1>2+ Zd)“ . (74  Thus the one loop ultraviolet divergence can be removed by
setting

We split the mass term into a renormalized and a counter-

d%p 1

term 2__

' om ——f = 82
|p|<=/Na (277)2 m? +Zop2 (82

m?=m3+ 6m?, (75) min
Whenm?, =0(a"¢), €>0, then no divergency arises. If

2 : min ' ’

and make the replacemenmlz—>mR in the loop integral. there are several finite minima of the dimensionless inverse

The ®-dependence of the one-loop integrals can signifiy, o4 qator then we sum over them in the counterterm.

cantly be simplified by using the relatiga1) with T’ =d?, The continuum limit, Eq(70), can be achieved along the
ferro-antiferromagnetic transition line of the plang, (c,).
(d)z) =Ltrd>2 (76) We have one or two patrticles by approaching this line from
“a Ndar ] the ferro- or the antiferromagnetic phase below the point

=(1/4,1/64), respectively. Above the point ¢ the rotons ap-
where no summation is made for the index Since the pear in both phases and replace one of the particles of the
matrix K (p) +m2 is diagonal, antiferromagnetic vacuum. One can find specially interesting
continuum limits in the vicinity of the point di) Approach
1 dp {N o from below the line ab in the ferromagnetic phase, which
Veif(P) =VireeP) + —f ——trin IC(p)+m§ gives a single particle and monotonically increasing inverse
2) (2m) X N
propagator with the momenturtii) The approach above the
i line ab but below bc yields one particle and rotons. The roton
+ _tr((i,z)l_ (77) ~ momentum diverges with the cutoff, a reminescent of the
dar new excitation bands in the antiferromagnetic phase. The
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4 e B S R by of the couplings. We introduce the subscript,rfi) which
" ; i shows the separation of the two field variables multiplied by
the given parameterh,,=2+m?/2—10c,+56c,, B o=
—1+8c,—57c,, C,o=—cC+12c,, E;;=—2c,+24c,,

, i D3 0= — C4, andF; ,= — 3c,. The lines wheré\, B, C, andE
i change sign,
10 m* 2 A
Ca=562 112" 56 (A
8 1 B
Cs= 5_7C2 57 (B),
FIG. 4. The phase structure and the frustrations on the plane
(cs,c4). The lines where the coefficiens, B, C, and E of the c,= ic (C,E) (83
lattice action change sign in the4,c,) plane. The letters along the 12

vertical lines are to indicate the qualitative space-time structure of
the vacuum seen in the simulation:==8rderedN =2 antiferromag-  are shown in Fig. 4 by solid lines. These lines intersect and
netic; L=labyrinths; W=plane waves; Pweakly antiferromagnetic  the short range order varies in a complicated mannec for
(onset of the crossover on the finite latlicE=ferromagnetic; and < .45. But once this value is reached, the sequence of the
F'=weakly ferromagnetic. change of the signs as, increases is always the same. The

) o importance of these signs is that they create frustrations
value of the inverse propagator at the degenerate minima, ”Wheneverc4>0. There are no frustration whesy=0 be-
roton mass square is finite but larger than for the absolutgauseD30:|:21:0 and all others favor th&l=2, d,r=2
minimum, atp=0. Thus the rotons are heavier than the par-antiferomagnetic or the ferromagnetic vacuumdgr 1/8 or
ticle. (iii ) Approaching above the line bc yields a model with c,<1/8, respectively. Foc,>0 but below the lineC,E, in
a particle and rotons where the rotons are lighter than thg,e antiferromagnetitN=2, d,r=2 phaseB; >0, C,,,
particle.(iv) The approach from the antiferromagnetic phaseE1’1<0 favor this kind of vaccum. But the other Sigmzzo,

produces a model with two particles. F,1<0 introduce frustrations whose density increases with
c4. The further increase af, flips the sign ofB and ulti-
VII. NON-PERTURBATIVE VACUUM mately A, destabilizes the lock-in mechanism =2 and

) ) opens the way for the rapid variations of the devil’s staircase.

In order to assess the importance of the fluctuations, W, petween the line<, E and B, C,o, E1>0, and the
performed a Monte Carlo simulation of the modé). The  fsiration density is increased because ddly, favors this
resulting phase structure is summarized on Fig. 4. The coUzacyuum. The result is a strong increase of the fluctuations.
pling constants\ =0.05, m“=—0.1 were chosen and the The mean-field approximation is obviously unreliable in this
simulation on the linec,=2 was done at 200200 latticé  regime and the simulation produces labyrinth-like vacuum,
size. Thec, dependence of the results was monitored with &see pelow. For large,, in the ferromagnetic phasg; o,
particular care by scanning the regiors0,<1 with step p_  F, ,<0 act in favor of the homogeneous vacuum but
size Ac,=0.01. The other points were obtained oD ¢, E, >0 generate frustrations which might explain the
lattice. The performed tests have showed no appreciable figeakening of the ferromagnetic condensate for laxgeFor
nite size dependence in the qualitative and quantitative fegne intermediate values af, the competition between the
tures of the phase diagram. We used the metropolis updaitierent terms is more involved and the compromise be-
algorithm, carefully checking the statistics to make sure thafeen the different competing terms is reached over a longer
no statistical error would change our conclusions concerningangth scale according to the mean-field solution. The quali-

the phase diagram. In order to test ergodicity, local clustefaiive conclusion is the separation of the stable lowN
algorithms were tried as well as different initial conditions. _ dae=2 vacuum from the higle, ferromagnetic and an

The letters along the vertical lines of Fig. 4 indicate thej,iermediatec, strongly frustrated antiferromagnetic vacuua.
q_ualltat_lve space-time structure of the vacuum seen In the The frustrations are the lattice defects of the antiferromag-
simulation: A=ordered (N=dar=2) antiferromagnetic; petic yvacuum. In order to understand their production mecha-
L=labyrinths; W=plane waves; Pweakly antiferromag- pnigm in theN=2 antiferromagnetic phase we used two dif-

netic (onset of the crossover on the finite latice (orent initial conditions, an ordered and a disordered one,
F=ferromagnetic andr’ =weakly ferromagnetic. To under-

stand the phase structure we recall that the parameters of the ord

1,,2
bare action characterize the dynamics at the cutoff. Conse- init )= (=1, (84)
guently one may extract useful informations about the short
range order of the vacuum by considering the coefficient$"
appearing in the quadratic part of E@). The sign of the dis
coefficients determines the ferro- or antiferromangetic nature Sinit(x)=0, (89
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respectively. The initial conditionps,, which actually 10° 5 ' ' : '
looks ordered becomes disordered after few Monte Carlo ]
sweeps. This happens because it represents an unstable eqt
librium position and the local field variable “rolls down” to
one of the potential minima&(x) = * ¢, . This leads to the

10* 4 L

formation of N=2 antiferromagnetic domain structure. moo.; . L
These domains are separated by walls of links where the field-8 ]
variable has the same sign. The region on the plagecy) 100 5 s, £

where the antiferromagnetic domains consisting of the
patchesgXrd(x) and — ¢2d(x) develop long and winding _
boundaries is called labyrinth-like and is denoted by L in L]
Fig. 4. E
For large values ot, the amplitude of the modulated 0.1 1 . . . . -
vacuum is large so the frustrations move very slowly in the : C4 ’
simulation time. The antiferromagnetic domain walls turned (a)
out to be very slow variables, as well. The domain walls 10t
were always generated below the li@eE of Fig. 4 when the e,
disordered initial configuration was used. The vacuum ob- 10903 }
tained by the runs with ordered initial configuration did not 100 1
support the domains. The question is whether the domain -
walls are real degrees of freedom or reflect the insufficient e o] ™
convergence of the simulation method. We have developed
cluster algorithm and found that for small, (c,<1.0), the 1y
walls have dynamics, reach an equilibrium and may disap-
pear. For largec, the domain wall motion slows down de-
spite of the cluster algorithm. The thermalization was safely — ,,, ]
reached within each domain. It remains an intriguing ques-

10 L

0.1 4

tion if the domain walls thermalize in this regime with ex- 107 . . . .
tremely long relaxation time, i.e we are in a glassy regime 0 0% e " 08 !
[22] or the ergodicity is definitely lost and the vacuum con- (b)

sists of a stable, disordered network of domain walls. In this
regime the frustrations act as scattering centers without feed-
back from the fast dynamics of the elementary excitations, a
dynamical situation reminiscent of the quenched disorder in
solids. Forc,<1 the mean field valuep, , is small enough 100 1
to make the domain wall fluctuations more likely and the
cluster update averages over the different rearrangements 0¥c 10 4
the domains.

The different regions shown in Fig. 4 were studied in 13
more detail atc,=2. The negative action density obtained
by starting atc,=0 and sweeping the intervalOc,<1 is
plotted in Fig. %a). The results obtained by the ordered and
disordered initial configuration are indicated by and

104 1 1 ! L

1000

0.1 A

0.01

squares, respectively. The ordered vacuum has lower actior  10-® : : : : kK
density up toc,~0.2. The mean-field action density is 0 o2 e 08 !
shown by a solid line. It is instructive to follow the second (c)

lowest mean-field solution, indicated by the circles. The

splitting between the lowest and the second lowest mean FIG. 5. Averages at,=2: () the action density;-(S)/L?; (b)
field action level reflects the stability of the vacuum againstthe wavelength of the modulation of the vacuum, measured by
the change of the long range order. The agreement between( ¢ #)/(¢%); (c) the amplitude of the modulation.

the Monte Carlo and the mean-field results is remarkable for

small ¢, in the relativistic phase. Right at the relativistic- with N=2 and 4 are more stable against the modification of
nonrelativistic phase transition, the ordered configuration is ghe long range, in agreement with their stronger “lock-in" in
rather poor approximation and the disordered vacuum adjustsig. 1.

itself easier to the valud,g=1. Forc,>0.3 the mean field Another insight into the vacuum can be gained from the
badly over estimates the true vacuum action density, indicatnspection of the period length of the vacuuR),,., mea-
ing the presence of strong fluctuations. Notice that the phasesired by
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(P ) _ T strength of the fluctuations. Note the local maximum and
L) ~4dAFS|n2(m)- (86)  minimum in the fluctuations at,~0.35 andc,~0.6, respec-
tively. The former is in agreement with the remark made for

The numerical and the analytical results depicted in Fig) 5 Fig. 5b). The average of the extrema of the field in the real
show that the first order transitions of the mean field approxispace is higher than the mean field value and shows no struc-
mation between the relativistic and the non-relatividtic  ture as the function of, indicating that the fluctuations tend
=2 antiferromagnetic phase is smoothened out in the simuto lower the local values of the field variabled(x)|. As
lations when the disordered initial condition is used. Thenoted before, the fluctuations increase as the ferromagnetic
ordered initial condition follows the mean field curve within phase is approached, a result consistent with the second order
the phaseN=d,e=2. The slightly higher action of the dis- nature of the ferromagnetic phase transition.
ordered initial configuration runs indicates that the true The numerical results for the complete propagator, Eq.
vacuum is close to being ordered and the relativistic{88) that displays the structure of the vacuum and the el-
nonrelativistic phase transition is of strongly first order. Oneementary excitations in the same time are presented in Fig. 6.
is tempted to conclude that the fluctuations smoothen out thé&/e divided the interva[O,ma@(|¢(p)|2>] into five equal
commensurate-incommensurate transitions but better statisegments and their contourplots are shown in the figures.
tics is needed to settle this question in a satisfactory mannérhe strength of the contour line increases with the amplitude,
for the whole phase diagram. The difference between thso the blacker regions of the plots indicate the location of the
numerical results and the mean-field solution is the largest imaxima.
the phaseN=2, dyr=1. The mean-field approximation 0<c,<0.16 Whenc, is small we are in the relativistic
slightly underestimates the period length of the vacuum ilN=2 phase and|¢(p)|?) depends strongly on the initial
the vicinity of the ferromagnetic transition. This is consistentcondition of the Monte Carlo simulation. The ordered initial
with one Of. the .rem.a.rks made about F|ga)5 namely that Configuration(84) y|e|ds a Sing|e peak f0(|;§(p)|2> at p
the fluctuations in this regime are stronger than expected by. p(2)(4)= (7, 7) suggesting little disorder. In the case of

the mean-field approximation. In fact, the stronger fluctuayhe dgisordered initial configuratiods(y, , one finds a domain
tions lower the critical value af, so the period length of the structure and the Fourier transfodr(nN;S( )>|2 shown in Ei
vacuum diverges faster in function of, than in the mean- P 9-

=0 i =p? (2) 2
field expression. i(?)) :ayde\?ellos g?e\plr?r:edofarqr?ax::na(:r)c;u§1|f t(rf:s r;i)n)le;tum
The strength of the modulation of the vacuum is displayed, .’ P 9 '

in Fig. 5(c). It is simplest to express it in terms of the Fourier tis easy to understand the minimum at the center. 'U fact,
transformed field assuming that the vacuum consists of the domains of

#2r8(x) and — ¢2'd(x) in the fractionsc and 1—c of the

- 1 _ volume, respectively one findgZ .= ¢4, (1—2c)?/4. The
¢(P)= 12 > p(x)e P, (87)  domain pattern develops after few sweeps and the domain
) walls turn out to be rather slow variables.

obtained on arL XL lattice. We may split the expectation 0.16<c,<0.22 The excitations become more involved in

~ o\ _this regime. The coefficients andE of the lattice action are
:/l?;ltjiiﬂs(j}(p)' ) into the sum of the condensate and the fluc positive for c,>1/6 making the frustration density higher.

Furthermore the propagator develops a circle of degenerate
maxima around the poimi=P®)(4) for c,>31/192<0.16.

The result is a cusp in the condensate as the functiay of.

Fig. 5(c), and the softening of the modes giving an increase

~ 2 |/ 2 ~ 2\ _ >
(BPD=KBENE (BEI)n=Celp) B i o

whereG,(p) stands for the connected propagator, given by . 0.22<¢,<0.3 T'he ordered initial configurgtion {simula—
Eq. (54) in the leading order of the perturbation expansion. AlON reCovers the right vacuum @f~0.23 in a discontinuous
simple approximation for the strength of the modulation ofManner, cf. Figs. @) and @c). Forc,>0.23 the simulations

(B2 =(D(P)>e+ (| dP|>, (88)

the vacuum is corresponding to the two different initial conditions yield the
same result. The hysteresis in thg dependence, i.e. the
2_ ~ 2 ~ 2\ 2 later appearance of the ring for the ordered initial configura-
ma ma max ¢ (X
& WIS W1 SPI)~(max¢(x)) tion case compared with the unstable starts suggests that the
~{min,$(x))?2. (900  transitiondag:1<2 is of first order. The roton minimum in

5 the dispersion relation tends to break the straight lines where
ma>g)<|qb(p)|2> is displayed by plus and square for the or-the frustrations are found and to distribute them in a more
dered and disordered initial configuration, respectively. Thespherically symmetrical manner, resulting in more disorder
star shows the value of the last two expressions in(Bg)..  and creating a labyrinth structure instead of the ordered non-
We find that the different estimates for the strength of therelativistic antiferromagnetic vacuum.
condensate agree in the relativistic phase except the simula- 0.3<c,<0.38 The minimum of Eq.(54) is the longest,
tion results corresponding to the disordered start. The differbeing a square, far,=0.31 according to Eq69). A typical
ence between the mean-field solution indicated with x angxample shown in Fig. (6) witnesses that the fluctuations
the numerical results can be considered as a measure of thee the strongest in this regime, when the volume of the
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FIG. 6. The Fourier transforni|#(p)|?) in the plane py,p,) for c,=2. Disordered initial conditionsta) c,=0.06; (b) c,=0.23.
Ordered initial conditionstc) ¢,=0.23;(d) c,=0.31;(e) ¢,=0.38;(f) c,=0.39;(g) ¢c,=0.57;(h) c,=0.9.

phase space occupied by the soft modes is the largest. As tfeming domains where the plane wave modulation of the
length of the roton minima starts to shrink fo5>0.31 so  vacuum has different orientation. The longer period length of
does the strength of the fluctuations as seen in Fig). 5 the vacuum makes more energy consuming to break the
0.38<c,<0.6: The period length of the vacuum growths straight plane wave by changing its direction, i.e., the do-
beyond 2 aic,~0.38 and(|#(p)|?) becomes strongly sup- main wall energy density increases. This explains the break-
pressed ap=(0,7) and p=(,0) according to Figs. (@) ing up of the ring into smaller segments and its ultimate
and @f). The rapid variation irt, supports the discontinuous reduction to few discrete peaks, as demonstrated in K. 6
nature of the transitioN=2—3. The further increase af; ¢4~0.6: The fluctuations reach a minimum in the middle
makes the restoration of the rotational symmetry more diffi-of the “lock-in" interval N/M =4 seen in Fig. 1. The point
cult. This is because the symmetry restoration is achieved bywhereN/M is approximately the power of the highest order
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terms in the field variable of the lagrangian the above menThe usual strategy to avoid the instabilities in real time men-
tioned decrease of the fluctuations comes to a halt and isoned above is based on the introduction of new, auxiliary
turned into an opposite trend due to the approach of théields which render the kinetic term quadratic. The most
ferromagnetic phase transition. In fact, as the length of th@atural attempt is suggested by the formal similarity between
roton minima shrinks and becomes less important the inthe Pauli-Villars regulated models and theories with higher
crease ot, ultimately leads to the disappearance of the con-order derivative$13,2]. In fact, by assuming that the inverse
densate which is triggered by the increase of the fluctuationgropagator3) as a function op? has simple roots only, we
This is due to a tree-level effeat, makes the modulation of can write the propagator as

the vacuum more energetic so the amplitude of the modula-

tion decreases with the increasemf As the amplitude de- o 1
creases it becomes easier to break a plan wave into domains G(p%) = (p?+ Mi)(p2+ M%)(p2+ Mg)
what amounts to the attempt for the restoration of the rota-
tional symmetry. The maximum i(ﬂ)(p)2> spreads from a _ Z I Z; N Z3 91)
well localized point over the whole circle of the rotonsas p2+M2 " p?+M2 pP+M2’
is increased beyond 0.6.
0.6<c,<0.98 As c, increases ang,,;, approaches zero where
the dominant fluctuations are grouped on a circle aropind
=0 with increasing strength as shown in Figh The con- Zy'=(M3=MH(M5-MD),
densate weakens and increasing period length in lattice spac-
ing units is in agreement with the one-loop renormalizability Z,'=(Mi=M3)(M3— M%), (92
established in the previous section.
¢,~0.98 The precursor of the transition to the ferromag- Z;1=(M2-M2(M2-Mm3). (93)

netic phase is the appearance of a peaK|&~ﬁ(p)|2> atp
=0 for c,~0.98. The further increase af; brings us into  Since
the ferromagnetic phase with roton excitations.

We close this section with a remark concerning the Lif- 717,175 1= —(M2—M2)2(M2-M?$)Z(MZ-M2)?,
shitz point. It is a tricritical point af,=c,=0 in the model (99
(5) where the wave vector of the periodic vacuum tends to
zero asc;— 0. This is to be compared with the “Lifshitz one of the coefficientg; is negative when the rool‘ﬂj2 are
line” of our model, the curve separating the ferromagneticreal, i.e. in the case of the antiferromagnetic vacuum. We
and the antiferromagnetic phases in Fig. 2. For a giwgn have two complex roots, saM2 MZ* in the ferro- or the
=0 this line gives a critical point which is reached by tuning paramagnetic phase. This giv&s'* =Z;* and
c, andm?. Since the coefficient of the lowest order term of
the gradient in the action is kept constant€1) the fine z£1+ 22*1* =(|v|§— M§)2<0, (95)
tuning of the higher order coefficients generates discontinu-
ity for the wave vector of the vacuum at the critical pdint. and makes RE,=ReZ;<0. Thus the real part of at least
The peculiarity of the extension of the Lifshitz point to a line pne of the contributions in Eq91) is always negative.
is that the wave vector of the vacuum is a discontinuous Such a propaga‘[or can forma”y be obtained as the func-

function of the coupling constants either when one crossegonal derivative of a Gaussian generator functional,
the line or when one moves along it in the antiferromagnetic

side. One point of the Lifshitz line shows a further interest-

ing feature, the even and the odd sublattices decouptg at Zo[](X)]:j D[ ;]

=1/4d, ¢,=0. This can be understood by checking the in-

variance of the propagator under the replacenfefit4d 1 4o

— P2, and allows us to construct the continuum limit of chi- xXexp — EJ d%d%y ¢;(X)G; k(X,Y) i(y)
ral bosong6].

3
+ f dxj(x) >, ¢k<x>), (96)
k=1

VIIl. WICK ROTATION TO REAL TIME

Our model(1) was obtained by the elimination of some where
particles and the truncation of the resulting effective action.

G k(x.y)=—8(x=y) & Z (Oy=M?). (97

1The analogous situation at the usual tricritical point for the modelNOte that the convergence of the functional integration re-
(5) with c,=0, g¢>0 is the first order phase transition in the func- quires that the fieldp;(x) with ReZ;<<0 be purely imagi-
tion of g,. We do not needt,>0 in our case because the anhar- nary, an indication of the presence of the negative norm
monic term of the Lagrangian stabilizes the vacuumdgx0,c,  States in the canonical quantization procedure. The partition
=0. function of the model1) can be written as
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2
J D[ ¢le Sl =g 1dXVIA(MZ ] (99 Hzf ddlx[ EO Hjao¢j—L(¢,a¢,aa¢,&aa¢)}
=

A4
Mo+ 111+ mH§+H2V2¢1

in the framework of the perturbation expansion. The Wick ZJ d®*x
rotation of this path integral is straightforward and leads to a

model with three particles and negative norm Hilbert space. 1, ) (27)? 5, 2
The positive and the negative norm particles are mixed by 5 (1% ¢oV o) ~Co 5737 (2= V7 ¢o)
the vertices of the interactiovi(¢). In order to have a physi-

cally acceptable model we have to ensure that the time evo- c,((2m)%\? ) ) )

lution remains unitary when restricted to the subspace of T2\ TAZ (92— V o) V(2= Vo) + V(o)
positive norm physical states and the Hamiltonian is

bounded from below. (100

The unitarity of the S-matrix can be established for ener-, o equivalent with the Euler-Lagrange equation.

gms;_belot\;]v thke thrfShOIdt ?f t?ﬁ nega:!vebr_}c;rm ]P?r:t'c:ae plr_o— The quantization procedure is based on the canonical
uction, the key element for the applicability of the Pauli- ., owo0 elations

Villars regularization. The stability of the vacuum is reached

in this regularization scheme by first performing the renor- 5(X0_y0)[d,j(x),ﬂk(y)]:i5]. WS(X—Y). (101

malization in the Euclidean space and making the Wick ro- ’

tation back to real time after that. The negative norm reguThe inner consistency requires thet and II; be anti-

lator particles are suppressed during the removal of thélermitean operators. The standard path integral representa-

cutoff thereby the Wick rotated renormalized theory pos-tion [23] results

sesses a stable ground state. The non-commutativity of the _

renormalization and the Wick rotation can simply be under-{#q,— ¢1.b5le """ do, b1, b2)

stood by noting that the formally Lorentz invariant Pauli- T

Villars regularization scheme violates a simple rule: The :j D[¢]D[H]exr{ij dt(E Hjﬂo(ﬁj_H[H,gb]])'

non-compact nature of the Lorentz group excludes the Lor- 0 j

entz invariant regulator schemes. (102
What we have shown so far is that our model yields an

acceptable theory for real time only after the perturbativeyhere the fieldslT;(x) and ¢,(x), as the eigenvalues of

renormalization in Euclidean space-time. One wonders if cagntihermitean operators are purely imaginary. This feature,

nonical quantization which leads to a non-perturbative forthe negative norm nature of the particle corresponding to the

malism can carry us further in establishing an acceptablegyxiliary field ¢1=do¢ makes the real time phase space path

non-perturbative theory. In our case it amounts to the introintegral (102) divergent and ill defined because the Hamil-

duction of the generalized coordinatég(x)=dy¢(X), | tonian (100) is complex,

=0,1,2, and momenta
H[H01H17H21¢01¢l=¢2]*

SL SL 5 SL =H[Ily, = 11,115, 0, = ¢1, 5]
y= —d +4
" ddoh 0 odeh O S #H[ o, 111,115, o, b1, 5] (103
(27)? (2m)?\? _, 5 In view of these failures of rescuing the model by the
=[1-Co—z O+cy —7| (O°-0V) |y, i i iliary fields i
A A introduction of the auxiliary fields it seems remarkable that
the Wick rotation based on our lattice regularized Euclidean
model does yield an acceptable theory when the elementary
SL SL fields are chosen with more care. We shall show that the
I, = 523" 5’05—r cutoff theory is unitary and stable in the Minkowski space-
do do time. The Lorentz symmetry is recovered in the renormaliza-
(2m)2 (2m)2\2 tion process only, when the cutoff is removed.
= CZT —c4< A2 ) Dz} b0, (99 We start by noting that the elimination of a heavy particle
which gave rise the higher order derivative terms in the ef-
fective action actually creates mixed states from the pure
" ones. Thus the effective theory should be recasted in terms of
M,= oL —c ((277) ) 06 its density matrix. This is not what happens in the usual
2 sasp A2 o blocking procedure which yields the path integral expression

as a representation of the matrix elements of the time evolu-

tion operator between pure field eigenstates. But the initial
One can easily check that the Hamilton-Jacobi equations adnd final field configurations of the path integral for the ef-
the Hamiltonian fective theory specify the states of the light particles only.
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The information concerning the states of the heavy degrees /t+1
of freedom is lost in the elimination process, by the trace
operation in their Hilbert space. In other words, the initial
and final states of the effective model specified in its path
integral are mixed. The additional correlations in the expec-
tation values arising from the off-diagonal elements of the
density matrix are represented by the higher order derivative
terms of the effective action.

Suppose that we truncate the effective action up to
O(4%"). The correlations, i.e. the information about the
heavy particles in the effective theory extend umtiattice
spacing. The states appearing in the path integrals can for-
mally be considered as pure ones if these correlations are
properly kept in them. This can be achieved by the introduc-
tion of n— 1 auxiliary fields at each site, like with the Pauli- B ¢C D E F G
Villars fields (96) or the canonical quantizatiofi02). An-
other possibility is the regroupment afconsecutive lattice
sites in the time direction with their field variables into a
single n-component field, in a manner similar to the one
employed in Ref[25]. We follow the latter strategy, the
reminiscent of the spin-flavor assignment for the staggere
fermions in real-space timg26]. The corresponding action
for

FIG. 7. The coupling of the original time slices, indicated by
solid lines, between two “fat” slices which are represented by the
boxes. The vertical dotted lines are the couplings, the nonzero ele-
ments ofAjfkl . The coefficient®,C, ... of the couplings are given
51 the lowest line.

in two dimensions F=0). The transfer matrix for the field
¢; is given by

¢;(tX) = p(nt+],%), (104 T— g 3aH (107

wheret is integer ang =1, ... n'is in terms of the original Hamiltonian.
Our reasoning is the following. The unitarity of the time
e g e - ~ > evolution operator for the states created by the field operator
S=20 ¢j(t+ 104 {OGY) dilty) + 2 Vb)), &(x) will be the result of the realness of the spectrum of the
Xy t,x . e 2__ .—6aH
(105  square of the transfer matrix with=3, T°=e . The
positivity of the spectrum oT? and the positive definiteness
of the norm in the Hilbert space will be proven by verifying
sites withn degrees of freedom that the reflection positiv_ity holds fof [24]. The cancglla— _
In the case of the actiof) wé regroup three time slices tion of the runaway amplitudes constructed perturbatively in
. . . . Ref. [14] is assured by the reflection positivity fdr in a
into_one new “fat” time slice 6=3), ¢;(t,x)=¢(3t  non-perturbative manner. The stability of the vacuum, i.e.
+j,x) for j=1,2,3 and the matrix&j_,kl connects the j(k) the boundedness of the spectrum of the Hamiltonian from

where the space-time vectots (t,)Z) label the “fat” lattice

pairs shown in Fig. 7, below follows from the finiteness of the regulated Euclidean
path integral.
Aj_,kl(>2137):255>2 58103+ 2C 85 The proof of the reflection positivity relies on the Euclid-

ean time inversion operat@® defined as
X (8 20k 3+ 8j 10k 2) +2D 65 y6; « i )
Ot x)=(=t,x), O[¢;(X)]=¢4-;(Ox), (108

+ 2 [2E(8; jre, 555-¢)810k3
l where the transformatiop—4—|j performs the time inver-

+2F (85 5190+ 85— 26.) 8 10 sion for the degrees of freedom within a “fat” lattice site.
xyrze; T Oxymae T 1% Note that the base point of the inversion on the original
+(85yret Oxy—e) (D 203t 810k )] lattice for a givem is at a lattice site or halfway between two
e y—e;) 1 9),20%, 19k,

such sites fon odd or even, respectively. The time inversion
(106) O acts in the external, space-time coordinates and the inter-

nal space of or other indices, it changes the sign of the time

coordinate and performs the necessary inversions in the in-

2The need of the increase of the number of degrees of freedorfefn@l space, such as the transformagen4—j, the com-
can be understood in the semiclassical limit, as well. The uniqud!€X conjugation in the case of complex quantities, respec-
characterization of the trajectories interpolating between the initiatively. It is useful to introduce the internal time parity =
and the final field configuration requires the knowledgemgan-  *1 as the eigenvalue of the time inversion in the internal
tities. space of an observablesatisfying the condition
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O[F[p(X)]I=TeF[H(OX)]. (109  for t>0. The time evolution is clearly unitary in the sub-
space of the Fock space which is span by the states obtained
The reflection positivity of the transfer matrixcan con- by the application of the operat®i ¢] on the vacuum.

veniently be expressed by means of the time inveréorit To prove Eq.(110 we write the action(105) as
is the requirement that the inequality

(FO[F])=0 (110 S=S$+S_+S,, (111

hold for any local functionaF[ ¢] of the field variable taken where

So=2 V(¢;(0x)),

X

S.= X $(t+1X0A F(XY) d(ty)+ > V(gi(t,x)), (112

t<0Xx,y t<0x

Si= 2 $(t+ 1A F(XY) di(ty)+ > V(gi(t,x)).

t=0x,y t>0x

We shall need below the relation

O[S.[4]1]1=S:[ 4], 113

a consequence of the time reversal invariance. In terms of the m&aﬂj{&?) this amounts to the equations

0| X ¢t+1XA F(XY)Al(t,X) = X O[¢i(t+1x)]O[A H(X,Y)]O[ y(t,X)]

t=0x,y t=0x,y

= D bu(—t=1X)O[A XX Y) I ba i —t,X)

t=0x,y

= D a(t+1X)O[A H(X,Y) ] ha(t.X)

t<0x,y

= 2 (t+1X0[AY 4 (XY)]i(1,X)

t<0x,y
= 2 A+ 1A HXY) (LX) (114
t<0Xx,y
which yield immediately
O[A XYW I=A 4 (X Y)=A H(XY). (115

The left hand side of the inequalitt10) can now be written as
<F®F>:f Dt:o[ﬁb]efso[‘/’(x)]f Dt<0[¢]eisf[¢(x)]®[|:[¢(x)]]f Dol ple” S IPMIF[¢(x)]
:f D[ ple SlI@[e S 4O [F b(x)Tle~ SHPOIE] (x)]
:f D[ fleSoléWlg S IMONIT_E[ p(Ox) Je~ S PN p(x)], (116
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where we assumed in the last equation that the functibnal strongly repulsive for short distances and attractive at long
possesses a definite internal time inversion pafligs+1.  distances and supposed to form a crystalline ground state.
This allows us to eliminat® from the integrand by writing Such an interaction is coded in terms of the effective action
with higher order of the derivatives. The inhomogeneous
) ground state is reproduced in the saddle point approximation
FoF)- | Dto[qﬁ]e—SoTF( | Dt>o[¢]e—S+F[¢<x>]) . Ofthe effective theory. .
The mean-field, tree level phase structure of the model is
(117 quite involved and displays several inhomogeneous phases
with a number of commensurate-incommensurate transitions.

The result is the inequalit
a Y The elementary excitations contain modes similar to the ro-

T(FO[F])=0, (118  tons of liquid Hé but the excitation spectrum is usually mas-
) ) sive in lacking of a conserved particle number. Our effective
holding for any real functionaf. theory is a simplified version of the higher dimensional sys-

Let us denote by, the subspace of the Fock spaie  tems with inhomogeneous ground states, such as the solids,
which is span by the application of the1 internal time  gntiferromagnets and materials with charge density phase.
parity local functionals of the field operatab(x) on the  The formation of the inhomogeneous vacuum by the conden-
vacuum and by, its orthogonal complement. We have  4ti0n of particles with non-vanishing momentum is a mani-

H=H,®Hy i (119 festation of the additiopgl soft modes which characterizes the
quantum phase transtitions.
in an obvious manner. The time evolution is unitary within ~ The one-loop corrections give a line of ultraviolet fixed
H,, and the vectors ifti,,,, among others the ghost states points with variable particle content. The period length of the
of Ref.[2], have negative norm in agreement with Et03.  vacuum can thus be sent to zero. The Poinsgrametry is

More care is needed in the presence of a time dependengstored in the continuum limit and the vacuum becomes
condensate. This is because the condensed mode is treatesmogeneous for the measurements made at finite energies.
classically and the problems of the quantum treatment, inn the same time the excitation spectrum of the model re-
particular the unitarity of the time evolution and the reflec-mains nontrivial, reflecting the inhomogeneity of the
tion positivity apply for the quantum fluctuations only. The vacuum. The different dispersion relation branches are inter-
reflection positivity should hold for the dynamics of the preted in the continuum limit as excitations with different
quantum variablepq(x) = ¢(x) —(4(x)) which is governed  flavor. This unusual vacuum-excitations correspondence
by the action opens the way for the construction of new kind of unified
guantum field theoretical models where several particles are

Sal ¢al=SLdg(H)]. (120 described by the same field. Our effective theory was found
Note that Eq(113 is satisfied byS,, to hz?\ve a cqnsistent extension to real time in_the even inter-
nal time parity sector of the Fock space despite the presence
O[S.[ g+ (D) ]]1=S:[dq+ (D) ], (121  of the higher order derivative terms in the action.

The numerical analysis performed by the Monte Carlo
according to Eq(115. This relation allows us to repeat the method confirms the mean-field prediction of the phase
steps (116),(117) after having performed the replacement strycture and is consistent with the criticality at the ferro-
S p]—S ] _ . magnetic phase transition line. The frustrations are the slow

Another problem one has to take care is the choice,of odes of the simulation when the amplitude of the modu-
the number of degrees of fr_eedom at a “fat” Iattu_:e Site. |ated vacuum is large suggesting the possibility of a
must be at least half of the highest power the gradient OPer3uenched disorder variable in real time, as well.
tor appears in the action in order to decouple the next-to- We note finally that there are no massless excitation

nearest heighbors. In the same time it must be Integer IM&g, o5 above the modulated vacuum with finite period length
the period length of the elementary cell in the antiferromag-

netic phase. These conditions require the choieel when n Iatt_lce spacing units. Th|.s 'S specially striking in two-d|-.
- " mensions where the periodic structure of the periodic
N=2 andn=N for N=3.

The reflection positivity satisfied in the subspade of vacuum is not necessarily destroyed by the Mermin-Wagner-

_ : . o Coleman theoremi27]. The continuum limit of the antifer-
the N=2 antiferromagnetic phase indicates that one has tg magnetic phase whet/M— might be similar to the

gﬁﬁ ;PE (;5 Spo?: opt? sfg)r/vig?a;it?tlz, tch4ezsg ;Eg]rpgglct:unsseogrtlrye t\{:’) anar X-Y model with power like decay of the correlations.
the scalar patrticle is physical, the pseudoscalar modes corre-

spond to ghost states.
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