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Periodic vacuum and particles in two dimensions
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Different dynamical symmetry breaking patterns are explored for the two dimensionalf4 model with higher
order derivative terms. The one-loop saddle point expansion predicts a rather involved phase structure and a
new Gaussian critical line. This vacuum structure is corroborated by the Monte Carlo method, as well. Analo-
gies with the structure of solids, the density wave phases and the effects of the quenched impurities are
mentioned. The unitarity of the time evolution operator in real time is established by means of the reflection
positivity.

PACS number~s!: 11.15.Ha, 11.10.Lm
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I. INTRODUCTION

The condensates occurring in quantum field theory
usually homogeneous and are composed of particles
vanishing momentum. In this manner the momentum of
excitations is conserved even when a particle is borrow
from or lended to the vacuum. But the momentum conser
tion observed experimentally at finite energies is actually
incompatible with certain inhomogeneous vacuua so long
the momentum of the condensed particles is beyond the
servational range. The elementary excitations in solids
described by the Bloch waves which can be rearranged
different sub-Brillouin zones in such a manner that the Blo
momentum, the momentum counted from the center of
sub-Brillouin zone, is conserved. More formally, the pre
ence of a crystalline ground state restricts the translation
symmetries such that the primitive unit cells are mapped
each other. The conserved quantum number due to su
restricted symmetry group is the Bloch momentum. The u
klapp processes which take place at the length scale of
primitive unit cell change the sub-Brilllouin zone and can
interpreted as a change of the type of the excitations. Ret
ing now to quantum field theory, one might send the size
the primitive unit cell to zero. If this is possible then th
space-time structure of the momentum non-conserving
klapp process is not resolved by finite measurements
their interpretation as a flavor changing process beco
compatible with the experiments.

In order to gain more insight into the role the inhomog
neity of the vacuum plays in forming the dynamics of t
excitations we consider a generic model with higher or
derivative terms in the action for a scalar field in two dime
sions and present its phase structure, the excitation spec
and the particle content when the vacuum possesses a m
lation and becomes inhomogeneous. We use the saddle
approximation in the one-loop order in the analytical co

*Email address: Marianne.Dufour@IReS.in2p3.fr
†Email address: polonyi@fresnel.u-strasbg.fr
0556-2821/2000/61~6!/065008~21!/$15.00 61 0650
e
th
e
d

a-
t
s

b-
re
to
h
e
-
as
o

a
-

he

n-
f

-
nd
es

-

r
-
um
du-
int
-

putation and the Monte Carlo program for the numeri
simulation to have a more complete picture. The higher or
derivatives lead in general to the appearance of additio
particles with negative norm and complex energy. It
pointed out that our model possesses the reflection posit
which in turn assures the existence of the positive norm H
bert space and the unitarity of the time evolution operato
Minkowski space-time.

The organization of the paper is the following. Section
contains our motivation in choosing the model investigat
The tree level vacuum is identified in Sec. III. The action
rewritten in terms of the Bloch waves corresponding to
different periodic vacuua in Sec. IV. We diagonalize the qu
dratic part of the action and determine the elementary e
tations for the simplest inhomogeneous vacuum in Sec.
Section VI contains the demonstration of the one-loop ren
malizability of our model. The analytical results are com
pared with a Monte Carlo computation in Sec. VII. The iss
of the unitarity is discussed in Sec. VIII. Finally Sec. IX
for the conclusions.

II. THE MODEL

Our model is an extension of the Landau-Ginzburg mo
for a scalar order parameter by adding higher order der
tives to the action,

S@f~x!#5E ddxH 1

2
]mf~x!KS ~2p!2

L2 h D ]mf~x!

1V„f~x!…J , ~1!

where the kinetic energy contains the functions

K~z!511c2z1c4z2, V~f!5
m2

2
f21

l

4
f4, ~2!

andL is the ultraviolet cutoff.
©2000 The American Physical Society08-1
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As far as the dimensionless parametersc2 andc4 are con-
cerned, we have two different motivations for their introdu
tion. One is based on the fact that we are always confron
in Nature with effective theories where the high energy p
ticle exchanges generate a number of operators in the a
which are perturbatively non-renormalizable. As an exam
consider a renormalizable model for a heavy and light p
ticle, described by the fieldsF andf, respectively and the
bare actionS0@f,F#. The effective action for the asymptoti
states below the threshold of the heavy particle is given
Se f f@f#5S0@f,F50#1DS@f#, whereDS@f# contains all
effective vertices generated by the heavy particle excha
processes. In this manner we can never be sure that th
tion corresponding to the interactions in a given energy ra
is actually limited by the renormalizability even thought t
‘‘Theory of Everything’’ is supposed to be finite or reno
malizable. The higher order derivative terms of our mo
may arise fromDS@f#. The decoupling theorem@1# helps us
out from the problem of a too general action with nonren
malizable terms by asserting that the nonrenormalizable c
pling constants are small, being suppressed by the powe
the light and the heavy particle mass ratio. The model~1!, a
slight extension of an effective theory for the Higgs bos
@2#, retains some of the suppressed nonrenormalizable te
arising from a hitherto unknown super heavy particle e
change.

The question, left open by the conclusion of the dec
pling theorem, and which motivates the present work
whether the smallness of the non-renormalizable coup
constants is really sufficient to render them unimportan
the effective theory. We shall find that certain higher ord
derivative terms may become relevant when their coup
constants exceed a threshold value. In other words, we m
be forced to consider non-renormalizable terms in our eff
tive theories if the heavy particle is not exceedingly far fro
the observational energy. The other motivation to study
model ~1! with non-renormalizable terms is the suspici
that the perturbatively non-renormalizable terms might t
out to be relevant by a non-perturbative mechanism and
tually allow the removal of the cutoff. If this is happened
be the case then our model with non-vanishingc2 andc4 is
as justified as the usual one whose action is quadratic in
gradient, a possibility motivating the authors of Ref.@2#.

What kind of heavy particle exchange is behind the hig
order derivative terms of our action? As mentioned abo
our interest is in theories with inhomogeneous vacuum. S
a ground state which is modulated with a period lengthlvac
is the result of a force which is attractive forx.lvac and
repulsive whenx,lvac . When the particle whose exchang
generates this force is eliminated, its effects are kept in
choice of the vertices inDS@f#. The momentum indepen
dent ultra-local~i.e., non-derivative! terms which contribute
to the local potential in the action can not generate suc
strong distance dependence in the interaction. But it is e
to see that the higher order terms in the derivative are jus
this role, to lower the action for modes whose characteri
momentum scale isp'1/lvac . In fact, consider the eigen
values of the second functional derivative of the act
evaluated in the trivial vacuum̂f(x)&50,
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e~p!5V9~0!1p2KS 2
~2p!2

L2 p2D . ~3!

The O(p4) term produces a non-trivial local minimum atp
5pmin'lvac

21 for c2 , c4.0. Thusc2 andc4 correspond to a
van der Waals force. We shall go further in this work and a
what happens whenc2 reaches so large values that the min
mum of the dispersion relatione(p) turns out to be negative
The corresponding vacuum will be the condensate of p
ticles with momentum aroundpmin and will display the pe-
riod lengthlvac'pmin

21 .
The hand-waving argument to retain the higher order

rivative terms of Eq.~1! from the multitude of other contri-
butions inDS@f# is the following. Let us start withc450,
when the vacuum is homogeneous forc2,0. On the con-
trary, for c2.0 an instability opens by increasing the m
mentum of the condensed particles and the ultraviolet cu
stabilizes the vacuum@3# where particles with momentum a
the cutoff are found. Models with such an instability we
studied in Refs.@4,5# and@6# in three and four dimensions. I
the inhomogeneous vacuum is supposed to be formed at
mentum scales below the cutoff then we need another st
lization mechanism. For this end we retain theO(]6) term
with c4.0. We believe that the higher order terms in t
gradient will modify the shape of the saddle point only lea
ing the qualitative features of the inhomogeneous vacu
unchanged. In other words, the kinetic energy is generic.
present work can be considered as the continuation of R
@6# where a new gaussian ultraviolet fixed point was found
the one-loop approximation forc450. We simplify in this
work the issue of the renormalizability by choosing low
dimension,d52, but the multitude of different phases
explored by allowingc45” 0.

The allusion made above at the Landau-Ginzburg mo
is based on the similarity of the functionsV(u) and K(u).
The nontrivial absolute minima provide the mechanism
the spontaneous (p50) or dynamical (p5” 0) symmetry
breaking generated by the potential in the internal space
the kinetic energy in the external~and internal! space, re-
spectively. Our interest in this work is to explore the diffe
ent dynamical symmetry breaking patterns provided by
generic action~1! and to suggest a mean-field treatment
the phase transitions with modulated ground state@7#.

The questions addressed here and their tentative ans
have certain relevance both in solid state and high ene
physics. The nontrivial, periodic vacuum generated by
higher order derivative terms may offer a new point of vie
in understanding the origin of the crystalline structure in s
ids. In fact, consider the coupled system of electrons, i
and photons. It is already an effective theory because
lower lying electrons of the ions are represented by the
sertion of different charge distributions and form factors
the ions. We introduce chemical potentials for the electro
and the ions in order to realize electrically neutral mat
with finite density. Finally we eliminate the heaviest degre
of freedom, the ions. This is opposite to the usual Bo
Oppenheimer approximation but it generates a local effec
interaction. This effective theory for electrons and photo
8-2
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contains higher order derivative terms for the photon fi
which yields the periodic, crystalline ground state. Anoth
appearances of this mechanism where strong van der W
forces are acting are the antiferromagnets and the charg
density wave phases. In the latter the effective theory is
tained by eliminating the valence electrons and has perio
tree level ground state@8#. The massless case withe(pmin)
.0 may as well represent a superfluid system withpmin as
the roton momentum@9#. In this context our quantitative ar
r
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gument showing the relation between the van der Wa
forces and the higher order derivatives in the action rep
sents a simple, effective theory motivated alternative of F
nman’s argument about the rotons@10#. The instability lead-
ing to the formation of an inhomogeneous ground state w
e(pmin),0 is a quantum phase transition where a no
classical soft mode@11# shows up atp'pmin .

The periodic vacuum of our model supports frustratio
for certain choice of the coupling constants. To see this
write the lattice regularized version of Eq.~1! in the form
S@f~x!#5(
x

H 2
1

2
f~x!hK~h !f~x!1V„f~x!…J

5(
x

H f~x!FAf~x!1(
m

„B@f~x1em!1f~x2em!#1C@f~x12em!1f~x22em!#1D@f~x13em!

1f~x23em!#…1 (
m5” n

„E@f~x1em1en!1f~x1em2en!1f~x1en2em!1f~x2em2en!#

1F@f~x12em1en!1f~x12em2en!1f~x22em1en!1f~x22em2en!#…1G (
mÞnÞr

„f~x1em1en1er!

13f~x1em1en2er!13f~x1em2en2er!1f~x2em2en2er!…G1
l

4
f4~x!J , ~4!
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where A5m2/21d2(2d21d)c21(4d316d2)c4 , B5
21/212dc22(6d213d23/2)c4 , C5E/252c2/213dc4,
and D5F/35G52c4/2. The possibility of having eithe
sign for these coefficients indicates the competition betw
the nearest- and beyond nearest-neighbor interactions an
possible presence of frustrations as lattice defects of the
riodic vacuum. When the amplitude of the periodic vacuu
is large the motion of the frustration is rather slow and
model offers a semiclassical description of the quenched
order.

The usual strategy in high energy physics is to introduc
field variable for each particle. But models with inhomog
neous vacuua may display more involved particle-field
signments by exploiting the non-trivial dynamics at the
traviolet cutoff scale. In fact, there are several dispers
relations and particle like-elementary excitations in so
state physics, such as the acoustical and the optical pho
and the massless or massive excitations in antiferromag
In both examples the dynamics is rather non-trivial at
ultraviolet cutoff. Can we keep such a more unified desc
tion of several particles by means of a single quantum fi
in a renormalizable model? In this case the dynamics at
cutoff can be pushed at infinitely high energies and it is
obvious that the construction converges. Our answer to
question is affirmative up to the one-loop order of the p
turbation expansion. Another interesting aspect of the mo
considered is the possibility of breaking continuous exter
symmetries without generating massless Goldstone mo
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In fact, suppose that we use say lattice regulator wh
breaks the continuous translation invariance and the mom
tum of the condensed particles is close to the cutoff, in wh
case the continuum description is not applicable at the len
scale of the vacuum and there is no reason to expect gap
excitations. This is another manifestation of the apparent
mogeneity of the modulated vacuum with shrinking peri
length.

There are several works devoted to the applications
models with higher order derivatives. The canonical form
ism for Lagrangians with higher order derivatives has be
worked out in Ref.@12# and been applied to QED@13,14#,
gravity @16#, the Higgs sector of the standard model@2# and
Chern-Simons theories@17#. The present paper is close i
spirit and the method followed to the nonperturbative latt
study of the effects of the higher derivative terms for a sca
particle @2#. But contrary to that paper where the continuu
limit is sought in the symmetrical and the ferromagne
phase by keeping both the particle mass and the scale
duced by the higher order derivative terms finite we sh
consider the phase with inhomogeneous vacuum wh
length scale does shrink to zero with the cutoff.

The higher order derivative terms may generate new t
ritical point, called the Lifshitz point. One can see this in t
Euclidean field theory given by the Lagrangian

L5
c1

2
~]mf!21

c2

2
~hf!41

g2

2
f21

g4

4!
f41

g6

6!
f6. ~5!
8-3
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It is well known that the modelc250, g6.0 possesses
tricritical point which is atg25g450 in the mean-field ap-
proximation. Forg4.0 the phase transition following th
sign of g2 is changed is of second order. Wheng4,0 then
the crossing of the lineg255g4

2/8g6 corresponds to a firs
order phase transition whose latent heat vanishes asg4
→02. A similar tricritical point is generated by the compe
ing derivative terms forg650 atg25c150, according to an
e-expansion like renormalization group method@18# and the
solution of the spherical model@19#. Phase transitions o
different type coincide here. The change of the sign ofg2
induces a second order phase transition whenc1>0. ^f(x)&
is inhomogeneous forc1,0, and its wave vector approache
zero asc1→02. All of these studies deal with the quantu
or statistical physics of the fluctuations around the triv
vacuum,^f(x)&50. We go beyond this level by allowing
the condensation in the ground state and considering
fluctuations around a periodically modulated mean fi
^f(x)&.

The interference of the cutoff and the derivative ter
leads to commensurate-incommensurate transitions@20#, as
well. The simplest~111!-dimensional model of these trans
tions is based on the lattice potential energy@21#

U5(
x

F z

2
~f~x11!2f~x!1d!22

g

2
cos

2pf~x!

b G . ~6!

For largeg the value of the field tends to take integer mu
tiples of b, the period length of the second term in the p
tential. Whenz is chosen to be large then the average inc
ment of the field at neighboring sites,d̄, is close tod. The
configurations which minimize the energy are governed
the competition between the conflicting requirements of
two contributions in Eq.~6!. The ratio d̄/b plotted against
d/b exhibits a characteristic, discontinuous structure, ca
the devil’s staircase. Similar competition is expected
tween the period length of the vacumlvac introduced at Eq.
~3! and the lattice spacing in the solution of the equation
motion of Eq.~4!. Our model offers a translation invarian
realization of the commensurate-incommensurate transiti
Furthermore the sign of]m^f(x)& is given by the dynamica
breakdown of the space inversion symmetry instead by
explicit symmetry breaking term,d, in Eq. ~6!.

We close this section by mentioning a formal proble
which poses a serious threat in using actions with hig
derivative terms@13#. The inverse propagator~3! has several
roots as the function ofp2. Each of them yields a~not nec-
essarily! simple pole for the energy integrals which is pass
by the integration contour during the Wick rotation of th
perturbation series into Minkowski space-time. When
real part of the Euclidean energy at a simple pole is n
vanishing then the Wick rotation produces a particle mo
with complex energy and with amplitude which growths
decreases exponentially in time. Even if the Euclidean the
is stable we have to make sure that such runaway amplitu
are canceled after the Wick rotation@14,15#. Since the origi-
nal theory, the source of our effective model was suppose
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have stable vacuum in the Minkowski space-time this pr
lem may only arise from the inconsistent truncation of t
effective Lagrangian~1!.

One encounters a similar problem in the Schwing
Dyson resummation procedure, as well. The effective ac
which approximates the Wilsonian renormalized action
the infrared limit, as the cutoff tends to zero, has a non-triv
momentum dependent piece which is quadratic in the fie
the self energy. When the self energy is considered i
non-perturbative manner then its momentum depende
may create new poles. These are usually ignored since
imply that the self energy, coming from the radiative corre
tions is as important as the originalp2 kinetic energy term.
But their proper treatment leads to the question of the c
sistence of the truncation of the effective action.

This point of view opens a general question. All theo
we know in physics is effective only and contains high
order derivatives, whatever small coefficients they may ha
How can we make sure that the studies restricted to the m
els with the usual kinetic energy reflect what happens in
effective theories? The answer to this question involves
verification of the usual universality scenario in the mix
framework of the static and the dynamical renormalizat
group, where the fixed point is in the ultraviolet for the sp
tial momenta and in the infrared for the energy. Instead
embarking this important but extremely involved issue
restrict ourselves in this work to show that our model
consistent in real time and the runaway modes can be
cluded in a nonperturbative manner.

III. TREE LEVEL VACUUM

We start the semiclassical solution of our model by det
mining the minimum of the lattice action. This is in princip
a rather involved numerical problem, the minimization
Eq. ~4!. To circumvent this complication we shall seek th
tree level, mean-field vacuum in the form

fMF~x!5fH1f IHcosS K (
m51

dAF

xm1u D , K52p
M

N
~7!

where the amplitudesfH , f IH , the relative primesN, 1
<M<N/2, the phaseu and the number of the antiferromag
netic directions,dAF51,2 serve as the variational paramete
to minimize the action. We have naturally to confine o
study into regions far from the critical points, i.e. above t
Ginzburg temperature in order to apply this method. T
phase is called para-, ferro-, antiferro- and ferri-magnetic
fH505f IH , fH5” 05f IH , fH505” f IH , and fH5” 0
5f IH . The action density,s(dAF ,M ,N)5S/L2, on a lattice
L3L with m2,0 is s052m4/4l, for dAF50.

For the computation of the action fordAF.0 we restrict
ourselves to the casem2,0. The mean-field vacuum con
figuration is an eigenvector of the lattice box operator,

hfMF~x!524dAFsin2S K

2 D „fMF~x!2fH…, ~8!
8-4
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that gives

2hK~h !fMF~x!5M 2~M ,N,dAF ,c2 ,c4!„fMF~x!2fH…,
~9!

with

M 254dAFsin2S K

2 D F124dAFsin2S K

2 D c2

116dAF
2 sin4S K

2 D c4G . ~10!

The dependence of the eigenvalueM in the parameters
M ,N,dAF ,c2 ,c4 will be suppressed in the expressions b
low. The action density to minimize is

s5
m2

2
fH

2 1
C2~N!

2
~m21M 2!f IH

2 1lS 1

4
fH

4

1
3C3~N!

4
fHf IH

3 1
3C2~N!

2
fH

2 f IH
2 1

C4~N!

4
f IH

4 D ,

~11!

where we introduced the notation

Cn~N!5F 1

N (
l 51

N

cosnS 2p
Ml

N
1u D GdAF

. ~12!

Notice the M-independence of the sum for the relati
primesM ,N. Direct computation gives

C2~N!5H S 11cos 2u

2 D dAF

, N52,

22dAF, N.2,

C3~N!5H S cos 3u

4 D dAF

, N53,

0, N5” 3,

~13!

C4~N!55
S 314 cos 2u1cos 4u

8 D dAF

, N52,

S 31cos 4u

8 D dAF

, N54

S 3

8D dAF

, N53 or N.4.

The dependence ofCn in N will not be shown explicitly
below. One can see from the above construction that
mean-field solution of a modelf l requires the coefficients
Cn with n51, . . . ,l . So the limitN→`, the regular depen
dence onN sets on forN. l .

The action density corresponding to different choices oN
is obtained as follows:

N52: The phase parameteru is redundant in this case
We chooseu50, what setsC25C451, and write
06500
-

e

s5A•X1
1

2
X•B•X, ~14!

where

X5S fH
2

f IH
2 D , A5

1

2 S m2

m21M 2D , B5
l

2 S 1 3

3 1D .

~15!

By the help of the shiftY5X1X0 where

X05
1

8l S 22m223M 2

22m21M 2 D ~16!

we obtains5 1
2 Y•B•Y1sm . The rotation matrix

R~Q!5S cosQ sinQ

2sinQ cosQ
D ~17!

with Q5p/4 diagonalizes the quadratic form,

s52
l

4
~Y12Y2!21

l

2
~Y11Y2!21sm . ~18!

The minimum is the result of the competition between t
negative and the positive eigenvalue, i.e., the trend to
creaseuY12Y2u and to decreaseuY11Y2u. The result is that
the minimum is reached at the boundary of the quadrantX1

>0, X2>0, i.e., there is no ferrimagnetic phase realize
Thus the mean-field vacuum is found at the minimum of
following two functions:

s~fH
2 ,0!5

1

2
m2fH

2 1
l

4
fH

4 ,

s~0,f IH
2 !5

1

2
C2~m21M 2!f IH

2 1
l

4
C4f IH

4 . ~19!

The vacuum is antiferromagnetic when

C2
2

C4
S 11

M 2

m2 D 2

.1 ~20!

with the action density

s5s0

C2
2

C4
S 11

M 2

m2 D 2

. ~21!

N53: The minimization of the action with respectu
yields the conditionfHf IH

3 sin 3u50, whose solutions,fH

50, f IH50, andu50,p/3 correspond to the anti-, ferro
and ferrimagnetic phases, respectively. The transforma
u→u1p/3, andfH→2fH leaves the mean field action in
variant and it is sufficient to consider the caseu50 to ex-
plore the ferrimagnetic phase. The action density in the fe
and antiferromagnetic phases is given by Eq.~19! for u5” 0.
8-5
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TABLE I. The antiferromagnetic action density,s(dAF ,N)/s(0,N). The phase angle has been chosen
be u5p/4 for N54 to minimize the action ands5sinp/N, N.4. Sinces(0,N),0 the antiferromagnetic
phase is preferred against the ferromagnetic one whenever the corresponding expression in the table
than 1.

dAF51 dAF52

N52 S11
4~124c2116c4!

m2 D 2 S 11
8~128c2164c4!

m2 D 2

N53
2
3S11

3~123c219c4!

m2 D2
4
9S11

6~126c2136c4!

m2 D 2

N54 S11
2~122c214c4!

m2 D2 S11
4~124c2116c4!

m2 D 2

N.4
2
3S11

4s2~124s2c2116s4c4!

m2 D 2
4
9 S 11

8s2~128s2c2164s4c4!

m2 D 2
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The antiferromagnetic phase is preferred for Eq.~20! and the
corresponding action density is Eq.~21!. For u50 we have
to minimize Eq.~11! numerically.

N54: The minimization with respectu yields f IH
4 sin 4u

50, showing the possibility of the ferrimagnetic phase wh
u5np/4. Since the action is an even function of the amp
tudesfH and f IH for evenN we have the expression~14!
where

A5
1

2 S m2

C2~m21M 2!
D , B5

l

2 S 1 3C2

3C2 1 D ~22!

that results in

X05
1

l~9C2
22C4!

S m2~123C2
2!23C2

2M 2

m2C2~C423C2!1C2C4M 2D .

~23!

The rotation ~17! satisfying the condition cot2Q5(1
2C4)/6C2 transforms the action into the diagonal form wi
the eigenvalues:

l

2
„11C46A~11C4!2136C2

224C4…, ~24!

indicating that one of the normal modes is again unsta
Due to the negative eigenvalue and 0,Q,p/4, the mini-
mum is always reached at the boundary of the quadranX1

>0, X2>0, i.e., there is no ferrimagnetic phase. The co
dition for the antiferromagnetic phase and the expressio
the action density are given by Eqs.~20! and ~21!.

N.4: The procedure is the same as forN54, with the
only difference is thatC350 and there is nou-dependence
in the sumsC2 andC4.

Phase structure: The resulting action densities are sum
marized in Table I. Thec4 dependence of the period leng
of the vacuum forc252 andN<Nmax532 is shown in Fig.
1. The general trend is that the increase ofc4 pushes the
minimum of the dispersion relationpmin towards zero
06500
n
-

e.

-
of

thereby increasing the period length of the vacuum. A
certain threshold value the minimum atpmin becomes so
shallow that the potential energy turns the vacuum homo
neous and the system undergoes a ferromagnetic phase
sition. Notice the usual signatures of the commensura
incommensurate transitions, the ‘‘devil’s staircase
structure. This is a competition between two length sca
the cutoffa and the period length of the condensatelvac ,

Mlvac5Na. ~25!

The period length in lattice spacing units,N(c2 ,c4)/
M (c2 ,c4) is shown in Fig. 1 as the function ofc4. It ‘‘locks-
in,’’ i.e., stays constant in a larger commensurate inter
where the relative primesN andM are small. The long strips
corresponding to theN52 and 4 phases show a stron
‘‘lock-in’’ effect, contrasted with the gradual change of th
period length for other values ofN. The numerator and the
denominator as the functions ofc4 are non-monotonic in the
same time.

FIG. 1. The devil’s staircase, thec4 dependence of the perio
length of the vacuum atc252.
8-6
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PERIODIC VACUUM AND PARTICLES IN TWO DIMENSIONS PHYSICAL REVIEW D61 065008
The phase structure in the plane (c2 ,c4) is depicted in
Fig. 2. We identified the mean-field parametersN<Nmax
532, M, anddAF for each point in the plane (c2 ,c4). The
points where we enter into a phase withM51 by increasing
c4 are indicated by the solid lines, the other phase bounda
are shown by dotted lines. The increase ofNmax makes the
dotted lines denser without changing the solid lines or po
lating the white area. The vacuum in the upper left region
ferromagnetic. The lower right part of thec2 , c4.0 quad-
rant contains the inhomogeneous vacuua, each of them
ated in slightly tilted strips with increasingN/M as we move
upwards. The narrow triangular phase between theN52
relativistic and non-relativistic phase is a relativistic pha
with N53, see Fig. 3. It is interesting that the relativist
vacuua are realized forN52 and 3 only. We found no fer
rimagnetic phase for the parameters considered.

IV. EXCITATION BANDS

The study of the more detailed structure of the dynam
starts with the determination of the possible excitations. T

FIG. 2. The mean field phase structure in the (c2 ,c4) plane. F
denotes the ferromagnetic phase. The lower edges of the ph
with M51 andM.1 are indicated by solid and dashed lines,
spectively. The values ofN,dAF are shown forM51 at the right.

FIG. 3. The zoom into the mean field phase diagram with
regions characterizing the different behavior of the propagator.
06500
es
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distinguishing feature of the antiferromagnetic vacuua
their inhomogeneity and the nonconservation of the mom
tum of the excitations. We introduce in this section a con
nient formalism for the description of the elementary exci
tions. Following the solid state analogies we rewrite o
action by means of the Bloch waves which take the n
conservation of the momentum into account.

Brillouin zones: First we split the first Brillouin zone

B5$pm ;upmu<p, m51,2% ~26!

of the d dimensionalN antiferromagnetic phase intoNdAF

sub-zones within which the Bloch momentum is conserv
In the relativistic case whendAF5d, we find

B a
r 5H pm ;upm2Pm

(N)~a!u<
p

NJ , ~27!

where the center of the sub-zone,Pm
(N)(a), is given by

Pm
(N)~a!5

2p

N
nm~a! ~28!

in terms of the integer valued vectornm(a)50, . . . ,N21,

a511(
m

nm~a!Nm21. ~29!

In other words, the integer component vectornm(a) gives
the center of the sub-zoneB a

r in units of 2p/N. In the same
time, it can be considered as anN-base number. In this cas
its value labels the corresponding sub-zones. In the nonr
tivistic case,dAF,d, we have

B a
nr5$pm ;upm2Pm

(N)~a!u<
p

2
,m<dAF ,upmu<p,m.dAF%.

~30!

In the next step we introduce a field variable in real spa
which is responsible for the fluctuations in each sub-zon

fa~x!5E
B a

ddp

~2p!d eip•xf~p!

5E
B 1

ddp̃

~2p!d ei „p̃1P(N)(a)…•xfa~ p̃! ~31!

by the help of the Fourier transform

f~p!5
1

Ld (
x

e2 ix•pf~x!, ~32!

and its restriction into the sub-zones,fa( p̃)5f„p̃
1P(N)(a)…. The computation what follows is considerab
simplified if the NdAF Fourier transforms are extended ov
the first Brillouin zone as periodic functions,

fa~ p̃!5fa„p̃1P(N)~b!…, ~33!

ses
-

e
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MARIANNE DUFOUR FOURNIER AND JANOS POLONYI PHYSICAL REVIEW D61 065008
whereb is an arbitrary sub-zone index. The tilde on a m
mentum variable will always denote that the given mom
tum is in the sub-zoneB1. The path integral is then written a

)
p
E df~p!e2S[f]5)

a
)

p̃
E fa~ p̃!e2S[fa] , ~34!

with

LdS@fa#5
1

2E ddp

~2p!d f~2p!@P 2K~2P 2!1m2#f~p!

1
l

4 S )
k51

4 E ddpk

~2p!df~pk!D ~2p!ddS (
k

pkD
~35!

where

P 2~p!54(
m

sin2
pm

2
~36!

denotes the momentum square on the lattice.
Flavor algebra: The NdAF sub-zones introduced abov

correspond to the different excitation bands of the coa
grained lattice whose lattice sites represent the primitive c
e
e
e

f

io

06500
-
-

e
ls

of the original lattice. The umklapp processes where a n
vanishing momentum is exchanged with the vacuum take
momentum from one sub-zone to another. To separate
sub-zone preserving and changing processes from each
we rewrite the momentum integrals in Eq.~35! as a sum over
the sub-zones and integration withinB1,

E ddp f~p!5 (
a51

NdAF E ddp̃f „p̃1P(N)~a!…. ~37!

The summation can be organized in a more transparent m
ner by considering the group

ZdAF ,N5 ^ )
j 51

dAF

ZN ~38!

which describes the shift of the momentum in the period
dAF dimensional region of the Brillouin zone. This grou
makes its appearance by considering the action~35! as a
matrix element of an operator in the function space span
the ‘‘wave functions’’fa( p̃). It is advantageous to use th
plane wave basisuP(N)(a)1 p̃&5ua,p̃& in which the matrix
element of the field operatorfa( p̃) is defined by
^b8,q̃8ufa~ p̃!ub,q̃&5d„P(N)~b!1q̃1P(N)~a!1 p̃2P(N)~b8!2q̃8…fa~ p̃!

5d„P(N)~b!1P(N)~a!2P(N)~b8!…d~ q̃1 p̃2q̃8!fa~ p̃!

5~ga!b8,bd~ q̃1 p̃2q̃8!fa~ p̃!, ~39!
where the periodicity~33! was used in the second line. Th
symbolfa( p̃) stands for operator when sandwiched betwe
the basis vectors and for function in the c-number expr
sions. We introduced here a representation ofZdAF ,N by

means ofNdAF3NdAF matrices,

~ga!r,s5 )
m51

dAF

dsm1am ,rm(modN) , ~40!

constructed in such a manner thatga describes the effect o
the exchange of the momentumP(N)(a) on the index label-
ing the sub-Brillouin zones. We shall need later a relat
arising from the Abelian nature of the groupZdAF ,N ,

~G!a1r(modN),b1r(modN)5„grG~gr!21
…a,b5~G!a,b ,

~41!

whereG is an arbitrary product of theg matrices. The action
can now be rewritten in a more compact notation as
n
s-

n

LdS@f#5^0,0u
1

2
f~0!@P 2K~2P 2!1m2#f~0!

1
l

4
f4~0!u0,0& ~42!

where the operatorf(0) is given by

f~0!5E ddp

~2p!d f~p!5(
a

E ddp̃

~2p!dfa~ p̃!. ~43!

Elementary rearrangements yield

LdS@f#5trH 1

2E ddp̃

~2p!d f” ~2 p̃!@K̃~ p̃!1m̃2#f” ~ p̃!

1
l

4 S )
k51

4 E ddp̃k

~2p!d f” ~ p̃k!D ~2p!ddS (
k

pkD J ,

~44!

wheref” 5faga, and the matricesK̃( p̃) andm̃2 are given by
8-8
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PERIODIC VACUUM AND PARTICLES IN TWO DIMENSIONS PHYSICAL REVIEW D61 065008
K̃a,b~ p̃!5da,bP 2@P(N)~a!1 p̃#K„2P 2@P(N)~a!1 p̃#…,

m̃a,b
2 5da,bm2. ~45!

The action~44! includesNdAF fields whose flavor mixing is
handled by the matricesga . In fact, the real space expre
sion is

S@f#5E ddx trH 1

2
]mf” ~x!KS ~2p!2

L2 h D ]mf” ~x!

1V„f” ~x!…J . ~46!

In lattice regularization the lattice sites correspond to
primitive unit cells of the original vacuum. Our goal, to trad
the momentum non-conservation on an inhomogene
vacuum into a multiplicity of excitation bands over a hom
geneous vacuum, is completed.

V. ELEMENTARY EXCITATIONS

We determine in this section the elementary excitatio
which are the eigenfunctions of the second functional der
tive of the action, evaluated at the tree level vacuum.
choose our tree level vacuum in the phaseN to be

f~x!5(
a

eix•P(N)(a)Fa . ~47!

We need the eigenvectors of

Ga,b
21 ~ p̃!5

d2S@f#

dfa~2 p̃!dfb~ p̃! uf5F

5„K̃~ p̃!1m̃213lF” 2
…a,b . ~48!

The propagator can formally be written as

G~ p̃!5 (
a51

NdAF

ca~ p̃!la
21~ p̃!ca

†~ p̃!, ~49!

where

„K̃~ p̃!1m̃213lF” 2
…ca~ p̃!5la~ p̃!ca~ p̃!. ~50!

The diagonalization of the quadratic part of the action fo
given Bloch wave number provides the propagator and
corresponding band structure,la( p̃).

We start with small values ofc4, i.e. we are either in the
ferromagnetic or in theN5dAF52 antiferromagnetic phase
when Fa5da,1f IH , or Fa5da,4f IH , respectively. Since
ga

251 the inverse propagator is

G21~p!5mMF
2 1 p̂2K~2 p̂2!, ~51!

where
06500
e

us

s
-

e

a
e

p̂m52 sin
pm

2
~52!

and

mMF
2 5m213lf1

2

5H 22m2 ferromagnetic,

22m223M 2~1,2,dAF ,c2 ,c4! antiferromagnetic.

~53!

The propagator can be written as

G215mMF
2 1P 2~12c2P 21c4P 4!, ~54!

or

Ga,b~ p̃!5da,bG„P(2)~a!1 p̃…. ~55!

The long wavelength fluctuations give

Ga,b
21 ~ p̃!5da,b@mMF

2 ~a!1Z~a!p21O~p4!#, ~56!

where

mMF
2 ~a!5mMF

2 1M 2
„1,2,n1~a!1n2~a!,c2 ,c4… ~57!

and

Z~a!5H 1 a51,

2118c2248c4 a54.
~58!

The inverse propagator always has a local minimum
P 250. For certain values ofc2 and c4 it may develop an-
other minimum atP 25P r

2.0 when considered as a func
tion of P 2. This minimum is realized kinematically forP r

2

<8 only, when it is reached on a closed line in the Brillou
zone, cf. Fig. 6, a structure reminiscent of the roton spectr
@9#. Thus the van der Waals-type force, represented by
choice c2.0 leads directly to the appearance of the ad
tional minima of the dispersion relation interpreted
rotons@10#.

To follow this in detail, cf. Fig. 3, we start with the con
dition for the extremum,

]

]pm
G21~p!52 sinpm~122c2P 213c4P 4!. ~59!

Apart of the pointspm5Pm
(2)(a) which are always solutions

the root of the expression in the parentheses yields ano
extremum,

P r
25

c2

3c4
S 11A123

c4

c2
2D , ~60!

so long as

c4<
c2

2

3
. ~61!
8-9
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MARIANNE DUFOUR FOURNIER AND JANOS POLONYI PHYSICAL REVIEW D61 065008
The extremum atP 25P r
2 is always a minimum. To se

lect the other minima we need the second derivative ma

]2G21~p!

]pm]pn
52dm,ncospm~122c2P 213c4P 4!

28 sinpm sinpn~c223c4P 2!. ~62!

The sub-zonesa51 and 4 contain particle like excitation
because the centers of these sub-zones are local minim

]2

]pm]pn
G21~p! up5P(2)(1)52dm,n

]2

]pm]pn
G21~p! up5P(2)(4)522dm,n~1216c21192c4!.

~63!

In contrary, the other sub-zones contain saddle point o
and do not support particle like excitations,

]2

]p1]p1
G21~p! up5P(2)(2)52

]2

]p2]p2
G21~p! up5P(2)(2)

52
]2

]p1]p1
G21~p! up5P(2)(3)

5
]2

]p2]p2
G21~p! up5P(2)(3)

522~128c2148c4!. ~64!

When c4 is small enough thenP r
2.8 and the inverse

propagator possesses two discrete minima, atp5P(2)(1)
5(0,0) and atp5P(2)(4)5(p,p). The absolute minimum
is at

p5H ~0,0! ferromagnetic,

~p,p! antiferromagnetic.
~65!

As the value ofc4 is gradually increased from zeroP r
2

reaches the value 8 and it is better to follow what happen
the two phases separately. In the ferromagnetic phase
degenerate local minima are found along a closed loop in
vicinity of the point p5(p,p) when Eq.~60! reaches the
allowed kinematical regime,P r

2,8, for

c2

24
,c4 , and

c2

12
2

1

192
,c4 . ~66!

This line becomes the absolute minimum when the sma
root of the expression

12c2P 21c4P 4 ~67!

as the function ofP 2 turns out to be smaller than 8,

c2

16
,c4 or c4,

c2

8
2

1

64
. ~68!
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In fact, Eq.~67! is negative between the roots and the inve
propagator goes below its value atP 250 according to Eq.
~54!.

It is shown in Fig. 3 that the line of degenerate loc
minima appears within the region bounded by the part ab
the parabola P, Eq.~61! and the line segments bc and a
defined by the first and the second inequalities of Eqs.~68!
and ~66!, respectively. The line of degenerate minima tur
out to be absolute minimum below the parabole~61! and
above the line segment bc and the ferro- antiferromagn
phase boundary. The absolute minimum of the inve
propagator is degenerate and lies on a closed line in ei
phase forc2.1/4 when the inequality~68! is trivially satis-
fied.

As the value ofc4 is increased in the antiferromagnet
phase the inverse propagator keeps its minimum ap
5(p,p) so long as the second inequality of Eq.~66! is vio-
lated. The absolute minimum is degenerate and found al
a closed loop aroundp5(p,p) whenc4 is further increased.
We may avoid the phaseN53 by choosing large enoughc2
and arrive at theN52 nonrelativistic phase without modify
ing the propagator at the phase transition. The value of
lattice momentum at the minimum, Eq.~60!, is a monotoni-
cally decreasing function ofc4 and reaches 4 for

c45
c2

6
2

1

48
, ~69!

the line S of Fig. 3. At this point the degenerate minima
the inverse propagator form a square and for larger value
c4 it is deformed into a closed loop aroundp50.

The further increase ofc4 brings us to the higherN phase
boundaries and the situation becomes more involved.

We turn now to the question of the critical points. A
cording to Eqs.~53! and ~57! the second order phase trans
tion is reached when bothm2→0 andM 2→0 for m2,0.
Let us take

M 252mM
2 a2, m252mm

2 a2. ~70!

The first equation and Eq.~10! assert that the criticality is
reached either for

c4'
c2

4dAFsin2S K

2 D 2
1

16dAF
2 sin4S K

2 D , ~71!

or asN/M→`. Both cases require the vicinity of the ferro
antiferromagnetic transition line, the value ofc2 and c4 is
finite in the first case and diverging in the second. Sin
C4(N)>C2

2(N) ~21! shows thatmM
2 .0 is needed to reach

this phase transition. Thus the ferro-antiferromagnetic tra
tion line is critical in the mean-field approximation.

We close this section with a remark about the Goldsto
modes. The inhomogeneous vacuum breaks the exte
symmetries and we find Goldstone modes for the model
the continuum. The lattice regulator reduces the space-t
symmetries into a discrete group and there is no reaso
expect massless phonons in the antiferromagnetic pha
8-10
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PERIODIC VACUUM AND PARTICLES IN TWO DIMENSIONS PHYSICAL REVIEW D61 065008
But the strength of the breaking of the continuous part of
space-time symmetries isO(M /N). Thus the continuous ki-
nematical symmetries are restored asN/M→` and the
Goldstone theorem is regained asymptotically, i.e.,l(pmin)
5O(M /N). An important consequence of this gradual res
ration of the Goldstone theorem is the absence of long ra
modes and the possibility of supporting the periodic vacu
in two dimensions whenN is finite. This does not mean
long range order because the non-trivial part of the vacu
is squeezed within the distanceNa/M→0.

VI. ONE-LOOP RENORMALIZATION

It is shown in this section that the one-loop effective p
tential of our model can be made finite by the introduction
an appropriate mass counterterm and the fe
antiferromagnetic transition remains a critical line on t
one-loop level.

It is straightforward to derive the Feynman rules for E
~44! and to compute the radiative corrections. The one-lo
effective potential, the generating function for the one p
ticle irreducible~1PI! vertices,

Ve f f~F!5 (
n50

`
1

n! (
a1 ,•••,an

Fa1
•••Fan

3G (n)
„P(N)~a1!, . . . ,P(N)~an!…, ~72!

can be written in the one-loop approximation as

Ve f f~F!5Vtree~F!1
1

2E ddp̃

~2p!dtr ln@K̃~ p̃!1m̃213lF” 2#,

~73!

where

Vtree~F!5trS 1

2
K̃~0!F” 21

1

2
m2F” 21

l

4
F” 4D . ~74!

We split the mass term into a renormalized and a coun
term,

m25mR
21dm2, ~75!

and make the replacementm2→mR
2 in the loop integral.

The F-dependence of the one-loop integrals can sign
cantly be simplified by using the relation~41! with G5F” 2,

~F” 2!a,a5
1

NdAF
trF” 2, ~76!

where no summation is made for the indexa. Since the
matrix K̃( p̃)1m̃R

2 is diagonal,

Ve f f~F!5Vtree~F!1
1

2E ddp̃

~2p!dtr lnF K̃~ p̃!1m̃R
2

1
3l

NdAF
tr~F” 2!G . ~77!
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The ultraviolet divergences are identified in two step
First we expand in the field dependence and write the lo
contribution as

(
n

1

2nE ddp̃

~2p!dtrS 3l trF” 2

K̃~ p̃!1m̃R
2 D n

, ~78!

to recover the usual one-loop resummation in the effec
potential. In the second step we expand the integrals in
lattice spacinga,

a2n2dE
upu,p/N

ddp̃

~2p!dtr„K̃~ p̃!1m̃R
2
…

2n

5E
upu,p/Na

ddp̃

~2p!dF(
a

1

a2P 2
„a2@P(N)~a!1 p̃#…K

3S 2
1

a2P 2
„a2@P(N)~a!1 p̃#…D1

m̃R
2

a2 G2n

. ~79!

We have at most a logarithmic divergence in two dimensio
(n51) and the dimensionless inverse propagator, the in
grand of the left hand side, has a finite, 1/a independent
minimum. Let us write the smallest eigenvalue of the inve
propagator around its minimum as

lamin
~ p̃min1 p̃!5m4

21Z0p̃21O~a2p̃4!, ~80!

with m0
25a2mmin

2 , what allows us to identify the divergen
part of the loop integral ford52,

1

2Eupu,p/Na

d2p̃

~2p!2

1

mmin
2 1Z0p̃2

. ~81!

Thus the one loop ultraviolet divergence can be removed
setting

dm252E
upu,p/Na

d2p̃

~2p!2

1

mmin
2 1Z0p̃2

. ~82!

When mmin
2 5O(a2e), e.0, then no divergency arises.

there are several finite minima of the dimensionless inve
propagator then we sum over them in the counterterm.

The continuum limit, Eq.~70!, can be achieved along th
ferro-antiferromagnetic transition line of the plane (c2 ,c4).
We have one or two particles by approaching this line fro
the ferro- or the antiferromagnetic phase below the poinc
5(1/4,1/64), respectively. Above the point c the rotons a
pear in both phases and replace one of the particles of
antiferromagnetic vacuum. One can find specially interest
continuum limits in the vicinity of the point c.~i! Approach
from below the line ab in the ferromagnetic phase, wh
gives a single particle and monotonically increasing inve
propagator with the momentum.~ii ! The approach above th
line ab but below bc yields one particle and rotons. The ro
momentum diverges with the cutoff, a reminescent of
new excitation bands in the antiferromagnetic phase. T
8-11
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value of the inverse propagator at the degenerate minima
roton mass square is finite but larger than for the abso
minimum, atp50. Thus the rotons are heavier than the p
ticle. ~iii ! Approaching above the line bc yields a model w
a particle and rotons where the rotons are lighter than
particle.~iv! The approach from the antiferromagnetic pha
produces a model with two particles.

VII. NON-PERTURBATIVE VACUUM

In order to assess the importance of the fluctuations,
performed a Monte Carlo simulation of the model~4!. The
resulting phase structure is summarized on Fig. 4. The c
pling constantsl50.05, m2520.1 were chosen and th
simulation on the linec252 was done at 2003200 lattice
size. Thec4 dependence of the results was monitored wit
particular care by scanning the region 0<c4<1 with step
size Dc450.01. The other points were obtained on 40340
lattice. The performed tests have showed no appreciabl
nite size dependence in the qualitative and quantitative
tures of the phase diagram. We used the metropolis up
algorithm, carefully checking the statistics to make sure t
no statistical error would change our conclusions concern
the phase diagram. In order to test ergodicity, local clus
algorithms were tried as well as different initial condition

The letters along the vertical lines of Fig. 4 indicate t
qualitative space-time structure of the vacuum seen in
simulation: A5ordered (N5dAF52) antiferromagnetic;
L5labyrinths; W5plane waves; P5weakly antiferromag-
netic ~onset of the crossover on the finite lattice!,
F5ferromagnetic andF85weakly ferromagnetic. To under
stand the phase structure we recall that the parameters o
bare action characterize the dynamics at the cutoff. Con
quently one may extract useful informations about the sh
range order of the vacuum by considering the coefficie
appearing in the quadratic part of Eq.~4!. The sign of the
coefficients determines the ferro- or antiferromangetic na

FIG. 4. The phase structure and the frustrations on the p
(c2 ,c4). The lines where the coefficientsA, B, C, and E of the
lattice action change sign in the (c2 ,c4) plane. The letters along th
vertical lines are to indicate the qualitative space-time structur
the vacuum seen in the simulation: A5ordered;N52 antiferromag-
netic; L5labyrinths; W5plane waves; P5weakly antiferromagnetic
~onset of the crossover on the finite lattice!; F5ferromagnetic; and
F85weakly ferromagnetic.
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of the couplings. We introduce the subscript (n,m) which
shows the separation of the two field variables multiplied
the given parameter,A0,0521m2/2210c2156c4 , B1,05
2118c2257c4 , C2,052c2112c4 , E1,1522c2124c4 ,
D3,052c4, andF1,2523c4. The lines whereA, B, C, andE
change sign,

c45
10

56
c22

m2

112
2

2

56
~A!,

c45
8

57
c22

1

57
~B!,

c45
1

12
c2 ~C,E! ~83!

are shown in Fig. 4 by solid lines. These lines intersect a
the short range order varies in a complicated manner foc2
,0.45. But once this value is reached, the sequence of
change of the signs asc4 increases is always the same. T
importance of these signs is that they create frustrati
wheneverc4.0. There are no frustration whenc450 be-
causeD3,05F2,150 and all others favor theN52, dAF52
antiferomagnetic or the ferromagnetic vacuum forc2.1/8 or
c2,1/8, respectively. Forc4.0 but below the lineC,E, in
the antiferromagneticN52, dAF52 phaseB1,0.0, C2,0,
E1,1,0 favor this kind of vaccum. But the other signs,D3,0,
F2,1,0 introduce frustrations whose density increases w
c4. The further increase ofc4 flips the sign ofB and ulti-
mately A, destabilizes the lock-in mechanism atN52 and
opens the way for the rapid variations of the devil’s stairca
In between the linesC, E and B, C2,0, E1,1.0, and the
frustration density is increased because onlyB1,0 favors this
vacuum. The result is a strong increase of the fluctuatio
The mean-field approximation is obviously unreliable in th
regime and the simulation produces labyrinth-like vacuu
see below. For largec4, in the ferromagnetic phaseB1,0,
D3,0, F1,2,0 act in favor of the homogeneous vacuum b
C2,0, E1,1.0 generate frustrations which might explain th
weakening of the ferromagnetic condensate for largec4. For
the intermediate values ofc4 the competition between th
different terms is more involved and the compromise b
tween the different competing terms is reached over a lon
length scale according to the mean-field solution. The qu
tative conclusion is the separation of the stable lowc4 N
52, dAF52 vacuum from the highc4 ferromagnetic and an
intermediatec4 strongly frustrated antiferromagnetic vacuu

The frustrations are the lattice defects of the antiferrom
netic vacuum. In order to understand their production mec
nism in theN52 antiferromagnetic phase we used two d
ferent initial conditions, an ordered and a disordered one

f init
ord~x!5f IH~21!x11x2

, ~84!

and

f init
dis ~x!50, ~85!

e

of
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respectively. The initial conditionf init (x)
dis which actually

looks ordered becomes disordered after few Monte C
sweeps. This happens because it represents an unstable
librium position and the local field variable ‘‘rolls down’’ to
one of the potential minimaf(x)56f IH . This leads to the
formation of N52 antiferromagnetic domain structur
These domains are separated by walls of links where the
variable has the same sign. The region on the plane (c2 ,c4)
where the antiferromagnetic domains consisting of
patchesf init

ord(x) and 2f init
ord(x) develop long and winding

boundaries is called labyrinth-like and is denoted by L
Fig. 4.

For large values ofc2 the amplitude of the modulate
vacuum is large so the frustrations move very slowly in
simulation time. The antiferromagnetic domain walls turn
out to be very slow variables, as well. The domain wa
were always generated below the lineC,E of Fig. 4 when the
disordered initial configuration was used. The vacuum
tained by the runs with ordered initial configuration did n
support the domains. The question is whether the dom
walls are real degrees of freedom or reflect the insuffici
convergence of the simulation method. We have develo
cluster algorithm and found that for smallc2 , (c2,1.0), the
walls have dynamics, reach an equilibrium and may dis
pear. For largerc2 the domain wall motion slows down de
spite of the cluster algorithm. The thermalization was saf
reached within each domain. It remains an intriguing qu
tion if the domain walls thermalize in this regime with e
tremely long relaxation time, i.e we are in a glassy regi
@22# or the ergodicity is definitely lost and the vacuum co
sists of a stable, disordered network of domain walls. In t
regime the frustrations act as scattering centers without fe
back from the fast dynamics of the elementary excitation
dynamical situation reminiscent of the quenched disorde
solids. Forc2,1 the mean field value,f IH , is small enough
to make the domain wall fluctuations more likely and t
cluster update averages over the different rearrangemen
the domains.

The different regions shown in Fig. 4 were studied
more detail atc252. The negative action density obtaine
by starting atc450 and sweeping the interval 0<c4<1 is
plotted in Fig. 5~a!. The results obtained by the ordered a
disordered initial configuration are indicated by1 and
squares, respectively. The ordered vacuum has lower ac
density up to c4'0.2. The mean-field action density
shown by a solid line. It is instructive to follow the secon
lowest mean-field solution, indicated by the circles. T
splitting between the lowest and the second lowest m
field action level reflects the stability of the vacuum agai
the change of the long range order. The agreement betw
the Monte Carlo and the mean-field results is remarkable
small c4 in the relativistic phase. Right at the relativisti
nonrelativistic phase transition, the ordered configuration
rather poor approximation and the disordered vacuum adj
itself easier to the valuedAF51. Forc4.0.3 the mean field
badly over estimates the true vacuum action density, indi
ing the presence of strong fluctuations. Notice that the pha
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with N52 and 4 are more stable against the modification
the long range, in agreement with their stronger ‘‘lock-in’’
Fig. 1.

Another insight into the vacuum can be gained from t
inspection of the period length of the vacuum,lvac , mea-
sured by

FIG. 5. Averages atc252: ~a! the action density,2^S&/L2; ~b!
the wavelength of the modulation of the vacuum, measured
2^fhf&/^f2&; ~c! the amplitude of the modulation.
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2
^fhf&

^f2&
'4dAFsin2S p

lvac
D . ~86!

The numerical and the analytical results depicted in Fig. 5~b!
show that the first order transitions of the mean field appro
mation between the relativistic and the non-relativisticN
52 antiferromagnetic phase is smoothened out in the si
lations when the disordered initial condition is used. T
ordered initial condition follows the mean field curve with
the phaseN5dAF52. The slightly higher action of the dis
ordered initial configuration runs indicates that the tr
vacuum is close to being ordered and the relativis
nonrelativistic phase transition is of strongly first order. O
is tempted to conclude that the fluctuations smoothen out
commensurate-incommensurate transitions but better st
tics is needed to settle this question in a satisfactory man
for the whole phase diagram. The difference between
numerical results and the mean-field solution is the larges
the phaseN52, dAF51. The mean-field approximatio
slightly underestimates the period length of the vacuum
the vicinity of the ferromagnetic transition. This is consiste
with one of the remarks made about Fig. 5~a!, namely that
the fluctuations in this regime are stronger than expected
the mean-field approximation. In fact, the stronger fluct
tions lower the critical value ofc4 so the period length of the
vacuum diverges faster in function ofc4 than in the mean-
field expression.

The strength of the modulation of the vacuum is display
in Fig. 5~c!. It is simplest to express it in terms of the Fouri
transformed field

f̃~p!5
1

L2 (
x

f~x!e2 ip•x, ~87!

obtained on anL3L lattice. We may split the expectatio
value^uf̃(p)u2& into the sum of the condensate and the flu
tuations,

^uf̃~p!u2&5^uf̃~p!u2&c1^uf̃~p!u2& f l , ~88!

^uf̃~p!u2&c5u^f̃~p!&u2, ^uf̃~p!u2& f l5Gc~p! ~89!

whereGc(p) stands for the connected propagator, given
Eq. ~54! in the leading order of the perturbation expansion
simple approximation for the strength of the modulation
the vacuum is

fc
25maxp^uf̃~p!u2&c'maxp^uf̃~p!u2&'^maxxf~x!&2

'^minxf~x!&2. ~90!

maxp^uf̃(p)u2& is displayed by plus and square for the o
dered and disordered initial configuration, respectively. T
star shows the value of the last two expressions in Eq.~90!.
We find that the different estimates for the strength of
condensate agree in the relativistic phase except the sim
tion results corresponding to the disordered start. The dif
ence between the mean-field solution indicated with x a
the numerical results can be considered as a measure o
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strength of the fluctuations. Note the local maximum a
minimum in the fluctuations atc4'0.35 andc4'0.6, respec-
tively. The former is in agreement with the remark made
Fig. 5~b!. The average of the extrema of the field in the re
space is higher than the mean field value and shows no s
ture as the function ofc4 indicating that the fluctuations ten
to lower the local values of the field variableuf(x)u. As
noted before, the fluctuations increase as the ferromagn
phase is approached, a result consistent with the second o
nature of the ferromagnetic phase transition.

The numerical results for the complete propagator,
~88! that displays the structure of the vacuum and the
ementary excitations in the same time are presented in Fi
We divided the interval@0,maxp^uf(p)u2&# into five equal
segments and their contourplots are shown in the figu
The strength of the contour line increases with the amplitu
so the blacker regions of the plots indicate the location of
maxima.

0,c4,0.16: When c4 is small we are in the relativistic
N52 phase and̂ uf(p)u2& depends strongly on the initia
condition of the Monte Carlo simulation. The ordered initi
configuration~84! yields a single peak for̂uf̃(p)u2& at p
5P(2)(4)5(p,p) suggesting little disorder. In the case
the disordered initial configuration,f init

dis , one finds a domain

structure and the Fourier transformu^f̃(p)&u2 shown in Fig.
6~a! at c450 is depleted atp5P(2)(4), ^uf„P(2)(4)…u2&
'0, and develops a ring of maxima around this momentu
It is easy to understand the minimum at the center. In fa
assuming that the vacuum consists of the domains
f init

ord(x) and 2f init
ord(x) in the fractionsc and 12c of the

volume, respectively one findsfcond
2 5f IH

2 (122c)2/4. The
domain pattern develops after few sweeps and the dom
walls turn out to be rather slow variables.

0.16,c4,0.22: The excitations become more involved
this regime. The coefficientsC andE of the lattice action are
positive for c4.1/6 making the frustration density highe
Furthermore the propagator develops a circle of degene
maxima around the pointp5P(2)(4) for c4.31/192'0.16.
The result is a cusp in the condensate as the function ofc4 cf.
Fig. 5~c!, and the softening of the modes giving an increa
of ^uf̃(p)u2&.

0.22,c4,0.3: The ordered initial configuration simula
tion recovers the right vacuum atc4'0.23 in a discontinuous
manner, cf. Figs. 6~b! and 6~c!. For c4.0.23 the simulations
corresponding to the two different initial conditions yield th
same result. The hysteresis in thec4 dependence, i.e. the
later appearance of the ring for the ordered initial configu
tion case compared with the unstable starts suggests tha
transitiondAF :1↔2 is of first order. The roton minimum in
the dispersion relation tends to break the straight lines wh
the frustrations are found and to distribute them in a m
spherically symmetrical manner, resulting in more disord
and creating a labyrinth structure instead of the ordered n
relativistic antiferromagnetic vacuum.

0.3,c4,0.38: The minimum of Eq.~54! is the longest,
being a square, forc450.31 according to Eq.~69!. A typical
example shown in Fig. 6~d! witnesses that the fluctuation
are the strongest in this regime, when the volume of
8-14
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FIG. 6. The Fourier transform̂uf̃(p)u2& in the plane (p1 ,p2) for c252. Disordered initial conditions:~a! c450.06; ~b! c450.23.
Ordered initial conditions:~c! c450.23; ~d! c450.31; ~e! c450.38; ~f! c450.39; ~g! c450.57; ~h! c450.9.
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phase space occupied by the soft modes is the largest. A
length of the roton minima starts to shrink forc4.0.31 so
does the strength of the fluctuations as seen in Fig. 5~c!.

0.38,c4,0.6: The period length of the vacuum growth
beyond 2 atc4'0.38 and^uf̃(p)u2& becomes strongly sup
pressed atp5(0,p) and p5(p,0) according to Figs. 6~e!
and 6~f!. The rapid variation inc4 supports the discontinuou
nature of the transitionN52→3. The further increase ofc4
makes the restoration of the rotational symmetry more d
cult. This is because the symmetry restoration is achieved
06500
the

-
by

forming domains where the plane wave modulation of
vacuum has different orientation. The longer period length
the vacuum makes more energy consuming to break
straight plane wave by changing its direction, i.e., the d
main wall energy density increases. This explains the bre
ing up of the ring into smaller segments and its ultima
reduction to few discrete peaks, as demonstrated in Fig. 6~g!.

c4'0.6: The fluctuations reach a minimum in the midd
of the ‘‘lock-in’’ interval N/M54 seen in Fig. 1. The poin
whereN/M is approximately the power of the highest ord
8-15
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terms in the field variable of the lagrangian the above m
tioned decrease of the fluctuations comes to a halt an
turned into an opposite trend due to the approach of
ferromagnetic phase transition. In fact, as the length of
roton minima shrinks and becomes less important the
crease ofc4 ultimately leads to the disappearance of the c
densate which is triggered by the increase of the fluctuatio
This is due to a tree-level effect,c4 makes the modulation o
the vacuum more energetic so the amplitude of the mod
tion decreases with the increase ofc4. As the amplitude de-
creases it becomes easier to break a plan wave into dom
what amounts to the attempt for the restoration of the ro
tional symmetry. The maximum in̂f̃(p)2& spreads from a
well localized point over the whole circle of the rotons asc4
is increased beyond 0.6.

0.6,c4,0.98: As c4 increases andpmin approaches zero
the dominant fluctuations are grouped on a circle arounp
50 with increasing strength as shown in Fig. 6~h!. The con-
densate weakens and increasing period length in lattice s
ing units is in agreement with the one-loop renormalizabi
established in the previous section.

c4'0.98: The precursor of the transition to the ferroma
netic phase is the appearance of a peak in^uf̃(p)u2& at p
50 for c4'0.98. The further increase ofc4 brings us into
the ferromagnetic phase with roton excitations.

We close this section with a remark concerning the L
shitz point. It is a tricritical point atg25c150 in the model
~5! where the wave vector of the periodic vacuum tends
zero asc1→02. This is to be compared with the ‘‘Lifshitz
line’’ of our model, the curve separating the ferromagne
and the antiferromagnetic phases in Fig. 2. For a givenc4
>0 this line gives a critical point which is reached by tuni
c2 andm2. Since the coefficient of the lowest order term
the gradient in the action is kept constant (c151) the fine
tuning of the higher order coefficients generates discont
ity for the wave vector of the vacuum at the critical poin1

The peculiarity of the extension of the Lifshitz point to a lin
is that the wave vector of the vacuum is a discontinuo
function of the coupling constants either when one cros
the line or when one moves along it in the antiferromagne
side. One point of the Lifshitz line shows a further intere
ing feature, the even and the odd sublattices decouple ac2
51/4d, c450. This can be understood by checking the
variance of the propagator under the replacementP 2→4d
2P 2, and allows us to construct the continuum limit of ch
ral bosons@6#.

VIII. WICK ROTATION TO REAL TIME

Our model~1! was obtained by the elimination of som
particles and the truncation of the resulting effective acti

1The analogous situation at the usual tricritical point for the mo
~5! with c250, g6.0 is the first order phase transition in the fun
tion of g4. We do not needc4.0 in our case because the anha
monic term of the Lagrangian stabilizes the vacuum forc2,0, c4

50.
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The usual strategy to avoid the instabilities in real time m
tioned above is based on the introduction of new, auxilia
fields which render the kinetic term quadratic. The mo
natural attempt is suggested by the formal similarity betwe
the Pauli-Villars regulated models and theories with high
order derivatives@13,2#. In fact, by assuming that the invers
propagator~3! as a function ofp2 has simple roots only, we
can write the propagator as

G~p2!5
1

~p21M1
2!~p21M2

2!~p21M3
2!

5
Z1

p21M1
2 1

Z2

p21M2
21

Z3

p21M3
2 , ~91!

where

Z1
215~M2

22M1
2!~M3

22M1
2!,

Z2
215~M1

22M2
2!~M3

22M2
2!, ~92!

Z3
215~M1

22M3
2!~M2

22M3
2!. ~93!

Since

Z1
21Z2

21Z3
2152~M2

22M1
2!2~M3

22M1
2!2~M3

22M2
2!2,

~94!

one of the coefficientsZj is negative when the rootsM j
2 are

real, i.e. in the case of the antiferromagnetic vacuum.
have two complex roots, sayM2

25M3
2* in the ferro- or the

paramagnetic phase. This givesZ2
21* 5Z3

21 and

Z2
211Z2

21* 5~M3
22M2

2!2,0, ~95!

and makes ReZ25ReZ3,0. Thus the real part of at leas
one of the contributions in Eq.~91! is always negative.

Such a propagator can formally be obtained as the fu
tional derivative of a Gaussian generator functional,

Z0@ j ~x!#5E D@f j #

3expS 2
1

2E ddxddyf j~x!Gj ,k~x,y!fk~y!

1E ddx j~x!(
k51

3

fk~x!D , ~96!

where

Gj ,k~x,y!52d~x2y!d j ,kZj
21~hy2M j

2!. ~97!

Note that the convergence of the functional integration
quires that the fieldf j (x) with ReZj,0 be purely imagi-
nary, an indication of the presence of the negative no
states in the canonical quantization procedure. The parti
function of the model~1! can be written as

l
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E D@f#e2S[f]5e2*ddxV[d/d j (x)]Z0@ j # ~98!

in the framework of the perturbation expansion. The W
rotation of this path integral is straightforward and leads t
model with three particles and negative norm Hilbert spa
The positive and the negative norm particles are mixed
the vertices of the interactionV(f). In order to have a physi
cally acceptable model we have to ensure that the time e
lution remains unitary when restricted to the subspace
positive norm physical states and the Hamiltonian
bounded from below.

The unitarity of the S-matrix can be established for en
gies below the threshold of the negative norm particle p
duction, the key element for the applicability of the Pau
Villars regularization. The stability of the vacuum is reach
in this regularization scheme by first performing the ren
malization in the Euclidean space and making the Wick
tation back to real time after that. The negative norm re
lator particles are suppressed during the removal of
cutoff thereby the Wick rotated renormalized theory po
sesses a stable ground state. The non-commutativity of
renormalization and the Wick rotation can simply be und
stood by noting that the formally Lorentz invariant Pau
Villars regularization scheme violates a simple rule: T
non-compact nature of the Lorentz group excludes the L
entz invariant regulator schemes.

What we have shown so far is that our model yields
acceptable theory for real time only after the perturbat
renormalization in Euclidean space-time. One wonders if
nonical quantization which leads to a non-perturbative f
malism can carry us further in establishing an accepta
non-perturbative theory. In our case it amounts to the in
duction of the generalized coordinatesf j (x)5]0

j f(x), j
50,1,2, and momenta

P05
dL

d]0f
2]0

dL

d]0
2f

1]0
2 dL

d]0
3f

5F12c2

~2p!2

L2 h1c4S ~2p!2

L2 D 2

~h22h¹2!Gf1 ,

P15
dL

d]0
2f

2]0

dL

d]0
3f

5Fc2

~2p!2

L2 h2c4S ~2p!2

L2 D 2

h2Gf0 , ~99!

P25
dL

d]0
3f

5c4S ~2p!2

L2 D 2

hf1 .

One can easily check that the Hamilton-Jacobi equation
the Hamiltonian
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H5E dd21xH (
j 50

2

P j]0f j2L~f,]f,]]f,]]]f!J
5E dd21xH P0f11P1f21

L4

2~2p!4c4
P2

21P2¹2f1

2
1

2
~f1

21f0¹2f0!2c2

~2p!2

2L2 ~f22¹2f0!2

2
c4

2 S ~2p!2

L2 D 2

~f22¹2f0!¹2~f22¹2f0!1V~f0!J
~100!

are equivalent with the Euler-Lagrange equation.
The quantization procedure is based on the canon

commutation relations

d~x02y0!@f j~x!,Pk~y!#5 id j ,kd~x2y!. ~101!

The inner consistency requires thatf1 and P1 be anti-
Hermitean operators. The standard path integral represe
tion @23# results

^f08 ,2f18 ,f28ue
2 iTHuf0 ,f1 ,f2&

5E D@f#D@P#expS i E
0

T

dtH(
j

P j]0f j2H@P,f#J D ,

~102!

where the fieldsP1(x) and f1(x), as the eigenvalues o
antihermitean operators are purely imaginary. This featu
the negative norm nature of the particle corresponding to
auxiliary fieldf15]0f makes the real time phase space p
integral ~102! divergent and ill defined because the Ham
tonian ~100! is complex,

H@P0 ,P1 ,P2 ,f0 ,f1 ,f2#*

5H@P0 ,2P1 ,P2 ,f0 ,2f1 ,f2#

ÞH@P0 ,P1 ,P2 ,f0 ,f1 ,f2#. ~103!

In view of these failures of rescuing the model by t
introduction of the auxiliary fields it seems remarkable th
the Wick rotation based on our lattice regularized Euclide
model does yield an acceptable theory when the elemen
fields are chosen with more care. We shall show that
cutoff theory is unitary and stable in the Minkowski spac
time. The Lorentz symmetry is recovered in the renormali
tion process only, when the cutoff is removed.

We start by noting that the elimination of a heavy partic
which gave rise the higher order derivative terms in the
fective action actually creates mixed states from the p
ones. Thus the effective theory should be recasted in term
its density matrix. This is not what happens in the us
blocking procedure which yields the path integral express
as a representation of the matrix elements of the time ev
tion operator between pure field eigenstates. But the in
and final field configurations of the path integral for the e
fective theory specify the states of the light particles on
8-17
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The information concerning the states of the heavy deg
of freedom is lost in the elimination process, by the tra
operation in their Hilbert space. In other words, the init
and final states of the effective model specified in its p
integral are mixed. The additional correlations in the exp
tation values arising from the off-diagonal elements of
density matrix are represented by the higher order deriva
terms of the effective action.

Suppose that we truncate the effective action up
O(]2n). The correlations, i.e. the information about t
heavy particles in the effective theory extend up ton lattice
spacing. The states appearing in the path integrals can
mally be considered as pure ones if these correlations
properly kept in them. This can be achieved by the introd
tion of n21 auxiliary fields at each site, like with the Pau
Villars fields ~96! or the canonical quantization~102!. An-
other possibility is the regroupment ofn consecutive lattice
sites in the time direction with their field variables into
single n-component field,2 in a manner similar to the on
employed in Ref.@25#. We follow the latter strategy, the
reminiscent of the spin-flavor assignment for the stagge
fermions in real-space time@26#. The corresponding action
for

f j~ t,xW !5f~nt1 j ,xW !, ~104!

wheret is integer andj 51, . . . ,n is

S5 (
t,xW ,yW

f j~ t11,xW !D j ,k
21~xW ,yW !fk~ t,yW !1(

t,xW
Ṽ„f j~ t,xW !…,

~105!

where the space-time vectorsx5(t,xW ) label the ‘‘fat’’ lattice
sites withn degrees of freedom.

In the case of the action~4! we regroup three time slice
into one new ‘‘fat’’ time slice (n53), f j (t,xW )5f(3t

1 j ,xW ) for j 51,2,3 and the matrixD j ,k
21 connects the (j ,k)

pairs shown in Fig. 7,

D j ,k
21~xW ,yW !52BdxW ,yWd j ,1dk,312CdxW ,yW

3~d j ,2dk,31d j ,1dk,2!12DdxW ,yWd j ,k

1(
j

@2E~dxW ,yW1ej
1dxW ,yW2ej

!d j ,1dk,3

12F„~dxW ,yW12ej
1dxW ,yW22ej

!d j ,1dk,3

1~dxW ,yW1ej
1dxW ,yW2ej

!~d j ,2dk,31d j ,1dk,2!…#

~106!

2The need of the increase of the number of degrees of free
can be understood in the semiclassical limit, as well. The uni
characterization of the trajectories interpolating between the in
and the final field configuration requires the knowledge of 2n quan-
tities.
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in two dimensions (F50). The transfer matrix for the field
f j is given by

T5e23aH ~107!

in terms of the original Hamiltonian.
Our reasoning is the following. The unitarity of the tim

evolution operator for the states created by the field oper
f(x) will be the result of the realness of the spectrum of t
square of the transfer matrix withn53, T25e26aH. The
positivity of the spectrum ofT2 and the positive definitenes
of the norm in the Hilbert space will be proven by verifyin
that the reflection positivity holds forT @24#. The cancella-
tion of the runaway amplitudes constructed perturbatively
Ref. @14# is assured by the reflection positivity forT in a
non-perturbative manner. The stability of the vacuum,
the boundedness of the spectrum of the Hamiltonian fr
below follows from the finiteness of the regulated Euclide
path integral.

The proof of the reflection positivity relies on the Euclid
ean time inversion operatorQ defined as

Q~ t,xW !5~2t,xW !, Q@f j~x!#5f42 j~Qx!, ~108!

where the transformationj→42 j performs the time inver-
sion for the degrees of freedom within a ‘‘fat’’ lattice site
Note that the base point of the inversion on the origin
lattice for a givenn is at a lattice site or halfway between tw
such sites forn odd or even, respectively. The time inversio
Q acts in the external, space-time coordinates and the in
nal space ofj or other indices, it changes the sign of the tim
coordinate and performs the necessary inversions in the
ternal space, such as the transformationj→42 j , the com-
plex conjugation in the case of complex quantities, resp
tively. It is useful to introduce the internal time parityTF5
61 as the eigenvalue of the time inversion in the inter
space of an observableF satisfying the condition

m
e
l

FIG. 7. The coupling of the original time slices, indicated b
solid lines, between two ‘‘fat’’ slices which are represented by t
boxes. The vertical dotted lines are the couplings, the nonzero
ments ofD j ,k

21 . The coefficientsB,C, . . . of the couplings are given
in the lowest line.
8-18
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Q†F@f~x!#‡5TFF@f~Qx!#. ~109!

The reflection positivity of the transfer matrixT can con-
veniently be expressed by means of the time inversionQ, it
is the requirement that the inequality

^FQ@F#&>0 ~110!

hold for any local functionalF@f# of the field variable taken
06500
for t.0. The time evolution is clearly unitary in the sub
space of the Fock space which is span by the states obta
by the application of the operatorF@f# on the vacuum.

To prove Eq.~110! we write the action~105! as

S5S01S21S1 , ~111!

where
S05(
xW

Ṽ„f j~0,xW !…,

S25 (
t,0,xW ,yW

f j~ t11,xW !D j ,k
21~xW ,yW !fk~ t,yW !1 (

t,0,xW
Ṽ„f j~ t,xW !…, ~112!

S15 (
t>0,xW ,yW

f j~ t11,xW !D j ,k
21~xW ,yW !fk~ t,yW !1 (

t.0,xW
Ṽ„f j~ t,xW !….

We shall need below the relation

Q†S6@f#‡5S7@f#, ~113!

a consequence of the time reversal invariance. In terms of the matrixD j ,k
21(xW ,yW ) this amounts to the equations

QF (
t>0,xW ,yW

f j~ t11,xW !D j ,k
21~xW ,yW !fk~ t,xW !G5 (

t>0,xW ,yW
Q@f j~ t11,xW !#Q@D j ,k

21~xW ,yW !#Q@fk~ t,xW !#

5 (
t>0,xW ,yW

f42 j~2t21,xW !Q@D j ,k
21~xW ,yW !#f42k~2t,xW !

5 (
t,0,xW ,yW

f42k~ t11,xW !Q@D j ,k
21~xW ,yW !#f42 j~ t,xW !

5 (
t,0,xW ,yW

fk~ t11,xW !Q@D42 j ,42k
21 ~xW ,yW !#f j~ t,xW !

5 (
t,0,xW ,yW

fk~ t11,xW !Dk, j
21~xW ,yW !f j~ t,xW ! ~114!

which yield immediately

Q@D j ,k
21~xW ,yW !#5D42k,42 j

21 ~xW ,yW !5D j ,k
21~xW ,yW !. ~115!

The left hand side of the inequality~110! can now be written as

^FQF&5E Dt50@f#e2S0[f(x)]E Dt,0@f#e2S2[f(x)]Q†F@f~x!#‡E Dt.0@f#e2S1[f(x)]F@f~x!#

5E D@f#e2S0[f(x)]Q@e2S1[f(x)] #Q†F@f~x!#‡e2S1[f(x)]F@f~x!#

5E D@f#e2S0[f(x)]e2S1[f(Qx)]TFF@f~Qx!#e2S1[f(x)]F@f~x!#, ~116!
8-19
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where we assumed in the last equation that the functionF
possesses a definite internal time inversion parity,TF561.
This allows us to eliminateQ from the integrand by writing

^FQF&5E Dt50@f#e2S0TFS E Dt.0@f#e2S1F@f~x!# D 2

.

~117!

The result is the inequality

TF^FQ@F#&>0, ~118!

holding for any real functionalF.
Let us denote byH1 the subspace of the Fock spaceH

which is span by the application of the11 internal time
parity local functionals of the field operatorf(x) on the
vacuum and byHorth its orthogonal complement. We have

H5H1% Horth ~119!

in an obvious manner. The time evolution is unitary with
H1, and the vectors inHorth , among others the ghost stat
of Ref. @2#, have negative norm in agreement with Eq.~103!.

More care is needed in the presence of a time depen
condensate. This is because the condensed mode is tr
classically and the problems of the quantum treatment
particular the unitarity of the time evolution and the refle
tion positivity apply for the quantum fluctuations only. Th
reflection positivity should hold for the dynamics of th
quantum variablefq(x)5f(x)2^f(x)& which is governed
by the action

Sq@fq#5S@fq1^f&#. ~120!

Note that Eq.~113! is satisfied bySq ,

Q@S6@fq1^f&##5S7@fq1^f&#, ~121!

according to Eq.~115!. This relation allows us to repeat th
steps ~116!,~117! after having performed the replaceme
S@f#→Sq@f#.

Another problem one has to take care is the choice on,
the number of degrees of freedom at a ‘‘fat’’ lattice site.n
must be at least half of the highest power the gradient op
tor appears in the action in order to decouple the next
nearest neighbors. In the same time it must be integer ti
the period length of the elementary cell in the antiferrom
netic phase. These conditions require the choicen54 when
N52 andn5N for N>3.

The reflection positivity satisfied in the subspaceH1 of
the N52 antiferromagnetic phase indicates that one ha
use the space parity eigenstates, the superpositions of the
chiral bosons observed atc251/3d, c450 @6#, because only
the scalar particle is physical, the pseudoscalar modes c
spond to ghost states.

IX. CONCLUSIONS

A simple two dimensional effective theory was cons
ered in this work for an elementary interaction which
06500
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strongly repulsive for short distances and attractive at lo
distances and supposed to form a crystalline ground s
Such an interaction is coded in terms of the effective act
with higher order of the derivatives. The inhomogeneo
ground state is reproduced in the saddle point approxima
of the effective theory.

The mean-field, tree level phase structure of the mode
quite involved and displays several inhomogeneous pha
with a number of commensurate-incommensurate transitio
The elementary excitations contain modes similar to the
tons of liquid He4 but the excitation spectrum is usually ma
sive in lacking of a conserved particle number. Our effect
theory is a simplified version of the higher dimensional s
tems with inhomogeneous ground states, such as the so
antiferromagnets and materials with charge density ph
The formation of the inhomogeneous vacuum by the cond
sation of particles with non-vanishing momentum is a ma
festation of the additional soft modes which characterizes
quantum phase transtitions.

The one-loop corrections give a line of ultraviolet fixe
points with variable particle content. The period length of t
vacuum can thus be sent to zero. The Poincare´ symmetry is
restored in the continuum limit and the vacuum becom
homogeneous for the measurements made at finite ener
In the same time the excitation spectrum of the model
mains nontrivial, reflecting the inhomogeneity of th
vacuum. The different dispersion relation branches are in
preted in the continuum limit as excitations with differe
flavor. This unusual vacuum-excitations corresponde
opens the way for the construction of new kind of unifi
quantum field theoretical models where several particles
described by the same field. Our effective theory was fou
to have a consistent extension to real time in the even in
nal time parity sector of the Fock space despite the prese
of the higher order derivative terms in the action.

The numerical analysis performed by the Monte Ca
method confirms the mean-field prediction of the pha
structure and is consistent with the criticality at the ferr
magnetic phase transition line. The frustrations are the s
modes of the simulation when the amplitude of the mod
lated vacuum is large suggesting the possibility of
quenched disorder variable in real time, as well.

We note finally that there are no massless excitat
modes above the modulated vacuum with finite period len
in lattice spacing units. This is specially striking in two d
mensions where the periodic structure of the perio
vacuum is not necessarily destroyed by the Mermin-Wagn
Coleman theorem@27#. The continuum limit of the antifer-
romagnetic phase whereN/M→` might be similar to the
planar X-Y model with power like decay of the correlation
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@25# M. Lüscher and P. Weisz, Nucl. Phys.B240, 349 ~1984!.
@26# H. Kluberg-Stern, A. Morel, and B. Petersson, Nucl. Ph

B190, 504~1981!; H. Kluberg-Stern, A. Morel, O. Napoly, and
B. Petersson,ibid. B220, 447 ~1983!.

@27# N. D. Mermin and H. Wagner, Phys. Rev. Lett.17, 1133
~1966!; S. Coleman, Commun. Math. Phys.31, 259 ~1973!.
8-21


