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Brane-world black holes
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Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such
black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in
five-dimensional anti—de Sitter space. We present evidence that a non-rotating uncharged black hole on the
domain wall is described by a “black cigar” solution in five dimensions.

PACS numbgs): 12.10—g, 04.50+h, 11.10.Kk, 11.25.Mj

[. INTRODUCTION a hole with avacuumdomain wall so it is unlikely that it
could be the final state of gravitational collapse on the brane.

There has been much recent interest in the idea that ok second possibility is that what looks like a black hole on
universe may be a brane embedded in some higher dimeithe brane is actually a black string in the higher dimensional
sional space. It has been shown that the hierarchy problegPace. We give a simple solution describing such a string.
can be solved if the higher dimensional Planck scale is lowf he induced metric on the domain wall is simply Schwarzs-
and the extra dimensions larfie 2]. An alternative solution, ~child, as it has to be if four dimensional general relativity
proposed by Randall and SundruiRS), assumes that our (and therefore Birkhoff's theorenare recovered on the wall.
universe is a negative tension domain wall separated from &his means that the usual astrophysical properties of black
positive tension wall by a slab of anti—de SittadS) space  holes(e.g. perihelion precession, light bending gtare re-

[3]. This does not require a large extra dimension: the hiercovered in this scenario.

archy problem is solved by the special properties of AdS. We find that the AdS horizon is singular for this black
The drawback with this model is the necessity of a negativétring solution. This is signalled by scalar curvature invari-
tension object. ants diverging if one approaches the horizon along the axis

In further work [4], RS suggested that it is possible to Of the string. If one approaches the horizon in a different
have aninfinite extra dimension. In this model, we live on a direction then no scalar curvature invariant diverges. How-
positive tension domain wall inside anti—-de Sitter space€Ver, in a frame parallelly propagated along a timelike geo-
There is a bound state of the graviton confined to the wall agesic, some curvature componedtsdiverge. Furthermore,
well as a continuum of Kaluza-KleifkKK) states. For non- the black string is unstable near the AdS horizon — this is
relativistic processes on the wall, the bound state dominate§e Gregory-Laflamme instability10]. However, the solu-
over the KK states to give an inverse square law if the Adgion is stable far from the AdS horizon. We will argue that
radius is sufficiently small. It appears therefore that four di-our solution evolves to a “black cigar” solution describing
mensional gravity is recovered on the domain wall. This conan object that looks like the black string far from the AdS
clusion was based on perturbative calculations for zero thickhorizon(so the metric on the domain wall is Schwarzschild
ness walls. Supergravity domain walls of finite thicknessbut has a horizon that closes off before reaching the AdS
have recently been considerfs-7] and a non-perturbative horizon. In fact, we conjecture that this black cigar solution
proof that the bound state exists for such walls was given is the unique stable vacuum solution in five dimensions
[8]. It is important to examine other non-perturbative gravi-which describes the endpoint of gravitational collapse on the
tational effects in this scenario to see whether the predictionBrane. We suspect that the AdS horizon will be non-singular
of four dimensional general relativity are recovered on thefor the cigar solution.
domain wall.

If matter trapped on a brane undergoes gravitational col-
lapse then a black hole will form. Such a black hole will
have a horizon that extends into the dimensions transverse to Both models considered by RS use five dimensional AdS.
the brane: it will be a higher dimensional object. Phenom-n horospherical coordinates the metric is
enological properties of such black holes have been dis-
cussed i 9] for models with large extra dimensions. In this
paper we discuss black holes in the RS models. A natural
candidate for such a hole is the Schwarzschild-AdS solution,
describing a black hole localized in the fifth dimension. Wewhere 5,,, is the four dimensional Minkowski metric arid
show in the Appendix that it is not possible to intersect suctthe AdS radius. The global structure of AdS is shown in Fig.

1. Horospherical coordinates break down at the horigon

Il. THE RANDALL-SUNDRUM MODELS

ds?=e" ¥y dx'dxi +dy? (2.2

=00,
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FIG. 2. Possible causal structures for Randall-Sundrum model
U with non-compact fifth dimension. The dots denote points at infin-
ity.
: ; ; 12 o
FIG. 1. Anti—de _Sltter space. Two hpros_phgre_s and a horizon dszz—(d22+ nijdxldxj). (3.1)
are shown. The vertical lines represent timelike infin{®). Causal 72

structure of Randall-Sundrum model with compact fifth dimension.

The arrows denote identifications. In these coordinates, the horizon lieszat~ while the time-
like infinity of AdS is atz=0. We now note that if the

This gives a jump in extrinsic curvature at these planesMinkowski metric within the brackets is replaced layy

yielding two domain walls of equal and opposite tension  Ricci flat metric then the Einstein equatiofsith negative
cosmological constantre still satisfied. A natural choice
for a metric describing a black hole on a domain wall at fixed

U:ii (2.2 z is to take this Ricci flat metric to be the Schwarzschild
«2 solution:
2: . . . . _ |2
wherex“=87G andG is the five dimensional Newton con dsz=—2(—U(r)dt2+U(r)‘1dr2
z

stant. The wall ay=0 has positive tension and the wall at
y=Y. has negative tension. Mass scales on the negative ten-
sion wall are exponentially suppressed relative to those on +r%(d6*+sirfod¢?) +dz?) (3.2
the positive tension one. This provides a solution of the hi- ) ) ) )
erarchy problem provided we live on the negative tensiovhereU(r)=1—2M/r. This metric describes a black string
wall. The global structure is shown in Fig. 1. in AdS: Inclludir_]g_ a reflection symmetric domain wall in this
The second RS modéH] is obtained from the first by Spacetime is tr|y|al: surfaces of constansatisfy thells_rael
taking y.—. This makes the negative tension wall ap-€dquations prowdgd the domaln_wall tension sat|sf!es Eq.
proach the AdS horizon, which includes a point at infinity. (2.2). For a domain wall az=z,, introduce the coordinate
RS say that their model contains only one wall so presumW=Z—Zo. The metric on both sides of the wall can then be
ably the idea is that the negative tension brane is viewed a4ritten
an auxiliary device to set up boundary conditions. However,

if the geometry makes sense then it should be possible to 12

(—U(r)dt?®+U(r) dr?

discuss it without reference to this limiting procedure involv- - (|w| +2z0)2
ing negative tension objects. If one simply slices AdS along .
a positive tension wall ag=0 and assumes reflection sym- +r2(d6?+sir? od ¢p?) + dw?) (3.3

metry then there are several ways to analytically continue the )

solution across the horizon. These have been discussed Yth —<<w<= and the wall is atw=0. It would be

[11-14. There are two obvious choices of continuation. TheStraightforward to use the same method to construct a black

first is simply to assume that beyond the horizon, the solutio$tring solution in the presence ofthick domain wall.

is pure AdS with no domain walls present. This is shown in  The induced metric on a domain wall placedzatz, can

Fig. 2. An alternative, which seems closer in spirit to theP® brought to the standard Schwarzschild form by rescaling

geometry envisaged by RS, is to include further domairfhe coordinates andr. The Arnowitt-Deser-MisnefADM)

walls beyond the horizon, as shown in Fig. 2. In this caseMass as measured by an inhabitant of the wall would be

there are infinitely many domain walls present. M, =MIl/zy. The proper radius of the horizon in five dimen-
sions is M, . The AdS length radiu$ is required to be

within a few orders of magnitude of the Planck lenfdh so
Ill. BLACK STRING IN ADS

Let us first rewrite the AdS metri€2.1) by introducing
the coordinate=1eY'". The metric is then manifestly confor-  This procedure was recently discussed for gengfatane solu-
mally flat: tions in[15].
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black holes of astrophysical mass must hidikz,>1. If one

included a second domain wall with negative tension the
the ADM mass on that wall would be exponentially sup-

pressed relative to that on the positive tension wall.

Our solution has an Einstein metric so the Ricci scalar and
square of the Ricci tensor are finite everywhere. However the

square of the Riemann tensor is

48M2z*
6

, (3.9

nvpo

1
R,,poRAP7=—| 40+
|4 r

which diverges at the AdS horizar=> as well as at the

PHYSICAL REVIEW D61 065007

define new coordinates=z,r/l, t=z;t/l, and new con-

"StantsE =z,E/1, L=22L/12 andM =z,M/I. The radial equa-

tion becomes

dr
dv
which is the radial equation for taimelike geodesic in a four

dimensional Schwarzschild solution of madg 16]. (This is
the ADM mass for an observer with=z,=1%/z,.) Note that
v is the proper time along such a geodesic. It should not be

2
+

2M
1-—
r

'|:2
1+ =
r2

=E2, (3.11

black string singularity at =0. We shall have more to say surprising that a null geodesic in five dimensions is equiva-

about this later.

lent to a timelike geodesic in four dimensions: the non-trivial

It is important to examine the behavior of geodesics inmotion in the fifth dimension gives rise to a mass in four
this spacetime. Leti denote the velocity along a timelike or dimensions. What is perhaps surprising is the relationship

null geodesic with respect to an affine paramatdtaken to
be the proper time in the case of a timelike geodesibe
Killing vectors k=d/dt andm=d/d¢ give rise to the con-
served quantitieg = —k-u andL=m-u. Rearranging these
gives

ﬂ——Ezz (3.9

dh o u(r)l2 '
and

dg Lz

J_W, (36)

for motion in the equatorial planed& #/2). The equation
describing motion in the direction is simply

1 dz o
|

d p—

dx 22 dx _Z|2,
whereo =0 for null geodesics anad=1 for timelike geode-
sics. The solutions for null geodesics are const or

B 2] 2.8
= — T, ( : )

The solution for timelike geodesics is
z=—z,cose¢\/I). (3.9

In both casesz, is a constant and we have shiftedso that
z—o as\—0—. The (null) solutionz=const is simply a

between the four and five dimensional affine parameters
and\.

We are interested in the behavior near the singularity, i.e.
as\—0—. This is equivalent too— i.e. we need to study
the late time behavior of four dimensional timelike geode-
sics. If such geodesics hit tHechwarzschildsingularity at

T=0 then they do so at finite. For infinite » there are two
possibilities[16]. The first is that the geodesic reaches

=, The second can occur only if>12M?, when it is
possible to have bound staté. orbits restricted to a finite

range ofr) outside the Schwarzschild horizon.
The orbits that reacii=« have late time behavior

~v\E2-1 and hence

z4l
r,-\_,__

E2-1
A

(3.12

as\—0—. Along such geodesics, the squared Riemann ten-
sor doesot diverge. The bound state geodesics behave dif-
ferently. These remain at finiteand therefore the square of
the Riemann tensatoesdiverge as\—0—. They orbit the
black string infinitely many times before hitting the singular-
ity, but do so in finite affine parameter.

It appears that some geodesics encounter a curvature sin-
gularity at the AdS horizon whereas others might not be-
cause scalar curvature invariants do not diverge along them.
It is possible that only part of the surfage= is singular.

To decide whether or not this is true, we turn to a calculation
of the Riemann tensor in an orthonormal frame parallelly
propagated along a timelike geodesic that readves but
for which the squared Riemann tensor does not divérge

null geodesic of the four dimensional Schwarzschild solu-a non-bound state geodesic$he tangent vector to such a
tion. We are more interested in the other solutions becausgeodesigqwith L=0) can be written

they appear to reach the singularityzat . The radial mo-
tion is given by

dr
d\

Now introduce a new parameter= —zf/k for null geode-

2 |2 L2
_+_
zZ r?

Z4
I U(r)-E?|=0. (3.10

Pk |72 L EZ Z° /EZ |2U( 100
u = T T 1 ,_ Y r 1 b b
LN Z2 Uz’ 2 z

(3.13

where we have written the components in the order

sics andv= —(zi/l)cot()\ll) for timelike geodesics. We also (z,t,r,6,¢). A unit normal to the geodesic is
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77 E Ezz predictions of general relativity on the brane. This implies
“=|0— 5 1 2_ —U(r),— 21 ,0,0 that gravitational collapse of uncharged non-rotating matter
1“U(r) Z; | trapped on the brane ultimately settles down to a steady state

(3.14  in which the induced metric on the brane is Schwarzschild.

It is straightforward to check that this is parallelly propa- In the higher dimensional theory, such a solution could be a
gated along the geodesic ike.Vn“=0. These two unit vec- localized black hole or an extended object intersecting the

tors can be supplemented by three other parallelly propabrane. We have investigated these alternatives in the models
gated vectors to form an orthonormal set. However the?foposed by Randall and SundryRS). The obvious choice
divergence can be exhibited using just these two vector®f five dimensional solution in the first case is

One of the curvature components in this parallelly propa-Schwarzschild-AdS space. However we have shawrthe
gated frame is Appendi¥ that it is not possible to intersect this with a

vacuum domain wall so it cannot be the final state of gravi-
tational collapse on the wall.
, We have presented a solution that describes a black string
in AdS space. lis possible to intersect this solution with a
(319 yacuum domain wall and the induced metric is Schwarzs-

which diverges along the geodesichas: 0. The black string child space. The solution can therefore be interpreted as a
solution therefore has a curvature singularity at the AdS hoblack hole on the wall. The AdS horizon is singular. Scalar
rizon. curvature invariants only diverge if this singularity is ap-
It is well known that black string solutions in asymptoti- Proached along the axis of the string. However, curvature
cally flat space are unstable to long wavelength perturbationgomponents diverge in a frame parallelly propagated along
[10]. A black hole is entropically preferred to a sufficiently @ny timelike geodesic that reaches the horizon. This singu-
long segment of string. The string’s horizon therefore has 4ty can be removed if we use the first RS model in which
tendency to “pinch off” and form a line of black holes. One there are two domain walls present and we live on a negative
might think that a similar instability occurs for our solution. t€nsion wall. However if we wish to use the second RS
However, AdS acts like a confining box which prevents fluc-model (with a non-compact fifth dimensigrthen the singu-
tuations with wavelengths much greater thdrom develop-  larity will be visible from our domain wall. Ir{8], it was
ing. If an instability occurs then it must do so at smallerargued that anything emerging from a singularity at the AdS
wavelengths. horizon would be heavily red-shifted before reaching us and
If the radius of curvature of the string’s horizon is suffi- that this might ensure that physics on the wall remains pre-
ciently small then the AdS curvature will be negligible there dictable in spite of the singularity. However we regard sin-
and the string will behave as if it were in asymptotically flat gularities as a pathology of the theory since, in principle,
space. This means that it will be unstable to perturbation&rPitrarily large fluctuations can emerge from the singularity
with wavelengths of the order of the horizon radiustp ~ @nd the red-shiftis finite. o
—2MI/z. At sufficiently largez, such perturbations will fit Fortunately, it turns out that our solution is unstable near
into the AdS box, i.e. B1, <, so an instability can occur the AdS ho_rlzon._ We have syggeste_\d that it will decay to a
near the AdS horizon. However fovi/z>1, the potential stable configuration resembling a cigar that extends out to

instability occurs at wavelengths much greater thand is infinity in AdS space but does not reach the AdS horizon.

therefore not possible in AdS. Therefore the black string soJhe solution becomes finite in extent when the gravitational

lution is unstable near the AdS horizon but stable far from it &fféct of the domain wall is included. Our domain wall is
We conclude that, near the AdS horizon, the black strin ituated far from the AdS horizon so the induced metric on

has a tendency to “pinch off’ but further away it is stable. he wall will be very nearly Schwarzschild space. _Since the
After pinching off, the string becomes a stable “black cigar” €198 does not extend as far as the AdS horizon, it does not

which would extend to infinity in AdS space if the domain S€€M .Iikely that there will b.e a singglarity there. Similar
wall were not present, but not to the AdS horizon. The ci-pehavior was recently found in a non-linear treatment of the

gar's horizon acts as if it has a tension which balances th&S model8]. It was shown that pp-waves corresponding to
force pulling it towards the center of AdS space. We showed<@/uza-Klein modes are singular at the AdS horizon. These
above that if our domain wall is &=z, then a black hole of PP-Waves are not localized to the domain wall. The only
astrophysical mass had/z,>1, corresponding to the part PP-Waves regular at the horizon are the ones corresponding
of the biack cigar far from the AdS horizon. Here, the metric'© gravitons confined to the wall. We suspect that perturba-
will be well approximated by the black string metric so the iONS Of the flat horospheres of AdS space that do not vanish
induced metric on the wall will be Schwarzschild and the"€3' the horizon will generically give rise to a singularity

predictions of four dimensional general relativity will be re- there. . : N
covered. It seems likely that there are other solutions that give rise

to the Schwarzschild solution on the domain wall. For ex-
ample, the metric outside a star on the wall would be
Schwarzschild. If the cigar solution was the only stable so-
Any phenomenologically successful theory in which ourlution giving Schwarzschild on the wall then it would have
universe is viewed as a brane must reproduce the large-scdie be possible to intersect it with a non-vacuum domain wall

2Mz*

22r3

1
R(u)(n)(u)(n)ERuvpo““””“”””:rz( 1-

IV. DISCUSSION
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describing such a star. However, it is then not possible to Cylindrical symmetry dictates that we should consider a
choose the equation of state for the matter on the wall, fodomain wall with position given by = x(r). The unit nor-
reasons analogous to those discussed in the Appendix. Owmal to the (+) side can be written

solution is therefore not capable of describing generic stars.

If this is the case then one might wonder whether there are n= (dy—x'dr)
other solutions describing black holes on the wall. We con- V1+Ur2y’? '
jecture that the cigar solution is the unique stable vacuum

solution with a regular AdS horizon that describes a nonwheree=*1 and a prime denotes a derivative with respect

rotating uncharged black hole on the domain wall. to r. The timelike tangent to the wall is

er

(A6)

_ —-1/2
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APPENDIX
1 9
One candidate for a black hole formed by gravitational ep=—— 79" (A9)
collapse on a domain wall in AdS space is the rSiny
Schwarzschild-AdS solution, which has metric 1 9
=" - Al10
ds?=—U(r)dt?+ U(r) dr2+r?(dy?+sinfxdQ?), ¢ rsinysing d¢ (A10)

(A1) The non-vanishing components of the extrinsic curvature in
this basis are
wheredQ? is the line element on a unit 2-sphere and

2 Kuu:&: (A11)
un=1-2m 0 (A2) 2VL+Ury™
' ! € coty ,
The parameteM is related to the mass of the black hole. We Koo=Kos= V1+ Urzx’z( ro Ux ) (A12)
have not yet included the gravitational effect of the wall. We
shall focus on the second RS model so we want a single K= € (x'3U2r2+2y'U+Ury”"

positive tension domain wall with the spacetime reflection
symmetric in the wall. Denote the spacetime on the two sides
of the wall as () and (—). Let n be a unit(spacelike +U'rx’'12). (A13)
normal to the wall pointing out of the() region. The tensor
h,,=9,,—n,n, projects vectors onto the wall, and its tan-
gential components give the induced metric on the wall. The t,,=—oh,,,
extrinsic curvature of the wall is defined by

B (1+Ur2y'2)32

A vacuum domain wall has
(A14)

o where o is the wall's tension. The Israel conditions are
Ku=h2hov n, (A3) 2
, , Kuy="70oh,,. (A15)
and its trace iK=h#"K ,,. The energy momentum tensor 6

t,, of the wall is given by varying its action with respect to

the induced metric. The gravitational effect of the domain!€Se reduce to

wall is given by the Israel junction conditio47], which K2
relate the discontinuity in the extrinsic curvature at the wall ~Ku=Ku=Ky=75 0. (A16)
to its energy momentum:

It is straightforward to verify that these equations have no
solution. A solutioncan be found for a non-vacuum domain
wall with energy-momentum tensor

[K,,—Kh, 1 =«%,, (Ad)

(see[18] for a simple derivation of this equatipnHere 2
=8mG whereG is the five dimensional Newton constant. t,,=diago,p,p,p,0), (A17)

This can be rearranged using reflection symmetry to give _
since then we have three unknown functions

K :K_z(t —ih ) (A5) (a(r),p(r),x(r)) and three equations. However this does
O S A not allow an equation of state to be specified in advance. We
are only interested inacuumsolutions since these describe
wheret=h*"t,,. the final state of gravitational collapse on the brane.
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