
PHYSICAL REVIEW D, VOLUME 61, 065007
Brane-world black holes
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Gravitational collapse of matter trapped on a brane will produce a black hole on the brane. We discuss such
black holes in the models of Randall and Sundrum where our universe is viewed as a domain wall in
five-dimensional anti–de Sitter space. We present evidence that a non-rotating uncharged black hole on the
domain wall is described by a ‘‘black cigar’’ solution in five dimensions.

PACS number~s!: 12.10.2g, 04.50.1h, 11.10.Kk, 11.25.Mj
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I. INTRODUCTION

There has been much recent interest in the idea that
universe may be a brane embedded in some higher dim
sional space. It has been shown that the hierarchy prob
can be solved if the higher dimensional Planck scale is
and the extra dimensions large@1,2#. An alternative solution,
proposed by Randall and Sundrum~RS!, assumes that ou
universe is a negative tension domain wall separated fro
positive tension wall by a slab of anti–de Sitter~AdS! space
@3#. This does not require a large extra dimension: the h
archy problem is solved by the special properties of Ad
The drawback with this model is the necessity of a nega
tension object.

In further work @4#, RS suggested that it is possible
have aninfinite extra dimension. In this model, we live on
positive tension domain wall inside anti–de Sitter spa
There is a bound state of the graviton confined to the wal
well as a continuum of Kaluza-Klein~KK ! states. For non-
relativistic processes on the wall, the bound state domin
over the KK states to give an inverse square law if the A
radius is sufficiently small. It appears therefore that four
mensional gravity is recovered on the domain wall. This c
clusion was based on perturbative calculations for zero th
ness walls. Supergravity domain walls of finite thickne
have recently been considered@5–7# and a non-perturbative
proof that the bound state exists for such walls was given
@8#. It is important to examine other non-perturbative gra
tational effects in this scenario to see whether the predict
of four dimensional general relativity are recovered on
domain wall.

If matter trapped on a brane undergoes gravitational
lapse then a black hole will form. Such a black hole w
have a horizon that extends into the dimensions transvers
the brane: it will be a higher dimensional object. Pheno
enological properties of such black holes have been
cussed in@9# for models with large extra dimensions. In th
paper we discuss black holes in the RS models. A nat
candidate for such a hole is the Schwarzschild-AdS solut
describing a black hole localized in the fifth dimension. W
show in the Appendix that it is not possible to intersect su
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a hole with avacuumdomain wall so it is unlikely that it
could be the final state of gravitational collapse on the bra
A second possibility is that what looks like a black hole
the brane is actually a black string in the higher dimensio
space. We give a simple solution describing such a str
The induced metric on the domain wall is simply Schwar
child, as it has to be if four dimensional general relativ
~and therefore Birkhoff’s theorem! are recovered on the wall
This means that the usual astrophysical properties of b
holes ~e.g. perihelion precession, light bending etc.! are re-
covered in this scenario.

We find that the AdS horizon is singular for this blac
string solution. This is signalled by scalar curvature inva
ants diverging if one approaches the horizon along the a
of the string. If one approaches the horizon in a differe
direction then no scalar curvature invariant diverges. Ho
ever, in a frame parallelly propagated along a timelike g
desic, some curvature componentsdo diverge. Furthermore
the black string is unstable near the AdS horizon — this
the Gregory-Laflamme instability@10#. However, the solu-
tion is stable far from the AdS horizon. We will argue th
our solution evolves to a ‘‘black cigar’’ solution describin
an object that looks like the black string far from the Ad
horizon~so the metric on the domain wall is Schwarzschi!
but has a horizon that closes off before reaching the A
horizon. In fact, we conjecture that this black cigar soluti
is the unique stable vacuum solution in five dimensio
which describes the endpoint of gravitational collapse on
brane. We suspect that the AdS horizon will be non-singu
for the cigar solution.

II. THE RANDALL-SUNDRUM MODELS

Both models considered by RS use five dimensional A
In horospherical coordinates the metric is

ds25e22y/ lh i j dxidxj1dy2 ~2.1!

wherehmn is the four dimensional Minkowski metric andl
the AdS radius. The global structure of AdS is shown in F
1. Horospherical coordinates break down at the horizony
5`.

In their first model@3#, RS slice AdS along the horo
spheres aty50 andy5yc.0, retain the portion 0,y,yc
and assumeZ2 reflection symmetry at each boundary plan
©2000 The American Physical Society07-1
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This gives a jump in extrinsic curvature at these plan
yielding two domain walls of equal and opposite tension

s56
6

k2l
~2.2!

wherek258pG andG is the five dimensional Newton con
stant. The wall aty50 has positive tension and the wall
y5yc has negative tension. Mass scales on the negative
sion wall are exponentially suppressed relative to those
the positive tension one. This provides a solution of the
erarchy problem provided we live on the negative tens
wall. The global structure is shown in Fig. 1.

The second RS model@4# is obtained from the first by
taking yc→`. This makes the negative tension wall a
proach the AdS horizon, which includes a point at infini
RS say that their model contains only one wall so presu
ably the idea is that the negative tension brane is viewe
an auxiliary device to set up boundary conditions. Howev
if the geometry makes sense then it should be possibl
discuss it without reference to this limiting procedure invo
ing negative tension objects. If one simply slices AdS alo
a positive tension wall aty50 and assumes reflection sym
metry then there are several ways to analytically continue
solution across the horizon. These have been discusse
@11–14#. There are two obvious choices of continuation. T
first is simply to assume that beyond the horizon, the solu
is pure AdS with no domain walls present. This is shown
Fig. 2. An alternative, which seems closer in spirit to t
geometry envisaged by RS, is to include further dom
walls beyond the horizon, as shown in Fig. 2. In this ca
there are infinitely many domain walls present.

III. BLACK STRING IN ADS

Let us first rewrite the AdS metric~2.1! by introducing
the coordinatez5 ley/ l . The metric is then manifestly confor
mally flat:

FIG. 1. Anti–de Sitter space. Two horospheres and a hori
are shown. The vertical lines represent timelike infinity.~2! Causal
structure of Randall-Sundrum model with compact fifth dimensi
The arrows denote identifications.
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ds25
l 2

z2
~dz21h i j dxidxj !. ~3.1!

In these coordinates, the horizon lies atz5` while the time-
like infinity of AdS is at z50. We now note that if the
Minkowski metric within the brackets is replaced byany
Ricci flat metric then the Einstein equations~with negative
cosmological constant! are still satisfied.1 A natural choice
for a metric describing a black hole on a domain wall at fix
z is to take this Ricci flat metric to be the Schwarzsch
solution:

ds25
l 2

z2
„2U~r !dt21U~r !21dr2

1r 2~du21sin2udf2!1dz2
… ~3.2!

whereU(r )5122M /r . This metric describes a black strin
in AdS. Including a reflection symmetric domain wall in th
spacetime is trivial: surfaces of constantz satisfy the Israel
equations provided the domain wall tension satisfies
~2.2!. For a domain wall atz5z0, introduce the coordinate
w5z2z0. The metric on both sides of the wall can then
written

ds25
l 2

~ uwu1z0!2
„2U~r !dt21U~r !21dr2

1r 2~du21sin2udf2!1dw2
… ~3.3!

with 2`,w,` and the wall is atw50. It would be
straightforward to use the same method to construct a b
string solution in the presence of athick domain wall.

The induced metric on a domain wall placed atz5z0 can
be brought to the standard Schwarzschild form by resca
the coordinatest and r. The Arnowitt-Deser-Misner~ADM !
mass as measured by an inhabitant of the wall would
M* 5Ml /z0. The proper radius of the horizon in five dimen
sions is 2M* . The AdS length radiusl is required to be
within a few orders of magnitude of the Planck length@4# so

1This procedure was recently discussed for generalp-brane solu-
tions in @15#.

n

.

FIG. 2. Possible causal structures for Randall-Sundrum mo
with non-compact fifth dimension. The dots denote points at in
ity.
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black holes of astrophysical mass must haveM /z0@1. If one
included a second domain wall with negative tension th
the ADM mass on that wall would be exponentially su
pressed relative to that on the positive tension wall.

Our solution has an Einstein metric so the Ricci scalar
square of the Ricci tensor are finite everywhere. However
square of the Riemann tensor is

RmnrsRmnrs5
1

l 4 S 401
48M2z4

r 6 D , ~3.4!

which diverges at the AdS horizonz5` as well as at the
black string singularity atr 50. We shall have more to sa
about this later.

It is important to examine the behavior of geodesics
this spacetime. Letu denote the velocity along a timelike o
null geodesic with respect to an affine parameterl ~taken to
be the proper time in the case of a timelike geodesic!. The
Killing vectors k5]/]t and m5]/]f give rise to the con-
served quantitiesE52k•u andL5m•u. Rearranging these
gives

dt

dl
5

Ez2

U~r !l 2
~3.5!

and

df

dl
5

Lz2

r 2l 2
, ~3.6!

for motion in the equatorial plane (u[p/2). The equation
describing motion in thez direction is simply

d

dl S 1

z2

dz

dl D 5
s

zl2
, ~3.7!

wheres50 for null geodesics ands51 for timelike geode-
sics. The solutions for null geodesics arez5const or

z52
z1l

l
, ~3.8!

The solution for timelike geodesics is

z52z1cosec~l/ l !. ~3.9!

In both cases,z1 is a constant and we have shiftedl so that
z→` as l→02. The ~null! solution z5const is simply a
null geodesic of the four dimensional Schwarzschild so
tion. We are more interested in the other solutions beca
they appear to reach the singularity atz5`. The radial mo-
tion is given by

S dr

dl D 2

1
z4

l 4 F S l 2

z1
2

1
L2

r 2 D U~r !2E2G50. ~3.10!

Now introduce a new parametern52z1
2/l for null geode-

sics andn52(z1
2/ l )cot(l/l) for timelike geodesics. We als
06500
n

d
e

-
se

define new coordinatesr̃ 5z1r / l , t̃ 5z1t/ l , and new con-
stantsẼ5z1E/ l , L̃5z1

2L/ l 2 andM̃5z1M / l . The radial equa-
tion becomes

S dr̃

dn
D 2

1S 11
L̃2

r̃ 2 D S 12
2M̃

r̃
D 5Ẽ2, ~3.11!

which is the radial equation for atimelikegeodesic in a four
dimensional Schwarzschild solution of massM̃ @16#. ~This is
the ADM mass for an observer withz5z05 l 2/z1.! Note that
n is the proper time along such a geodesic. It should not
surprising that a null geodesic in five dimensions is equi
lent to a timelike geodesic in four dimensions: the non-triv
motion in the fifth dimension gives rise to a mass in fo
dimensions. What is perhaps surprising is the relations
between the four and five dimensional affine parametern
andl.

We are interested in the behavior near the singularity,
asl→02. This is equivalent ton→` i.e. we need to study
the late time behavior of four dimensional timelike geod
sics. If such geodesics hit theSchwarzschildsingularity at
r̃ 50 then they do so at finiten. For infiniten there are two
possibilities @16#. The first is that the geodesic reachesr̃

5`. The second can occur only ifL̃2.12M̃2, when it is
possible to have bound states~i.e. orbits restricted to a finite
range ofr̃ ) outside the Schwarzschild horizon.

The orbits that reachr̃ 5` have late time behaviorr̃

;nAẼ221 and hence

r;2
z1l

l
AẼ221 ~3.12!

asl→02. Along such geodesics, the squared Riemann t
sor doesnot diverge. The bound state geodesics behave
ferently. These remain at finiter and therefore the square o
the Riemann tensordoesdiverge asl→02. They orbit the
black string infinitely many times before hitting the singula
ity, but do so in finite affine parameter.

It appears that some geodesics encounter a curvature
gularity at the AdS horizon whereas others might not b
cause scalar curvature invariants do not diverge along th
It is possible that only part of the surfacez5` is singular.
To decide whether or not this is true, we turn to a calculat
of the Riemann tensor in an orthonormal frame paralle
propagated along a timelike geodesic that reachesz5` but
for which the squared Riemann tensor does not diverge~i.e.
a non-bound state geodesics!. The tangent vector to such
geodesic~with L50) can be written

um5S z

lAz2

z1
2

21,
Ez2

U~r !l 2
,
z2

l 2AE22
l 2

z1
2

U~r !,0,0D ,

~3.13!

where we have written the components in the ord
(z,t,r ,u,f). A unit normal to the geodesic is
7-3
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A. CHAMBLIN, S. W. HAWKING, AND H. S. REALL PHYSICAL REVIEW D 61 065007
nm5S 0,2
zz1

l 2U~r !
AE22

l 2

z1
2

U~r !,2
Ez1z

l 2
,0,0D .

~3.14!

It is straightforward to check that this is parallelly prop
gated along the geodesic i.e.u•¹nm50. These two unit vec-
tors can be supplemented by three other parallelly pro
gated vectors to form an orthonormal set. However
divergence can be exhibited using just these two vect
One of the curvature components in this parallelly pro
gated frame is

R(u)(n)(u)(n)[Rmnrsumnnurns5
1

l 2 S 12
2Mz4

z1
2r 3 D ,

~3.15!

which diverges along the geodesic asl→0. The black string
solution therefore has a curvature singularity at the AdS
rizon.

It is well known that black string solutions in asympto
cally flat space are unstable to long wavelength perturbat
@10#. A black hole is entropically preferred to a sufficient
long segment of string. The string’s horizon therefore ha
tendency to ‘‘pinch off’’ and form a line of black holes. On
might think that a similar instability occurs for our solutio
However, AdS acts like a confining box which prevents flu
tuations with wavelengths much greater thanl from develop-
ing. If an instability occurs then it must do so at smal
wavelengths.

If the radius of curvature of the string’s horizon is suf
ciently small then the AdS curvature will be negligible the
and the string will behave as if it were in asymptotically fl
space. This means that it will be unstable to perturbati
with wavelengths of the order of the horizon radius 2M*
52Ml /z. At sufficiently largez, such perturbations will fit
into the AdS box, i.e. 2M* ! l , so an instability can occu
near the AdS horizon. However forM /z@1, the potential
instability occurs at wavelengths much greater thanl and is
therefore not possible in AdS. Therefore the black string
lution is unstable near the AdS horizon but stable far from

We conclude that, near the AdS horizon, the black str
has a tendency to ‘‘pinch off’’ but further away it is stabl
After pinching off, the string becomes a stable ‘‘black ciga
which would extend to infinity in AdS space if the doma
wall were not present, but not to the AdS horizon. The
gar’s horizon acts as if it has a tension which balances
force pulling it towards the center of AdS space. We show
above that if our domain wall is atz5z0 then a black hole of
astrophysical mass hasM /z0@1, corresponding to the par
of the black cigar far from the AdS horizon. Here, the met
will be well approximated by the black string metric so t
induced metric on the wall will be Schwarzschild and t
predictions of four dimensional general relativity will be r
covered.

IV. DISCUSSION

Any phenomenologically successful theory in which o
universe is viewed as a brane must reproduce the large-s
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predictions of general relativity on the brane. This impli
that gravitational collapse of uncharged non-rotating ma
trapped on the brane ultimately settles down to a steady s
in which the induced metric on the brane is Schwarzsch
In the higher dimensional theory, such a solution could b
localized black hole or an extended object intersecting
brane. We have investigated these alternatives in the mo
proposed by Randall and Sundrum~RS!. The obvious choice
of five dimensional solution in the first case
Schwarzschild-AdS space. However we have shown~in the
Appendix! that it is not possible to intersect this with
vacuum domain wall so it cannot be the final state of gra
tational collapse on the wall.

We have presented a solution that describes a black s
in AdS space. Itis possible to intersect this solution with
vacuum domain wall and the induced metric is Schwar
child space. The solution can therefore be interpreted a
black hole on the wall. The AdS horizon is singular. Sca
curvature invariants only diverge if this singularity is a
proached along the axis of the string. However, curvat
components diverge in a frame parallelly propagated al
any timelike geodesic that reaches the horizon. This sin
larity can be removed if we use the first RS model in whi
there are two domain walls present and we live on a nega
tension wall. However if we wish to use the second R
model ~with a non-compact fifth dimension! then the singu-
larity will be visible from our domain wall. In@8#, it was
argued that anything emerging from a singularity at the A
horizon would be heavily red-shifted before reaching us a
that this might ensure that physics on the wall remains p
dictable in spite of the singularity. However we regard s
gularities as a pathology of the theory since, in princip
arbitrarily large fluctuations can emerge from the singular
and the red-shift is finite.

Fortunately, it turns out that our solution is unstable ne
the AdS horizon. We have suggested that it will decay t
stable configuration resembling a cigar that extends ou
infinity in AdS space but does not reach the AdS horizo
The solution becomes finite in extent when the gravitatio
effect of the domain wall is included. Our domain wall
situated far from the AdS horizon so the induced metric
the wall will be very nearly Schwarzschild space. Since
cigar does not extend as far as the AdS horizon, it does
seem likely that there will be a singularity there. Simil
behavior was recently found in a non-linear treatment of
RS model@8#. It was shown that pp-waves corresponding
Kaluza-Klein modes are singular at the AdS horizon. The
pp-waves are not localized to the domain wall. The on
pp-waves regular at the horizon are the ones correspon
to gravitons confined to the wall. We suspect that pertur
tions of the flat horospheres of AdS space that do not van
near the horizon will generically give rise to a singulari
there.

It seems likely that there are other solutions that give r
to the Schwarzschild solution on the domain wall. For e
ample, the metric outside a star on the wall would
Schwarzschild. If the cigar solution was the only stable
lution giving Schwarzschild on the wall then it would hav
to be possible to intersect it with a non-vacuum domain w
7-4
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BRANE-WORLD BLACK HOLES PHYSICAL REVIEW D61 065007
describing such a star. However, it is then not possible
choose the equation of state for the matter on the wall,
reasons analogous to those discussed in the Appendix.
solution is therefore not capable of describing generic st
If this is the case then one might wonder whether there
other solutions describing black holes on the wall. We c
jecture that the cigar solution is the unique stable vacu
solution with a regular AdS horizon that describes a n
rotating uncharged black hole on the domain wall.
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APPENDIX

One candidate for a black hole formed by gravitation
collapse on a domain wall in AdS space is t
Schwarzschild-AdS solution, which has metric

ds252U~r !dt21U~r !21dr21r 2~dx21sin2xdV2!,

~A1!

wheredV2 is the line element on a unit 2-sphere and

U~r !512
2M

r 2
1

r 2

l 2
. ~A2!

The parameterM is related to the mass of the black hole. W
have not yet included the gravitational effect of the wall. W
shall focus on the second RS model so we want a sin
positive tension domain wall with the spacetime reflect
symmetric in the wall. Denote the spacetime on the two si
of the wall as (1) and (2). Let n be a unit ~spacelike!
normal to the wall pointing out of the (1) region. The tensor
hmn5gmn2nmnn projects vectors onto the wall, and its ta
gential components give the induced metric on the wall. T
extrinsic curvature of the wall is defined by

Kmn5hm
r hn

s¹rns ~A3!

and its trace isK5hmnKmn . The energy momentum tenso
tmn of the wall is given by varying its action with respect
the induced metric. The gravitational effect of the doma
wall is given by the Israel junction conditions@17#, which
relate the discontinuity in the extrinsic curvature at the w
to its energy momentum:

@Kmn2Khmn#2
15k2tmn ~A4!

~see@18# for a simple derivation of this equation!. Herek2

58pG where G is the five dimensional Newton constan
This can be rearranged using reflection symmetry to give

Kmn5
k2

2 S tmn2
t

3
hmnD , ~A5!

wheret5hmntmn .
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Cylindrical symmetry dictates that we should conside
domain wall with position given byx5x(r ). The unit nor-
mal to the (1) side can be written

n5
er

A11Ur 2x82
~dx2x8dr !, ~A6!

wheree561 and a prime denotes a derivative with resp
to r. The timelike tangent to the wall is

u5U21/2
]

]t
, ~A7!

and the spacelike tangents are

t5A U

11Ur 2x2S x8
]

]x
1

]

]r D , ~A8!

eu5
1

rsinx

]

]u
, ~A9!

ef5
1

rsinxsinu

]

]f
. ~A10!

The non-vanishing components of the extrinsic curvature
this basis are

Kuu5
eU8rx8

2A11Ur 2x82
, ~A11!

Kuu5Kff5
e

A11Ur 2x82 S cotx

r
2Ux8D , ~A12!

Ktt52
e

~11Ur 2x82!3/2
~x83U2r 212x8U1Urx9

1U8rx8/2!. ~A13!

A vacuum domain wall has

tmn52shmn , ~A14!

wheres is the wall’s tension. The Israel conditions are

Kmn5
k2

6
shmn . ~A15!

These reduce to

2Kuu5Ktt5Kuu5
k2

6
s. ~A16!

It is straightforward to verify that these equations have
solution. A solutioncan be found for a non-vacuum domai
wall with energy-momentum tensor

tmn5diag~s,p,p,p,0!, ~A17!

since then we have three unknown functio
„s(r ),p(r ),x(r )… and three equations. However this do
not allow an equation of state to be specified in advance.
are only interested invacuumsolutions since these describ
the final state of gravitational collapse on the brane.
7-5
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