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We derive quantum kinetic equations from a quantum field theory implementing a diagrammatic perturba-
tive expansion improved by a resummation via the dynamical renormalization group. The method begins by
obtaining the equation of motion of the distribution function in perturbation theory. The solution of this
equation of motion reveals secular terms that grow in time; the dynamical renormalization group resums these
secular terms in real time and leads directly to the quantum kinetic equation. This method allows us to include
consistently medium effects via resummations akin to hard thermal loops but away from equilibrium. A close
relationship between this approach and the renormalization group in Euclidean field theory is established. In
particular, coarse graining, stationary solutions, the relaxation time approximation, and relaxation rates have a
natural parallel as irrelevant operators, fixed points, linearization, and stability exponents in the Euclidean
renormalization group, respectively. We used this method to study the relaxation in a cool gas of pions and
sigma mesons in theO(4) chiral linear sigma model. We obtain in the relaxation time approximation the pion
and sigma meson relaxation rates. We also find that in the large momentum limit emission and absorption of
massless pions result in a threshold infrared divergence in the sigma meson relaxation rate and lead to a
crossover behavior in relaxation. We then study the relaxation of charged quasiparticles in scalar quantum
electrodynamics~SQED!. We begin with agauge invariantdescription of the distribution function and imple-
ment the hard thermal loop resummation for longitudinal and transverse photons as well as for the scalars.
While longitudinal, Debye-screened photons lead to purely exponential relaxation, and transverse photons,
only dynamically screened by Landau damping, lead to anomalous~nonexponential! relaxation, thus leading to
a crossover between two different relaxational regimes. We emphasize that infrared divergent damping rates
are indicative of nonexponential relaxation and the dynamical renormalization group reveals the correct relax-
ation directly in real time. Furthermore the relaxational time scales for charged quasiparticles are similar to
those found in QCD in a self-consistent HTL resummation. Finally we also show that this method provides a
natural framework to interpret and resolve the issue of pinch singularities out of equilibrium and establish a
direct correspondence between pinch singularities and secular terms in time-dependent perturbation theory. We
argue that this method is particularly well suited to study quantum kinetics and transport in gauge theories.

PACS number~s!: 11.10.Wx, 11.10.Gh, 12.38.Mh
ed
ch

t
pa
n
nt
QG

e
o

rent
o be
the

tic
on

tion
he
in

ra-
the

in-
of

uch
I. INTRODUCTION

The search for the quark-gluon plasma~QGP! at the BNL
Relativistic Heavy Ion Collider~RHIC! and the forthcoming
CERN Large Hadron Collider~LHC! has the potential of
providing clear evidence for the formation of a deconfin
plasma of quarks and gluons and hopefully to study the
ral phase transition. Perhaps this is the only opportunity
study phase transitions that are conjectured to occur in
ticle physics with earth-bound accelerators and an inte
theoretical effort has developed parallel to the experime
program that seeks to understand the signatures of the
and the chiral phase transition@1,2#. An important part of the
program is to assess whether the plasma, once form
achieves a state of thermodynamic equilibrium and if so
0556-2821/2000/61~6!/065006~34!/$15.00 61 0650
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what time scales. This is an important question since cur
estimates suggest that at the energies and luminosities t
achieved at RHIC, the spatial and temporal scales for
existence of the QGP are of the order of 20 fm@1#. The
description of the space-time evolution in an ultrarelativis
heavy ion collision requires understanding of phenomena
different time and spatial scales. Ideally, such a descrip
should begin from the parton distribution functions of t
colliding nuclei as the initial state and evolve this state
time using QCD to obtain the kinetic and chemical equilib
tion of partons, the emergence of hydrodynamics, and
hadronization and freeze-out stages@3#. An important part of
the program to study the space-time evolution from first pr
ciples seeks to establish a consistent kinetic description
transport phenomena in a dense partonic environment. S
©2000 The American Physical Society06-1
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a kinetic description has the potential of providing a detai
understanding of collective flow, observables~hadronic and
electromagnetic! such as multiparticle distributions, charm
nium suppression, freeze out of hadrons, and other impor
experimental signatures that will lead to an unambigu
determination of whether a QGP has been formed and
observables of phase transitions. This premise justifies
important theoretical effort to obtain such a kinetic descr
tion from first principles. During the last few years the
have been important advances in this program, from der
tions of kinetic and transport equations from first princip
in QCD @3–6# and scalar field theories@7–10# to numerical
codes that describe the space-time evolution in terms of
tonic cascades@3# that include screening corrections in th
scattering cross sections@11,12# and more recently nonequ
librium dynamics has been studied via lattice simulatio
@13–16#.

The kinetic description to study hot and/or dense quan
field theory systems is also of fundamental importance in
understanding of the emergence of hydrodynamics in
long-wavelength limit of a quantum field theory@17# and
more recently a transport approach has been advocated
description of the collective dynamics of soft degrees of fr
dom in hot QCD@18–22#. The typical approach to deriv
transport equations begins by introducing a Wigner tra
form of a particular nonequilibrium Green’s functions at tw
different space-time points@3–5,20,23# ~a gauge covarian
Wigner transform in the case of gauge theories! and often
requires a quasiparticle approximation@5,23#. The rationale
behind a Wigner transform of a nonequilibrium Green
function is the assumption of a wide separation between
microscopic~fast! and relaxational~slow! time scales, typi-
cally justified in a weakly coupled theory. A recent deriv
tion of transport equations for a hot QCD plasma along th
lines has recently been reported in@20#; however, the colli-
sional terms obtained in the quasiparticle and relaxation t
approximations turn out to be infrared divergent.

Thus, the importance of a fundamental understanding
transport in quantum field theory from first principles, wi
direct application to the experimental aspects of the sea
for the QGP, justifies the study of transport phenomena fr
many different perspectives. In this article we present a no
method to obtain quantum kinetic equations directly from
underlying quantum field theory implementing a dynami
renormalization group resummation. Such an approach
been recently introduced to study the relaxation of me
fields of hard charged scalars in a gauge theory@24#. This
method allowed us to obtain directly in Ref.@24# the anoma-
lous relaxation of hard charged excitations in an Abel
gauge theory@25#, providing an interpretation of infrared di
vergent damping rates@26# in terms of nonexponential relax
ation and pointed to a shortcoming in the interpretation
quasiparticle relaxation in terms of complex poles in t
propagator. Infrared divergences associated with the e
sion and absorption of long-wavelength gauge bosons
ubiquitous in gauge theories. Thus, this novel approac
particularly suitable to study transport phenomena in ga
theories.

Goals and strategy. The goals of this article are to provid
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a novel and alternative derivation of quantum kinetic eq
tions directly from the microscopic quantum field theory
real time and apply this program to several relevant case
interest. We consider scalar theories describing pions
sigma mesons and gauge theories. This approach allow
to include consistently medium effects, such as nonequi
rium generalizations of the hard thermal loop resummati
describes anomalous relaxation, and reveals the proper
scales for relaxation directly in real time. There are seve
advantages that this program offers as compared to o
approaches to transport phenomena.

~i! It allows us to study the crossover between differe
relaxational behavior in real time. This is relevant in the ca
of resonances where the medium may enhance threshol
fects.

~ii ! It describes nonexponential relaxation in a clear m
ner and treats threshold effects consistently, providing a r
time interpretation of infrared divergent damping rates
gauge theories,

~iii ! It provides a systematic field-theoretical method
include higher order corrections and allows to incorpor
self-consistently medium effects such as, for example, a
summation of hard thermal loops@27–29# that are necessar
to determine the relevant degrees of freedom and their
croscopic time scales.

~iv! It resolves the issue of pinch singularities that oft
appear in calculations of physical quantities out of equil
rium.

The strategy to be followed is a generalization of t
methods introduced in Ref.@24# but adapted to the descrip
tion of quantum kinetics. The starting point is the identific
tion of the distribution function of the quasiparticles whic
could require a resummation of medium effects~the equiva-
lent of hard thermal loops@27–29#!. The equation of motion
for this distribution function is solved in a perturbative e
pansion in terms of nonequilibrium Feynman diagrams. T
perturbative solution in real time displays secular terms, i
terms that grow in time and invalidate the perturbative e
pansion beyond a particular time scale~recognizeda poste-
riori to be the relaxational time scale!. The dynamical renor-
malization group implements a systematic resummation
these secular terms and the resulting renormalization gr
equation is the quantum kinetic equation.

The validity of this approach hinges upon the basic
sumption of a wide separation between the microscopic
the relaxational time scales. Such an assumption unde
every approach to a kinetic description and is generally j
tified in weakly coupled theories. Unlike other approaches
terms of a truncation of the equations of motion for t
Wigner distribution function, the main ingredient in the a
proach presented here is a perturbative diagrammatic ev
ation of the time evolution of the proper distribution functio
in real time@8# improved via a renormalization group resum
mation of the secular divergences.

An important bonus of this approach is that it illuminat
the origin and provides a natural resolution of pinch sing
larities @30,31# found in perturbation theory out of equilib
rium. The perturbative real-time approach combined with
renormalization group resummation reveals clearly that th
are indicative of the nonequilibrium evolution of the distr
6-2
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bution functions. In this framework, pinch singularities a
the manifestation of secular terms.

The article is organized as follows: In Sec. II we summ
rize the main ingredients of nonequilibrium field theory
establish the perturbative framework. In Sec. III we study
familiar case of a scalar field theory, including in additio
the nonequilibrium resummation akin to the hard therm
loops to account for the effective masses in the medium
therefore the relevant microscopic time scales. In Sec. IV
discuss in detail the main features of the dynamical ren
malization group approach to quantum kinetics, compar
to the more familiar renormalization group of Euclide
quantum field theory, and provide an easy-to-follow recipe
obtain quantum kinetic equations. In Sec. V we apply th
techniques to obtain the kinetic equations for cool pions
sigma mesons in theO(4) linear sigma model in the chira
limit. In the relaxation time approximation we obtain th
relaxation rates for pions and sigma mesons. This case
lows us to highlight the power of this approach to stu
threshold effects on the relaxation of resonances, in part
lar the crossover between two different relaxational regim
as a function of the momentum of the resonance. This as
becomes phenomenologically important in view of rec
studies by Hatsuda and collaborators@32# that reveal a drop-
ping of the sigma mass near the chiral phase transition
an enhancement of threshold effects with potential obse
tional consequences in heavy ion collisions.

In Sec. VI we study the relaxation of charged quasipa
cles in the full range of momenta in Scaler QED~SQED!.
This theory has the same hard thermal loop structure at l
est order as QED and QCD@33–36# and shares many fea
tures of these theories such as the lack of magnetic scree
mass. In particular, in this Abelian case we provide agauge
invariant description of the quasiparticle distribution fun
tion, thus bypassing the complications associated with
gauge covariant Wigner transforms of the charged fi
Green’s function. The hard thermal loop~HTL! resummation
@27–29# is included in the scalar as well as in the gau
boson spectral densities. We find that the exchange of H
resummed longitudinal photons leads to exponential re
ation but the exchange of dynamically screened transv
photons leads to anomalous relaxation, thus leading t
crossover behavior in the relaxation of the distribution fun
tion as a function of the momentum of the charged partic
The real-time description of relaxation advocated in this
ticle bypasses the ambiguities associated with an infra
divergent damping rate@20,34#. In Sec. VII we discuss the
issue of pinch singularities found in calculations in noneq
librium field theory and establish the equivalence betwe
these and secular terms in the perturbative expansion; t
singularities are thus resolved via the resummation provi
by the dynamical renormalization group.

We summarize our results and discuss further impli
tions and future directions in the Conclusions.

II. REAL-TIME NONEQUILIBRIUM TECHNIQUES

The field-theoretical methods to describe nonequilibri
processes have been studied at length in the literatur
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which the reader should refer for a more detailed prese
tion @30,37–43#. Here we only highlight those aspects an
details that are necessary for our purposes.

The basic ingredient is the time evolution of density m
trix prepared initially at timet5t0, which leads to the gen
erating functional of nonequilibrium Green’s functions
terms of a path integral defined on a contour in the comp
time plane.

The contour has two branches running forward and ba
ward in the real-time axis corresponding to the unitary e
lution operator forward in time that premultiplies the dens
matrix att0 and the hermitian conjugate that postmultiplies
and determines evolution backwards in time. The initial de
sity matrix determines the boundary conditions on the pro
gators.

This is a standard formulation of nonequilibrium quantu
field theory known as the Schwinger-Keldysh or close
time-path~CTP! Theory @30,37–43#. Fields defined on the
forward and backward branches are labeled respectively
‘‘ 1 ’’ and ‘‘ 2 ’’ superscripts and are treated independent
Introducing sources on the CTP contour, one can easily c
struct the nonequilibrium generating functional, which ge
erates nonequilibrium Green’s functions through functio
derivatives with respect to sources much in the same ma
as the usual formulation of amplitudes in terms of path in
grals.

The path integral along the CTP contour is in terms of
effective Lagrangian defined by

Lnoneq@C1,C2#5L@C1#2L@C2#, ~2.1!

whereL@C# denotes the corresponding Lagrangian in us
field theory andC denotes any generic~bosonic or fermi-
onic! field. The advantage of the path integral representa
with the above nonequilibrium, effective Lagrangian is tha
is straightforward to construct diagrammatically a perturb
tive expansion of the nonequilibrium Green’s functions
terms of modified nonequilibrium Feynman rules. The
nonequilibrium Feynman rules are as follows.

~i! The number of vertices is doubled: Those associa
with fields on the ‘‘1 ’’ branch are the usual interaction ve
tices, while those associated with fields on the ‘‘2 ’’ branch
have the opposite sign.

~ii ! There are four propagators corresponding to the p
sible contractions of fields among the two branches. In ad
tion to the usual time-ordered~Feynman! propagators which
are associated with fields on the ‘‘1 ’’ branch, there are anti-
time-ordered propagators associated with fields on the ‘‘2 ’’
branch and the Wightman functions associated with fields
different branches.

~iii ! The combinatoric factors of the Feynman diagra
are the same as those in the usual calculation ofS-matrix
elements in field theory.

For a scalar~bosonic! field F(x), the spatial Fourier
transforms of the nonequilibrium propagators are defined
~the extension to the case of a gauge or fermionic field
straightforward!
6-3
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Gk
.~ t,t8!5 i E d3xe2 ik•x^F~x,t !F~0,t8!&, ~2.2a!

Gk
,~ t,t8!5 i E d3xe2 ik•x^F~0,t8!F~x,t !&,

~2.2b!

Gk
11~ t,t8!5Gk

.~ t,t8!u~ t2t8!1Gk
,~ t,t8!u~ t82t !,

~2.2c!

Gk
22~ t,t8!5Gk

.~ t,t8!u~ t82t !1Gk
,~ t,t8!u~ t2t8!,

~2.2d!

Gk
12~ t,t8!5Gk

,~ t,t8!, ~2.2e!

Gk
21~ t,t8!5Gk

.~ t,t8!, ~2.2f!

where ^•••& denotes the expectation value with respect
the initial density matrix. From the definitions of the no
equilibrium propagators, Eqs.~2.2!, it is clear that they sat-
isfy the identity

Gk
11~ t,t8!1Gk

22~ t,t8!2Gk
12~ t,t8!2Gk

21~ t,t8!50.
~2.3!

The retarded and advanced propagators are defined as

GR,k~ t,t8!5Gk
11~ t,t8!2Gk

12~ t,t8!

5@Gk
.~ t,t8!2Gk

,~ t,t8!#u~ t2t8!,

GA,k~ t,t8!5Gk
11~ t,t8!2Gk

21~ t,t8!

5@Gk
,~ t,t8!2Gk

.~ t,t8!#u~ t82t !,

which are useful in the discussion of the pinch singularit
discussed in a later section~see Sec. VII!.

It now remains to specify the initial state. If we we
considering the situation inequilibrium, the natural initial
density matrix would describe athermal initial state for the
free particles at temperatureT. The density matrix of this
initial state isr̂5exp(2H0 /T), whereH0 is the free Hamil-
tonian of the system, and the time evolution is with the f
interacting Hamiltonian. This is tantamount to switching
the interaction att5t0. If the full Hamiltonian does not com
mute withH0, the density matrixevolves out of equilibrium
for t.t0. This choice of the thermal initial state for the fre
particles determines the usual Kubo-Martin-Schwing
~KMS! conditions on the Green’s functions:

Gk
,~ t,t8!5Gk

.~ t2 ib,t8!. ~2.4!

Perturbative expansions are carried out with the follow
real-time equilibrium free quasiparticle Green’s functions

Gk
.~ t,t8!5

i

2vk
$@11nB~vk!#e2 ivk(t2t8)

1nB~vk!eivk(t2t8)%, ~2.5a!
06500
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Gk
,~ t,t8!5

i

2vk
$nB~vk!e2 ivk(t2t8)

1@11nB~vk!#eivk(t2t8)%, ~2.5b!

vk5Ak21m2, nB~v!5@exp~bv!21#21,
~2.5c!

where~here and henceforth! k5uku, andm is the mass of the
field andnB(v) is the equilibrium Bose-Einstein distributio
function.

In a hot and/or dense medium the definition of the qua
particles whose distribution function we want to study m
require a resummation scheme such as, for example, th
hard thermal loops generalized to nonequilibrium situatio
In these cases, the Hamiltonian is rearranged in such a
that part of the interaction is self-consistently included in t
part of the Hamiltonian that commutes with the quasiparti
number operator, call it for convenienceH0, and specific
counterterms are included in the interacting partHI to avoid
double counting.

As we are interested in obtaining an equation of evolut
for a quasiparticle distribution function, the most natural in
tial state corresponds to a density matrix that is diagona
the basis of free quasiparticles, i.e., that commutes withH0.
This initial density matrix is then evolved in time with th
full Hamiltonian, and if the interaction does not commu
with H0, the distribution function of these quasiparticles w
evolve in time.

The distribution functionnk(t0) is the expectation value
of the operator that counts these quasiparticles in the in
density matrix. Under the assumption that the initial dens
matrix is diagonal in the basis of this quasiparticle numb
perturbative expansions are carried out with the followi
nonequilibrium free quasiparticle Green’s functions:

Gk
.~ t,t8!5

i

2vk
$@11nk~ t0!#e2 ivk(t2t8)1nk~ t0!eivk(t2t8)%,

~2.6a!

Gk
,~ t,t8!5

i

2vk
$nk~ t0!e2 ivk(t2t8)1@11nk~ t0!#eivk(t2t8)%,

~2.6b!

wherevk is the dispersion relation for the free quasipartic
In this picture the width of the quasiparticles arises fro
their interaction and is related to the relaxation rate of
distribution function in relaxation time approximation. Th
point will become more clear in the sections that follo
where we implement this program in detail.

Finally, it is easy to check that the~bosonic! free quasi-
particle Green’s functions, Eqs.~2.6! and ~2.5!, satisfy

Gk
.~ t,t8!5Gk

,~ t8,t !, ~2.7!

which will be useful in our following calculations.
6-4
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III. SELF-INTERACTING SCALAR THEORY

We begin our investigation with a self-interacting sca
theory. The Lagrangian density is given by

L@F#5
1

2
~]mF!22

1

2
m0

2F22
l

4!
F4, ~3.1!

wherem0 is the bare mass.
As mentioned in the Introduction, the first step towar

understanding the kinetic regime is the identification of
microscopictime scales in the problem. In a medium, t
bare particles are dressed by the interactions becoming
siparticles. One is interested in describing the relaxation
these quasiparticles. Thus the important microscopic t
scales are those associated with the quasiparticles and no
bare particles. If a kinetic equation is obtained in some p
turbative scheme, such a scheme should be in terms o
quasiparticles, which already implies a resummation of
perturbative expansion. This is precisely the rationale beh
the resummation of the hard thermal loops in finite tempe
ture field theory@27–29# and also behind the self-consiste
treatment@7,8#.

In a scalar field theory inequilibrium such a self-
consistent resummation can be implemented by writing
the Lagrangian

m0
25meff

2 1dm2, ~3.2!

where meff is the renormalized andtemperature-dependen
quasiparticle thermal effective mass which enters in
propagators, anddm2 is a counterterm which will cancel
subset of Feynman diagrams in the perturbative expan
and is considered part of the interaction Lagrangian.
shown in Ref. @44# for the scalar field theory case, th
method implements a resummation akin to the hard ther
loops in a gauge theory@27–29#. Parwani showed@44# that
this resummation is effectively implemented by solving t
following self-consistent gap equation formeff

2 @8,44,45#:

meff
2 5m0

21
l

2
^F2&, ^F2&5E d3q

~2p!3

112nB~vk!

2vk
,

~3.3!

with vk5Ak21meff
2 . The divergences~quadratic and loga-

rithmic in terms of a spatial momentum cutoff! in the zero-
temperature part of Eq.~3.3! can be absorbed into a reno
malization of the bare mass by a subtraction at so
renormalization scale. A convenient choice corresponds
renormalization scale atT50 andm(T50)5m is the zero-
temperature mass.

For T@meff , the solution of the gap equation is given b
@44,45#

meff
2 5m21

l

2 H T2

12
2

meff T

4p
1OS meff

2 lnFmeff

T G D J . ~3.4!

In particular, for T@AlT@m, we can neglect the zero
temperature massm and obtain
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lT2

24
1O~l3/2T2!. ~3.5!

In the massless case,meff serves as an infrared cutoff for th
loop integrals@44,46#. The leading term of Eq.~3.5! provides
the correct microscopic time scale at large temperature.

We note that this renormalized and temperatu
dependent mass determines the important time scales in
medium but isnot the position of the quasiparticle pole~or,
strictly speaking, resonance!.

When the temperature is much larger than the renorm
ized zero-temperature mass, the hard thermal loop resum
tion is needed to incorporate the physically relevant time a
length scales in the perturbative expansion. For a hard q
siparticlek;T, while for a soft quasiparticlek&AlT; hence
the longest microscopic time scale of the system istmicro

;1/AlT;1/meff .

A. Quantum kinetic equation

In this subsection we obtain the evolution equations
the distribution functions of quasiparticles. For this we co
sider an initial state out of equilibrium described by a dens
matrix that is diagonal in the basis of the free quasipartic
but with nonequilibrium distribution functions. If the me
dium is hot, these quasiparticles will have an effective m
meff which will result from medium effects, much in th
same manner as the temperature-dependent thermal ma
the equilibrium situation described above. This mass will
very different from the bare massm0 in the absence of me
dium effects and must be taken into account for the corr
assessment of the microscopic time scales. Thus, we w
the Hamiltonian in terms of the in medium dressed massmeff

and a countertermdm25m0
22meff

2 which will be treated as
part of the perturbation and required to cancel the mass s
consistently in perturbation theory. This is the nonequil
rium generalization of the resummation described above
the equilibrium case. We emphasize thatmeff

2 depends on the
initial distribution of quasiparticles. This observation will be
come important later when we discuss the time evolution
the distribution functions and therefore of the effective ma

We write the Hamiltonian of the theory as

H5H01H int , ~3.6a!

H05
1

2E d3x@P21~¹F!21meff
2 F2#, ~3.6b!

H int5E d3xF l

4!
F41

1

2
dm2F2G , ~3.6c!

whereP(x,t)5Ḟ(x,t) is the canonical momentum, and th
mass counterterm has been absorbed in the interaction.
and henceforth, an overdot denotes derivative with respec
time. The free part of the HamiltonianH0 describes free
quasiparticles of renormalized finite-temperature massmeff
and is diagonal and Gaussian in terms of free quasipar
creation and annihilation of operatorsa†(k) anda(k).
6-5
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With this definition, the lifetime of the quasiparticles wi
be a consequence of interactions. In this manner, the n
equilibrium equivalent of the hard thermal loops~in the
sense that the distribution functions are nonthermal! which in
this theory amount to local terms, have been absorbed in
definition of the effective mass. This guarantees that the
croscopic time scales are explicit in the quasiparticle Ham
tonian.

As discussed in the previous section, we consider that
initial density matrix at timet5t0 is diagonal in the basis o
free quasiparticles, but with out-of-equilibrium initial distr
bution functionsnk(t0). The Heisenberg field operators
time t are now written as

F~x,t !5E d3k

~2p!3/2
F~k,t !eik•x,

~3.7a!

F~k,t !5
1

A2vk

@a~k,t !1a†~2k,t !#,

P~x,t !5E d3k

~2p!3/2
P~k,t !eik•x,

~3.7b!

P~k,t !5 iAvk

2
@a†~2k,t !2a~k,t !#,

wherea†(k,t) anda(k,t) are, respectively, creation and a
nihilation operators at timet andvk5Ak21meff

2 . The expec-
tation value of quasiparticle number operatorsnk(t) can be
expressed in terms of the fieldF(k,t) and the conjugate
momentumP(k,t) as follows:

nk(t)5^a†(k,t)a(k,t)&

5
1

2vk
$^P~k,t !P~2k,t !&1vk

2^F~k,t !F~2k,t !&

1 ivk@^F~k,t !P~2k,t !&2^P~k,t !F~2k,t !&#%,

~3.8!

where the bracketŝ•••& mean an average over the Gauss
density matrix defined by the initial distribution function
nk(t0). The time-dependent distribution~3.8! is interpreted
as the quasiparticle distribution function.

The interaction Hamiltonian in momentum space is giv
by

H int5
l

4!

1

~2p!3E )
i 51

4

d3qiF~qi ,t !d3~q11q21q31q4!

1
dm2

2 E d3qF~q,t !F~2q,t !. ~3.9!

Taking the derivative ofnk(t) with respect to time and usin
the Heisenberg field equations, we find
06500
n-

he
i-
l-

e

n

n

ṅk~ t !52
1

2vk
Fl6 ^@F3~k,t !#P~2k,t !1P~k,t !@F3~k,t !#&

1dm2^F~k,t !P~2k,t !1P~k,t !F~2k,t !&G ,
~3.10!

where we use the compact notation

@F3~k,t !#[
1

~2p!3E d3q1d3q2d3q3F~q1 ,t !

3F~q2 ,t !F~q3 ,t !d3~k2q12q22q3!.

~3.11!

In a perturbative expansion care is needed to handle
canonical momentum@P(k,t)5Ḟ(k,t)# and the scalar field
at the same time because of Schwinger terms. This amb
ity is avoided by noticing that

^P~k,t !@F3~2k,t !#&

5Tr$r̂~ t0!Pk~ t !@F3~2k,t !#%

[ lim
t→t8

]

]t8
Tr$@F3~2k,t !#1r̂~ t0!F2~k,t8!%

5
]

]t8
^@F3~2k,t !#1F2~k,t8!&U

t85t

, ~3.12!

where we used the cyclic property of the trace and the ‘‘6 ’’
superscripts for the fields refer to field insertions obtained
variational derivatives with respect to sources in the forw
(1) time branch and backward (2) time branch in the non-
equilibrium generating functional.

We now use the canonical commutation relation betwe
P and F and define the mass countertermdm25lD/6 to
write the above expression as

ṅk~ t !52
l

12vk
H ]

]t8
$2^@F3~k,t !#1F2~2k,t8!&

1D@^F1~k,t !F2~2k,t8!&1^F1~k,t8!

3F2~2k,t !&#% t5t813i E d3q

~2p!3

3^F1~q,t !F2~2q,t !&J . ~3.13!

The right-hand side of Eq.~3.13! can be obtained perturba
tively in weak coupling expansion inl. Such a perturbative
expansion is in terms of the nonequilibrium vertices a
Green’s functions, Eqs.~2.2!, with the basic Green’s func
tions given by Eqs.~2.6!. At orderO(l) the right-hand side
6-6
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of Eq. ~3.13! vanishes identically. This is a consequence
the fact that the initial density matrix is diagonal in the ba
of free quasiparticles.

Figures. 1a–1c display the contributions up to two loo
to the kinetic equation~3.13!. The tadpole diagrams, de
picted in Figs. 1a and 1b as well as the last term in
~3.13!, are canceled by the proper choice ofD.

An important point to notice is that these Green’s fun
tions include the proper microscopic scales as the contr
tions of the hard thermal loops have been incorporated
summing the tadpole diagrams. The propagators enterin
the calculations are the resummed propagators. The te
with D are required to cancel the tadpoles to all orders.

Thus, from the formidable expression~3.13! only the first
term remains afterD is properly chosen in order to cancel th

FIG. 1. The Feynman diagrams contribute to the quantum
netic equation for a self-interacting scalar theory up to two-loo
order. The tadpole contributions~a! and ~b! are canceled by a
proper choice ofD.
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tadpole diagrams. This requirement guarantees that the m
in the propagators is the effective mass that includes
microscopic time scales. Hence, we find that the final fo
of the kinetic equation is given by

ṅk~ t !52
l

6vk

]

]t8
@^@F3~k,t !#1F2~2k,t8!&# t5t8 ,

~3.14!

with the understanding that no tadpole diagrams contrib
to the above equations as they are automatically cancele
the terms containingD in Eq. ~3.13!.

To lowest order the condition that the tadpoles are c
celed leads to the following condition onD:

D523E d3q

~2p!3

112nq~ t0!

2vq
; ~3.15!

therefore the effective mass is the solution to the s
consistent gap equation

meff
2 5m0

21
l

2E d3q

~2p!3

112nq~ t0!

2vq
, vq5Aq21meff

2 .

~3.16!

We see that the requirement that the term proportional toD
in the kinetic equation cancel the tadpole contributions
equivalent to the hard thermal loop resummation in the eq
librium case@44# and makes explicit thatmeff

2 is a functional
of the initial nonequilibrium distribution functions.

As will be discussed in detail below, such an expans
will be meaningful for timest!t rel5unk(t)/ṅk(t)u, wheret rel
is the relaxational time scale for the nonequilibrium distrib
tion function. For small enough coupling we expect thatt rel
will be large enough such that there is a wide separa
between the microscopic and the relaxational time scales
will warrant such an approximation~see discussion below!.

To two-loop order, the time evolution of the distributio
function that follows from Eq.~3.14! is given by

i-
s

ṅk~ t !5
l2

3

1

2vk
E d3q1

~2p!32vq1

d3q2

~2p!32vq2

d3q3

~2p!32vq3

E
t0

t

dt9~2p!3d3~k2q12q22q3!

3$N1~ t0!cos@~vk1vq1
1vq2

1vq3
!~ t2t9!#13N2~ t0!cos@~vk1vq1

1vq2
2vq3

!~ t2t9!#

13N3~ t0!cos@~vk2vq1
2vq2

1vq3
!~ t2t9!#1N4~ t0!cos@~vk2vq1

2vq2
2vq3

~ t2t9!#%, ~3.17!

where

N1~ t !5@11nk~ t !#@11nq1
~ t !#@11nq2

~ t !#@11nq3
~ t !#2nk~ t !nq1

~ t !nq2
~ t !nq3

~ t !, ~3.18a!

N2~ t !5@11nk~ t !#@11nq1
~ t !#@11nq2

~ t !#nq3
~ t !2nk~ t !nq1

~ t !nq2
~ t !@11nq3

~ t !#, ~3.18b!

N3~ t !5@11nk~ t !#nq1
~ t !nq2

~ t !@11nq3
~ t !#2nk~ t !@11nq1

~ t !#@11nq2
~ t !#nq3

~ t !, ~3.18c!
6-7
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N4~ t !5@11nk~ t !#nq1
~ t !nq2

~ t !nq3
~ t !2nk~ t !@11nq1

~ t !#@11nq2
~ t !#@11nq3

~ t !#. ~3.18d!

The kinetic equation~3.17! is retarded and causal. The different contributions have a physical interpretation in terms
‘‘gain minus loss’’ processes in the plasma. The first term describes the creation of four particles minus the destructio
particles in the plasma, the second and fourth terms describe the creation of three particles and destruction of o
destruction of three and creation of one, and the third term is thescatteringof two particles off two particles and is the usu
Boltzmann term.

Since the propagators entering in the perturbative expansion of the kinetic equation are in terms of the distribution f
at the initial timet0, the time integration can be done straightforwardly leading to the following equation:

ṅk~ t !5
l2

3 E dvR@v,k;Ni~ t0!#
sin@~v2vk!~ t2t0!#

p~v2vk!
, ~3.19!

whereR@v,k;Ni(t0)# is given by

R@v,k;Ni~ t0!#5
p

2vk
E d3q1

~2p!32vq1

d3q2

~2p!32vq2

d3q3

~2p!32vq3

~2p!3d3~k2q12q22q3!@d~v1vq1
1vq2

1vq3
!N1~ t0!

13d~v1vq1
1vq2

2vq3
!N2~ t0!13d~v2vq1

2vq2
1vq3

!N3~ t0!1d~v2vq1
2vq2

2vq3
!N4~ t0!#.

~3.20!
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We are now ready to solve the kinetic equation deriv
above. SinceR@v,k;Ni(t0)# is fixed at initial timet0, Eq.
~3.19! can be solved by direct integration overt, thus leading
to

nk~ t !5nk~ t0!

1
l2

3 E dvR@v,k;Ni~ t0!#
12cos@~v2vk!~ t2t0!#

p~v2vk!2
.

~3.21!

This expression gives the time evolution of the quasipart
distribution function to lowest order in perturbation theor
but only for early times. To make this statement more prec
consider the limitt@t0 in the expression between brackets
Eq. ~3.21! which can be recognized from Fermi’s golden ru
of elementary time-dependent perturbation theory:

lim
t2t0→`

12cos@~v2vk!~ t2t0!#

p~v2vk!2
5~ t2t0!d~v2vk!.

~3.22!

A more detailed evaluation of the long-time limit is obtain
by using the following expression@24#:

E
2a

` dy

y2 ~12cosyt!p~y!

5
t→`

ptp~0!1PE
2a

` dy

y2 @p~y!2p~0!#1OS 1

t D ,

~3.23!
06500
d

e
,
e

wherea is a fixed positive number, andp(y) is a smooth
function for 2a<y,` and is regular aty50. Thus,pro-
vided that R@v,k;Ni(t0)# is finite atv5vk , we findnk(t)
is given by

nk~ t !5nk~ t0!1
l2

3
R@vk ,k;Ni~ t0!#~ t2t0!

1nonsecular terms. ~3.24!

The term that grows linearly with time is asecular term, and
by nonsecular termsin Eq. ~3.24! we refer to terms that are
bound at all times. The approximation above, replacing
oscillatory terms with resonant denominators bytd(v
2vk), is the same as that invoked in ordinary tim
dependent perturbation theory leading to Fermi’s gold
rule.

Clearly, the presence of secular terms in time restricts
validity of the perturbative expansion to a time intervalt
2t0!t rel with

t rel~k!'
3nk~ t0!

l2R@vk ,k;Ni~ t0!#
. ~3.25!

Since the time scales in the integral in Eq.~3.21! are of the
order of or shorter thantmicro;1/meff, the asymptotic form
given by Eq.~3.24! is valid for t2t0@tmicro. Therefore for
weak coupling there is a regime ofintermediate asymptotics
in time

tmicro!t2t0!t rel~k! ~3.26!

such that~i! the corrections to the distribution function
dominated by the secular term and~ii ! perturbation theory is
valid.
6-8
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We note two important features of this analysis.
~i! In the intermediate asymptotic regime~3.26! the only

explicit dependence on the initial timet0 is in the secular
term, sinceR@vk ,k;Ni(t0)# depends ont0 only implicitly
through the initial distribution functions. These observatio
will become important for the analysis that follows below

~ii ! R@vk ,k;Ni(t0)# given by Eq. ~3.20! with Eqs.
~3.18a!–~3.18d! evaluated att0 vanishesif the initial distri-
bution functions are the equilibrium ones as a result of
on-shell delta functions and the equilibrium relation
1nB(vq)5exp(bvq)nB(vq); in this case there are no sec
lar terms in the perturbative expansion.

To highlight the significance of the second point above
a manner that will allow us to establish contact with the iss
of pinch singularities in a later section, we note that t
secular term in Eq.~3.24! corresponds to the net change
quasiparticles distribution function in the time intervalt-t0.
To see this more explicitly, let us rewrite

l2

3
R@vk ,k;Ni~ t0!#5

2 i

2vk
†@11nk~ t0!#SR

,~vk ,k;t0!

2nk~ t0!SR
.~vk ,k;t0!‡, ~3.27!

where

SR
.~vk ,k;t0!2SR

,~vk ,k;t0![2i Im SR~vk ,k;t0!

is the imaginary part of the on-shellretarded scalar self-
energy@8# calculated to two-loop order with the initial dis
tribution functionsnk(t0). Indeed, the first and the secon
terms in Eq.~3.27!, respectively, correspond to the ‘‘gain
and the ‘‘loss’’ parts in the usual Boltzmann collision term
Hence one can easily recognize thatl2R@vk ,k;Ni(t0)#/3 is
the net production rate of quasiparticles per unit time.1

Moreover, the absence of secular term for a system in t
mal equilibrium @for which nk(t0)5nB(vk)# is a conse-
quence of the KMS condition for the self-energy in therm
equilibrium:

SR
.~vk ,k!5ebvk SR

,~vk ,k!. ~3.28!

B. Dynamical renormalization group:
Resummation of secular terms

The dynamical renormalization group is a systematic g
eralization of multiple scale analysis and sums the sec
terms, thus improving the perturbative expansion@47,48#. It
was originally introduced to improve the asymptotic beha
ior of solutions of differential equations@47,48# to study pat-
tern formation in condensed matter systems and has s
been adapted to studying the nonequilibrium evolution
mean fields in quantum field theory@49# and the time evolu-
tion of quantum systems@50#.

For discussions of the dynamical renormalization group
other contexts, including applications to problems in qu
tum mechanics and quantum field theory, see Refs.@47–50#.

1See Sec. 4.4 in Ref.@43#, especially pp. 83–84.
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In this section we implement the dynamical renormaliz
tion group resummation of secular divergences to impro
the perturbative expansion following the formulation pr
sented in Ref.@24#.

This is achieved by introducing the renormalized init
distribution functionsnp(t), which are related to the bar
initial distribution functionnp(t0) via a renormalization con-
stantZp(t,t0) by

np~ t0!5Zp~t,t0!np~t!, Zp~t,t0!511
l2

3
zp

(1)~t,t0!1•••,

~3.29!

wheret is an arbitrary renormalization scale andzp
(1)(t,t0)

will be chosen to cancel the secular term at a time scalet.
Substituting Eq.~3.29! into Eq. ~3.24!, to O(l2) we obtain

nk~ t !5nk~t!1
l2

3
$zk

(1)~t,t0!nk~t!

1~ t2t0!R@vk ,k;Ni~t!#%1O~l4!. ~3.30!

To this order, the choice

zk
(1)~t,t0!52~t2t0!R@vk ,k;Ni~t!#/nk~t! ~3.31!

leads to

nk~ t !5nk~t!1
l2

3
~ t2t!R@vk ,k;Ni~t!#1O~l4!.

~3.32!

Whereas the original perturbative solution was only valid
times such that the contribution from the secular term
mains very small compared to the initial distribution functio
at time t0, the renormalized solution, Eq.~3.32!, is valid for
time intervalst-t such that the secular term remains sma
thus by choosingt arbitrarily close tot we have improved
the perturbative expansion.

To find the dependence ofnk(t) on t, we make use of the
fact thatnk(t) does not depend on thearbitrary scalet: a
change in the renormalization pointt is compensated by a
change in the renormalized distribution function. This lea
to the dynamical renormalization group equationto lowest
order:

d

dt
nk~t!2

l2

3
R@vk ,k;Ni~t!#50. ~3.33!

This renormalization of the distribution function also a
fects the effective mass of the quasiparticles sincemeff

2 is
determined from the self-consistent equation~3.16! which in
turn is a consequence of the tadpole cancelation consiste
in perturbation theory. Since the effective mass is a fu
tional of the distribution function it will be renormalize
consistently. This is physically correct since the in-mediu
effective masses will change under the time evolution of
distribution functions.

Choosing the arbitrary scalet to coincide with the timet
in Eq. ~3.33!, we obtain theresummedkinetic equation
6-9
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ṅk~ t !5
l2

3

p

2vk
E d3q1

~2p!32vq1

d3q2

~2p!32vq2

d3q3

~2p!32vq3

~2p!3d3~k2q12q22q3!@d~vk1vq1
1vq2

1vq3
!N1~ t !

13d~vk1vq1
1vq2

2vq3
!N2~ t !13d~vk2vq1

2vq2
1vq3

!N3~ t !1d~vk2vq1
2vq2

2vq3
!N4~ t !#, ~3.34!
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where theNi(t) are given in Eqs.~3.18a!–~3.18d!. To avoid
cluttering of notation in the above expression we have
made explicit the fact that the frequenciesvq depend on time
through the time dependence ofmeff which is in turn deter-
mined by the time dependence of the distribution functi
Indeed, the renormalization group resummation leads at o
to the conclusion that the cancellation of tadpole terms b
proper choice ofD requires that at every timet the effective
mass is the solution of thetime-dependentgap equation

meff
2 ~ t !5m0

21
l

2E d3q

~2p!3

112nq~ t !

2vq~ t !
,

vq~ t !5Aq21meff
2 ~ t !, ~3.35!

where nq(t) is the solution of the kinetic Equation~3.34!.
Thus, the quantum kinetic equation that includes a none
librium generalization of the hard thermal loop resummat
in this scalar theory is given by Eq.~3.34! with the frequen-
cies vq→vq(t) given as self-consistent solutions of th
time-dependent gap equation~3.35! and of the kinetic equa
tion ~3.34!.

The quantum kinetic equation~3.34! is thereforemore
general than the familiar Boltzmann equation for a sca
field theory in that it includes the proper in medium modi
cations of the quasiparticle masses. This approach prov
an alternative derivation of the self-consistent method p
posed in Ref.@7#.

It is now evident that the dynamical renormalizatio
group systematically resums the secular terms and the c
sponding dynamical renormalization group equation extra
the slow evolutionof the nonequilibrium system.

For small departures from equilibrium the time scales
relaxation can be obtained by linearizing the kinetic equat
~3.34! around the equilibrium solution att5t0. This is the
relaxation time approximation which assumes that the dis
bution function for a fixed mode of momentumk is per-
turbed slightly off equilibrium such thatnk(t0)5nB(vk)
1dnk(t0), while all the other modes remain in equilibrium
i.e., nk1q(t0)5nB(vk1q) for qÞ0.

Recognizing that only the on-shell delta function th
multiplies the scattering termN3(t) in Eq. ~3.34! is satisfied,
we find that the linearized kinetic equation~3.34! reads

dṅk~ t !52g~k!dnk~ t !, ~3.36!

whereg(k) is the scalar relaxation rate:
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g~k!5
l2p

2vk
E d3q1

~2p!32vq1

d3q2

~2p!32vq2

d3q3

~2p!32vq3

3~2p!3d3~k2q12q22q3!d~vk2vq1
2vq2

1vq3
!

3$@11nB~vq1
!#@11nB~vq2

!#nB~vq3
!

2nB~vq1
!nB~vq2

!@11nB~vq3
!#%. ~3.37!

Solving Eq. ~3.36! with the initial condition dnk(t5t0)
5dnk(t0), we find that the quasiparticle distribution functio
in the linearized approximation evolves in time in the follow
ing manner:

dnk~ t !5dnk~ t0!e2g(k)(t2t0). ~3.38!

The linearized approximation gives the time scales for rel
ation for situations close to equilibrium. In the case of s
momentum (T@meff@k) and high temperaturelT2@m2 we
obtain @8#

t rel~k'0!5@g~k'0!#21'
32A24p

l3/2T
. ~3.39!

For very weak coupling~as we have assumed!, the relax-
ational time scale is much larger that the microscopic o
tmicro;1/meff'1/AlT, since

t rel

tmicro
;

1

l
@1. ~3.40!

This verifies the assumption of separation of microsco
and relaxation scales in the weak coupling limit.

IV. COMPARISON TO THE USUAL RENORMALIZATION
GROUP AND GENERAL STRATEGY

In order to relate this approach to obtain kinetic equatio
using adynamical renormalization groupto more familiar
situations we now discuss two simple cases in which
same type of method leads to a resummation of the per
bative series in the same manner: the first is the simple c
of a weakly damped harmonic oscillator with a small dam
ing coefficient and the second, closer to the usual renorm
ization group ideas, is the scattering amplitude in a fo
dimensional scalar theory.

A. Weakly damped harmonic oscillator

Consider the equation of motion for a weakly damp
harmonic oscillator:
6-10
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ÿ1y52e ẏ, e!1.

Attempting to solve this equation in a perturbative expans
in e leads to the lowest order solution

y~ t !5AeitF12
e

2
t G1c.c.1nonsecular terms,

where the term that grows in time, i.e., the linear secu
term, leads to the breakdown of the perturbative expansio
time scalestbreak}1/e. The dynamical renormalization grou
introduces a renormalization of the complex amplitude a
time scale t in the form A5Z(t)A(t) with Z(t)51
1z1(t)e1•••. Choosingz1 to cancel the secular term a
this time scale leads to

y~ t !5A~t!eitF12
e

2
~ t2t!G1c.c.

The solutiony(t) cannot depend on the arbitrary scale
which the secular term~divergence! has been subtracted, an
this independence]y(t)/]t50 leads to the following renor
malization group equation to lowest order ine:

dA~t!

dt
1

e

2
A~t!50.

Now choosingt5t, the renormalization-group-improved so
lution is given by

y~ t !5e2et/2@A~0!eit1c.c.#.

This is obviously the correct solution toO(e). The interpre-
tation of the renormalization group resummation is ve
clear in this simple example: the perturbative expansion
carried out to a time scalet!1/e within which perturbation
theory is valid. The correction is recognized as a chang
the amplitude, so at this time scale the correction is absor
in a renormalization of the amplitude and the perturbat
expansion is carried out to a longer time but in terms of
amplitude at the renormalization scale. The dynamical
renormalization group equation is the differential form
this procedure of evolving in time, absorbing the correctio
into the amplitude~and phases!, and continuing the evolution
in terms of the renormalized amplitudes and phases. As
will see with the next example this is akin to the renorm
ization group in field theory.

B. Scattering amplitude in scalar field theory

Consider the scalar field theory described by the Lagra
ian density~3.1! defined as a field theory in four dimension
with an upper momentum cutoffL and consider for simplic-
ity the massless case. The one-particle-irreducible~1PI! four
point function~two-particle to two-particles scattering amp
tude! at the off-shell symmetric point is given to one loop
zero temperature in Euclidean space by

G (4)~p,p,p,p!5l02
3

2
l0

2lnS L

p D1O~l0
3!, ~4.1!
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wherel0 is the bare coupling, andp is the Euclidean four-
momentum. Clearly perturbation theory breaks down

L/p*e1/l0
2
.

Let us introduce the renormalized coupling constant a
scalek as usual as

l05Zl~k!l~k!, Zl~k!511z1~k!l~k!1O~l3!,

and choosez1(k) to cancel the logarithmic divergence at
arbitrary renormalization scalek. Then in terms ofl(k) the
scattering amplitude becomes

G (4)~p,p,p,p!5l~k!1
3

2
l2~k!ln

p

k
1O~l3!, ~4.2!

with G (4)(k,k,k,k)5l(k). The scattering amplitude doe
not depend on the arbitrary renormalization scalek and this
independence impliesk]G (4)(p,p,p,p)/]k50, which to
lowest order leads to therenormalization group equation

k
dl~k!

dk
5

3

2
l2~k!1O~l3!, ~4.3!

wherebl[ 3
2 l2(k)1O(l3) is recognized as the renorma

ization group beta function. Solving this renormalizatio
group equation with an initial conditionl( p̄)5l̄ that deter-
mines the scattering amplitude at some value of the mom
tum and choosingk5p in Eq. ~4.2!, one obtains the
renormalization-group-improved scattering amplitude~at an
off-shell point!

G (4)~p,p,p,p; p̄,l̄ !5l~p!, ~4.4!

with l(p) the solution of the renormalization group equati
~4.3!:

l~p!5
l̄

12~3l̄/2!ln~p/ p̄!
.

The connection between the renormalization group in m
mentum space and the dynamical renormalization group
real time ~resummation of secular terms! used in previous
sections is immediate through the identification

t0⇔ ln~L/ p̄!, t⇔ ln~p/ p̄!, t⇔ ln~k/ p̄!,

which when replaced into Eq.~4.1! illuminates the equiva-
lence with secular terms.

This simple analysis highlights how thedynamical renor-
malization groupdoes precisely the same in the real-tim
formulation of kinetics as the renormalization group in E
clidean or zero-temperature field theory. Much in the sa
manner that the renormalization-group-improved scatter
amplitude~4.4! is a resummationof the perturbative expan
sion, the kinetic equations obtained from the dynami
renormalization group improvement represent a resumma
of the perturbative expansion. The lowest order renormal
tion group equation~4.3! resums the leading logarithms
6-11
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while the lowest orderdynamical renormalization group
equation resums the leading secular terms.

We can establish a closer relationship to the usual re
malization program of field theory in its momentum sh
version with the following alternative interpretation of th
secular terms and their resummation@24#.

The initial distribution at a timet0 is evolved in time
perturbatively up to a time scalet01Dt such that the pertur
bative expansion is still valid, i.e.,t rel@Dt with t rel the re-
laxational time scale. Secular terms begin to dominate
perturbative expansion at a time scaleDt@tmicro with tmicro
the microscopic time scale. Thus, if there is a separation
time scales such thatt rel@Dt@tmicro, then in this intermedi-
ate asymptotic regime perturbation theory is reliable
secular terms appear and can be isolated. A renormaliza
of the distribution function absorbs the contribution from t
secular terms. The ‘‘renormalized’’ distribution function
used as an initial condition att01Dt to iterate forward in
time to t012Dt using perturbation theory but withthe
propagators in terms of the distribution function at the tim
scale t01Dt. This procedure can be carried out ‘‘infinites
mally’’ ~in the sense compared with the relaxational tim
scale! and the differential equation that describes the chan
of the distribution function under the intermedia
asymptotic time evolution is the dynamical renormalizati
group equation.

This has an obvious similarity to the renormalization
terms of integrating in momentum shells; the result of in
grating out degrees of freedom in a momentum shell
absorbed in a renormalization of the couplings and an ef
tive theory at a lower scale but in terms of the effecti
couplings. This procedure is carried out infinitesimally a
the differential equation that describes the changes of
couplings under the integration of degrees of freedom
these momentum shells is the renormalization group eq
tion. For other examples of the dynamical renormalizat
group and its relation to the Euclidean renormalization p
gram see Ref.@24#.

An important aspect of this procedure of evolving in tim
and ‘‘resetting’’ the distribution functions is that in this pro
cess it is implicitly assumed that the density matrix is dia
onal in the basis of free quasiparticles. Clearly, if at the i
tial time the density matrix was diagonal in this bas
because the interaction Hamiltonian does not commute w
the density matrix, off-diagonal density matrix elements w
be generated upon time evolution. In resetting the distri
tion functions and using the propagators in terms of th
updated distribution functions we have neglected o
diagonal correlations, for example, in terms of the creat
and annihilation of quasiparticlesa†(k) anda(k) upon time
evolution new correlations of the form̂a(k)a(k)& and its
Hermitian conjugate will be generated. In neglecting the
terms we are introducing acoarse graining@8#; thus several
stages of coarse graining had been introduced:~i! integrating
in time up to an intermediate asymptotics and resumming
secular terms neglect transient phenomena, i.e., aver
over the microscopic time scales, and~ii ! off-diagonal matrix
elements~in the basis of free quasiparticles! had been ne-
glected. This coarse graining also has an equivalent in
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language of Euclidean renormalization: these are the ir
evant couplings that are generated upon integrating
shorter scales. Keepingall of the correlations in the densit
matrix would be equivalent to a Wilsonian renormalizati
in which all possible couplings are included in the Lagran
ian and all of them are maintained in the renormalization
the same footing.

C. Quantum kinetics

Having provided a method to obtain kinetic equations
implementing the dynamical renormalization group resu
mation and compared this method to the improvement
asymptotic solutions of differential equations as well as w
the more familiar renormalization group of Euclidean qua
tum field theory we are now in position to provide a simp
recipe to obtain kinetic equations from the microscop
theory in the general case.

~1! The first step requires the proper identification of t
quasiparticle degrees of freedom and their dispersion r
tions that is frequency vs momentum which is determin
from the real part of the self-energies on shell. The damp
of these excitations will arise as a result of their interactio
and will be accounted for by the kinetic description. Defi
the number operatorNk(t) that counts these quasiparticles
phase space and split the Hamiltonian into a part that c
mutes with this number operator~noninteracting! and a part
that changes the particle number~interacting!. It is important
that these particles or quasiparticles be defined in term
the correct microscopic time scales by including the pro
frequencies in their definition. In the case of scalarf4 near
equilibrium at high temperature the renormalized mass is
hard thermal loop resummed; such would also be the cas
a gauge theory in thermal equilibrium in the HTL limit. Th
is important to determine the regime of validity of the pe
turbative expansion within which the secular terms can
identified unambiguously, i.e., the intermediate asymptot
It is here where the assumption of a wide separation of t
scales enters. Although in most circumstances the nonin
acting part is simply the free field Hamiltonian~in terms of
renormalized masses and fields!, there could be other cir-
cumstances in which the noninteracting part is more com
cated, for example, in the case of collective modes. The
tial density matrix is usually assumed to be diagonal in
basis of this number operator but with nonequilibrium dist
bution functions at the initial time. The real-time propagato
are then given by Eqs.~2.6!.

~2! Use the Heisenberg equations of motion to obtain
general equation forṅk(t) with nk(t)5^Nk(t)&. Perform a
perturbative expansion of this equation to the desired or
in perturbation theory, using the Feynman rules of real-ti
perturbation theory and the propagators~2.6!. The resulting
expression is a functional of the distribution functionsat the
initial time. The only time dependence arises from the e
plicit time dependence of the free propagators~2.6!. Integrate
this expression in time andrecognize the secular terms.

~3! Introduce the renormalization of the distribution fun
tions as in Eqs.~3.29! with the renormalization constan
Z(t) expanded consistently in perturbation theory as in E
6-12
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~3.29!. Fix the coefficientsz(n)(t) to cancel the secular term
consistently at the time scalet. Obtain the renormalization
group equation from thet independence of the distributio
function, i.e., dnk /dt50. This dynamical renormalization
group equationis the quantum kinetic equation.

Corollary. The similarity with the renormalization of cou
plings explored in the previous section suggests that the
lisional terms of the quantum kinetic equation can be int
preted as beta functions of the dynamical renormaliza
group and that the space of distribution functions can
interpreted as a coupling constant space. The dynam
renormalization group trajectories determine the flow in t
space; therefore fixed points of the dynamical renormal
tion group describe stationary solutions with given distrib
tion functions. Thermal equilibrium distributions are th
fixed points of the dynamical renormalization group. Fu
thermore, there can beother stationary solutions with non
thermal distribution functions, for example, describing turb
lent behavior@51#.

Linearizing around these fixed points corresponds to
earizing the kinetic equation and the linear eigenvalues
related to therelaxation rates; i.e., linearization around the
fixed points of the dynamical renormalization group cor
sponds to therelaxation time approximation.

We now implement the program described by steps~1!–
~3! in several relevant cases in scalar and gauge field th
ries.

V. O„4… LINEAR SIGMA MODEL:
COOL PIONS AND SIGMA MESONS

In this section we consider anO(4) linear sigma model in
the strict chiral limit, i.e., without an explicit chiral symme
try breaking term:

L@p,s#5
1

2
~]mp!21

1

2
~]ms!22

l

4
~p21s22 f p

2 !2,

~5.1!

wherep5(p1,p2,p3) and f p;93 MeV is the pion decay
constant. At high temperatureT.Tc , whereTc;O( f p) @52#
is the critical temperature, theO(4) symmetry is restored by
a second order phase transition.

In the symmetric phase, the pions and the sigma me
are degenerate and the linear sigma model reduces to a
interacting scalar theory, analogous to that discussed in
III. Thus, we limit our discussion here to the low temperatu
broken symmetry phase in which the temperatureT! f p .
Since at low temperature theO(4) symmetry is spontane
ously broken via the sigma meson condensate, we shift
sigma fields(x,t)5s̄(x,t)1v, wherev is temperature de
pendent and yet to be determined. In equilibriumv is fixed
by requiring that^s̄(x,t)&50 to all orders in perturbation
theory for temperatureT,Tc . In the real-time formulation
of nonequilibrium quantum field theory, this split must b
performed on both branches of the path integral. Along
forward (1) and backward (2) branches the sigma fiel
s6(x,t) is written as
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s6~x,t !5s̄6~x,t !1v,

with ^s̄6(x,t)&50. The expectation valuev is obtained by
requiring that the expectation value ofs̄(x,t) vanish in equi-
librium to all orders in perturbation theory. Using the tadpo
method@42# to one-loop order the equation that determinesv
is given by

v@v22 f p
2 1^p2&13^s̄2&#50. ~5.2!

Once the solution of this equation forv is used in the per-
turbative expansion up to one loop, the tadpole diagrams
arise from the shift in the field cancel. This feature of ca
cellation of tadpole diagrams that would result in an exp
tation value ofs̄ by the consistent use of the tadpole equ
tion persists to all orders in perturbation theory. Furthermo
away from equilibrium, when̂p2& and^s2& depend on time
through the time dependence of the distribution function,
tadpole condition~5.2! implies that v becomes implicitly
time dependent.

A solution of Eq.~5.2! with vÞ0 signals broken symme
try and massless pions~in the strict chiral limit!. Therefore,
once the correct expectation valuev is used, the one-particle
reducible ~1PR! tadpole diagrams do not contribute in th
perturbative expansion of the kinetic equation. Up to t
order the inverse pion propagator reads

Dp
21~v,k!5v22k22l@v22 f p

2 1^p2&13^s̄2&#,

which vanishes for vanishing energy and momentum wh
evervÞ0 by the tadpole condition~5.2!; hence Goldstone’s
theorem is satisfied and the pions are the Goldstone bos
The study of the relaxation of sigma mesons~resonance! and
pions near and below the chiral phase transition is an imp
tant phenomenological aspect of low energy chiral pheno
enology with relevance to heavy ion collisions. Furthermo
recent studies have revealed interesting features assoc
with the dropping of the sigma mass near the chiral transit
and the enhancement of threshold effects with potential
perimental consequences@32#. The kinetic approach de
scribed here could prove useful to further assess the co
butions to the width of the sigma meson near the chiral ph
transition; this is an important study in its own right and w
expect to report on these issues in the near future.

With the purpose of comparing to recent results, we n
focus on the situation at low temperatures under the assu
tion that the distribution functions of sigma mesons a
pions are not too far from equilibrium, i.e.,cool pions and
sigma mesons. At low temperatures the relaxation of pi
and sigma mesons will be dominated by the one-loop con
butions, and the scattering contributions will be subleadi
The scattering contributions are of the same form as th
discussed for the scalar theory and involve at least two
tribution functions and are subdominant in the low tempe
ture limit as compared to the one-loop contributions d
scribed below.

Since the linear sigma model is renormalizable and
focus on finite-temperature effects, we ignore the ze
temperature ultraviolet divergences which can be absor
6-13
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into a renormalization off p . For a small departure from
thermal equilibrium, we can approximate^p2& and ^s̄2& by
their equilibrium values:

^p2&5
T2

4
, ^s̄2&5E d3q

~2p!3

nB~vq!

vq
, ~5.3!

wherevq5Aq21ms
2. The sigma massms

252lv2 is to be
determined self-consistently. In the low temperature limiT
! f p , we find v25 f p

2 @12O(T2/ f p
2 )# and ms5A2l f p@1

2O(T2/ f p
2 )#. Thus in the case of a cool linear sigma mod

where T! f p , we can approximatev and ms by f p and
A2l f p , respectively.

The main reason behind this analysis is to display
microscopic time scales for the mesons:tmicro,s<1/ms and
tmicro,p51/k with k being the momentum of the pion. Th
validity of a kinetic description will hinge upon the relax
ation time scales being much longer than these microsc
scales.

Finally, the Lagrangian for cool linear sigma model rea
to lowest order,

L@p,s#5
1

2
~]mp!21

1

2
~]ms!22

1

2
ms

2s22l f p~sp21s3!

2
l

4
~p21s2!2, ~5.4!

where we have omitted the overbar over the shifted sig
field for simplicity of notation.

Our goal in this section is to derive the kinetic equatio
describing pion and sigma meson relaxation to lowest or
The unbrokenO(3) isospin symmetry ensures that all th
pions have the same relaxation rate, and the sigma m
relaxation rate is proportional to the number of pion spec
Hence for notational simplicity the pion index will be su
pressed. We now study the kinetic equations for the pion
sigma meson distribution functions.

A. Relaxation of cool pions

Without loss of generality, in what follows we discuss t
relaxation for one isospin component, say,p3, but we sup-
press the indices for simplicity of notation. As before, w
consider the case in which at an initial timet5t0, the density
matrix is diagonal in the basis of free quasiparticles, but w
out-of-equilibrium initial distribution functionsnk

p(t0) and
nk

s(t0). The field operators and the corresponding canon
momenta in the Heisenberg picture can be written as

5
p~x,t !

Pp~x,t !

s~x,t !

Ps~x,t !
6 5E d3k

~2p!3/25
p~k,t !

Pp~k,t !

s~k,t !

Ps~k,t !
6 eik•x, ~5.5!

where
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p~k,t !5
1

A2k
@ap~k,t !1ap

† ~2k,t !#, ~5.6a!

Pp~k,t !52 iAk

2
@ap~k,t !2ap

† ~2k,t !#, ~5.6b!

s~k,t !5
1

A2vk

@as~k,t !1as
†~2k,t !#, ~5.6c!

Ps~k,t !52 iAvk

2
@as~k,t !2as

†~2k,t !#,

~5.6d!

with vk5Ak21ms
2. The expectation value of pion numbe

operator can be expressed in terms ofp(k,t) andPp(k,t) as

nk
p~ t !5^ap

† ~k,t !ap~k,t !&

5
1

2k
$^Pp~k,t !Pp~2k,t !&1k2^p~k,t !p~2k,t !&

1 ik@^p~k,t !Pp~2k,t !&2^Pp~k,t !p~2k,t !&#%.

Using the Heisenberg equations of motion, to leading or
in l, we obtain~no tadpole diagrams are included since the
are canceled by the choice ofv)

ṅk
p~ t !52

2l f p

k E d3q

~2p!3/2S ]

]t8
D ^s1~k2q,t !p1

3~q,t !p2~2k,t8!&U
t85t

. ~5.7!

The expectation values can be calculated perturbatively
terms of nonequilibrium vertices and Green’s functions.
O(l) the right-hand side of Eq.~5.7! vanishes identically.
Figure 2a shows the Feynman diagrams that contribute
orderl2. It is now straightforward to show thatṅk

p(t) reads

FIG. 2. ~a! The Feynman diagrams that contribute to the qu
tum kinetic equation for the pion distribution function. The sol
line is the sigma meson propagator and the dashed line is the
propagator.~b! The only contribution on shell is the decay of
sigma meson into two pions minus the reverse process.
6-14
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ṅk
p~ t !5

l2f p
2

k E d3q

~2p!3

1

qvk1q
E

t0

t

dt9$N1~ t0!cos@~k1q1vk1q!~ t2t9!#1N2~ t0!cos@~k2q2vk1q!~ t2t9!#

1N3~ t0!cos@~k2q1vk1q!~ t2t9!#1N4~ t0!cos@~k1q2vk1q!~ t2t9!#%,

where

N1~ t !5@11nk
p~ t !#@11nq

p~ t !#@11nk1q
s ~ t !#2nk

p~ t !nq
p~ t !nk1q

s ~ t !, ~5.8a!

N2~ t !5@11nk
p~ t !#nq

p~ t !nk1q
s ~ t !2nk

p~ t !@11nq
p~ t !#@11nk1q

s ~ t !#, ~5.8b!

N3~ t !5@11nk
p~ t !#nq

p~ t !@11nk1q
s ~ t !#2nk

p~ t !@11nq
p~ t !#nk1q

s ~ t !, ~5.8c!

N4~ t !5@11nk
p~ t !#@11nq

p~ t !#nk1q
s ~ t !2nk

p~ t !nq
p~ t !@11nk1q

s ~ t !#. ~5.8d!
io
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n
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i

e
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The different contributions have a very natural interpretat
in terms of ‘‘gain minus loss’’ processes. The first term
brackets corresponds to the process 0→s1p1p minus the
processs1p1p→0, the second and third terms corr
spond to the scatteringp1s→p minusp→p1s, and the
last term corresponds to the decay of the sigma mesos
→p1p minus the inverse processp1p→s.

Just as in the scalar case, since the propagators enteri
the perturbative expansion of the kinetic equation are
s

e
n
h

n

06500
n

in
n

terms of the distribution functions at the initial time, the tim
integration can be done straightforwardly, leading to the f
lowing equation:

ṅk
p~ t !5l2E dvRp@v,k;Ni~ t0!#

sin@~v2k!~ t2t0!#

p~v2k!
,

~5.9!

whereRp@v,k;Ni(t0)# is given by
Rp@v,k;Ni~ t0!#5
f p

2

k E d3q

~2p!3

1

qvk1q
@d~v1q1vk1q!N1~ t0!1d~v2q2vk1q!N2~ t0!1d~v2q1vk1q!N3~ t0!

1d~v1q2vk1q!N4~ t0!#. ~5.10!

Equation~5.9! can be solved by direct integration overt with the given initial condition att0, thus leading to

nk
p~ t !5nk

p~ t0!1l2E dvRp@v,k;Ni~ t0!#
12cos@~v2k!~ t2t0!#

p~v2k!2
. ~5.11!
der
-
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e
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e of
s of
A potential secular term arises at large times when the re
nant denominator in Eq.~5.11! vanishes, i.e.,v'k. A de-
tailed analysis reveals thatRp@v,k;Ni(t0)# is regular atv
5k; hence using Eqs.~3.22! and~3.23! we find that at inter-
mediate asymptotic timek(t2t0)@1, the time evolution of
the pion distribution function reads

nk
p~ t !5nk

p~ t0!1l2Rp@k,k;Ni~ t0!#~ t2t0!

1nonsecular terms, ~5.12!

whereRp@k,k;Ni(t0)# does not depend ont0 explicitly.
At this point we would be tempted to follow the sam

steps as in the scalar case and introduce the dynamical re
malization of the pion distribution function. However, muc
in the same manner as the renormalization program i
o-

or-

a

theory with several coupling constants, in the case un
consideration thep field and thes field are coupled. There
fore one must renormalizeall of the distribution functions on
the same footing. Hence our next task is to obtain the kin
equations for the sigma meson distribution functions.

B. Relaxation of cool sigma mesons

As before, we consider the case in which at an initial tim
t5t0, the density matrix is diagonal in the basis of free qu
siparticles, but with initial out of equilibrium distribution
functionsnk

p(t0) andnk
s(t0). Again, for notational simplicity

we suppress the pion isospin index. The expectation valu
sigma meson number operator can be expressed in term
s(k,t) andPs(k,t) as
6-15
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nk
s~ t !5^as

†~k,t !as~k,t !&

5
1

2k
$^Ps~k,t !Ps~2k,t !&1k2^s~k,t !s~2k,t !&

1 ik@^s~k,t !Ps~2k,t !&2^Ps~k,t !s~2k,t !&#%.

Using the Heisenberg equations of motion to leading orde
l, and requiring again that the tadpole diagrams be canc
by the proper choice ofv, we obtain

ṅk
s~ t !52

3l f p

vk
E d3q

~2p!3/2S ]

]t8
D @^p1~k2q,t !p1~q,t !

3s2~2k,t8!&13^s1~k2q,t !s1~q,t !

3s2~2k,t8!&#u t85t , ~5.13!

where the factor of 3 accounts for three isospin compone
of the pion field. The expectation values can be calcula
perturbatively in terms of nonequilibrium vertices an
Green’s functions. ToO(l) the right-hand side of Eq.~5.13!
vanishes identically. Figure 3a depicts the one-loop Feynm
diagrams that enter in the kinetic equation for the sig
meson to orderl2. To the same order there will be the sam
type of two loops diagrams as in the self-interacting sca
theory studied in the previous section, but in the low te
06500
in
ed

ts
d

n
a

r
-

perature limit the two-loop diagrams will be suppressed w
respect to the one-loop diagrams. Furthermore, in the
temperature limit, the focus of our attention here, only t
pion loops will be important in the relaxation of the sigm
mesons. A straightforward calculation leads to the followi
expression:

FIG. 3. ~a! The Feynman diagrams that contribute to the qu
tum kinetic equation for the sigma meson distribution function. T
solid line is the sigma meson propagator and the dashed line is
pion propagator.~b! The only contribution on shell is a recombina
tion of two pions into a sigma meson minus the decay of a sig
meson into two pions.
ṅk
s~ t !5

3l2f p
2

2vk
E d3q

~2p!3

1

quk1qu Et0

t

dt9H $N 1
p~ t0!cos@~vk1q1uk1qu!~ t2t9!#1N 2

p~ t0!cos@~vk1q2uk1qu!~ t2t9!#

1N 3
p~ t0!cos@~vk2q1uk1qu!~ t2t9!#1N 4

p~ t0!cos@~vk2q2uk1qu!~ t2t9!#%

1
9

vqvk1q
$N 1

s~ t0!cos@~vk1vq1vk1q!~ t2t9!#1N 2
s~ t0!cos@~vk1vq2vk1q!~ t2t9!

1N 3
s~ t0!cos@~vk2vq1vk1q!~ t2t9!#1N 4

s~ t0!cos@~vk2vq2vk1q!~ t2t9!#%%, ~5.14!

where

N 1
p~ t !5@11nk

s~ t !#@11nq
p~ t !#@11nk1q

p ~ t !#2nk
s~ t !nq

p~ t !nk1q
p ~ t !, ~5.15a!

N 2
p~ t !5@11nk

s~ t !#@11nq
p~ t !#nk1q

p ~ t !2nk
s~ t !nq

p~ t !@11nk1q
p ~ t !#, ~5.15b!

N 3
p~ t !5@11nk

s~ t !#nq
p~ t !@11nk1q

p ~ t !#2nk
s~ t !@11nq

p~ t !#nk1q
p ~ t !, ~5.15c!

N 4
p~ t !5@11nk

s~ t !#nq
p~ t !nk1q

p ~ t !2nk
s~ t !@11nq

p~ t !#@11nk1q
p ~ t !# ~5.15d!

and

N 1
s~ t !5@11nk

s~ t !#@11nq
s~ t !#@11nk1q

s ~ t !#2nk
s~ t !nq

s~ t !nk1q
s ~ t !, ~5.16a!

N 2
s~ t !5@11nk

s~ t !#@11nq
s~ t !#nk1q

s ~ t !2nk
s~ t !nq

s~ t !@11nk1q
s ~ t !#, ~5.16b!
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N 3
s~ t !5@11nk

s~ t !#nq
s~ t !@11nk1q

s ~ t !#2nk
s~ t !@11nq

s~ t !#nk1q
s ~ t !, ~5.16c!

N 4
s~ t !5@11nk

s~ t !#nq
s~ t !nk1q

s ~ t !2nk
s~ t !@11nq

s~ t !#@11nk1q
s ~ t !#. ~5.16d!

Although the above expression is somewhat unwieldy, the different contributions have a very natural interpretation in
‘‘gain minus loss’’ processes. In the first set of brackets~i.e., the pion contribution! the first term corresponds to the proce
0→s1p1p minus the processs1p1p→0, the second and third terms correspond to the scatteringp→p1s minusp
1s→p, and the last term corresponds to the decay of the sigma mesons→p1p minus the inverse processp1p→s.
Similarly, in the second set of brackets~i.e., the sigma meson contribution! the first term corresponds to the process 0→s
1s1s minus the processs1s1s→0, the second and third terms correspond to annihilation of two sigma meson
creation of one sigma meson minus the inverse process, and the last term corresponds to annihilation of a sigma m
creation of two sigma mesons minus the inverse process.

Since the propagators entering in the perturbative expansion of the kinetic equation are in terms of the distribution f
at the initial time, the time integration can be done straightforwardly leading to the following equation:

ṅk
s~ t !5l2E dvRs@v,k;Ni~ t0!#

sin@~v2vk!~ t2t0!#

p~v2vk!
, ~5.17!

where

Rs@v,k;Ni~ t0!#5
3 f p

2

2vk
E d3q

~2p!3 H 1

quk1qu @d~v1q1uk1qu!N 1
p~ t0!1d~v1q2uk1qu!N 2

p~ t0!1d~v2q1uk1qu!N 3
p~ t0!

1d~v2q2uk1qu!N 4
p~ t0!#1

9

vqvk1q
@d~v1vq1vk1q!N 1

s~ t0!1d~v1vq2vk1q!N 2
s~ t0!

1d~v2vq1vk1q!N 3
s~ t0!1d~v2vq2vk1q!N 4

s~ t0!#J . ~5.18!
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Just as beforeRs@v,k;Ni(t0)# is fixed at initial timet0;
Eq. ~5.17! can be integrated overt with the given initial
condition att0, thus leading to

nk
s~ t !5nk

s~ t0!

1l2E dvRs@v,k;Ni~ t0!#
12cos@~v2vk!~ t2t0!#

p~v2vk!2
.

~5.19!

At intermediate asymptotic timesms(t2t0)@1, potential
secular term arises whenv;vk in Eq. ~5.19!. We notice
that, althoughRs@v,k;Ni(t0)# hasthreshold (infrared) sin-
gularities at v56k, it is regular on the sigma meson ma
shell. This observation will allow us to explore a crossov
behavior for very large momentum later.

Since the spectral density is regular near the resona
region v56vk , the behavior at intermediate asympto
times is given by

nk
s~ t !5nk

s~ t0!1l2Rs@vk ,k;Ni~ t0!#~ t2t0!

1nonsecular terms. ~5.20!

We note that the perturbative expansions for the pion
sigma meson distribution functions contain secular terms
grow linearly in time,unlessthe system is initially prepared
06500
r

ce

d
at

in thermal equilibrium. We must now renormalize both Eq
~5.12! and ~5.20! simultaneously, since it is a field theory
with two coupled fields.

Introduce the renormalized initial distribution function
np

p(t) andnp
s(t), which are related to the bare initial distr

bution functionsnp
p(t0) andnp

s(t0) via respective renormal
ization constantsZ p

p(t,t0) andZ p
s(t,t0) by

np
p~ t0!5Z p

p~t,t0!np
p~t!,

Z p
p~t,t0!511l2zp

p(1)~t,t0!1•••, ~5.21a!

np
s~ t0!5Z p

s~t,t0!np
s~t!,

Z p
s~t,t0!511l2zp

s(1)~t,t0!1•••, ~5.21b!

where t is an arbitrary renormalization scale at which t
secular terms will be canceled. The renormalization c
stantszp

p(1)(t,t0) andzp
s(1)(t,t0) are chosen so as to canc

the secular term at the arbitrary scalet consistently in per-
turbation theory. Substitute Eq.~5.21! into Eq. ~5.12!, con-
sistently up toO(l2) we obtain

nk
p~ t !5nk

p~t!1l2$zk
p(1)~t,t0!nk

p~t!

1~ t2t0!Rp@k,k;Ni~t!#%1O~l4!,
6-17
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nk
s~ t !5nk

s~t!1l2$zk
s(1)~t,t0!nk

s~t!

1~ t2t0!Rs@vk ,k;Ni~t!#%1O~l4!.

To this order, the choices

zk
p(1)~t,t0!52~t2t0!Rp@k,k;Ni~t!#/nk

p~t!,

zk
s(1)~t,t0!52~t2t0!Rs@vk ,k;Ni~t!#/nk

s~t!

lead to

nk
p~ t !5nk

p~t!1l2~ t2t!Rp@k,k;Ni~t!#1O~l4!,

nk
s~ t !5nk

s~t!1l2~ t2t!Rs@vk ,k;Ni~t!#1O~l4!.

The independence ofnk
p(t) andnk

s(t) on the arbitrary renor-
malization scalet leads to the simultaneous set of dynamic
renormalization group equations to lowest order:

d

dt
nk

p~t!5l2Rp@k,k;Ni~t!#,

d

dt
nk

s~t!5l2Rs@vk ,k;Ni~t!#.

These equations have an obvious resemblance to a s
renormalization group equations for ‘‘couplings’’nk

p andnk
s

where the right-hand sides are the corresponding beta f
tions.

As before, choosing the arbitrary scalet to coincide with
the timet and keeping only the terms whose delta functio
have support on the mass shells we obtain the kinetic e
tions describing pion and sigma relaxation:

ṅk
p~ t !5

pl2f p
2

k E d3q

~2p!3

d~k1q2vk1q!

qvk1q
$@11nk

p~ t !#

3@11nq
p~ t !#nk1q

s ~ t !2nk
p~ t !nq

p~ t !@11nk1q
s ~ t !#%,

~5.22!

ṅk
s~ t !5

3pl2f p
2

2vk
E d3q

~2p!3

d~vk2q2uk1qu!
quk1qu

3$@11nk
s~ t !#nq

p~ t !nk1q
p ~ t !2nk

s~ t !@11nq
p~ t !#

3@11nk1q
p ~ t !#%. ~5.23!

The processes that contribute to Eq.~5.22! are depicted in
Fig. 2b and those that contribute to Eq.~5.23! are depicted in
Fig. 3b.

C. Relaxation time approximation

Thermal equilibrium is afixed point of the dynamical
renormalization group equations~5.22! and~5.23!, i.e., a sta-
tionary solution of the kinetic equations.

A linearized kinetic equation can be obtained in the rel
ation time approximation, in which only the mode with m
06500
l

of

c-

s
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mentumk is slightly out of equilibrium whereas all the othe
modes are in equilibrium:

dṅk
p~ t !52gp~k!dnk

p~ t !,

dṅk
s~ t !52gs~k!dnk

s~ t !,

wheregp(k) andgs(k) are, respectively, the cool pion an
sigma meson relaxation rates which are identified with tw
the damping rates of the corresponding field amplitudes. L
earizing Eq.~5.22! we obtain

gp~k!5
pl2f p

2

k E d3q

~2p!3

@nB~q!2nB~vk1q!#

qvk1q

3d~k1q2vk1q!

5
l2f p

2 T

4pk2
lnF12e2b(ms

2 /4k1k)

12e2bms
2 /4k G . ~5.24!

This is a remarkable expression because it reveals that
physical processes that contribute to cool pion relaxation
thedecayof sigma mesons→p1p and its inverse proces
p1p→s. The form of Eq.~5.24! is reminiscent of the Lan-
dau damping contribution to the pion self-energy and in f
a simple calculation reveals this to be correct. The sig
particles present in the medium can decay into pions and
increases the number of pions, but at the same time p
recombine into sigma particles, and since there are m
pions in the medium because they are lighter, the loss pa
the process prevails, producing a nonzero relaxation r
This is an induced phenomenon in the medium in the v
definitive sense that the decay of the heavier sigma me
induces the decay of the pion distribution function; it is
noncollisional process.

Such relaxation of cool pions is analogous to the induc
relaxation of fermions in a fermion-scalar plasma induced
the decay of a massive scalar into fermion pairs@53#.

For the soft, cool pion mode (k!T! f p), the pion relax-
ation rate reads

gp~k!T!'
l2f p

2

4pk
expS 2

ms
2

4kTD . ~5.25!

The exponential suppression in the soft, cool pion relaxat
rate is a consequence of the heavy sigma mass. Our resu
the pion relaxation rate are in agreement with the pion dam
ing rate found in Ref.@54#. These results~accounting for the
factor of 2 necessary to relate the relaxation rate to the da
ing rate! also agree with those reported recently in Ref.@55#
wherein a related and clear analysis of pion and sigma me
damping rateswas presented.

For the relaxation rate of the sigma mesons, we find
6-18
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gs~k!5
3pl2f p

2

2vk
E d3q

~2p!3

@11nB~q!1nB~ uk1qu!#
quk1qu

3d~vk2q2uk1qu!

5
3l2f p

2

8pvk
F11

2T

k
lnS 12e2b(vk1k)/2

12e2b(vk2k)/2D G . ~5.26!

The first temperature-independent term ings(k) is the usual
zero-temperature sigma meson decay rate@56#, whereas the
finite-temperature factors result from thesame processesthat
determine the pion relaxation rate, i.e.,s↔p1p.

For soft sigma mesons (k!T! f p), we obtain

gs~k'0!'
3l2f p

2

8pms
cothS ms

4T D .

It agrees with the decay rate for a sigma meson at rest fo
in Refs.@55,57,58#.

On the other hand, consider the theoretical high temp
ture and large momentum limitk@ms*T such thatvk2k
!T. In this limit the sigma meson relaxation rate~5.26! be-
comes logarithmic~infrared! divergent. The reason for thi
divergence is that, as was mentioned below Eq.~5.19!,
Rs(v,k;Ni) has an infrared threshold singularity atv5k
arising from the contribution proportional toN 4

p in Eq.
~5.18!. In the presence of this threshold singularity, we c
no longer apply Eqs.~3.22! and ~3.23! and instead we mus
study the long-time limit in Eq.~5.14! more carefully. Un-
derstanding the influence of threshold behavior of the sig
meson on its relaxation could be important in view of t
recent proposal by Hatsuda and collaborators@32#, that near
the chiral phase transition the mass of the sigma meson d
and threshold effects become enhanced with distinct p
nomenological consequences. We expect to report on a m
detailed study of threshold effects near the critical tempe
ture in the near future.

D. Threshold singularities and crossover

As mentioned above, in the discussion following E
~5.19!, Rs@v,k;Ni(t0)# in Eq. ~5.19! has threshold singu
larities atv56k arising from the emission and absorptio
of collinear massless pions. Fork;ms , the point at which
the resonant denominator in Eq.~5.19! vanishes~i.e., v
5vk) is far away from threshold andRs@v,k;Ni(t0)# is
regular at this point~on shell!; hence Fermi’s golden rule
~3.22! is applicable. However, in the large momentum lim
when vk→k the point at which the resonant denomina
vanishes becomes closer to threshold and such singular
begins to influence the long-time behavior.

That this is the case can be seen in the expression fo
relaxation rate~5.26! which displays a logarithmic~infrared!
divergence asvk→k. A close inspection of the terms tha
contribute toRs@v,k;Ni(t0)# in Eq. ~5.18! reveals that the
threshold divergence arising asv'vk→k originates in the
term proportional toN 4

p(t0) which accounts for the emissio
and absorption of collinear massless pions.
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In order to understand how this threshold divergen
modifies the long-time behavior, let us focus on the mode
sigma mesons with momentumk@ms*T. This situation is
not relevant to the phenomenology of the cool pion-sig
meson system for which relevant temperatures areT!ms .
However, studying this limiting case will yield importan
insight into how threshold divergences invalidate the sim
Fermi’s golden rule analysis, leading to on-shell delta fun
tions in the intermediate asymptotic regime. This issue w
become more pressing in the case of gauge theories stu
below.

To present this case in the simplest and clearest man
we will study the relaxation time approximation, by assu
ing that only one mode of sigma mesons, with momentumk,
is slightly displaced from equilibrium such thatnk

s

5nB(vk)1dnk
s(t0), whereas all other pion and sigma m

son modes are in equilibrium, i.e.,nq
p(t0)5nB(q) for all q

andnq
s(t0)5nB(vq) for all qÞk. In this approximation and

keeping the only term that contributes toRs@v,k;Ni(t0)#
for v'vk @i.e., the one proportional toN 4

p(t0)#, we find that
Eq. ~5.19! simplifies to

dnk
s~ t !5dnk

s~ t0!F12E dvgs~v,k!

3
12cos@~v2vk!~ t2t0!#

p~v2vk!2 G , ~5.27!

with

gs~v,k!5
3pl2f p

2

2vk
E d3q

~2p!3

11nB~q!1nB~ uk1qu!
quk1qu

3d~v2q2uk1qu!

5
3l2f p

2

8pvk
F11

2T

k
lnS 12e2b(v1k)/2

12e2b(v2k)/2D G . ~5.28!

At intermediate asymptotic timesms(t2t0)@1, the re-
gion v'vk'k dominates the integral and in the limitk
@ms*T we can further approximate

gs~v,k! 5
v→k3l2f p

2 T

4pk2
lnF T̄

v2k
G1O~v2k!, ~5.29!

where T̄52T@12exp(2k/T))]'2T. The integration overv
in Eq. ~5.27! can be performed whengs(v,k) is given by
the first term in Eq.~5.29! and we obtain

E dvgs~v,k!
12cos@~v2vk!~ t2t0!#

p~v2vk!2

'
3l2f p

2 T

4pk2
F~ t2t0 ,k!

for ms(t2t0)@1, where
6-19
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F~ t2t0 ,k!5~ t2t0!H lnF T̄

vk2k
G1ci@~vk2k!~ t2t0!#

2
sin@~vk2k!~ t2t0!#

~vk2k!~ t2t0!
J , ~5.30!

with ci(x) being the cosine integral function:

ci~x![2E
x

1`

dt
cost

t
.

For fixed k, F(t2t0 ,k) has the following limiting behav-
iors:

F~ t2t0 ,k!5~ t2t0!$ ln@~ t2t0!T̄eg21#

1O„~vk2k!2~ t2t0!2
…%

for

~vk2k!~ t2t0!!1, ~5.31!

F~ t2t0 ,k!5~ t2t0!H lnF T̄

vk2k
G

1OS 1

~vk2k!2~ t2t0!2D J
for

~vk2k!~ t2t0!@1, ~5.32!

whereg50.5772157 . . . is theEuler-Mascheroni constan
Thus, we see that there is acrossovertime scaletc'(vk
2k)21 at which the time dependence of the functionF(t
2t0 ,k) changes from;t ln t for t2t0&tc to linear in t for
t2t0*tc . In the large momentum limit, as the sigma mes
mass shell approaches threshold, this crossover time s
becomes longer such that an ‘‘anomalous’’~nonlinear! secu-
lar term of the formt lnt dominates during most of the tim
whereas the usual secular term linear int ensues at very large
times.

We can now proceed with the dynamical renormalizat
group to resum the secular terms. Introducing the renorm
ization constantZ k

s by

dnk
s~ t0!5Z k

s~t,t0!dnk
s~t!,

~5.33!
Z k

s~t,t0!511l2zk
s(1)~t,t0!1•••,

and choosing

zk
s(1)~t,t0!5

3 f p
2 T

4pk2
F~t2t0 ,k! ~5.34!

to cancel the secular divergences at the time scalet, we find
that dynamical renormalization group equation
06500
ale

n
l-

ddnk
s~t!

dt
1

3l2f p
2 T

4pk2

dF~t2t0 ,k!

dt
50 ~5.35!

leads to the following solution in the relaxation time appro
mation:

dnk
s~ t !5dnk

s~ t0!expF2
3l2f p

2 T

4pk2
F~ t2t0 ,k!G . ~5.36!

In the large momentum limit, using Eqs.~5.31! and ~5.32!
we find that the crossover in the form of the secular ter
results in a crossover in the sigma meson relaxation:
‘‘anomalous’’ ~nonexponential! relaxation will dominate the
relaxation during most of the time and usual exponen
relaxation ensues at very large times.

This simple exercise has revealed several important
tures highlighted by a consistent resummation via the
namical renormalization group.

~i! Threshold infrared divergences result in a breakdo
of Fermi’s golden rule. The secular terms of the perturbat
expansion are no longer linear in time but include logari
mic contributions arising from these infrared divergences

~ii ! The concept of the damping rate is directly tied
exponential relaxation. The infrared divergences of
damping rate reflect the breakdown of Fermi’s golden r
and signal a very different relaxation from a simple expon
tial.

~iii ! Whereas the usual calculation of damping rates w
lead to a divergent result arising from the infrared thresh
divergences, the dynamical renormalization group appro
recognizes that these threshold divergences result in se
terms that are non-linear in time as discussed above. W
in the relaxation time approximation linear secular ter
lead to exponential relaxation and therefore to an unamb
ous definition of the damping rate, nonlinear secular ter
lead to novel nonexponential relaxational phenomena
which the concept of a damping rate may not be appropri

This discussion of threshold singularities and anomal
relaxation has paved the way to studying the case of ga
theories, wherein the emission and absorption of~transverse!
photons that are only dynamically screened lead to a sim
anomalous relaxation@24#.

VI. HOT SCALAR QED

In this section we study the relaxation of the distributi
function of charged scalars in hot SQED as a prelude
studying the more technically involved cases of hot QED a
QCD @59#. Hot SQED shares many of the important featur
of hot QED and QCD in leading order in the hard therm
loop resummation@33–36#. Furthermore, the infrared phys
ics in hot QED captured in the eikonal~Bloch-Nordsieck!
approximation@25# has been reproduced recently via the d
namical renormalization group in hot SQED@24#, thus lend-
ing more support to the similarities of both theories at le
in leading HTL order. However, unlike hot QED and QC
there are two simplifications@33,34# in this theory that allow
a more clear presentation of the relevant results:~i! there are
6-20
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no HTL corrections to the vertexand~ii ! the HTL resummed
scalar self-energy is momentum independent@33,34#. These
features of hot SQED enable us to probe the relaxation
charged scalars with arbitrary momentum within a simplifi
setting that nevertheless captures important features tha
relevant to QED and QCD. This study is different from tho
in Ref. @24# in that we here include the contribution from th
longitudinal, Debye-screened photons and discuss in d
the crossover between the relaxational time scales assoc
with the transverse and longitudinal photons for arbitra
momentum of the charged scalar. Furthermore, in orde
provide an unambiguous definition of the distribution fun
tion, our study is done directly in a gauge invariant form
lation. This formulation has several advantages, in that ga
invariance is built in from the outset and the distributi
functions are defined for gauge invariant objects.

In the Abelian theory under consideration, it is rath
straightforward to implement a gauge invariant formulati
by projecting the Hilbert space on states annihilated by
two primary first class constraints: Gauss’ law and vanish
canonical momentum conjugate to the temporal compon
of the gauge field. Gauge invariant operators are those
commute with both constraints and are obtained system
cally; finally the Hamiltonian and Lagrangian can be writt
in terms of these gauge invariant operators@67#, and details
are presented in Appendix A. The resulting Lagrangian
exactly the same as that in Coulomb gauge@67# and is given
by ~see Appendix A!

L5]mF†]mF2m2F†F1
1

2
]mAT•]mAT2eAT• jT

2e2AT•ATF†F1
1

2
~“A0!21e2A0

2F†F1eA0 j 0 ,

jT5 i @F†¹F2~¹F†!F#, j 052 i ~FḞ†2F†Ḟ!,

wheree is the gauge coupling,AT is the transverse compo
nent of the gauge field satisfying¹•AT(x,t)50, F andF†

are charged butgauge invariantfields, and we have trade
the instantaneous Coulomb interaction for agauge invariant
auxiliary field A0 which should not be confused with th
time component of the gauge field. Since we are only in
ested in obtaining the relaxation behavior arising from fini
temperature effects, we do not introduce the renormaliza
counterterms to facilitate the study, although these can
systematically included in our formulation@24#. Further-
more, we will consider a neutral system with vanishi
chemical potential.

Medium effects are included via theequilibrium hard
thermal loop resummation; hence we will restrict our stu
to the relaxation time approximation in which only one mo
of the scalar field, with momentumk perturbed off equilib-
rium while all other scalar modes and the gauge fields will
taken to be in equilibrium. Considering the full nonequili
rium quantum kinetic equation will require an extrapolati
of the hard thermal loop program to situations far from eq
librium, clearly a task beyond the scope of this article. Hen
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the propagators to be used in the calculation for the mo
and fields in equilibrium will be hard thermal loop re
summed.

Since for hot SQED the leading one-loop contributions
scalar self-energy are momentum independent
;O(e2T2) @33#, the leading order HTL resummed invers
scalar propagator reads~here and henceforth, we neglect th
zero-temperature scalar massm)

Ds
21~v,k!5v22k22ms

2 , ~6.1!

wherems5eT/2 is the thermal mass of the charged scal
The dispersion relation of scalar quasiparticles to leading
der in the HTL is given byvk5Ak21ms

2. Just as in the
scalar case studied in Sec. III, the massms is included in the
Hamiltonian and a counterterm is considered as part of
interaction to cancel the tadpole contributions.

In terms of the free scalar quasiparticles of massms , the
field operators in the Heisenberg picture are written as

F~x,t !5E d3k

~2p!3/2
f~k,t !eik•x,

P~x,t !5E d3k

~2p!3/2
p~k,t !eik•x,

where

f~k,t !5
1

A2vk

@a~k,t !1b†~2k,t !#,

p~k,t !5 iAvk

2
@a†~2k,t !2b~k,t !#.

The number of positively charged scalars~which at zero
chemical potential is equal to the number of negativ
charged scalars! is then given by

nk~ t !5^a†~k,t !a~k,t !&

5
1

2vk
$^p~2k,t !p†~k,t !&1vk

2^f†~2k,t !f~k,t !&

1 ivk@^f
†~2k,t !p†~k,t !&2^p~2k,t !f~k,t !&#%.

We emphasize that this number operator is a gauge inva
quantity by construction. Using the Heisenberg equations
motion, to lowest order ine, we obtain

ṅk~ t !5ṅL,k~ t !1ṅT,k~ t !,

where ṅL,k(t) and ṅT,k(t) correspond to the longitudina
photon ~plasmon! and transverse photon contributions, r
spectively:
6-21
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ṅL,k~ t !5
e

2vk
E d3q

~2p!3/2S ]

]t8
1 ivkD @^f†,1~2k,t8!f2

3~k2q,t !A 0
2~q,t !&1 i ^f†,1~2k,t8!ḟ2

3~k2q,t !A 0
2~q,t !t&#u t85t1c.c., ~6.2!

ṅT,k~ t !5
e

vk
E d3q

~2p!3/2
kT

i ~q!S ]

]t8
D @^f1~k,t8!f†,2

3~2k2q,t !A T
i ,2~q,t !&1^A T

i ,1~q,t !f1

3~k2q,t !f†,2~2k,t8!&#u t85t . ~6.3!

Here kT(q)5k2(k•q̂)q̂, andAT(k,t) and A0(k,t) are the
spatial Fourier transforms of the gauge fields:

AT~x,t !5E d3k

~2p!3/2
AT~k,t !eik•x,

~6.4!

A0~x,t !5E d3k

~2p!3/2
A0~k,t !eik•x.

As usual the expectation values are computed in nonequ
rium perturbation theory in terms of the real-time propag
tors and vertices. A detailed study of this scalar theory
revealed that there are no HTL vertex corrections in SQ
@33,34# and this facilitates the analysis of the time evoluti
of the distribution function for soft quasiparticles.

Since in SQED the leading order HTL contribution to t
scalar propagator is a mass shift, the real-time HTL effec
scalar propagator is given in Eqs.~2.6! in terms of the qua-
siparticle frequencyvk5Ak21ms

2. When the internal pho-
ton lines in the Feynman diagrams for the kinetic equat
are soft, an HTL resummation of these photon lines is
quired @27–29,43#. It is important to note that the HTL re
summed photon propagators are only valid inthermal equi-
librium since the KMS condition that relates the advanc
and retarded Green’s functions has been used to write t
in terms of the spectral density. Therefore an analysis of
kinetic equation for the distribution function that uses t
HTL resummation for the soft degrees of freedom will
restricted to the linearized, i.e., relaxation time, approxim
tion. A truly nonequilibrium description of the kinetic equa
tions for charged or gauge fields will require an extension
the hard thermal loop program to situations far away fr
equilibrium; clearly such extension is beyond the scope
this article. Therefore the derivation of the kinetic equati
for the charged scalar fields assumes that the photons a
equilibrium and the distribution function of the charged sc
lars has been displaced slightly off equilibrium. Figure
shows the lowest orderO(e2) contribution to the kinetic
equation from longitudinal photons and Fig. 4b shows
contributions from transverse photons.
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A. Longitudinal photon contribution

In this gauge invariant formulation, the longitudinal ph
ton is associated with the auxiliary fieldA0(x,t) which is the
Lagrange multiplier associated with Gauss’ law constra
Since this is not a propagating field~no canonical momentum
conjugate exists!, proper care must be taken in obtaining t
Green’s functions for this field. In Appendix B we provid
the details to obtain the HTL resummed real-time Gree
function for this auxiliary field.

The HTL effective propagators of the longitudinal ph
tons are given by~see Appendix B!

GL,q
. ~ t,t8!52 i E d3xe2 iq•x^A0~x,t !A0~0,t8!&,

~6.5a!

GL,q
, ~ t,t8!52 i E d3xe2 iq•x^A0~0,t8!A0~x,t !&,

~6.5b!

GL,q
11~ t,t8!5

1

q2
d~ t2t8!1GL,q

. ~ t,t8!u~ t2t8!

1GL,q
, ~ t,t8!u~ t82t !, ~6.5c!

GL,q
22~ t,t8!52

1

q2
d~ t2t8!1GL,q

. ~ t,t8!u~ t82t !

1GL,q
, ~ t,t8!u~ t2t8!, ~6.5d!

GL,q
67~ t,t8!5GL,q

,(.)~ t,t8!, ~6.5e!

whereq5uqu and

GL,q
. ~ t,t8!52 i E dq0r̃L~q0 ,q!@11nB~q0!#e2 iq0(t2t8),

~6.6a!

FIG. 4. The Feynman diagrams that contribute to the quan
kinetic equation for the charged scalar distribution function to lo
est order ine2. The dashed and wavy lines are the HTL resumm
longitudinal transverse photon propagators, respectively, and
solid line is the HTL resummed scalar propagator.~a! Contribution
from longitudinal photons.~b! Contribution from transverse pho
tons.
6-22
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GL,q
, ~ t,t8!52 i E dq0r̃L~q0 ,q!nB~q0!e2 iq0(t2t8).

~6.6b!

The HTL spectral densityr̃L(q0 ,q) is given by@33,35#

r̃L~q0 ,q!5
1

p

Im SL~q0 ,q!u~q22q0
2!

@q21ReSL~q0 ,q!#21@ Im SL~q0 ,q!#2

1sgn~q0!ZL~q!d„q0
22vL

2~q!…, ~6.7a!

Im SL~q0 ,q!5
pe2T2

6

q0

q
, ~6.7b!

ReSL~q0 ,q!5
e2T2

6 F22
q0

q
lnUq01q

q02qUG , ~6.7c!

wherevL(q) is the longitudinal photon pole andZL(q) is the
corresponding~momentum dependent! residue, which will
not be relevant for the following discussion.

Using the above expressions for the nonequilibriu
propagators, and after some tedious but straightforward a
bra, we find thatṅL,k(t) to lowest order in perturbation
theoryO(e2) is given by

ṅL,k~ t !5
e2

2vk
E d3q

~2p!3vk1q
E

2`

`

dq0 r̃L~q0 ,q!E
t0

t

dt9

3$~vk2vk1q!2N1~ t0!

3cos@~vk1vk1q1q0!~ t2t9!#

1~vk1vk1q!2N2~ t0!

3cos@~vk2vk1q2q0!~ t2t9!#%, ~6.8!

where

N1~ t !5@11nk~ t !#@11nk1q~ t !#@11nB~q0!#

2nk~ t !nk1q~ t !nB~q0!, ~6.9a!

N2~ t !5@11nk~ t !#nk1q~ t !nB~q0!2nk~ t !

3@11nk1q~ t !#@11nB~q0!#. ~6.9b!

To obtain Eq.~6.8!, we have used the following propertie
@43# ~see also Appendix B!:

r̃L~2q0 ,q!52 r̃L~q0 ,q!, nB~2q0!52@11nB~q0!#.
~6.10!

The different contributions have a very natural interpretat
in terms of gain minus loss processes. The first term
brackets corresponds to the process 0→gL* 1s1 s̄ minus the

processgL* 1s1 s̄→0, and the second term corresponds
the scattering in the mediumgL* 1s→s minus the inverse
processs→gL* 1s, wheregL* refers to the HTL-dressed lon

gitudinal photon ands, s̄ refer to the charged quanta of th
scalar fieldF.
06500
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As mentioned above the HTL resummation of the inter
photon and scalar lines assume that these degrees of free
are in thermal equilibrium and that the kinetic equation
valid in the relaxation time approximation which will be a
sumed henceforth. Namely, we assume that at timet5t0 the
distribution function for a fixed mode with momentumk is
disturbed slightly off equilibrium such thatnL,k(t0)
5nB(vk)1dnL,k(t0), while the rest of the modes remain i
equilibrium, i.e.,nL,k1q(t0)5nB(vk1q) for qÞ0, and linear-
ize the kinetic equation indnL,k .

Since the propagators entering in the perturbative exp
sion of the kinetic equation are in terms of the distributi
functions at the initial time, the time integration can be do
straightforwardly leading to a linearized equation in rela
ation time approximation. In terms of the spectral density

rL~v,k!5
2p2

vk
E d3q

~2p!3vk1q
E

2`

`

dq0r̃L~q0 ,q!@11nB~q0!

1nB~vk1q!#@~vk1vk1q!2d~v2vk1q2q0!

2~vk2vk1q!2d~v1vk1q1q0!#, ~6.11!

we obtain the time derivative of distribution function in th
form

dṅL,k~ t !52aGL,k~ t !dnL,k~ t0!, ~6.12!

wherea5e2/4p and

GL,k~ t !5E dvrL~v,k!
sin@~v2vk!~ t2t0!#

p~v2vk!
.

~6.13!

Integrating overt with the given initial condition att0
leads to the form

dnL,k~ t !5dnL,k~ t0!F12aE
t0

t

GL,k~ t8!dt8G . ~6.14!

As a consequence of the HTL resummation, the long-ra
instantaneous Coulomb interaction is screened with a De
screening length ofO(1/eT). This results in that there are n
threshold or mass shell singularities in the spectral den
rL(v,k) which after HTL resummation is a regular functio
of v both at threshold and on the mass shellv5vk . There-
fore the analysis leading to Fermi’s golden rule~3.22! is
valid and at intermediate asymptotic timesms(t2t0)@1 we
find a secular term that grows linear in time:

E
t0

t

GL,k~ t8!dt85~ t2t0!rL~vk ,k!1nonsecular term.

As before applying the dynamical renormalization group
resum the secular term, one obtains the dynamical renorm
ization group~kinetic! equation

dṅL,k~ t !52gL~k!dnL,k~ t !, ~6.15!
6-23
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where gL(k) is the scalar relaxation rate corresponding
exchange of a longitudinal photon:

gL~k!5
2p2a

vk
E d3q

~2p!3

~vk1vk1q!2

vk1q
r̃L~vk2vk1q ,q!

3@11nB~vk1q!1nB~vk2vk1q!#. ~6.16!

Note that in obtaininggL(k) we have discarded the secon
term in rL(vk ,k) which vanishes due to kinematics. Wit
the initial conditiondnL,k(t5t0)5dnL,k(t0), we find that the
distribution function evolves in time as

dnL,k~ t !5dnL,k~ t0!e2gL(k)(t2t0). ~6.17!

Numerically, we find thatgL(k) is a rather smooth function
of k and approaches a constant value fork*T. The numeri-
cal values ofgL(k) for static and hard scalars are, respe
tively, gL(k'0);0.721 aT and gL(k*T);1.10 aT and
interpolate monotonically in this range@34#. Our results of
the scalar relaxation rate due to longitudinal photon con
bution are in agreement with the corresponding scalar da
ing rate found in Ref.@34#. For further comparison with the
transverse photon contribution, we writegL(k) in the form

gL~k!5aT f~k!, 0.721< f ~k!<1.10, ~6.18!

with f (k) a smooth function ofk.

B. Transverse photon contribution

We anticipate that the transverse photon contribution w
lead to infrared divergences because the transverse pho
are only dynamically screened through Landau damping
the HTL approximation@24–26,35#. Since the scalar is mas
sive (ms;eT), the infrared region in the internal loop mo
n
he
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menta comes solely from soft transverse photons withq0 ,q
'0. In terms of the spectral density, the HTL effective no
equilibrium transverse photon propagators read@24,43#

P i j ~q!GT,q
. ~ t,t8!5 i E d3xe2 iq•x^AT

i ~x,t !AT
j ~0,t8!&,

~6.19a!

P i j ~q!GT,q
, ~ t,t8!5 i E d3xe2 iq•x^AT

j ~0,t8!AT
i ~x,t !&,

~6.19b!

GT,q
11~ t,t8!5GT,q

. ~ t,t8!u~ t2t8!1GT,q
, ~ t,t8!

3u~ t82t !, ~6.19c!

GT,q
22~ t,t8!5GT,q

. ~ t,t8!u~ t82t !1GT,q
, ~ t,t8!

3u~ t2t8!, ~6.19d!

GT,q
67~ t,t8!5GT,q

,(.)~ t,t8!, ~6.19e!

where

GT,q
. ~ t,t8!5 i E dq0r̃T~q0 ,q!@11nB~q0!#e2 iq0(t2t8),

~6.20a!

GT,q
, ~ t,t8!5 i E dq0r̃T~q0 ,q!nB~q0!e2 iq0(t2t8),

~6.20b!

and P i j (q)5d i j 2qiqj /q2 is the transverse projector. Her
the HTL spectral densityr̃T(q0 ,q) is given by@24,33,35#
r̃T~q0 ,q!5
1

p

Im ST~q0 ,q!u~q22q0
2!

@q0
22q22ReST~q0 ,q!#21@ Im ST~q0 ,q!#2

1sgn~q0!ZT~q!d„q0
22vT

2~q!…, ~6.21!

Im ST~q0 ,q!5
pe2T2

12

q0

q S 12
q0

2

q2D , ~6.22!

ReST~q0 ,q!5
e2T2

12 F2
q0

2

q2
1

q0

q S 12
q0

2

q2D lnUq01q

q02qUG , ~6.23!
wherevT(q) is the transverse photon pole andZT(q) is the
corresponding~momentum-dependent! residue, which will
not be relevant for the following discussion. The importa
feature of this HTL spectral density is its support below t
t

light cone. That is, forq2.q0
2 the imaginary part of the HTL

resummed photon self-energy, ImST(q0 ,q), originates in
the process of Landau damping@26,35# from scattering of
quanta in the medium.
6-24
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Using the above expressions for the nonequilibriu
propagators and after some tedious but straightforward a
bra, we find thatṅT,k(t) to lowest order in perturbation
theoryO(e2) is given by

ṅT,k~ t !5
2e2

vk
E d3q

~2p!3

kT
2~q!

vk1q
E

2`

`

dq0r̃T~q0 ,q!E
t0

t

dt9

3$N1~ t0!cos@~vk1vk1q1q0!~ t2t9!#

1N2~ t0!cos@~vk2vk1q2q0!~ t2t9!#%,

~6.24!

whereN1(t) andN2(t) are the same as that in Eq.~6.9!. To
obtain Eq. ~6.24!, we have used the following propertie
@43,24#:

r̃T~2q0 ,q!52 r̃T~q0 ,q!, nB~2q0!52@11nB~q0!#.
~6.25!

The different contributions have a very natural interpretat
in terms of gain minus loss processes. The first term
brackets corresponds to the process 0→gT* 1s1 s̄ minus the

processgT* 1s1 s̄→0, and the second term corresponds
the scattering in the mediumgT* 1s→s minus the inverse
processs→gT* 1s, where gT* refers to the HTL-dressed

transverse photon ands, s̄ refer to the charged quanta of th
scalar fieldF.

As mentioned above the HTL resummation of the inter
photon and scalar lines assume that these degrees of fre
are in thermal equilibrium and that the kinetic equation
valid in the relaxation time approximation. Hence we assu
that at timet5t0 the distribution function for a fixed mod
with momentumk is disturbed slightly off equilibrium such
that nT,k(t0)5nB(vk)1dnT,k(t0), while the rest of the
modes remain in equilibrium, i.e.,nT,k1q(t0)5nB(vk1q) for
qÞ0, and linearize the kinetic equation indnT,k .

Since the propagators entering in the perturbative exp
sion of the kinetic equation are in terms of the distributi
functions at the initial time, the time integration can be do
straightforwardly. In terms of the spectral density

rT~v,k!5
8p2

vk
E d3q

~2p!3

kT
2~q!

vk1q
E

2`

`

dq0r̃T~q0 ,q!

3@11nB~q0!1nB~vk1q!#d~v2vk1q2q0!,

~6.26!

we obtain the time derivative of distribution function in th
form

dṅT,k~ t !52aGk~ t !dnT,k~ t0!, ~6.27!

where
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GT,k~ t !5E dvrT~v,k!Fsin@~v2vk!~ t2t0!#

p~v2vk!

2~v→2v!G . ~6.28!

It is to be noted that the spectral density in Eq.~6.26!, up to
a prefactor, is the same as that studied within the contex
the relaxation of the amplitude of a mean field in SQED@24#
and in the eikonal approximation@25# in QED.

Upon integrating overt with the given initial condition at
t0 leads to the form

dnT,k~ t !5dnT,k~ t0!F12aE
t0

t

Gk~ t8!dt8G . ~6.29!

As before at intermediate asymptotic timesms(t2t0)@1, if
there are no singularities arising from the spectral density
v→6vk , one finds a secular term linear in time. This is
perturbative signal of pure exponential relaxation at la
times as we have discussed thoroughly in the previous
tions. However, in the case under consideration the spe
density has an infrared singularity@24,25# and the long-time
limit must be studied carefully.

Potential secular terms~growing in time! could arise in
the long-time limitt@t0 whenever the denominators in Eq
~6.28! vanish, i.e., for the region of frequenciesv'6vk .
For v'vk we see that the argument of the delta function
Eq. ~6.26! vanishes in the region of the Landau damping c
of the exchanged transverse photonq0

2,q2 and contributes
to the infrared behavior. On the other hand, forv'2vk the
delta function in Eq.~6.26! is satisfied forq0'22vk , and
this region gives a negligible contribution to the long-tim
dynamics. Therefore, only the first term in Eq.~6.28! ~with
v2vk) contributes in the long-time limit.

This term is dominated by the Landau damping region
the spectral density of the exchanged soft photon given
Eq. ~6.21!, since forv'vk the argument of the delta func
tion is q01kq cosu/vk and this is the region where th
imaginary part of the HTL photon self-energy, ImST(q0 ,q),
has support. The second contribution~with v1vk) oscillates
in time and is always bound and perturbatively small.

To extract the infrared behavior of the spectral dens
we focus on the infrared region of the loop momenta w
q0 ,q!eT in Eq. ~6.26! @24,25#. This is the region dominated
by the exchange of very soft~HTL-resummed! transverse
photons@25,26# and that dominates the long-time evolutio
of the distribution function. Forq0!q!eT, the contribu-
tions to the spectral density from zero-temperature and m
sive scalars are subleading; therefore the term
1nB(vk1q) can be neglected. The only dominant contrib
tion is from very soft quasistatic (q0;0) transverse photon
for which nB(q0)'T/q0.

For q!eT the functionr̃T(q0 ,q)/q0 is strongly peaked a
q050 and is well approximated by@24,25#
6-25
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r̃T~q0 ,q!

q0
U

q0!q

5
1

pq2

d

q0
21d2

'
d~q0!

q2
~6.30!

asq→0, whered512q3/pe2T2. The remaining delta func
tion d(v2vk1q) is satisfied in the kinematical regionq1
<q<q2, with

q15uk2Av22ms
2u, q25k1Av22ms

2.

The secular terms arise in the limitv→vk , in this limit q1
→uv2vku/vk with vk5dvk /dk being the group velocity of
the scalar quasiparticle, andq2→2k. However, the region in
which the above quasistatic approximation~6.30! is valid
corresponds toq<eT; therefore the upper momentum cuto
q2 in the integration region forq should be theminimum
between 2k or eT. Thus for momentak>eT the upper limit
should be taken asq2'eT whereas fork!eT the upper limit
is q252k.

Hence, we find that the spectral density diverges logar
mically asv→vk :

rT~v,k!'22vkTln
uv2vku

mkvk
@11O~v2vk!#,

wheremk;min(vpl ,k) with vpl;eT being the plasma fre
quency.

As will be seen shortly, the external momentum dep
dence of the upper momentum cutoff is crucial to determ
the relaxational time scale of hard and soft scalars. At in
mediate asymptotic timesvpl(t2t0)@1 ~recall that vpl
;ms), we find @24#

E
t0

t

GT,k~ t8!dt8'2vkT~ t2t0!ln@m̄kvk~ t2t0!#

1nonsecular terms, ~6.31!

where m̄k5mkexp(g21) with g50.5772157 . . . being
Euler-Mascheroni constant. In lowest order in perturbat
theory, the distribution functions that enters in the loops
those at the initial time. Obviously perturbation theo
breaks down at time scales

t2t0'
1

2avkT ln@m̄kvk~ t2t0!#
'

1

2avkT ln~m̄k /2aT!
.

~6.32!

Now we apply the dynamical renormalization group
resum the anomalous secular term (t2t0)ln@m̄kvk(t2t0)# in
the perturbative expansion. To achieve this purpose we
troduce a renormalization constant for the distribution fu
tion that absorbs the secular divergences at a fixed time s
t and write

dnT,k~ t0!5Z~t,t0!dnT,k~t!,

Z~t,t0!511az1~t,t0!1•••,
~6.33!
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and request that the coefficientszn cancel the secular diver
gences proportional toan at a given time scalet. To lowest
order the choice

z1~t,t0!5E
t0

t

GT,k~ t8!dt8 ~6.34!

leads to the renormalized distribution function at timet in
terms of the updated distribution function at the time scalet:

dnT,k~ t !5dnT,k~t!F12aE
t

t

GT,k~ t8!dt8G .
However, the distribution functiondnT,k(t) cannot depend
on the arbitrary renormalization scalet; this independence
on the renormalization scale leads to the renormaliza
group equation to lowest order:

d

dt
dnT,k~t!1aGT,k~t!dnT,k~t!50. ~6.35!

This renormalization group equation is now clearly of t
form of a kinetic equation in relaxation time approximatio
with a time-dependent rate.

Now choosing the renormalization scale to coincide w
the timet in the solution of Eq.~6.35! as is usually done in
the scaling analysis of the solutions to the renormalizat
group equations, we find that the distribution function in t
linearized approximation evolves in time in the followin
manner:

dnT,k~ t !5dnT,k~ t0!expF2aE
t0

t

GT,k~ t8!dt8G , ~6.36!

with the initial condition dnT,k(t5t0)5dnT,k(t0). In the
long-time limit vpl(t2t0)@1, using Eq.~6.31! we find that
the distribution function relaxes towards equilibrium as

dnT,k~ t !'dnk~ t0!exp$22avkT~ t2t0!ln@m̄kvk~ t2t0!#%.
~6.37!

Furthermore, Eq.~6.37! reveals a time scale for the relax
ation of the charged scalar distribution function due to e
change of transverse photons,t rel,T5gT

21(k), with

gT~k!'H avkT@ ln~1/a!1O~1!# for k*aT,

2k2/ms for k&aT.
~6.38!

Note that the transverse photon contribution to the sc
relaxation rate vanishes at zero momentum andgT(k)
!gL(k) for k&aT; this is very similar to the behavior of th
damping rate of fermions in QCD found in Ref.@26#.

C. Relaxational crossover in real time

The real-time description of charged scalar relaxation d
cussed above allows us to study the crossover between
ponential and anomalous relaxation. Combining the long
dinal and transverse photon contributions, we obtain
6-26
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relaxation time approximation the following time evolutio
of the charged scalar distribution function:

dnk~ t !'dnk~ t0!exp„2$gL~k!12avkT

3 ln@m̄kvk~ t2t0!#%~ t2t0!…. ~6.39!

From the expression forgL(k) given by Eq.~6.18! with
f (k)'1 we find that plain exponential relaxation holds f
2vkln@m̄kvk(t2t0)#!1 andvpl(t2t0)@1, whereas anoma
lous exponential relaxation with an exponent;t ln t domi-
nates for very long times. Hence there is a crossover in
form of relaxation for the charged scalar distribution fun
tion at a time scale (t2t0)'tc , with

tc'
exp~1/2vk!

m̄kvk

. ~6.40!

For k!eT we have m̄k;k!eT and vk!1; hence the
crossover time scale is exceedingly long and the relaxa
of the distribution function is dominated by~HTL-
resummed! longitudinal photon exchange and is purely e
ponential in the asymptotic regime. On the other hand,
k*eT then m̄k;eT and vk;O(1) and tc;vpl

21 in which
case the relaxation is dominated by~HTL-resummed! trans-
verse photon exchange and is anomalous with an expo
t ln t, and hence faster than exponential and with a rel
ational time scalet rel5avkT ln(1/a).

VII. SECULAR TERMS vs PINCH SINGULARITIES

An important difference between the approach to n
equilibrium evolution described by the quantum kine
equations advocated in this work and that often presente
the literature is that we work directly inreal time, not taking
Fourier transforms in time. This must be contrasted with
real-time formulation~RTF! of finite-temperature quantum
field theory in which there are also four propagators an
closed-time-path contour but the propagators and quant
computed therefrom are all in terms of temporal Four
transforms. In thermal equilibrium the Fourier represen
tions of these four propagators for a scalar field are given
@40,30,43#

G11~K !52@G22~K !#*

52
1

K22meff
2 1 i e

12p inB~ uk0u!d~K22meff
2 !,

~7.1a!

G12~K !52p i @u~2k0!1nB~ uk0u!#d~K22meff
2 !,

~7.1b!

G21~K !52p i @u~k0!1nB~ uk0u!#d~K22meff
2 !,

~7.1c!

where K5(k0 ,k) is the four-momentum andK25k0
22k2,

whereas out of equilibrium the distribution functions a
simply replaced by nonthermal ones, i.e.,nB(uk0u)→nk(t0).
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Using the integral representation of the step function

u~ t !5
i

2pE dv

v1 i e
e2 ivt,

one can easily show that Eqs.~7.1! and the ones obtained b
replacing the thermal equilibrium distributions by the no
equilibrium ones are, respectively, thetemporal Fourier
transforms of Eqs.~2.5! and ~2.6!. The temporal Fourier
transforms of the free retarded and advanced propagator
obtained similarly and read

GR/A~K !52
1

K22meff
2 6 i sgn~k0!e

. ~7.2!

Several authors have pointed out that the calculations
ing the CTP formulation in terms of the standard form of fr
propagators in Eqs.~7.1! or those obtained by the replace
ment of the distribution functions by the nonequilibriu
ones lead to pinch singularities@30,31,60–66#.

In a consistent perturbative expansion both the retar
and advanced propagators contribute and pinch singular
arise from the product of these; for example, for a scalar fi
this product is of the form

GR~K !GA~K !

5
1

@K22meff
2 1 i sgn~k0!e#@K22meff

2 2 i sgn~k0!e#
.

~7.3!

For finite e this expression is regular, whereas whene
→01 it gives rise to singular products such as@d(K2

2meff
2 )#2 as discussed in Refs.@30,31,60–66#. Singularities

of this type are ubiquitous and are not particular to sca
theories.

A detailed analysis of these pinch terms reveals that t
do not cancel each other in perturbation theory unless
system is in thermal equilibrium@30,31,60–65#. Indeed, this
severe problem has cast doubt on the validity or usefuln
of the CTP formulation to describe nonequilibrium pheno
ena @31#. Although these singularities have been found
many circumstances and analyzed and discussed in the
erature often, a systematic and satisfactory treatment of th
singularities is still lacking. In Ref.@66# it was suggested tha
including an in-medium width of the quasiparticles to r
place the Feynman’se does provide a physically reasonab
solution; however, this clearly casts doubt on the consiste
of any perturbative approach to describe even weakly out
equilibrium phenomena.

Recently some authors have conjectured that pinch sin
larities in perturbation theory might be attributed to a misu
of Fourier transforms~for a detailed discussion see@62–65#!.
As an illustrative and simple example of these type of pin
singularities, these authors discussed the elementary de
tion of Fermi’s golden rule in time-dependent perturbati
theory in quantum mechanics. In calculating total transit
probabilities there appears the square of energy conservid
6-27
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function, which arises due to taking the infinite-time limit
scattering probabilities. In this setting, such terms are in
preted as the elapsed scattering time multiplied by
energy-conservation constraint rather than a pathological
gularity. A close look at Eq.~7.3! reveals that the pinch term
is the square of the on-shell condition for the free quasip
ticle, which implies a temporal Fourier transform in th
infinite-time limit and of the same form as the square of
energy-conservation constraint for the transition probabi
obtained in time-dependent perturbation theory.

By assuming that the interaction duration time is large
finite, Niégawa @63# and Greiner and Leupold@65# showed
that for a self-interacting scalar field the pinch part of t
distribution function can be regularized by the interacti
duration time as2

nk
pinch~ t !.~ t2t0!Gk

net, ~7.4!

where ‘‘. ’’ denotes that only the pinch singularity contribu
tion is included,t2t0 is the interaction duration time, an
Gk

net is the net gain rate of the quasiparticle distribution fun
tion per unit time:

Gk
net5

2 i

2vk
†@11nk~ t0!#S,~vk ,k!2nk~ t0!S.~vk ,k!‡.

~7.5!

Here S.(vk ,k)2S,(vk ,k)52i Im SR(vk ,k) with
SR(vk ,k) being the retarded scalar self-energy on m
shell. Comparing Eq.~7.4! with Eq. ~3.24! and Eq.~7.5! with
Eq. ~3.27!, we clearly see theequivalencebetween the linear
secular terms in the perturbative expansion and the pres
of pinch singularities in the usual CTP description. In t
discussion following Eq.~3.24! we have recognized tha
secular terms are not present if the system is in equilibriu
much in the same manner as the case of pinch singularitie
discussed originally by Altherr@31,60#. Thus our conclusion
is thatpinch singularities are a temporal Fourier transform
representation of linear secular terms.

The dynamical renormalization group provides a syste
atic resummation of these secular terms and provides a
sistent formulation to implement the renormalization of t
distribution function suggested in Refs.@63,64#.

Hence we emphasize that the dynamical renormaliza
group advocated in this article explains the physical origin
the pinch singularities in terms of secular terms and Ferm
golden rule, and provides a consistent and systematic res
mation of these secular terms that lead to the quantum
netic equation as a renormalization group equation that
termines the time evolution of the distribution function. Th
result justifies in a systematic manner the conclusions
interpretation obtained in Ref.@66# where a possible regular

2See Eqs.~14! and~29! of Niégawa@63# and Eqs.~14! and~22! of
Greiner and Leupold@65#. Note that Eq.~14! in Ref. @65# contains
a typographic error.
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ization of the pinch singularities was achieved by includi
the width of the quasiparticle obtained via the resummat
of hard thermal loops.

Furthermore, we emphasize that the dynamical renorm
ization group is far more general in that it allows one to tre
situations where the long-time evolution is modified
threshold~infrared! singularities in spectral densities, thereb
providing a resolution of infrared singularities in dampin
rates and a consistent resummation scheme to extrac
asymptotic time evolution of the distribution function. Th
infrared singularities in these damping rates are a reflec
of anomalous~i.e., nonexponential! relaxation as a result o
threshold effects.

The pinch singularities signal the breakdown of perturb
tion theory, just as the secular terms in real time; howev
the advantage of working directly in real time is that the tim
scale at which perturbation theory breaks down is recogni
clearly from the real-time perturbative expansion and is id
tified directly with the relaxational time scale. The dynamic
renormalization group justifies this identification by provi
ing a resummation of the perturbative series that impro
the solution beyond the intermediate asymptotics.

The resolution of pinch singularities via the dynamic
renormalization group is general. As originally pointed out
@31,60# the pinch singularities typically multiply expression
of the form ~7.5! which vanish in equilibrium, just as the
linear secular terms multiply similar terms in the real-tim
perturbative expansion, as highlighted by Eqs.~3.27!. These
terms are of the typical form gain minus loss; in equilibriu
they vanish, but their nonvanishing simply indicates that
distribution functions are evolving in time and it is precise
this time evolution that is described consistently by the d
namical renormalization group.

VIII. CONCLUSIONS

In this article we have introduced a novel method to o
tain quantum kinetic equations via a field-theoretical and d
grammatic perturbative expansion improved via a dynam
renormalization group resummation inreal time. The first
step of this method is to use the microscopic equations
motion to obtain the evolution equation of the quasiparti
distribution function; this is the expectation value of the qu
siparticle number operator in the initial density matrix. Th
evolution equation can be solved in a consistent diagra
matic perturbative expansion and one finds that the solu
for the time evolution of the distribution function feature
secular terms, i.e., terms that grow in time. In perturbatio
theory the microscopic and relaxational time scales
widely separated and there is a regime of intermediate
ymptotics within which~i! the secular terms dominate th
time evolution of the distribution function and~ii ! perturba-
tion theory is valid. A renormalization of the distributio
function absorbs the contribution from the secular terms a
given renormalization time scale, thereby improving the p
turbative expansion. The arbitrariness of this renormalizat
scale leads to the dynamical renormalization group equat
which is recognized as the quantum kinetic equation. Lin
secular terms are recognized to lead to the usual expone
6-28
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DYNAMICAL RENORMALIZATION GROUP APPROACH TO . . . PHYSICAL REVIEW D61 065006
relaxation ~in the relaxation time approximation!, whereas
nonlinear secular terms lead to anomalous relaxation.
dynamical renormalization group provides a consistent
summation of the secular terms. There are many advant
in this formulation.

~i! It is based on straightforward quantum field-theoreti
diagrammatic perturbation theory; hence it allows a syste
atic calculation to any arbitrary order. It allows one to i
clude resummations of medium effects such as nonequ
rium generalizations of hard thermal loop resummation
the quantum kinetic equation. This is worked out in detail
a scalar field theory.

~ii ! It allows a detailed understanding of crossover b
tween different relaxational phenomena directly in real tim
This is important in the case of wide resonances wh
threshold effects may lead to nonexponential relaxation
some time scales, and also near phase transitions where
excitations dominate the dynamics.

~iii ! It describes nonexponential relaxation directly in re
time whenever threshold effects are important, thus prov
ing a real-time interpretation of infrared divergent dampi
rates in gauge theories. This we consider one of the m
valuable features of the dynamical renormalization gro
which makes this approach particularly suited to study rel
ation in gauge field theories in a medium where the emiss
and absorption of soft gauge fields typically lead to thresh
infrared divergences. This important feature was highligh
in this article by studying the quantum kinetic equation
the distribution function of charged quasiparticles in SQE

~iv! This method provides a simple and natural resolut
of pinch singularities found often when the distribution fun
tions are nonthermal. Pinch singularities are the temp
Fourier transform manifestation of the real-time secu
terms, and their resolution is via the resummation imp
mented by the dynamical renormalization group.

We have tested this new method within the familiar s
ting of a scalar field theory, thus reproducing previous res
but with these new methods, and moved on to apply
dynamical renormalization group to describe the quant
kinetics of a cool gas of pions and sigma mesons descr
by the O(4) linear sigma model in the chiral limit. Thi
particular example reveals a crossover behavior in the c
of hard resonances because of threshold singularities as
ated with the emission and absorption of massless pions
the relaxation time approximation we find a crossover
tween purely exponential relaxation and anomalous re
ation with an exponent of the formt ln t which is faster than
exponential; the crossover scale depends on the mome
of the resonance. The regime of exponential relaxation~in
the relaxation time approximation! is described by a relax
ation rate which is simply related to the damping rate fou
recently for the same model@54,55,58#. The ~faster! anoma-
lous relaxation is a novel result and could be of phenome
logical relevance in view of recent suggestions of no
threshold effects of the sigma resonance near the chiral p
transition @32#; this possibility is worthy of a deeper stud
and we are currently generalizing these methods to reach
critical region.

We consider that the most important aspect of this art
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is the study of relaxation of charged quasiparticles in a ga
theory. As a prelude to studying quantum kinetics in QE
and QCD@59# in this article we studied the case of SQED.
equilibrium, this theory shares many important features w
QED and QCD in leading order in the hard thermal lo
resummation and is a relevant model to study kinetics
relaxation in the hot electroweak theory@53,36#. This Abe-
lian theory allowed us to begin our study by providing
gauge invariantdescription of the distribution functions
thus bypassing potential ambiguities in the definition
gauge covariant Wigner transforms which is the usual
proach. The hard thermal loop resummation for both lon
tudinal and transverse photons as well as for the scala
included consistently in the derivation of the quantum kine
equation for the charged scalar quasiparticles in the re
ation time approximation. The real-time solution of the k
netic equation for the distribution function features line
and nonlinear secular terms which are resummed con
tently by the dynamical renormalization group. The HT
longitudinal photons are Debye screened and do not lea
infrared divergences, resulting in purely exponential rela
ation with a well-defined relaxation rate. On the other ha
transverse photons are only dynamically screened by Lan
damping and the emission and absorption of photons at r
angles leads to infrared threshold divergences, resultin
anomalous relaxation. We studied in detail the crossover
tween purely exponential and anomalous relaxation. T
crossover time scale depends on the momentum and for
quasiparticles exponential relaxation dominates the dynam
for a longer period of time, whereas for hard quasipartic
anomalous~with an exponent of the formt ln t) dominates
the relaxation. Recent approaches to quantum kinetics
cluding HTL resummations have encountered infrared div
gent relaxation rates@20#; the dynamical renormalization
group reveals very clearly that this is a manifestation of n
exponential relaxation arising from threshold infrared effe
that results in a violation of Fermi’s golden rule. The tim
scales that can be extracted both from the exponential
the nonexponential regimes agree with those obtained
Pisarski @26# for QCD after self-consistently including
width for the quasiparticle in the calculation of the dampi
rate @26#. Therefore, the study of this Abelian model h
indeed offered a novel method to study relaxation in r
time which is a useful arena for QCD and QED.

We envisage several important applications of the
namical renormalization group method primarily to stu
transport phenomena and relaxation of collective modes
gauge theories where infrared effects are important, as
as to study relaxational phenomena near critical points wh
soft fluctuations dominate the dynamics. An important asp
of this method is that it does not rely on a quasiparti
approximation and allows a direct interpretation of infrar
phenomena directly in real time. Furthermore, we have
tablished a very close relationship between the usual re
malization group and the dynamical renormalization gro
approach to kinetics. We have proved that the dynam
renormalization group equation is the quantum kinetic eq
tion; the collisional terms are the equivalent of the beta fu
tions in Euclidean renormalization group. Fixed points of t
6-29
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D. BOYANOVSKY, H. J. de VEGA, AND S.-Y. WANG PHYSICAL REVIEW D61 065006
dynamical renormalization group are identified with statio
ary solutions of the kinetic equation and the exponents
determine the stability of the fixed points are identified w
the relaxation rates in the relaxation time approximati
Furthermore, we have suggested that in this language co
graining is the equivalent to neglecting irrelevant couplin
in the Euclidean renormalization program. This identificati
brings a new and rather different perspective to kinetics
relaxation that will hopefully lead to new insights.
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APPENDIX A: GAUGE-INVARIANT FORMULATION
FOR SCALAR QED

In this appendix we summarize the gauge-invariant f
mulation @67# for SQED with the Lagrangian density give
by

L5Dmf†Dmf2m2f†f2
1

4
FmnFmn ,

where

Fmn5]mAn2]nAm ,

Dmf5]mf1 ieAmf.

The description in terms of gauge invariant states and op
tors is best achieved within the canonical formulation, wh
begins with the identification of canonical field variables a
constraints. These will determine the classical physical ph
space and, at the quantum level, the physical Hilbert spa

The canonical momenta conjugate to the gauge and sc
fields are given by

P050,

P i5Ȧi1¹ iA052Ei ,

p5ḟ†1 ieA0f†,

p†5ḟ2 ieA0f.

Hence, the Hamiltonian is

H5E d3xH 1

2
P•P1p†p1~¹f†1 ieAf†!•~¹f2 ieAf!

1
1

2
~¹3A!21m2f†f1A0@¹•P2 ie~pf2p†f†!#J .

There are several different manners of quantizing a ga
theory, but the one that exhibits the gauge invariant sta
and operators, originally due to Dirac, begins by recogniz
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the first class constraints~with mutually vanishing Poisson
brackets between constraints!. From here there are two pos
sibilities: ~i! The constraints become operators in the qu
tum theory and are imposed onto the physical states,
defining the physical subspace of the Hilbert space
gauge invariant operators.~ii ! Introduce a gauge, convertin
the first class system of constraints into a second class~with
nonzero Poisson brackets between constraints! and introduc-
ing Dirac brackets. This second possibility is a popular w
of dealing with the constraints and leads to the usual gau
fixed path integral representation@68# in terms of Faddeev-
Popov determinants and ghosts. We will instead proc
with the first possibility that leads to an unambiguous p
jection of the physical states and operators. Such a me
has been previously used by James and Landshoff with
different context@69#.

In Dirac’s method of quantization@70# there are two first
class constraints which are

P05
dL
dA0

50, ~A1!

G~x,t !5¹•P1er50, ~A2!

with r52 i (fp2f†p†) being the scalar charge densit
Equation ~A2! is Gauss’s law, which can be seen to be
constraint in two ways: either because it cannot be obtai
as a Hamiltonian equation of motion or because in Dira
formalism it is the secondary~first class! constraint obtained
by requiring that the primary constraint, Eq.~A1!, remain
constant in time. Quantization is now achieved by impos
the canonical equal-time commutation relations

@A0~x,t !,P0~y,t !#5 id3~x2y!,

@Ai~x,t !,P j~y,t !,#5 id i j d3~x2y!,

@f~x,t !,p~y,t !,#5 id3~x2y!,

@f†~x,t !,p†~y,t !#5 id3~x2y!.

In Dirac’s formulation, the projection onto the gauge i
variant subspace of the full Hilbert space is achieved by
posing first class constraints onto the states. Physical op
tors are those that commute with the first class constrai
With the above equal-time commutation relations it
straightforward to see that the unitary operator

UL5expF i E ~P0L̇1GL!d3xG ~A3!

performs the local gauge transformations. Thus the first c
constraints are recognized as the generators of gauge t
formations. In particular, Gauss’s law operatorG is the gen-
erator of time-independent gauge transformations. Requi
that the physical states be annihilated by these constrain
tantamount to selecting the gauge invariant states. Co
quently operators that commute with the first class c
straints are gauge invariant.
6-30
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In the Schro¨dinger representation of field theory, in whic
the field operators are diagonal, states are represente
wave functionals, and the canonical momenta conjugat
the field operators are represented by Hermitian functio
differential operators. The constraints applied onto the st
become functional differential equations that the wave fu
tionals must satisfy:

d

dA0~x!
C@A,f,f†#50, ~A4a!

F¹x•
d

dA~x!
2 ieS f~x!

d

df~x!
2f†~x!

d

df†~x!
D G

3C@A,f,f†#50. ~A4b!

The first equation simply means that the wave functio
does not depend onA0, whereas the second equation mea
that the wave functional is only a functional of the combin
tion of fields that is annihilated by the Gauss’s law function
differential operator. It is a simple calculation to prove th
the fields

F~x!5f~x!expF ieE d3yA~y!•¹yG~y2x!G , ~A5a!

F†~x!5f†~x!expF2 ieE d3yA~y!•¹yG~y2x!G
~A5b!

are annihilated by Gauss’s law functional differential equ
tion with G(y2x) the Coulomb Green’s function:

¹y
2G~y2x!5d3~y2x!. ~A6!

Furthermore, writing the gauge field in terms of transve
and longitudinal components as

A~x!5AL~x!1AT~x!, ~A7!

where

¹3AL~x!50, ¹•AT~x!50, ~A8!

one finds

¹x•
d

dA~x!
5¹x•

d

dAL~x!
. ~A9!

Therefore the transverse componentAT is also annihilated by
the Gauss’s law operator, andA in the exponential in Eqs
~A5a! and~A5b! can be replaced byAL . This analysis shows
that the wave functional solutions of the functional differe
tial equations that represent the constraints in the Sc¨-
dinger representation are of the form

C@A,f,f†#5C@AT ,F,F†#. ~A10!

The fieldsAT , F, andF† aregauge invariantas they com-
mute with the constraints. The canonical momenta conjug
to F andF† are found to be
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P~x!5p~x!expF2 ieE d3yAL~y!•¹yG~y2x!G ,
~A11a!

P†~x!5p†~x!expF ieE d3yAL~y!•¹yG~y2x!G .
~A11b!

The momentumP canonical toA can also be written in
terms of longitudinal and transverse components:

P~x!5PL~x!1PT~x!. ~A12!

It is straightforward to check that both components are ga
invariant. In the physical subspace of gauge invariant w
functionals, matrix elements of¹•P can be replaced by ma
trix elements of the charge densityr52 i (FP2F†P†).
Therefore in all matrix elements between gauge invari
states~or functionals! one can replace

PL~x!→2e¹xE d3yG~x2y!r~y!. ~A13!

Finally in the gauge invariant subspace the Hamilton
becomes

H5E d3xH 1

2
PT•PT1P†P

1~¹F†1 ieATF†!•~¹F2 ieATF!

1
1

2
~¹3AT!21m2F†FJ

2
e2

2 E d3xd3yr~x!G~x2y!r~y!. ~A14!

Clearly the Hamiltonian is gauge invariant, and it manifes
has the global U~1! gauge symmetry under whichF trans-
forms with a constant phase,P transforms with the opposite
phase, andAT and PT are invariant. This Hamiltonian is
reminiscent of the Coulomb gauge Hamiltonian, but we e
phasize that we have not imposed any gauge fixing co
tion. The formulation is fully gauge invariant, written i
terms of operators that commute with the generators
gauge transformations and states that are invariant u
these transformations.

To obtain a gauge invariant description in Lagrangian f
malism, we switch to the path integral representation
field theory in which the vacuum-to-vacuum amplitude
defined as

E DATDPTDFDPDF†DP†

3expF i E d4x~PḞ1P†Ḟ†1PT•ȦT!2 i E dtHG .
~A15!

Note that the last term in the Hamiltonian, Eq.~A14!, is the
instantaneous Coulomb interaction, which can be traded f
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gauge invariant auxiliary fieldA0; up to an overall factor, the
vacuum-to-vacuum amplitude becomes

E DA0DATDPTDFDPDF†DP†

3expF i E d4x~PḞ1P†Ḟ†1PT•ȦT!2 i E dtH̄G ,
~A16!

where

H̄5E d3xH 1

2
PT•PT1P†P

1~¹F†1 ieATF†!•~¹F2 ieATF!

1
1

2
~¹3AT!21m2F†F

2
1

2
~¹A0!22eA0rJ . ~A17!

Since the exponent is now quadratic in the conjugate m
menta, we can complete the squares and evaluate theDPT ,
DP, andDP† integrals to obtain

E DA0DATDFDF†expF i E d4xL@A0 ,AT ,F,F†#G ,
~A18!

up to an overall factor, whereL@A0 ,AT ,F,F†# is the gauge
invariant Lagrangian,

L@A0 ,AT ,F,F†#5]mF†]mF2m2F†F

1
1

2
]mAT•]mAT2eAT• jT

2e2AT•ATF†F

1
1

2
~¹A0!21e2A0

2F†F1eA0 j 0 ,

~A19!

with jT5 i @F†(¹TF)2(¹TF†)F# and j 052 i (FḞ†

2F†Ḟ). Note thatA0 satisfies analgebraicequation of mo-
tion ¹2A05er.

APPENDIX B: FULL PROPAGATORS
FOR AUXILIARY FIELDS

In this appendix we derive thefull real-time CTP propa-
gators for the auxiliary fieldin equilibrium. We will consider
as an example the longitudinal photon fieldA0 in SQED~the
extension to other cases is straightforward!. Since an auxil-
iary field is nondynamical, it satisfies analgebraicequation
of motion without a time derivative. As a consequence,
free longitudinal photon propagators are local in time a
there is no mixture between fields on ‘‘1 ’’ and ‘‘ 2 ’’
06500
-

e
d

branches of the CTP contour. Namely,

^A 0
1~q,t !A 0

1~2q,t8!&05
i

q2
d~ t2t8!, ~B1a!

^A 0
2~q,t !A 0

2~2q,t8!&052
i

q2
d~ t2t8!, ~B1b!

^A 0
1~q,t !A 0

2~2q,t8!&05^A 0
2~q,t !A 0

1~2q,t8!&050,
~B1c!

where ^•••&0 denotes expectation value of free fields
equilibrium.

Now we consider the full longitudinal photon propag
tors. Neglecting the tadpole type terme2A0

2F†F @which
yields local ~momentum independent! contribution and
higher order contribution, and hence is irrelevant to the o
loop result that we are interested in#, we have

Lint5eA0 j 0 ,

where j 052 i (FḞ†2F†Ḟ). Straightforward diagrammatic
expansions show that the following equalities hold to all
ders in perturbation theory:

^A 0
1~q,t !A 0

1~2q,t8!&5
i

q2
d~ t2t8!

1
e2

q4
^ j 0

1~q,t ! j 0
1~2q,t8!&, ~B2a!

^A 0
1~q,t !A 0

2~2q,t8!&5
e2

q4
^ j 0

1~q,t ! j 0
2~2q,t8!&,

~B2b!

where^•••& denotes the full equilibrium expectation valu
It is convenient to introduce the current-current spectral d
sitiesr j

.(q0 ,q) andr j
,(q0 ,q) defined by

^ j 0
1~q,t ! j 0

1~2q,t8!&5E dq0@r j
.~q0 ,q!u~ t2t8!

1r j
,~q0 ,q!u~ t82t !#e2 iq0(t2t8),

~B3a!

^ j 0
1~q,t ! j 0

2~2q,t8!&5E dq0r j
,~q0 ,q!e2 iq0(t2t8).

~B3b!

Inserting a complete set of eigenstates of the full interact
Hamiltonian, one obtains the KMS condition

r j
,~q0 ,q!5e2bq0r j

.~q0 ,q!. ~B4!

In terms of ther j
.(q0 ,q) the full retardedlongitudinal pho-

ton propagator can be written as
6-32



n
n

DYNAMICAL RENORMALIZATION GROUP APPROACH TO . . . PHYSICAL REVIEW D61 065006
^A0~q,t !A0~2q,t8!&R[^A 0
1~q,t !A 0

1~2q,t8!&

2^A 0
1~q,t !A 0

2~2q,t8!&

5 i E dq0

2p
r0~q0 ,q!e2 iq0(t2t8),

where

r0~q0 ,q!5
1

q2
1

e2

q4E dv
r j

.~v,q!

q02v1 i e
~12e2bv!,

and the KMS condition Eq.~B4!, is used. Thus, we obtain

Im r0~q0 ,q!52p~12e2bq0!
e2

q4
r j

.~q0 ,q!.

Again using the KMS condition, Eq.~B4!, we can finally
write the full longitudinal photon propagator as

^A 0
1~q,t !A 0

1~2q,t8!&5 i F 1

q2
d~ t2t8!1G L,q

. ~ t,t8!u~ t2t8!

1G L,q
, ~ t,t8!u~ t82t !G ,

^A 0
1~q,t !A 0

2~2q,t8!&5 iG L,q
, ~ t,t8!,

where
-

ki
03

s

,

06500
G L,q
. ~ t,t8!5

i

pE dq0Im r0~q0 ,q!@11nB~q0!#e2 iq0(t2t8),

~B5!

G L,q
, ~ t,t8!5

i

pE dq0Im r0~q0 ,q!nB~q0!e2 iq0(t2t8).

~B6!

It is easy to check that the KMS conditionG L,q
. (t2 ib,t8)

5G L,q
, (t,t8) holds. By the same token, we obtain

^A 0
2~q,t !A 0

2~2q,t8!&5 i F2
1

q2
d~ t2t8!1G L,q

. ~ t,t8!

3u~ t82t !1G L,q
, ~ t,t8!u~ t2t8!G ,

^A 0
2~q,t !A 0

1~2q,t8!&5 iG L,q
. ~ t,t8!.

The imaginary part of the full retarded longitudinal photo
propagator, Imr0(q0 ,q), can be calculated in perturbatio
theory via the tadpole method@35#. To one-loop order and in
the HTL limit @35#, one finds Imr0(q0 ,q)52pr̃L(q0 ,q),
wherer̃L(q0 ,q) is given in Eq.~6.7!. Finally, using the con-
dition G L,q

. (t,t8)5G L,q
, (t8,t) @cf. Eq. ~2.7!# and making

change of variableq0→2q0 in Eq. ~B5!, we find that
Im r0(2q0 ,q)52Im r0(q0 ,q), and hence r̃L(2q0 ,q)
52 r̃L(q0 ,q).
.
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