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We derive quantum kinetic equations from a quantum field theory implementing a diagrammatic perturba-
tive expansion improved by a resummation via the dynamical renormalization group. The method begins by
obtaining the equation of motion of the distribution function in perturbation theory. The solution of this
equation of motion reveals secular terms that grow in time; the dynamical renormalization group resums these
secular terms in real time and leads directly to the quantum kinetic equation. This method allows us to include
consistently medium effects via resummations akin to hard thermal loops but away from equilibrium. A close
relationship between this approach and the renormalization group in Euclidean field theory is established. In
particular, coarse graining, stationary solutions, the relaxation time approximation, and relaxation rates have a
natural parallel as irrelevant operators, fixed points, linearization, and stability exponents in the Euclidean
renormalization group, respectively. We used this method to study the relaxation in a cool gas of pions and
sigma mesons in th@(4) chiral linear sigma model. We obtain in the relaxation time approximation the pion
and sigma meson relaxation rates. We also find that in the large momentum limit emission and absorption of
massless pions result in a threshold infrared divergence in the sigma meson relaxation rate and lead to a
crossover behavior in relaxation. We then study the relaxation of charged quasiparticles in scalar quantum
electrodynamic$SQED. We begin with agauge invariantdescription of the distribution function and imple-
ment the hard thermal loop resummation for longitudinal and transverse photons as well as for the scalars.
While longitudinal, Debye-screened photons lead to purely exponential relaxation, and transverse photons,
only dynamically screened by Landau damping, lead to anom&fmrexponentialrelaxation, thus leading to
a crossover between two different relaxational regimes. We emphasize that infrared divergent damping rates
are indicative of nonexponential relaxation and the dynamical renormalization group reveals the correct relax-
ation directly in real time. Furthermore the relaxational time scales for charged quasiparticles are similar to
those found in QCD in a self-consistent HTL resummation. Finally we also show that this method provides a
natural framework to interpret and resolve the issue of pinch singularities out of equilibrium and establish a
direct correspondence between pinch singularities and secular terms in time-dependent perturbation theory. We
argue that this method is particularly well suited to study quantum kinetics and transport in gauge theories.

PACS numbgs): 11.10.Wx, 11.10.Gh, 12.38.Mh

[. INTRODUCTION what time scales. This is an important question since current
estimates suggest that at the energies and luminosities to be
The search for the quark-gluon plast@GP at the BNL  achieved at RHIC, the spatial and temporal scales for the
Relativistic Heavy lon CollidefRHIC) and the forthcoming existence of the QGP are of the order of 20 fij. The
CERN Large Hadron CollidefLHC) has the potential of description of the space-time evolution in an ultrarelativistic
providing clear evidence for the formation of a deconfinedheavy ion collision requires understanding of phenomena on
plasma of quarks and gluons and hopefully to study the chidifferent time and spatial scales. Ideally, such a description
ral phase transition. Perhaps this is the only opportunity tshould begin from the parton distribution functions of the
study phase transitions that are conjectured to occur in pacolliding nuclei as the initial state and evolve this state in
ticle physics with earth-bound accelerators and an intenséme using QCD to obtain the kinetic and chemical equilibra-
theoretical effort has developed parallel to the experimentdiion of partons, the emergence of hydrodynamics, and the
program that seeks to understand the signatures of the QGtadronization and freeze-out sta@f An important part of
and the chiral phase transitiph,2]. An important part of the the program to study the space-time evolution from first prin-
program is to assess whether the plasma, once formediples seeks to establish a consistent kinetic description of
achieves a state of thermodynamic equilibrium and if so oriransport phenomena in a dense partonic environment. Such
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a kinetic description has the potential of providing a detaileda novel and alternative derivation of quantum kinetic equa-
understanding of collective flow, observablgmdronic and tions directly from the microscopic quantum field theory in
electromagneticsuch as multiparticle distributions, charmo- real time and apply this program to several relevant cases of
nium suppression, freeze out of hadrons, and other importarfitérest. We consider scalar theories describing pions and
experimental signatures that will lead to an unambiguou$i9ma mesons and gauge theories. This approach allows us
determination of whether a QGP has been formed and tht include consistently medium effects, such as nonequilib-
observables of phase transitions. This premise justifies rium generalizations of the hard thermal loop resummation,

. . . T ' @escribes anomalous relaxation, and reveals the proper time
important theoretical effort to obtain such a kinetic descrip-gcjes for relaxation directly in real time. There are several

tion from first principles. During the last few years there advantages that this program offers as compared to other
have been important advances in this program, from deriVaapproaches to transport phenomena.

tions of kinetic and transport equations from first principles (i) It allows us to study the crossover between different
in QCD [3-6] and scalar field theorigg—10] to numerical  relaxational behavior in real time. This is relevant in the case
codes that describe the space-time evolution in terms of pasf resonances where the medium may enhance threshold ef-
tonic cascadeg3] that include screening corrections in the fects.

scattering cross sectiop$l,12 and more recently nonequi- (ii) It describes nonexponential relaxation in a clear man-
librium dynamics has been studied via lattice simulationsner and treats threshold effects consistently, providing a real-
[13-16. time interpretation of infrared divergent damping rates in

The kinetic description to study hot and/or dense quantungauge theories,
field theory systems is also of fundamental importance in the (iii) It provides a systematic field-theoretical method to
understanding of the emergence of hydrodynamics in thénclude higher order corrections and allows to incorporate
long-wavelength limit of a quantum field theof¢t7] and self-consistently medium effects such as, for example, a re-
more recently a transport approach has been advocated as@mmation of hard thermal loopa7—29 that are necessary
description of the collective dynamics of soft degrees of freeto determine the relevant degrees of freedom and their mi-
dom in hot QCD[18-22. The typical approach to derive croscopic time scales.
transport equations begins by introducing a Wigner trans- (iv) It resolves the issue of pinch singularities that often
form of a particular nonequilibrium Green’s functions at two appear in calculations of physical quantities out of equilib-
different space-time points3—5,20,23 (a gauge covariant rium.
Wigner transform in the case of gauge theoriaed often The strategy to be followed is a generalization of the
requires a quasiparticle approximatif$23]. The rationale methods introduced in Ref24] but adapted to the descrip-
behind a Wigner transform of a nonequilibrium Green’stion of quantum kinetics. The starting point is the identifica-
function is the assumption of a wide separation between théon of the distribution function of the quasiparticles which
microscopic(fast) and relaxationalslow) time scales, typi- could require a resummation of medium effe@tse equiva-
cally justified in a weakly coupled theory. A recent deriva- lent of hard thermal loop27-29). The equation of motion
tion of transport equations for a hot QCD plasma along theséor this distribution function is solved in a perturbative ex-

lines has recently been reported[R0]; however, the colli- pansion in terms of nonequilibrium Feynman diagrams. The
sional terms obtained in the quasiparticle and relaxation tim@erturbative solution in real time displays secular terms, i.e.,
approximations turn out to be infrared divergent. terms that grow in time and invalidate the perturbative ex-

Thus, the importance of a fundamental understanding opansion beyond a particular time scatecognizeda poste-
transport in quantum field theory from first principles, with riori to be the relaxational time scal& he dynamical renor-
direct application to the experimental aspects of the searcmalization group implements a systematic resummation of
for the QGP, justifies the study of transport phenomena fronthese secular terms and the resulting renormalization group
many different perspectives. In this article we present a novetquation is the quantum kinetic equation.
method to obtain quantum kinetic equations directly from the The validity of this approach hinges upon the basic as-
underlying quantum field theory implementing a dynamicalsumption of a wide separation between the microscopic and
renormalization group resummation. Such an approach habe relaxational time scales. Such an assumption underlies
been recently introduced to study the relaxation of mearevery approach to a kinetic description and is generally jus-
fields of hard charged scalars in a gauge thd@#). This tified in weakly coupled theories. Unlike other approaches in
method allowed us to obtain directly in R€24] the anoma- terms of a truncation of the equations of motion for the
lous relaxation of hard charged excitations in an AbelianWigner distribution function, the main ingredient in the ap-
gauge theory25], providing an interpretation of infrared di- proach presented here is a perturbative diagrammatic evalu-
vergent damping ratd®6] in terms of nonexponential relax- ation of the time evolution of the proper distribution function
ation and pointed to a shortcoming in the interpretation ofin real time[8] improved via a renormalization group resum-
guasiparticle relaxation in terms of complex poles in themation of the secular divergences.
propagator. Infrared divergences associated with the emis- An important bonus of this approach is that it illuminates
sion and absorption of long-wavelength gauge bosons arhe origin and provides a natural resolution of pinch singu-
ubiquitous in gauge theories. Thus, this novel approach ifarities [30,31 found in perturbation theory out of equilib-
particularly suitable to study transport phenomena in gaugeéum. The perturbative real-time approach combined with the
theories. renormalization group resummation reveals clearly that these

Goals and strategyThe goals of this article are to provide are indicative of the nonequilibrium evolution of the distri-
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bution functions. In this framework, pinch singularities arewhich the reader should refer for a more detailed presenta-
the manifestation of secular terms. tion [30,37—43. Here we only highlight those aspects and
The article is organized as follows: In Sec. || we summa-details that are necessary for our purposes.
rize the main ingredients of nonequilibrium field theory to  The basic ingredient is the time evolution of density ma-
establish the perturbative framework. In Sec. Il we study thetrix prepared initially at timet=t,, which leads to the gen-
familiar case of a scalar field theory, including in addition erating functional of nonequilibrium Green's functions in
the nonequilibrium resummation akin to the hard thermalerms of a path integral defined on a contour in the complex
loops to account for the effective masses in the medium antime plane.
therefore the relevant microscopic time scales. In Sec. IV we The contour has two branches running forward and back-
discuss in detail the main features of the dynamical renorward in the real-time axis corresponding to the unitary evo-
malization group approach to quantum kinetics, compare ilution operator forward in time that premultiplies the density
to the more familiar renormalization group of Euclidean matrix att, and the hermitian conjugate that postmultiplies it
quantum field theory, and provide an easy-to-follow recipe taand determines evolution backwards in time. The initial den-
obtain quantum kinetic equations. In Sec. V we apply theseity matrix determines the boundary conditions on the propa-
techniques to obtain the kinetic equations for cool pions andjators.
sigma mesons in th®(4) linear sigma model in the chiral This is a standard formulation of nonequilibrium quantum
limit. In the relaxation time approximation we obtain the field theory known as the Schwinger-Keldysh or closed-
relaxation rates for pions and sigma mesons. This case afime-path(CTP) Theory[30,37-43. Fields defined on the
lows us to highlight the power of this approach to studyforward and backward branches are labeled respectively with
threshold effects on the relaxation of resonances, in particu: +” and ** —” superscripts and are treated independently.
lar the crossover between two different relaxational regimesntroducing sources on the CTP contour, one can easily con-
as a function of the momentum of the resonance. This aspestruct the nonequilibrium generating functional, which gen-
becomes phenomenologically important in view of recenterates nonequilibrium Green’s functions through functional
studies by Hatsuda and collaboratf3g] that reveal a drop-  derivatives with respect to sources much in the same manner
ping of the sigma mass near the chiral phase transition angs the usual formulation of amplitudes in terms of path inte-
an enhancement of threshold effects with potential observegrals.
tional consequences in heavy ion collisions. The path integral along the CTP contour is in terms of the
In Sec. VI we study the relaxation of charged quasiparti-effective Lagrangian defined by
cles in the full range of momenta in Scaler QESQED.
This theory has the same hard thermal loop structure at low-
est order as QED and QC[33-3¢ and shares many fea- Looned ¥ W ]1=L[VH]-L[V], (2.1
tures of these theories such as the lack of magnetic screening
mass. In particular, in this Abelian case we providgaaige

invariant description of the quasiparticle distribution func- \yhere £[¥'] denotes the corresponding Lagrangian in usual
tion, thus bypassing the complications associated with thgg|g theory and¥ denotes any generigposonic or fermi-
gauge covariant Wigner transforms of the charged fielchnig) field. The advantage of the path integral representation
Green'’s function. The hard thermal loGdTL) resummation  ith the above nonequilibrium, effective Lagrangian is that it
[27-29 is included in the scalar as well as in the gaugejs straightforward to construct diagrammatically a perturba-
boson spectral densities. We find that the exchange of HTkjye expansion of the nonequilibrium Green'’s functions in
resummed longitudinal photons leads to exponential relaxterms of modified nonequilibrium Feynman rules. These
ation but the exchange of dynamically screened transversgonequilibrium Feynman rules are as follows.

photons leads to anomalous relaxation, thus leading to a (j) The number of vertices is doubled: Those associated
crossover behavior in the relaxation of the distribution func-yith fields on the “+” branch are the usual interaction ver-
tion as a function of the momentum of the charged particletices, while those associated with fields on the ™ branch

The real-time description of relaxation advocated in this argye the opposite sign.

ti<_:|e bypasses Fhe ambiguities associated wit_h an infrared (i) There are four propagators corresponding to the pos-
divergent damping ratf20,34. In Sec. VIl we discuss the gjple contractions of fields among the two branches. In addi-
issue of pinch singularities found in calculations in nonequi-jgn to the usual time-ordere@eynman propagators which
librium field theory and establish the equivalence betweenyre associated with fields on ther branch, there are anti-
these and secular terms in the perturbative expansion; thegg,e-ordered propagators associated with fields on the *
singularities are thus resolved via the resummation providegl;ach and the Wightman functions associated with fields on

by the dynamical renormalization group. different branches.
_ We summarize our results and discuss further implica- jji) The combinatoric factors of the Feynman diagrams
tions and future directions in the Conclusions. are the same as those in the usual calculatio-ofatrix

elements in field theory.
For a scalar(bosonig field ®(x), the spatial Fourier
transforms of the nonequilibrium propagators are defined by
The field-theoretical methods to describe nonequilibrium(the extension to the case of a gauge or fermionic field is
processes have been studied at length in the literature wtraightforward

Il. REAL-TIME NONEQUILIBRIUM TECHNIQUES
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G;(t,t’):ifd3xe—ik'X<q>(x,t)q>(o,t’)), (2.2a Gf(t,t')z2'—a)k{n3(wk)e-iwk<t—t’>

i 1 lo(t=ty, 2.5
Gk<(t,t')=ifd3xe"k'X(CI)(0,t’)cD(x,t)), +[1+ng(w)Je' Y (2.5h

(2.2 o= VK2, ng(w)=[exp(Bw)—1]"%,
Gy T(t,t) =G (t,t")8(t—t")+ G (t,t") 6(t' — 1), (259
(2.29 where(here and henceforttk=|k|, andmis the mass of the
Gy (tL,t) =Gy (t,t") 8t —t) + G (t,t") 6(t—t'), field gndnB(w) is the equilibrium Bose-Einstein distribution
(2.2 function.
In a hot and/or dense medium the definition of the quasi-
G (L) =GL(tt) (2.28 particles whose distribution function we want to study may
ko kADE 2 require a resummation scheme such as, for example, that of
hard thermal loops generalized to nonequilibrium situations.
In these cases, the Hamiltonian is rearranged in such a way

. . that part of the interaction is self-consistently included in the
where (- --) denotes the expectation value with respect to

the initial density matrix. From the definitions of the non part of the Hamiltonian that commutes with the quasiparticle

v . " number operator, call it for conveniend#,, and specific
;?;':'hbemij dn;nr;irt?/pagators, Eqe2.2), itis clear that they sat- counterterms are included in the interacting péytto avoid

double counting.
T P PN As we are interested in obtaining an equation of evolution
G (L) TG (L) =Gy (L) =G (Lt )_(2'2 3 for a quasiparticle distribution function, the most natural ini-
' tial state corresponds to a density matrix that is diagonal in

The retarded and advanced propagators are defined as the basis of free quasiparticles, i.e., that commutes tih
This initial density matrix is then evolved in time with the

Gy T(t,t) =G (t,t), (2.2f)

Gy k(t,t’)=G:+(t,t’)—Gk+‘(t,t’) fu.II Hamiltonign,.anq if the i.nteraction does r_10t qommu.te
’ with Hg, the distribution function of these quasiparticles will
=[G, (t,t")— Gy (t,t")]o(t—t"), evolve in time.
The distribution functiom,(t,) is the expectation value
Gak(Lt)=G; " (t,t)— G F(tt) of the operator that counts these quasiparticles in the initial
density matrix. Under the assumption that the initial density
=[Gy (t,t")— G (t,t)]a(t' —1), matrix is diagonal in the basis of this quasiparticle number,

perturbative expansions are carried out with the following
which are useful in the discussion of the pinch singularitiesnonequilibrium free quasiparticle Green’s functions:
discussed in a later sectigaee Sec. VI

It now remains to specify the initial state. If we were i
considering the situation iequilibrium the natural initial ~ G_ (t,t')= =—{[1+n,(tg)]e k") 4 ny(ty)e =},
density matrix would describe thermalinitial state for the 20k
free particles at temperatufe The density matrix of this (2.68
initial state isf):exp(— Ho/T), whereH, is the free Hamil- _
tonian of the system, and the time evolution is with the full .-, ., . ! Ciou(t—t! fou(t—t/
interacting Hamiltonian. This is tantamount to switching on G (tt)= z_wk{nk(t")e [ ny(tg) el
the interaction at=t,. If the full Hamiltonian does not com- (2.6b
mute withH,, the density matrixevolves out of equilibrium
for t>1,. This choice of the thermal initial state for the free \yherew, is the dispersion relation for the free quasiparticle.
particles determines the usual Kubo-Martin-Schwingery this picture the width of the quasiparticles arises from
(KMS) conditions on the Green’s functions: their interaction and is related to the relaxation rate of the

-, - distribution function in relaxation time approximation. This
G (t,t)=G (t=ip,t"). (24 point will become more clear in the sections that follow

] ] ) ] _ where we implement this program in detail.
Perturbative expansions are carried out with the following  Finally, it is easy to check that théosonid free quasi-

real-time equilibrium free quasiparticle Green’s functions: particle Green’s functions, Eq2.6) and (2.5), satisfy
[ . .
Gy (t,t')= 5 —{[1+ng(w) Je~ 1) Gi (L) =G (t'1), 2.7
k

+ng(w)e kY, (2.58  which will be useful in our following calculations.
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IIl. SELF-INTERACTING SCALAR THEORY AT?
. . o . . m2=——+O(\%?T?). (3.5
We begin our investigation with a self-interacting scalar 24
theory. The Lagrangian density is given by
In the massless casey; serves as an infrared cutoff for the

1 5 2o N 4 loop integrald44,46. The leading term of Eq3.5) provides
Lle]= 5(‘9#@) _Emoq’ - E‘I’ ' (3D the correct microscopic time scale at large temperature.
We note that this renormalized and temperature-
wheremy is the bare mass. dependent mass determines the important time scales in the

As mentioned in the Introduction, the first step towardsmedium but isnot the position of the quasiparticle pofer,
understanding the kinetic regime is the identification of thestrictly speaking, resonankce
microscopictime scales in the problem. In a medium, the ~When the temperature is much larger than the renormal-
bare particles are dressed by the interactions becoming quized zero-temperature mass, the hard thermal loop resumma-
siparticles. One is interested in describing the relaxation ofion is needed to incorporate the physically relevant time and
these quasiparticles. Thus the important microscopic timéength scales in the perturbative expansion. For a hard qua-
scales are those associated with the quasiparticles and not tigarticlek~ T, while for a soft quasiparticle=< \AT; hence
bare particles. If a kinetic equation is obtained in some perthe longest microscopic time scale of the systent,jg,,
turbative scheme, such a scheme should be in terms of the 1/yNT~ 1/mgg.
guasiparticles, which already implies a resummation of the
perturbative expansion. This is precisely the rationale behind A. Quantum kinetic equation
the resummation of the hard thermal loops in finite tempera-

ture field theony[27—29 and also behind the self-consistent N this subsection we obtain the evolution equations for
treatmen{7,8]. the distribution functions of quasiparticles. For this we con-

In a scalar field theory inequilibrium such a self- sider_ an init_ial state out_of equilibrium described by _ade_nsity
consistent resummation can be implemented by writing if"atrix that is diagonal in the basis of the free quasiparticles,
the Lagrangian bgt wlth nonequnlbrlum_ dls'Fr|but|0|_1 functions. If th_e me-

dium is hot, these quasiparticles will have an effective mass
ma=m2Z+ 6m2, (3.2  Meg which will result from medium effects, much in the _
same manner as the temperature-dependent thermal mass in
where Mgt is the renormalized antémperature_dependent the equilibrium situation described above. This mass will be
quasiparticle thermal effective mass which enters in thevery different from the bare mass, in the absence of me-
propagators, aném? is a counterterm which will cancel a dium effects and must be taken into account for the correct
subset of Feynman diagrams in the perturbative expansioassessment of the microscopic time scales. Thus, we write
and is considered part of the interaction Lagrangian. Aghe Hamiltonian in terms of the in medium dressed nrags
shown in Ref.[44] for the scalar field theory case, this and a counterterndm?=mj— m2; which will be treated as
method implements a resummation akin to the hard thermgdart of the perturbation and required to cancel the mass shifts
loops in a gauge theof27—29. Parwani showed44] that  consistently in perturbation theory. This is the nonequilib-
this resummation is effectively implemented by solving therium generalization of the resummation described above in
following self-consistent gap equation oz [8,44,45: the equilibrium case. We emphasize tha; depends on the
initial distribution of quasiparticles. This observation will be-
d®q 1+2ng(wy) come important later when we discuss the time evolution of
3 2w , the distribution functions and therefore of the effective mass.
2) K (3.3 We write the Hamiltonian of the theory as

A
=i 5 (09, (0% [

H=Hg+Hjy, 3.6
with w,= Jk>+ mezﬁ. The divergencesquadratic and loga- o (3.69
rithmic in terms of a spatial momentum cutpfh the zero- 1
temperature part of Eq3.3) can be absorbed into a renor- Ho= Ef d3X[ 1%+ (VD)2 + mZd2], (3.6b
malization of the bare mass by a subtraction at some
renormalization scale. A convenient choice corresponds to a
renormalization scale &=0 andm(T=0)=m is the zero- H. :f d3x
temperature mass. nt
For T>mg, the solution of the gap equation is given by
(44,49 wherell(x,t)=®(x,t) is the canonical momentum, and the
mass counterterm has been absorbed in the interaction. Here
)] (3.4 and henceforth, an overdot denotes derivative with respect to
o time. The free part of the HamiltoniaH, describes free
quasiparticles of renormalized finite-temperature masg
In particular, for T>\\T>m, we can neglect the zero- and is diagonal and Gaussian in terms of free quasiparticle
temperature mass and obtain creation and annihilation of operatoa$(k) anda(k).

A 1
Eq>4+ Eémzdbz}, (3.60

Megt

2
MggIn
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With this definition, the lifetime of the quasiparticles will A
be a consequence of interactions. In this manner, the nonAk(t)=—5—- €<[CI>3(k,t)]H(—k,t)+1‘[(k,t)[<1>3(k,t)]>
equilibrium equivalent of the hard thermal loog® the K
sense that the distribution functions are nontheymaich in
this theory amount to local terms, have been absorbed in the +omA (@ (k,HIT(—k, ) +TI(k,H)®(—k, 1)) |,
definition of the effective mass. This guarantees that the mi-
croscopic time scales are explicit in the quasiparticle Hamil- (3.10
tonian.

As discussed in the previous section, we consider that th&here we use the compact notation
initial density matrix at timg¢ =t is diagonal in the basis of
free quasiparticles, but with out-of-equilibrium initial distri- 1
bution functionsn,(to). The Heisenberg field operators at ~ [P3(k,t)]=

f dq,d3g,d3qs®(qy ,t)

3
timet are now written as (2m)
" X®(0z,)P(qs,t) 8°(k— 01— 92— 0s)-
D (x,t =f D (k,t)e'* X, (3.11
=] sk
(3.79 In a perturbative expansion care is needed to handle the
1 . canonical momenturfill (k,t)=®(k,t)] and the scalar field
d(k,t)= W[a(k,t)ﬂi (=k,0)], at the same time because of Schwinger terms. This ambigu-
k

ity is avoided by noticing that

3

d°k .
H(X,t):J(ZT)S/ZH(k,t)elk'X,

(I(k,H[P3(—k,)])

=Tr{p(to) T ([ P3(—k,1)]}

(3.7b
(kb =i \/Sa’(—kt—a(k,] = lim - TH[ 03— k)] pto) (Kt
: 5 ! D1, =l {[P3(—k,D]"p(t) @ (k,t")}
wherea’(k,t) anda(k,t) are, respectively, creation and an- J
nihilation operators at timeandw, = \k?+m2.. The expec- =—([®3(~-kD]"d (kt))] , (312
tation value of quasiparticle number operatagt) can be o =t
expressed in terms of the field(k,t) and the conjugate
momentumII(k,t) as follows: where we used the cyclic property of the trace and the’*
superscripts for the fields refer to field insertions obtained as
nk(t)=(at(k,t)a(k,t)) variational derivatives with respect to sources in the forward
(+) time branch and backward~) time branch in the non-
1 5 equilibrium generating functional.
=2—wk{<l'[(k,t)1'[(—k,t)>+wk<<1>(k,t)<1>(—k,t)) We now use the canonical commutation relation between
I1 and® and define the mass counterteé@m?=\A/6 to
i [ (P (K DTT(—K,t))—(TI(k,t)D(—k,1))]}, write the above expression as
(3.8

. N[0 . L ,
n()=—5— E{ZWD (k)" (—k,t"))

where the brackets - - ) mean an average over the Gaussian 120,

density matrix defined by the initial distribution functions

n(to). The time-dependent distributio3.8) is interpreted AP T (k)P (—k,t")+ (DT (k,t")
as the quasiparticle distribution function. 5
The interaction Hamiltonian in momentum space is given XD (— k1)) +3iJ
by ! t=t (277)3
A 4
Hint:_l—3 . dgqiq)(qi,t)63(q1+q2+Q3+q4) X<(D+(Qat)q)_(_q1t)>] (313)
4l (2m)8) i=1
5m? - - - i
+_f dBqd(q,H)d(—q,t). (3.9 'I_'he nght hand S|de_ of Ec[3.13_ can be obtained pertur_ba
2 tively in weak coupling expansion in. Such a perturbative

expansion is in terms of the nonequilibrium vertices and
Taking the derivative oy (t) with respect to time and using Green'’s functions, Eq92.2), with the basic Green’s func-
the Heisenberg field equations, we find tions given by Eqs(2.6). At order O(\) the right-hand side
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tadpole diagrams. This requirement guarantees that the mass
‘ ) in the propagators is the effective mass that includes the
+ * K t microscopic time scales. Hence, we find that the final form
of the kinetic equation is given by

d

. A
n(t)=— =— —[([P3k,D)] TP (=K, t"))]i=r,
(0=~ g S LIPID T 7 (—kt)) iy
+ + - (314)
¥ ¥ i with the understanding that no tadpole diagrams contribute
* Yk v - * to the above equations as they are automatically canceled by
t + -
+ +
k — 1}

+ +

+
t the terms containings in Eq. (3.13.
(b) To lowest order the condition that the tadpoles are can-

celed leads to the following condition ak

k —t
+ -
d3q 1+2n4(t
- @%—: A=—3J q3 q("); (3.1
N / (21) qu

t
(© therefore the effective mass is the solution to the self-
onsistent gap equation

FIG. 1. The Feynman diagrams contribute to the quantum ki-C
netic equation for a self-interacting scalar theory up to two-loops N d3q 14 2n4(to)
order. The tadpole contribution&® and (b) are canceled by a m2.= m2+ _f q\*o _ /—2+m2
proper choice ofA. eff 770 (2m)?  20q @q= Va eff:

2

(3.16
of Eg. (3.13 vanishes identically. This is a consequence of . .
the fact that the initial density matrix is diagonal in the basisWWe See that the requirement that the term proportiondl to.
of free quasiparticles. in the kinetic equation cancel the tadpole c_ontr_lbutlons is
Figures. la—1c display the contributions up to two |00pseqU|vaIent to the hard thermal loop resummation in the equi-
to the kinetic equation3.13. The tadpole diagrams, de- librium case[44] and makes explicit thahZ is a functional
picted in F|gs 1a and 1b as well as the last term in Equ the initial nonequilibrium distribution functions.
(3.13, are canceled by the proper choice/of As will be discussed in detail below, such an expansion
An important point to notice is that these Green’s func-will be meaningful for time$<tre|=|nk(t)/hk(t)|, wheret
tions include the proper microscopic scales as the contribuis the relaxational time scale for the nonequilibrium distribu-
tions of the hard thermal loops have been incorporated byion function. For small enough coupling we expect that
summing the tadpole diagrams. The propagators entering will be large enough such that there is a wide separation
the calculations are the resummed propagators. The ternigetween the microscopic and the relaxational time scales that
with A are required to cancel the tadpoles to all orders.  will warrant such an approximatiofsee discussion belgw
Thus, from the formidable expressi@B.13 only the first To two-loop order, the time evolution of the distribution
term remains afteA is properly chosen in order to cancel the function that follows from Eq(3.14) is given by

. A1 d3q, d3q, d3qs t
=35 At (27m)38%(k— oy — G
"O7F 20) @m20g (@m720, (277)32wq3ft0 H(em k=01~ 6e~ )
X{./\/l(to)cos{(wk+a)ql+wq2+qu)(t—t”)]+3N2(t0)cos{(wk+wa+wq2—wq3)(t—t”)]
+3N3(to)cod (wk— wg, = wg, T wg,) (t=t") [+ Ny(to)cod (wk — wg, — wg,— wg (t=t") ]}, (3.17
where
Ny(D)=[14+n(DI[1+ng (D I[1+ng (DI[L+ng (D] ni(t)ng (HNg (DG (1), (3.183
No(t)=[1+n (D[ 1+ng (D][1+Ng,(D)INg, (1) = N(t)Ng, (1)Ng,(D[1+Ng (D], (3.18h
N5(t)=[ 1+ (1) g, (NG (D[ 1+ N ()]~ (D[ 1+ g (DI[L+Ng (1) NG, (1), (3189
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N =[ 1+ 0D Ing (DG (DN (O = N[ 1+ Ng (DI[1+ng (D[ 1+Ng (1)]. (3.180

The kinetic equatior{3.17) is retarded and causal. The different contributions have a physical interpretation in terms of the
“gain minus loss” processes in the plasma. The first term describes the creation of four particles minus the destruction of four
particles in the plasma, the second and fourth terms describe the creation of three particles and destruction of one minus
destruction of three and creation of one, and the third term is¢h#eringof two particles off two particles and is the usual
Boltzmann term.

Since the propagators entering in the perturbative expansion of the kinetic equation are in terms of the distribution functions
at the initial timetg, the time integration can be done straightforwardly leading to the following equation:

Si (w— ) (t—1tg)]

m(w— wy)

. A2
(=5 f o R w,k;N](to)] (3.19

whereR[ w,k;N(tp)] is given by

T d3q d3q d3q
f - - = (27)26%(k— U1~ Uy — Gg)[ 8 0+ wq, + wg, + g )Ni(to)

KGN =5
R[a) N(to)] (277)32(1)(]1 (277)32wq2 (277)32wq3

Zwk

+30(0+ wq + wq,— qu)/\/z(to) +38(0—wq —wg,+ qu)Ng(to) + (0= wq —wq,~ qu)./\f4(t0)].

(3.20

2

We are now ready to solve the kinetic equation derivedwvherea is a fixed positive number, anp(y) is a smooth
above. SinceR[ w,k;N(ty)] is fixed at initial timety, Eq.  function for —a<y<« and is regular ay=0. Thus,pro-
(3.19 can be solved by direct integration ouwgthus leading  videdthat R[ w,k;N(tp)] is finite atw= w,, we find n,(t)

to is given by
)\2
(1) =N(to) (1) ="i(to) + R @i, KiMi(t) (1~ to)
2 _ _ —
+ )\—J’ dwR[a),k;/\/i(to)]1 cod(w= w1~ to)] ) +nonsecular terms. (3.29
3 (0= wy)?

(3.21) The term that grows linearly with time issecular termand
' by nonsecular termén Eq. (3.24 we refer to terms that are

. . . . . ... bound at all times. The approximation above, replacing the
This expression gives the time evolution of the quas'part'd%scillatory terms with resonant denominators bg(w

distribution function to lowest order in perturbation theory, —w,), is the same as that invoked in ordinary time-
but only for early times. To make this statement more precise, . ¥’ ; : 5

. -2 X ; ) ndent perturbation theory leading to Fermi Iden
consider the limit>t, in the expression between brackets m%iepe dent perturbatio eory leading to Ferms golde
Eq. (3.21) which can be recognized from Fermi’s golden rule

. . Clearly, the presence of secular terms in time restricts the
of elementary time-dependent perturbation theory: y P

validity of the perturbative expansion to a time interval
—to<t,e With

. 1-cod(w—wy)(t—ty)]

lim 2 =(t—t0)5(w—wk). 3nk(t0)
t—tg—o (0= wy) trei(K)

(3.22 T N2 RL e KN (t)]

(3.29

A more detailed evaluation of the long-time limit is obtained Since the time scales in the integral in &8.21) are of the

by using the following expressioi24: order of or shorter thamyc,~ 1/Meyr, the asymptotic form
given by Eq.(3.29) is valid for t—ty>tc0. Therefore for

weak coupling there is a regime mitermediate asymptotics

» d S
f 7ay7y(1—cosyt)p(y) In time
tmicro<t_t0<trel(k) (326)
t—o . dy 1
= th(0)+7’J7 F[P(Y)—D(O)]JFO e such that(i) the corrections to the distribution function is
é dominated by the secular term a6 perturbation theory is

(3.23 valid.
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We note two important features of this analysis. In this section we implement the dynamical renormaliza-
(i) In the intermediate asymptotic reging®.26) the only  tion group resummation of secular divergences to improve
explicit dependence on the initial timg is in the secular the perturbative expansion following the formulation pre-
term, sinceR[ wy ,k;N(tg)] depends orty only implicitly sented in Ref[24].
through the initial distribution functions. These observations This is achieved by introducing the renormalized initial
will become important for the analysis that follows below. distribution functionsn,(7), which are related to the bare
(i) Rlok kNi(tg)] given by Eqg.(3.20 with Egs. initial distribution functionny(t,) via a renormalization con-
(3.189—(3.180 evaluated at, vanishesf the initial distri-  stantZ(7,ty) by
bution functions are the equilibrium ones as a result of the
on-shell delta functions and the equilibrium relation 1
+ ng(wq) =expBwg)Ng(wy); in this case there are no secu-
lar terms in the perturbative expansion. (3.29
To highlight the significance of the second point above in . ] o
a manner that will allow us to establish contact with the issugVherer is an arbitrary renormalization scale agg(r,to)
of pinch singularities in a later section, we note that theWill be chosen to cancel the secular term at a time seale
secular term in Eq(3.24) corresponds to the net change of Substituting Eq(3.29 into Eq. (3.24), to O(\?) we obtain
quasiparticles distribution function in the time interiet,.

)\2
Np(to) = Z5(7,to)Ny(7), Zp(mto) =14+52 (7 ko) + -,

To see this more explicitly, let us rewrite ne(t) =ne(7) + %Z{Z(kl)(ﬂto)nk( )
;R[wk,k;M(to)]=2_—a:k[[1+nk(to)]2§(wk.k;to) +(t—to) Rl o KN (D)} +OONY. (3.30
—n(te) 32 (o Kito) ], (3.27  To this order, the choice
where A1) == (1=t Rlwi K N(D)]In(7)  (3.3D
Sa(wi,Kitg) =S5 (i, Kitg) =20 Im S r(wy,K;tg) leads to

is the imaginary part of the on-shaiétarded scalar self- \?

energy[8] galcu{at%d to two-loop order with the initial dis- N (D) =n,(7)+ §(t_T)R[wk'k;M(T)]+O(7‘4)-

tribution functionsny(ty). Indeed, the first and the second (3.32
terms in EQq.(3.27), respectively, correspond to the “gain”

and the “loss” parts in the usual Boltzmann collision term. Whereas the original perturbative solution was only valid for
Hence one can easily recognize th&R[ v, ,k;N;(to)]/3is  times such that the contribution from the secular term re-
the net production rate of quasiparticles per unit tihe mains very small compared to the initial distribution function
Moreover, the absence of secular term for a system in the@t timetg, the renormalized solution, E¢3.32, is valid for
mal equilibrium [for which n.(to)=ng(wy)] is a conse- time intervalst-r such that the secular term remains small;

quence of the KMS condition for the self-energy in thermalthus by choosing- arbitrarily close tot we have improved

equilibrium: the perturbative expansion.
To find the dependence af(7) on 7, we make use of the
Sq(wy k) =ePkZg(wy k). (3.28  fact thatn,(t) does not depend on thebitrary scaler: a
change in the renormalization poimtis compensated by a
B. Dynamical renormalization group: change in the renormalized distribution function. This leads
Resummation of secular terms to the dynamical renormalization group equatido lowest
The dynamical renormalization group is a systematic genPrder'
eralization of multiple scale analysis and sums the secular d A2
terms, thus improving the perturbative expandién,4g. It g7~ FRlwk K Ni(7)]=0. (3.33
was originally introduced to improve the asymptotic behav-
ior of solutions of differential equatiorig7,4§ to study pat- This renormalization of the distribution function also af-

tern formation in condensed matter systems and has sinGg.is the effective mass of the quasiparticles singg is
been adapted to studying the nonequilibrium evolution Ofyetermined from the self-consistent equatigriLé which in
mean fields in quantum field theof¢9] and the time evolu-  y,, js a consequence of the tadpole cancelation consistently
tion of guantum systemss0]. . o _in perturbation theory. Since the effective mass is a func-
For discussions of the dynamical renormalization group injona| of the distribution function it will be renormalized
other contexts, including applications to problems in quantqnistently. This is physically correct since the in-medium
tum mechanics and quantum field theory, see Réf&-50.  effective masses will change under the time evolution of the
distribution functions.
Choosing the arbitrary scaleto coincide with the time
1See Sec. 4.4 in Ref43], especially pp. 83—84. in Eq. (3.33, we obtain theesummedinetic equation
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: N d*qy d*q, d*gy
n(t)=—— 2m)38%(k—0g1—0po— S+ wy +wy +wg )N(t
k(t) 3 20, (277)32wa (277)32(%2 (277)320)%( )76 (K= 01— 2~ U3)[ 8(wy + wq, + g, + g )N (1)
+38(wt wg, + wg,— qu)/\/’z(t) +38(wk— wg, — wg, qu)/\/},(t) + 0wy — wg, ~ wg,~ qu)/\/'4(t)], (3.39
|
where theN;(t) are given in Egs(3.183—(3.18d. To avoid N7 d3q, d3q, d%qs
cluttering of notation in the above expression we have noty(k)= 5 f 3 3 3
made explicit the fact that the frequencieg depend on time @kJ (2m) 2wq, (2m) 2wq, (2m) 2‘*’643
through the time dependence wf; which is in turn deter- 345
mined by the time dependence of the distribution function. X(2m)* 8" (K= 01~ U2~ Gg) S wk— wg, — g, + wg,)
Indeed, the renormalization group resummation leads at once
to the conclusion that the cancellation of tadpole terms by a X{[1+ng(@q))J11+Ng(wg,) Ing( )
proper choice oA requires that at every timethe effective —Ng(0g)Na(0g)[ 1+ Ng(we )]} (3.37)
qq ds d3 . .

mass is the solution of thiéme-dependengap equation
Solving Eg. (3.36 with the initial condition &ny(t=tg)

N[ d3g 1+2ngt) = oni(tp), we find that the quasiparticle distribution function
m2y(t)=m3+ Ef 3 ﬁ in the linearized approximation evolves in time in the follow-
(2m)® 20q(t) ing manner:
SNy (t) = dni(to)e” YT, 3.3
wqD) =TT D), (335 k()= dn(to) (3.38

The linearized approximation gives the time scales for relax-

whereng(t) is the solution of the kinetic Equatiof8.34 ation for situations close to equilibrium. In the case of soft
q - s s ; 25 m?2

Thus, the quantum kinetic equation that includes a nonequfpbimenéum >mey>k) and high temperatureT=>m* we

librium generalization of the hard thermal loop resummation® ain[8]

in this scalar theory is given by E3.34) with the frequen-

cies wg— wq(t) given as self-consistent solutions of the to(k=0)=[ y(k=0)] 1~ 32V247T_ (3.39
time-dependent gap equati¢®.35 and of the kinetic equa- e 32T
tion (3.34).

The quantum kinetic equatiofB8.34) is thereforemore For very weak couplingas we have assumgdhe relax-

general than the familiar Boltzmann equation for a scalar ational time scale is much larger that the microscopic one
field theory in that it includes the proper in medium modifi- t,co~ /Mgy~ 1/\AT, since
cations of the quasiparticle masses. This approach provides
an alternative derivation of the self-consistent method pro- te 1
posed in Ref[7]. =L (3.40

It is now evident that the dynamical renormalization
group systematically resums the secular terms and the corréhis verifies the assumption of separation of microscopic
sponding dynamical renormalization group equation extractand relaxation scales in the weak coupling limit.
the slow evolutionof the nonequilibrium system.

For small departures from equilibrium the time scales for)y. COMPARISON TO THE USUAL RENORMALIZATION
relaxation can be obtained by linearizing the kinetic equation GROUP AND GENERAL STRATEGY
(3.34 around the equilibrium solution dt=ty. This is the _ S )
relaxation time approximation which assumes that the distri- /N order to relate this approach to obtain kinetic equations
bution function for a fixed mode of momentukiis per-  Using adynamical renormalization grougo more familiar
turbed slightly off equilibrium such than,(to)=ng(w,)  Situations we now discuss two simple cases in which the
+ N, (o), while all the other modes remain in equilibrium, Same type of method leads to a resummation of the pertur-
i.e., Nc: 4(to) =Ng(wy 1 q) for g#0. bative series in the same manner: the first is the simple case

Recognizing that only the on-shell delta function that©f @ weakly damped harmonic oscillator with a small damp-

multiplies the scattering tertVa(t) in Eq. (3.34 is satisfied, ing coefficient and the second, closer to the usual renormal-

we find that the linearized kinetic equatié®.34 reads iz_ation group ideas, is the scattering amplitude in a four-
dimensional scalar theory.

tmicro

Sni(t) = — y(k) dny (1), (3.39 A. Weakly damped harmonic oscillator

Consider the equation of motion for a weakly damped
where y(k) is the scalar relaxation rate: harmonic oscillator:
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y+y=—ey, e<l. where\q is the bare coupling, .ann is the Euclidean four-
momentum. Clearly perturbation theory breaks down for
Attempting to solve this equation in a perturbative expansiom\ /p= el/hé_
in € leads to the lowest order solution Let us introduce the renormalized coupling constant at a
scalex as usual as

+c.c+nonsecular terms,

— it €
y()=Ae [1 2! No=Z\(ON(K), Z,(k) =1+ 2N () +O?),

where the term that grows in time, i.e., the linear seculamnd choose;(«) to cancel the logarithmic divergence at a
term, leads to the breakdown of the perturbative expansion afrbitrary renormalization scake. Then in terms oh\ («) the
time scalesy, < 1/e. The dynamical renormalization group scattering amplitude becomes

introduces a renormalization of the complex amplitude at a
time scale 7 in the form A=Z(7)A(7) with Z(r)=1
+2z4(7)e+---. Choosingz; to cancel the secular term at
this time scale leads to

T'®)(p,p,p,p)=A(k)+ gAZ(K)lnng ON%), (4.2

with T™(k,«,x,k)=\(x). The scattering amplitude does
not depend on the arbitrary renormalization scalend this
independence impliescdT'“)(p,p,p,p)/dx=0, which to

) ] lowest order leads to theenormalization group equation
The solutiony(t) cannot depend on the arbitrary scale at

y(=A(r)et| 1— g(t—T) +ec.

which the secular terr(divergence has been subtracted, and d\ (k)
this independencey(t)/d7=0 leads to the following renor- K =§7\2(K)+(9(7\3), (4.3
malization group equation to lowest orderén
dA(T) e where B, =3\?(x) + O(\%) is recognized as the renormal-
3 +§A(7)=O. ization group beta function. Solving this renormalization
T

group equation with an initial condition(p) =\ that deter-
Now choosing = r, the renormalization-group-improved so- Mines the scattering amplitude at some value of the momen-

lution is given by tum and choosingk=p in Eq. (4.2), one obtains the
renormalization-group-improved scattering amplityédée an
y(t)=e VA(0)e +c.c]. off-shell point
This is obviously the correct solution t8(€). The interpre- F(“)(p,p,p,p;Ef) =\(p), (4.9

tation of the renormalization group resummation is very
clear in this simple example: the perturbative expansion isvith \(p) the solution of the renormalization group equation
carried out to a time scale<1/e within which perturbation  (4.3):

theory is valid. The correction is recognized as a change in

the amplitude, so at this time scale the correction is absorbed

in a renormalization of the amplitude and the perturbative ANp)=
expansion is carried out to a longer time but in terms of the

amplitude at the renormalization scaléThe dynamical Th tion bet th lizati .
renormalization group equation is the differential form of € connection between the rénormalization group in mo-

this procedure of evolving in time, absorbing the correctionsf“e?ttlfm space andt.the dfynam||cal trenorme;hz_atmn group in
into the amplitudd¢and phasesand continuing the evolution real |me.(r¢sumrg_a |0nho serc];uhar .dermﬂ_se ' N previous
in terms of the renormalized amplitudes and phases. As weections Is immediate through the identification

will see with the next example this is akin to the renormal- — — —
ization group in field theory. to=In(A/p), tein(p/p), r=In(«/p),

1—(3\/2)In(p/p)

which when replaced into Ed4.1) illuminates the equiva-
lence with secular terms.

Consider the scalar field theory described by the Lagrang- This simple analysis highlights how tlynamical renor-
ian density(3.1) defined as a field theory in four dimensions malization groupdoes precisely the same in the real-time
with an upper momentum cutoff and consider for simplic- formulation of kinetics as the renormalization group in Eu-
ity the massless case. The one-particle-irredudibid) four  clidean or zero-temperature field theory. Much in the same
point function(two-particle to two-particles scattering ampli- manner that the renormalization-group-improved scattering
tude at the off-shell symmetric point is given to one loop at amplitude(4.4) is aresummatiorof the perturbative expan-
zero temperature in Euclidean space by sion, the kinetic equations obtained from the dynamical
renormalization group improvement represent a resummation
of the perturbative expansion. The lowest order renormaliza-
tion group equation(4.3) resums the leading logarithms,

B. Scattering amplitude in scalar field theory

(4) 3.5 A 3
r (p,p,p,p)=>\o—§>\oln o +O(N\g), (40
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while the lowest orderdynamical renormalization group language of Euclidean renormalization: these are the irrel-
equation resums the leading secular terms. evant couplings that are generated upon integrating out
We can establish a closer relationship to the usual renoishorter scales. Keepiral of the correlations in the density
malization program of field theory in its momentum shell matrix would be equivalent to a Wilsonian renormalization
version with the following alternative interpretation of the in which all possible couplings are included in the Lagrang-
secular terms and their resummatic]. ian and all of them are maintained in the renormalization on
The initial distribution at a timet, is evolved in time the same footing.
perturbatively up to a time scatg+ At such that the pertur-
bative expansion is still valid, i.et,> At with t, the re-
laxational time scale. Secular terms begin to dominate the
perturbative expansion at a time SCale>toico With tmicro Having provided a method to obtain kinetic equations by
the microscopic time scale. Thus, if there is a separation dimplementing the dynamical renormalization group resum-
time scales such thaf,> At>t,,0, then in this intermedi- mation and compared this method to the improvement of
ate asymptotic regime perturbation theory is reliable bu@symptotic solutions of differential equations as well as with
secular terms appear and can be isolated. A renormalizatidghe more familiar renormalization group of Euclidean quan-
of the distribution function absorbs the contribution from thetum field theory we are now in position to provide a simple
secular terms. The “renormalized” distribution function is recipe to obtain kinetic equations from the microscopic
used as an initial condition a+ At to iterate forward in theory in the general case.
time to to+2At using perturbation theory but witthe (1) The first step requires the proper identification of the
propagators in terms of the distribution function at the time quasiparticle degrees of freedom and their dispersion rela-
scale t+At. This procedure can be carried out “infinitesi- tions that is frequency vs momentum which is determined
mally” (in the sense compared with the relaxational timefrom the real part of the self-energies on shell. The damping
Sca|e and the differential equation that describes the Change@f these excitations will arise as a result of their interactions
of the distribution function under the intermediate @nd will be accounted for by the kinetic description. Define
asymptotic time evolution is the dynamical renormalizationthe number operatd¥,(t) that counts these quasiparticles in
group equation. phase space and split the Hamiltonian into a part that com-
This has an obvious similarity to the renormalization in Mmutes with this number operat@noninteracting and a part
terms of integrating in momentum shells; the result of inte-that changes the particle numhenrteracting. It is important
grating out degrees of freedom in a momentum shell aréhat these particles or quasiparticles be defined in terms of
absorbed in a renormalization of the couplings and an effecthe correct microscopic time scales by including the proper
tive theory at a lower scale but in terms of the effectivefrequencies in their definition. In the case of scajdrnear
couplings. This procedure is carried out infinitesimally andequilibrium at high temperature the renormalized mass is the
the differential equation that describes the changes of thBard thermal loop resummed; such would also be the case in
couplings under the integration of degrees of freedom irft gauge theory in thermal equilibrium in the HTL limit. This
these momentum shells is the renormalization group equds important to determine the regime of validity of the per-
tion. For other examples of the dynamical renormalizatiorturbative expansion within which the secular terms can be
group and its relation to the Euclidean renormalization proidentified unambiguously, i.e., the intermediate asymptotics.
gram see Ref(24]. It is here where the assumption of a wide separation of time
An important aspect of this procedure of evolving in time Scales enters. Although in most circumstances the noninter-
and “resetting” the distribution functions is that in this pro- acting part is simply the free field Hamiltonidm terms of
cess it is implicitly assumed that the density matrix is diag-renormalized masses and fieldthere could be other cir-
onal in the basis of free quasiparticles. Clearly, if at the ini-cumstances in which the noninteracting part is more compli-
tial time the density matrix was diagonal in this basis,cated, for example, in the case of collective modes. The ini-
because the interaction Hamiltonian does not commute witkial density matrix is usually assumed to be diagonal in the
the density matrix, off-diagonal density matrix elements will basis of this number operator but with nonequilibrium distri-
be generated upon time evolution. In resetting the distribubution functions at the initial time. The real-time propagators
tion functions and using the propagators in terms of thes@re then given by Eqs2.6).
updated distribution functions we have neglected off- (2) Use the Heisenberg equations of motion to obtain a
diagonal correlations, for example, in terms of the creatiorgeneral equation fon,(t) with n,(t)=(N(t)). Perform a
and annihilation of quasiparticles' (k) anda(k) upon time  perturbative expansion of this equation to the desired order
evolution new correlations of the forga(k)a(k)) and its  in perturbation theory, using the Feynman rules of real-time
Hermitian conjugate will be generated. In neglecting theseerturbation theory and the propagat@2s5). The resulting
terms we are introducing @oarse graining8]; thus several expression is a functional of the distribution functiaishe
stages of coarse graining had been introduégdntegrating initial time. The only time dependence arises from the ex-
in time up to an intermediate asymptotics and resumming thelicit time dependence of the free propagat@$). Integrate
secular terms neglect transient phenomena, i.e., averag#ss expression in time anecognize the secular terms
over the microscopic time scales, afiid off-diagonal matrix (3) Introduce the renormalization of the distribution func-
elements(in the basis of free quasipartic)ebad been ne- tions as in Eqgs.(3.29 with the renormalization constant
glected. This coarse graining also has an equivalent in th&€(7) expanded consistently in perturbation theory as in Egs.

C. Quantum kinetics
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(3.29. Fix the coeffiqientsz(”)(r) to cancel the secular terms o x D)= (D) 40,
consistently at the time scake Obtain the renormalization

group equation from the independence of the distribution \yith (a*(x,1))=0. The expectation value is obtained by

furgﬁnog, J;ib?igkt%d;:uoa{n;ms k(ijry]/gt?crnécal:la:%%ormallzatlon requiring that the expectation value @fx,t) vanish in equi-
group eq q q librium to all orders in perturbation theory. Using the tadpole

. Corollary. Th? similarity .W'th the r_enormallzat|on of cou- ethod[42] to one-loop order the equation that determines
plings explored in the previous section suggests that the coFS1 given by

lisional terms of the quantum kinetic equation can be inter-
preted as beta functions of the dynamical renormalization 224 13(g2) = 2
group and that the space of distribution functions can be vlv wH () +3(0%)]=0. .2

interpreted as a coupling constant space. The dynamicghnce the solution of this equation foris used in the per-
renormalization group trajectories determine the flow in thisy,pative expansion up to one loop, the tadpole diagrams that
space; therefore fixed points of the dynamical renormalizagyise from the shift in the field cancel. This feature of can-
tion group describe stationary solutions with given distribu-ce|jation of tadpole diagrams that would result in an expec-

e s e e, oo valle of y he conisent use of h fdole e

thermore, there can bether stationary solutions with ﬁon— tion persists to .a!ll qrders in perturbatlonztheory. Furthgrmore,

thermal d’istribution functions, for example, describing turbu- v &Y from equilibrium, wheiar’) and(q >. depend on time

lent behaviof51] ' ' through the tlme dependenf:e of the distribution funcpqn, the
) tadpole condition(5.2) implies thatv becomes implicitly

Linearizing around these fixed points corresponds to I|n-,[ime dependent.

earizing the kinetic equation and the linear eigenvalues are A solution of Eq.(5.2) with v+ 0 signals broken symme-

related to therelaxation rates i.e., linearization around the N . A

. . . o try and massless piorigé the strict chiral limi}. Therefore,

fixed points of the dynamical renormalization group corre- ) . )

sponds to theelaxation time approximatian once t_he correct expectation valués used, the one-parpcle-
reducible (1PR tadpole diagrams do not contribute in the

We now implement the program described by steéps . ) s . -
(3) in several relevant cases in scalar and gauge field the&erturbaﬂye expansion of the kinetic equation. Up to this
order the inverse pion propagator reads

ries.
AN w,k)=w?= k2= \[v2=f2+(7?) +3(a?)],
V. O(4) LINEAR SIGMA MODEL:

COOL PIONS AND SIGMA MESONS which vanishes for vanishing energy and momentum when-
everv #0 by the tadpole conditiofb.2); hence Goldstone’s
theorem is satisfied and the pions are the Goldstone bosons.
The study of the relaxation of sigma mesdresonanceand
pions near and below the chiral phase transition is an impor-
tant phenomenological aspect of low energy chiral phenom-

1 1 A enology with relevance to heavy ion collisions. Furthermore,
Llmo]= E(a#“)ZJF E(‘?#U)Z_ Z(”L”Tz_fi)z' recent studies have revealed interesting features associated
(5.1)  with the dropping of the sigma mass near the chiral transition
and the enhancement of threshold effects with potential ex-
perimental consequencd82]. The kinetic approach de-
scribed here could prove useful to further assess the contri-
is the critical temperature, thH@(4) symmetry is restored by ?utloqs tq tt?]? W'dth 9f the flg;nat n;es_oq tnear thg chkyralé)hase
a second order phase transition. ransition; this is an important study in its own right and we

xpect to report on these issues in the near future.

In the symmetric phase, the pions and the sigma mesof With the purpose of comparing to recent results, we now
are degenerate and the linear sigma model reduces to a setI(f)— purp paring '

interacting scalar theory, analogous to that discussed in Seﬁ'ocnusir?::t t?heesglijsa:?igzt?gnlom;i?opnesract)llfriis Lrjnn;er;(ter;ir?sssgrr:jp-
[ll. Thus, we limit our discussion here to the low temperature ions are not too far from eauilibrium igc ol pions and
broken symmetry phase in which the temperatiiref .. P q &Pl p

. . sigma mesons. At low temperatures the relaxation of pions
Since at low temperature th®(4) symmetry is spontane- . . . )
: . . and sigma mesons will be dominated by the one-loop contri-

ously broken via the sigma meson condensate, we shift th

) ) — ) gutions, and the scattering contributions will be subleading.

sigma fieldo(x,t) = o(x,t) +v, wherev is temperature de- The scattering contributions are of the same form as those
pendent and yet to be determined. In equilibriuns fixed  giscussed for the scalar theory and involve at least two dis-
by requiring that(o(x,t))=0 to all orders in perturbation tribution functions and are subdominant in the low tempera-

theory for temperaturd <T,. In the real-time formulation ture limit as compared to the one-loop contributions de-

of nonequilibrium quantum field theory, this split must be scribed below.

performed on both branches of the path integral. Along the Since the linear sigma model is renormalizable and we

forward (+) and backward {) branches the sigma field focus on finite-temperature effects, we ignore the zero-

o (x,t) is written as temperature ultraviolet divergences which can be absorbed

In this section we consider &(4) linear sigma model in
the strict chiral limit, i.e., without an explicit chiral symme-
try breaking term:

where 7= (7!, 72, 7°) andf_~93 MeV is the pion decay
constant. At high temperatufie>T., whereT .~ O(f ) [52]
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into a renormalization off .. For a small departure from e w7

thermal equilibrium, we can approximate) and{o2) b ty Jgr t - ty J t
rmal equil _ pproximater*) and(o) by u Ut

their equilibrium values:

d®q ng(w
R S P e

where o= /q?+mZ. The sigma massn2=2\v? is to be e ~
determined self-consistently. In the low temperature lifit e v
<f., we find v?=f2[1—-O(T%f2)] and m,= 2\ f [1 * -
—(’)(T2/f,27)]. Thus in the case of a cool linear sigma model
where T<f_, we can approximate and m, by f_ and
\/ﬁfm respectively. FIG. 2. (a) The Feynman diagrams that contribute to the quan-
The main reason behind this analysis is to display th&um kinetic equation for the pion distribution function. The solid
microscopic time scales for the mesongi,, ,~1/m, and line is the sigma meson propagator and the dashed line is the pion
tmicro.»= 1/K with k being the momentum of the pion. The propagator.(b) The only contribution on shell is the decay of a
validity of a kinetic description will hinge upon the relax- sigma meson into two pions minus the reverse process.
ation time scales being much longer than these microscopic

scales. 1
Finally, the Lagrangian for cool linear sigma model reads, m(kt)= —=l[a,(k,t)+al(—kb)], (5.6a
to lowest order, \/ﬂ
1 1 P kt)——i\/E[ k,t)—al(—k,t)] (5.6b
Clmo]= —(a )2+ (8,00 = 5 ME0? A (07 +0%) (KO="Tylask b —a(—kb], :
—2(172-1—02)2 (5.4 a(k,t)= ! ——[a,(k,t)+a’ (—k,t)], (5.60
4 1 . ’ \/2_ s .

where we have omitted the overbar over the shifted sigma ok +
field for simplicity of notation. Po(k,t)=—i\ Slas(kt)—a,(—k)]

Our goal in this section is to derive the kinetic equations (5.60
describing pion and sigma meson relaxation to lowest order.
The unbrokenO(3) isospin symmetry ensures that all the with o=k +m2 The expectation value of pion number
pions have the same relaxation rate, and the sigma mesaperator can be expressed in termsrok,t) andP . (k,t) as
relaxation rate is proportional to the number of pion species.
Hence for notational simplicity the pion index will be sup- Ng(t)=(al(k,hya (k1))
pressed. We now study the kinetic equations for the pion and

sigma meson distribution functions. = %{(Pﬁ(k,t)Pw(—k,t)>+k2(w(k,t)7r(— k,t))

A. Relaxation of cool pions +ik[{(m(k,t)P(—k,t))—(P.(k,t)m(—k,t))]}.

Without loss of generality, in what follows we discuss the
relaxation for one isospin component, say, but we sup-
press the indices for simplicity of notation. As before, we
consider the case in which at an initial tinve ty, the density
matrix is diagonal in the basis of free quasiparticles, but with _ o\ f d3q ( P
out-of-equilibrium initial distribution functions/(tg) and ng(t)=
Ny (to). The field operators and the corresponding canonical
momenta in the Heisenberg picture can be written as

Using the Heisenberg equations of motion, to leading order
in \, we obtain(no tadpole diagrams are included since these
are canceled by the choice oj

)( T(k—q,tym"

k (2w )3/2 at’

a(x,0) (kD) x@nm ko) &7
Pa(X,t) d*k | Pa(kt)| . . :
= f — K e'x (55  The expectation values can be calculated perturbatively in
o(X,t) (2m)¥2| a(k,t) terms of nonequilibrium vertices and Green’s functions. To
P,(x,t) P.(k,t) O(\) the right-hand side of Eq5.7) vanishes identically.
Figure 2a shows the Feynman diagrams that contribute to
where order\?. It is now straightforward to show tha'mf(t) reads
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: N2 0 d3q t
O= T s G gy, A A0S 0 ) (E=1)] Alto) 0f (K=~ ) ()]

+N3(t)cod (K— 0+ @k o) (t=t") [+ Ny(to) cod (K+ 0 — wy ) (t—t") ]},

where
Ni(O=[1+nF(DI[1+nTO T L+nE, o) ]—NFONTONT, 4(1), (5.89
No() =[1+n (1) Ing ()i, o() =N (D[ L+ng(O ][ 1+, (D], (5.8b
N3(O)=[1+ng(O)Ing(O[L+ng, ()] = N[+ () Inic, (1), (5.80
Na(®)=[1+ng(OI[1+ng(O)Ini () =N (NG (D[ 1+ N (D] (5.80

The different contributions have a very natural interpretationterms of the distribution functions at the initial time, the time

in terms of “gain minus loss” processes. The first term in integration can be done straightforwardly, leading to the fol-

brackets corresponds to the process ®+ 7+ 7 minus the  lowing equation:

processo+ 7+ 7—0, the second and third terms corre- i ’ |

spond to the scattering+ o— 7 minus 7— 7+ o, and the - _ sin(w—k)(t—to)

last term corresponds to the decay of the sigma meson nk(t):)‘zf doR L@ kiNi(to)] m(w—K) '

—a+ 7 minus the inverse process+ 7—o. (5.9
Just as in the scalar case, since the propagators entering in

the perturbative expansion of the kinetic equation are invhereR [ w,k;N(to)] is given by

2

I 1
R kit | 85 o 1000+ Nl + 80 G s Nl + )N

+ 8w+ q— wr: o) Na(to)]. (5.10

Equation(5.9) can be solved by direct integration ovtewith the given initial condition at,, thus leading to

1—-cog(w—Kk)(t—to)]
m(w—k)? '

NE(D=N(te) +\2 f doR [0 kNi(to)] (5.10

A potential secular term arises at large times when the resaheory with several coupling constants, in the case under
nant denominator in Eq5.11) vanishes, i.e.w~k. A de-  consideration ther field and theo field are coupled. There-
tailed analysis reveals th@® [ w,k;Ni(t)] is regular atw  fore one must renormalizal of the distribution functions on
=k; hence using Eqg3.22 and(3.23 we find that at inter- the same footing. Hence our next task is to obtain the kinetic
mediate asymptotic timk(t—ty)>1, the time evolution of equations for the sigma meson distribution functions.

the pion distribution function reads

N7 (t)=ng(te) + N2R [ K,k Ni(to) (t—to) B. Relaxation of cool sigma mesons
+nonsecular terms, (5.12 As before, we consider the case in which at an initial time
t=tq, the density matrix is diagonal in the basis of free qua-
whereR .[k,k;Ni(ty)] does not depend ot explicitly. siparticles, but with initial out of equilibrium distribution

At this point we would be tempted to follow the same functionsny(ty) andny(to). Again, for notational simplicity
steps as in the scalar case and introduce the dynamical renave suppress the pion isospin index. The expectation value of
malization of the pion distribution function. However, much sigma meson number operator can be expressed in terms of
in the same manner as the renormalization program in a(k,t) andP,(k,t) as
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ng(t):<a2(krt)aa(klt)> "':"'_--..\‘-".-1. k +:"' ----- \\“_ k
t. el S B Yt
1 ) + S + wa
= EKPU(KUPU( —k,))+ka(k,t)o(—K1))
+ik[(o(k,t)P,(—k,1))—(P,(k,t)a(—k,1))]}. Y \s K y, \ &k
+ t " _l' - t t: _t'
+ + + —
Using the Heisenberg equations of motion to leading order in
\, and requiring again that the tadpole diagrams be canceled @
by the proper choice af, we obtain
\\\ //,
. 37\fo d®q [ o ) - - N
ny(t)y=— —— | — {7 (k=q,t) 7" (q,t s
k() o (277)3,2<m, (7" (k=aq,)7"(q,t)
X o~ (—kt))+3(c" (k—q,t)o* (q,t) (o)
Xo (—k t’))]l (5.13 FIG. 3. (a) The Feynman diagrams that contribute to the quan-
’ t'=t> .

tum kinetic equation for the sigma meson distribution function. The
solid line is the sigma meson propagator and the dashed line is the

. . pion propagator(b) The only contribution on shell is a recombina-
where the factor of 3 accounts for three isospin componentgon of two pions into a sigma meson minus the decay of a sigma

of the pion field. The expectation values can be calculategheson into two pions.
perturbatively in terms of nonequilibrium vertices and

Green’s functions. T@()) the right-hand side of E45.13  perature limit the two-loop diagrams will be suppressed with
vanishes identically. Figure 3a depicts the one-loop Feynmapespect to the one-loop diagrams. Furthermore, in the low
diagrams that enter in the kinetic equation for the sigmaemperature limit, the focus of our attention here, only the
meson to ordek?. To the same order there will be the samepion loops will be important in the relaxation of the sigma

type of two loops diagrams as in the self-interacting scalamesons. A straightforward calculation leads to the following

theory studied in the previous section, but in the low tem-expression:

322 dq t
f(zw)B alk=a] tdt"({f\/f(to)wi(wﬁw|k+ql)(t—t")]+N§(to)cos{(wk+q—|k+q|)(t—t”)]

+N3(to)cod (wx—a+[k+a|)(t—t") ]+ N7 (to)cod (wx—a—[k+a)(t—t") ]}

0=

+ wqwk+q{/\/‘1’(to)00i(wk+ WqT 0 q) (1= 1) ]+ N 3(to) oS (wy + wg— wys ) (t—t")
+ N(to) co§ (0 — wqt @it ) (t—t") 1+ NG (o) c0g (0 — wg— wys g) (t—t") T}, (5.14
where
NTO=[1+nZOI1+ng(OI[1+ng, o(1)]=n(Ong (N, (1), (5.158
NEZ(O=[1+nZO)I[1+nT (DI, () —nZONI(O[1+n7, 4(D], (5.15h
NI =[1+n (O InJ(O[1+ng, (DT Ng(O[1+ng(H)Ing 4(1), (5.150
NZO=[1+ng()Ing(ONE o() = N[ 1+ng(D][1+ng, 4(D)] (5.15d
and
NTO=[1+nZOI[1+ng(0OI[L1+n. (D] = NEONGONE, (1), (5.163
N3O =[1+n(D][1+ng(D)]INE 4(D—NONG(O[L1+nE (D], (5.16b
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NYO=[1+ g0 IO 1+ 7, (D] NZOL1+ NG (0], o(b), (5.160
NGO =[1+nZ0) (0N, () =NEO[L+NGO 1407, (D], (5.169

Although the above expression is somewhat unwieldy, the different contributions have a very natural interpretation in terms of
“gain minus loss” processes. In the first set of brackis., the pion contributionthe first term corresponds to the process
0— o+ 7+ 7 minus the process+ 7+ 7—0, the second and third terms correspond to the scatteringr+ o minus 7
+o—r, and the last term corresponds to the decay of the sigma mesem+ 7 minus the inverse process+ m— o.
Similarly, in the second set of brackeise., the sigma meson contributipthe first term corresponds to the process @
+ o+ o minus the process+ o+ o0—0, the second and third terms correspond to annihilation of two sigma mesons and
creation of one sigma meson minus the inverse process, and the last term corresponds to annihilation of a sigma meson and
creation of two sigma mesons minus the inverse process.

Since the propagators entering in the perturbative expansion of the kinetic equation are in terms of the distribution functions
at the initial time, the time integration can be done straightforwardly leading to the following equation:

sin (0 — w) (t—1o)]

m(w— wy)

ny(t)=)2 f doR [ ,kN(to)] (5.17)

where

2

3f2  d®
Rfw kNt | o

1
kg Lo@tatlk+ahNi(to) +dw+a=[k+a)Nz(to)+ dw=a+|k+a)N3(to)

+8(w—q—|k+a))Nj(te) ]+

[S(w+ 0+ ogs g N (to) + S0+ wg— i+ g NG (to)

WqWk+q
+6(w— wqt wk+q)Ng(tO) +6(w— Wq— wk+q)NZ(tO)] . (5.18
|

Just as befor& [ w,k;N(tp)] is fixed at initial timet,; in thermal equilibrium. We must now renormalize both Egs.
Eqg. (5.17 can be integrated over with the given initial (5.12 and (5.20 simultaneouslysince it is a field theory
condition att,, thus leading to with two coupled fields.

Introduce the renormalized initial distribution functions

ng (t)=ng(to) ng(7) andng(7), which are related to the bare initial distri-

bution functionsng(to) andng(to) via respective renormal-
1-cod(w—w(t—t)]  ization constants7(,to) and Z5(7,to) by

a2 f doR [,k N(to)]

W(w—wk)z
(519) ng(tO):Zg(TltO)ng(T)v
At intermediate asymptotic timem,(t—ty)>1, potential Z3(rtg) =1+ NN (1t + - -, (5.213
secular term arises whea~ w, in Eq. (5.19. We notice
that, althoughR [ w,k;N(ty)] hasthreshold (infrared) sin- ng(to)zgg( r,to)ng( 7),

gularities at w= =k, it is regular on the sigma meson mass
shell. This observation will allow us to explore a crossover
behavior for very large momentum later.

Since the spectral density is regular near the resonance _ _ o _
region =+ w,, the behavior at intermediate asymptotic Where = is an arbitrary renormalization scale at which the

Z3(rte) =1+ N2ZgW( 7 to) + - -, (5.21b

times is given by secular terms will be canceled. The renormalization con-

stantsz;M(7,t) andzg™(7,to) are chosen so as to cancel
n‘((t)=n,§'(to)+)\27€0[wk KGN (to) J(t—tg) the secular term at the arbitrary scaleonsistently in per-
turbation theory. Substitute E¢6.21) into Eq. (5.12), con-
+nonsecular terms. (5.20  sistently up toO(\?) we obtain

We note that t_he _perFurbative_ expansiops for the pion and n7(t)=n7( T)+>\2{ZE(1)(TJ0)”E(T)

sigma meson distribution functions contain secular terms that

grow linearly in time,unlessthe system is initially prepared +(t—to) R LK KN (7) ]} + ONY),
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nZ(t)=nZ(7) +\HzZO(7,to)ng(7) mentumk is slightly out of equilibrium whereas all the other

4 modes are in equilibrium:
+ (t—to) Ry[ @i KN (D) T} + O, |
onp(t)y=— k)ong(t),
To this order, the choices (D)= —yx(k)anc(v)

ZZ M (1,t0) = = (1= to) R ALk K Ni(D) N (7), BRI ()= — 7, (K)NE(L),

ZZ(r,tg) =~ (1=t RoL o K Ni(1)InF(7)
wherey.(k) andvy,(k) are, respectively, the cool pion and

lead to sigma meson relaxation rates which are identified with twice
- - 5 A the damping rates of the corresponding field amplitudes. Lin-
Ng (O =n(7)+ N (t— DR KK N (7)]+ O\, earizing Eq.(5.22 we obtain

ng(t) =ng(7) +N%(t— )R oy KN (1)]+ ON?).

m\zfij dq [ng(a) —Ng(wisq)]

The independence @f7(t) andn{(t) on the arbitrary renor- VoK)= —p (2m)? qorsq
malization scaler leads to the simultaneous set of dynamical
renormalization group equations to lowest order: X o(k+q—wyiqg)

d T 2

d_’Tnk T):)\ Rw[k!k1M(7)]: )\szrT

1—e" B(MZ14K+K)
(5.249

= n
Amk? 1 — @ Bmat4k

d
G- =N Rl o K N(7)].
This is a remarkable expression because it reveals that the
These equations have an obvious resemblance to a set pliysical processes that contribute to cool pion relaxation are
renormalization group equations for “couplingsif andny  the decayof sigma mesorr— 7+ 7 and its inverse process
where the right-hand sides are the corresponding beta fungr+ 7— o. The form of Eq.(5.24) is reminiscent of the Lan-
tions. dau damping contribution to the pion self-energy and in fact
As before, choosing the arbitrary scaléo coincide with @ simple calculation reveals this to be correct. The sigma

the timet and keeping only the terms whose delta functionsparticles present in the medium can decay into pions and this

have support on the mass shells we obtain the kinetic equécreases the number of pions, but at the same time pions
tions describing pion and sigma relaxation: recombine into sigma particles, and since there are more
pions in the medium because they are lighter, the loss part of

] W)\for d3q S(k+Qq— wysg) the process prevails, producing a nonzero relaxation rate.
ng(t)= ” j 5 ) {[1+ng(1)] This is an induced phenomenon in the medium in the very
(2m) Ak g definitive sense that the decay of the heavier sigma meson
“[1+n™ o TN 14N induces the decay of the pion distribution function; it is a
[1+ng (01N o(H) =N (OGO + N (V1 noncollisional process.
. uch relaxation of cool pions is analogous to the induce
(5.22 Such rel i f | pi i I he induced
relaxation of fermions in a fermion-scalar plasma induced by
- 3mA32 r dq S(wx—q—|k+q|) the decay of a massive scalar into fermion pgi3].
ng(t)= 201 J (2m)? qlk+q| For the soft, cool pion modek&T<f ), the pion relax-
ation rate reads
XL+ Ing (N o(H) = ng(H[1+ng (1]
X[L+n7, (O] (5.23 NiE m;
K+ . . cT)~ — 7 __7
q v.(K<T) Tk ex;{ 4kT)' (5.25

The processes that contribute to Ef.22 are depicted in

Fig. 2b and those that contribute to E.23 are depicted in ) o ) )
Fig. 3b. The exponential suppression in the soft, cool pion relaxation

rate is a consequence of the heavy sigma mass. Our results of

the pion relaxation rate are in agreement with the pion damp-

ing rate found in Ref[54]. These resultsaccounting for the
Thermal equilibrium is afixed pointof the dynamical factor of 2 necessary to relate the relaxation rate to the damp-

renormalization group equatios.22 and(5.23), i.e., a sta- ing rate also agree with those reported recently in RB8]

tionary solution of the kinetic equations. wherein a related and clear analysis of pion and sigma meson
A linearized kinetic equation can be obtained in the relax-damping ratesvas presented.

ation time approximation, in which only the mode with mo-  For the relaxation rate of the sigma mesons, we find

C. Relaxation time approximation
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3\ 2f2 d3q [1+ng(q)+ng(|k+q])] In order to understand how this threshold divergence
v.(K)= "J S B " 8 modifies the long-time behavior, let us focus on the mode of
20k J (2m) qlk+al sigma mesons with momentuk®m,=T. This situation is

not relevant to the phenomenology of the cool pion-sigma

meson system for which relevant temperaturesTagam,, .

However, studying this limiting case will yield important
H (5.26 insight into how threshold divergences invalidate the simple

Fermi’s golden rule analysis, leading to on-shell delta func-

tions in the intermediate asymptotic regime. This issue will
The first temperature-independent termyip(k) is the usual become more pressing in the case of gauge theories studied
zero-temperature sigma meson decay [&&, whereas the below.

X 8(w—q—|k+q|)

1— e Blogtk)2

1— e—B(wk—k)/Z

+2TI
Tn

N

- 8mwy

finite-temperature factors result from teame processehat To present this case in the simplest and clearest manner,
determine the pion relaxation rate, i.e4— 7+ . we will study the relaxation time approximation, by assum-
For soft sigma mesonk&T<f_), we obtain ing that only one mode of sigma mesons, with momeniwim

is slightly displaced from equilibrium such thahy
=ng(wy) + 6n{(tg), whereas all other pion and sigma me-
son modes are in equilibrium, i.eng(to) =ng(q) for all q
andng(to) =ng(wg) for all g#k. In this approximation and
It agrees with the decay rate for a sigma meson at rest founkkeping the only term that contributes ,[ w,k;N(to)]

in Refs.[55,57,58. for o~ w, [i.e., the one proportional &7 (t,)], we find that
On the other hand, consider the theoretical high temperagq, (5.19 simplifies to

ture and large momentum limk>m,=T such thatw,—k
<T. In this limit the sigma meson relaxation rg&®26) be-
comes logarithmidinfrared divergent. The reason for this ony (1) = ony(to)
divergence is that, as was mentioned below Ef19),
R,(w,k;N;) has an infrared threshold singularity at=k _ _ _
arising from the contribution proportional t&/; in Eq. ><1 cod(w= @t~ to)]
(5.18. In the presence of this threshold singularity, we can (0= wy)?

no longer apply Eqs(3.22 and(3.23 and instead we must

study the long-time limit in Eq(5.14 more carefully. Un-  With

derstanding the influence of threshold behavior of the sigma
meson on its relaxation could be important in view of the

y N m,
Yol ~0)~8ngcot T

1—f doy (k)

1, (5.29

_3w>\2fif d®q 1+ng(q)+ng(lk+ql)

recent proposal by Hatsuda and collaboraf83, that near Yol k)= 2wy (2m)3 qlk+d
the chiral phase transition the mass of the sigma meson drops
and threshold effects become enhanced with distinct phe- X 8(w—q—|k+ql)
nomenological consequences. We expect to report on a more 5

: it 3N 2T [1-e Alothi2
detailed study of threshold effects near the critical tempera- _ 714 SN (5.29
ture in the near future. 8wy k 1—e Blo—kf2] |’ '

D. Threshold singularities and crossover At intermediate asymptotic times (t—ty)>1, the re-

gion w=~w,=~k dominates the integral and in the limit

As mentioned above, in the discussion following Eq.>m =T we can further approximate

(5.19, R, w,k;Ni(tg)] in Eq. (5.19 has threshold singu-
larities atw= *k arising from the emission and absorption 0—k3\2F2T
of collinear massless pions. Fkr-m,, the point at which yo (k) = m
the resonant denominator in E¢5.19 vanishes(i.e., o o Ak?
=wy) is far away from threshold an® [ w,k;Ni(tg)] is

regular at this poin{on shel); hence Fermi’s golden rule \yhere T=2T[1—exp(—Kk/T))]~2T. The integration ovemw

(3.22 is applicable. However, in the large momentum limit, jn Eq. (5.27) can be performed whem,(w,k) is given by
when wy—k the point at which the resonant denominatorine first term in Eq(5.29 and we obtain

vanishes becomes closer to threshold and such singular point
begins to influence the long-time behavior.

That this is the case can be seen in the expression for the f doy,(wk)
relaxation rate5.26) which displays a logarithmi@nfrared
divergence asv,—Kk. A close inspection of the terms that

In

+O(w—k), (5.29

w—k

1—-cog(w—wy)(t—tp)]

m(w— wy)?

3N2f2T

contribute toR [ w,k;Ni(tg)] in Eq. (5.18 reveals that the - m _
. 0 Y ; ~ F(t—to,k)
threshold divergence arising as~ w,—k originates in the 47k?
term proportional toV} (to) which accounts for the emission
and absorption of collinear massless pions. for m,(t—tg)>1, where
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+Ci[ (o —K)(t—tg)]

f(t—to,k)=(t—t0){ln pgm

_sir{(wk—kxt—to)]] 530

(0= K)(t—1to)
with ci(x) being the cosine integral function:

+e% cost

Ci(X)E— dtT

X

For fixedk, F(t—tq,k) has the following limiting behav-
iors:

Ft—to,k)=(t—to){In[(t—to) Te? ]
+ O((wx—K)X(t—tg)?)}

for
(o —k)(t—1g) <1, (5.31
?
Ft—ty,k)= (t—to){ In{ o k}
+O(—l )
(wx—K)?(t—tg)?
for
(o —k)(t—1tg)>1, (5.32

where y=0.577215 . .. is theEuler-Mascheroni constant.
Thus, we see that there is@ossovertime scalet.~ (wy
—k) ! at which the time dependence of the functi@it
—to,K) changes from~tInt for t—ty=<t, to linear int for
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dong(7) +3)\2ffTT dA(7—to.k)

dr Ak dr 0 (539

leads to the following solution in the relaxation time approxi-

mation:

N2f2T
SnZ(t)=nl(to)exp — Flt—to,k)|. (5.3
47k?

In the large momentum limit, using Eq&.31) and (5.32

we find that the crossover in the form of the secular terms
results in a crossover in the sigma meson relaxation: an
“anomalous” (nonexponentialrelaxation will dominate the
relaxation during most of the time and usual exponential
relaxation ensues at very large times.

This simple exercise has revealed several important fea-
tures highlighted by a consistent resummation via the dy-
namical renormalization group.

(i) Threshold infrared divergences result in a breakdown
of Fermi’s golden rule. The secular terms of the perturbative
expansion are no longer linear in time but include logarith-
mic contributions arising from these infrared divergences.

(i) The concept of the damping rate is directly tied to
exponential relaxation. The infrared divergences of the
damping rate reflect the breakdown of Fermi’s golden rule
and signal a very different relaxation from a simple exponen-
tial.

(iiil) Whereas the usual calculation of damping rates will
lead to a divergent result arising from the infrared threshold
divergences, the dynamical renormalization group approach
recognizes that these threshold divergences result in secular
terms that are non-linear in time as discussed above. While
in the relaxation time approximation linear secular terms
lead to exponential relaxation and therefore to an unambigu-
ous definition of the damping rate, nonlinear secular terms
lead to novel nonexponential relaxational phenomena for

t—to=t.. In the large momentum limit, as the sigma mesonwhich the concept of a damping rate may not be appropriate.
mass shell approaches threshold, this crossover time scale This discussion of threshold singularities and anomalous
becomes longer such that an “anomalousidnlineay secu-  relaxation has paved the way to studying the case of gauge
lar term of the formtInt dominates during most of the time theories, wherein the emission and absorptio(traihsversg
whereas the usual secular term lineat émsues at very large photons that are only dynamically screened lead to a similar
times. anomalous relaxatiof24].

We can now proceed with the dynamical renormalization

group to resum the secular terms. Introducing the renormal- VI. HOT SCALAR QED

ization constantZy by

ong(to)=Zi(7.to) oni(7),
(5.33

Z(1t0) =1+ NN (1 t0) + - - -,

and choosing

2
™

47k?

(5.39

Z?(l)( T,to)=

F(r—10,k)

to cancel the secular divergences at the time sgakee find
that dynamical renormalization group equation

In this section we study the relaxation of the distribution
function of charged scalars in hot SQED as a prelude to
studying the more technically involved cases of hot QED and
QCD|[59]. Hot SQED shares many of the important features
of hot QED and QCD in leading order in the hard thermal
loop resummationi33—-3§. Furthermore, the infrared phys-
ics in hot QED captured in the eikonéBloch-Nordsieck
approximatior{ 25] has been reproduced recently via the dy-
namical renormalization group in hot SQER4], thus lend-
ing more support to the similarities of both theories at least
in leading HTL order. However, unlike hot QED and QCD
there are two simplification83,34] in this theory that allow
a more clear presentation of the relevant resuiishere are
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no HTL corrections to the verteand(ii) the HTL resummed the propagators to be used in the calculation for the modes
scalar self-energy is momentum independ@®,34. These and fields in equilibrium will be hard thermal loop re-
features of hot SQED enable us to probe the relaxation cfummed.

charged scalars with arbitrary momentum within a simplified  Since for hot SQED the leading one-loop contributions to
setting that nevertheless captures important features that asealar self-energy are momentum independent and
relevant to QED and QCD. This study is different from those~ ©(e?T?) [33], the leading order HTL resummed inverse
in Ref.[24] in that we here include the contribution from the scalar propagator readsere and henceforth, we neglect the
longitudinal, Debye-screened photons and discuss in detatlero-temperature scalar mas$

the crossover between the relaxational time scales associated

with the transverse and longitudinal photons for arbitrary A N wk)=w?—k2—m?, (6.1)
momentum of the charged scalar. Furthermore, in order to

provide an unambiguous definition of the distribution func- . .
tion, our study is done directly in a gauge invariant formu_where ms=eT/2 is the thermal mass of the charged scalar.

lation. This formulation has several advantages, in that gaug he .d|s$1er5|on rglatlpn ofscala_r qE?smarncles 0 Igadlp]g or
invariance is built in from the outset and the distribution 9" N the HTL is given byw,=k*+mg. Just as in the

functions are defined for gauge invariant objects. scalqr case studied in Sec. lll, th.e mm;s_is included in the
In the Abelian theory under consideration, it is rath(_:.r'l-|amllto_n|an and a counterterm is con;udgred as part of the
straightforward to implement a gauge invariant formulationintéraction to cancel the tadpole contributions.
by projecting the Hilbert space on states annihilated by the [N terms of the free scalar quasiparticles of mags the
two primary first class constraints: Gauss’ law and vanishindi€!d operators in the Heisenberg picture are written as
canonical momentum conjugate to the temporal component
of the gauge field. Gauge invariant operators are those that d3k _
commute with both constraints and are obtained systemati- ‘D(X,t):j 2—3,2¢(k,t)e'k'x,
cally; finally the Hamiltonian and Lagrangian can be written (2m)
in terms of these gauge invariant operati@$], and details
are presented in Appendix A. The resulting Lagrangian is 3 .
exactly the same as that in Coulomb ga{6& and is given H(xt)= J —— (ke
by (see Appendix A (2m)

1 where
£=3,0To'd—m2PTd + 5 9uAT MAT— AT jr
1
1 d(k,t)= [a(k,t) +bT(—k,1)],
—&Ar- At 0+ S (VAG)*+eATR T + e Agjo, V2w
. . . Wy +
jT:i[(I)TV(I)—(VCDT)(I)], jO:_i((Dq)T_(I)Tq)), m(k,t)=i 7[&1 (—k,t)—b(k,t)].

wheree is the gauge couplingir is the transverse compo- The number of positively charged scalawhich at zero

nent of the gauge field satisfyig- Ar(x,t)=0, ® and®"  chemical potential is equal to the number of negatively
are charged bugauge invariantfields, and we have traded charged scalayss then given by

the instantaneous Coulomb interaction fogauge invariant
a_luxmary field Ay which should_ not b_e confused with .the ne(t)=(a’(k,Hack,t))
time component of the gauge field. Since we are only inter-

ested in obtaining the relaxation behavior arising from finite- 1 + 2, 4

temperature effects, we do not introduce the renormalization = z_wk{<77(_k,t)77 (kD)) + @i (d (=K, 1) p(k,1))
counterterms to facilitate the study, although these can be

systematically included in our formulatiof24]. Further- +io(dT(— kD)7 (k1)) —(m(—k,t) p(k,1))]}.

more, we will consider a neutral system with vanishing

chemical potential. We emphasize that this number operator is a gauge invariant

Medium effects are included via thequilibrium hard  quantity by construction. Using the Heisenberg equations of
thermal loop resummation; hence we will restrict our studymotion, to lowest order i, we obtain

to the relaxation time approximation in which only one mode
of the scalar field, with momentuk perturbed off equilib-
rium while all other scalar modes and the gauge fields will be
taken to be in equilibrium. Considering the full nonequilib- ) .
rium quantum kinetic equation will require an extrapolationwhere n_(t) and nt (t) correspond to the longitudinal
of the hard thermal loop program to situations far from equi-photon (plasmon and transverse photon contributions, re-
librium, clearly a task beyond the scope of this article. Hencespectively:

N() =N (D + N7 (D),
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d3q

(0= 5 [ | i | (k)
’ 2] (2)32\ at’

><(k_q,t)Aa(q,t)>+i<¢T’+(_ kvt’)¢7

X (k—=q,t)Aq (g,t)t)]|yr =4+ c.C., (6.2
. e d3q J
0= | (ZT;,Zk'T(m(; (¢ (k') B!
X(—k=q,) A (q,))+ (AT (D) $"
X (k=0 $" (=Kt ). 6.3
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(L et § uy A =
._._..'I'_._‘l' ' — _._._._‘l' '
—_ + tvl — _ tll
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t + + t _ 1 — + t

—_ + t" — — tll
(b)

FIG. 4. The Feynman diagrams that contribute to the quantum
kinetic equation for the charged scalar distribution function to low-
est order ine?. The dashed and wavy lines are the HTL resummed
longitudinal transverse photon propagators, respectively, and the

Here kr(q)=k—(k-q)q, and Ar(k,t) and Ag(k,t) are the
spatial Fourier transforms of the gauge fields:

solid line is the HTL resummed scalar propagatay.Contribution
from longitudinal photons(b) Contribution from transverse pho-
tons.

A. Longitudinal photon contribution

In this gauge invariant formulation, the longitudinal pho-
ton is associated with the auxiliary fiekd,(x,t) which is the

Lagrange multiplier associated with Gauss’ law constraint.

ok .
Ar(xt)= f (ZT)WZAT(k’t)eI X
(6.4
d3k )
AO(X’t):fWAO(k’t)elk'x.

Since this is not a propagating figldo canonical momentum
conjugate exisbs proper care must be taken in obtaining the

Green'’s functions for this field. In Appendix B we provide
the details to obtain the HTL resummed real-time Green’s
As usual the expectation values are computed in nonequilibfunction for this auxiliary field.

rium perturbation theory in terms of the real-time propaga-

The HTL effective propagators of the longitudinal pho-

tors and vertices. A detailed study of this scalar theory hasons are given bysee Appendix B

revealed that there are no HTL vertex corrections in SQED
[33,34] and this facilitates the analysis of the time evolution
of the distribution function for soft quasiparticles.

Since in SQED the leading order HTL contribution to the
scalar propagator is a mass shift, the real-time HTL effective
scalar propagator is given in Eq&.6) in terms of the qua-
siparticle frequencyw, = k*+ mSZ. When the internal pho-
ton lines in the Feynman diagrams for the kinetic equation
are soft, an HTL resummation of these photon lines is re-
quired[27-29,43. It is important to note that the HTL re-
summed photon propagators are only validhermal equi-
librium since the KMS condition that relates the advanced
and retarded Green’s functions has been used to write these
in terms of the spectral density. Therefore an analysis of the
kinetic equation for the distribution function that uses the
HTL resummation for the soft degrees of freedom will be
restricted to the linearized, i.e., relaxation time, approxima-
tion. A truly nonequilibrium description of the kinetic equa-
tions for charged or gauge fields will require an extension of
the hard thermal loop program to situations far away from
equilibrium; clearly such extension is beyond the scope of
this article. Therefore the derivation of the kinetic equation
for the charged scalar fields assumes that the photons are in

G ((tt)=—i f d3xe 1Y Ag(X, 1) Ag(0,t")),

(6.53
Qf,q(t,t’)=—if d3xe 19X A(0,t) Ag(X,1)),
(6.5
1 >
Gl q(tt)= ?5('(—'[')+Q|_,q(t,t’)6(t—t’)
+G (L) et =), (6.50
L 1
GLq(tit)=— gﬁ(t—t’)-kgf’q(t,t’)a(t’—t)
+G (L) O(t—t"), (6.50
Gratt)=g-0(tt), (6.50

equilibrium and the distribution function of the charged sca-Whereq=|q| and

lars has been displaced slightly off equilibrium. Figure 4a
shows the lowest orde®(e?) contribution to the kinetic
equation from longitudinal photons and Fig. 4b shows the
contributions from transverse photons.
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_ _ - I As mentioned above the HTL resummation of the internal
Grgtt')=—i J daopi(go.a)Ng(do)e %1, photon and scalar lines assume that these degrees of freedom
(6.6p  are in thermal equilibrium and that the kinetic equation is
valid in the relaxation time approximation which will be as-

The HTL spectral densitﬁL(qO,q) is given by[33,35 sumed henceforth. Namely, we assume that at timg, the
distribution function for a fixed mode with momentuknis
1 Im3,(do.9) 0(q°—q3) disturbed slightly off equilibrium such thatn_(to)
pL(do.) = 5 =ng(w) + o, i (to), while the rest of the modes remain in
T [g?+Re3 (0o, ]?+[IM2 (do,9)]? equilibrium, i.e.,n_ 4 4(to) =Ng(wy.¢) for g#0, and linear-
+5gM o) Z () (92— 0?(q)), (6.7a ize the kinetic equation i@ny .
Since the propagators entering in the perturbative expan-
7re2T2 9o sion of the kinetic equation are in terms of the distribution
Im%,(g9,9)= q’ (6.7b  functions at the initial time, the time integration can be done

straightforwardly leading to a linearized equation in relax-

20 ation time approximation. In terms of the spectral density
ReS, (0o,0) = e | 2— 2y dod (6.79
Lo q |do—d ' 02
P Y P e

wherew, (q) is the longitudinal photon pole arf] (q) is the pulw k) (2m)° Oy q qopL(qo i a(Clo)
correspondinglmomentum dependentesidue, which will )
not be relevant for the following discussion. +Ng(0k+ o) (0t ©k1q) " 00— 0t g~ Go)

Using the above expressions for the nonequilibrium —(wk—wk+q)25(w+wk+q+%)] (6.11)

propagators, and after some tedious but straightforward alge-
bra, we find thatn_,(t) to lowest order in perturbation we obtain the time derivative of distribution function in the

theory(’)(ez) is given by form
- e’ dq (= -~ o N (1) = = al' (1) dnL i (to) (6.12
N k(t)=5— Tf ddo pL(quq)J' dt ’ ’ e
20¢) (2) Oy tq) = to

, where a=e?/47 and
X{(wg— w4 q)“Ni(to)

” Sl t—t
X cog (@i + @y g+ Go)(t—1")] OE f dopy (0, @ ()]
m(w— wy)
+ (it g4 q) *Na(to) (6.13
X cog (@~ g do) (t—t")]}, (6.9 Integrating overt with the given initial condition at,
leads to the form
where
N =[1+n () ][1+ N4 o(D][1+ng(do)] SNy (1) =n (to)| 1— aftFL k(t')dt’} (6.14)
: : L
—N(t) N4 (1) Na(do), (6.9a °
_ As a consequence of the HTL resummation, the long-range
No() =1+ (D) 101 (DN Qo) — k(D) instantaneous Coulomb interaction is screened with a Debye
X[ L1+ N (D14 ng(do) - (6.9  screening length o®(1/eT). This results in that there are no

threshold or mass shell singularities in the spectral density
To obtain Eq.(6.8), we have used the following properties p, (w,k) which after HTL resummation is a regular function

[43] (see also Appendix B of w both at threshold and on the mass she# w, . There-
B ~ fore the analysis leading to Fermi's golden r&22 is
pL(—00,9)=—pL(90,9), Ng(—Qqo)=—[1+ng(dp)]. valid and at intermediate asymptotic timeg(t—to)>1 we

(6.10 find a secular term that grows linear in time:

The different contributions have a very natural interpretation t
in terms of gain minus loss processes. The first term in f I (t")dt’ = (t—tg) p_(wy k) + nonsecular term.
0

brackets corresponds to the process %' +s+s minus the

processy; +s+s—0, and the second term corresponds toas hefore applying the dynamical renormalization group to

the scattering in the medium{ +s—s minus the inverse resum the secular term, one obtains the dynamical renormal-

process— y; +s, wherey refers to the HTL-dressed lon- ization group(kinetic) equation

gitudinal photon and, s refer to the charged quanta of the .
scalar fieldd. on k(t)y=—y (k)ong y(1), (6.15
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where vy, (k) is the scalar relaxation rate corresponding tomenta comes solely from soft transverse photons witig
exchange of a longitudinal photon: ~0. In terms of the spectral density, the HTL effective non-
equilibrium transverse photon propagators rg2¢i43

2m%a [ d3q (ot wk+q)
n(k)= f e (f 1 =i | d3ye—idx/ Al 0t
(2m)3  Okigq PU(a)Gr 4t )—|J d3xe "X AL(X, ) AL(0,t")),
X[1+ng(wk+q) +Na(@k— wk1g)]- (6.16 (6.193

PL(wk OK1q,d)

Note that in obtainingy, (k) we have discarded the second
term in p_ (wy,k) which vanishes due to kinematics. With Pij(q)giq(t,t’)=ij d3xe 1IN AL(0,t)AL(x,1)),

the initial conditiondn _ (t=tg) = dn_ «(to), we find that the (6.19h
distribution function evolves in time as '

SN ()= Ny (t)e Mo, 6.17) Gr.q (L) =G7 (1) B(t—t) + G 4(t,")
Numerically, we find thaty, (k) is a rather smooth function X Ot —1), (6.199
of k and approaches a constant valueKerT. The numeri-
cal values ofy, (k) for static and hard scalars are, respec- g{;(t,t’):giq(t,t’)e(t’—t)+g§q(t,t’)
tively, y, (k~0)~0.721 aT and y (k=T)~1.10 «T and ,

interpolate monotonically in this rand&4]. Our results of xo(t—t'), (6.19d
the scalar relaxation rate due to longitudinal photon contri-

bution are in agreement with the corresponding scalar damp- Fatt)= <(>)(t,t’), (6.199
ing rate found in Ref[34]. For further comparison with the

transverse photon contribution, we wrigg (k) in the form where

k)=aTf(k), 0.72k=f(k)<1.10, 6.1 . , . ~ i Y
vk =aTi(k) (k) 619 Gz (bt >=|JdqopT<qo,q>[1+nB<qo>]e (1),

with f(k) a smooth function ok. (6.20a

B. Transverse photon contribution

We anticipate that the transverse photon contribution will g;q(t!tl):if dgopr(do,d)Ng(do)e Pt~
lead to infrared divergences because the transverse photons (6.200
are only dynamically screened through Landau damping in
the HTL approximatiori24—26,33. Since the scalar is mas- andP'1(q)=48"—q'q//g® is the transverse projector. Here,
sive (mg~eT), the infrared region in the internal loop mo- the HTL spectral densitp+(qo,q) is given by[24,33,35

- 1 Im 2+(0lo,q) 6(4°— ) ,
q)=— + Z1(q)8(q5— : 6.2
p7(do.a) 7 [P~ ReS(do ) P+ [IM S r(do ) sgn(do)Z+(q) 8(dp— wT(q)) (6.2

e2T2 q2
Im=1(0.0)= "5 1—q—°), (622
a5 do g5 QO"'Q‘

R — |25+ 1-5 1 : 6.2
eX1(do,a)= = q< qz)nqo_q] (6.23

wherew1(q) is the transverse photon pole aAg(q) is the light cone. That is, f0q2>q§ the imaginary part of the HTL
corresponding(momentum-dependentesidue, which will  resummed photon self-energy, Br(qo.q), originates in
not be relevant for the following discussion. The importantthe process of Landau dampifg6,35 from scattering of
feature of this HTL spectral density is its support below thequanta in the medium.
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Using the above expressions for the nonequilibrium
propagators and after some tedious but straightforward alge- TT,k(t)=f dopr(w,k)
bra, we find thathT,k(t) to lowest order in perturbation
theory O(e?) is given by

si (0 — w)(t—1o)]

m(w— wy)

. (6.28

— (0=~ o)

. 202 d3q Kk3(q) (= - t
Ny (t)=— 3 quPT(quq)J’ dt” _ o
Wk J (2m)° @k+qd - to It is to be noted that the spectral density in E8,26), up to
e a prefactor, is the same as that studied within the context of
X{Na(to)cod (it @i gt Qo) (= 17)] the relaxation of the amplitude of a mean field in SQEA]
+N(t)cog (wk— wy s q—do) (t—t") 1}, and in the eikongl approximatic{ﬂS] in QED N
Upon integrating ovet with the given initial condition at

(6.24 to leads to the form

where\;(t) andN,(t) are the same as that in E§.9). To
obtain Eq.(6.24), we have used the following properties
[43,24: ong k(1) = éng k(to)

t
1—af Fk(t')dt’} (6.29
to

p1(—00,0)=—p7(do,q), Ng(—0o)=—[1+ng(qo)]-
(6.25  As before at intermediate asymptotic timag(t—t)>1, if
there are no singularities arising from the spectral density as

The different contributions have a very natural interpretation®— * @i, one finds a secular term linear in time. This is a
in terms of gain minus loss processes. The first term ifPerturbative signal of pure exponential relaxation at large

brackets corresponds to the process % +s+s minus the UMes as we hav_e discussed thoroughly_ In th_e previous sec-
tions. However, in the case under consideration the spectral

processy +s+s—0, and the second term corresponds t0gensity has an infrared singularitg4,25 and the long-time
the scattering in the mediumy +s—s minus the inverse |imit must be studied carefully.

processs— yy +s, where y; refers to the HTL-dressed  Potential secular termérowing in time could arise in
transverse photon arg]l s refer to the charged quanta of the the long-time limitt>t, whenever the denominators in Eq.
scalar field®. (6.28 vanish, i.e., for the region of frequencies~ * wy .

As mentioned above the HTL resummation of the internalFor o~ w, we see that the argument of the delta function in
photon and scalar lines assume that these degrees of freeddiy. (6.26) vanishes in the region of the Landau damping cut
are in thermal equilibrium and that the kinetic equation isof the exchanged transverse photqf;qu and contributes
valid in the relaxation time approximation. Hence we assumeo the infrared behavior. On the other hand, éor — w, the
that at timet=t, the distribution function for a fixed mode delta function in Eq{(6.26) is satisfied forqy~—2w,, and
with momentunk is disturbed slightly off equilibrium such this region gives a negligible contribution to the long-time
that ny (tg) =ng(wy) + dnt (tg), while the rest of the dynamics. Therefore, only the first term in E§.28 (with
modes remain in equilibrium, i.eny 4 4(to) = Ng(wy g) for w— w,) contributes in the long-time limit.
g+ 0, and linearize the kinetic equation &n . This term is dominated by the Landau damping region of

Since the propagators entering in the perturbative exparthe spectral density of the exchanged soft photon given by
sion of the kinetic equation are in terms of the distributionEq. (6.21), since foro~ w, the argument of the delta func-
functions at the initial time, the time integration can be donetion is gy+kqcosé/w, and this is the region where the
straightforwardly. In terms of the spectral density imaginary part of the HTL photon self-energy, Er(qg,q),

has support. The second contributiavith w + w) oscillates
- in time and is always bound and perturbatively small.
f daopr(do.9) To extract the infrared behavior of the spectral density,
—o we focus on the infrared region of the loop momenta with
Jo,g<eTin Eq.(6.26) [24,25. This is the region dominated
X[1+ng(qo) + Ng(@k+q) ] 6(@ = kg = o), by the exchange of very sofHTL-resummed transverse
(6.2  photons[25,26 and that dominates the long-time evolution
of the distribution function. Foijp<q<eT, the contribu-
tions to the spectral density from zero-temperature and mas-
sive scalars are subleading; therefore the term 1

gw? [ d°q Kf(q)
pr(wk)=—— 3
kJ (2m)° Wk+q

we obtain the time derivative of distribution function in the

form +ng(wy14) can be neglected. The only dominant contribu-
_ tion is from very soft quasistaticqg~0) transverse photons
ont k(t) = —al'\(t) ony k(to), (6.27  for which ng(qo) ~T/qp.
Forg<eT the functionp+(do,q)/qo is strongly peaked at
where Jo=0 and is well approximated by4,25
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7(o,0) 1 d 8(do) and request that the coefficierts cancel the secular diver-
—_— > (6.30 gences proportional ta" at a given time scale. To lowest

Qo lgeq mAdetd® g order the choice

asq—0, whered=12q%/ 7e?T?. The remaining delta func- T L
tion 8(w—wy.q) is satisfied in the kinematical regiamy Zl(T'tO):J’IOFT’k(t )dt (6.34
<Q=(,, with
leads to the renormalized distribution function at titan
q:=k— Vo’ —mg|, go=k+ Jw’— mz. terms of the updated distribution function at the time seale

The secular terms arise in the limit— wy, in this limit g, t e
—|w— /vy with v, =dw, /dk being the group velocity of ong k()= 5nT,k(7){1_ “fTFT,k(t )dt
the scalar quasiparticle, and— 2k. However, the region in
which the above quasistatic approximatiohi30 is valid  However, the distribution functiodny (t) cannot depend
corresponds tg<eT; therefore the upper momentum cutoff on the arbitrary renormalization scate this independence
g, in the integration region fog should be theminimum  on the renormalization scale leads to the renormalization
between X or eT. Thus for moment&=eT the upper limit  group equation to lowest order:
should be taken ag,~eT whereas fok<<eT the upper limit
is g,=2k. d

Hence, we find that the spectral density diverges logarith- g7 onr(n)+al'r(7) dng (1) =0. (6.39
mically asw— wy:

This renormalization group equation is now clearly of the
| — wy form of a kinetic equation in relaxation time approximation
. [1+O(w=awy)], with a time-dependent rate.

Now choosing the renormalization scale to coincide with
where u,~min(wy k) with wy~eT being the plasma fre- the timet in the solution of Eq(6.39 as is usually done in
quency. the scaling analysis of the solutions to the renormalization

As will be seen shortly, the external momentum depen-group equations, we find that the distribution function in the
dence of the upper momentum cutoff is crucial to determindinearized approximation evolves in time in the following
the relaxational time scale of hard and soft scalars. At intermanner:
mediate asymptotic timeso,(t—tp)>1 (recall that wp,

w,k)=~—2v,TIn
pr( =

. t
~ms), we find[24] onr(t)= 5nT,k<to>exp[ ~a J rT,k<t'>dt'} . (6.30
to
t —
ft o)t ~20, Tt to) N[t to)] with the initial condition &ny (t=to)=ny k(to). In the
long-time limit w,(t—t5)>1, using Eq.(6.31) we find that
+nonsecular terms, (6.3)  the distribution function relaxes towards equilibrium as

where = uexply—1) with y=0.577215 ... being 5nTyk(t)~5nk(t0)exp{—2ava(t—to)ln[;kvk(t—to)]}.
Euler-Mascheroni constant. In lowest order in perturbation (6.37

theory, the distribution functions that enters in the loops are i
those at the initial time. Obviously perturbation theory Furthermore, Eq(6.37) reveals a time scale for the relax-
breaks down at time scales ation of the charged scalar distribution function due to ex-

change of transverse photong, 1= y1 1(k), with

_1 ~ 1_ . av T[In(1/a)+O(1)] for k= aT,
200, TIN[o(t—te)]  2av, TIn(uy/2aT) yr(k)~ 2K2/m, for k=aT.

(6.32 6.39

Now we apply the dynamical renormalization group to o that the transverse photon contribution to the scalar
resum the anomalous secular ter- (o) In[iuwi(t—to) 1IN relaxation rate vanishes at zero momentum apgKk)

the perturbative expansion. To achieve this purpose we inx ., (k) for k=< aT; this is very similar to the behavior of the
troduce a renormalization constant for the distribution func-yamping rate of fermions in QCD found in R26].

tion that absorbs the secular divergences at a fixed time scale

t_tO%

7 and write C. Relaxational crossover in real time
ong (to) =Z(7,tg) ony (1), The real-time description of charged scalar relaxation dis-
cussed above allows us to study the crossover between ex-
Z(1,tg)=1+azy(1,tg)+- -, ponential and anomalous relaxation. Combining the longitu-

(6.33 dinal and transverse photon contributions, we obtain in
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relaxation time approximation the following time evolution  Using the integral representation of the step function
of the charged scalar distribution function:

i do )
on (1)~ dny(to)exp(—{yL(k) +2av, T o(t)= EJ’ otie e ',
XIn[ pyv i (t—1to) I} (t—to)). 6.39  5ne can easily show that Eq3.1) and the ones obtained by

replacing the thermal equilibrium distributions by the non-
equilibrium ones are, respectively, themporal Fourier
transforms of Eqs(2.5 and (2.6). The temporal Fourier
transforms of the free retarded and advanced propagators are
ce)btained similarly and read

From the expression foy, (k) given by Eq.(6.18 with
f(k)=~1 we find that plain exponential relaxation holds for
2viIn[ o (t—1to) ]<1 and wy(t—tg)>1, whereas anoma-
lous exponential relaxation with an exponent Int domi-
nates for very long times. Hence there is a crossover in th
form of relaxation for the charged scalar distribution func-

tion at a time scalet(-ty)~t., with Gra(K)=— ! ) (7.2
KZ2—mZs+i sgriko) e
exp( 1/2v k)
te~ W (6.40 Several authors have pointed out that the calculations us-

ing the CTP formulation in terms of the standard form of free
For k<eT we have;k~k<eT and v,<1; hence the propagators in Eqg.7.1) or those obtained by the replace-

: ; . : t of the distribution functions by the nonequilibrium
crossover time scale is exceedingly long and the relaxatiof] " . . -
of the distribution function is dominated byHTL- ones lead to pinch singulariti¢80,31,60-6§

resummed longitudinal photon exchange and is purely ex- In a consistent perturbative expansion b(.)th th? retargigd
ponential in the asymptotic regime. On the other hand, fOIand advanced propagators contribute and pinch singularities

. i arise from the product of these; for example, for a scalar field
k=eT then uy~eT and v~ 0O(1) andt.~wy~ in which e product is of the form

case the relaxation is dominated yTL-resummed trans-

verse photon exchange and is anomalous with an exponent Gr(K)GA(K)

tint, and hence faster than exponential and with a relax-

ational time scalé, o= av,T In(1/a). 1

T [K?—mZti sgriko) e[K2—mZ,—i sgriko)e]
(7.3

VIl. SECULAR TERMS vs PINCH SINGULARITIES

An important difference between the approach to non-

equilibrium evolution described by the quantum kinetic For finite e this expression is regular, whereas when
equations advocated in this work and that often presented in.o* jt gives rise to singular products such &s8(K?
the I[terature is that.we. work d.irectly ireal time not taking _mgﬁ)]z as discussed in Ref§30,31,60—-6 Singularities
Fourlgr transformg in time. Th|sf must be contrasted with theyf this type are ubiquitous and are not particular to scalar
real-time formulation(RTF) of finite-temperature quantum iheories.
field theory in which there are also four propagators and a A detailed analysis of these pinch terms reveals that they
closed-time-path contour but the propagators and quantitiegy not cancel each other in perturbation theory unless the
computed therefrom are all in terms of temporal Fouriersystern is in thermal equilibriurf80,31,60—6% Indeed, this
transforms. In thermal equilibrium the Fourier representagyere problem has cast doubt on the validity or usefulness
tions of these four propagators for a scalar field are given byt the CTP formulation to describe nonequilibrium phenom-
[40,30,43 ena[31]. Although these singularities have been found in
G (K)=—[G(K)]* many circumstances and analyzed and discussed in the lit-
erature often, a systematic and satisfactory treatment of these
1 singularities is still lacking. In Ref66] it was suggested that
=—ﬁ+2mn8(|ko|)5(|<2—m§ﬁ), including an in-medium width of the quasiparticles to re-
Ke—mggtie place the Feynman’s does provide a physically reasonable
(7.19 solution; however, this clearly casts doubt on the consistency
of any perturbative approach to describe even weakly out-of-

G*7(K)=2mi[ 6(— ko) + ng(|ko|) 16(KZ—mZ), equilibrium phenomena. _ _ _
(7.1b Recently some authors have conjectured that pinch singu-
larities in perturbation theory might be attributed to a misuse

G~ (K)=2mi[ 6(ko) + ng(|ko|)]8(K?— mgﬁ), of Fourier transformsfor a detailed discussion sgg2—-65).

(7.190  As an illustrative and simple example of these type of pinch

singularities, these authors discussed the elementary deriva-
where K= (ko,k) is the four-momentum an#&?=k3—k?,  tion of Fermi's golden rule in time-dependent perturbation
whereas out of equilibrium the distribution functions aretheory in quantum mechanics. In calculating total transition
simply replaced by nonthermal ones, ig(|Kq|) — ni(to)- probabilities there appears the square of energy conseéving
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function, which arises due to taking the infinite-time limit of ization of the pinch singularities was achieved by including
scattering probabilities. In this setting, such terms are interthe width of the quasiparticle obtained via the resummation
preted as the elapsed scattering time multiplied by thef hard thermal loops.
energy-conservation constraint rather than a pathological sin- Furthermore, we emphasize that the dynamical renormal-
gularity. A close look at Eq(7.3) reveals that the pinch term ization group is far more general in that it allows one to treat
is the square of the on-shell condition for the free quasiparsituations where the long-time evolution is modified by
ticle, which implies a temporal Fourier transform in the threshold(infrared singularities in spectral densities, thereby
infinite-time limit and of the same form as the square of theproviding a resolution of infrared singularities in damping
energy-conservation constraint for the transition probabilityrates and a consistent resummation scheme to extract the
obtained in time-dependent perturbation theory. asymptotic time evolution of the distribution function. The
By assuming that the interaction duration time is large buinfrared singularities in these damping rates are a reflection
finite, Niegawa[63] and Greiner and Leupols5] showed of anomalougi.e., nonexponentialrelaxation as a result of
that for a self-interacting scalar field the pinch part of thethreshold effects.
distribution function can be regularized by the interaction The pinch singularities signal the breakdown of perturba-
duration time a% tion theory, just as the secular terms in real time; however,
the advantage of working directly in real time is that the time
NPNC t) = (t —to) 08t (7.4) scale at which perturk_nation theory preaks dovyn is recpg_nized
K 0 ' clearly from the real-time perturbative expansion and is iden-
tified directly with the relaxational time scale. The dynamical
where “=" denotes that only the pinch singularity contribu- renormalization group justifies this identification by provid-
tion is included,t—tq is the interaction duration time, and ing a resummation of the perturbative series that improves
I'7®is the net gain rate of the quasiparticle distribution func-the solution beyond the intermediate asymptotics.
tion per unit time: The resolution of pinch singularities via the dynamical
renormalization group is general. As originally pointed out in
i [31,60 the pinch singularities typically multiply expressions
TRe=——[[1+ Ny (to) 12 (g, k) = Ni(te) 27 (wy k)] of the form (7.5 which vanish in equilibrium, just as the
2wy linear secular terms multiply similar terms in the real-time
(7.9 perturbative expansion, as highlighted by E@@27. These
terms are of the typical form gain minus loss; in equilibrium
Here X7 (wy,K)—2(wy,k)=2i Im3g(wy,k)  with  they vanish, but their nonvanishing simply indicates that the
2r(wy,k) being the retarded scalar self-energy on massglistribution functions are evolving in time and it is precisely
shell. Comparing Eq.7.4) with Eq. (3.24) and Eq.(7.5 with  this time evolution that is described consistently by the dy-
Eq. (3.27), we clearly see thequivalencebetween the linear namical renormalization group.
secular terms in the perturbative expansion and the presence
of pinch singularities in the usual CTP description. In the
discussion following Eq.3.24 we have recognized that Viil. CONCLUSIONS

secular terms are not present if the system is in equilibrium, |, this article we have introduced a novel method to ob-

much in the same manner as the case of pinch singularities ggn quantum kinetic equations via a field-theoretical and dia-
discussed originally by Altheri31,60. Thus our conclusion  grammatic perturbative expansion improved via a dynamical
is thatplnch_ smgul_arltles are a temporal Fourier transform (anormalization group resummation meal time The first
representation of linear secular terms , step of this method is to use the microscopic equations of
.The dynam[cal renormalization group provides a SysteMiotion to obtain the evolution equation of the quasiparticle
atic resummation of these secular terms and provides a Coysyripution function; this is the expectation value of the qua-
sistent formulation to implement the renormalization of thegjparticle number operator in the initial density matrix. This
distribution function suggested in Ref&3,64. ___evolution equation can be solved in a consistent diagram-
Hence we emphasize that the dynamical renormalizatiohatic perturbative expansion and one finds that the solution
group advocated in this article explains the physical origin ofo; the time evolution of the distribution function features
the pinch singularities in terms of secular terms and Fermi’%ecularterms, i.e., terms that grow in time. In perturbation
golden rule, and provides a consistent and systematic réSUfeory the microscopic and relaxational time scales are
mation of these secular terms that lead to the quantum Kigjgely separated and there is a regime of intermediate as-
netic equation as a renormalization group equation that deymptotics within which(i) the secular terms dominate the
termines the time evolution of the distribution function. This }ime evolution of the distribution function ar(d) perturba-

result justifies in a systematic manner the conclusions anflo theory is valid. A renormalization of the distribution
interpretation obtained in Reff66] where a possible regular- ¢,nction absorbs the contribution from the secular terms at a

given renormalization time scale, thereby improving the per-
turbative expansion. The arbitrariness of this renormalization
2See Eqs(14) and(29) of Niegawa[63] and Eqs(14) and(22) of ~ scale leads to the dynamical renormalization group equation,
Greiner and Leupold65]. Note that Eq(14) in Ref.[65] contains ~ which is recognized as the quantum kinetic equation. Linear
a typographic error. secular terms are recognized to lead to the usual exponential
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relaxation (in the relaxation time approximatignwhereas is the study of relaxation of charged quasiparticles in a gauge
nonlinear secular terms lead to anomalous relaxation. Ththeory. As a prelude to studying quantum kinetics in QED
dynamical renormalization group provides a consistent reand QCD[59] in this article we studied the case of SQED. In
summation of the secular terms. There are many advantagesjuilibrium, this theory shares many important features with
in this formulation. QED and QCD in leading order in the hard thermal loop
(i) It is based on straightforward quantum field-theoreticalresummation and is a relevant model to study kinetics and
diagrammatic perturbation theory; hence it allows a systemrelaxation in the hot electroweak thediy3,36. This Abe-
atic calculation to any arbitrary order. It allows one to in- lian theory allowed us to begin our study by providing a
clude resummations of medium effects such as nonequilibgauge invariantdescription of the distribution functions,
rium generalizations of hard thermal loop resummation inthus bypassing potential ambiguities in the definition of
the quantum kinetic equation. This is worked out in detail ingauge covariant Wigner transforms which is the usual ap-
a scalar field theory. proach. The hard thermal loop resummation for both longi-
(ii) It allows a detailed understanding of crossover be-tudinal and transverse photons as well as for the scalar is
tween different relaxational phenomena directly in real timeincluded consistently in the derivation of the quantum kinetic
This is important in the case of wide resonances wherequation for the charged scalar quasiparticles in the relax-
threshold effects may lead to nonexponential relaxation omtion time approximation. The real-time solution of the ki-
some time scales, and also near phase transitions where saoftic equation for the distribution function features linear
excitations dominate the dynamics. and nonlinear secular terms which are resummed consis-
(iii ) It describes nonexponential relaxation directly in realtently by the dynamical renormalization group. The HTL
time whenever threshold effects are important, thus providtongitudinal photons are Debye screened and do not lead to
ing a real-time interpretation of infrared divergent dampinginfrared divergences, resulting in purely exponential relax-
rates in gauge theories. This we consider one of the mosition with a well-defined relaxation rate. On the other hand,
valuable features of the dynamical renormalization groupransverse photons are only dynamically screened by Landau
which makes this approach particularly suited to study relaxdamping and the emission and absorption of photons at right
ation in gauge field theories in a medium where the emissioangles leads to infrared threshold divergences, resulting in
and absorption of soft gauge fields typically lead to thresholdanomalous relaxation. We studied in detail the crossover be-
infrared divergences. This important feature was highlightedween purely exponential and anomalous relaxation. The
in this article by studying the quantum kinetic equation forcrossover time scale depends on the momentum and for soft
the distribution function of charged quasiparticles in SQED.quasiparticles exponential relaxation dominates the dynamics
(iv) This method provides a simple and natural resolutiorfor a longer period of time, whereas for hard quasiparticles
of pinch singularities found often when the distribution func- anomalous(with an exponent of the formint) dominates
tions are nonthermal. Pinch singularities are the temporahe relaxation. Recent approaches to quantum kinetics in-
Fourier transform manifestation of the real-time secularcluding HTL resummations have encountered infrared diver-
terms, and their resolution is via the resummation implegent relaxation rate$20]; the dynamical renormalization
mented by the dynamical renormalization group. group reveals very clearly that this is a manifestation of non-
We have tested this new method within the familiar set-exponential relaxation arising from threshold infrared effects
ting of a scalar field theory, thus reproducing previous resultshat results in a violation of Fermi's golden rule. The time
but with these new methods, and moved on to apply thecales that can be extracted both from the exponential and
dynamical renormalization group to describe the quantunthe nonexponential regimes agree with those obtained by
kinetics of a cool gas of pions and sigma mesons describedisarski[26] for QCD after self-consistently including a
by the O(4) linear sigma model in the chiral limit. This width for the quasiparticle in the calculation of the damping
particular example reveals a crossover behavior in the casate [26]. Therefore, the study of this Abelian model has
of hard resonances because of threshold singularities assoaideed offered a novel method to study relaxation in real
ated with the emission and absorption of massless pions. ltime which is a useful arena for QCD and QED.
the relaxation time approximation we find a crossover be- We envisage several important applications of the dy-
tween purely exponential relaxation and anomalous relaxnamical renormalization group method primarily to study
ation with an exponent of the forirint which is faster than transport phenomena and relaxation of collective modes in
exponential; the crossover scale depends on the momentugauge theories where infrared effects are important, as well
of the resonance. The regime of exponential relaxafion as to study relaxational phenomena near critical points where
the relaxation time approximatipris described by a relax- soft fluctuations dominate the dynamics. An important aspect
ation rate which is simply related to the damping rate foundof this method is that it does not rely on a quasiparticle
recently for the same modgb4,55,58. The (fastey anoma-  approximation and allows a direct interpretation of infrared
lous relaxation is a novel result and could be of phenomenophenomena directly in real time. Furthermore, we have es-
logical relevance in view of recent suggestions of noveltablished a very close relationship between the usual renor-
threshold effects of the sigma resonance near the chiral phassalization group and the dynamical renormalization group
transition[32]; this possibility is worthy of a deeper study approach to kinetics. We have proved that the dynamical
and we are currently generalizing these methods to reach tlrenormalization group equation is the quantum kinetic equa-
critical region. tion; the collisional terms are the equivalent of the beta func-
We consider that the most important aspect of this articldions in Euclidean renormalization group. Fixed points of the
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dynamical renormalization group are identified with station-the first class constraintsvith mutually vanishing Poisson
ary solutions of the kinetic equation and the exponents thabrackets between constraint&rom here there are two pos-
determine the stability of the fixed points are identified with sibilities: (i) The constraints become operators in the quan-
the relaxation rates in the relaxation time approximationtum theory and are imposed onto the physical states, thus
Furthermore, we have suggested that in this language coardefining the physical subspace of the Hilbert space and
graining is the equivalent to neglecting irrelevant couplingsgauge invariant operatoréi) Introduce a gauge, converting

in the Euclidean renormalization program. This identificationthe first class system of constraints into a second dlaik
brings a new and rather different perspective to kinetics andionzero Poisson brackets between constraand introduc-

relaxation that will hopefully lead to new insights. ing Dirac brackets. This second possibility is a popular way
of dealing with the constraints and leads to the usual gauge-
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from NATO. In Dirac’s method of quantizatiof70] there are two first

class constraints which are
APPENDIX A: GAUGE-INVARIANT FORMULATION

FOR SCALAR QED SC
_ _ _ o 0= —=0, (A1)
In this appendix we summarize the gauge-invariant for- SA°
mulation[67] for SQED with the Lagrangian density given
by G(x,t)=V-II+ep=0, (A2)
1 with p=—i(¢m— ¢'w") being the scalar charge density.

—n~pT w2t %
L=D"¢'D,p—m'd'¢ 4F Fuvs Equation(A2) is Gauss's law, which can be seen to be a

constraint in two ways: either because it cannot be obtained
where as a Hamiltonian equation of motion or because in Dirac’s
formalism it is the secondairfirst clas$ constraint obtained
|:W=(9MAV_(9 A/u b .. . . .
v y requiring that the primary constraint, EGAL1), remain
_ . constant in time. Quantization is now achieved by imposing
Dudp=dudtieh,s. the canonical equal-time commutation relations

The description in terms of gauge invariant states and opera-
tors is best achieved within the canonical formulation, which
begins with the identification of canonical field variables and
constraints. These will determine the classical physical phase
space and, at the quantum level, the physical Hilbert space. )
The canonical momenta conjugate to the gauge and scalar [o(x,t),m(y,1),]=18%(x~y),

fields are given by [oT(x,1), 7T (y,t)]=i 83(x—Y).

[A%(x,1), Iy, ] =1 8°(x—y),

[A'(x,1),I1(y,1),]=1 8" 8% (x—y),

11°=0,
In Dirac’s formulation, the projection onto the gauge in-
M=A+V A= —E variant subspace of the full Hilbert space is achieved by im-
posing first class constraints onto the states. Physical opera-
m=¢ +ieAlT, tors are those that commute with the first class constraints.
With the above equal-time commutation relations it is
mT=¢—ieA% straightforward to see that the unitary operator
Hence, the Hamiltonian is UA:eXF{iI (TT°A + GA ) d3x (A3)
1
_ t T t i ; i
H—f d3x S+ a'm+ (Vo' +ieAgh) (Vo—ieAd) performs the local gauge transformations. Thus the first class

constraints are recognized as the generators of gauge trans-
formations. In particular, Gauss’s law operagbis the gen-
erator of time-independent gauge transformations. Requiring
that the physical states be annihilated by these constraints is

There are several different manners of quantizing a gaugentamount to selecting the gauge invariant states. Conse-
theory, but the one that exhibits the gauge invariant stategquently operators that commute with the first class con-
and operators, originally due to Dirac, begins by recognizingstraints are gauge invariant.

+%(V><A)2+ m2pTp+A[V-MI—ie(mdp—m d")]}.
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In the Schrdinger representation of field theory, in which
the field operators are diagonal, states are represented by H(X)=W(X)9XF{—ieJ dSyAL(Y)‘VyG(y_X)}.
wave functionals, and the canonical momenta conjugate to (Alla)
the field operators are represented by Hermitian functional
differential operators. The constraints applied onto the states . . ) 3
become functional differential equations that the wave func- ~ I1'(X)=7'(x)ex 'ef d°yAL(Y)- VyG(y—X)|.
tionals must satisfy: (A11b)

o The momentumlIl canonical toA can also be written in

- 1=
SAL(X) YA ¢,¢1=0, (A4 torms of longitudinal and transverse components:

TI(x) = I, (X) + T (X). (A12)

1) 1) 1)
i t
Vi SA(X) B |e( ¢(x) Sh(X) —¢' 5¢T(x)) It is straightforward to check that both components are gauge
invariant. In the physical subspace of gauge invariant wave
XW[A,¢,¢"=0. (A4b)  functionals, matrix elements &F - II can be replaced by ma-
trix elements of the charge densipy=—i(®II—®'IIT).

The first equation simply means that the wave functionalrperefore in all matrix elements between gauge invariant
does not depend oAy, whereas the second equation meanSsiates(or functionaly one can replace

that the wave functional is only a functional of the combina-
tion of fields that is annihilated by the Gauss'’s law functional 3
differential operator. It is a simple calculation to prove that HL(X)_’_erj d*yG(x=y)p(y). (A13)
the fields
Finally in the gauge invariant subspace the Hamiltonian

. (A5a) becomes

<I>(x)=¢(x)exr{ief d*yA(y)- V,G(y—x)
1

H=f d3x[—HT-HT+HTH
2

dT(x)= qST(x)exr{ - ief d*yA(y)- V,G(y—x)

(ASb) +H(VOT+ieA; D) (VO —ieArD)
are annihilated by Gauss’s law functional differential equa- +1(VXAT)2+mZ‘I’T<DJ
tion with G(y—x) the Coulomb Green'’s function: 2
V2G(y—x)= 8%(y—x) (A6) e 5 s
y ' — 5 | EXAYp()G(X=y)p(y). (A14)
Furthermore, writing the gauge field in terms of transverse
and longitudinal components as Clearly the Hamiltonian is gauge invariant, and it manifestly
has the global (1) gauge symmetry under which trans-
A(X)=AL(X)+A(X), (A7)  forms with a constant phasH, transforms with the opposite
phase, andA; and Il; are invariant. This Hamiltonian is
where reminiscent of the Coulomb gauge Hamiltonian, but we em-

phasize that we have not imposed any gauge fixing condi-

VXALX)=0, V-Ar(x) =0, (A8) tion. The formulation is fully gauge invariant, written in
one finds terms of operators that commute with the generators of
gauge transformations and states that are invariant under
S S these transformations.

(A9) To obtain a gauge invariant description in Lagrangian for-
malism, we switch to the path integral representation for

Therefore the transverse componAatis also annihilated by ~ field theory in which the vacuum-to-vacuum amplitude is
the Gauss's law operator, aidin the exponential in Eqs. defined as

(Aba) and(A5b) can be replaced b¥, . This analysis shows

that the wave functional solutions of the functional diff"eren- J DADII D DI DD 'DITT

tial equations that represent the constraints in the Schro

dinger representation are of the form

TR AL

Xex;{if d4x(nc'1>+HT<'1>T+nT-AT)—if dtH}.

Y[A, ¢, ¢T1=P[A;,P,PT]. (A10)

) . . (A15)

The fieldsA;, ®, and® " aregauge invariantas they com-

mute with the constraints. The canonical momenta conjugatilote that the last term in the Hamiltonian, E&.14), is the

to ® and®" are found to be instantaneous Coulomb interaction, which can be traded for a
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gauge invariant auxiliary fieldy; up to an overall factor, the
vacuum-to-vacuum amplitude becomes

f DAGDADII DO DI DO ' DITT

Xex;{ij d4x(H(i)+HT<i>T+HT~AT)—iJ dtﬁ},

(A16)
where
. 3 1 T
+(VPT+ieAdT). (VO —ieA;d)
1 2 2H T
+5(VXADZ+ 1D
1 2
—5(VAQ) —ehgpy. (A17)
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branches of the CTP contour. Namely,

<A3<q,t>Ag<—q,t'>>o=ézs(t—t'), (B1a)

<A0<q,t>Ao<—q,t'>>o=—éaa—t'), (B1b)

(Ag (A, Ag (—a,t"))o=(Ag (A1) Ag (—a,t'))o=0,
(Blc

where (- - -)o denotes expectation value of free fields in
equilibrium.

Now we consider the full longitudinal photon propaga-
tors. Neglecting the tadpole type tere?Aé(DTCD [which
yields local (momentum independéntcontribution and
higher order contribution, and hence is irrelevant to the one-
loop result that we are interested],inve have

‘Cint: erj 0>

Since the exponent is now quadratic in the conjugate mowherejo=—i(®d'—d'd). Straightforward diagrammatic

menta, we can complete the squares and evaluat®khg,
DII, andDI1T integrals to obtain

f DAODATDCI)DCDTeXF{i f d4xL[Ao,AT,cD,q>*]},
(A18)

up to an overall factor, wherg[Ay,A7,®,d ] is the gauge
invariant Lagrangian,

L[Ag A7, ®,0T]=9,dT#D-—m*DTd
+ Ea#AT&MAT_eATJT
—e?A-A;PTD
1 2 2A24 T H
+5(VAg)?+eAg0Td +eAgjo,
(A19)

with  jr=i[®T(VD)— (VP)P] and jo=—i(PDT
~®TP). Note thatA, satisfies aralgebraicequation of mo-
tion V2A,=ep.

APPENDIX B: FULL PROPAGATORS
FOR AUXILIARY FIELDS

In this appendix we derive thill real-time CTP propa-
gators for the auxiliary fieléh equilibrium We will consider
as an example the longitudinal photon fiédlglin SQED (the
extension to other cases is straightforwai@ince an auxil-
iary field is nondynamical, it satisfies ahgebraicequation

expansions show that the following equalities hold to all or-
ders in perturbation theory:

<A3<q,t>A5<—q,t'>>=#m—t')

eZ
+— (g (abjs(—at")), (B23
q

e2
(Ag(a,t)Ag (—q,t'))= g(jé(q,t)ja(—q,t’)%
(B2b)

where(- - -) denotes the full equilibrium expectation value.
It is convenient to introduce the current-current spectral den-
sities p; (do.q) andp; (do,q) defined by

(Jo(aDjo(—a,t'))= f dao[p; (o, @) O(t—t")

+pj (o, @) O(t' —t)Je 1901,
(B33

<J§(q,t)ja(—q,t’)>=f ddop; (do.q)e "9,
(B3b)

Inserting a complete set of eigenstates of the full interacting
Hamiltonian, one obtains the KMS condition

p; (Go.q)=e"P%p(qo,q). (B4)

of motion without a time derivative. As a consequence, the
free longitudinal photon propagators are local in time andn terms of thepf(qo,q) the full retardedlongitudinal pho-
there is no mixture between fields on+" and “ —" ton propagator can be written as
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(Ao(a,t) Ag(—q,t"))r=(Ag (0,t) Ag (—0,t"))
_<Aa—(q!t)-’46(_q!t,)>

. (ddo iga(t—t
:|J'ZPO(QO1Q)€‘ 9o(t=1),
where

pj (0,0)

1 " (1—e Be
qo—w-l-ls(l € )'

1 €
po(do.0) = — + —4f do
a” q

and the KMS condition Eq(B4), is used. Thus, we obtain

2
e >

EP] (do.a)-

Again using the KMS condition, EqB4), we can finally
write the full longitudinal photon propagator as

Im po(dp,q) = — m(1—e )

(Ag(qt)Ag(—q,t"))y=i

1
?5(t—t’)+giq(t,t’)0(t—t’)

+gfq(t,t'>e(t'—t>],

(Ag (@D Ag (—a,t")=iG [ 4(t.t"),

where

PHYSICAL REVIEW D61 065006

i -
giq(t,t'):;f ddolm po(do,a)[ 1+ ng(qo)Je et~
(B5)

< " i —igg(t—t’)
GLq(tt )—; dgolm po(do,q)ng(go)e o .
(B6)

It is easy to check that the KMS conditicgfq(t—iﬂ,t’)
=G 4(t,t") holds. By the same token, we obtain

1
(Ag (A Ag (—a,t"))=i| == 8(t—t")+ G (t,t")
q

X 0(t’—t)+g§q(t,t’)0(t—t') ,

(Ag (A Ag (—a,t")=iG[ (t,t").

The imaginary part of the full retarded longitudinal photon
propagator, Inpg(qqg,q), can be calculated in perturbation
theory via the tadpole methd@5]. To one-loop order and in

the HTL limit [35], one finds Impo(qo.a)=— 7p.(do.q),

wherep, (do,9) is given in Eq.(6.7). Finally, using the con-
dition G (t,t")=G 4(t',t) [cf. Eq. (2.7] and making
change of variableggo— —qg in Eq. (B5), we find that
|mPg(_QO,Q)=_|mP0(QO=Q)= and hence p (—0p,q)

=—p.(do,0).
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