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We consider the model of a massless charged scalar field, in 211 dimensions, with a self-interaction of the
form l(f* f)3 and interacting with a Chern-Simons field. We calculate the renormalization groupb functions
of the coupling constants and the anomalous dimensionsg of the basic fields. We show that the interaction
with the Chern-Simons field implies abl which suggests that a dynamical symmetry breakdown occurs. We
also study the effect of the Chern-Simons field on the anomalous dimensions of the composite operators
(f* f)n, obtaining the result that their operator dimensions are lowered.

PACS number~s!: 11.10.Gh, 11.10.Hi, 11.10.Kk
ia
p

io

th

o

n
n

e
re

ge

-
It

he
n

th
or
r
II

-
ed
g

th
ur

re-

lar
the

phs

n-
he

the

a

phs

use
full
in

r of
his
in
ur
lar

and
ard

,

l is
y for
ing
ix-
I. INTRODUCTION

Self-interacting scalar fields are the simplest nontriv
field theories. Nevertheless they have found numerous ap
cations in many different phenomena. Renormalizat
group analyses of the model of scalar fields in 211 dimen-
sions with a self-interaction of the formlf6 have appeared
in the literature @1# in conjunction with other self-
interactions, and also in interaction with other fields. On
other side, the Chern-Simons~CS! field theory@2# is known
to cause some strange effects in matter fields, the best kn
being the transmutation of their spins and statistics@3#.

Bosons~fermions! interacting with a CS field receive a
extra contribution to their spins and statistical phases, cha
ing to anyons and even to fermions~bosons!. Studies of the
change in the scale behavior of matter fields due to th
interaction with the CS field have also been conside
@4–6#.

In this paper we study the model of a massless char
scalar field with a self-interaction of the forml(f* f)3 in-
teracting with an Abelian CS field. Classically it only in
volves dimensionless parameters and is scale invariant.
also strictly renormalizable; no induction of terms of t
formsm2(f* f) or g(f* f)2 occurs. Besides the calculatio
of the anomalous dimensions off andAm and theb func-
tions related to their coupling constants, we also calculate
anomalous dimensions of composite operators of the f
(f* f)n. Some of our conclusions agree and others disag
with the previous literature. This will be discussed in Sec.
and in the Conclusions.

To regulate the ultraviolet~UV! behavior we use a sim
plified version of dimensional regularization, the so-call
‘‘dimensional reduction’’ method. It consists of contractin
and simplifying the Lorentz tensors before extending
Feynman integrals out of three dimensions. This proced
0556-2821/2000/61~6!/065003~15!/$15.00 61 0650
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previously used by several authors@4–6#, greatly simplifies
calculations involving the CS field because it does not
quire the extension of the Levi-Civita tensor«mnr out of
three dimensions. In Feynman integrals only involving sca
vertices and propagators, no difference appears between
results obtained by using one or the other method. In gra
involving the CS field and the«mnr, the differences of this
method to a ‘‘full’’ dimensional regularization would only
show up@4# in subleading contributions to the Feynman i
tegrals; that is, ifD stands for the extended dimension of t
spacetime when the Feynman integrals are expanded in
Laurent series ine[(D23), no difference in the leading
divergent term in 1/e will appear. It is, on the other side,
characteristic of dimensional regularization in 211 dimen-
sions that one-loop graphs are finite and two-loop gra
have at most a single pole divergence ine. As the calculation
of the renormalization group parameters only involve the
of the divergent parts of the graphs, no differences to the
dimensional regularization are expected up to two loops
graphs that involve the CS propagator and in any numbe
loops in graphs only involving the scalar propagator. In t
paper we will restrict the calculations to up to two loops
all graphs involving propagators of the CS field, and fo
loops in graphs involving only the propagator of the sca
field. As we will explicitly show,~at least! to those orders,
dimensional reduction is enough to regularize the model
to preserve the gauge symmetry, as expressed by the W
Identities ~WI!. We will work in the Landau gauge and
avoiding exceptional momenta, no infrared~IR! divergences
will appear.

The plan of the paper is as follows. In Sec. II the mode
presented and the divergent UV counterterms, necessar
the renormalization group study, are obtained by calculat
the CS two-point function and the scalar field two- and s
point functions. In Sec. III the renormalization groupb func-
©2000 The American Physical Society03-1
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tions and anomalous dimensions of the fields are obta
and compared with other calculations. The change in
dynamical behavior of thef field due to the interaction o
the CS field is discussed. The influence of the CS in
dimension and the renormalizability of operators of the fo
(f* f)n is also studied. A summary of the results are p
sented in the Conclusions. In Appendix A the explicit ve
fication of the WI is given, and in Appendix B some Fey
man integrals are calculated as examples.

II. THE MODEL

The model is constituted by a massless charged boso
211 dimensions represented by a fieldf with a self-
interaction of the form (f* f)3 and minimal interaction with
a Chern-Simons~CS! field Am . Its Lagrangian density is
given by

L5]mf0
†]mf02 ie0A0

m~f0
†]mf02]mf0

†f0!

1e0
2A0

mA0m~f0
†f0!

2
l0

62
~f0

†f0!31
1

2
«mnrA0

m]nA0
r . ~2.1!

The metric isgmn5(1,21,21),]m stands for]/]xm, «mnr is
the antisymmetric Levi-Civita tensor with«01251, ande0
and l0 are dimensionless coupling constants. The subsc
‘‘0’’ means that the corresponding quantity is ‘‘unrenorma
ized.’’

The model is renormalizable; all the UV infinities of th
perturbative series can be absorbed in a redefinition of
unrenormalized quantities. It also has a gauge symm

FIG. 1. Feynman rules in the Landau gauge.
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which suggests the use of dimensional regularization@7#.
However, the presence of the Levi-Civita tensor in the
term makes dimensional regularization cumbersome and
calculations become awkward in more than one loop. So,
will take advantage of some characteristics of 211 dimen-
sions and use a simplified version of dimensional regular
tion, the so-called dimensional reduction@4,5#. In this proce-
dure, the Lorentz tensor algebra is considered in 211
dimensions and only the remaining scalar Feynman integ
are extended out of 211 dimensions. It was verified in@5#,
up to two loops, that for the non-Abelian Chern-Simo
theory this procedure in fact preserves the Slavnov-Tay
identities. As we will also show below up to two loops,
also preserves the Ward identities in our model and no
consistencies appear.

To obtain information on the asymptotic behavior of t
model, we need to calculate the renormalization group
rameters:b functions and anomalous dimensions of t
fields. For this task, adopting the renormalization group
proach of ’t Hooft@8# based on minimal subtraction, we on
need to calculate the divergent parts of some vertex fu
tions, more precisely, the residues of the poles in 1/e, where
e532D and D is the ‘‘extended’’dimension of the space
time. In the 211 dimension this means that we must go to
least two-loop calculations because as a characteristic o
mensional regularization, one-loop integrals are finite.

Introducing the renormalized fieldsf and Am and the
renormalized coupling constantse andl through the defini-
tions

f05Zf
1/2f5~11A!1/2f, ~2.2!

A0
m5ZA

1/2Am5~11B!1/2Am, ~2.3!

e05eme/2~11D !/ZfZA
1/2, ~2.4!

e0
25e2me~11E!/ZfZA , ~2.5!

l05m2e~l1C!/Zf
3 , ~2.6!

where m is a mass parameter introduced to keepe and l
dimensionless quantities andA to E are the counterterms to
be chosen so as to make the renormalized quantities finit
each order of perturbation. As will be seen in the calcu
tions, the renormalization ofl in the presence of the CS fiel
is not multiplicative. By substituting these definitions in E
~2.1! we obtain forL

FIG. 2. Divergent diagrams contributing to the CS two-po
function.
3-2
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L5]mf†]mf1
1

2
«mnrAm]nAr2 ieme/2Am~f†]mf

2]mf†f!1e2meAmAm~f†f!2
lm2e

62
~f†f!3

1A]mf†]mf1
B

2
«mnrAm]nAr2 ieme/2DAm~f†]mf

2]mf†f!1e2meEAmAm~f†f!2
m2eC

62
~f†f!3.

~2.7!

The Feynman rules for this Lagrangian in the Land
gauge are depicted in Fig. 1. This gauge can be impleme
by adding to the Lagrangian a gauge fixing te

FIG. 3. Divergent diagrams contributing to the scalar field tw
point function.
06500
u
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(1/2j)(]mAm)2, inverting the free quadratic part of theAm to
get the CS propagator and then lettingj→`. The would-be
Faddeev-Popov ghost field is completely decoupled of
other fields and does not have any effect. CallingG(p) the
scalar field 1PI two-point function andGm(q;p,p8) and
Gmn(q,k;p,p8), respectively, the trilinear and quadrilinea
CS scalar field vertices, whereq and k represent ‘‘photon’’
momenta andp andp8 scalar field momenta, we have the W

qmGm~q;p,p8!52e@G~p8!2G~p!#, ~2.8!

qmGmn~q,k;p,p8!52e@Gn~k;p1q,p8!2Gm~k;p,p82q!#,
~2.9!

which require thatE5D5A, leaving us with only three~we
chooseA,B,C) counterterms to be fixed. Explicit proof o
these WI in two loops is given in Appendix A.

To determineA, B, andC we need to calculate the simpl
pole part of the two-point function of the CS field,Pmn(q)
and the scalar field two- and six-point functions, resp
tively, G2 andG6. In graphs involving the CS field, we wil
extend the calculations up to two loops getting at mos
simple pole in 1/e; in graphs only involving the scalar field
we will go up to four loops. So in the tensorial Feynma
integrals, in which dimensional reduction could possibly d
fer from dimensional regularization~in the subleading terms
in 1/e), no difference between the two methods are expec
in the calculation of the counterterms and in the renorm
ization group parameters.

Let us start withPmn . The only divergent diagrams, up t
two loops, are those shown in Fig. 2~the possible counter
term is also drawn in the figure!. Their contributions are
given by

-

onomial

to
ith
~2a!54e4E DqE Dk
«mnrkr

k2~q2p!2~q1k!2
, ~2.10!

~2b!5e4E DqE Dk
~2k1q!a«abgqg~2k1q22p!b~2k2p!m~2k12q2p!n

k2~k1q!2q2~k2p!2~q1k2p!2
, ~2.11!

whereDq[med32eq/(2p)32e and an infinitesimal imaginary part is supposed in every propagator denominator (p2→p2

1 ih,h!1). Both integrals are logarithmically divergent. The divergent parts are of the form«mnrprI , whereI is a scalar
integral that can be calculated by the usual dimensional continuation after reducing the denominator to a single m
through the use of Feynman parameters. The results are

~2a!54«mnrprS 2
e4

96p2

1

e D 1finite part, ~2.12!

~2b!5«mnrprS e4

24p2

1

e D 1finite part. ~2.13!

As can be seen, the divergent parts of the two integrals cancel each other and we are left with only finite contributionsPmn .
So the countertermB can be chosen asB50 and no infinite wave function renormalization of the CS field interacting w
massless scalar field is needed. This result extends for massless matter, the result of the Coleman-Hill theorem@9#.

Let us now look at the scalar two-point function,G2(p). The divergent graphs up to the second order ina andl are shown
in Fig. 3, together with the counterterm. Their contributions are given by
3-3
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~3a!522e4i E Dq
1

~p1q!2E Dk «mnr

kr

k2
«nmg

~k1q!g

~k1q!2
, ~2.14!

~3b!5e4i 3E Dq «abg

qg

q2

~2p1q!b

~p1q!2 E Dk
~2p1k!m~2p12q1k!n~2k12p1q!a

~p1k!2~p1q1k!2
«mnr

kr

k2
, ~2.15!

~3c!5e4i 3E Dq
1

~p1q!2
«mal

ql

q2
«bnr

qr

q2E Dk
~2k1q!a~2k1q!b~2p1q!m~2p1q!n

k2~k1q!2
, ~2.16!

~3d!52
l2

22.3
i 5E Dk1Dk2Dk3Dk4

1

k1
2k2

2k3
2k4

2~p1k11k22k32k4!2
. ~2.17!
de
to
ar

l

er
ia
he
o
th
w

ed
After simplification of the tensor algebra in 211 dimensions
we are left with multiple scalar integrals that can be ma
one loop at a time, through the reduction of the denomina
by successive use of Feynman parameters. The results

~3a!522ie4S p2

96p2

1

e
1••• D , ~2.18!

~3b!52 ie4S p2

12p2

1

e
1••• D , ~2.19!

~3c!52 ie4S p2

24p2

1

e
1••• D , ~2.20!

~3d!52 i
l2

22.3
S 2

p2

3.211p4

1

e
1••• D .

~2.21!

For the contribution (iAp2) of the counterterm to cance
these divergences we must choose

A5S 7

48p2
a22

1

32.213p4
l2D 1

e
. ~2.22!

Let us now proceed to the calculation ofC, the counter-
term of the coupling constantl. For this task we need to find
the divergent parts ofG6(p1 , . . . ,p6). After a lengthy analy-
sis of the many graphs involved, we are left with the div
gent contributions drawn in Fig. 4. The bullets on the d
grams 4p, 4q, 4r, 4s, and 4t signify the insertion of t
counterterm in the corresponding vertex. The calculation
all of these diagrams can be reduced to the calculation of
nine integrals represented in Fig. 5. In Appendix B we sho
as examples, the calculation~of the divergent parts! of
5a, 5b, 5d, and 5f. Here we present only the results;

G~p,q!52
1

25p2

1

e
1finite part, ~2.23!
06500
,
rs
e

-
-

f
e
,

H~p!5
i

16p2

1

e
1finite part, ~2.24!

D3~p!52
i

25p2 F1

e
1S log

4pm2

2p2
2322g22 log 2D

1O~e!G , ~2.25!

Y~p!52
1

212p4

1

e
1finite part, ~2.26!

Z~p,q!5
1

211p4

1

e
1finite part, ~2.27!

W~q,p!52
1

211p4 F 1

e2
1

1

e S 2 log
4pm2

2~p1q!2
18

2
11

2
g D 1finite partG , ~2.28!

M~a,c,d!5
3i

26p2

1

e
1finite part, ~2.29!

N~a,c,d!5
i

25p2

1

e
1finite part, ~2.30!

and

Q~a,b,c!5
1

25p2

1

e
1finite part, ~2.31!

whereg is the Euler constant. In some graphs we will ne
the result ofD3

2(p), which is
3-4
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D3
2~p!52

1

210p4 F 1

e2
1

1

e S 2 log
4pm2

2p2
22~312g12 log 2!D 1finite partG . ~2.32!

By collecting all of the contributions of Fig. 4 we can write

G6~p1 ,p2 ,p3 ,p18 ,p28 ,p38!m22e

52
l2

6
D3~p11p21p3!2

l2

2
@D3~p11p22p28!18 terms#

12ila2@G~p1 ,2p18!18 terms#12ila2@G~p1 ,p2!12 terms#

12ila2@G~2p18 ,2p28!12 terms#22la2@H~p12p18!18 terms#

1 i
5

4
l3@Y~p12p18 ,p22p28!15 terms#1 i

3

4
l3@Y„p11p2 ,2~p11p28!…18 terms#

1 i
1

4
l3@Z~p1 ,p2!12 terms#2

5

12
l2@Z~p1 ,2p18!18 terms#1 i

1

4
l3@Z~2p18 ,2p28!12 terms#

FIG. 4. Divergent contributions to the scala
six-point function. Three others, which are n
drawn, but have diagrams similar to~n!, ~o!, and
~p! with the sense of all external lines reverse
must also be considered.
065003-5
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1 i
1

36
l3@D3

2~p11p21p3!#1 i
1

4
l3@D3

2~p11p22p18!18 terms#1 i
1

4
l3@W~p1 ,p21p3!12 terms#

1 i
1

4
l3@W„2p18 ,2~p281p38!…12 terms#1 i

3

4
l3@W~p1 ,p22p18!117 terms#1 i

3

4
l3@W~2p18 ,p12p28!117 terms#

1 i
7

12
l3@W„p1 ,2~p181p28!…18 terms#1 i

7

12
l3@W~2p18 ,p11p2!18 terms#2

lC

3
D3~p11p21p3!

2lC@D3~p11p22p18!18 terms#2 iC124a4@M~p1 ,p22p28 ,p32p38!117 terms#

125a4@N~p1 ,p22p28 ,p32p38!117 terms#1 i22a4@Q~p12p18,p22p28,p32p38!135 terms#, ~2.33!
in

s

up

pa

o

b
a

at-
from which, after imposing that the result be finite, we obta

C5l2
7

48p2

1

e
2la2F 33

16p2G 1

e
1a4

72

2p2

1

e
.

2l3F582157p221092g

214p4 G 1

e
1l3F 49

2832p4G 1

e2
.

~2.34!

The term proportional toa4 in the above expression show
that the renormalization ofl is not multiplicative, a fact that
will lead to an interesting effect in the renormalization gro
equations. In the next section, results~2.22!, ~2.34!, and B
50 will be used to determine the renormalization group
rameters.

III. RENORMALIZATION GROUP ANALYSES

Let us start by verifying that the CS coupling does n
run. Equation~2.5! is

a05ame
11E

~11A!~11B!
. ~3.1!

As we have seen in the previous section,B50 and, as a
consequence of the Ward identities, we also haveE5A.
Thus Eq.~3.1! reduces to

a05ame, ~3.2!

from which, in the way of@8#, we obtain

0[m12e
da0

dm
5ea1m

da

dm
, ~3.3!

and therefore

ba5m
da

dm U
e→0

→0, ~3.4!

showing thata does not run under a rescaling ofm or the
momenta of the Green function. A similar result was o
tained in@5# for a model of a scalar field interacting with
06500
-

t

-

non-Abelian CS field. These results extend to massless m
ter, the result of the theorem of Coleman-Hill@8#.

For calculatingbl we start with Eq.~2.6!,

l05m2e
l1C

~11A!3
5m2e~l1C23A1••• !. ~3.5!

By substituting Eqs.~2.22! and ~2.34! in this equation we
obtain

l05m2eS l1
l1~a,l!

e
1••• D , ~3.6!

where

l1~a,l!5a~l22ca2l1da42bl3! ~3.7!

with

a5
7

48p2
50.01478, ~3.8!

b5
1

2107p2
~17441171p223276g!50.0218, ~3.9!

c5
120

7
517.1429, ~3.10!

and

d5
1728

7
5246.86. ~3.11!

From Eq.~3.6! we have

05m122e
dl0

dm

52eS l1
l1

e
1••• D1S m

]l

]m
1m

]l

]m

]l1

]l

1

e

1m
]a

]m

]l1

]a

1

e
1••• D , ~3.12!
3-6
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and using Eq.~3.3! we find

bl5m
]l

]m

5S a
]

]a
12l

]

]l
22Dl1~a,l!22le

52a~l22cla21da422bl3! ~ for e→0!.
~3.13!

Up to two loops~the terms inl2, la2, anda4) this result
qualitatively coincides with that of@4# for this same model. It
does not, however, coincide with the result of@14# ~we will
discuss this fact in the Conclusions!. As can be seen from
Eq. ~3.10!, the contribution of the four loops graphs~the term
in l3) is small and will not qualitatively change the resu
for bl .

Making a50 we go to the pure (f†f)3 model. In this
caseb starts at zero forl50 and increases monotonical
with l @1#. The model presents an infrared~IR! fix point at
l50. ForaÞ0 a drastic change occurs. In this caseb starts
at (4ada4).0 for l50 and never vanishes in the perturb
tive range of the two coupling constants. A similar behav
of theb function, already in one-loop order, is shown in t
Coleman-Weinberg model~CW! @15# in 311 dimensions.
There, a dynamical symmetry breakdown occurs and ma
are generated for the two fields. In@14# the effective poten-

FIG. 5. Representation of the divergent integrals that appea
the diagrams of Fig. 4.
06500
r

es

tial was calculated in two loops and a breakdown of symm
try was also shown to appear. We would like to stress t
our results forG2 and G6 are compatible with that conclu
sion. TheG2(v) for the displaced fieldc5f2v, wherev is
a constant with dimension (mass)1/2, would be written, in
terms of the functions that we calculated forf, as a series of
the form G2(v)5G21(v2/2)G41(v4/4!)G61•••. As can
be seen from the graphs proportional toa4 in Fig. 5, G6

receives a constant~independent ofp) finite contribution. As
a consequence,G2(v) will have a singularity displaced to
some non-null value ofp2, compatible with a non-null dy-
namically generated mass forf.

The anomalous dimensions of the fieldsAm and f are
given by

gA5
1

2

m

ZA

dZA

dm
, ~3.14!

gf5
1

2

m

Zf

dZf

dm
. ~3.15!

As shown in Sec. II,ZA511B51 and sogA50. By writing

Zf511A511
a1~a,l!

e
1•••, ~3.16!

wherea1 is given in Eq.~2.22!, we can write Eq.~3.15! in
the form

2S 11
a1

e
1••• Dgf5m

]l

]m

]a1

]l

1

e
1m

]a

]m

]a1

]a

1

e
1•••,

~3.17!

and using Eqs.~3.3! and ~3.13! we obtain

gf52l
]a1

]l
2

a

2

]a1

]a
. ~3.18!

By substitutinga1 from Eq. ~2.22!, in Eq. ~3.18! we have

gf52
7

48p2
a21

1

32.212p4
l2. ~3.19!

The contribution ina2 qualitatively agrees with the resu
of @4#. The term inl2 comes from four-loop graphs~not
calculated in@4#! and is very small compared to the term
a2. It can be seen from Eq.~3.18! that the scalar field dimen
sion, Df5 1

2 1gf , decreases with the coupling to the C
field. As is well known, in the nonperturbative approach
quantum mechanics, the coupling of matter fields to a
field changes the spin and statistics of the matter fields, d
ing bosons into anyons and also, for strong enough c
plings, into fermions. Based on these results, there is a c
jecture in the literature@10# that, even in the perturbative
quantum field approach~in which the strengtha!1!, the
dimension of a boson coupled to a CS should receive
increase in the direction of the fermion dimensiondc51 ~for
the corresponding problem of fermions, a decrease in
direction of the boson dimension should be expected!. As

in
3-7
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shown in Eq.~3.19! this conjecture is not realized; the co
pling to the CS field works in the direction of decreasing t
dimension off.

To go a bit further in testing this conjecture, we have a
looked at the anomalous dimensions of the composite op
tors @(f†f)n#, where n is an integer number. As we ar
mainly interested in the effect of the coupling of the boson
the CS field, to simplify the calculations we will restrict th
analysis tol50. In terms of monomials off this composite
operator can be written@12# as

@~f†f!n#5Zn~f†f!n1Zn21
0 ~f†f!n21

1Zn22
2 ~f†f!n22~f†]2f!1•••. ~3.20!

The determination of theZm
i (m<n) requires the calculation

of the divergent parts of the 2m scalar field 1PI vertex func
tions with the insertion of one integrated composite opera

G [(f* f)n]~x1 , . . . ,ym!

5E d3z^T@~f†f!n#~z!

3f~x1!•••f~xm!f†~y1!•••f†~ym!& ~3.21!

or, in momentum space, theG [(f* f)n] (p1 , . . . ,p2m) function
with zero momentumq entering through the special verte
@(f†f)n#. Up to ordera2, the divergent graphs contributin
to G [(f* f)n] (p1 , . . . ,p2n) are shown in Fig. 6. In Fig. 7 we
draw some of the graphs that could contribute
G [(f* f)n] (p1 ,•••p2(n21)). Diagrams in Fig. 7 are in fact al
null, which implies that the renormalization parametersZn21

i

also vanish. The same can be shown to be true for allZm
i in

which any m,n. So the right-hand side of Eq.~3.21! re-
duces to only the first monomial and@(f†f)n# does not mix
with other operators~mixing will, however, appear if we
considerlÞ0). Its renormalization only requires the calc

FIG. 6. Divergent contributions toG [(f* f)n] (2n); that is, the
2n-point function with one insertion of the composite opera
@(f* f)n#.
06500
o
a-

o

r

lation of Zn , which means to calculate the divergent parts
the graphs in Fig 6. The involved Feynman integrals are
G(p,q) and H(p) from Fig. 5. By writing Zn511An we
have

G [(f* f)n]~p1 , . . . ,p2n!5~n! !2@An2~4n222n!a2G
22in2a2H#1finite graphs,

~3.22!

and we have forAn

An5DivPart$~4n222n!a2G12in2a2H%

52
4n22n

16p2

a2

e
, ~3.23!

where ‘‘DivPart’’ stands for keeping only the divergent pa
of the following expression.

With these results forZm and Eq. ~2.22! for Zf , Eq.
~3.20!, rewritten in terms of the unrenormalized@see also Eq.
~2.2!# field f0, becomes

@~f†f!n#5Zcn
21~f0

†f0!n, ~3.24!

where

Zcn5~Zn!21~Zf!n511
acn~a!

e
1••• ~3.25!

and

acn~a!5
a2

4p2 S n21
n

3D . ~3.26!

By deriving the two sides of Eq.~3.24! with respect tom
and remembering thatf0 is independent ofm we have

m
d

dm
@~f†f!n#52gcn@~f†f!n#, ~3.27!

where

gcn5
m

Zcn

dZcn

dm
~3.28!

is the anomalous dimension of the composite operator.
ing through the same steps that lead Eq.~3.16! to Eq. ~3.18!
we find

r

FIG. 7. Some possible contributions toG [(f* f)n]@2(n21)# that
is the 2(n-1)-point function with one insertion of the composi
operator@(f* f)n#.
3-8
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gcn52a
dacn

da
52

a2

2p2 S n21
n

3D . ~3.29!

The dimension of the composite operator@(f†f)n# be-
comes

D [(f†f)n]5n2
a2

2p2 S n21
n

3D . ~3.30!

This result is in disagreement with@6#. Their calculation
seems to miss the contribution of the second graph in Fig
But it is not this fact that makes the major difference. O
counting of the combinatorial factors of the graphs in Fig
gives a term proportional ton2 ~besides the term inn) and
different from theirs, which is only proportional ton.

No matter if the composite operator is supe
renormalizable (n,3), renormalizable (n53), or nonrenor-
malizable (n.3), the effect of the coupling to the CS field
to lower its dimension. Nevertheless, the lowest nonren
malizable operator, (f†f)4, with effective dimensionD4
542(52/6p2)a2 will never, in the perturbative regime, b
driven to be renormalizable. Yet due to the quadratic dep
dence of the anomalous dimension onn, given anya!1, the
operators@(f†f)n# with n larger thannc.(2p2/a2)2 10

3

@1 have their operator dimensions driven to values sma
than three.

To finish this section, let us look at the renormalizati
group equations for theG (2n)(p,l,a,m) functions~p is short
for the 2n external momenta!. As the four loops contribu-
tions are very small, we will restrict the analysis to tw
loops. Asba and gA are null we have the renormalizatio
group equation

S m
]

]m
1bl

]

]l
22ngfDG (2n)~p,l,a,m!50. ~3.31!

The solution of this equation can be written as

G (2n)~p,l,a,m!5G (2n)~p,l̄,a,msl̄,l!s
l̄,l

2ngf , ~3.32!

where we used the fact that up to two loops,gf
52(7/48p2)a2 does not change withs. In the above equa
tion, sl̄l stands for the solution of

s
d

ds
l̄5bl~l̄ !

52a~ l̄22ca2l̄1da4!, ~3.33!

with the conditionl̄(s51)5l, that is,
06500
6.
r

r-

n-

r

sl̄l5expH 1

a fa2 F tan21S 2l̄

f a2
2

c

f D 2tan21S 2l

f a2
2

c

f D G J
>expH 2.86

a2 F tan21S l̄

12a2
20.71D

2tan21S l

12a2
20.71D G J , ~3.34!

where f 5(4d2c2)1/2. As bl is non-null for l50 ~for a
Þ0), this equation is well defined if we choosel50. With
this choice, in Eq.~3.34! we can write

G (2n)~p,l̄,a,m!5G (2n)~p,0,a,msl̄0
21

!s
l̄0

22ngf . ~3.35!

This equation shows that, up to two loops, theG (2n) func-
tions of the model defined by the Lagrangian~2.7!, can be
obtained from the correspondingG (2n) for the model where
only the interaction term with theAm field is present or from
what is equivalent, from the calculation of the subset of d
grams contributing toG (2n) , which only involves the inter-
action vertex with theAm field. A short inspection of the CW
@15# results shows that a similar fact is also true for th
model ~at least in one loop!.

IV. CONCLUSIONS

The coupling to the CS field lowers the dimension off
and of (f†f)n. This goes in the opposite direction of th
conjecture that the transmutation of the boson into an
~due to the coupling to the CS field! should be signaled by
the dimension of these operators to increase in the direc
of the canonical dimension of a fermion fieldc and their
composite operators (c†c)n, respectively.

In the present paper, as in previous calculations in
literature, the functionba and the anomalous dimension o
the CS field are shown to vanish; the CS coupling constana
does not run with the change of the energy scale. The fu
tion bl instead shows a drastic change in the presence o
CS field. From an IR trivial fix point for the purel(f* f)3

interaction, the model is driven, to a phase in which no
point appears forbl , in a behavior similar to that ofbl for
the model of Coleman-Weinberg@15#.

In @14#, the renormalization group functions were calc
lated up to two loops, although their main aim was to stu
the effective potential and dynamical symmetry breakdow
The model of@14#, defined by their Lagrangian~2.1!, can be
made to coincide with ours by deleting thel(f* f)2 inter-
action and them2(f* f) mass term, that is, by making thel
andm zero. Considering also that their coefficient,n, of the
(f* f)3 interaction differs from ourl by a factor of 2/5,
which also implies in a 2/5 factor of difference in the corr
spondingb functions, their results@equations~10.7–9! and
~11.8!#, after being translated to our notation, can be summ
rized as:~1! ba50 andgA50. These results are in agree
ment with Eq.~3.4! and the observation below Eq.~3.15!;
and ~2! gf5O(l2) and bl52al21O(l3), both indepen-
3-9
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dent ofa. Our results~3.13! and~3.19! differ from these last
ones by terms dependent on the CS couplinga. Their con-
clusion is that the model has an IR trivial fix point inl. Ours
instead is thatbl never vanishes, a result similar to that
CW in a model in which a dynamical symmetry breakdow
occurs. A dynamical symmetry breakdown was also see
@14# for the present model. Our result forb looks so, in
accordance with their result on symmetry breakdown.

The discrepancies between ourb function and theb func-
tion of @14# can be attributed to the different regularizatio
schemes we are using. In@14#, the model is regularized
through a full-dimensional regularization by extending out
3D all the tensor structures~including the definition of the
emnr) that appear in the Feynman graphs. As they conclu
in that method the renormalizability of the model is on
achieved if an extra regularization, represented by a Maxw
term for theAm field ~in addition to the CS one!, is intro-
duced. Their method requires that this extra regularization
dismissed~their parameter ‘‘a’’ taken to zero!, only after the
continuation back to 3D is made. As can be seen from th
results ~11.8!, some of theirb functions become singula
whena→0, showing that a better understanding of the str
ture of the renormalization group equation is still lacking
that method. Also, as discussed in their section 10, if a re
larization directly in 3D exists and were used,gf and bl

would also be expected to depend ona.
In this paper we used the dimensional reduction regu

ization scheme, in which all the tensor contractions are fi
made in 3D and only the remaining scalar Feynman integ
are extended out of 3D. We explicitly verified that th
method controls all the UV infinities and preserves the W
identities and so, the gauge covariance, up to the orde
approximation in which we are working~two loops in graphs
involving the CS propagator and four loops in graphs o
involving the scalar propagator!. Although we cannot say
that it is a regularization directly in 3D, our results are co
sistent with the above mentioned discussion in@14#.

As a definitive answer to this problem is desirable, we
presently working in a related model, using a direct 3D v
sion of the Bogolubov-Parasiuk-Hepp-Zimmermann~BPHZ!
renormalization method. The preliminary results confi
those of the present paper for the renormalization gr
functions, together with the dynamical symmetry breakdo
obtained in@14#.

To finalize we would like to summarize the results of tw
previous papers@11#, in which we studied the scale behavi
06500
in

f

e,

ll

e

ir

-

u-

r-
st
ls

d
of

y

-

e
-

p
n

of fermions interacting with a CS field. In the first one,
single fermion with its most general four-fermion nonreno
malizable self-interactiong(c̄c)2 was considered. We saw
that althoughc gets a negative anomalous dimension, ma
ing its operator dimension approach that of a boson, no d
nite pattern of approach to a bosonic scale behavior du
the interaction with the CS field is seen for composite ope
tors; the super-renormalizable operatorc̄c gets a negative
anomalous dimension, but the nonrenormalizable oper
(c̄c)2 gets a positive one. In the second paper an exten
version of this model withN ~small! fermion fields, with
their most general four-fermion interactiong(c̄c)2

1h(c̄gmc)2, was considered. We studied operators of
nonical dimension four. We showed that one of them ha
positive anomalous dimension, the other has a very sm
negative anomalous dimension, and the third one, more
teresting from the renormalization viewpoint, has a negat
anomalous dimension, making, through a fine tuning of
coupling constants, its operator dimension as close to th
as desired. Nevertheless, no general pattern of approach
bosonic like behavior~negative anomalous dimension!, as
advanced by the conjecture in the literature, was seen.
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APPENDIX A: THE WARD IDENTITIES

The two relations among the countertermsA to E can be
obtained from the WI among the 1PI four-linear photo
scalar vertex,Gmn , the trilinear photon-scalar vertex,Gm ,
and the scalar self energyG2. In tree approximation they are
given by ~see Fig. 1! Gmn52ie2megmn , Gm52 ieme/2(p8
1p)m , andG25 iAp2. It is easy to see that they satisfy th
relations

qmGm~q;p,p8!52eme/2$G2~p8!2G2~p!%, ~A1!

qmGmn~q,q8;p,p8!52eme/2$Gn~q8;p82q8,p8!

2Gn~q8;p,p1q8!%. ~A2!
s
FIG. 8. An example of a family of diagram
contributing toGm(q;p,p8).
3-10
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As we explicitly verified, these relations are, in fact, va
up to two-loop order. Instead of considering the WI amo
the sum of all graphs up to two loops contributing to each
the three vertex functions above, we can take advantag
the fact that they can be separated in subclasses to be se
separately related through the WI~A1! and ~A2!. As an ex-
ample consider the graphs 8~a!–8~h! contributing toGm and

9~a! and 9~b! contributing toG2. Let us callG̃m the sum of

the contributions of diagrams 8~a!–8~q! and G̃2 the graph
9~a!. Let D̃ andÃ be the possible divergent contributions
the countertermsD andA, chosen so as to make the sums
the graphs in Figs. 8 and 9, respectively finite. By us
dimensional reduction regularization and explicitly writin
all of the Feynman integrands involved, we can verify th

qm$G̃m~q;p,p8!2 ieme/2~p81p!mD̃%

52eme/2$@G̃2~p8!1 ip82D̃#2@G̃2~p!1 ip2D̃#%. ~A3!

FIG. 9. The diagrams contributing toG(p), related by the Ward
identity, to the family of diagrams in Fig. 8.
th
o

06500
g
f
of
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f
g

As D̃ is chosen to make the curly bracket in the left-ha
side of these equations finite, the right-hand side is also

nite, which implies thatip2D̃52DivPart$G̃2(p)%[ ip2Ã;
that is,D̃5Ã. A more direct verification is obtained by ex
plicitly calculating

ieme/2~p81p!mD̃5DivPart$G̃m~q;q,p8!% ~A4!

and

ip2Ã52DivPart$G̃2~p!%. ~A5!

The only really divergent graphs contributing toG̃m are 8~a!
and 8~g!. By going through the calculation of the diverge
parts of 8~a! plus 8~g!, as exemplified in Appendix B, we
obtain

FIG. 10. An example of a family of diagrams contributing
Gmn(q,q8;p,p8).
ie~p81p!mD̃5DivPartH ~2 ie!3~ ie2!~ i !3
12

3!E DkE Dk8«bnr

kr

k2
«amg

k8g

k82

3
~2p1k!b~2p12k1k8!a~2p12k81k!n

~p1k!2~p1k8!2~p1k1k8!2
1p↔p8J

5 i
e5

12p2

1

e
pm1 i

e5

12p2

1

e
pm8 , ~A6!
ple

arts
will
that is,D̃5(a2/12p2)(1/e).
For Ã we have

ip2Ã52DivPart$G̃~p!%

52DivPart$Graph 3~b!%

5 i
e4

12p2

1

e
p2, ~A7!

as given by Eq.~2.8!. So we haveD̃5Ã5(a2/12p2)(1/e).
An example of a subset of graphs that match through

2d WI are depicted in Figs. 10 and 11. The identification

e

f

Ẽ85D̃8 follows through the same steps as in the exam
above.

APPENDIX B: FEYNMAN INTEGRALS

To illustrate the method adopted to get the divergent p
of the Feynman integrals that appear in the paper, we

FIG. 11. The diagrams contributing toGm , related by the Ward
identity to the family of diagrams in Fig. 10.
3-11
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explicitly show as examples the calculation of the diagra
5~a!, 5~b!, 5~d!, and 5~f!. Let us start with 5~a!. In the figure,
D(k)5 i /(k21 ih) as usual andD2(k) and D3(k) stand for
the subgraphs formed respectively by two and three sc
propagators connecting two vertices, with total momentumk
passing through. Its integration can be done successively
loop at time, first findingD2 and thenD3 . D2(p) is given by

D2~p!5E Dk
i

k21 ih

i

~k1p!21 ih
, ~B1!

where Dk5med32ek/(2p)32e. By introducing a Feynman
parameter through the use of the identity

1

AaBb
5

G~a1b!

G~a!G~b!
E

0

1

dx
xa21~12x!b21

@Ax1B~12x!#a1b
, ~B2!

the k integration can be done@12# and then the parametri
integration@13# to give

D2~p!52 i
~4pm2!e/2

~4p!3/2

G2S 1

2
2

e

2DGS 1

2
1

e

2D
G~12e!

3~2p22 ih!2[(1/2)2(e/2)]. ~B3!
st

06500
s

ar

ne

D3(q) can be written as

D3~q!5E Dp
i

~p1q!21 ih
D2~p!. ~B4!

This integration can also be done following the sam
steps as forD2(p), after explicitly substituting in Eq.~B3!
for D2(p). The result is

D3~q!52
i

~4p!3

G3S 1

2
2

e

2DG~e!

GS 3

2
2

3e

2 D S 2
4pm2

q21 ih
D e

.

~B5!

For 5~d! we have

W~q,p!5E Dk
i

~k1q!21 ih
D2~k1p!D3~k!. ~B6!

This integral can be found by first reducing the three d
nominators to a single one, by twice using Eq.~B2! to get a
single denominator and then doing thek integration@12#. In
terms of the two remaining Feynman parameters it has
form
W~q,p!52
1

~4p!6

G~2e!G5S 1

2
2

e

2D
G~12e!GS 3

2
2

3e

2 D S 2
4pm2

p21 ih
D 2e

I e~q,p!, ~B7!

whereI e(q,p) is given by

I e~q,p!5E
0

1

dy~12y!e21f e~y!, ~B8!

and

f e~y!5E
0

1

dx x2(1/2)1(e/2)y(1/2)1(e/2)H q2

p2
@y2~12x!22y~12x!#12

p•q

p2
y2x~12x!1yx~yx21!J 22e

. ~B9!
I e(q,p) has a single pole ine coming from the integration
region in the vicinity ofy51. As Eq. ~B7! already has a
factorG(2e), the integral~B6! will present both a single and
a double pole ine. To separate their contributions we mu
calculate the first two terms~single pole and thee indepen-
dent term! of the Laurent expansion ofI e(q,p). We have

I e~q,p!5I 1e~q,p!1I 2e~q,p!

5
A1

e
1~B11B2!1~C11C2!e

1•••, ~B10!
where

I 1e~q,p!5E
0

1

dy~12y!e21f e~1!

5
A1

e
1B11C1e1•••, ~B11!

I 2e~q,p!5E
0

1

dy~12y!e21f e~y!2 f e~1!

5B21C2e1•••, ~B12!
3-12
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whereA1 , B1, andB2 are still to be determined.B2 is given
by

B25I 20~q,p!5E
0

1

dy~12y!21E
0

1

dx~y1/221!x21/2

54~211 log 2!. ~B13!

A1 andB1 come from

I 1e~p,q!

5E
0

1

dy~12y!e21E
0

1

dx x(e/2)2(1/2)

3~x22x!22eH ~q2p!2

~p2!
J 22e

5~21!22eS p2

~q2p!2D 2e GS 1

2
2

3e

2 DG~122e!G~e!

GS 3

2
2

7e

2 DG~11e!

.

~B14!

The results areA152 and

B152H 522 log 22
7g

2
12 logS 2

p2

~p2q!2D J .

Multiplying the Laurent expansion ofI e(p,q) by the Laurent
expansion of the multiplying factor in Eq.~B7! we obtain

W~q,p!52
1

211p4

1

e2
2

1

210p4 H 42
11

4
g

1 logS 2
4pm2

~p2q!2D J 1

e
1finite part.

~B15!
06500
Let us go to~5b!. The subdiagramD2(k) is given by

D2~k!5E Dq«mnl
ql

q21 ih
«nmr

~q1k!r

~q1k!21 ih
.

~B16!

After contracting the tensors in the 211 dimension we are
left with the ~finite! integral

D2~k!522E Dq
k•q

@q21 ih#@~q1k!21 ih#

52
i

8

~4pm2!(e/2)

~2k22 ih!2(1/2)1(e/2)
, ~B17!

where e was made zero whenever possible. Graph~5b! is
given by

G~p1 ,p2!5E Dk
i

~p11k!21 ih

i

~p21k!21 ih
D2~k!.

~B18!

This integral is logarithmically divergent and its residue
independent ofp1 andp2. To get this residue it is sufficien
to calculate it forp252p1,

Gup252p1
5E Dk

i

@2~p1k!22 ih#2

1

~2k22 ih!2(1/2)1(e/2)
,

~B19!

where we have pute50 whenever possible. After introduc
ing a Feynman parameter through Eq.~B2! and integrating in
k we find that

Gup252p1
52

1

25p2
G~e!~2p1

2!2e52
1

32p2

1

e
1•••.

~B20!

The contribution of diagram~5f! is given by
H~p!52 i E DqDk«mnr
~p1q!r

~p1q!2
«abl

ql

q2

gna~2k1p2q!m~2k2q!b

~k1p!2~k2q!2k2
~B21!

or

H~p!522i«mnr«ablgna

me

~2p!dE Dq
1

~p1q!2q2
I bmlr~q!, ~B22!

where

I bmlr~q!5E ddk
2kbkm~qnpr1qnqr!1kb~qnqrpm2qnqmpr!

~k1p!2~k2q!2k2
. ~B23!

Using the identity
3-13
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1

ABC
52E

0

1

y dyE
0

1

dx
1

@C~12y!1y„Ax1B~12x!…#3
~B24!

and doing thek integration we obtain

H~p!52

2GS 22
d

2Dme

2dpd/2
«mnr«ablgnaE

0

1

y dyE
0

1

dx
1

@2a8#32(d/2)E Dq
1

~p1q!2q2

3F qnqmprpbxy@~42d!y~x21!11#1qnqrpmpbxy@~42d!xy21#

F2q222q•p
b8

a8
2p2

c8

a8
G 32(d/2) 1

a8gbm~qnpr1qnqr!

F2q222q•p
b8

a8
2p2

c8

a8
G 22(d/2)G ,

~B25!

with a85y(x21)@y(x21)11#,b85xy2(x21), andc85xy(xy21). The only divergent term is the last monomial in th
square bracket of Eq.~B25!. We can write

H~p!5

GS 22
d

2Dme

2d11pd/2
«mnr«ablgnaE

0

1

dy yE
0

1

dx
1

@2a8#22(d/2)

me

~2p!d
I DivPart~p!1fin. parts, ~B26!

where

I ~p!5E ddq
qnqr

~p1q!2q2F2q222q•p
b8

a8
2p2

c8

a8
G 22(d/2) . ~B27!
ti

t

By reducing the denominators through the use of the iden

1

AaBbCg
5

G~a1b1g!

G~a!G~b!G~g!
E

0

1

dzE
0

z

dt

3
tg21~z2t !b2a

@A1~B2A!z1~C2B!t#a1b1g

~B28!

and doing the integration inq we obtain for the divergen
part
06500
ty
I DivPart~p!52 i

glr

2d11pd/2@p2#e

G~e!

GS 22
d

2D
3E

0

1

dzE
0

z

dt t12(d/2)@a92b9#d23,

~B29!

wherea9512z1(b8/a8)t andb9512z1(c8/a8)t. By in-
serting Eq.~B29! in Eq. ~B27!, expanding ine, and doing the
parametric integrations, we find that

H5
i

16p2

1

e
1finite parts. ~B30!
s.

ev.
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