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We consider the model of a massless charged scalar fieldi- ih @mensions, with a self-interaction of the
form A (¢* ¢)° and interacting with a Chern-Simons field. We calculate the renormalization gdupctions
of the coupling constants and the anomalous dimensjoné the basic fields. We show that the interaction
with the Chern-Simons field implies 8, which suggests that a dynamical symmetry breakdown occurs. We
also study the effect of the Chern-Simons field on the anomalous dimensions of the composite operators
(¢* ¢)", obtaining the result that their operator dimensions are lowered.

PACS numbgs): 11.10.Gh, 11.10.Hi, 11.10.Kk

I. INTRODUCTION previously used by several authdés-6]|, greatly simplifies
calculations involving the CS field because it does not re-

Self-interacting scalar fields are the simplest nontrivialquire the extension of the Levi-Civita tensef’” out of
field theories. Nevertheless they have found numerous applthree dimensions. In Feynman integrals only involving scalar
cations in many different phenomena. Renormalizationvertices and propagators, no difference appears between the
group analyses of the model of scalar fields th 2 dimen-  results obtained by using one or the other method. In graphs
sions with a self-interaction of the form¢® have appeared involving the CS field and the#"*, the differences of this
in the literature [1] in conjunction with other self- method to a “full” dimensional regularization would only
interactions, and also in interaction with other fields. On theshow up[4] in subleading contributions to the Feynman in-
other side, the Chern-Simo€9) field theory[2] is known  tegrals; that is, iD stands for the extended dimension of the
to cause some strange effects in matter fields, the best knovapacetime when the Feynman integrals are expanded in the
being the transmutation of their spins and statist8]s Laurent series ine=(D—3), no difference in the leading

Bosons(fermiong interacting with a CS field receive an divergent term in 1 will appear. It is, on the other side, a
extra contribution to their spins and statistical phases, changharacteristic of dimensional regularization in-2 dimen-
ing to anyons and even to fermiofisoson$. Studies of the sions that one-loop graphs are finite and two-loop graphs
change in the scale behavior of matter fields due to theihave at most a single pole divergencesims the calculation
interaction with the CS field have also been considereaf the renormalization group parameters only involve the use
[4-6]. of the divergent parts of the graphs, no differences to the full

In this paper we study the model of a massless chargedimensional regularization are expected up to two loops in
scalar field with a self-interaction of the fori(¢* ¢)2 in- graphs that involve the CS propagator and in any number of
teracting with an Abelian CS field. Classically it only in- loops in graphs only involving the scalar propagator. In this
volves dimensionless parameters and is scale invariant. It isaper we will restrict the calculations to up to two loops in
also strictly renormalizable; no induction of terms of theall graphs involving propagators of the CS field, and four
formsm?(¢* ¢) or g(¢* ¢)? occurs. Besides the calculation loops in graphs involving only the propagator of the scalar
of the anomalous dimensions ¢f and A* and theg func-  field. As we will explicitly show,(at leas} to those orders,
tions related to their coupling constants, we also calculate thdimensional reduction is enough to regularize the model and
anomalous dimensions of composite operators of the fornto preserve the gauge symmetry, as expressed by the Ward
(¢* ¢)". Some of our conclusions agree and others disagreklentities (WI). We will work in the Landau gauge and,
with the previous literature. This will be discussed in Sec. lllavoiding exceptional momenta, no infraré®) divergences
and in the Conclusions. will appear.

To regulate the ultravioletUV) behavior we use a sim- The plan of the paper is as follows. In Sec. Il the model is
plified version of dimensional regularization, the so-calledpresented and the divergent UV counterterms, necessary for
“dimensional reduction” method. It consists of contracting the renormalization group study, are obtained by calculating
and simplifying the Lorentz tensors before extending thethe CS two-point function and the scalar field two- and six-
Feynman integrals out of three dimensions. This proceduregoint functions. In Sec. Ill the renormalization grogdunc-
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den? (p+p) which suggests the use of dimensional regularizafith

However, the presence of the Levi-Civita tensor in the CS
term makes dimensional regularization cumbersome and the
calculations become awkward in more than one loop. So, we

h q will take advantage of some characteristics of 2 dimen-
sions and use a simplified version of dimensional regulariza-
o iezgs gaB tion, the so-called dimensional reduc_tith]. Ir_1 this proce-
dure, the Lorentz tensor algebra is considered 12
p p' dimensions and only the remaining scalar Feynman integrals

are extended out of 21 dimensions. It was verified ifb],

up to two loops, that for the non-Abelian Chern-Simons

theory this procedure in fact preserves the Slavnov-Taylor
i identities. As we will also show below up to two loops, it

also preserves the Ward identities in our model and no in-
consistencies appear.

To obtain information on the asymptotic behavior of the
model, we need to calculate the renormalization group pa-
rameters: 8 functions and anomalous dimensions of the

elds. For this task, adopting the renormalization group ap-
?)roach of 't Hooft[8] based on minimal subtraction, we only

FIG. 1. Feynman rules in the Landau gauge.

tions and anomalous dimensions of the fields are obtaine,
and compared with other calculations. The change in th

dynamical behavior of the field due to the interaction of need to calculate the divergent parts of some vertex func-

the CS field is discussed. The influence of the CS in th‘:‘[ions more precisely, the residues of the poles i where
dimension and the renormalizability of operators of the formE:3’_D andD is thé “extended”dimension of the space-

. n ; )
(6% ¢) IS also StUd'e(.j' A summary O.f the results aré Pré<ime. In the 2+ 1 dimension this means that we must go to at
sented in the Conclusions. In Appendix A the explicit veri-

fication of the W1 is aiven. and in Aopendix B some Fevn least two-loop calculations because as a characteristic of di-
X 9 ’ PP YN mensional regularization, one-loop integrals are finite.
man integrals are calculated as examples.

Introducing the renormalized field$ and A, and the

renormalized coupling constargsand \ through the defini-
Il. THE MODEL tions

The model is constituted by a massless charged boson in
2+1 dimensions represented by a fiell with a self- bo=Zy b= (1+A) 2, (2.2
interaction of the form ¢* ¢)® and minimal interaction with
a Chern-SimongC9) field A, . Its Lagrangian density is

given by AL=7X?pr=(1+B)Y?A~, 2.3
L=03, 40" o~ AL (Bad,do— 9,bbbo) eo=epn?(1+D)/Z,Z3?, (2.4
+€3A Ao, docbo)
N . e5=€’u(1+E)/Z,Z,, (2.5
— 2 (Bho0) 5oL AT AL, 2.
No= 2 (N +C)/Z3, (2.6)

The metric isg,,=(1,—1,-1),d, stands fow/ox*, ¢ ,,, is

the antisymmetric Levi-Civita tensor with®?=1, ande, = where u is a mass parameter introduced to keepnd A

and )\, are dimensionless coupling constants. The subscripdimensionless quantities amdto E are the counterterms to

“0” means that the corresponding guantity is “unrenormal- be chosen so as to make the renormalized quantities finite in

ized.” each order of perturbation. As will be seen in the calcula-
The model is renormalizable; all the UV infinities of the tions, the renormalization of in the presence of the CS field

perturbative series can be absorbed in a redefinition of this not multiplicative. By substituting these definitions in Eq.

unrenormalized quantities. It also has a gauge symmetr{2.1) we obtain forl
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k+q ‘ k+a (1/2§)(&“A,L)2, inverting the free quadratic part of ti¢* to
o éﬁ? R . o i&i get the CS propagator and then lettifig>. The would-be
: Py e+ + ~- Faddeev-Popov ghost field is completely decoupled of the
other fields and does not have any effect. Callig) the
q
a b c

scalar field 1Pl two-point function andl“(q;p,p’) and
I'“’(q,k;p,p’), respectively, the trilinear and quadrilinear

K CS scalar field vertices, whergandk represent “photon”
p o p P momenta ang andp’ scalar field momenta, we have the Wi
+ — + ——O——
@( iAe° 9“T . (a;p.p")=—€[I'(p")~T(p)], 2.8
d e q“FW(q,k;p,p’)=—e[FV(k;p+q.p’)—FM(k;p,p’—cg;]é)

FIG. 3. Divergent diagrams contributing to the scalar field two-

point function. which require thaE=D=A, leaving us with only threéwe
chooseA,B,C) counterterms to be fixed. Explicit proof of
these WI in two loops is given in Appendix A.

To determineA, B, andC we need to calculate the simple
pole part of the two-point function of the CS fiel,,,(q)
A€ s and the scalar field two- and six-point functions, respec-

o2 (¢ ) tively, I', andT'4. In graphs involving the CS field, we will
extend the calculations up to two loops getting at most a
simple pole in 1¢; in graphs only involving the scalar field

1 ,
L=0,¢" 0" P+ e, A A —ieu A ($1d,¢

—,b"d)+EuNAL (ST P) -

B :
+Ad, bl P+ EEWPA“I?VAP—'eMEIZDA’L(W%fﬁ we will go up to four loops. So in the tensorial Feynman
integrals, in which dimensional reduction could possibly dif-
e fer from dimensional regularizatiofin the subleading terms
—d,0"¢)+EPUEAA (dTd)— —— (" 9)°. in 1/€), no difference between the two methods are expected

6 in the calculation of the counterterms and in the renormal-
(2.7 ization group parameters.
Let us start withll ,, . The only divergent diagrams, up to
The Feynman rules for this Lagrangian in the Landautwo loops, are those shown in Fig.(the possible counter-
gauge are depicted in Fig. 1. This gauge can be implementedrm is also drawn in the figure Their contributions are
by adding to the Lagrangian a gauge fixing termgiven by

4 € uupk?
(2a)=4e Jqu Dkkz(q—p)z(quk)z’ (2.10

2k+0)“e ap,9"(2k+q—2p)P(2k—p) ,(2k+29—p),
k?(k+a)’g*(k—p)*(a+k—p)?

where Dg= ud® €q/(27)% € and an infinitesimal imaginary part is supposed in every propagator denomipgterp¢

+in,7<1). Both integrals are logarithmically divergent. The divergent parts are of the £gryp”l, wherel is a scalar

integral that can be calculated by the usual dimensional continuation after reducing the denominator to a single monomial
through the use of Feynman parameters. The results are

(2b)=e4f qu Dk( , (2.1

et 1
= Pl — — Tall
(2a)=4e,,,p ( 962 6) +finite part, (2.12
4
(2b):8MvppP( i e +finite part. (2.13

As can be seen, the divergent parts of the two integrals cancel each other and we are left with only finite contrilditjgns to
So the counterterrB can be chosen @88=0 and no infinite wave function renormalization of the CS field interacting with
massless scalar field is needed. This result extends for massless matter, the result of the Coleman-Hil[9heorem

Let us now look at the scalar two-point functidm,(p). The divergent graphs up to the second ordex @nd\ are shown
in Fig. 3, together with the counterterm. Their contributions are given by
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(3a)=—2e4if Dq f ke Esw(km)’ (2.19
(p+a)° e (k) '
Y (2p+q)P 2p+k)“(2p+29+Kk)“(2k+2p+Qq)*© kP
(3b):e4i3qusaﬁyq_< p+0) ka< p+Kk)“(2p+2q+k)"(2k+2p+Q) K 215
9 (p+a)? (p+k)*(p+a+k)? k?
1 A p 2k+q)(2k+q)?(2p+q)“(2p+Qq)”
(3c)=e4i3f Dy sﬂwq_sﬁqu_f (2k+)“(2k+09)"(2p+0q)*(2p+0q) ' (2.16
(p+a)? " g Tg? k*(k+q)?
(3d) N '5f Dk, DK, DksDk ! (2.17
= — —] . .
223 S T 2222 o+ Ky + Ky — kg — k)2
|
After simplification of the tensor algebra int2L dimensions i1
we are left with multiple scalar integrals that can be made, H(p)=—— — *finite part, (2.29
one loop at a time, through the reduction of the denominators 167 €
by successive use of Feynman parameters. The results are
2 As(p) ! 1+(| ATEY s 2y 2l0g2
1 3(P)=— - 0og —3—2vy—2log
(3a)=—2ie4( 927722 ) (2.18 2°7?| € -p?
p2 1 +0(e) |, (2.25
3b)=—ie* -+, 2.19
SR N R
Y(p) ! 1+f' it t (2.26
5 p)=-— — +finite part, .
. P 212774 €
3c)=—ie? - : 2.2
(3c) ( o ) (2:20
1 1 .
2 p2 1 Z(p,q)=m;+fmlte part, (2.27
O I I PR
229 1 |11 1 A p?
o W(q,p)=— —+—|2log—————+8
For the contribution iAp?) of the counterterm to cancel 2Un4 2 € —(p+0q)?
these divergences we must choose
N 7 1 1 ., —57 +finite part], (2.28
PR rpow i @22
1
Let us now proceed to the calculation ©f the counter-  M(a,c,d)= 62 — *finite part, (2.29

term of the coupling constaitt. For this task we need to find
the divergent parts dfg(p4, - . -, Pe) - After a lengthy analy-
sis of the many graphs involved, we are left with the diver- i1

gent contributions drawn in Fig. 4. The bullets on the dia- Ma,c,d)= 52 ~ Tfinite part, (2.30
grams 4p, 4q, 4r, 4s, and 4t signify the insertion of the &

counterterm in the corresponding vertex. The calculation of

all of these diagrams can be reduced to the calculation of thand

nine integrals represented in Fig. 5. In Appendix B we show,

as examples, the calculatiofof the divergent parjs of 1
5a, 5b, 5d, and 5f. Here we present only the results; Q(a,b,c)= 252 z+f|n|te part, (2.3)
11 . .
- = fini wherevy is the Euler constant. In some graphs we will need
Gp.a)=——- ; +finite part, (2.23 Y grap

the result ofA3(p), which is
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FIG. 4. Divergent contributions to the scalar
six-point function. Three others, which are not
drawn, but have diagrams similar (o), (0), and
(p) with the sense of all external lines reversed

must also be considered.
E E C‘l E
’

>

2

1 M
> —2(3+2y+2log2)

1
7_’_7
e €

4

(2.32

2 log +finite part.

By collecting all of the contributions of Fig. 4 we can write

2e

To(P1,P2,P3,P1,P5, P51~

2 2
== 5 As(prtpatpa) = 5 [As(pytp2—py)+8 termg

+2iNa?[G(p1,—p;)+8 termg+ 2iNa?[G(py,p,) + 2 termg
+2iNa?[G(—p;,—psy)+2 termd— 2N a?[H(p,—p;) +8 termg

H 5 ! ! H 3 !
+i 70 (p1=p1.p2—P3) +5 termg+i N[ W(py+pz, — (p1+p5))+8 termg
1 5 1
+i Z)\S[Z(pl,pz)JrZ termg — 1—2)\2[Z(p1,—p1)+8 termg+i Z)\3[Z(—p1,—p§)+2 termg
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1 a2 TV 1
+igghTAS(P1+ P2t Pe)]+i 7 A TA3(Pyt P2 —Py) +8 termg+i APy, po+ps) +2 termd
1 3 3
+i Z)\3[W(— Py, —(py+p3))+2 termg+i Z)\3[W(p1,p2—p1)+17 termg+i Z)\3[W(—p1,p1—p§)+17 termg

7 ., 7 ) \C
+i 1_2)\3[W(p1,_(pl+p2))+8 termg +i 1—2)\3[W(—p1,p1+ p,)+8 termg— ?As(pl"' P2+ pP3)

—NC[A3(py+p2—p1)+8 termd—iC+2%*[ M(p1,p,—p3,Pp3—P3) +17 termg
+2%a L M(P1,P2—P5,P3— P3) + 17 term3+i22a[ Q(py— p1,P2— P5,P3— P3) + 35 terms, (2.33

from which, after imposing that the result be finite, we obtainnon-Abelian CS field. These results extend to massless mat-
ter, the result of the theorem of Coleman-HH#.

7 1 33 |1 72 1 For calculatingB, we start with Eq.(2.6),
C=\? ——\a? —tat——.
4872 € 1672 € 27 €
A+C
No= u>¢ 3=M25()\+C—3A+ --2). (35
o 582+ 577°=1002y|1 | 49 |1 (1+A)
2144 € 283274 | €2 By substituting Eqs(2.22) and (2.34 in this equation we
(2.34) obtain
The term proportional ta* in the above expression shows ne Ni(a,N)
that the renormalization of is not multiplicative, a fact that No=pu ™| M ———+- |, (3.6)
will lead to an interesting effect in the renormalization group
equations. In the next section, resuls22?), (2.34, andB where
=0 will be used to determine the renormalization group pa-
rameters. Mi(a,\)=a(\?—ca’\+da*~b\?) 3.7
with
[Il. RENORMALIZATION GROUP ANALYSES
Let us start by verifying that the CS coupling does not 7
run. Equation(2.5) is a= 4872 =0.01478, (3.8
. 1+E - 1
T (1¥A)(1+B) (31 b= ——— (1744+ 171w~ 3276y)=0.0218, (3.9
21977
As we have seen in the previous secti®@% 0 and, as a
consequence of the Ward identities, we also h&vreA. _1_20_
Thus Eq.(3.1) reduces to c= 7 =17.1429, (3.10
ag=aps, (3.2 and
from which, in the way of 8], we obtain 1728
y o8] d==-——246.86. (3.13)
. dag da
0=n Ao TR B3 From Eq.(3.6) we have
and therefore o:ﬂl—Zf%
du
e 0 3.4
Be= iy o 3.4 T R S T B SRS
= E ? ... Ma Mﬁ K ;
showing thata does not run under a rescaling afor the
momenta of the Green function. A similar result was ob- n ‘9_“&1+ B ) (3.12
tained in[5] for a model of a scalar field interacting with a M(?,u da € ’ '
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/p tial was calculated in two loops and a breakdown of symme-
b P1*P; try was also shown to appear. We would like to stress that
_’@ Pyt Kag Pk our results forl'? andI'® are compatible with that conclu-
. \ sion. Thel'?(v) for the displaced fields= ¢—uv, wherev is
1 2 q
N

a constant with dimensionm{as$*?, would be written, in
terms of the functions that we calculated by as a series of

D, (k)

20) & ®r. P Y ea the form T'%(v)=T2+ (v2/2)[*+ (v*/41)T6+- ... As can
a b c be seen from the graphs proportional ¢4 in Fig. 5, I'®
receives a constafindependent op) finite contribution. As
4 a consequencd,?(v) will have a singularity displaced to
P q k some non-null value op?, compatible with a non-null dy-
Ay (k) Ak+q) 2 L namically generated mass far.
q+p k+p The anomalous dimensions of the fieldg and ¢ are
q .
p /'Az(“p) N L given by
W@p 2.9 H () 1 p dZ,
VA= 37 A (3.19
d e f
lc lb 0% :li& (3_13
AN
a W % As shown in Sec. lIIZ,=1+B=1 and soy,=0. By writing
q
d al(av)\)
Zy=1+A=1+——+---, (3.1
M (a,c,d) N (a,c,d) Q (a,b,c) €
. h : wherea; is given in Eq.(2.22, we can write Eq(3.15 in

the form
FIG. 5. Representation of the divergent integrals that appear in

the diagrams of Fig. 4. a ~ dNda;l  dada;l
+—=4... —y— ——— -y —— — . ..
2\ 1+~ YoTHGL N € Mop da € ’
and using Eq(3.3) we find (3.17
)N and using Egs(3.3) and(3.13 we obtain
ﬁx:Ma_
K . N (9a1 o ﬁal 3 1
V6= TN N T 2 da (3.18

J J
= a(?—+2)\5—2 )\l(a,)\)—Z)\e
@ By substitutinga; from Eq.(2.22), in Eq. (3.18 we have

=2a(N?>—cha’+da*—2b\%) (for e—0). - 1

(3.13 =— 2 2, :
0T a2 gz gzt (319
Up to two loops(the terms im 2, A a2, anda?) this result
qualitatively coincides with that d#] for this same model. It The contribution ine? qualitatively agrees with the result
does not, however, coincide with the result[@#] (we will of [4]. The term in\? comes from four-loop graph&ot

discuss this fact in the Conclusion#\s can be seen from calculated in4]) and is very small compared to the term in
Eq.(3.10, the contribution of the four loops grapftee term o2, It can be seen from E@3.19 that the scalar field dimen-
in A3) is small and will not qualitatively change the results sion, Dy=3+ Y4, decreases with the coupling to the CS
for B, . field. As is well known, in the nonperturbative approach in
Making =0 we go to the pure ¢'#)® model. In this guantum mechanics, the coupling of matter fields to a CS
casep starts at zero foh=0 and increases monotonically field changes the spin and statistics of the matter fields, driv-
with X [1]. The model presents an infraréidR) fix point at  ing bosons into anyons and also, for strong enough cou-
A=0. Fora#0 a drastic change occurs. In this cgbstarts  plings, into fermions. Based on these results, there is a con-
at (4ada”)>0 for =0 and never vanishes in the perturba- jecture in the literatur¢10] that, even in the perturbative
tive range of the two coupling constants. A similar behaviorquantum field approackin which the strengthe<<1), the
of the B8 function, already in one-loop order, is shown in the dimension of a boson coupled to a CS should receive an
Coleman-Weinberg modglCW) [15] in 3+1 dimensions. increase in the direction of the fermion dimensip= 1 (for
There, a dynamical symmetry breakdown occurs and masséise corresponding problem of fermions, a decrease in the
are generated for the two fields. [[h4] the effective poten- direction of the boson dimension should be expectéd
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} a=o va=o0 fa=o ya=0 o -q Lo+

< N\ J J
' - '

G J 2(n-1) 2(-1) 2(n-1)
A4 —~ v
2n 2n FIG. 7. Some possible contributions i 4+ 4)m[2(n—1)] that
is the 2(-1)-point function with one insertion of the composite
operatof (¢* ¢)"].

lation of Z,,, which means to calculate the divergent parts of
the graphs in Fig 6. The involved Feynman integrals are the
G(p,q) and H(p) from Fig. 5. By writing Z,=1+A, we

Y have
—— ~/ Ty oy (Pes - - - P2n) = (N[ A= (4n2=2n)a?G
2n 2n —2in2a?H]+finite graphs,
FIG. 6. Divergent contributions t&' 4 4m(2n); that is, the (3.22
2n-point function with one insertion of the composite operator

[(¢* &)". and we have foA,
—Di 2 2 in2,.2
shown in Eq.(3.19 this conjecture is not realized; the cou- An=DivPar{(4n"-2n)a*g+2in“a"H}

pling to the CS field works in the direction of decreasing the ) )

dimension ofé. __4n"-na” (3.23
To go a bit further in testing this conjecture, we have also 1672 €' ‘

looked at the anomalous dimensions of the composite opera-

tors [(¢T#)"], wheren is an integer number. As we are Where “DivPart” stands for keeping only the divergent part

mainly interested in the effect of the coupling of the boson toof the following expression.

the CS field, to simplify the calculations we will restrict the ~ With these results foZ,, and Eq.(2.22 for Z,, Eq.

analysis ton = 0. In terms of monomials o this composite  (3.20, rewritten in terms of the unrenormalizgske also Eq.

operator can be writtefL2] as (2.2)] field ¢, becomes
[($'$)"1=Za(B" )"+ 27 1($T)" [(¢T)"1=Zcr (bobo)", (329
+Z5 (TP (TP P+ (320 where
The determination of tth‘m (m=n) requires the calculation . N acn(a)
of the divergent parts of ther@ scalar field 1PI vertex func- Zen=(Zn) (Zy)" =1 ——+--- (3.29
tions with the insertion of one integrated composite operator
and
Cieox gym (X, - Ym)
(o
:f d32<T[(¢T¢)n](Z) acn(a)=4—7_r2 n +§ . (3.26
X (X)X (Y1) - & (Ym)) (3.21 By deriving the two sides of Eq3.24) with respect tou
_ . and remembering thab, is independent ofx we have
or, in momentum space, thg 4+ 4)m(P1, - - - ,P2m) function
with zero momentuny entering through the special vertex d
[(¢T¢)"]. Up to ordera?, the divergent graphs contributing Md—[(d’Td’)n]: ~Yel (67)"], (3.2
to I’ p* gym(P1, - - - ,P2n) are shown in Fig. 6. In Fig. 7 we H

draw some of the graphs that could contribute toyhere

Cig* oy (P1s - - P2(n—1))- Diagrams in Fig. 7 are in fact all

null, which implies that the renormalization parametéfs ; podZg,
also vanish. The same can be shown to be true faZ alin YenT 7z Tdu
which any m<n. So the right-hand side of Eq3.21) re-

duces to only the first monomial afily’¢)"] does not mix  is the anomalous dimension of the composite operator. Go-
with other operatorgmixing will, however, appear if we ing through the same steps that lead E316 to Eq.(3.18
considerA #0). Its renormalization only requires the calcu- we find

(3.28
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_ dag, o (5 0 529 - 1 - 2N C - 2N c
e P L T P o Bl e
The dimension of the composite operafde’¢)"] be- 286 1 N
=exp —,| tan ;- 0.71
comes a 12a
a? n —tanl( —0.71) ] (3.34
D[(d,w,)n]:n—ﬁ n2+§ (3.30 1242
av

where f=(4d—c?)¥2 As B, is non-null forA=0 (for a
#0), this equation is well defined if we chooke=0. With

This result is in disagreement wiflé]. Their calculation 6this choice, in Eq(3.34 we can write

seems to miss the contribution of the second graph in Fig.
But it is not this fact that makes the major difference. Our
counting of the combinatorial factors of the graphs in Fig. 6
gives a term proportional ta? (besides the term in) and
different from theirs, which is only proportional fo This equation shows that, up to two loops, g, func-

No matter if the composite operator is super-tions of the model defined by the Lagrangiéh?), can be
renormalizable f< 3), renormalizabler{=3), or nonrenor- ~ obtained from the correspondifig,y for the model where
malizable 6> 3), the effect of the coupling to the CS field is only the interaction term with tha , field is present or from
to lower its dimension. Nevertheless, the lowest nonrenorwhat is equivalent, from the calculation of the subset of dia-
malizable operator, ¢'¢$)*, with effective dimensionD,  grams contributing td" (., which only involves the inter-
=4—(52/6mw?) a? will never, in the perturbative regime, be action vertex with the\, field. A short inspection of the CW

driven to be renormalizable. Yet due to the quadratic depeni-15] results shows that a similar fact is also true for that

— 1, -2
Loy (PN, m)= F(zn)(p,O,a,us;Ol)sA—O "o (3.35

dence of the anomalous dimensionmryiven anya<<1, the
operators[ (¢'¢)"] with n larger thann.=(27%/a?)— X

>1 have their operator dimensions driven to values smaller

than three.

To finish this section, let us look at the renormalization

group equations for thE ) (p,\,a, ) functions(p is short
for the 2n external momenta As the four loops contribu-

model (at least in one loop

IV. CONCLUSIONS

The coupling to the CS field lowers the dimensiondof
and of (¢'¢)". This goes in the opposite direction of the
conjecture that the transmutation of the boson into anyon

tions are very small, we will restrict the analysis to two (due to the coupling to the CS figldhould be signaled by
loops. Asf, and y, are null we have the renormalization the dimension of these operators to increase in the direction

group equation

Jd Jd
M@"‘ﬁxﬁ_zn%p I ony (PN, e, ) =0. (3.3D)
The solution of this equation can be written as

— 2
F(Zn)(p,)\,a,,u,)=F(2n)(p,)\,a,MS{’)\)S£}\y¢, (3.32

where we used the fact that up to two loopy,
= —(7/48m?)a? does not change witl In the above equa-
tion, sy, stands for the solution of

d_
Sd_s)\ =pB\(N)
=2a(\2—ca’\ +da?),

(3.33

with the condition\(s=1)=\, that is,

of the canonical dimension of a fermion field and their
composite operators/( /)", respectively.

In the present paper, as in previous calculations in the
literature, the functiorB, and the anomalous dimension of
the CS field are shown to vanish; the CS coupling constant
does not run with the change of the energy scale. The func-
tion B, instead shows a drastic change in the presence of the
CS field. From an IR trivial fix point for the purg(¢* ¢)3
interaction, the model is driven, to a phase in which no fix
point appears fog, , in a behavior similar to that g8, for
the model of Coleman-Weinbefd5].

In [14], the renormalization group functions were calcu-
lated up to two loops, although their main aim was to study
the effective potential and dynamical symmetry breakdown.
The model ofl 14], defined by their Lagrangia2.1), can be
made to coincide with ours by deleting thé* ¢)? inter-
action and then?(¢* ¢) mass term, that is, by making the
andm zero. Considering also that their coefficient,of the
(¢* ¢)® interaction differs from oum by a factor of 2/5,
which also implies in a 2/5 factor of difference in the corre-
sponding functions, their result§equations(10.7—9 and
(11.8)], after being translated to our notation, can be summa-
rized as:(1) B,=0 andy,=0. These results are in agree-
ment with Eq.(3.4) and the observation below E¢3.15);
and (2) y4=0(\?) and B, =2ax?+O(\®), both indepen-
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dent ofw. Our resultg3.13 and(3.19 differ from these last of fermions interacting with a CS field. In the first one, a
ones by terms dependent on the CS couphngrheir con-  single fermion with its most general four-fermion nonrenor-

clusion is that the model has an IR trivial fix pointin Ours  malizable self-interactiony()2 was considered. We saw
instead is thajs, never vanishes, a result similar to that of that althoughy gets a negative anomalous dimension, mak-
CW in a model in which a dynamical symmetry breakdowning its operator dimension approach that of a boson, no defi-
occurs. A dynamical symmetry breakdown was also seen ijte pattern of approach to a bosonic scale behavior due to
[14] for the present model. Our result f@ looks so, in  the interaction with the CS field is seen for composite opera-

accordance with their result on symmetry breakdown. tors; the super-renormalizable operaty gets a negative
The discrepancies between q@ifunction and thes func- - nomalous dimension, but the nonrenormalizable operator

tion of [14] can be attributed to the different regularization — ., .
schemes we are using. Ii4], the model is regularized (yh) gets a positive one. In the second paper an extended
) ' version of this model withN (smal) fermion fields, with

through a full-dimensional regularization by extending out of "~ ) i e
3D all the tensor structureéncluding the definition of the their most general four-fermion interactiorg(y)?

€,.,) that appear in the Feynman graphs. As they concludef h(yy*)?, was considered. We studied operators of ca-
in that method the renormalizability of the model is only nonical dimension four. We showed that one of them has a
achieved if an extra regularization, represented by a Maxwelpositive anomalous dimension, the other has a very small
term for theA* field (in addition to the CS oneis intro-  negative anomalous dimension, and the third one, more in-
duced. Their method requires that this extra regularization bteresting from the renormalization viewpoint, has a negative
dismissedtheir parameter ““a” taken to zejponly after the anomalous dimension, making, through a fine tuning of the
continuation back to 3D is made. As can be seen from theieoupling constants, its operator dimension as close to three
results (11.9, some of theirg functions become singular as desired. Nevertheless, no general pattern of approach to a
whena— 0, showing that a better understanding of the strucbosonic like behavio(negative anomalous dimensjoras

ture of the renormalization group equation is still lacking in advanced by the conjecture in the literature, was seen.

that method. Also, as discussed in their section 10, if a regu-

larization directly in 3D exists and were useg, and g, ACKNOWLEDGMENTS

would also be expected to depend @n . . .
In this paper we used the dimensional reduction regular-, 1hiS work was partially supported by the Brazilian agen-
ization scheme, in which all the tensor contractions are firs¢i€S Conselho Nacional de Desenvolvimento Cfiti e

made in 3D and only the remaining scalar Feynman integralg—ecnorc@'CO (CNPq, Coordenadoria de Aperfa@iamento de
are extended out of 3D. We explicitly verified that this P€SS0al de Ensino Superi@APES, and by Fundaaade
method controls all the UV infinities and preserves the Ward*MParo & Pesquisa do Estado de $zulo(FAPESH.
identities and so, the gauge covariance, up to the order of

approximation in which we are workingwo loops in graphs APPENDIX A: THE WARD IDENTITIES

involving the CS propagator and four loops in graphs only
involving the scalar propagatorAlthough we cannot say ob
that it is a regularization directly in 3D, our results are CON- alar vertex[',,,, the trilinear photon-scalar vertex,, ,

sistent with the above mentioned discussioflid]. S

As a definitive answer to this problem is desirable, we area.nd the scalar S(.elf energfyi Ir_1 tgeee apprOX|Tat|_0n tDEV ?re

-9 . . given by (see Fig. 1 I',,=2ie“ug,,, I',=—ieu“(p
presently working in a related model, using a direct 3D ver- )., andT,=iAp? ItliLs easy to sge th«’:t they satisfy the
sion of the Bogolubov-Parasiuk-Hepp-ZimmermaBRHZ) Py 2 P y y
e L . _relations

renormalization method. The preliminary results confirm
those of the present paper for the renormalization group 9AT,(q;p,p’ )= —endTH(p ) ~To(p)},  (AL)
functions, together with the dynamical symmetry breakdown a
obtained |n[14] ar ’. N=—g €2 r Fem! ! !

To finalize we would like to summarize the results of two pA .07 P.P) w AL AP AP’
previous paperEl1], in which we studied the scale behavior -I',(q";p,p+a")}. (A2)

4
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};‘ :q q':‘ ;q _cr;: . ‘X

P'

()

a b FIG. 10. An example of a family of diagrams contributing to

I',.(a,9";p,p").
FIG. 9. The diagrams contributing 1&(p), related by the Ward g

identity, to the family of diagrams in Fig. 8. _
As D is chosen to make the curly bracket in the left-hand

As we explicitly verified, these relations are, in fact, valid Side of these equations finite, the right-hand side is also fi-
up to two-loop order. Instead of considering the WI amongnite, which implies thatip?D = —DivParl{Fz(p)}EipZZ\;
the sum of all graphs up to two loops contributing to each ofyt js B=A. A more direct verification is obtained by ex-
the three vertex functions above, we can take advantage @ficitly calculating
the fact that they can be separated in subclasses to be seen as
separately related through the WA1) and(A2). As an ex-
ample consider the graphsa-8(h) contributing tol",, and ien(p’ +p) D= DivPan{f (9:9,p")} (A4)

~ l,(, /1, 1 1

9(a) and 9b) contributing tol",. Let us calll’, the sum of
the contributions of diagrams(&—-8(q) and I', the graph

9(a). Let D andA be the possible divergent contributions to
the counterterm® andA, chosen so as to make the sums of
the graphs in Figs. 8 and 9, respectively finite. By using ip2K=—DivParl{l~“2(p)}. (A5)
dimensional reduction regularization and explicitly writing
all of the Feynman integrands involved, we can verify that

and

_ 5 The only really divergent graphs contributingﬁg are 8a)
q“{FM(q;p,p’)—ier’z(p’+p)MD} and &g). By going through the calculation of the divergent
_ 5 _ 5 parts of &a) plus 8g), as exemplified in Appendix B, we
=—eu?q[Ty(p’)+ip'?D]-[To(p)+ip?D]}. (A3)  obtain

ain’ =D 312y (i3 L2 , k? k™
ie(p'+p),D=DivPart (—ie)>(ie“)(i) 37 Dk | Dk eﬁ,,pﬁsawﬁ
(2p+K) y(2p+2k+K') o(2p+ 2K’ +K),
X +pep’
(p+k)*(p+k)*(p+k+k)?
el e ) A6
i P g P "o
|
that is, D = (a?/127%) (1/e). E'=D’ follows through the same steps as in the example
For A we have above.
ip?A= — DivPar(T (p)} APPENDIX B: FEYNMAN INTEGRALS
. To illustrate the method adopted to get the divergent parts
= —DivPar{Graph 3b)} of the Feynman integrals that appear in the paper, we will
et 1, A7) ,
=j —p4, ~
1272 € P + D

as given by Eq(2.8). So we haveD = A= (?/1272)(1/e).
An example of a subset of graphs that match through the FIG. 11. The diagrams contributing 1o, , related by the Ward
29 WI are depicted in Figs. 10 and 11. The identification ofidentity to the family of diagrams in Fig. 10.

065003-11



ALVES, GOMES, PINHEIRO, AND da SILVA PHYSICAL REVIEW D61 065003

explicitly show as examples the calculation of the diagrams\ ;(q) can be written as

5(a), 5(b), 5(d), and gf). Let us start with &). In the figure,

A(K)=i/(k?+i7) as usual and\,(k) and A,(k) stand for i

the subgraphs formed respectively by two and three scalar As(CI)Zj Dp—
propagators connecting two vertices, with total momenkum (p+a)™+in
passing.throu'gh. IFs iptegration can be done sycgessively ONe This integration can also be done following the same
loop at time, first findingA, and them;. A5(p) is given by gteps as for,(p), after explicitly substituting in Eq(B3)

for A,(p). The result is

Ax(p). (B4)

[ i
Aolp)= [ DR — @
k2+|7](k+p)2+|7] I 1‘*3(%_%)1’*(6) 471_,“2 .
where Dk= u¢d3~“k/(27)%" €. By introducing a Feynman As(g)=— 3 3 3 (— >
parameter through the use of the identity (4) F(E_ ;) Q"7
1 T(at+p) (1, xH1-x)F? (52 (B5)
ABE T(a)T(B) o [Ax+B(1-x)]* A’ For 5d) we have
the k integration can be dongl2] and then the parametric _ i
integration[13] to give W(q,p)—f Dk—(k+q)2+i nAz(kJr p)As(k). (B6)
, FZ(E_E) (E+ f) This integral can be found by first reducing the three de-
As(D)= ] (4mp?)? " 12 2)712 2 nominators to a single one, by twice using FB2) to get a
2(p)=—i (47)3? T'(1-¢) single denominator and then doing théntegration[12]. In
, (2 (el2)] terms of the two remaining Feynman parameters it has the
X(—p°—in)~ —lea)] (B3) form
|
rers| -
Wa,p)=— — EMaTa) (A (a.p) (B87)
q.p)=— - Ld,P),
(4m)° . . 3 3e p2+
r'i-er 573
wherel (q,p) is given by
1
le(q,p)=Jody(l—y)f‘lfe(y), (B8)
and
—2e
! —(1/2)+ (€l2yy,(1/2)+ (/2 q2 2 2 P-a,
fly)= 0d><X )y ) E[y (1-x) —y(l—x)]+2Fy X(1=x)+yx(yx=1)1 . (B9)

I .(g,p) has a single pole ik coming from the integration Where

region in the vicinity ofy=1. As Eq.(B7) already has a L

factorI'(2€), the integralB6) will present both a single and |15(q,p):j dy(1—y)< 1 (1)
a double pole ire. To separate their contributions we must 0

calculate the first two term&ingle pole and the indepen-

dent term of the Laurent expansion @¢f(q,p). We have B ﬁ+ BotCoet (B11)
= 6 1 16 .. .’
Ie(qip)zlle(q!p)+|26(q!p)
1
A — _ e—1 _
(BB (Cut Cole odap)= [ aya-y ) -1a)
+..., (B10) =B,+Chet+---, (B12)
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whereA;, B;, andB, are still to be determined, is given
by

1 1
Bz=lzo(q,|0)=fody(l—y)*lfod><(y1’2—1)><*1’2

=4(—1+log?2). (B13)

A; andB; come from

Ile(p!q)

— J‘ldy(l_y)eilfldx )((6/2)7(1/2)
0 0

1 3e
2 26F(§_7)F(1_26)F(6)
) 3 Te
F<§—7)F(l+e)

(B14)

=]
(p—@)? )’

Multiplying the Laurent expansion of(p,q) by the Laurent
expansion of the multiplying factor in EB7) we obtain

The results aréd\;=2 and

7y
B;=2{5-2 I092—7+2 logl —

PHYSICAL REVIEW D 61 065003

Let us go to(5b). The subdiagranD,(k) is given by

ax . (g+k)”
g?+in (k)2 +in
(B16)

D,(k)= J Dger™

After contracting the tensors in thet2l dimension we are
left with the (finite) integral

R Rsr=r
[a?+inll(a+k)?+in]

D,(k)=

i (477.’“2)(6/2)

8 (—K2—iy)~(12*(2)

where e was made zero whenever possible. Grapb) is
given by

D,(K).
(B19)

,P>)= | Dk
G(p1.po)~ | (Pr+K)2+i7 (Pt K)Z+i7

This integral is logarithmically divergent and its residue is
independent op; andp,. To get this residue it is sufficient
to calculate it forp,= —p;,

1
g|p2* jID p+k)2 |77]2( k2 ”7) (1/2)+(el2)’

(B19

where we have pué=0 whenever possible. After introduc-
ing a Feynman parameter through E82) and integrating in

11 1 11 k we find that
W(q,p)=—211ﬂ_4?—210774{ A
gl = r(e)(—pd) Ll
47T,LL2 1 L p2:7’)1:_25 2 €7 P1 :_32 2;
+ log| — — +finite part. 77 a
g( (p—q)? ]f g (B20)
(B15) The contribution of diagransf) is given by
|
H(p):_iJDqusw(p Do _apr I Gral2KF P Q) ,(2k= Q) g (B21)
(p+a)> g (k+p)*(k—q)*k?
or
. )73 1
H(p)=—2ig"tPe*Prg, . JD | , B22
(P)==2is"""e" gy g | DA s (B22)
where
| (q):fddekBkM(qvpp+qvqp)+kﬁ(qvqpp/¢_qvqp,pp) (823)
pure (k+p)?(k—0) %2

Using the identity
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1 1 1 1
roc 2]y, Ca—y) +yAxBA-X)T (529
and doing thek integration we obtain
2F<2— E)ME
H(p)=——28’””e““gmfly dyfldx = - fDq -
od d/2 0 0 [_ar]S (d/2) (p+q)2q2

4,9,P,PpXy[(4—d)y(x—1)+1]+0q,q,p.Psxy[(4—d)xy—1] a'0s,(9,p,+0,9d,)
[ b’ C,r—(d/2) +{ b’ paracel

—9°-2q-p— —p*—; —0°-2q-p— —p*=;
a a a a

(B25)

with @’ =y(x—1)[y(x—1)+1],b’=xy?(x—1), andc’=xy(xy—1). The only divergent term is the last monomial in the
square bracket of EqB25). We can write

d
_F(Z_E)M ope B 1 1 1 ME ]
H(p)_ Ws & gvafo dy yjo dx[_a,]z_(d/z) (27T)d I DivParl(p)+f|n- partsa (826)
where
q.9
l(p):j ddq [ - b’ Cy-2_(d/2)' (827)

(p+a)’0®| —9°—2q-p— —p°=
L a a 4

By reducing the denominators through the use of the identity Oy T'(e)

d+1,_d/i2r n27e d
24 1 p?] F(Z__)

I pivpar P) = —i

1 B MNa+B+y) (1 z
A"Bf”’CV_F(a)F(,B)F()’)fodzfodt

" 7 Y(z—t)F @
[A+(B—A)z+(C—B)t]«"F*Y

1 z
X f dzf dt tlf(d/2)[ar/_b/r]df3,
0 0

(B29)

wherea”=1-z+(b'/a’)t andb”"=1-z+(c'/a’)t. By in-
serting Eq(B29) in Eq. (B27), expanding ire, and doing the

(B28) parametric integrations, we find that
and doing the integration ig we obtain for the divergent H= : £+finite parts. (B30)
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