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We propose a definition of an exact lens equatwithout reference to a background spacetjnaad
construct the exact lens equation explicitly in the case of Schwarzschild spacetime. For the Schwarzschild case,
we give exact expressions for the angular-diameter distance to the sources as well as for the magnification
factor and time of arrival of the images. We compare the exact lens equation with the standard lens equation,
derived under the thin-lens-weak-field assumpfiohere the light rays are geodesics of the background with
sharp bending in the lens plane, and the gravitational field is weadd verify the fact that the standard
weak-field thin-lens equation is inadequate at small impact parameter. We show that the second-order correc-
tion to the weak-field thin-lens equation is inaccurate as well. Finally, we compare the exact lens equation with
the recently proposed strong-field thin-lens equation, obtained under the assumption of straight paths but
without the small angle approximation, i.e., with allowed large bending angles. We show that the strong-field
thin-lens equation is remarkably accurate, even for light rays that take several turns around the lens before
reaching the observer.

PACS numbsg(s): 04.20.Cv, 04.70-s, 95.30.Sf

[. INTRODUCTION gular location of a source the absence of a lersan idea
used extensively in the thin-lens approximation? What are
The phenomenon of gravitational lensing is firmly associ-the preferred angular coordinates that give the thin-lens
ated with the physics of a four-dimensional Lorentzianequation its meaning? How do we refer to the distances be-
spacetime that satisfies the Einstein equations. Yet, it hasveen the observer, the source and the lens in a coordinate
become a common practice in the study of lensing to breakndependent manner, or what is the preferred coordinate dis-
with the basic ideas of general relativity by using the linear-tance to use? All these questions have perfectly good an-
ized Einstein equations off a fixed background, the thin lenswers if a background spacetime is available to us and we are
approximation, and treating the bending of light as a linealgiven leave to isolate the lensing action from the back-
phenomenon—without mention of its connection with theground. This is not so if there is no background. Without
full theory. reference to a background, some of these questions have no
This point of view is very much justified by the accuracy answers, and some do not even make sense. Treating lensing
in the comparison of contemporary observations with thephenomena strictly in the context of the full theory of rela-
resulting calculations, i.e., general relativity does play an estivity requires other ideas and approaches.
sential role in lensing but the weak field approach appears to We have recently introduced a proposal for a lens equa-
be quite adequate for most discussiphk tion without reference to a backgrouh8,4]. An exact lens
However, it is now a fact that the strong field character-equation on an arbitrary Lorentzian spacetime can be written
istics of general relativityper seare observed in nature as down, at least in principle, since it amounts, basically, to
well. Black holes are possibly ubiquitofig], and a super- finding all the light-rays that reach the eye of an observer.
massive black hole may exist in the center of every spiraHowever, for it to be meaningful, it is necessary to express
galaxy. Here is where the full theory of general relativity the equation in such a way that it can be used in an astro-
takes the leading part. In order to describe bending of lighphysical context; it must be written or expressed in terms of
by black holes or in high curvature regions, it is necessary tmbservable quantities. To some extent, we believe that we
write lens equations that respect the intrinsic nature of genhave partially succeeded in doing that.
eral relativity, namely: covariance and non-linearity. As an illustration, we develop and interpret in full detail
The difficulty in writing down a lens equation that re- our lens equation in the case of a Schwarzschild black hole;
spects covariance and non-linearity is very much of a conexplicitly working out quantities of astrophysical interest for
ceptual type. In fact, even when such a lens equation is ddensing, such as the angular diameter distance and magnifi-
veloped, it is hard to interpret. A spacetime containing a lengation factors. Furthermore, we use our exact lens equation
is notthe superposition of two spaces, a background spacde test the effectiveness of other lens equations that can be
time and a lens space. Two different spacetimes are twaritten down in the case that a background is available, most
different entities, and there are an infinite number of ways ohotably the lens equation obtained recently by Virbhadra and
identifying them point-wise. What is the meaning of the an-Ellis [5].
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.In.Sec. I we discuss.the ideglized situation where, in xt=XY(x3(7), a1, @5,5) 3
principle, the null geodesic equations can be solved exactly
for a static metric and stationary source and show, again igan be inverted to obtain
principle, how a set of lens equations can be constructed,
while in Sec. Il these ideas are then applied to the Schwarzs- $=S(Xo(7), a1, a5,%x%). 4
child black hole lensing problem. In this section, the impor-
tant physical quantities such as the angular-diameter distandd'e inversion will only be possible in patches, since it is
to a source and the magnification factor are explicitly calcupossible thai! vanishes at isolated points. This means that
lated. In the subsequent sections, we compare the exact rewill be, in general, a multiple-valued function af. Still,
sults with the thin lens calculations. this inversion allows us to reparametrize the geodesics in

terms of just our coordinates and observation angles:

Il. THE EXACT LENS EQUATION R
XO=XO(7,aq,05,S(7, 01,05, X)) =X 7,01, a5, %x%),

We begin with a four-dimensional static spacetime (5)
[9M,9.6(X*)] with local coordinatex® and consider an ob-
server, at rest in the local coordinates, on a world-line given y1=yx! (6)

parametrically by(7), 7 being the observer’s proper-time.
The observer, Iookl_ng qut, sges null geodesics rgach!ng him XA=XA(T,arq g, S(T, gy 0ty X D))= XA( 7,y s g XY
from all past null directions|®. These observed directions, 7)
labeled by the spatial projectiorisrthogonal to the observ-
er's velocity vector,p?=(d/d7)x§(7)) of the null vectors, with A=2,3. The idea is now to treat these equations as if
can be taken as the two angular coordinates of the observerteey determine a source at the spacetime poifixd,x*) in
(pas) celestial sphere,d;,a5). The null geodesics of the terms of the observable quantities ¢, ,a,) where we have
past lightcones from the observer's worldline thus carryassumedfor the momentthat the coordinate value fat can
these labels; the points on each null geodesic are furthdse determined from observation. We will treat the source as
labeled by the parameter along the curve, which we take telow moving or effectively at rest. In this case, E@) is
be an affine parametes suitably normalized so thdtw®  defined as the lens equation.
=1. Thus the past lightcone of the observer has the form More specifically, we interpret this lens equation as fol-
lows. Consider a source at a spatial locatgremitting light
x3=X3(xg(7), 1, @2,9) (1) at timex®. We can think of the coordinate! as a type of
) ara ) ~radial coordinate. The remaining two coordinax@sare thus
where the functionX®(xp(7), a1, a,s) satisfy the geodesic 4 type of angular coordinates. The emitted light arrives at the
equation observer at a timer, in a direction @, ,a5). Equation(7)
Cae b expresses the angular location of a source at radial distance
XEVaX"=0 x! in terms of the observation angles(,«,). On the other
hand, Eq.(5) is an exact “time of arrival”’ equation; it re-
lates the time of emissio?, at the radial locationx®, with
) 9 the observer’s proper time, and arrival direction, ¢, a>).
Xq=—X3(x§(7),a1,@5,S) The lens equation, Eq(7), represents a map from the
I8 image(or observatiopangles (v, ,«,) to the source position
angles,x®. The map breaks down at locations where the
determinant

with

and the null condition

gapX?X"=0. 2 A(x2x3)
. 1,0y, xh)=de
The local coordinates® can be chosen so that one of them, d(ay,ap)
sayx’, is timelike and the remaining threé are spacelike, ] i )
vanishes.J(7,a,a,,x})=0 defines the caustic& three

i=1,2,3. In this case, the functiot® does not vanish at any f inf fthe familv of t Taht £ th
point. Although we are interested in the past lightcone, it iss’gr ace in T%ur-spa()teo € family 0 e‘atsh '% c?(ngs 0 l?th
more straightforward to work in terms of the future light- observer. 1he direct consequence of the break-down ot the

cone. The direction in which the lightrays are traced is not"ap 1S that multiple images of the same source can be ob-

important in the case of interest, namely, static spacetimeé?rveq More specifically, _often one can See an image, n
20 . direction («q,a5), of an object that lies on a null geodesic
Therefore X" is everywhere positive.

i g ) ) before it reaches a caustim affine distance while simul-
This means thax™ increases monotonically with the af- anequsly seeing a different image, in a different direction
fine parameters. BecauseX® does not vanish any_vyhere, (a},a5), from the same object along a different null geode-
then, by Eq.(2), at all points on a geodesic one Hf is sic, but, in this case, the object lies beyond the caustic in
non-zero(differenti possibly in different sections of the geo- affine distance. The parity of the images is given by the sign
desig. For definiteness, we label this spatial coordinate byof J. In background dependent calculatiods; is often in-
i=1. From the implicit function theorem, we have that terpreted as a magnification factor with respect to the “un-

®
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lensed” source, but, as we have no background, this would Di=Da(ay,ap,7,X1)
not be appropriate heréNote thatJ(r,a;,a,,xt) could ) )
have been calculated holdirsgixed instead of fixeck?; the =2K"%(M1-M1)(Ma-Mp)—(My-Mp)%. (12

vanishing ofJ is independent of that choice. This follows

from the general theory of Lagrangian submanifolds and-qr sufficiently small values of!, Eq.(12) is invertible, i.e.,
maps] . _ . , xt=xY(ay,a,,7,D,). However, D, goes to zero at the

_ The lens equation, Eq7), is not yet entirely usable since caystic, so that beyond the causticis a multivalued func-

it involves the(up to now unobservable quantity’. How-  ion of D, and must be given in patches

ever,x" can be expressed in terms of observable quantities The angular-diameter distance is observable, because it is
through the use of the idea of distance. Though there argsjated to the intrinsic luminosity. of the source and its

many definitions of distance in use in general relativity andapparent brightness (total flux at the observewia [1]

astrophysics, several of them can be considered to be observ-

able and we thus explore the feasibility of inferrirtyfrom

the considerations of distance. We will investigate a defini- S L (13)

tion of distance which is observable, namely the so-called 4m(1+2)*D3’

angular-diameter distance - there being several closely re-

lated distance definitionst,1]. o ) ) .
Since we have, in principle, exact expressions for the padf Principle, Eq.(13), with Eq. (12), givesx™ implicitly as a

lightcone of the observer in terms of parameters adapted ti!nction of observables: the angular location of the image

the null geodesic congruence, we have a natural way of ex-1,@2), its redshiftz(= ws/wo—1) its apparent brightness

pressing the angular-diameter distance to the source in exa@fid the intrinsic luminosity of the source. _

form. The angular-diameter distance is defifigflin terms ~ On the other hand, there may be situations where the in-

of the infinitesimal area spanned by the observer's geodest&insic luminosity of the source is not available. In such

congruence at the location of the source per infinitesimafases, if there are multiple images observed, then we can

solid angle at the observer’s location, namely make use of their relative brightness in order to estinxate

For two images of the same source, lying at angles
(afV,aV) and @?,a!?), the ratio of the fluxesS;/S,
does not depend on the intrinsic luminosity of the source
and can be interpreted as the relative magnificajigp of
one image with respect to the other one, or

_dAS 1/2

Da= 40,

9)

In order to calculate the areAg, we define two connect-
ing vectors in the lightcone of the observer. By taking varia- Df\(a(lz) ,a(zz) xh)
tions of the points on the lightcone with respect to the labels H12= D2(a®, o x1)’
of the null geodesics in the congruence, we find the geodesic AVTL T2
deviation vectors, or Jacobi fields:

(14)

Notice that @{",a$") and @{?,af?) are two image direc-
ax@ axa tions of Eq.(7) for a given value of the source coordinates
Ma=2o ma=t (10) (x2,x%). The inversion of Eq(14) is not likely to be feasible
day day in closed form. Still, in principle, Eq14) givesx® implicitly
in terms of the angular location of two images and their

It is irrelevant to the area calculation whettsar x* are held relative brightnesg,,=S,/S,.

constant in calculating the connecting vectors—the differ- (Ln the ctagef ofdlgrt]smg a; cosmglof?galéjlsta?ﬁes, At IS
ence, lying along the null tangent vectors to the geodesicsCus omary 1o Infer distances Irom redshilts. tven though we
does not affect the area. dre not concerned with cosmological models in this paper,

The areadA. is the area spanned by these two vectors alve consider redshifts as another alternative to isfefrom
an observable quantity. For a source on a worldline with

the location of the source, namely, the norm of the wedge a itted light of f d ob
product of the two vectors: tangent vector g, emitte .lg t o rquencyus and ob-
served frequencyg, the ratiows/wg is given by[6]

dA= MEMEIMIEEM | Y2 g, d :
<~ 10acOoaM T MEM Mz | dary der w5 Gap(X*ay,ap X)) X(ay, @5, xY)

_ _ —= - 15
=12(M1-My) (M-My)—(M1-M2)?)|Yda; das,. g Jan(X3)viXP(x3) 49
(11

where Eq.(7) has been used for the source’s space-time lo-
If the solid angle at the observer subtended by the dfgds cation. Equatior(15) givesx® implicitly in terms of the fre-
given bydQy=K(a;,a,)da;da,, whereK depends on the quency of emission, the received frequency and the observed
choice of the coordinates, the angular-diameter distance igsnage angle. As our assumed source is at rest, its velocity is
given by UESIZ |gOO(Xa( ay,0 1Xl))| 71/2(110!010))
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lll. THE SCHWARZSCHILD CASE

A. The lens equation

We consider now the case of gravitational lensing by a

Schwarzschild black hole of ma#s. The line element is

ds?=f(r)dt?>— Ldr2—r2(d02+sin26?d¢)2)

0 (16)

with
2M
f(r)El—T. (17)

In order to take advantage of existing calculati¢ig we
temporarily use coordinatesi{) given by

1 dr 1
u=—(t—f—)=—(t—r+2M log(2M —r)),

V2 Floy2
(18)
1
|= E (19)

In these coordinates, the line element takes the form
2 1 )
ds®=2f du?>— I—zdu di— E(d02+sm20 d¢?). (20

The equations fonull geodesics®+ I'2 xPx°=0 in terms of
an affine parametes are equivalent to

== 1+4/1 5 2|2f 21
bt (&)
. B
_ 2 12 2
|==Cl 1 (C) |<f (22
¢= A (23
Sirf 6
9)2_82 - 24
12 Sirf e
with the null conditionx®x,=0 equivalent to
) ) ) 214
41%fu?—4C1%u+ 02+ — 0=o. (25)
Si

The symbol () stands ford/ds and A,B,C are three first
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makes with the optical axi&efined by the radial line from
observer to the lens cenjeMore precisely:

_ sinys 26

B
C 1ovi(lo)

wherel , is the inverse radial location of the observer. Lastly,
the constanfA can be related to the azimuthal anglethat

the direction of the lightray makes around the optical axis at
the observer’s location via

A ingsin sinys 27
— =Sl Sl s
c Y R

where 6, is the angular location of the observer.

We can switch from the null coordinate to the time
coordinatet using t=+2(u—(1/2%f)1). Doing so and set-
ting C=1 allows Eqs.(21)—(24) to be rewritten as

1
- 2
t NG (28)
. ity
=12y )1-| = )sz 2
' (Iéfao) 29
. sinfgsinysinyl?
O Vysird 30
(B)ZZ sify (s t9osiny.sinz,b)2 a1
12) 138(lg) 125 (10)sir? 6

For those null geodesics of interest to us, i.e., those whose
initial direction has a component pointing towards the
Schwarzschild origin, the inverse radial distariciitially

increases i(> 0) until the point of closest approach to the
lens is reachedwith affine parameter valus,). The coor-

dinate, I, then decreased €0) afters, until reaching the
source at somsy;, . However, fors<s, and fors>s, we

havel #0, and thus the inverse radial distaiagan be used

as a parametdin two patches, the incoming and outgoing
along the null geodesics for the purposes of constructing our
lens equation in the manner of the previous Section. It plays
the role ofx?.

The value ofl at the point of closest approache. ati
=0) is denoted,, . If we assume, naturally, that the observer
is located outside the last stable orfat r>3M), then, for
lightrays that do not cross the=3M orbit, the closest ap-
proachl , is the smallest of the positive roots of

integrals of the null geodesics, depending on the initial point

and the initial direction. The consta@trepresents the free-

dom in the scaling of the affine parameterTreating the

(sing)213(1—-22Ml,) —13(1-22Mlg)=0. (32)

observers locationuy,lq,6,%0) as the initial point, the A simple analysis shows that fog<3.2M, Eq.(32) has no
constantB is related to the angles that the null geodesic positive roots unless
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sin(psi)=0.15

/ = T 1 0.2
/ sin(psi)=1

-0.011

=0.02T

FIG. 1. A plot of the functionF:=1—sirPyi?f/(13f(l,)) as a
function of | for a sequence of values of gjnincluding sing=1 .
Notice that for large enouglf there are always two positive roots,
while for small enoughys there are no positive roots. There is a
critical value of ¢ for which there is only one positive root. The
allowed values of are such thaF is positive, and such that=0 is
included. Thus, allowed values dfrange from 0 to the smallest
positive root. The smallest positive root is denotgdnd represents
the point of closest approach to the lens. Notice thaincreases
with decreasingy, reaching the critical value (M)~ ! at the
critical value of .

sing=>3\2MI,V3(1—2v2Ml,)

(33

in which case there are always two positive roots, and the

closest approach, is the smallest of them. It is simple to
prove thatl ,<(32M) ~* for all ¢ subject to Eq(33), and
that | ,—(3y2M) "% for siny—3y2Mloy3(1—2\2Mly).
See Fig. 1.

Thel,, which is a turning point of the coordinatelong

the null geodesics, plays a major role in the following. First

we notice that the term

{22

from theu equation, can be rewritten with the role ¢fnow
played byl in the form

Sy
13 (1o)

L P ST
' (I%f(w) _I§<1—2ﬁMlp>("’(l 22ul,)
—12(1—2\2M1)) (34)
using, from Eq.(32),
Sirty 1 39

2(1-242Mlg)  13(1-2y2Ml,)’

PHYSICAL REVIEW @1 064021

We thus see that the dependence/as now hidden away in
the inverse radial distance of closest approgchThis ob-
servation will simplify some of the calculations that follow.

The past lightcone of an observer in coordinatés
=(t,1,0,¢) in terms of the affine parameterand initial
directions /,y) could in principle be obtained from Eg.
(21)—(24) or Eq. (28)—(31). This requires the integration of
four non-linear ordinary differential equations which cannot
be done by quadratures. In the spirit of the Sec. Il, however,
we do not need the lightcone in terms of the affine parameter
s, but in terms of a radial coordinate. Our radial coordinate is
the inverse radial distandewhich is better suited for treat-
ing large distances than the standardin particular, the in-
finite range M <r<« translates into the finite interval 0
<l<(3y2Mm) L.

First we show how our radial coordindtés related to the
affine length. Next, we integrate the lightcone in termg.of
For our purposes, it suffices to assume that by the time the
lightray reaches the observer it has already passed by the
point of closest approadh .

Equation(29) can be integrated to obtain the affine pa-
rameters in terms of the inverse radial distance:

12(1-2+2Ml,) dl’

o
> V- 2yami) —12a-22m 172

+f|0\/ 12(1-2v2Ml,) dir
| 12(1-2V2Ml,)—1"2(1—-2\2M1") |'2

(36)

Equation(36) corresponds to Eq4) of the previous sec-
tion. This represents one of the two available patches &
a function ofl.

The affine parameter as a function lofs represented in
Fig. 2 when the observer is at a distance oM3@We chose
a relatively small distance in order to better appreciate the
strong field effects. The affine length goes to infinity ds
approaches zero, in agreement with the fact that the lightray
runs out to infinity. The affine lengtls, is chosen to vanish
at the observer’s location. We see, in the diagram, that the
affine length bulges towards thevB radius, resulting in a
double valued function of. The bulge is more pronounced
for lightrays that reach the observer at smaller observation
anglesy. The rays that come closer to th&13radius spend
more affine time in reaching the observer, in agreement with
the gravitational time delay.

In the following, we obtain the past lightcone of the ob-
server €o,lg,09,d0) as a function of the inverse radial dis-
tancel, instead of the affine parameter and two angles
(¢, v) specifying the direction of each null geodesic at the
observer’s location.

Integrating Eq(28) with Eq. (29), we obtain

064021-5



FRITTELLI, KLING, AND NEWMAN PHYSICAL REVIEW D 61 064021

r=3M: an

closest approach lIp

S e T T

401
2%
20T
H | —Arn | 4
v v 0.05 | 01 0.15 0.2
| inverse radial distance 1
20l |
FIG. 2. The affine lengtls as a function of the inverse radial -20 -10 00 10 20
distance | for three null geodesics that reach the observer from v
positive directionsy. We have set the observer lat=0.1/3,/2M, FIG. 3. The functiom®(l,l,,) at fixed values of andl,. The

the mass isM=1, and the constar€ has the value 1 for the three yng1e5 on both axis are measured in radians. We have chosen
null geodesics. The three null geodesics are labeled according to th§|0:0_1/3\/§M with M =1 for this figure. This plot represents the

value of sing. Smaller positive angleg reach closer to theM o, 5.t |ens equation in the case that theaxis is chosen as the

radius at their respective point of closest approfgh For this optical axis, defined by the observer and the lens.
observer the smallest image angle is aty#0.16733201, at which '

the closest approach reaches thé 8adius. We see that the affine
length is double valued as a function of the inverse radial distanced (l,lo,1,,)

[ dl
o 12(1—2\2MI ) = w—zf’)
t=t +2f \/ d P o ;2
* Ty ViZa-22miy)-12(1-2.2m1) o I2(1-22Mlp) -12(1-22m1)
dl’ ) dl’
X r2 ’ _f (39)
V21" 2(1-22M1") " VI-22Mi,) 17 2(1-242m1)
flo\/ 12(1-2v2MI,)
+
| |,2)(1—2J§|\/||p)—|2(1—2\/§|\/||) The function®(l,lo,1,) depends on the observation angle
throughl,. The overall positive sign is taken when the value
o dl’ 37 of the observation angles, is positive, and the negative sign
21'2(1-22Mm1")° is taken for negativey. This makesd(l,lq,l,) an odd func-

tion of .
Geometrically®(l,1o,l,) “represents” the angular posi-
This is the equivalent of Ed5) of the previous section. As a tion of the source relative to the optical axis, defined by the
function ofl, the time of arrival is double-value@ot so as a line between the lens and observer. The observer is consid-
function of the affine paramete); Eq. (37) represents one ered to lie on the optical axis & = . The relative angular

of the two patches. position of a source is given b§ values between- = and

The integration of the angular coordinates of the lightcone; Hence, Eq(39) must be considered modm2 where val-
is carried out in[7]. Representing the angular coordinates o5 gutside the range; m< @<, represent multiple cir-

(6,¢) in terms of the complex stereographic variables cjings of the lens. Whe® =0,2m,41, ... , the source is
=cot(6/2)e'? the integration yields colinear with the lens and observer and would be observed as
an Einstein Ring. For positivey, a value of® mod 27
betweens and O represents a source located to the right of

cot@ +él Vcotw the lens, while- 7<® mod 27 <0 represents a source lo-
(=g 2 2 (39) cated to the left of the optical axis.
iy O(l,1p,1p) 6o Figure 3 shows a plot o at fixed values of andl, as
1—-ecot——F——cot> a function of the image angks. We can see tha blows up
at Ip:(3\/§M)*1, which agrees with the fact that, as the
lightrays approach theM radius, they take a larger number
where®(l,lo,1,) is of turns around the lens. Notice th@tis a regular function
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of | for all I <l , because the integrand diverges slowly, I@s—(l)*l’z. In fact, for numerical integration it turns out to be much
more efficient to make a change of variablesl ,—q and write® as

Ib—lo dq lo dl’
O==x( 7— ZJ — f .
°  N21,(1-2\2MI)q+(6v2MI,~ 1)g?—2v2Me® 7' VI1Z(1-212M1p) — 1 Z1—2V2Mm1")
(40)
In terms of the standard spherical coordinatés#), Eq. (38) translates into
€c0sf= —c0s6,cosO +sin 6,Sin® cosy
. _ singgsin 6 —tan® (cos¢osin y— sin ¢ocosy cosfy) n
ang= COS¢(Sinfy+ tan® (sin ¢gSin y+ CoS¢oCOSy CoShHy) (1)
|
Equationg41), with Eq. (40) are the exact lens equations for 90 Sin® sin fysiny
the case of a Schwarzschild spacetime and correspond to —= - - s (49
Egs. (7) of the previous section. Notice that the observer is 97 J1—(cos® cosf,—sin@sin focosy)
located at generic values ob(, ¢o), which means that we
do not choose, as is often done, thaxis as the optical axis, 960 sin® cosf,+ cos® sin #,cosy 90

the optical axis being the radial line that contains both the

N ap J1- —sin® si 2 9y
center of symmetry and the observer. This is because the v V1-(cos® cosfy—sin® sinfcosy)” I

spherical coordinates break down along thexis. If we (45)

chose the observer to lie along thzeaxis, then Eq.(41)

reduces to cog=cos® and tanp=tany, and we could in- d¢ _ sinO(sin® cosf,+cosO sin Hpcosy)

terpret® and y as the lens angular coordinates. However, ay 1— (cosO cosfy—sin® sin 6,c0s7)2

this would result in erroneous predictions in the following (46)

subsections, unless we use additional care. In order to keep

the remainder of this paper in the most transparent form, we P ino-si 70

prefer to keep the observer off tlzeaxis. _d’: _ SN GoSIN'y —_
dY  1—(cos®cosb,—sin@sinhycosy)? Y

(47)

B. Lensing observables

In this subsection, we describe the calculation of three key Notice that, by Eq(44) and Eq.(46), the vectorM7 is
lensing observables from the lens equations: the angulaRroportional to sir® for all generic values ob), except for
diameter distance, the relative magnifications, and the timefo="0,77. This means that, generically, the vectdr] van-
delay between the arrival times of two images. ishes at® =0, which, by Eq.(41), represents source points

We start by exploring the angular-diameter distance, ust®,¢) along the optical axis. If we had chosen the optical
ing Egs.(41) and Eq.(37) to obtain an exact expression of axis as the axis this essential fact would not be as transpar-
the angular-diameter distance in terms of the inverse paranent.
eterl. In the next subsection, we will use the expressions we With the metric, Eq(16), we have
obtain here to explore the possibility of inferring the inverse

radial distancel, to the source. 1(({96\% ap\?
First, we define the connecting vectors Mi-M;=— o (a—y) +S|n26(5) (48
(LA (), o
1=\ 2o 5o o =100, - 1
ay'ay’dy’ dy 9y’ dy MZ-M2=f<j—;) _E((j_z) +sin20<%> )
(49
(22 20 00)_ 00 20
2\ oo o ay)  \ oy oy ayr 1(06090 . dpdd
(43) Ml'MZZ_E (9—(9—1//4' ﬁ_é’_lr//
(50)

wheret, 8, ¢ are functions of (,«,y) given by Eq.(37) and
Eq. (41). The partial derivatives are taken at fixed valué.of Using Egs.(48)—(50) the areadAg from Eg. (11) can be
From the expressions above, we have written as
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(sinze(aa i I (90)2 , sinfgsiny
S: T\ o 5T o o =
41t \dy d dy oy 1—(cos® cosf,— sin@sin H,cosy)?
ot 2wy md d (51) siny
oy MM Pdy. X (57)

ViZ1-2\2mig)

By inserting Eq.(45), Eq. (47), and Egs.(57) into Eq.
909 dp 90 (56), we have

Ay dy dy Iy

The determinant of the lens madEq. (8)],

1 ot siny a0
which appears in Eq51) can be simplified using Eq§44)— 9apM glb:T 3_¢+ @ (58)
(47 29 2\13(1-22Mly)
sin® 90 Sinceg,,M31°=0, we obtain the claimed result
V1—(cos®cosh,—sin® sinfycosy)? I ot B siny 90 9
The scalar produd¥l ;- M, can also be evaluated using Egs. Iy 212(1—2/2MI I
e S Vai3a-2y2mig)
] Then, using Eq.(59) in Eq. (55 and Eq.(54), our final
_ Sif® expressions for the area and angular-diameter distance are
Mi-M=— 7 (53
L _Sin®ae|[ 12(1-22Mm1) | M ”
Thus Eq.(51) becomes ST 012 |y 12(1—22Mly) Y
60
—Sin®( 70)* 21%f 2)1/2d d 54 ()
~ 22 oy al | 4 B9 ang
. . . . 2 1/2
The solid angle at the observers location @0, , Sin® |90 1-sir? 12(1—22M1)
=sinydydy. The angular-diameter distance is thus A Jl2sing | v St 12(1—22Mly)
. (61)
,  sin® (a 2 lef(at 2)1’2 -
A 212sing \\ 9 ap : It should be noted that the only place wh&g vanishes

is at sin®@=0, namely, along the optical axis. The factor

This expression for the angular-diameter distance can bé®/J¥ does not vanish anywhere and diverges at, at
i ; . the same rate as the factét — sirfy{I(1—2y2MI)/13(1
simplified by showing thadt/d¢s can be expressed as a lin- s : 0
ear function of9®/Jy. We present a short, intuitive deriva- —2\/_5'\/”0)]) approaches zerfsee Eq.(Al) in the Ap-
tion of this fact here; a more formal derivation is given in the Pendix.
Appendix. From Eq.(52) and Eq.(61), we see that the square of the
First, we notice that both connecting vectdd§ and M2 angular-diameter distance is proportional to the Jacobian of
lie on the lightcone and therefore must be orthogonal to théh€ lens mapping. Because the angular diameter distance ap-
null vector that is tangent to the lightrays, with componentsfléear(s1 ;51] the de_ntomlnatorlo_f the a%;])arent li?'ght;‘lsgsﬁ_ef_
- a (i i o - A 1a g. , @ point source lying on the caustic will be infi-
given byl"=(t.I, 6, ¢). The scalar product d¥t; with I is nitely magnified in the geometrical optics limit. In addition,
our expression for the angular-diameter distance substituted

ab_g ot 1 (.90 5 . ‘7¢) into Eq.(14) gives the relative magnifications for two lensed
gapM3l ftcw/ o 90¢+sm29¢a¢ (56) images.
If one observes two or more images in the directippg,
where and(.p are explicitly given by Eqg. (37) can be used to define time of arrivald;}. The
subtraction of two such times defines a coordinate time de-
_ sin® cosf,+ cosO sin f,cosy lay, which can be converted into a proper time delay along
0= an observer’s world line.
\/1—(cos® cosfy— sin® sin §,cosy)? Among other possible candidates to useful lensing ob-
) servables, which we have not concerned ourselves with, pre-
siny liminary calculations suggest that the distortion of the im-
X 5 ages of small sources could be suitable for the application of
VIZ(1-2\2Ml() the exact formalism as developed in this particular section.
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C. Observables and the parametet line with the lens and a source would observe an extremely

In each of our calculations of observable quantities, th&ight perfect ring centered on the optical axis, at an aggle
non-measurable inverse radial paramdigplays an essential that makes the functio® vanish(the Einstein ring. From
role. As mentioned earlier, this parameter should be elimifi9- 3, it can also be seen that as the image angle approaches
nated in terms of observable quantities, perhaps a physic4fro; the source angl€), tends to infinity. This means that
distance scale. there will be an infinite number of Einstein rings, appearing

The most direct possibility is the angular-diameter dis-in principle for a blagk hole lens, at smaller and .smaller
tance expression given by E@1). We can see that it is not angles — one each time thét passes through an integer
a simple matter to invert the angular-diameter distance iffumber of tums, i.e.®=2nm. However,d0/Jy goes to
order to inferl in terms of observables and lens properties.infinity as well, which means that the additional Einstein
Nevertheless, Eq61) is an implicit relationship between ~ fings get much dimmer as the image angle goes to zero.
and the observabl®,, and can be solved numerically in ~_!f the source is not on the optical axis, two main images
local patches. will form, one on each side of the lens, beca@sés an odd

A second observational way to estimate the valug &  function ofy. One image will form at large positive angle
via Eq(14). We have indicated that the ratio of the bright- Whereas the opposite image forms at small negative afigle
ness of a source in two images yields an implicit equation fo@nd they will have different brightness. The images at
the source positio through the distance relationship, Eq. Smaller angles are dimmer, becaiseliverges steeply at the
(61). Hence, the parametémay be replaced by, in all ~ 3M radius, i.e., 00/ is large. As with the Einstein rings,
calculations. in addition to the two images there will be an infinite number

[An alternative approach, perhaps of only academic interof other images, dimmer and at smaller angles for a black
est, to the inverse radial distancean be obtained from the hole lens.
redshift of the source in closed form. If we assume that the On the other hant13=0 would vanish at locations such
source and observer are at rest then? thato®/d4= 0, where neighboring rays with the same value
=|goo*( a1, az,x%))| ~Y41,0,0,0) and ve of v meet. These lie on a plane containing t_he source, the
19000 “¥%(1,0,0,0), thus gapw®°=|god Ygoct for observer and the lens. It can be seen from Fig. 3 that in the

9oolXo s GabV Yoo 00" ™" case of a black hole, where the mass is contained within the
both ws and wo. Using the metric, we also havget  3M radius,® is a monotonically increasing function of,

=1/\/2 at both locations. Thus and thus there are no points whet®/Jy vanishes. Thus,
2 we are not concerned with these caustics. These caustics do
Ws _ 1_2\/5'\/”0 form in the case where a spherical lens is modeled as a
ML ik b S (62 . X ! .
o 1-22Ml uniform dust sphere with radius larger tham3and lie on

the lightrays that travel through the mass, assuming the mass
which is of course the standard gravitational redgftfor IS transparent.
Schwarzschild spacetime, expressed in our notation. Thus We can now use the lens equation Ef. to infer prop-
can be obtained as a function of the ratio of the observed an@rties of an unseen dark matter or blackhole lens. Using Eq.

source frequencie@nd lens mas®l and observers position (61) with Eq. (7), and labeling the optical axis as thexis,
lo) by we have

2 0=0(I(M,observablesly, ) (64)

w
1——(1-2\2Mly)

L)

I . (63)

where the observables might be the brightness and luminos-
ity or (see below the frequency ratios. For example, if an
_ Einstein ring is observed at an angkg, then we know both
D. Image and lens properties the image angle and the source’s angular location, ée.,

If one is interested in learning properties of an unseer=0- Then Eq(64) yields a relationship between the mass
lens, then the lens equation Ed) with Eq. (61) can be used and the inverse radial locatidy of the unseen blackhole.
in Conjuction with know|edge of the image propertieS, espe.ThiS is not particularly useful, but if another ElnSteln ring is
cially the brightness of the two main images. Because th&bserved at an angl#,, then we have two equations,
brightnessS of the images is proportional to an inverse i
power of the angular-diameter distarizg [via Eq.(13)], the 0=06((M,observableslo, y1) (65
brighter images will be observed when the source is located 0=0(I(M,observablesl o, ,) (66)
near a caustic.

We can see that the angular-diameter distance vanishes @} the two unknownd, andM and we can infer both the
locations where eitheM § or M5 vanish. At such locations, |ocation and mass of the blackhole from lensing observables.
neighboring rays meet. We have thf vanishes a®=0, Notice that this exact method is necessary in order to treat
which means that neighboring rays with the same valug of multiple Einstein rings, since the standard weak-field lens
meet along the optical axiéln fact, all rays with that value equation yields only one Einstein ring. This fact has been
of ¢ cross there, although only neighboring ones contributebserved if5], and is emphasized in the following section,
to the intensity of the imageThis means that an observer in where we compare the standard lens equation with the exact

1
~22M
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squree image accompanied by the assumption that the image angles are

A 7 small.

/ In our comparisons, we consider two different approxi-

/ mate lens equations available. One is the standard weak-field

/ lens equatiof1], and the other is a strong-field thin lens

/ equation obtained recently {5]. These two lens equations

D / differ essentially in the calculation of the bending angle at

0 / the lens plane.

/ The standard weak-field approximation calculates the
/ bending angle via linearized Schwarzschild. This results in

4 small bending angles, which justifies a further assumption

] that the source ang|@ is small. Thus the standard weak-field

D thin-lens equation is also a small-angle approximation,

where tarx=sinx=x for x=8,¢,a. The weak-field thin-

lens equation for a linearized Schwarzschild lens is

o g _ . 4MDg,

~ DD (€7

In our current notation, the angular location of the source
from the optical axis isf. We need to transforn® into a

Y ' function of  in order to make a comparison with the exact
observer lens equation. In this approximation, however, since all
angles are small, then from Fig. 8/6=Ds/Dg, thus

FIG. 4. The lens diagram for the case in which a background is
available. The quantitie8, #,«,Dg,Dy4,D4s represent the Euclid- B Das (68)
ean angles and angular diameter distances in the background space- '
time shown. The quantity represents the angular position of the

source with respect to the axis in Schwarzschild coordinates if e also need to express the distances in terms of the coor-
Schwarzschild spacetime is thought of as superimposed on a fl%r.v . P
inates (,6). In this case, because of the small-angle as-

background. ;
sumption, we have

approach. As for the applicability of the method, we refer the

reader td5], where magnifications and angular locations of 1
multiple Einstein rings have been calculated for the case of Dg= \/§| ' (69
the Milky Way'’s galactic blackhole. 0
1
IV. COMPARISONS OF THE EXACT AND THIN-LENS ds= 7= » (70
EQUATIONS V2l
The available approaches to lensing build on the view that
the lens is a perturbation on a given background. The back- D.— 1 1 1)
s r— .

grounds are normally taken as Minkowski spacetime or as a
Friedmann model. For definiteness, here we restrict to a
Minkowski background. Given the flat background, one can
define the locations of the source plane and the lens plane, bising Eq.(68) and Eq.(71) with Eqg. (67), we obtain the
distancesDS and Dd from the observer, respective|y, as weak-field thin-lens equatior] in our current notation:
shown in Fig. 4. One can further define the angular location

2y V2l

of the source on the lens plage and the angular location of I+1o 4\2m |(2)
the image on the lens plane One can also definB 4, the = - ek (72
distance between the lens plane and the source plane. The 4 0

thin-lens approximation consists in considering the bending

to take place at the lens plane, the lightrays being otherwis&his is to be compared with the lens equation, Etf), in
straight lines. The straight lightrays bend through a bendinghe cased,= 7. We can see that= 0 reduces to Eq.72) in
angle @. The thin-lens approximation is justified from the the following manner. We assume that the dimensionless
point of view that the distances involved are much largemuantitiesM|=e and Mly<e are small and make a Taylor
than the extent of the gravitational field, and is normallyseries expansion @d=—A in terms ofe:
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o dA equations, we need to expre8sy and Dg,Dys,Ds in terms
O(lo,¢)~m—A(e=0b%lo,1)+ € — of our coordinates. In the first place, since angles are not
=0 small then we have

€| 9°A Dy
Sl tanB= —tang (79
2| 9€? -0 Dy
=m—Ag—Ar—A,. (73 and
One can show that the zeroth and first order terms in the D.= 1 (80)
Taylor series expansion, E§73), yield Eq. (72). We can d NS
further derive the next term in the expansion. The second-
order correctionA,, is obtained to lowest order igr by b cosé @1
ds™ T =,
157(M)? v
2= 5 (74)
ADSy 1 cosé
Dg=——+—. (82
. V2l 2l
which corrects Eq(72) as
Additionally, from Eq.(39), it is straightforward to see that
|+ 4\2m 15 157M?% 13 .
=— 9 y— °o__ ° 1. (75 a==0(,lo,¥)i=1,=0- (83)

T T o) 22 Tt
With Egs.(79), (82) and(83), Eq. (77) becomes
Equation(75) translates into a second-order accurate ver-
sion of the standard weak-field thin-lens equation in the form sing— cosatar(|,:,0:0+ W) — Il—tan¢= 0 (84)
0

2
_ (76) which can be manipulated to yield

I
0=y+0O| - = +arcsir(—tanz/;cos{® 1ot ).
The strong-field thin-lens equatioft] calculates the I l0=0 lo I 0=0
bending angle in exact Schwarzschild, for a lightray that de- (85)

viates a total angler between the incoming direction from Equation(85) is the strong-field thin-lens equation and is to
infinity and the outgoing direction to infinity. The bending be compared with the exact lens equatibn ®.

anglea is not necessarily small, and will increase to infinity W€ can now plot our three lens equations and see how
as rays approach theM radius. Thus there is no basis for a Well they compare. We choose=,=0.001/3,2M, which

L - . corresponds to a distance of 300rom the lens for both
small angle approximation of the anglgsanda. The image the source and the observer and iget 1 for the plots. We

look at small image angles, which corresponds to approaches
! . . L Qlose to the 81 radius. The plots are only made for positive
sidered planes. The strong-field thin-lens equation is Obp, 46 angles. Since the lens equations are odd functions of

tgingd in the same manner as the wea!<-fie|d thin-lens equqﬁ, the plot for negativay is a reflection through the origin
tion is, from trigonometry on the lens diagram, but uses the,,4 can be inferred from Fig. 5.

exact trigopnometric functions g8 and a, rather than substi- We can see in Fig. 5 that the weak-field equat{@g)
tute the sines and tangents by their angles. The strong-fiel@eviates significantly from the exact equation both at first-
thin-lens equation is Ed1) in [5], namely order accuracy and at second-order accuracy, (&g, as

expected. The main reason for the second-order correction
not to behave significantly better than the first-order accurate
equation is that none of the perturbative terms blow up at the
3M radius, whereas the exact equation does. The perturba-

tanB=tany— DD—dS[tam//Har(&— )] (77

with tive approach is clearly inappropriate for the strong-field re-
gime of a black hole.
R | 1 However, the strong-field thin-lens equation E®5)
aIZJ dl —. agrees remarkably well with the exact equation. In our ex-
0 \/I 5(1—2\/§Mlp)—lz(1—2\/§MI) ample, we have an error of less than one part in a thousand,

(78  for source angles as large as about six turns around the lens.
Notice that 3000 corresponds to only 4500 km for a stellar
Equation(78) is obtained from Eq(10) in [5] by making the  black hole, nowhere near the galactic distances expected for
identificationsr —1/y21 andr— 1/y2l,. observed lensing. The thin-lens approximation appears to do
Since we are interested in comparing with the exact lensery well at these relatively small distances and will almost
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0.0 . . deltat
0.8
5.0 | thinlens
0.7
~
2 ’
8 =
8 -10.0 -
3 bet
g 0.0017 0.0023 0.0026 -
exact FIG. 6. A plot of the exact and thin lens time delays against the
~15.0 - ——~- strong-field TL q i i
__________ firstcrder weak-field TL source angleg in radians. Here, the source and observer are
— -~ second—order weak-fleld TL roughly 3000/ from the lens.
20.0 . . . 2M
0.00170 0.00180 0.00190 th=[ dl|1+ 10 (86)
image angle

~ FIG. 5. A comparison of the available lens equations in theg|ong the trajectory determined by the weak field thin lens
Ilteratur_e. Thg vertical axis represents the angular position of th%quation. In the integration, is the Euclidean length along
source in radians. The horizontal axis represents the observed angl§s thin lens trajectory, and(l) represents the Euclidean
faﬁqerz?é?:fcxfo:qaﬁetﬁeki ;%%gvtl’sf_'rgreé ?Ei tt:.e Isourc_e}hat Qjistance from the origin to a point along the path. The thin
. — - nere fL=thin ens. e 1aps time delayAt!, is the difference between the two times.
standard thin-lens-weak-field approximation is clearly inaccurate, In the exact approach, there are an infinite number of
whereas the second-order correction to it does not do significantly . . -
better. However, the thin-lens-strong-field approximation appears t airs of geOde.SICS connecting the source and observer be-
be remarkably good, since at this resolution it agrees with the exadi2use geodesics may wrap around the *?'aCk hOIG many
lens equation up to one part in a thousand. times. However, there are only two geodesics which do not
circle the lens; these geodesics, which can be distinguished
certainly do much better at galactic and extragalactic disfrom the others, are the analogue of the thin lens paths. The
tances. exact time delayAt®, is numerically computed from Eq.
One reason why Eq(77) performs so accurately is the (37) by taking the difference between the times elapsed
tremendous distances involved. The other reason is, howalong these two geodesics.
ever, that the exact bending angle through infinite distances Figure 6 shows the exact and weak field thin lens time
is used. Most of the effort in using EG77) is involved in delays given the same observer and source location. The
evaluating the integral expression of the bending angle anime delays are given in geometrical units, and ghexis is
its derivatives, which involves the same amount of work re-given in radians. In this calculation, the observer is located at
quired to do the exact lens equation, as shown by our comlo=0.001/3/2M, or a distance of 3000, and §=0.
parison above, Eq85). Thus the efficiency in terms of com- Sources are located in a fixed source plane whose distance
putational cost is not very high. Considering that the price igfom the lens along the optical axis is also 380as in the
to break with the covariance and non-linearity of generaistandard thin lens picture. The time delays are plotted against
relativity, one might even find it justified to give up the thin- 8, the source angle used in the thin lens equation.
lens approximation in favor of the exact lens equation in the At =0, Einstein rings are formed, and each time delay
case of strong, spherically symmetric gravitational fields. will be zero. Asg increases, the thin lens time delay slightly
A valuable, second comparison is the time delays preoverestimates the true value, as seen in the figure. This rep-
dicted by the exact and thin lens approaches. Time delays aresents the general behavior for a single Schwarzschild lens
now a very important tool in astrophysics and provide aat larger distances, but the effect remains fairly small. For a
means to estimate the Hubble constant independent of prewingle Schwarzschild lens with a mass of 2B solar
ous methods. We will define a time delay as the observer'snasses, at redshit=0.5 with a source az=1.0 andp
elapsed proper time between the arrival of a signal along twe=0.5', the overall exact time delay is close to 400 days,
distinct paths connecting the source and observer. while the error introduced by using the thin lens approxima-
When the weak field, thin lens approach is applied to thgion is less than an hour.
Schwarzschild lens, generically, two paths connect any The time delays computed in the thin lens approximation
source and observer, one passing on each side of the lerremain quite accurate in our comparisons because the light
This results from the lens equation, E¢1), admitting two  rays do not feel a strong gravitational field along their trajec-
values fory for given values ofg, M, and distance param- tories. This is why the thin lens fails so dramatically in the
eters. The only exception is when the source, lens, and olpbservation angle calculation presented in Fig. 5, while fair-
server lie along the same radial line. In this case an Einsteiing well in the time delay comparisons.
ring is formed, and the time delay is zero by symmetry. The Despite these results, it may be incorrect to assume that
time along each of the two paths is found by integrating the thin lens method of computing time delays remains ac-
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curate for more complex lensing situations. The first of twometric case. In ongoing calculations, we are exploring the
possible problems is that the weak field assumption may naiccuracy of the thin lens approximation under a broad range
always be valid along an observed null geodesic. It may bef conditions, including those in which there may be stronger
very difficult to identify lens candidates whose null geode-fields or multiple lenses present. These calculations will re-
sics have undergone interactions with strong gravitationatjuire a combination of analytic and numerical results. A pre-
fields, however, if such candidates are found, the thin lensedent for this kind of work was set by Rauch and Blandford
methodology will most likely prove quite inaccurate. Sec-[10], who studied the null geodesic equatidios the exact

ondly, it is not known how accurate the time delay compu-lens equations in our terminologyor Kerr spacetime and

tations will be in more complex lensing scenarios, especiallyffound the caustics of the lightcone. Our sense from these

when the geodesics are bent in multiple lens planes. comparisons is that the error in the thin lens method for the
time delays and observation angles will, in some cases, be
V. DISCUSSION appreciablg9].

. o . ) We are also interested in an issue regarding the compari-
To date, virtually all applications of gravitational lensing son of the sizes of two different types of corrections to the
have utilized the thin lens approximation. AIthough the thinthin lens equations. On one hand, within the framework of
lens method has proven a quick and useful tool, it can not bgne thin lens methodology, there are corrections due to the
applied to high curvature regions. The failure of the nextsirycture of the mass distributidaf the leng over that of the
order correction to the thin lens equation, Eg6), as con-  monopole moment. On the other hand, even for the mono-
trasted with the ability of the strong field thin lens equationpgle case, there are differences between the predictions of
[5], to capture the divergence of the observation afyl®  the exact lens equations and the thin lens equations. The

Fig. 5 emphasizes the point that some combination of exagsye is whether the sizes of these corrections are compa-
methods are required in such situations. rable.

We are putting forward the idea that exact gravitational
lensing may not be just a purely academic exercise. In fact,
we see that virtually all of the observationally relevant quan-
tities can be determined analytically in the exact method with  This research has been supported by the NSF under grants
relative ease for a Schwarzschild spacetime. In this paper, Wwgo. PHY-9803301, PHY-9722049 and PHY-9205109.
found straight-forward expressions for the time delays, ob-
servation angles, angular-diameter distances, and relative APPENDIX
magnifications. These analytic expressions can be used in
comparison calculations or model building with great com- An alternative derivation of Eq59), by direct computa-
putational prowess, power, or time. tion, is obtained by taking the derivative & and oft with

The limited testing of the thin-lens methodology in this respect toy. Because botht and ® depend ony only
paper has indicated that there are regigmsssibly not yet through the point of closest approalgh we actually need to
observablgwhere the thin-lens method fails in a highly sym- calculatedt/dl , and9®/dl,. We have
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Clearly the last term inside the braces under the limit sign in(Bg) can be substituted with

2

1

\/2|f,(1—2\/§|v||p) \/|§(1—2\/§M|p)—|’2(1—2\/§M|')

(A3)

r—] _—
||pE

since the difference vanishes in the linait-0. We can thus see that/dl, and9®/4l, are proportional to each other via

at

Z0)

(A4)

Mo Naza-2y2miy) M

This implies Eq.(59).
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