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Spacetime perspective of Schwarzschild lensing
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We propose a definition of an exact lens equationwithout reference to a background spacetime, and
construct the exact lens equation explicitly in the case of Schwarzschild spacetime. For the Schwarzschild case,
we give exact expressions for the angular-diameter distance to the sources as well as for the magnification
factor and time of arrival of the images. We compare the exact lens equation with the standard lens equation,
derived under the thin-lens-weak-field assumption~where the light rays are geodesics of the background with
sharp bending in the lens plane, and the gravitational field is weak!, and verify the fact that the standard
weak-field thin-lens equation is inadequate at small impact parameter. We show that the second-order correc-
tion to the weak-field thin-lens equation is inaccurate as well. Finally, we compare the exact lens equation with
the recently proposed strong-field thin-lens equation, obtained under the assumption of straight paths but
without the small angle approximation, i.e., with allowed large bending angles. We show that the strong-field
thin-lens equation is remarkably accurate, even for light rays that take several turns around the lens before
reaching the observer.

PACS number~s!: 04.20.Cv, 04.70.2s, 95.30.Sf
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I. INTRODUCTION

The phenomenon of gravitational lensing is firmly asso
ated with the physics of a four-dimensional Lorentzi
spacetime that satisfies the Einstein equations. Yet, it
become a common practice in the study of lensing to br
with the basic ideas of general relativity by using the line
ized Einstein equations off a fixed background, the thin le
approximation, and treating the bending of light as a lin
phenomenon—without mention of its connection with t
full theory.

This point of view is very much justified by the accura
in the comparison of contemporary observations with
resulting calculations, i.e., general relativity does play an
sential role in lensing but the weak field approach appear
be quite adequate for most discussions@1#.

However, it is now a fact that the strong field charact
istics of general relativityper seare observed in nature a
well. Black holes are possibly ubiquitous@2#, and a super-
massive black hole may exist in the center of every sp
galaxy. Here is where the full theory of general relativ
takes the leading part. In order to describe bending of li
by black holes or in high curvature regions, it is necessar
write lens equations that respect the intrinsic nature of g
eral relativity, namely: covariance and non-linearity.

The difficulty in writing down a lens equation that re
spects covariance and non-linearity is very much of a c
ceptual type. In fact, even when such a lens equation is
veloped, it is hard to interpret. A spacetime containing a l
is not the superposition of two spaces, a background spa
time and a lens space. Two different spacetimes are
different entities, and there are an infinite number of ways
identifying them point-wise. What is the meaning of the a
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gular location of a sourcein the absence of a lens—an idea
used extensively in the thin-lens approximation? What
the preferred angular coordinates that give the thin-l
equation its meaning? How do we refer to the distances
tween the observer, the source and the lens in a coordi
independent manner, or what is the preferred coordinate
tance to use? All these questions have perfectly good
swers if a background spacetime is available to us and we
given leave to isolate the lensing action from the ba
ground. This is not so if there is no background. Witho
reference to a background, some of these questions hav
answers, and some do not even make sense. Treating le
phenomena strictly in the context of the full theory of rel
tivity requires other ideas and approaches.

We have recently introduced a proposal for a lens eq
tion without reference to a background@3,4#. An exact lens
equation on an arbitrary Lorentzian spacetime can be wri
down, at least in principle, since it amounts, basically,
finding all the light-rays that reach the eye of an observ
However, for it to be meaningful, it is necessary to expre
the equation in such a way that it can be used in an as
physical context; it must be written or expressed in terms
observable quantities. To some extent, we believe that
have partially succeeded in doing that.

As an illustration, we develop and interpret in full deta
our lens equation in the case of a Schwarzschild black h
explicitly working out quantities of astrophysical interest f
lensing, such as the angular diameter distance and mag
cation factors. Furthermore, we use our exact lens equa
to test the effectiveness of other lens equations that can
written down in the case that a background is available, m
notably the lens equation obtained recently by Virbhadra
Ellis @5#.
©2000 The American Physical Society21-1
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In Sec. II we discuss the idealized situation where,
principle, the null geodesic equations can be solved exa
for a static metric and stationary source and show, agai
principle, how a set of lens equations can be construc
while in Sec. III these ideas are then applied to the Schwa
child black hole lensing problem. In this section, the imp
tant physical quantities such as the angular-diameter dist
to a source and the magnification factor are explicitly cal
lated. In the subsequent sections, we compare the exac
sults with the thin lens calculations.

II. THE EXACT LENS EQUATION

We begin with a four-dimensional static spacetim
@M,gab(x

a)# with local coordinatesxa and consider an ob
server, at rest in the local coordinates, on a world-line giv
parametrically byx0

a(t), t being the observer’s proper-time
The observer, looking out, sees null geodesics reaching
from all past null directions,l a. These observed direction
labeled by the spatial projections„orthogonal to the observ
er’s velocity vector,va5(d/dt)x0

a(t)… of the null vectors,
can be taken as the two angular coordinates of the obser
~past! celestial sphere, (a1 ,a2). The null geodesics of the
past lightcones from the observer’s worldline thus ca
these labels; the points on each null geodesic are fur
labeled by the parameter along the curve, which we tak
be an affine parameters suitably normalized so thatl ava

51. Thus the past lightcone of the observer has the form

xa5Xa
„x0

a~t!,a1 ,a2 ,s… ~1!

where the functionsXa
„x0

a(t),a1 ,a2 ,s… satisfy the geodesic
equation

Ẋa¹aẊb50

with

Ẋa5
]

]s
Xa

„x0
a~t!,a1 ,a2 ,s…

and the null condition

gabẊ
aẊb50. ~2!

The local coordinatesxa can be chosen so that one of the
sayx0, is timelike and the remaining threexi are spacelike,
i 51,2,3. In this case, the functionẊ0 does not vanish at an
point. Although we are interested in the past lightcone, i
more straightforward to work in terms of the future ligh
cone. The direction in which the lightrays are traced is
important in the case of interest, namely, static spacetim
Therefore,Ẋ0 is everywhere positive.

This means thatx0 increases monotonically with the a
fine parameters. BecauseẊ0 does not vanish anywhere
then, by Eq.~2!, at all points on a geodesic one ofẊi is
non-zero~different i possibly in different sections of the geo
desic!. For definiteness, we label this spatial coordinate
i 51. From the implicit function theorem, we have that
06402
ly
in
d,
s-
-
ce
-
re-

n

im

r’s

y
er
to

,

s

t
s.

y

x15X1
„x0

a~t!,a1 ,a2 ,s… ~3!

can be inverted to obtain

s5S„x0~t!,a1 ,a2 ,x1
…. ~4!

The inversion will only be possible in patches, since it
possible thatẊ1 vanishes at isolated points. This means th
s will be, in general, a multiple-valued function ofx1. Still,
this inversion allows us to reparametrize the geodesics
terms of just our coordinates and observation angles:

x05X0
„t,a1 ,a2 ,S~t,a1 ,a2 ,x1!…[X̂0~t,a1 ,a2 ,x1!,

~5!

x15x1 ~6!

xA5XA
„t,a1 ,a2 ,S~t,a1 ,a2 ,x1!…[X̂A~t,a1 ,a2 ,x1!

~7!

with A52,3. The idea is now to treat these equations a
they determine a source at the spacetime point (x0,x1,xA) in
terms of the observable quantities (t,a1 ,a2) where we have
assumed,for the moment, that the coordinate value forx1 can
be determined from observation. We will treat the source
slow moving or effectively at rest. In this case, Eq.~7! is
defined as the lens equation.

More specifically, we interpret this lens equation as f
lows. Consider a source at a spatial locationxi , emitting light
at time x0. We can think of the coordinatex1 as a type of
radial coordinate. The remaining two coordinatesxA are thus
a type of angular coordinates. The emitted light arrives at
observer at a timet, in a direction (a1 ,a2). Equation~7!
expresses the angular location of a source at radial dista
x1 in terms of the observation angles (a1 ,a2). On the other
hand, Eq.~5! is an exact ‘‘time of arrival’’ equation; it re-
lates the time of emission,x0, at the radial location,x1, with
the observer’s proper timet, and arrival direction, (a1 ,a2).

The lens equation, Eq.~7!, represents a map from th
image~or observation! angles (a1 ,a2) to the source position
angles,xA. The map breaks down at locations where t
determinant

J~t,a1 ,a2 ,x1![det
]~x2,x3!

]~a1 ,a2!
~8!

vanishes.J(t,a1 ,a2 ,x1)50 defines the caustics~a three
surface in four-space! of the family of past lightcones of the
observer. The direct consequence of the break-down of
map is that multiple images of the same source can be
served. More specifically, often one can see an image
direction (a1 ,a2), of an object that lies on a null geodes
before it reaches a caustic~in affine distance!, while simul-
taneously seeing a different image, in a different direct
(a18 ,a28), from the same object along a different null geod
sic, but, in this case, the object lies beyond the caustic
affine distance. The parity of the images is given by the s
of J. In background dependent calculations,J21 is often in-
terpreted as a magnification factor with respect to the ‘‘u
1-2
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SPACETIME PERSPECTIVE OF SCHWARZSCHILD LENSING PHYSICAL REVIEW D61 064021
lensed’’ source, but, as we have no background, this wo
not be appropriate here.@Note that J(t,a1 ,a2 ,x1) could
have been calculated holdings fixed instead of fixedx1; the
vanishing ofJ is independent of that choice. This follow
from the general theory of Lagrangian submanifolds a
maps.#

The lens equation, Eq.~7!, is not yet entirely usable sinc
it involves the~up to now! unobservable quantityx1. How-
ever,x1 can be expressed in terms of observable quant
through the use of the idea of distance. Though there
many definitions of distance in use in general relativity a
astrophysics, several of them can be considered to be ob
able and we thus explore the feasibility of inferringx1 from
the considerations of distance. We will investigate a defi
tion of distance which is observable, namely the so-ca
angular-diameter distance - there being several closely
lated distance definitions@4,1#.

Since we have, in principle, exact expressions for the p
lightcone of the observer in terms of parameters adapte
the null geodesic congruence, we have a natural way of
pressing the angular-diameter distance to the source in e
form. The angular-diameter distance is defined@1# in terms
of the infinitesimal area spanned by the observer’s geod
congruence at the location of the source per infinitesim
solid angle at the observer’s location, namely

DA5U dAs

dV0
U1/2

. ~9!

In order to calculate the areadAs , we define two connect
ing vectors in the lightcone of the observer. By taking var
tions of the points on the lightcone with respect to the lab
of the null geodesics in the congruence, we find the geod
deviation vectors, or Jacobi fields:

M1
a5

]Xa

]a1
, M2

a5
]Xa

]a2
. ~10!

It is irrelevant to the area calculation whethers or x1 are held
constant in calculating the connecting vectors—the diff
ence, lying along the null tangent vectors to the geodes
does not affect the area.

The areadAs is the area spanned by these two vectors
the location of the source, namely, the norm of the wed
product of the two vectors:

dAs5ugacgbdM1
[aM2

b]M1
[cM2

d] u1/2da1 da2

5u2„~M1•M1! ~M2•M2!2~M1•M2!2
…u1/2da1 da2 .

~11!

If the solid angle at the observer subtended by the areadAs is
given bydV05K(a1 ,a2)da1da2, whereK depends on the
choice of the coordinates, the angular-diameter distanc
given by
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DA
25DA

2~a1 ,a2 ,t,x1!

52 K22u~M1•M1!~M2•M2!2~M1•M2!2u. ~12!

For sufficiently small values ofx1, Eq. ~12! is invertible, i.e.,
x15x1(a1 ,a2 ,t,DA). However, DA goes to zero at the
caustic, so that beyond the causticx1 is a multivalued func-
tion of DA and must be given in patches.

The angular-diameter distance is observable, because
related to the intrinsic luminosityL of the source and its
apparent brightnessS ~total flux at the observer! via @1#

S5
L

4p~11z!4DA
2

. ~13!

In principle, Eq.~13!, with Eq. ~12!, givesx1 implicitly as a
function of observables: the angular location of the ima
(a1 ,a2), its redshiftz(5vs /v021) its apparent brightnes
and the intrinsic luminosity of the source.

On the other hand, there may be situations where the
trinsic luminosity of the source is not available. In su
cases, if there are multiple images observed, then we
make use of their relative brightness in order to estimatex1.
For two images of the same source, lying at ang
(a1

(1) ,a2
(1)) and (a1

(2) ,a2
(2)), the ratio of the fluxesS1 /S2

does not depend on the intrinsic luminosity of the sourceL
and can be interpreted as the relative magnificationm12 of
one image with respect to the other one, or

m125
DA

2~a1
(2) ,a2

(2) ,x1!

DA
2~a1

(1) ,a2
(1) ,x1!

. ~14!

Notice that (a1
(1) ,a2

(1)) and (a1
(2) ,a2

(2)) are two image direc-
tions of Eq.~7! for a given value of the source coordinat
(x2,x3). The inversion of Eq.~14! is not likely to be feasible
in closed form. Still, in principle, Eq.~14! givesx1 implicitly
in terms of the angular location of two images and th
relative brightnessm12[S1 /S2.

~In the case of lensing at cosmological distances, it
customary to infer distances from redshifts. Even though
are not concerned with cosmological models in this pap
we consider redshifts as another alternative to inferx1 from
an observable quantity. For a source on a worldline w
tangent vectorvs

a , emitted light of frequencyvs and ob-
served frequencyv0 , the ratiovs /v0 is given by@6#

vs

v0
5

gab„x
a~a1 ,a2 ,x1!…vs

aẊb~a1 ,a2 ,x1!

gab~x0
a!v0

aẊb~x0
a!

~15!

where Eq.~7! has been used for the source’s space-time
cation. Equation~15! givesx1 implicitly in terms of the fre-
quency of emission, the received frequency and the obse
image angle. As our assumed source is at rest, its veloci
vs

a5ug00„x
a(a1 ,a2 ,x1)…u21/2(1,0,0,0).!
1-3
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III. THE SCHWARZSCHILD CASE

A. The lens equation

We consider now the case of gravitational lensing by
Schwarzschild black hole of massM. The line element is

ds25 f ~r !dt22
1

f ~r !
dr22r 2~du21sin2udf2! ~16!

with

f ~r ![12
2M

r
. ~17!

In order to take advantage of existing calculations@7#, we
temporarily use coordinates (u,l ) given by

u5
1

A2
S t2E dr

f D5
1

A2
„t2r 12M log~2M2r !…,

~18!

l 5
1

A2r
. ~19!

In these coordinates, the line element takes the form

ds252 f du22
2

l 2
du dl2

1

2l 2
~du21sin2u df2!. ~20!

The equations fornull geodesicsẍa1Gbc
a ẋbẋc50 in terms of

an affine parameters are equivalent to

u̇5
C

2 f S 16A12S B

CD 2

l 2f D ~21!

l̇ 56Cl2A12S B

CD 2

l 2f ~22!

ḟ5
Al2

sin2u
~23!

S u̇

l 2D 2

5B22
A2

sin2u
~24!

with the null conditionẋaẋa50 equivalent to

4l 2f u̇224Cl2u̇1 u̇21
A2l 4

sin2u
50. ~25!

The symbol (•) stands ford/ds and A,B,C are three first
integrals of the null geodesics, depending on the initial po
and the initial direction. The constantC represents the free
dom in the scaling of the affine parameters. Treating the
observers location (u0 ,l 0 ,u0 ,f0) as the initial point, the
constantB is related to the anglec that the null geodesic
06402
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makes with the optical axis~defined by the radial line from
observer to the lens center!. More precisely:

B

C
5

sinc

l 0Af ~ l 0!
, ~26!

wherel 0 is the inverse radial location of the observer. Last
the constantA can be related to the azimuthal angleg that
the direction of the lightray makes around the optical axis
the observer’s location via

A

C
5sinu0sing

sinc

l 0Af ~ l 0!
, ~27!

whereu0 is the angular location of the observer.
We can switch from the null coordinateu to the time

coordinatet using ṫ5A2„u̇2(1/2l 2f ) l̇ …. Doing so and set-
ting C51 allows Eqs.~21!–~24! to be rewritten as

ṫ5
1

A2 f
~28!

l̇ 56 l 2A12S sin2c

l 0
2f ~ l 0!

D l 2f ~29!

ḟ5
sinu0sing sinc l 2

l 0Af ~ l 0!sin2u
~30!

S u̇

l 2D 2

5
sin2c

l 0
2f ~ l 0!

2
~sinu0sing sinc!2

l 0
2f ~ l 0!sin2u

. ~31!

For those null geodesics of interest to us, i.e., those wh
initial direction has a component pointing towards t
Schwarzschild origin, the inverse radial distancel initially
increases (l̇ .0) until the point of closest approach to th
lens is reached,~with affine parameter valuesp). The coor-
dinate, l, then decreases (l̇ ,0) after sp until reaching the
source at somesf in . However, fors,sp and for s.sp we
have l̇ Þ0, and thus the inverse radial distancel can be used
as a parameter~in two patches, the incoming and outgoin!
along the null geodesics for the purposes of constructing
lens equation in the manner of the previous Section. It pl
the role ofx1.

The value ofl at the point of closest approach~i.e. at l̇
50) is denotedl p . If we assume, naturally, that the observ
is located outside the last stable orbit~at r .3M ), then, for
lightrays that do not cross ther 53M orbit, the closest ap-
proachl p is the smallest of the positive roots of

~sinc!2l p
2~122A2Ml p!2 l 0

2~122A2Ml 0!50. ~32!

A simple analysis shows that forl 0,3A2M , Eq. ~32! has no
positive roots unless
1-4
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sinc.3A2Ml 0
A3~122A2Ml 0! ~33!

in which case there are always two positive roots, and
closest approachl p is the smallest of them. It is simple t
prove thatl p,(3A2M )21 for all c subject to Eq.~33!, and
that l p→(3A2M )21 for sinc→3A2Ml 0A3(122A2Ml 0).
See Fig. 1.

The l p , which is a turning point of the coordinatel along
the null geodesics, plays a major role in the following. Fi
we notice that the term

12S sin2c

l 0
2f ~ l 0!

D l 2f

from theu̇ equation, can be rewritten with the role ofc now
played byl p , in the form

12S sin2c

l 0
2f ~ l 0!

D l 2f 5
1

l p
2~122A2Ml p!

„l p
2~122A2Ml p!

2 l 2~122A2Ml !… ~34!

using, from Eq.~32!,

sin2c

l 0
2~122A2Ml 0!

5
1

l p
2~122A2Ml p!

. ~35!

FIG. 1. A plot of the functionFª12sin2cl2f/„l 0
2f ( l 0)… as a

function of l for a sequence of values of sinc including sinc51 .
Notice that for large enoughc there are always two positive roots
while for small enoughc there are no positive roots. There is
critical value ofc for which there is only one positive root. Th
allowed values ofl are such thatF is positive, and such thatl 50 is
included. Thus, allowed values ofl range from 0 to the smalles
positive root. The smallest positive root is denotedl p and represents
the point of closest approach to the lens. Notice thatl p increases
with decreasingc, reaching the critical value (3A2M )21 at the
critical value ofc.
06402
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We thus see that the dependence onc is now hidden away in
the inverse radial distance of closest approachl p . This ob-
servation will simplify some of the calculations that follow

The past lightcone of an observer in coordinatesxa

5(t,l ,u,f) in terms of the affine parameters and initial
directions (c,g) could in principle be obtained from Eq
~21!–~24! or Eq. ~28!–~31!. This requires the integration o
four non-linear ordinary differential equations which cann
be done by quadratures. In the spirit of the Sec. II, howev
we do not need the lightcone in terms of the affine param
s, but in terms of a radial coordinate. Our radial coordinate
the inverse radial distancel, which is better suited for treat
ing large distances than the standardr. In particular, the in-
finite range 3M,r ,` translates into the finite interval 0
, l ,(3A2M )21.

First we show how our radial coordinatel is related to the
affine length. Next, we integrate the lightcone in terms ol.
For our purposes, it suffices to assume that by the time
lightray reaches the observer it has already passed by
point of closest approachl p .

Equation~29! can be integrated to obtain the affine p
rameters in terms of the inverse radial distance:

s52E
l 0

l pA l p
2~122A2Ml p!

l p
2~122A2Ml p!2 l 82~122A2Ml 8!

dl8

l 82

1E
l

l 0A l p
2~122A2Ml p!

l p
2~122A2Ml p!2 l 82~122A2Ml 8!

dl8

l 82
.

~36!

Equation~36! corresponds to Eq.~4! of the previous sec-
tion. This represents one of the two available patches fors as
a function ofl.

The affine parameter as a function ofl is represented in
Fig. 2 when the observer is at a distance of 30M . ~We chose
a relatively small distance in order to better appreciate
strong field effects.! The affine length goes to infinity asl
approaches zero, in agreement with the fact that the ligh
runs out to infinity. The affine length,s, is chosen to vanish
at the observer’s location. We see, in the diagram, that
affine length bulges towards the 3M radius, resulting in a
double valued function ofl. The bulge is more pronounce
for lightrays that reach the observer at smaller observa
anglesc. The rays that come closer to the 3M radius spend
more affine time in reaching the observer, in agreement w
the gravitational time delay.

In the following, we obtain the past lightcone of the o
server (t0 ,l 0 ,u0 ,f0) as a function of the inverse radial dis
tance l, instead of the affine parameters, and two angles
(c,g) specifying the direction of each null geodesic at t
observer’s location.

Integrating Eq.~28! with Eq. ~29!, we obtain
1-5
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t5t012E
l 0

l pA l p
2~122A2Ml p!

l p
2~122A2Ml p!2 l 2~122A2Ml !

3
dl8

A2l 8 2~122A2Ml 8!

1E
l

l 0A l p
2~122A2Ml p!

l p
2~122A2Ml p!2 l 2~122A2Ml !

3
dl8

A2l 82~122A2Ml 8!
. ~37!

This is the equivalent of Eq.~5! of the previous section. As a
function of l, the time of arrival is double-valued~not so as a
function of the affine parameters); Eq. ~37! represents one
of the two patches.

The integration of the angular coordinates of the lightco
is carried out in@7#. Representing the angular coordinat
(u,f) in terms of the complex stereographic variablesz
[cot(u/2)eif the integration yields

z5eif0

cot
u0

2
1eigcot

Q~ l ,l 0 ,l p!

2

12eigcot
Q~ l ,l 0 ,l p!

2
cot

u0

2

~38!

whereQ( l ,l 0 ,l p) is

FIG. 2. The affine lengths as a function of the inverse radia
distance l for three null geodesics that reach the observer f
positive directionsc. We have set the observer atl 050.1/3A2M ,
the mass isM51, and the constantC has the value 1 for the thre
null geodesics. The three null geodesics are labeled according t
value of sinc. Smaller positive anglesc reach closer to the 3M
radius at their respective point of closest approachl p . For this
observer the smallest image angle is at sinc50.16733201, at which
the closest approach reaches the 3M radius. We see that the affin
length is double valued as a function of the inverse radial dista
06402
e

Q~ l ,l 0 ,l p!

56S p22E
l 0

l p dl

Al p
2~122A2Ml p!2 l 2~122A2Ml !

2E
l

l 0 dl8

Al p
2~122A2Ml p!2 l 8 2~122A2Ml 8!

D . ~39!

The functionQ( l ,l 0 ,l p) depends on the observation anglec
throughl p . The overall positive sign is taken when the val
of the observation angle,c, is positive, and the negative sig
is taken for negativec. This makesQ( l ,l 0 ,l p) an odd func-
tion of c.

Geometrically,Q( l ,l 0 ,l p) ‘‘represents’’ the angular posi
tion of the source relative to the optical axis, defined by
line between the lens and observer. The observer is con
ered to lie on the optical axis atQ5p. The relative angular
position of a source is given byQ values between2p and
p. Hence, Eq.~39! must be considered mod 2p, where val-
ues outside the range,2p<Q<p, represent multiple cir-
clings of the lens. WhenQ50,2p,4p, . . . , the source is
colinear with the lens and observer and would be observe
an Einstein Ring. For positivec, a value ofQ mod 2p
betweenp and 0 represents a source located to the righ
the lens, while2p,Q mod 2p,0 represents a source lo
cated to the left of the optical axis.

Figure 3 shows a plot ofQ at fixed values ofl and l 0, as
a function of the image anglec. We can see thatQ blows up
at l p5(3A2M )21, which agrees with the fact that, as th
lightrays approach the 3M radius, they take a larger numbe
of turns around the lens. Notice thatQ is a regular function

m

the

e.

FIG. 3. The functionQ( l ,l 0 ,c) at fixed values ofl and l 0. The
angles on both axis are measured in radians. We have chosl
5 l 050.1/3A2M with M51 for this figure. This plot represents th
exact lens equation in the case that thez2axis is chosen as the
optical axis, defined by the observer and the lens.
1-6
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of l for all l , l p because the integrand diverges slowly, as (l p2 l )21/2. In fact, for numerical integration it turns out to be muc
more efficient to make a change of variablesl 5 l p2q and writeQ as

Q56S p22E
0

l p2 l 0 dq

A2l p~122A2Ml p!q1~6A2Ml p21!q222A2Mq3
2E

l

l 0 dl8

Al p
2~122A2Ml p!2 l 8 2~122A2Ml 8!

D .

~40!

In terms of the standard spherical coordinates (u,f), Eq. ~38! translates into

cosu52cosu0cosQ1sinu0sinQ cosg

tanf5
sinf0sinu02tanQ~cosf0sing2sinf0cosg cosu0!

cosf0sinu01tanQ~sinf0sing1cosf0cosg cosu0!
. ~41!
or
d
i

,
th
t
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g
e
w
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m
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f
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w
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f

s
al
ar-
Equations~41!, with Eq. ~40! are the exact lens equations f
the case of a Schwarzschild spacetime and correspon
Eqs. ~7! of the previous section. Notice that the observer
located at generic values of (u0 ,f0), which means that we
do not choose, as is often done, thez axis as the optical axis
the optical axis being the radial line that contains both
center of symmetry and the observer. This is because
spherical coordinates break down along thez axis. If we
chose the observer to lie along thez axis, then Eq.~41!
reduces to cosu5cosQ and tanf5tang, and we could in-
terpretQ and g as the lens angular coordinates. Howev
this would result in erroneous predictions in the followin
subsections, unless we use additional care. In order to k
the remainder of this paper in the most transparent form,
prefer to keep the observer off thez axis.

B. Lensing observables

In this subsection, we describe the calculation of three
lensing observables from the lens equations: the angu
diameter distance, the relative magnifications, and the ti
delay between the arrival times of two images.

We start by exploring the angular-diameter distance,
ing Eqs.~41! and Eq.~37! to obtain an exact expression o
the angular-diameter distance in terms of the inverse par
eter l. In the next subsection, we will use the expressions
obtain here to explore the possibility of inferring the inver
radial distance,l, to the source.

First, we define the connecting vectors

M1
a[S ]t

]g
,

] l

]g
,
]u

]g
,
]f

]g D5S 0,0,
]u

]g
,
]f

]g D ~42!

M2
a[S ]t

]c
,

] l

]c
,
]u

]c
,
]f

]c D5S ]t

]c
,0,

]u

]c
,
]f

]c D
~43!

wheret,u,f are functions of (l ,c,g) given by Eq.~37! and
Eq. ~41!. The partial derivatives are taken at fixed value ol.
From the expressions above, we have
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]u

]g
5

sinQ sinu0sing

A12~cosQ cosu02sinQsinu0cosg!2
~44!

]u

]c
52

sinQ cosu01cosQ sinu0cosg

A12~cosQ cosu02sinQ sinu0cosg!2

]Q

]c
~45!

]f

]g
52

sinQ~sinQ cosu01cosQ sinu0cosg!

12~cosQcosu02sinQ sinu0cosg!2

~46!

]f

]c
52

sinu0sing

12~cosQcosu02sinQsinu0cosg!2

]Q

]c
.

~47!

Notice that, by Eq.~44! and Eq.~46!, the vectorM1
a is

proportional to sinQ for all generic values ofu0 except for
u050,p. This means that, generically, the vectorM1

a van-
ishes atQ50, which, by Eq.~41!, represents source point
(u,f) along the optical axis. If we had chosen the optic
axis as thez axis this essential fact would not be as transp
ent.

With the metric, Eq.~16!, we have

M1•M152
1

2l 2
XS ]u

]g D 2

1sin2uS ]f

]g D 2C ~48!

M2•M25 f S ]t

]c D 2

2
1

2l 2
XS ]u

]c D 2

1sin2uS ]f

]c D 2C
~49!

M1•M252
1

2l 2 S ]u

]g

]u

]c
1sin2u

]f

]g

]f

]c D .

~50!

Using Eqs.~48!–~50! the areadAs from Eq. ~11! can be
written as
1-7
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dAs5Xsin2u

4l 4 S ]u

]g

]f

]c
2

]f

]g

]u

]c D 2

1 f S ]t

]c D 2

M1•M1C1/2

dcdg. ~51!

The determinant of the lens mapJ @Eq. ~8!#,

J5
]u

]g

]f

]c
2

]f

]g

]u

]c

which appears in Eq.~51! can be simplified using Eqs.~44!–
~47!:

J5
sinQ

A12~cosQcosu02sinQ sinu0cosg!2

]Q

]c
. ~52!

The scalar productM1•M1 can also be evaluated using Eq
~44!–~47!:

M1•M152
sin2Q

2l 2
. ~53!

Thus Eq.~51! becomes

dAs5
sinQ

2l 2
XS ]Q

]c D 2

22l 2f S ]t

]c D 2C1/2

dcdg. ~54!

The solid angle at the observer’s location isdV0
5sinc dc dg. The angular-diameter distance is thus

DA
25

sinQ

2l 2sinc
XS ]Q

]c D 2

22l 2f S ]t

]c D 2C1/2

. ~55!

This expression for the angular-diameter distance can
simplified by showing that]t/]c can be expressed as a lin
ear function of]Q/]c. We present a short, intuitive deriva
tion of this fact here; a more formal derivation is given in t
Appendix.

First, we notice that both connecting vectorsM1
a andM2

a

lie on the lightcone and therefore must be orthogonal to
null vector that is tangent to the lightrays, with compone
given by l a[( ṫ , l̇ ,u̇,ḟ). The scalar product ofM2

a with l a is

gabM2
al b5 f ṫ

]t

]c
2

1

2l 2 S u̇
]u

]c
1sin2uḟ

]f

]c D ~56!

whereu̇ and ḟ are explicitly given by

u̇5
sinQ cosu01cosQ sinu0cosg

A12~cosQ cosu02sinQ sinu0cosg!2

3
sinc

Al 0
2~122A2Ml 0!
06402
.

e

e
s

ḟ5
sinu0sing

12~cosQ cosu02sinQsinu0cosg!2

3
sinc

Al 0
2~122A2Ml 0!

. ~57!

By inserting Eq.~45!, Eq. ~47!, and Eqs.~57! into Eq.
~56!, we have

gabM2
al b5

1

A2

]t

]c
1

sinc

2Al 0
2~122A2Ml 0!

]Q

]c
. ~58!

SincegabM2
al b50, we obtain the claimed result

]t

]c
52

sinc

A2l 0
2~122A2Ml 0!

]Q

]c
. ~59!

Then, using Eq.~59! in Eq. ~55! and Eq. ~54!, our final
expressions for the area and angular-diameter distance

dAs5
sinQ

2l 2 U]Q

]c US 12sin2c
l 2~122A2Ml !

l 0
2~122A2Ml 0!

D 1/2

dcdg

~60!

and

DA
25

sinQ

2l 2sinc
U]Q

]c US 12sin2c
l 2~122A2Ml !

l 0
2~122A2Ml 0!

D 1/2

.

~61!

It should be noted that the only place whereDA vanishes
is at sinQ50, namely, along the optical axis. The fact
]Q/]c does not vanish anywhere and diverges atl 5 l p at
the same rate as the factor„12sin2c@l2(122A2Ml )/ l 0

2(1
22A2Ml 0)#…1/2 approaches zero@see Eq.~A1! in the Ap-
pendix#.

From Eq.~52! and Eq.~61!, we see that the square of th
angular-diameter distance is proportional to the Jacobian
the lens mapping. Because the angular diameter distance
pears in the denominator of the apparent brightness,S @see
Eq. ~13!#, a point source lying on the caustic will be infi
nitely magnified in the geometrical optics limit. In additio
our expression for the angular-diameter distance substit
into Eq.~14! gives the relative magnifications for two lense
images.

If one observes two or more images in the directions$c i%,
Eq. ~37! can be used to define time of arrivals,$t i%. The
subtraction of two such times defines a coordinate time
lay, which can be converted into a proper time delay alo
an observer’s world line.

Among other possible candidates to useful lensing
servables, which we have not concerned ourselves with,
liminary calculations suggest that the distortion of the i
ages of small sources could be suitable for the applicatio
the exact formalism as developed in this particular sectio
1-8
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C. Observables and the parameterl

In each of our calculations of observable quantities,
non-measurable inverse radial parameter,l, plays an essentia
role. As mentioned earlier, this parameter should be eli
nated in terms of observable quantities, perhaps a phys
distance scale.

The most direct possibility is the angular-diameter d
tance expression given by Eq.~61!. We can see that it is no
a simple matter to invert the angular-diameter distance
order to inferl in terms of observables and lens properti
Nevertheless, Eq.~61! is an implicit relationship betweenl
and the observableDA , and can be solved numerically i
local patches.

A second observational way to estimate the value ofl, is
via Eq.~14!. We have indicated that the ratio of the brigh
ness of a source in two images yields an implicit equation
the source positionl through the distance relationship, E
~61!. Hence, the parameterl may be replaced bym12 in all
calculations.

@An alternative approach, perhaps of only academic in
est, to the inverse radial distancel can be obtained from the
redshift of the source in closed form. If we assume that
source and observer are at rest thenvs

a

5ug00„x
a(a1 ,a2 ,x1)…u21/2(1,0,0,0) and v0

a

5ug00„x0
au21/2(1,0,0,0)…, thus gabv

aẊb5ug00u21/2g00ṫ for

both vs and v0. Using the metric, we also haveg00ṫ
51/A2 at both locations. Thus

vs

v0
5S 122A2Ml 0

122A2Ml
D 1/2

, ~62!

which is of course the standard gravitational redshift@8# for
Schwarzschild spacetime, expressed in our notation. Thl
can be obtained as a function of the ratio of the observed
source frequencies~and lens massM and observers position
l 0) by

l 5
1

2A2M
S 12

vs
2

v0
2 ~122A2Ml 0!D . ~63!

D. Image and lens properties

If one is interested in learning properties of an unse
lens, then the lens equation Eq.~7! with Eq. ~61! can be used
in conjuction with knowledge of the image properties, es
cially the brightness of the two main images. Because
brightnessS of the images is proportional to an invers
power of the angular-diameter distanceDA @via Eq.~13!#, the
brighter images will be observed when the source is loca
near a caustic.

We can see that the angular-diameter distance vanish
locations where eitherM1

a or M2
a vanish. At such locations

neighboring rays meet. We have thatM1
a vanishes atQ50,

which means that neighboring rays with the same value oc
meet along the optical axis.~In fact, all rays with that value
of c cross there, although only neighboring ones contrib
to the intensity of the image.! This means that an observer
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line with the lens and a source would observe an extrem
bright perfect ring centered on the optical axis, at an anglc
that makes the functionQ vanish~the Einstein ring!. From
Fig. 3, it can also be seen that as the image angle approa
zero, the source angle,Q, tends to infinity. This means tha
there will be an infinite number of Einstein rings, appeari
in principle for a black hole lens, at smaller and smal
angles – one each time thatQ passes through an intege
number of turns, i.e.,Q52 n p. However,]Q/]c goes to
infinity as well, which means that the additional Einste
rings get much dimmer as the image angle goes to zero

If the source is not on the optical axis, two main imag
will form, one on each side of the lens, becauseQ is an odd
function ofc. One image will form at large positive anglec,
whereas the opposite image forms at small negative anglc,
and they will have different brightness. The images
smaller angles are dimmer, becauseQ diverges steeply at the
3M radius, i.e.,]Q/]c is large. As with the Einstein rings
in addition to the two images there will be an infinite numb
of other images, dimmer and at smaller angles for a bl
hole lens.

On the other handM2
a50 would vanish at locations suc

that]Q/]c50, where neighboring rays with the same val
of g meet. These lie on a plane containing the source,
observer and the lens. It can be seen from Fig. 3 that in
case of a black hole, where the mass is contained within
3M radius,Q is a monotonically increasing function ofc,
and thus there are no points where]Q/]c vanishes. Thus,
we are not concerned with these caustics. These caustic
form in the case where a spherical lens is modeled a
uniform dust sphere with radius larger than 3M , and lie on
the lightrays that travel through the mass, assuming the m
is transparent.

We can now use the lens equation Eq.~7! to infer prop-
erties of an unseen dark matter or blackhole lens. Using
~61! with Eq. ~7!, and labeling the optical axis as thez axis,
we have

u5Q„l ~M ,observables!,l 0 ,c… ~64!

where the observables might be the brightness and lumi
ity or ~see below! the frequency ratios. For example, if a
Einstein ring is observed at an anglec1, then we know both
the image angle and the source’s angular location, i.eu
50. Then Eq.~64! yields a relationship between the massM
and the inverse radial locationl 0 of the unseen blackhole
This is not particularly useful, but if another Einstein ring
observed at an anglec2, then we have two equations,

05Q„l ~M ,observables!,l 0 ,c1… ~65!

05Q„l ~M ,observables!,l 0 ,c2… ~66!

for the two unknownsl 0 and M and we can infer both the
location and mass of the blackhole from lensing observab
Notice that this exact method is necessary in order to t
multiple Einstein rings, since the standard weak-field le
equation yields only one Einstein ring. This fact has be
observed in@5#, and is emphasized in the following sectio
where we compare the standard lens equation with the e
1-9
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approach. As for the applicability of the method, we refer
reader to@5#, where magnifications and angular locations
multiple Einstein rings have been calculated for the case
the Milky Way’s galactic blackhole.

IV. COMPARISONS OF THE EXACT AND THIN-LENS
EQUATIONS

The available approaches to lensing build on the view t
the lens is a perturbation on a given background. The ba
grounds are normally taken as Minkowski spacetime or a
Friedmann model. For definiteness, here we restrict t
Minkowski background. Given the flat background, one c
define the locations of the source plane and the lens plan
distancesDs and Dd from the observer, respectively, a
shown in Fig. 4. One can further define the angular locat
of the source on the lens planeb, and the angular location o
the image on the lens planec. One can also defineDds , the
distance between the lens plane and the source plane.
thin-lens approximation consists in considering the bend
to take place at the lens plane, the lightrays being otherw
straight lines. The straight lightrays bend through a bend
angle a. The thin-lens approximation is justified from th
point of view that the distances involved are much larg
than the extent of the gravitational field, and is norma

FIG. 4. The lens diagram for the case in which a backgroun
available. The quantitiesb,c,a,Ds ,Dd ,Dds represent the Euclid-
ean angles and angular diameter distances in the background s
time shown. The quantityu represents the angular position of th
source with respect to thez axis in Schwarzschild coordinates
Schwarzschild spacetime is thought of as superimposed on a
background.
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accompanied by the assumption that the image angles
small.

In our comparisons, we consider two different appro
mate lens equations available. One is the standard weak-
lens equation@1#, and the other is a strong-field thin len
equation obtained recently in@5#. These two lens equation
differ essentially in the calculation of the bending angle
the lens plane.

The standard weak-field approximation calculates
bending angle via linearized Schwarzschild. This results
small bending angles, which justifies a further assumpt
that the source angleb is small. Thus the standard weak-fie
thin-lens equation is also a small-angle approximati
where tanx5sinx5x for x5b,c,a. The weak-field thin-
lens equation for a linearized Schwarzschild lens is

b5c2
4MDds

DdDsc
. ~67!

In our current notation, the angular location of the sou
from the optical axis isu. We need to transformb into a
function of u in order to make a comparison with the exa
lens equation. In this approximation, however, since
angles are small, then from Fig. 4.b/u5Dds /Ds , thus

b5
Dds

Ds
u. ~68!

We also need to express the distances in terms of the c
dinates (l ,u). In this case, because of the small-angle
sumption, we have

Dd5
1

A2l 0

, ~69!

Dds5
1

A2l
, ~70!

Ds5
1

A2l 0

1
1

A2l
. ~71!

Using Eq. ~68! and Eq.~71! with Eq. ~67!, we obtain the
weak-field thin-lens equation in our current notation:

u5
l 1 l 0

l S c2
4A2M

c

l 0
2

~ l 01 l ! D . ~72!

This is to be compared with the lens equation, Eq.~41!, in
the caseu05p. We can see thatu5Q reduces to Eq.~72! in
the following manner. We assume that the dimensionl
quantitiesMl[e and Ml 0<e are small and make a Taylo
series expansion ofQ[p2D in terms ofe:

is

ce-

at
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Q~ l ,l 0 ,c!'p2D~e50,b* ,l 0 ,l !1eF]D

]e G
e50

1
e2

2 F ]2D

]e2 G
e50

[p2D02D12D2 . ~73!

One can show that the zeroth and first order terms in
Taylor series expansion, Eq.~73!, yield Eq. ~72!. We can
further derive the next term in the expansion. The seco
order correction,D2, is obtained to lowest order inc by

D25
15p~M !2

4Dd
2c2

, ~74!

which corrects Eq.~72! as

u5
l 1 l 0

l S c2
4A2M

c

l 0
2

~ l 01 l !
2

15pM2

2c2

l 0
3

l 01 l D . ~75!

Equation~75! translates into a second-order accurate v
sion of the standard weak-field thin-lens equation in the fo

b5c2
4MDds

DdDsc
2

15p

4

M2Dds

DsDd
2c2

. ~76!

The strong-field thin-lens equation@5# calculates the
bending angle in exact Schwarzschild, for a lightray that
viates a total angleâ between the incoming direction from
infinity and the outgoing direction to infinity. The bendin
angleâ is not necessarily small, and will increase to infini
as rays approach the 3M radius. Thus there is no basis for
small angle approximation of the anglesb andâ. The image
anglec is still considered small in the spirit of the thin len
approximation, and the lens and source spheres are still
sidered planes. The strong-field thin-lens equation is
tained in the same manner as the weak-field thin-lens e
tion is, from trigonometry on the lens diagram, but uses
exact trigonometric functions ofb andâ, rather than substi-
tute the sines and tangents by their angles. The strong-
thin-lens equation is Eq.~1! in @5#, namely

tanb5tanc2
Dds

Ds
@ tanc1tan~ â2c!# ~77!

with

â52E
0

l p
dl

1

Al p
2~122A2Ml p!2 l 2~122A2Ml !

2p.

~78!

Equation~78! is obtained from Eq.~10! in @5# by making the
identificationsr→1/A2l and r 0→1/A2l p .

Since we are interested in comparing with the exact l
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equations, we need to expressb,â andDd ,Dds ,Ds in terms
of our coordinates. In the first place, since angles are
small then we have

tanb5
Dds

Ds
tanu ~79!

and

Dd5
1

A2l 0

, ~80!

Dds5
cosu

A2l
, ~81!

Ds5
1

A2l 0

1
cosu

A2l
. ~82!

Additionally, from Eq.~39!, it is straightforward to see tha

â52Q~ l ,l 0 ,c!u l 5 l 050 . ~83!

With Eqs.~79!, ~82! and ~83!, Eq. ~77! becomes

sinu2cosu tan~Qu l 5 l 0501c!2
l

l 0
tanc50 ~84!

which can be manipulated to yield

u5c1Qu l 5 l 0501arcsinS l

l 0
tanccos~Qu l 5 l 0501c! D .

~85!

Equation~85! is the strong-field thin-lens equation and is
be compared with the exact lens equationu5Q.

We can now plot our three lens equations and see h
well they compare. We choosel 5 l 050.001/3A2M , which
corresponds to a distance of 3000M from the lens for both
the source and the observer and setM51 for the plots. We
look at small image angles, which corresponds to approac
close to the 3M radius. The plots are only made for positiv
image angles. Since the lens equations are odd function
c, the plot for negativec is a reflection through the origin
and can be inferred from Fig. 5.

We can see in Fig. 5 that the weak-field equation~72!
deviates significantly from the exact equation both at fir
order accuracy and at second-order accuracy, Eq.~75!, as
expected. The main reason for the second-order correc
not to behave significantly better than the first-order accu
equation is that none of the perturbative terms blow up at
3M radius, whereas the exact equation does. The pertu
tive approach is clearly inappropriate for the strong-field
gime of a black hole.

However, the strong-field thin-lens equation Eq.~85!
agrees remarkably well with the exact equation. In our
ample, we have an error of less than one part in a thous
for source angles as large as about six turns around the
Notice that 3000M corresponds to only 4500 km for a stella
black hole, nowhere near the galactic distances expected
observed lensing. The thin-lens approximation appears to
very well at these relatively small distances and will almo
1-11
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certainly do much better at galactic and extragalactic d
tances.

One reason why Eq.~77! performs so accurately is th
tremendous distances involved. The other reason is, h
ever, that the exact bending angle through infinite distan
is used. Most of the effort in using Eq.~77! is involved in
evaluating the integral expression of the bending angle
its derivatives, which involves the same amount of work
quired to do the exact lens equation, as shown by our c
parison above, Eq.~85!. Thus the efficiency in terms of com
putational cost is not very high. Considering that the price
to break with the covariance and non-linearity of gene
relativity, one might even find it justified to give up the thin
lens approximation in favor of the exact lens equation in
case of strong, spherically symmetric gravitational fields.

A valuable, second comparison is the time delays p
dicted by the exact and thin lens approaches. Time delays
now a very important tool in astrophysics and provide
means to estimate the Hubble constant independent of p
ous methods. We will define a time delay as the observ
elapsed proper time between the arrival of a signal along
distinct paths connecting the source and observer.

When the weak field, thin lens approach is applied to
Schwarzschild lens, generically, two paths connect
source and observer, one passing on each side of the
This results from the lens equation, Eq.~41!, admitting two
values forc for given values ofb, M, and distance param
eters. The only exception is when the source, lens, and
server lie along the same radial line. In this case an Eins
ring is formed, and the time delay is zero by symmetry. T
time along each of the two paths is found by integrating

FIG. 5. A comparison of the available lens equations in
literature. The vertical axis represents the angular position of
source in radians. The horizontal axis represents the observed
c in radians. We have taken the observer and the source at
same distance from the lens,r 53000M . Here TL:5thin lens. The
standard thin-lens-weak-field approximation is clearly inaccur
whereas the second-order correction to it does not do significa
better. However, the thin-lens-strong-field approximation appear
be remarkably good, since at this resolution it agrees with the e
lens equation up to one part in a thousand.
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along the trajectory determined by the weak field thin le
equation. In the integration,l is the Euclidean length along
the thin lens trajectory, andr ( l ) represents the Euclidea
distance from the origin to a point along the path. The th
lens time delay,Dt tl , is the difference between the two time

In the exact approach, there are an infinite number
pairs of geodesics connecting the source and observer
cause geodesics may wrap around the black hole m
times. However, there are only two geodesics which do
circle the lens; these geodesics, which can be distinguis
from the others, are the analogue of the thin lens paths.
exact time delay,Dte, is numerically computed from Eq
~37! by taking the difference between the times elaps
along these two geodesics.

Figure 6 shows the exact and weak field thin lens ti
delays given the same observer and source location.
time delays are given in geometrical units, and theb-axis is
given in radians. In this calculation, the observer is located
l 050.001/3A2M , or a distance of 3000M , and u50.
Sources are located in a fixed source plane whose dist
from the lens along the optical axis is also 3000M , as in the
standard thin lens picture. The time delays are plotted aga
b, the source angle used in the thin lens equation.

At b50, Einstein rings are formed, and each time de
will be zero. Asb increases, the thin lens time delay slight
overestimates the true value, as seen in the figure. This
resents the general behavior for a single Schwarzschild
at larger distances, but the effect remains fairly small. Fo
single Schwarzschild lens with a mass of 2.531012 solar
masses, at redshiftz50.5 with a source atz51.0 andb
50.59, the overall exact time delay is close to 400 da
while the error introduced by using the thin lens approxim
tion is less than an hour.

The time delays computed in the thin lens approximat
remain quite accurate in our comparisons because the
rays do not feel a strong gravitational field along their traje
tories. This is why the thin lens fails so dramatically in th
observation angle calculation presented in Fig. 5, while fa
ing well in the time delay comparisons.

Despite these results, it may be incorrect to assume
the thin lens method of computing time delays remains

e
e
gle
e

,
tly
to
ct

FIG. 6. A plot of the exact and thin lens time delays against
source angleb in radians. Here, the source and observer
roughly 3000M from the lens.
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curate for more complex lensing situations. The first of t
possible problems is that the weak field assumption may
always be valid along an observed null geodesic. It may
very difficult to identify lens candidates whose null geod
sics have undergone interactions with strong gravitatio
fields, however, if such candidates are found, the thin l
methodology will most likely prove quite inaccurate. Se
ondly, it is not known how accurate the time delay comp
tations will be in more complex lensing scenarios, especi
when the geodesics are bent in multiple lens planes.

V. DISCUSSION

To date, virtually all applications of gravitational lensin
have utilized the thin lens approximation. Although the th
lens method has proven a quick and useful tool, it can no
applied to high curvature regions. The failure of the ne
order correction to the thin lens equation, Eq.~76!, as con-
trasted with the ability of the strong field thin lens equati
@5#, to capture the divergence of the observation angleQ in
Fig. 5 emphasizes the point that some combination of ex
methods are required in such situations.

We are putting forward the idea that exact gravitatio
lensing may not be just a purely academic exercise. In f
we see that virtually all of the observationally relevant qua
tities can be determined analytically in the exact method w
relative ease for a Schwarzschild spacetime. In this paper
found straight-forward expressions for the time delays,
servation angles, angular-diameter distances, and rela
magnifications. These analytic expressions can be use
comparison calculations or model building with great co
putational prowess, power, or time.

The limited testing of the thin-lens methodology in th
paper has indicated that there are regions~possibly not yet
observable! where the thin-lens method fails in a highly sym
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ct

l
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metric case. In ongoing calculations, we are exploring
accuracy of the thin lens approximation under a broad ra
of conditions, including those in which there may be strong
fields or multiple lenses present. These calculations will
quire a combination of analytic and numerical results. A p
cedent for this kind of work was set by Rauch and Blandfo
@10#, who studied the null geodesic equations~or the exact
lens equations in our terminology! for Kerr spacetime and
found the caustics of the lightcone. Our sense from th
comparisons is that the error in the thin lens method for
time delays and observation angles will, in some cases
appreciable@9#.

We are also interested in an issue regarding the comp
son of the sizes of two different types of corrections to t
thin lens equations. On one hand, within the framework
the thin lens methodology, there are corrections due to
structure of the mass distribution~of the lens! over that of the
monopole moment. On the other hand, even for the mo
pole case, there are differences between the prediction
the exact lens equations and the thin lens equations.
issue is whether the sizes of these corrections are com
rable.
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APPENDIX

An alternative derivation of Eq.~59!, by direct computa-
tion, is obtained by taking the derivative ofQ and of t with
respect toc. Because botht and Q depend onc only
through the point of closest approachl p , we actually need to
calculate]t/] l p and]Q/] l p . We have
]Q

] l p

5E
l

l 0 l p~123A2Ml p!dl8

„l p
2~122A2Ml p!2 l 82~122A2Ml 8!…3/2

1 lim
e→0H 2E

l 0

l p2e l p~123A2Ml p!dl8

„l p
2~122A2Ml p!2 l 82~122A2Ml 8!…3/2

2
2

Al p
2~122A2Ml p!2 l 82~122A2Ml 8!

U
l 85 l p2e

J . ~A1!

On the other hand we also have

]t

] l p

52
1

A2
E

l

l 0 l p~123A2Ml p!

Al p
2~122A2Ml p!

„l p
2~122A2Ml p!2 l 82~122A2Ml 8!…3/2dl8

2 lim
e→0

H 2

A2
E

l 0

l p2e l p~123A2Ml p!

Al p
2~122A2Ml p!„l p

2~122A2Ml p!2 l 82~122A2Ml 8!…3/2
dl8

1
2

A2l 82~122A2Ml 8!
A l p

2~122A2Ml p!

l p
2~122A2Ml p!2 l 82~122A2Ml 8!

U
l 85 l p2e

J . ~A2!
1-13



FRITTELLI, KLING, AND NEWMAN PHYSICAL REVIEW D 61 064021
Clearly the last term inside the braces under the limit sign in Eq.~A2! can be substituted with

2

A2l p
2~122A2Ml p!

1

Al p
2~122A2Ml p!2 l 82~122A2Ml 8!

U
l 85 l p2e

~A3!

since the difference vanishes in the limite→0. We can thus see that]t/] l p and]Q/] l p are proportional to each other via

]t

] l p

52
1

A2l p
2~122A2Ml p!

]Q

] l p

. ~A4!

This implies Eq.~59!.
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